Science.gov

Sample records for adaptive clutter filtering

  1. Adaptive clutter rejection filters for airborne Doppler weather radar applied to the detection of low altitude windshear

    NASA Technical Reports Server (NTRS)

    Keel, Byron M.

    1989-01-01

    An optimum adaptive clutter rejection filter for use with airborne Doppler weather radar is presented. The radar system is being designed to operate at low-altitudes for the detection of windshear in an airport terminal area where ground clutter returns may mask the weather return. The coefficients of the adaptive clutter rejection filter are obtained using a complex form of a square root normalized recursive least squares lattice estimation algorithm which models the clutter return data as an autoregressive process. The normalized lattice structure implementation of the adaptive modeling process for determining the filter coefficients assures that the resulting coefficients will yield a stable filter and offers possible fixed point implementation. A 10th order FIR clutter rejection filter indexed by geographical location is designed through autoregressive modeling of simulated clutter data. Filtered data, containing simulated dry microburst and clutter return, are analyzed using pulse-pair estimation techniques. To measure the ability of the clutter rejection filters to remove the clutter, results are compared to pulse-pair estimates of windspeed within a simulated dry microburst without clutter. In the filter evaluation process, post-filtered pulse-pair width estimates and power levels are also used to measure the effectiveness of the filters. The results support the use of an adaptive clutter rejection filter for reducing the clutter induced bias in pulse-pair estimates of windspeed.

  2. Echo motion imaging with adaptive clutter filter for assessment of cardiac blood flow

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroki; Hasegawa, Hideyuki; Kanai, Hiroshi

    2015-07-01

    Visualization of the vortex blood flow in the cardiac chamber is a potential diagnostic tool for the evaluation of cardiac function. In the present study, a method for automatic selection of the desirable cutoff frequency of a moving target indicator filter, namely, a clutter filter, was proposed in order to visualize complex blood flows by the ultrahigh-frame-rate imaging of echoes from blood particles while suppressing clutter echoes. In this method, the cutoff frequency was adaptively changed as a function of the velocity of the heart wall (clutter source) in each frame. The feasibility of the proposed method was examined through the measurement of a healthy volunteer using parallel receive beamforming with a single transmission of a non-steered diverging beam. Using the moving target indicator filter as above with the cutoff frequency determined by the proposed method, the vortex-like blood flow in the cardiac chamber was visualized as movements of echoes from blood particles at a very high frame rate of 6024 Hz while suppressing clutter echoes.

  3. Adaptive clutter filter in 2-D color flow imaging based on in vivo I/Q signal.

    PubMed

    Zhou, Xiaoming; Zhang, Congyao; Liu, Dong C

    2014-01-01

    Color flow imaging has been well applied in clinical diagnosis. For the high quality color flow images, clutter filter is important to separate the Doppler signals from blood and tissue. Traditional clutter filters, such as finite impulse response, infinite impulse response and regression filters, were applied, which are based on the hypothesis that the clutter signal is stationary or tissue moves slowly. However, in realistic clinic color flow imaging, the signals are non-stationary signals because of accelerated moving tissue. For most related papers, simulated RF signals are widely used without in vivo I/Q signal. Hence, in this paper, adaptive polynomial regression filter, which is down mixing with instantaneous clutter frequency, was proposed based on in vivo carotid I/Q signal in realistic color flow imaging. To get the best performance, the optimal polynomial order of polynomial regression filter and the optimal polynomial order for estimation of instantaneous clutter frequency respectively were confirmed. Finally, compared with the mean blood velocity and quality of 2-D color flow image, the experiment results show that adaptive polynomial regression filter, which is down mixing with instantaneous clutter frequency, can significantly enhance the mean blood velocity and get high quality 2-D color flow image. PMID:24211911

  4. Simulation of mid-infrared clutter rejection. 1: One-dimensional LMS spatial filter and adaptive threshold algorithms.

    PubMed

    Longmire, M S; Milton, A F; Takken, E H

    1982-11-01

    Several 1-D signal processing techniques have been evaluated by simulation with a digital computer using high-spatial-resolution (0.15 mrad) noise data gathered from back-lit clouds and uniform sky with a scanning data collection system operating in the 4.0-4.8-microm spectral band. Two ordinary bandpass filters and a least-mean-square (LMS) spatial filter were evaluated in combination with a fixed or adaptive threshold algorithm. The combination of a 1-D LMS filter and a 1-D adaptive threshold sensor was shown to reject extreme cloud clutter effectively and to provide nearly equal signal detection in a clear and cluttered sky, at least in systems whose NEI (noise equivalent irradiance) exceeds 1.5 x 10(-13) W/cm(2) and whose spatial resolution is better than 0.15 x 0.36 mrad. A summary gives highlights of the work, key numerical results, and conclusions. PMID:20396326

  5. Multi-Target Tracking Based on Multi-Bernoulli Filter with Amplitude for Unknown Clutter Rate.

    PubMed

    Yuan, Changshun; Wang, Jun; Lei, Peng; Bi, Yanxian; Sun, Zhongsheng

    2015-01-01

    Knowledge of the clutter rate is of critical importance in multi-target Bayesian tracking. However, estimating the clutter rate is a difficult problem in practice. In this paper, an improved multi-Bernoulli filter based on random finite sets for multi-target Bayesian tracking accommodating non-linear dynamic and measurement models, as well as unknown clutter rate, is proposed for radar sensors. The proposed filter incorporates the amplitude information into the state and measurement spaces to improve discrimination between actual targets and clutters, while adaptively generating the new-born object random finite sets using the measurements to eliminate reliance on prior random finite sets. A sequential Monte-Carlo implementation of the proposed filter is presented, and simulations are used to demonstrate the proposed filter's improvements in estimation accuracy of the target number and corresponding multi-target states, as well as the clutter rate. PMID:26690148

  6. Multi-Target Tracking Based on Multi-Bernoulli Filter with Amplitude for Unknown Clutter Rate

    PubMed Central

    Yuan, Changshun; Wang, Jun; Lei, Peng; Bi, Yanxian; Sun, Zhongsheng

    2015-01-01

    Knowledge of the clutter rate is of critical importance in multi-target Bayesian tracking. However, estimating the clutter rate is a difficult problem in practice. In this paper, an improved multi-Bernoulli filter based on random finite sets for multi-target Bayesian tracking accommodating non-linear dynamic and measurement models, as well as unknown clutter rate, is proposed for radar sensors. The proposed filter incorporates the amplitude information into the state and measurement spaces to improve discrimination between actual targets and clutters, while adaptively generating the new-born object random finite sets using the measurements to eliminate reliance on prior random finite sets. A sequential Monte-Carlo implementation of the proposed filter is presented, and simulations are used to demonstrate the proposed filter’s improvements in estimation accuracy of the target number and corresponding multi-target states, as well as the clutter rate. PMID:26690148

  7. Image-based ATR utilizing adaptive clutter filter detection, LLRT classification, and Volterra fusion with application to side-looking sonar

    NASA Astrophysics Data System (ADS)

    Aridgides, Tom; Fernández, Manuel

    2010-04-01

    An improved automatic target recognition (ATR) processing string has been developed. The overall processing string consists of pre-processing, subimage adaptive clutter filtering, detection, feature extraction, optimal subset feature selection, feature orthogonalization and classification processing blocks. The objects that are classified by three distinct ATR strings are fused using the classification confidence values and their expansions as features, and using "summing" or log-likelihood-ratio-test (LLRT) based fusion rules. These three ATR processing strings were individually developed and tuned by researchers from different companies. The utility of the overall processing strings and their fusion was demonstrated with an extensive side-looking sonar dataset. In this paper we describe a new processing improvement: six additional classification features are extracted, using primarily target shadow information and a feature extraction window whose length is now made variable as a function of range. This new ATR processing improvement resulted in a 3:1 reduction in false alarms. Two advanced fusion algorithms are subsequently applied: First, a nonlinear Volterra expansion (2nd order) feature-LLRT fusion algorithm is employed. Second, a repeated application of a subset Volterra feature selection / feature orthogonalization / LLRT fusion block is utilized. It is shown that cascaded Volterra feature- LLRT fusion of the ATR processing strings outperforms baseline "summing" and single-stage Volterra feature-LLRT fusion algorithms, yielding significant improvements over the best single ATR processing string results, and providing the capability to correctly call the majority of targets while maintaining a very low false alarm rate.

  8. Signal processing techniques for clutter filtering and wind shear detection

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.; Deshpande, Manohar D

    1991-01-01

    An extended Prony algorithm applicable to signal processing techniques for clutter filtering and windshear detection is discussed. The algorithm is based upon modelling the radar return as a time series, and appears to offer potential for improving hazard factor estimates in the presence of strong clutter returns.

  9. Subaperture clutter filter with CFAR signal detection

    DOEpatents

    Ormesher, Richard C.; Naething, Richard M.

    2016-08-30

    The various technologies presented herein relate to the determination of whether a received signal comprising radar clutter further comprises a communication signal. The communication signal can comprise of a preamble, a data symbol, communication data, etc. A first portion of the radar clutter is analyzed to determine a radar signature of the first portion of the radar clutter. A second portion of the radar clutter can be extracted based on the radar signature of the first portion. Following extraction, any residual signal can be analyzed to retrieve preamble data, etc. The received signal can be based upon a linear frequency modulation (e.g., a chirp modulation) whereby the chirp frequency can be determined and the frequency of transmission of the communication signal can be based accordingly thereon. The duration and/or bandwidth of the communication signal can be a portion of the duration and/or the bandwidth of the radar clutter.

  10. A comparison of "clutter-agnostic" PHD filters

    NASA Astrophysics Data System (ADS)

    Mahler, Ronald

    2012-06-01

    This paper describes a general approach for deriving PHD/CPHD filters that must estimate the background clutter process, rather than being provided with it a priori. I first derive general time- and measurementupdate equations for clutter-agnostic PHD filters. I then consider two different Markov motion models. For the Uncoupled Motion (UM) model, targets can transition only to targets, and clutter generators can transition only to clutter generators. For the Coupled Motion (CM) model, targets can transition to clutter generators and vice-versa. I demonstrate that R. Streit's "multitarget intensity filter" (MIF) is actually a PHD filter with a CM model. Streit has made the following claims for the MIF: it subsumes the conventional PHD filter as a special case, and can estimate both the clutter rate λk+1 and the target-birth rate Bk+1|k. I exhibit counterexamples to these claims. Because of the CM model, the MIF (1) does not subsume the conventional PHD filter as a special case; (2) cannot estimate Bk+1|k when there are no clutter generators; and (3) cannot estimate λk+1 when the target birth-rate and target death-rate are "conjugate." By way of contrast, PHD filters with UM models do include the PHD filter as a special case, and can estimate the clutter intensity function κk+1(z). I also show that the MIF is essentially identical to the UM-model PHD filter when the target birth-rate and death-rate are both small.

  11. Clutter filter design considerations for Airborne Doppler radar detection of windshear

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.

    1990-01-01

    The problem of clutter rejection when processing down-looking Doppler radar returns from a low altitude airborne platform is a paramount problem. With radar as a remote sensor for detecting and predicting windshear in the vicinity of an urban airport, dynamic range requirements can exceed 50 dB because of high clutter to signal ratios. This presentation describes signal processing considerations in the presence of distributed and/or discrete clutter interference. Previous analyses have considered conventional range cell processing of radar returns from a rigidly mounted radar platform using either the Fourier or the pulse-pair method to estimate average windspeed and windspeed variation within a cell. Clutter rejection has been based largely upon analyzing a particular environment in the vicinity of the radar and employing a variety of techniques to reduce interference effects including notch filtering, Fourier domain line editing, and use of clutter maps. For the airborne environment the clutter characteristics may be somewhat different. Conventional clutter rejection methods may have to be changed and new methods will probably be required to provide useful signal to noise ratios. Various considerations are described. A major thrust has been to evaluate the effect of clutter rejection filtering upon the ability to derive useful information from the post-filter radar data. This analysis software is briefly described. Finally, some ideas for future analysis are considered including the use of adaptive filtering for clutter rejection and the estimation of windspeed spatial gradient directly from radar returns as a means of reducing the effects of clutter on the determination of a windshear hazard.

  12. Opdic (optimized Peak, Distortion and Clutter) Detection Filter.

    NASA Astrophysics Data System (ADS)

    House, Gregory Philip

    1995-01-01

    Detection is considered. This involves determining regions of interest (ROIs) in a scene: the locations of multiple object classes in a scene in clutter when object distortions and contrast differences are present. High probability of detection P_{D} is essential and low P_{FA } is desirable since subsequent stages in the full system will only decrease P_{FA } and cannot increase P_{D }. Low resolution blob objects and objects with more internal detail are considered with both 3-D aspect view and depression angle distortions present. Extensive tests were conducted on 56 scenes with object classes not present in the training set. A modified MINACE (Minimum Noise and Correlation Energy) distortion-invariant filter was used. This minimizes correlation plane energy due to distortions and clutter while satisfying correlation peak constraint values for various object-aspect views. The filter was modified with a new object model (to give predictable output peak values) and a new correlated noise clutter model; a white Gaussian noise model of distortion was used; and a new techniques to increase the number of training set images (N _{T}) included in the filter were developed. Excellent results were obtained. However, the correlation plane distortion and clutter energy functions were found to become worse as N_{T } was increased and no rigorous method exists to select the best N_{T} (when to stop filter synthesis). A new OPDIC (Optimized Peak, Distortion, and Clutter) filter was thus devised. This filter retained the new object, clutter and distortion models noted. It minimizes the variance of the correlation peak values for all training set images (not just the N_{T} images). As N _{T} increases, the peak variance and the objective functions (correlation plane distortion and clutter energy) are all minimized. Thus, this new filter optimizes the desired functions and provides an easy way to stop filter synthesis (when the objective function is minimized). Tests show

  13. Clutter filtering influence on blood velocity estimation using speckle tracking.

    PubMed

    Fadnes, Solveig; Bjærum, Steinar; Torp, Hans; Lovstakken, Lasse

    2015-12-01

    Blood speckle tracking has shown potential for solving the angle-dependency limitation in color flow imaging. However, as clutter filtering is still Doppler-based, flow velocities at near-perpendicular beam-to-flow angles can be severely attenuated. It is shown that the clutter filter also alters the speckle appearance through a decrease in the lateral imaging bandwidth, leading to poorer lateral resolution and thus tracking performance. Interestingly, at perpendicular beam-to-flow angles lateral band-pass characteristics are inferred, and the resulting lateral amplitude modulation could help improve tracking estimates. Simulations and flow phantom experiments showed that substantially improved results could be achieved by utilizing time-variant clutter filters (e.g., polynomial regression filters) despite the inherent decorrelation inferred by these filters, but only for higher ensemble sizes (N > 36). We found that, compared with color flow imaging, speckle tracking could yield consistent estimates well below the clutter filter cutoff, but with a higher variance attributed to the low signalto- noise ratio inferred by filter attenuation. Overall, provided that a low f-number and high ensemble lengths (N approx. > 36) can be used, speckle tracking can consistently provide angle- independent flow velocity estimates, limited only by a lower bound on the flow velocity itself. PMID:26670849

  14. Expected likelihood for tracking in clutter with particle filters

    NASA Astrophysics Data System (ADS)

    Marrs, Alan; Maskell, Simon; Bar-Shalom, Yaakov

    2002-08-01

    The standard approach to tracking a single target in clutter, using the Kalman filter or extended Kalman filter, is to gate the measurements using the predicted measurement covariance and then to update the predicted state using probabilistic data association. When tracking with a particle filter, an analog to the predicted measurement covariance is not directly available and could only be constructed as an approximation to the current particle cloud. A common alternative is to use a form of soft gating, based upon a Student's-t likelihood, that is motivated by the concept of score functions in classical statistical hypothesis testing. In this paper, we combine the score function and probabilistic data association approaches to develop a new method for tracking in clutter using a particle filter. This is done by deriving an expected likelihood from known measurement and clutter statistics. The performance of this new approach is assessed on a series of bearings-only tracking scenarios with uncertain sensor location and non-Gaussian clutter.

  15. Time-frequency filtering for classifying targets in nonstationary clutter

    NASA Astrophysics Data System (ADS)

    Gomatam, Vikram Thiruneermalai; Loughlin, Patrick

    2014-06-01

    Classifying underwater targets from their sonar backscatter is often complicated by induced or self-noise (i.e. clutter, reverberation) arising from the scattering of the sonar pulse from non-target objects. Because clutter is inherently nonstationary, and because the propagation environment can induce nonstationarities as well, in addition to any nonstationarities / time-varying spectral components of the target echo itself, a joint phase space approach to target classification has been explored. In this paper, we apply a previously developed minimum mean square time-frequency spectral estimation method to design a bank of time-frequency filters from training data to distinguish targets from clutter. The method is implemented in the ambiguity domain in order to reduce computational requirements. In this domain, the optimal filter (more commonly called a "kernel" in the time-frequency literature) multiples the ambiguity function of the received signal, and then the mean squared distance to each target class is computed. Simulations demonstrate that the class-specific optimal kernel better separates each target from the clutter and other targets, compared to a simple mean-squared distance measure with no kernel processing.

  16. Cluttering

    MedlinePlus

    ... problem, but also any co-existing oral-motor, language, pronunciation, learning, or social problems. If the suspected clutterer is ... other problems are present, such as stuttering, a language disorder, or a learning disability. It is important to note that if ...

  17. Clutter-adaptive infrared small target detection in infrared maritime scenarios

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoping; Zhang, Tianxu

    2011-06-01

    A clutter-adaptive target-detection method is proposed to detect small moving targets in midwave infrared maritime scenarios. In particular, we focus our attention on the sea-sky background and targets of interest are ships along the horizontal sea-sky line. In the distant sea-sky background infrared imagery, small targets frequently appear as weak intensity and do not have enough structure information in the vicinity of horizontal sea-sky-line, that is sea-sky region, and the complexity of background clutters has direct impact on the target detection performance. Thus, a fuzzy system constructed by the extracted image-based features is designed for the clutter classification. And then, based on the determined clutter type, low clutter or high clutter, the horizontal sea-sky line can be detected successfully. In the target detection stage, under the guidance of the sea-sky line, a modified multilevel filter method is applied to enhance the target in the sea-sky region. Finally, the recursive segmentation method and the target validation technique are adopted for the target extraction and validation. In the experiments, the target detection performance of proposed method is validated by extensive experiments on infrared images taken in different imaging conditions. It achieves high accuracy with a low false alarm rate.

  18. Small Infrared Target Detection by Region-Adaptive Clutter Rejection for Sea-Based Infrared Search and Track

    PubMed Central

    Kim, Sungho; Lee, Joohyoung

    2014-01-01

    This paper presents a region-adaptive clutter rejection method for small target detection in sea-based infrared search and track. In the real world, clutter normally generates many false detections that impede the deployment of such detection systems. Incoming targets (missiles, boats, etc.) can be located in the sky, horizon and sea regions, which have different types of clutters, such as clouds, a horizontal line and sea-glint. The characteristics of regional clutter were analyzed after the geometrical analysis-based region segmentation. The false detections caused by cloud clutter were removed by the spatial attribute-based classification. Those by the horizontal line were removed using the heterogeneous background removal filter. False alarms by sun-glint were rejected using the temporal consistency filter, which is the most difficult part. The experimental results of the various cluttered background sequences show that the proposed region adaptive clutter rejection method produces fewer false alarms than that of the mean subtraction filter (MSF) with an acceptable degradation detection rate. PMID:25054633

  19. Small infrared target detection by region-adaptive clutter rejection for sea-based infrared search and track.

    PubMed

    Kim, Sungho; Lee, Joohyoung

    2014-01-01

    This paper presents a region-adaptive clutter rejection method for small target detection in sea-based infrared search and track. In the real world, clutter normally generates many false detections that impede the deployment of such detection systems. Incoming targets (missiles, boats, etc.) can be located in the sky, horizon and sea regions, which have different types of clutters, such as clouds, a horizontal line and sea-glint. The characteristics of regional clutter were analyzed after the geometrical analysis-based region segmentation. The false detections caused by cloud clutter were removed by the spatial attribute-based classification. Those by the horizontal line were removed using the heterogeneous background removal filter. False alarms by sun-glint were rejected using the temporal consistency filter, which is the most difficult part. The experimental results of the various cluttered background sequences show that the proposed region adaptive clutter rejection method produces fewer false alarms than that of the mean subtraction filter (MSF) with an acceptable degradation detection rate. PMID:25054633

  20. Designing clutter rejection filters with complex coefficients for airborne pulsed Doppler weather radar

    NASA Technical Reports Server (NTRS)

    Jamora, Dennis A.

    1993-01-01

    Ground clutter interference is a major problem for airborne pulse Doppler radar operating at low altitudes in a look-down mode. With Doppler zero set at the aircraft ground speed, ground clutter rejection filtering is typically accomplished using a high-pass filter with real valued coefficients and a stopband notch centered at zero Doppler. Clutter spectra from the NASA Wind Shear Flight Experiments of l991-1992 show that the dominant clutter mode can be located away from zero Doppler, particularly at short ranges dominated by sidelobe returns. Use of digital notch filters with complex valued coefficients so that the stopband notch can be located at any Doppler frequency is investigated. Several clutter mode tracking algorithms are considered to estimate the Doppler frequency location of the dominant clutter mode. From the examination of night data, when a dominant clutter mode away from zero Doppler is present, complex filtering is able to significantly increase clutter rejection over use of a notch filter centered at zero Doppler.

  1. Frequency-space prediction filtering for acoustic clutter and random noise attenuation in ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Shin, Junseob; Huang, Lianjie

    2016-04-01

    Frequency-space prediction filtering (FXPF), also known as FX deconvolution, is a technique originally developed for random noise attenuation in seismic imaging. FXPF attempts to reduce random noise in seismic data by modeling only real signals that appear as linear or quasilinear events in the aperture domain. In medical ultrasound imaging, channel radio frequency (RF) signals from the main lobe appear as horizontal events after receive delays are applied while acoustic clutter signals from off-axis scatterers and electronic noise do not. Therefore, FXPF is suitable for preserving only the main-lobe signals and attenuating the unwanted contributions from clutter and random noise in medical ultrasound imaging. We adapt FXPF to ultrasound imaging, and evaluate its performance using simulated data sets from a point target and an anechoic cyst. Our simulation results show that using only 5 iterations of FXPF achieves contrast-to-noise ratio (CNR) improvements of 67 % in a simulated noise-free anechoic cyst and 228 % in a simulated anechoic cyst contaminated with random noise of 15 dB signal-to-noise ratio (SNR). Our findings suggest that ultrasound imaging with FXPF attenuates contributions from both acoustic clutter and random noise and therefore, FXPF has great potential to improve ultrasound image contrast for better visualization of important anatomical structures and detection of diseased conditions.

  2. Enhanced target versus clutter discrimination using time-frequency (LTV) filters

    NASA Astrophysics Data System (ADS)

    Gomatam, Vikram Thiruneermalai; Loughlin, Patrick

    2015-05-01

    In active sensing such as in sonar and radar, target recognition is adversely impacted by target-like returns from non-target objects (i.e. clutter). Because the target and clutter returns are in general nonstationary, the application of linear time-varying (LTV) pre-filters has been suggested to enhance target classification. We apply a minimum probability of error (MPE) classifier with and without LTV filters to distinguish targets from clutter in active sonar data. Classification performance was improved with LTV filtering.

  3. Spatiotemporal Clutter Filtering of Ultrafast Ultrasound Data Highly Increases Doppler and fUltrasound Sensitivity.

    PubMed

    Demené, Charlie; Deffieux, Thomas; Pernot, Mathieu; Osmanski, Bruno-Félix; Biran, Valérie; Gennisson, Jean-Luc; Sieu, Lim-Anna; Bergel, Antoine; Franqui, Stéphanie; Correas, Jean-Michel; Cohen, Ivan; Baud, Olivier; Tanter, Mickael

    2015-11-01

    Ultrafast ultrasonic imaging is a rapidly developing field based on the unfocused transmission of plane or diverging ultrasound waves. This recent approach to ultrasound imaging leads to a large increase in raw ultrasound data available per acquisition. Bigger synchronous ultrasound imaging datasets can be exploited in order to strongly improve the discrimination between tissue and blood motion in the field of Doppler imaging. Here we propose a spatiotemporal singular value decomposition clutter rejection of ultrasonic data acquired at ultrafast frame rate. The singular value decomposition (SVD) takes benefits of the different features of tissue and blood motion in terms of spatiotemporal coherence and strongly outperforms conventional clutter rejection filters based on high pass temporal filtering. Whereas classical clutter filters operate on the temporal dimension only, SVD clutter filtering provides up to a four-dimensional approach (3D in space and 1D in time). We demonstrate the performance of SVD clutter filtering with a flow phantom study that showed an increased performance compared to other classical filters (better contrast to noise ratio with tissue motion between 1 and 10mm/s and axial blood flow as low as 2.6 mm/s). SVD clutter filtering revealed previously undetected blood flows such as microvascular networks or blood flows corrupted by significant tissue or probe motion artifacts. We report in vivo applications including small animal fUltrasound brain imaging (blood flow detection limit of 0.5 mm/s) and several clinical imaging cases, such as neonate brain imaging, liver or kidney Doppler imaging. PMID:25955583

  4. Using particle filter to track horizontal variations of atmospheric duct structure from radar sea clutter

    NASA Astrophysics Data System (ADS)

    Zhao, X. F.; Huang, S. X.

    2012-08-01

    This paper addresses the problem of estimating range-varying parameters of the height-dependent refractivity over the sea surface from radar sea clutter. In the forward simulation, the split-step Fourier parabolic equation (PE) is used to compute the radar clutter power in the complex refractive environments. Making use of the inherent Markovian structure of the split-step Fourier PE solution, the refractivity from clutter (RFC) problem is formulated within a nonlinear recursive Bayesian state estimation framework. Particle filter (PF) that is a technique for implementing a recursive Bayesian filter by Monte Carlo simulations is used to track range-varying characteristics of the refractivity profiles. Basic ideas of employing PF to solve RFC problem are introduced. Both simulation and real data results are presented to check up the feasibility of PF-RFC performances.

  5. Using particle filter to track horizontal variations of atmospheric duct structure from radar sea clutter

    NASA Astrophysics Data System (ADS)

    Zhao, X. F.; Huang, S. X.; Wang, D. X.

    2012-11-01

    This paper addresses the problem of estimating range-varying parameters of the height-dependent refractivity over the sea surface from radar sea clutter. In the forward simulation, the split-step Fourier parabolic equation (PE) is used to compute the radar clutter power in the complex refractive environments. Making use of the inherent Markovian structure of the split-step Fourier PE solution, the refractivity from clutter (RFC) problem is formulated within a nonlinear recursive Bayesian state estimation framework. Particle filter (PF), which is a technique for implementing a recursive Bayesian filter by Monte Carlo simulations, is used to track range-varying characteristics of the refractivity profiles. Basic ideas of employing PF to solve RFC problem are introduced. Both simulation and real data results are presented to confirm the feasibility of PF-RFC performances.

  6. The effects of clutter-rejection filtering on estimating weather spectrum parameters

    NASA Technical Reports Server (NTRS)

    Davis, W. T.

    1989-01-01

    The effects of clutter-rejection filtering on estimating the weather parameters from pulse Doppler radar measurement data are investigated. The pulse pair method of estimating the spectrum mean and spectrum width of the weather is emphasized. The loss of sensitivity, a measure of the signal power lost due to filtering, is also considered. A flexible software tool developed to investigate these effects is described. It allows for simulated weather radar data, in which the user specifies an underlying truncated Gaussian spectrum, as well as for externally generated data which may be real or simulated. The filter may be implemented in either the time or the frequency domain. The software tool is validated by comparing unfiltered spectrum mean and width estimates to their true values, and by reproducing previously published results. The effects on the weather parameter estimates using simulated weather-only data are evaluated for five filters: an ideal filter, two infinite impulse response filters, and two finite impulse response filters. Results considering external data, consisting of weather and clutter data, are evaluated on a range cell by range cell basis. Finally, it is shown theoretically and by computer simulation that a linear phase response is not required for a clutter rejection filter preceeding pulse-pair parameter estimation.

  7. Temporal filters for tracking weak slow point targets in evolving cloud clutter

    NASA Astrophysics Data System (ADS)

    Silverman, Jerry; Mooney, Jonathan M.; Caefer, Charlene E.

    1996-10-01

    A class of temporal filters is presented for use with a staring infrared camera in detecting and tracking weak point targets moving slowly in evolving cloud clutter. The generic temporal filter, originally suggested by the singular value decomposition of consecutive frame data, is a zero mean damped sinusoid which can be recursively implemented in the complex plane. From this filter type, a composite triple temporal filter (TTF) is developed, consisting of two sinusoids of different periods in sequence followed by a third (averaging) filter. The TTF achieves impressive cloud clutter suppression by responding strongly to pixel temporal responses caused by moving point targets and weakly to responses caused by cloud edges moving into or out of pixels. An extensive database of local airfield scenes with targets of opportunity taken with two laboratory staring IR cameras was used in the design and testing of the filters. Issues and trade-offs in choosing the parameters of the TTF are explored by comparing two specific forms of the filter: the first based on a damped sinusoid with a period of 16 frames followed by one with a 10 frame period; the second filter has corresponding periods of 40 followed by 30 frames. The first TTF is very effective with targets having velocities from 0.1-0.5 pixels/frame in daytime drifting cloud scenes. However, target signal-to-noise values of ⩾6 are required for detection in white noise (close to blue-sky conditions). The second TTF is more sensitive to slower, weaker targets in blue-sky or cloudless night scenes; however, in order to operate in daytime cloud scenes, spatial enhancements are required. Results are detailed for some representative scenes and given as well for the total database as signal-to-clutter gain plots based on a newly formulated antimedian metric.

  8. Adaptive sequential algorithms for detecting targets in a heavy IR clutter

    NASA Astrophysics Data System (ADS)

    Tartakovsky, Alexander G.; Kligys, Skirmantas; Petrov, Anton

    1999-10-01

    Cruise missiles over land and sea cluttered background are serious threats to search and track systems. In general, these threats are stealth in both the IR and radio frequency bands. That is, their thermal IR signature and their radar cross section can be quite small. This paper discusses adaptive sequential detection methods which exploit 'track- before-detect' technology for detection glow-SNR targets in IR search and track (IRST) systems. Despite the fact that we focus on an IRST against cruise missiles over land and sea cluttered backgrounds, the results are applicable to other sensors and other kinds of targets.

  9. Mixture-Tuned, Clutter Matched Filter for Remote Detection of Subpixel Spectral Signals

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Mandrake, Lukas; Green, Robert O.

    2013-01-01

    Mapping localized spectral features in large images demands sensitive and robust detection algorithms. Two aspects of large images that can harm matched-filter detection performance are addressed simultaneously. First, multimodal backgrounds may thwart the typical Gaussian model. Second, outlier features can trigger false detections from large projections onto the target vector. Two state-of-the-art approaches are combined that independently address outlier false positives and multimodal backgrounds. The background clustering models multimodal backgrounds, and the mixture tuned matched filter (MT-MF) addresses outliers. Combining the two methods captures significant additional performance benefits. The resulting mixture tuned clutter matched filter (MT-CMF) shows effective performance on simulated and airborne datasets. The classical MNF transform was applied, followed by k-means clustering. Then, each cluster s mean, covariance, and the corresponding eigenvalues were estimated. This yields a cluster-specific matched filter estimate as well as a cluster- specific feasibility score to flag outlier false positives. The technology described is a proof of concept that may be employed in future target detection and mapping applications for remote imaging spectrometers. It is of most direct relevance to JPL proposals for airborne and orbital hyperspectral instruments. Applications include subpixel target detection in hyperspectral scenes for military surveillance. Earth science applications include mineralogical mapping, species discrimination for ecosystem health monitoring, and land use classification.

  10. Adaptive particle filtering

    NASA Astrophysics Data System (ADS)

    Stevens, Mark R.; Gutchess, Dan; Checka, Neal; Snorrason, Magnús

    2006-05-01

    Image exploitation algorithms for Intelligence, Surveillance and Reconnaissance (ISR) and weapon systems are extremely sensitive to differences between the operating conditions (OCs) under which they are trained and the extended operating conditions (EOCs) in which the fielded algorithms are tested. As an example, terrain type is an important OC for the problem of tracking hostile vehicles from an airborne camera. A system designed to track cars driving on highways and on major city streets would probably not do well in the EOC of parking lots because of the very different dynamics. In this paper, we present a system we call ALPS for Adaptive Learning in Particle Systems. ALPS takes as input a sequence of video images and produces labeled tracks. The system detects moving targets and tracks those targets across multiple frames using a multiple hypothesis tracker (MHT) tightly coupled with a particle filter. This tracker exploits the strengths of traditional MHT based tracking algorithms by directly incorporating tree-based hypothesis considerations into the particle filter update and resampling steps. We demonstrate results in a parking lot domain tracking objects through occlusions and object interactions.

  11. Moving target detection by nonlinear adaptive filtering on temporal profiles in infrared image sequences

    NASA Astrophysics Data System (ADS)

    Liu, Delian; Li, Zhaohui; Wang, Xiaorui; Zhang, Jianqi

    2015-11-01

    Target detection is of great importance both in civil and military fields. Here a new moving target detection approach is proposed, which employs a nonlinear adaptive filter to remove large fluctuations on temporal profiles that are produced by evolving clutters. Initially, this paper discusses the temporal behaviors of different pixels in infrared sequences. Then, the new nonlinear adaptive filter that is a variation of the median-modified Wiener filter is given to extract pulse signals on temporal profiles that relate to moving targets. Next, the variance of each temporal profile is estimated by segmenting each temporal profile into several segments to normalize the amplitude of the pulse signals. Finally, the proposed approach is tested via two infrared image sequences and compared with several conventional target detection algorithms. The results show our approach has a high effectiveness in extracting target temporal profiles amidst heavy and slowly evolving clutters.

  12. Further results on robust CFAR processing in conjunction with adaptive clutter/jamming suppression

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Cai, Lujing

    An examination is conducted of the performance degradation of the generalized likelihood ratio (GLR) test-principle algorithm in the presence of two types of inhomogeneity: a secondary data set contaminated by other targets in a multiple target environment, and an abrupt change in clutter covariance in the reference window. By comparison with the computer simulation conducted with a finite quantity of secondary data, the asymptotic results predict GLR performance in nonhomogeneous clutter.

  13. Frequency domain FIR and IIR adaptive filters

    NASA Technical Reports Server (NTRS)

    Lynn, D. W.

    1990-01-01

    A discussion of the LMS adaptive filter relating to its convergence characteristics and the problems associated with disparate eigenvalues is presented. This is used to introduce the concept of proportional convergence. An approach is used to analyze the convergence characteristics of block frequency-domain adaptive filters. This leads to a development showing how the frequency-domain FIR adaptive filter is easily modified to provide proportional convergence. These ideas are extended to a block frequency-domain IIR adaptive filter and the idea of proportional convergence is applied. Experimental results illustrating proportional convergence in both FIR and IIR frequency-domain block adaptive filters is presented.

  14. Particle filter based visual tracking with multi-cue adaptive fusion

    NASA Astrophysics Data System (ADS)

    Li, Anping; Jing, Zhongliang; Hu, Shiqiang

    2005-06-01

    To improve the robustness of visual tracking in complex environments such as: cluttered backgrounds, partial occlusions, similar distraction and pose variations, a novel tracking method based on adaptive fusion and particle filter is proposed in this paper. In this method, the image color and shape cues are adaptively fused to represent the target observation; fuzzy logic is applied to dynamically adjust each cue weight according to its associated reliability in the past frame; particle filter is adopted to deal with non-linear and non-Gaussian problems in visual tracking. The method is demonstrated to be robust to illumination changes, pose variations, partial occlusions, cluttered backgrounds and camera motion for a test image sequence.

  15. Impulse radar imaging for dispersive concrete using inverse adaptive filtering techniques

    SciTech Connect

    Arellano, J.; Hernandez, J.M.; Brase, J.

    1993-05-01

    This publication addresses applications of a delayed inverse model adaptive filter for modeled data obtained from short-pulse radar reflectometry. To determine the integrity of concrete, a digital adaptive filter was used, which allows compensation of dispersion and clutter generated by the concrete. A standard set of weights produced by an adaptive filter are used on modeled data to obtain the inverse-impulse response of the concrete. The data for this report include: Multiple target, nondispersive data; single-target, variable-size dispersive data; single-target, variable-depth dispersive data; and single-target, variable transmitted-pulse-width dispersive data. Results of this simulation indicate that data generated by the weights of the adaptive filter, coupled with a two-dimensional, synthetic-aperture focusing technique, successfully generate two-dimensional images of targets within the concrete from modeled data.

  16. Maritime infrared background clutter

    NASA Astrophysics Data System (ADS)

    Schwering, Piet B. W.

    1996-06-01

    The detection of small targets in maritime infrared surveillance is hampered by the presence of clutter. Sea surface structure, reflection and emission changes related to incident angle variations and surface effects are standard features governing the clutter behavior. Also special effects as sun glint and horizon effects play an important role for clutter. In order to optimize the detection process, quantitative clutter estimates are of use for filter settings. We have recorded a large amount of infrared backgrounds in the last few years, during common NATO trials. A large amount of different meteorological conditions took place during the various experiments. A first set of these data have been analyzed to obtain statistical data that represent the infrared scene. We have derived vertical temperature profiles, vertical fluctuation profiles, horizontal correlation coefficients and temporal correlation functions. In this paper we present the first analysis of these data. We are in the process of obtaining a condensed database of information to regenerate clutter images from bulk meteo parameters, and clutter parameters. The clutter and meteo parameters have been used to simulate various infrared scenes. Examples of this simulation process are shown in the presentation. The simulated images are statistically similar to the original images that were used to derive the parameters. A description of the image- generation is presented. Future expansions of the model are discussed.

  17. Adaptive WMMR filters for edge enhancement

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Longbotham, Harold G.

    1993-05-01

    In this paper, an adaptive WMMR filter is introduced, which adaptively changes its window size to accommodate edge width variations. We prove that for any given one dimensional input signal convergence is to fixed points, which are PICO (piecewise constant), by iterative application of the adaptive WMMR filter. An application of the filters to one-D data (non- PICO) and images of printed circuit boards are then provided. Application to images in general is discussed.

  18. Objects tracking with adaptive correlation filters and Kalman filtering

    NASA Astrophysics Data System (ADS)

    Ontiveros-Gallardo, Sergio E.; Kober, Vitaly

    2015-09-01

    Object tracking is commonly used for applications such as video surveillance, motion based recognition, and vehicle navigation. In this work, a tracking system using adaptive correlation filters and robust Kalman prediction of target locations is proposed. Tracking is performed by means of multiple object detections in reduced frame areas. A bank of filters is designed from multiple views of a target using synthetic discriminant functions. An adaptive approach is used to improve discrimination capability of the synthesized filters adapting them to multiple types of backgrounds. With the help of computer simulation, the performance of the proposed algorithm is evaluated in terms of detection efficiency and accuracy of object tracking.

  19. Clutter rejection limitations from ambiguous range clutter

    NASA Astrophysics Data System (ADS)

    Reilly, J. Patrick

    Limitations on achievable clutter rejection due to ambiguous range clutter are described. The profile of clutter power versus range is shown to limit achievable clutter rejection. Ambiguous range effects are discussed in the context of sea clutter, using a model that includes propagation conditions, and rain clutter. Limitations in moving target indication systems are illustrated for sea clutter, where propagation is subject to evaporation ducts. Benefits of fill pulses are illustrated for rain and sea clutter.

  20. Adaptive Mallow's optimization for weighted median filters

    NASA Astrophysics Data System (ADS)

    Rachuri, Raghu; Rao, Sathyanarayana S.

    2002-05-01

    This work extends the idea of spectral optimization for the design of Weighted Median filters and employ adaptive filtering that updates the coefficients of the FIR filter from which the weights of the median filters are derived. Mallows' theory of non-linear smoothers [1] has proven to be of great theoretical significance providing simple design guidelines for non-linear smoothers. It allows us to find a set of positive weights for a WM filter whose sample selection probabilities (SSP's) are as close as possible to a SSP set predetermined by Mallow's. Sample selection probabilities have been used as a basis for designing stack smoothers as they give a measure of the filter's detail preserving ability and give non-negative filter weights. We will extend this idea to design weighted median filters admitting negative weights. The new method first finds the linear FIR filter coefficients adaptively, which are then used to determine the weights of the median filter. WM filters can be designed to have band-pass, high-pass as well as low-pass frequency characteristics. Unlike the linear filters, however, the weighted median filters are robust in the presence of impulsive noise, as shown by the simulation results.

  1. Maximum-likelihood spectral estimation and adaptive filtering techniques with application to airborne Doppler weather radar. Thesis Technical Report No. 20

    NASA Technical Reports Server (NTRS)

    Lai, Jonathan Y.

    1994-01-01

    This dissertation focuses on the signal processing problems associated with the detection of hazardous windshears using airborne Doppler radar when weak weather returns are in the presence of strong clutter returns. In light of the frequent inadequacy of spectral-processing oriented clutter suppression methods, we model a clutter signal as multiple sinusoids plus Gaussian noise, and propose adaptive filtering approaches that better capture the temporal characteristics of the signal process. This idea leads to two research topics in signal processing: (1) signal modeling and parameter estimation, and (2) adaptive filtering in this particular signal environment. A high-resolution, low SNR threshold maximum likelihood (ML) frequency estimation and signal modeling algorithm is devised and proves capable of delineating both the spectral and temporal nature of the clutter return. Furthermore, the Least Mean Square (LMS) -based adaptive filter's performance for the proposed signal model is investigated, and promising simulation results have testified to its potential for clutter rejection leading to more accurate estimation of windspeed thus obtaining a better assessment of the windshear hazard.

  2. Adaptive filtering in biological signal processing.

    PubMed

    Iyer, V K; Ploysongsang, Y; Ramamoorthy, P A

    1990-01-01

    The high dependence of conventional optimal filtering methods on the a priori knowledge of the signal and noise statistics render them ineffective in dealing with signals whose statistics cannot be predetermined accurately. Adaptive filtering methods offer a better alternative, since the a priori knowledge of statistics is less critical, real time processing is possible, and the computations are less expensive for this approach. Adaptive filtering methods compute the filter coefficients "on-line", converging to the optimal values in the least-mean square (LMS) error sense. Adaptive filtering is therefore apt for dealing with the "unknown" statistics situation and has been applied extensively in areas like communication, speech, radar, sonar, seismology, and biological signal processing and analysis for channel equalization, interference and echo canceling, line enhancement, signal detection, system identification, spectral analysis, beamforming, modeling, control, etc. In this review article adaptive filtering in the context of biological signals is reviewed. An intuitive approach to the underlying theory of adaptive filters and its applicability are presented. Applications of the principles in biological signal processing are discussed in a manner that brings out the key ideas involved. Current and potential future directions in adaptive biological signal processing are also discussed. PMID:2180633

  3. Adaptable Iterative and Recursive Kalman Filter Schemes

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato

    2014-01-01

    Nonlinear filters are often very computationally expensive and usually not suitable for real-time applications. Real-time navigation algorithms are typically based on linear estimators, such as the extended Kalman filter (EKF) and, to a much lesser extent, the unscented Kalman filter. The Iterated Kalman filter (IKF) and the Recursive Update Filter (RUF) are two algorithms that reduce the consequences of the linearization assumption of the EKF by performing N updates for each new measurement, where N is the number of recursions, a tuning parameter. This paper introduces an adaptable RUF algorithm to calculate N on the go, a similar technique can be used for the IKF as well.

  4. Enhancement of Electrolaryngeal Speech by Adaptive Filtering.

    ERIC Educational Resources Information Center

    Espy-Wilson, Carol Y.; Chari, Venkatesh R.; MacAuslan, Joel M.; Huang, Caroline B.; Walsh, Michael J.

    1998-01-01

    A study tested the quality and intelligibility, as judged by several listeners, of four users' electrolaryngeal speech, with and without filtering to compensate for perceptually objectionable acoustic characteristics. Results indicated that an adaptive filtering technique produced a noticeable improvement in the quality of the Transcutaneous…

  5. Recursive total-least-squares adaptive filtering

    NASA Astrophysics Data System (ADS)

    Dowling, Eric M.; DeGroat, Ronald D.

    1991-12-01

    In this paper a recursive total least squares (RTLS) adaptive filter is introduced and studied. The TLS approach is more appropriate and provides more accurate results than the LS approach when there is error on both sides of the adaptive filter equation; for example, linear prediction, AR modeling, and direction finding. The RTLS filter weights are updated in time O(mr) where m is the filter order and r is the dimension of the tracked subspace. In conventional adaptive filtering problems, r equals 1, so that updates can be performed with complexity O(m). The updates are performed by tracking an orthonormal basis for the smaller of the signal or noise subspaces using a computationally efficient subspace tracking algorithm. The filter is shown to outperform both LMS and RLS in terms of tracking and steady state tap weight error norms. It is also more versatile in that it can adapt its weight in the absence of persistent excitation, i.e., when the input data correlation matrix is near rank deficient. Through simulation, the convergence and tracking properties of the filter are presented and compared with LMS and RLS.

  6. Clutter Mitigation in Echocardiography Using Sparse Signal Separation

    PubMed Central

    Turek, Javier S.; Elad, Michael; Yavneh, Irad

    2015-01-01

    In ultrasound imaging, clutter artifacts degrade images and may cause inaccurate diagnosis. In this paper, we apply a method called Morphological Component Analysis (MCA) for sparse signal separation with the objective of reducing such clutter artifacts. The MCA approach assumes that the two signals in the additive mix have each a sparse representation under some dictionary of atoms (a matrix), and separation is achieved by finding these sparse representations. In our work, an adaptive approach is used for learning the dictionary from the echo data. MCA is compared to Singular Value Filtering (SVF), a Principal Component Analysis- (PCA-) based filtering technique, and to a high-pass Finite Impulse Response (FIR) filter. Each filter is applied to a simulated hypoechoic lesion sequence, as well as experimental cardiac ultrasound data. MCA is demonstrated in both cases to outperform the FIR filter and obtain results comparable to the SVF method in terms of contrast-to-noise ratio (CNR). Furthermore, MCA shows a lower impact on tissue sections while removing the clutter artifacts. In experimental heart data, MCA obtains in our experiments clutter mitigation with an average CNR improvement of 1.33 dB. PMID:26199622

  7. Wideband radar signal modeling of ground moving targets in clutter

    NASA Astrophysics Data System (ADS)

    Malas, John A.; Pasala, Krishna M.; Westerkamp, John J.

    2002-08-01

    Research in the area of air-to-ground target detection, track and identification (ID) requires the development of target signal models for known geometric shapes moving in ground clutter. Space-time adaptive filtering techniques in particular make good use of temporal-spatial synthetic radar signal return data. A radar signal model is developed to generate synthetic wideband radar signal data for use in multi-channel adaptive signal processing.

  8. VSP wave separation by adaptive masking filters

    NASA Astrophysics Data System (ADS)

    Rao, Ying; Wang, Yanghua

    2016-06-01

    In vertical seismic profiling (VSP) data processing, the first step might be to separate the down-going wavefield from the up-going wavefield. When using a masking filter for VSP wave separation, there are difficulties associated with two termination ends of the up-going waves. A critical challenge is how the masking filter can restore the energy tails, the edge effect associated with these terminations uniquely exist in VSP data. An effective strategy is to implement masking filters in both τ-p and f-k domain sequentially. Meanwhile it uses a median filter, producing a clean but smooth version of the down-going wavefield, used as a reference data set for designing the masking filter. The masking filter is implemented adaptively and iteratively, gradually restoring the energy tails cut-out by any surgical mute. While the τ-p and the f-k domain masking filters target different depth ranges of VSP, this combination strategy can accurately perform in wave separation from field VSP data.

  9. Adaptive Filtering Using Recurrent Neural Networks

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Menon, Sunil K.; Atiya, Amir F.

    2005-01-01

    A method for adaptive (or, optionally, nonadaptive) filtering has been developed for estimating the states of complex process systems (e.g., chemical plants, factories, or manufacturing processes at some level of abstraction) from time series of measurements of system inputs and outputs. The method is based partly on the fundamental principles of the Kalman filter and partly on the use of recurrent neural networks. The standard Kalman filter involves an assumption of linearity of the mathematical model used to describe a process system. The extended Kalman filter accommodates a nonlinear process model but still requires linearization about the state estimate. Both the standard and extended Kalman filters involve the often unrealistic assumption that process and measurement noise are zero-mean, Gaussian, and white. In contrast, the present method does not involve any assumptions of linearity of process models or of the nature of process noise; on the contrary, few (if any) assumptions are made about process models, noise models, or the parameters of such models. In this regard, the method can be characterized as one of nonlinear, nonparametric filtering. The method exploits the unique ability of neural networks to approximate nonlinear functions. In a given case, the process model is limited mainly by limitations of the approximation ability of the neural networks chosen for that case. Moreover, despite the lack of assumptions regarding process noise, the method yields minimum- variance filters. In that they do not require statistical models of noise, the neural- network-based state filters of this method are comparable to conventional nonlinear least-squares estimators.

  10. Filtering Algebraic Multigrid and Adaptive Strategies

    SciTech Connect

    Nagel, A; Falgout, R D; Wittum, G

    2006-01-31

    Solving linear systems arising from systems of partial differential equations, multigrid and multilevel methods have proven optimal complexity and efficiency properties. Due to shortcomings of geometric approaches, algebraic multigrid methods have been developed. One example is the filtering algebraic multigrid method introduced by C. Wagner. This paper proposes a variant of Wagner's method with substantially improved robustness properties. The method is used in an adaptive, self-correcting framework and tested numerically.

  11. Musical noise reduction using an adaptive filter

    NASA Astrophysics Data System (ADS)

    Hanada, Takeshi; Murakami, Takahiro; Ishida, Yoshihisa; Hoya, Tetsuya

    2003-10-01

    This paper presents a method for reducing a particular noise (musical noise). The musical noise is artificially produced by Spectral Subtraction (SS), which is one of the most conventional methods for speech enhancement. The musical noise is the tin-like sound and annoying in human auditory. We know that the duration of the musical noise is considerably short in comparison with that of speech, and that the frequency components of the musical noise are random and isolated. In the ordinary SS-based methods, the musical noise is removed by the post-processing. However, the output of the ordinary post-processing is delayed since the post-processing uses the succeeding frames. In order to improve this problem, we propose a novel method using an adaptive filter. In the proposed system, the observed noisy signal is used as the input signal to the adaptive filter and the output of SS is used as the reference signal. In this paper we exploit the normalized LMS (Least Mean Square) algorithm for the adaptive filter. Simulation results show that the proposed method has improved the intelligibility of the enhanced speech in comparison with the conventional method.

  12. Adaptive noise Wiener filter for scanning electron microscope imaging system.

    PubMed

    Sim, K S; Teh, V; Nia, M E

    2016-01-01

    Noise on scanning electron microscope (SEM) images is studied. Gaussian noise is the most common type of noise in SEM image. We developed a new noise reduction filter based on the Wiener filter. We compared the performance of this new filter namely adaptive noise Wiener (ANW) filter, with four common existing filters as well as average filter, median filter, Gaussian smoothing filter and the Wiener filter. Based on the experiments results the proposed new filter has better performance on different noise variance comparing to the other existing noise removal filters in the experiments. PMID:26235517

  13. Characterizing non-Gaussian clutter and detecting weak gaseous plumes in hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Theiler, James; Foy, Bernard R.; Fraser, Andrew M.

    2005-06-01

    To detect weak signals on cluttered backgrounds in high dimensional spaces (such as gaseous plumes in hyperspectral imagery) without excessive false alarms requires that the background clutter be effectively characterized. If the clutter is Gaussian, the well-known linear matched filter optimizes the sensitivity to a given plume signal while suppressing the effect of the background clutter. In practice, the background clutter is rarely Gaussian. Here we illustrate non-linear corrections to the matched filter that are optimal for two non-Gaussian clutter models and we report on parametric and nonparametric characterizations of background clutter.

  14. Adaptive filters for detection of gravitational waves from coalescing binaries

    SciTech Connect

    Eleuteri, Antonio; Milano, Leopoldo; De Rosa, Rosario; Garufi, Fabio; Acernese, Fausto; Barone, Fabrizio; Giordano, Lara; Pardi, Silvio

    2006-06-15

    In this work we propose use of infinite impulse response adaptive line enhancer (IIR ALE) filters for detection of gravitational waves from coalescing binaries. We extend our previous work and define an adaptive matched filter structure. Filter performance is analyzed in terms of the tracking capability and determination of filter parameters. Furthermore, following the Neyman-Pearson strategy, receiver operating characteristics are derived, with closedform expressions for detection threshold, false alarm, and detection probability. Extensive tests demonstrate the effectiveness of adaptive filters both in terms of small computational cost and robustness.

  15. Reduction of MPEG ringing artifacts using adaptive sigma filter

    NASA Astrophysics Data System (ADS)

    Pan, Hao

    2006-01-01

    In this paper, we propose a novel computationally efficient post-processing algorithm to reduce ringing artifacts in the decoded DCT-coded video without using coding information. While the proposed algorithm is based on edge information as most filtering-based de-ringing algorithms do, this algorithm solely uses one single computationally efficient nonlinear filter, namely sigma filter, for both edge detection and smoothing. Specifically, the sigma filter, which was originally designed for nonlinear filtering, is extended to generate edge proximity information. Different from other adaptive filtering-based methods, whose filters typically use a fixed small window but flexible weights, this sigma filter adaptively switches between small and large windows. The adaptation is designed for removing ringing artifacts only, so the algorithm cannot be used for de-blocking. Overall, the proposed algorithm achieves a good balance among removing ringing artifacts, preserving edges and details, and computational complexity.

  16. Adaptive filtering image preprocessing for smart FPA technology

    NASA Astrophysics Data System (ADS)

    Brooks, Geoffrey W.

    1995-05-01

    This paper discusses two applications of adaptive filters for image processing on parallel architectures. The first, based on the results of previously accomplished work, summarizes the analyses of various adaptive filters implemented for pixel-level image prediction. FIR filters, fixed and adaptive IIR filters, and various variable step size algorithms were compared with a focus on algorithm complexity against the ability to predict future pixel values. A gaussian smoothing operation with varying spatial and temporal constants were also applied for comparisons of random noise reductions. The second application is a suggestion to use memory-adaptive IIR filters for detecting and tracking motion within an image. Objects within an image are made of edges, or segments, with varying degrees of motion. An application has been previously published that describes FIR filters connecting pixels and using correlations to determine motion and direction. This implementation seems limited to detecting motion coinciding with FIR filter operation rate and the associated harmonics. Upgrading the FIR structures with adaptive IIR structures can eliminate these limitations. These and any other pixel-level adaptive filtering application require data memory for filter parameters and some basic computational capability. Tradeoffs have to be made between chip real estate and these desired features. System tradeoffs will also have to be made as to where it makes the most sense to do which level of processing. Although smart pixels may not be ready to implement adaptive filters, applications such as these should give the smart pixel designer some long range goals.

  17. Turbo LMS algorithm: supercharger meets adaptive filter

    NASA Astrophysics Data System (ADS)

    Meyer-Baese, Uwe

    2006-04-01

    Adaptive digital filters (ADFs) are, in general, the most sophisticated and resource intensive components of modern digital signal processing (DSP) and communication systems. Improvements in performance or the complexity of ADFs can have a significant impact on the overall size, speed, and power properties of a complete system. The least mean square (LMS) algorithm is a popular algorithm for coefficient adaptation in ADF because it is robust, easy to implement, and a close approximation to the optimal Wiener-Hopf least mean square solution. The main weakness of the LMS algorithm is the slow convergence, especially for non Markov-1 colored noise input signals with high eigenvalue ratios (EVRs). Since its introduction in 1993, the turbo (supercharge) principle has been successfully applied in error correction decoding and has become very popular because it reaches the theoretical limits of communication capacity predicted 5 decades ago by Shannon. The turbo principle applied to LMS ADF is analogous to the turbo principle used for error correction decoders: First, an "interleaver" is used to minimize crosscorrelation, secondly, an iterative improvement which uses the same data set several times is implemented using the standard LMS algorithm. Results for 6 different interleaver schemes for EVR in the range 1-100 are presented.

  18. Autonomous navigation system using a fuzzy adaptive nonlinear H∞ filter.

    PubMed

    Outamazirt, Fariz; Li, Fu; Yan, Lin; Nemra, Abdelkrim

    2014-01-01

    Although nonlinear H∞ (NH∞) filters offer good performance without requiring assumptions concerning the characteristics of process and/or measurement noises, they still require additional tuning parameters that remain fixed and that need to be determined through trial and error. To address issues associated with NH∞ filters, a new SINS/GPS sensor fusion scheme known as the Fuzzy Adaptive Nonlinear H∞ (FANH∞) filter is proposed for the Unmanned Aerial Vehicle (UAV) localization problem. Based on a real-time Fuzzy Inference System (FIS), the FANH∞ filter continually adjusts the higher order of the Taylor development thorough adaptive bounds  and adaptive disturbance attenuation , which significantly increases the UAV localization performance. The results obtained using the FANH∞ navigation filter are compared to the NH∞ navigation filter results and are validated using a 3D UAV flight scenario. The comparison proves the efficiency and robustness of the UAV localization process using the FANH∞ filter. PMID:25244587

  19. Clutter discrimination algorithm simulation in pulse laser radar imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; Su, Xuan; Zhu, Fule

    2015-10-01

    Pulse laser radar imaging performance is greatly influenced by different kinds of clutter. Various algorithms are developed to mitigate clutter. However, estimating performance of a new algorithm is difficult. Here, a simulation model for estimating clutter discrimination algorithms is presented. This model consists of laser pulse emission, clutter jamming, laser pulse reception and target image producing. Additionally, a hardware platform is set up gathering clutter data reflected by ground and trees. The data logging is as clutter jamming input in the simulation model. The hardware platform includes a laser diode, a laser detector and a high sample rate data logging circuit. The laser diode transmits short laser pulses (40ns FWHM) at 12.5 kilohertz pulse rate and at 905nm wavelength. An analog-to-digital converter chip integrated in the sample circuit works at 250 mega samples per second. The simulation model and the hardware platform contribute to a clutter discrimination algorithm simulation system. Using this system, after analyzing clutter data logging, a new compound pulse detection algorithm is developed. This new algorithm combines matched filter algorithm and constant fraction discrimination (CFD) algorithm. Firstly, laser echo pulse signal is processed by matched filter algorithm. After the first step, CFD algorithm comes next. Finally, clutter jamming from ground and trees is discriminated and target image is produced. Laser radar images are simulated using CFD algorithm, matched filter algorithm and the new algorithm respectively. Simulation result demonstrates that the new algorithm achieves the best target imaging effect of mitigating clutter reflected by ground and trees.

  20. Clutter locus equation for more general linear array orientation

    NASA Astrophysics Data System (ADS)

    Bickel, Douglas L.

    2011-06-01

    The clutter locus is an important concept in space-time adaptive processing (STAP) for ground moving target indicator (GMTI) radar systems. The clutter locus defines the expected ground clutter location in the angle-Doppler domain. Typically in literature, the clutter locus is presented as a line, or even a set of ellipsoids, under certain assumptions about the geometry of the array. Most often, the array is assumed to be in the horizontal plane containing the velocity vector. This paper will give a more general 3-dimensional interpretation of the clutter locus for a general linear array orientation.

  1. Superresolution restoration of an image sequence: adaptive filtering approach.

    PubMed

    Elad, M; Feuer, A

    1999-01-01

    This paper presents a new method based on adaptive filtering theory for superresolution restoration of continuous image sequences. The proposed methodology suggests least squares (LS) estimators which adapt in time, based on adaptive filters, least mean squares (LMS) or recursive least squares (RLS). The adaptation enables the treatment of linear space and time-variant blurring and arbitrary motion, both of them assumed known. The proposed new approach is shown to be of relatively low computational requirements. Simulations demonstrating the superresolution restoration algorithms are presented. PMID:18262881

  2. Filter. Remix. Make.: Cultivating Adaptability through Multimodality

    ERIC Educational Resources Information Center

    Dusenberry, Lisa; Hutter, Liz; Robinson, Joy

    2015-01-01

    This article establishes traits of adaptable communicators in the 21st century, explains why adaptability should be a goal of technical communication educators, and shows how multimodal pedagogy supports adaptability. Three examples of scalable, multimodal assignments (infographics, research interviews, and software demonstrations) that evidence…

  3. Real time adaptive filtering for digital X-ray applications.

    PubMed

    Bockenbach, Olivier; Mangin, Michel; Schuberth, Sebastian

    2006-01-01

    Over the last decade, many methods for adaptively filtering a data stream have been proposed. Those methods have applications in two dimensional imaging as well as in three dimensional image reconstruction. Although the primary objective of this filtering technique is to reduce the noise while avoiding to blur the edges, diagnostic, automated segmentation and surgery show a growing interest in enhancing the features contained in the image flow. Most of the methods proposed so far emerged from thorough studies of the physics of the considered modality and therefore show only a marginal capability to be extended across modalities. Moreover, adaptive filtering belongs to the family of processing intensive algorithms. Existing technology has often driven to simplifications and modality specific optimization to sustain the expected performances. In the specific case of real time digital X-ray as used surgery, the system has to sustain a throughput of 30 frames per second. In this study, we take a generalized approach for adaptive filtering based on multiple oriented filters. Mapping the filtering part to the embedded real time image processing while a user/application defined adaptive recombination of the filter outputs allow to change the smoothing and edge enhancement properties of the filter without changing the oriented filter parameters. We have implemented the filtering on a Cell Broadband Engine processor and the adaptive recombination on an off-the-shelf PC, connected via Gigabit Ethernet. This implementation is capable of filtering images of 5122 pixels at a throughput in excess of 40 frames per second while allowing to change the parameters in real time. PMID:17354937

  4. Adaptive Control of Flexible Structures Using Residual Mode Filters

    NASA Technical Reports Server (NTRS)

    Balas, Mark J.; Frost, Susan

    2010-01-01

    Flexible structures containing a large number of modes can benefit from adaptive control techniques which are well suited to applications that have unknown modeling parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend our adaptive control theory to accommodate troublesome modal subsystems of a plant that might inhibit the adaptive controller. In some cases the plant does not satisfy the requirements of Almost Strict Positive Realness. Instead, there maybe be a modal subsystem that inhibits this property. This section will present new results for our adaptive control theory. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for the troublesome modal subsystem, or the Q modes. Here we present the theory for adaptive controllers modified by RMFs, with attention to the issue of disturbances propagating through the Q modes. We apply the theoretical results to a flexible structure example to illustrate the behavior with and without the residual mode filter. We have proposed a modified adaptive controller with a residual mode filter. The RMF is used to accommodate troublesome modes in the system that might otherwise inhibit the adaptive controller, in particular the ASPR condition. This new theory accounts for leakage of the disturbance term into the Q modes. A simple three-mode example shows that the RMF can restore stability to an otherwise unstable adaptively controlled system. This is done without modifying the adaptive controller design.

  5. Adaptive median filtering for preprocessing of time series measurements

    NASA Technical Reports Server (NTRS)

    Paunonen, Matti

    1993-01-01

    A median (L1-norm) filtering program using polynomials was developed. This program was used in automatic recycling data screening. Additionally, a special adaptive program to work with asymmetric distributions was developed. Examples of adaptive median filtering of satellite laser range observations and TV satellite time measurements are given. The program proved to be versatile and time saving in data screening of time series measurements.

  6. A Windowing Frequency Domain Adaptive Filter for Acoustic Echo Cancellation

    NASA Astrophysics Data System (ADS)

    Wu, Sheng; Qiu, Xiaojun

    This letter proposes a windowing frequency domain adaptive algorithm, which reuses the filtering error to apply window function in the filter updating symmetrically. By using a proper window function to reduce the negative influence of the spectral leakage, the proposed algorithm can significantly improve the performance of the acoustic echo cancellation for speech signals.

  7. Likelihood Methods for Adaptive Filtering and Smoothing. Technical Report #455.

    ERIC Educational Resources Information Center

    Butler, Ronald W.

    The dynamic linear model or Kalman filtering model provides a useful methodology for predicting the past, present, and future states of a dynamic system, such as an object in motion or an economic or social indicator that is changing systematically with time. Recursive likelihood methods for adaptive Kalman filtering and smoothing are developed.…

  8. A hybrid method for optimization of the adaptive Goldstein filter

    NASA Astrophysics Data System (ADS)

    Jiang, Mi; Ding, Xiaoli; Tian, Xin; Malhotra, Rakesh; Kong, Weixue

    2014-12-01

    The Goldstein filter is a well-known filter for interferometric filtering in the frequency domain. The main parameter of this filter, alpha, is set as a power of the filtering function. Depending on it, considered areas are strongly or weakly filtered. Several variants have been developed to adaptively determine alpha using different indicators such as the coherence, and phase standard deviation. The common objective of these methods is to prevent areas with low noise from being over filtered while simultaneously allowing stronger filtering over areas with high noise. However, the estimators of these indicators are biased in the real world and the optimal model to accurately determine the functional relationship between the indicators and alpha is also not clear. As a result, the filter always under- or over-filters and is rarely correct. The study presented in this paper aims to achieve accurate alpha estimation by correcting the biased estimator using homogeneous pixel selection and bootstrapping algorithms, and by developing an optimal nonlinear model to determine alpha. In addition, an iteration is also merged into the filtering procedure to suppress the high noise over incoherent areas. The experimental results from synthetic and real data show that the new filter works well under a variety of conditions and offers better and more reliable performance when compared to existing approaches.

  9. Estimated spectrum adaptive postfilter and the iterative prepost filtering algirighms

    NASA Technical Reports Server (NTRS)

    Linares, Irving (Inventor)

    2004-01-01

    The invention presents The Estimated Spectrum Adaptive Postfilter (ESAP) and the Iterative Prepost Filter (IPF) algorithms. These algorithms model a number of image-adaptive post-filtering and pre-post filtering methods. They are designed to minimize Discrete Cosine Transform (DCT) blocking distortion caused when images are highly compressed with the Joint Photographic Expert Group (JPEG) standard. The ESAP and the IPF techniques of the present invention minimize the mean square error (MSE) to improve the objective and subjective quality of low-bit-rate JPEG gray-scale images while simultaneously enhancing perceptual visual quality with respect to baseline JPEG images.

  10. Lossless compression of weight vectors from an adaptive filter

    SciTech Connect

    Bredemann, M.V.; Elliott, G.R.; Stearns, S.D.

    1994-08-01

    Techniques for lossless waveform compression can be applied to the transmission of weight vectors from an orbiting satellite. The vectors, which are a part of a hybrid analog/digital adaptive filter, are a representation of the radio frequency background seen by the satellite. An approach is used which treats each adaptive weight as a time-varying waveform.

  11. Analysis on Influence Factors of Adaptive Filter Acting on ANC

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuqun; Zou, Liang; Ni, Guangkui; Wang, Xiaojun; Han, Tao; Zhao, Quanfu

    The noise problem has become more and more serious in recent years. The adaptive filter theory which is applied in ANC [1] (active noise control) has also attracted more and more attention. In this article, the basic principle and algorithm of adaptive theory are both researched. And then the influence factor that affects its covergence rate and noise reduction is also simulated.

  12. A Nonlinear Adaptive Filter for Gyro Thermal Bias Error Cancellation

    NASA Technical Reports Server (NTRS)

    Galante, Joseph M.; Sanner, Robert M.

    2012-01-01

    Deterministic errors in angular rate gyros, such as thermal biases, can have a significant impact on spacecraft attitude knowledge. In particular, thermal biases are often the dominant error source in MEMS gyros after calibration. Filters, such as J\\,fEKFs, are commonly used to mitigate the impact of gyro errors and gyro noise on spacecraft closed loop pointing accuracy, but often have difficulty in rapidly changing thermal environments and can be computationally expensive. In this report an existing nonlinear adaptive filter is used as the basis for a new nonlinear adaptive filter designed to estimate and cancel thermal bias effects. A description of the filter is presented along with an implementation suitable for discrete-time applications. A simulation analysis demonstrates the performance of the filter in the presence of noisy measurements and provides a comparison with existing techniques.

  13. Improving nonlinear modeling capabilities of functional link adaptive filters.

    PubMed

    Comminiello, Danilo; Scarpiniti, Michele; Scardapane, Simone; Parisi, Raffaele; Uncini, Aurelio

    2015-09-01

    The functional link adaptive filter (FLAF) represents an effective solution for online nonlinear modeling problems. In this paper, we take into account a FLAF-based architecture, which separates the adaptation of linear and nonlinear elements, and we focus on the nonlinear branch to improve the modeling performance. In particular, we propose a new model that involves an adaptive combination of filters downstream of the nonlinear expansion. Such combination leads to a cooperative behavior of the whole architecture, thus yielding a performance improvement, particularly in the presence of strong nonlinearities. An advanced architecture is also proposed involving the adaptive combination of multiple filters on the nonlinear branch. The proposed models are assessed in different nonlinear modeling problems, in which their effectiveness and capabilities are shown. PMID:26057613

  14. Dynamic analysis of neural encoding by point process adaptive filtering.

    PubMed

    Eden, Uri T; Frank, Loren M; Barbieri, Riccardo; Solo, Victor; Brown, Emery N

    2004-05-01

    Neural receptive fields are dynamic in that with experience, neurons change their spiking responses to relevant stimuli. To understand how neural systems adapt their representations of biological information, analyses of receptive field plasticity from experimental measurements are crucial. Adaptive signal processing, the well-established engineering discipline for characterizing the temporal evolution of system parameters, suggests a framework for studying the plasticity of receptive fields. We use the Bayes' rule Chapman-Kolmogorov paradigm with a linear state equation and point process observation models to derive adaptive filters appropriate for estimation from neural spike trains. We derive point process filter analogues of the Kalman filter, recursive least squares, and steepest-descent algorithms and describe the properties of these new filters. We illustrate our algorithms in two simulated data examples. The first is a study of slow and rapid evolution of spatial receptive fields in hippocampal neurons. The second is an adaptive decoding study in which a signal is decoded from ensemble neural spiking activity as the receptive fields of the neurons in the ensemble evolve. Our results provide a paradigm for adaptive estimation for point process observations and suggest a practical approach for constructing filtering algorithms to track neural receptive field dynamics on a millisecond timescale. PMID:15070506

  15. Adaptive Control Using Residual Mode Filters Applied to Wind Turbines

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Balas, Mark J.

    2011-01-01

    Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a model reference direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will augment the adaptive controller using a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. We apply these theoretical results to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine that has minimum phase zeros.

  16. Rotational clutter metric

    NASA Astrophysics Data System (ADS)

    Salem, Salem; Halford, Carl; Moyer, Steve; Gundy, Matthew

    2009-08-01

    A new approach to linear discriminant analysis (LDA), called orthogonal rotational LDA (ORLDA) is presented. Using ORLDA and properly accounting for target size allowed development of a new clutter metric that is based on the Laplacian pyramid (LP) decomposition of clutter images. The new metric achieves correlation exceeding 98% with expert human labeling of clutter levels in a set of 244 infrared images. Our clutter metric is based on the set of weights for the LP levels that best classify images into clutter levels as manually classified by an expert human observer. LDA is applied as a preprocessing step to classification. LDA suffers from a few limitations in this application. Therefore, we propose a new approach to LDA, called ORLDA, using orthonormal geometric rotations. Each rotation brings the LP feature space closer to the LDA solution while retaining orthogonality in the feature space. To understand the effects of target size on clutter, we applied ORLDA at different target sizes. The outputs are easily related because they are functions of orthogonal rotation angles. Finally, we used Bayesian decision theory to learn class boundaries for clutter levels at different target sizes.

  17. Local adaptive filtering of images corrupted by nonstationary noise

    NASA Astrophysics Data System (ADS)

    Lukin, Vladimir V.; Fevralev, Dmitriy V.; Ponomarenko, Nikolay N.; Pogrebnyak, Oleksiy B.; Egiazarian, Karen O.; Astola, Jaakko T.

    2009-02-01

    In various practical situations of remote sensing image processing it is assumed that noise is nonstationary and no a priory information on noise dependence on local mean or about local properties of noise statistics is available. It is shown that in such situations it is difficult to find a proper filter for effective image processing, i.e., for noise removal with simultaneous edge/detail preservation. To deal with such images, a local adaptive filter based on discrete cosine transform in overlapping blocks is proposed. A threshold is set locally based on a noise standard deviation estimate obtained for each block. Several other operations to improve performance of the locally adaptive filter are proposed and studied. The designed filter effectiveness is demonstrated for simulated data as well as for real life radar remote sensing and marine polarimetric radar images.

  18. Acoustic Echo Cancellation Using Sub-Adaptive Filter

    NASA Astrophysics Data System (ADS)

    Ohta, Satoshi; Kajikawa, Yoshinobu; Nomura, Yasuo

    In the acoustic echo canceller (AEC), the step-size parameter of the adaptive filter must be varied according to the situation if double talk occurs and/or the echo path changes. We propose an AEC that uses a sub-adaptive filter. The proposed AEC can control the step-size parameter according to the situation. Moreover, it offers superior convergence compared to the conventional AEC even when the double talk and the echo path change occur simultaneously. Simulations demonstrate that the proposed AEC can achieve higher ERLE and faster convergence than the conventional AEC. The computational complexity of the proposed AEC can be reduced by reducing the number of taps of the sub-adaptive filter.

  19. Fault-tolerant adaptive FIR filters using variable detection threshold

    NASA Astrophysics Data System (ADS)

    Lin, L. K.; Redinbo, G. R.

    1994-10-01

    Adaptive filters are widely used in many digital signal processing applications, where tap weight of the filters are adjusted by stochastic gradient search methods. Block adaptive filtering techniques, such as block least mean square and block conjugate gradient algorithm, were developed to speed up the convergence as well as improve the tracking capability which are two important factors in designing real-time adaptive filter systems. Even though algorithm-based fault tolerance can be used as a low-cost high level fault-tolerant technique to protect the aforementioned systems from hardware failures with minimal hardware overhead, the issue of choosing a good detection threshold remains a challenging problem. First of all, the systems usually only have limited computational resources, i.e., concurrent error detection and correction is not feasible. Secondly, any prior knowledge of input data is very difficult to get in practical settings. We propose a checksum-based fault detection scheme using two-level variable detection thresholds that is dynamically dependent on the past syndromes. Simulations show that the proposed scheme reduces the possibility of false alarms and has a high degree of fault coverage in adaptive filter systems.

  20. Robust Wiener filtering for Adaptive Optics

    SciTech Connect

    Poyneer, L A

    2004-06-17

    In many applications of optical systems, the observed field in the pupil plane has a non-uniform phase component. This deviation of the phase of the field from uniform is called a phase aberration. In imaging systems this aberration will degrade the quality of the images. In the case of a large astronomical telescope, random fluctuations in the atmosphere lead to significant distortion. These time-varying distortions can be corrected using an Adaptive Optics (AO) system, which is a real-time control system composed of optical, mechanical and computational parts. Adaptive optics is also applicable to problems in vision science, laser propagation and communication. For a high-level overview, consult this web site. For an in-depth treatment of the astronomical case, consult these books.

  1. An information theoretic approach of designing sparse kernel adaptive filters.

    PubMed

    Liu, Weifeng; Park, Il; Principe, José C

    2009-12-01

    This paper discusses an information theoretic approach of designing sparse kernel adaptive filters. To determine useful data to be learned and remove redundant ones, a subjective information measure called surprise is introduced. Surprise captures the amount of information a datum contains which is transferable to a learning system. Based on this concept, we propose a systematic sparsification scheme, which can drastically reduce the time and space complexity without harming the performance of kernel adaptive filters. Nonlinear regression, short term chaotic time-series prediction, and long term time-series forecasting examples are presented. PMID:19923047

  2. A New Method to Cancel RFI---The Adaptive Filter

    NASA Astrophysics Data System (ADS)

    Bradley, R.; Barnbaum, C.

    1996-12-01

    An increasing amount of precious radio frequency spectrum in the VHF, UHF, and microwave bands is being utilized each year to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Some radio spectral lines of astronomical interest occur outside the protected radio astronomy bands and are unobservable due to heavy interference. Conventional approaches to deal with RFI include legislation, notch filters, RF shielding, and post-processing techniques. Although these techniques are somewhat successful, each suffers from insufficient interference cancellation. One concept of interference excision that has not been used before in radio astronomy is adaptive interference cancellation. The concept of adaptive interference canceling was first introduced in the mid-1970s as a way to reduce unwanted noise in low frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartment of automobiles. Only recently have high-speed digital filter chips made adaptive filtering possible in a bandwidth as large a few megahertz, finally opening the door to astronomical uses. The system consists of two receivers: the main beam of the radio telescope receives the desired signal corrupted by RFI coming in the sidelobes, and the reference antenna receives only the RFI. The reference antenna is processed using a digital adaptive filter and then subtracted from the signal in the main beam, thus producing the system output. The weights of the digital filter are adjusted by way of an algorithm that minimizes, in a least-squares sense, the power output of the system. Through an adaptive-iterative process, the interference canceler will lock onto the RFI and the filter will adjust itself to minimize the effect of the RFI at the system output. We are building a prototype 100 MHz receiver and will measure the cancellation

  3. Active Listening in a Bat Cocktail Party: Adaptive Echolocation and Flight Behaviors of Big Brown Bats, Eptesicus fuscus, Foraging in a Cluttered Acoustic Environment.

    PubMed

    Warnecke, Michaela; Chiu, Chen; Engelberg, Jonathan; Moss, Cynthia F

    2015-09-01

    In their natural environment, big brown bats forage for small insects in open spaces, as well as in vegetation and in the presence of acoustic clutter. While searching and hunting for prey, bats experience sonar interference, not only from densely cluttered environments, but also from calls of conspecifics foraging in close proximity. Previous work has shown that when two bats compete for a single prey item in a relatively open environment, one of the bats may go silent for extended periods of time, which can serve to minimize sonar interference between conspecifics. Additionally, pairs of big brown bats have been shown to adjust frequency characteristics of their vocalizations to avoid acoustic interference in echo processing. In this study, we extended previous work by examining how the presence of conspecifics and environmental clutter influence the bat's echolocation behavior. By recording multichannel audio and video data of bats engaged in insect capture in open and cluttered spaces, we quantified the bats' vocal and flight behaviors. Big brown bats flew individually and in pairs in an open and cluttered room, and the results of this study shed light on the different strategies that this species employs to negotiate a complex and dynamic environment. PMID:26398707

  4. Enhancing Adaptive Filtering Approaches for Land Data Assimilation Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent work has presented the initial application of adaptive filtering techniques to land surface data assimilation systems. Such techniques are motivated by our current lack of knowledge concerning the structure of large-scale error in either land surface modeling output or remotely-sensed estima...

  5. An improved adaptive deblocking filter for MPEG video decoder

    NASA Astrophysics Data System (ADS)

    Kwon, Do-Kyoung; Shen, Mei-Yin; Kuo, C.-C. Jay

    2005-03-01

    A highly adaptive deblocking algorithm is proposed for MPEG video in this research. In comparison with previous work in this area, the proposed deblocking filter improves in three aspects. First, the proposed algorithm is adaptive to the change of the quantization parameter (QP). Since blocking artifacts between two blocks encoded with different QPs tend to be more visible due to quality difference, filters should be able to adapt dynamically to the QP change between blocks. Second, the proposed algorithm classifies the block boundary into three different region modes based on local region characteristics. The three modes are active, smooth and dormant regions. The active region represents a complex region with details and high activities while the smooth and the dormant regions refer to moderately flat and extremely flat regions, respectively. By applying different filters of different strengths to each region mode, the proposed algorithm can minimize the undesirable blur so that both subjective and objective qualities improve for various types of sequences at a wide range of bitrates. Finally, the proposed algorithm also provides a way to determine the threshold values. The proposed adaptive deblocking algorithms require several thresholds in determining proper region modes and filters. Since the quality of image sequences after filtering depends largely on the threshold values, they have to be determined carefully. In the proposed algorithm, thresholds are determined adaptively to the strength of the blocking artifact and, as a result, to various encoding parameters such as QP, absolute difference between QPs, the coding type, and motion vectors. It is shown by experimental results that the proposed algorithm can achieve 0.2-0.4 dB gains for I- and P-frames, and 0.1-0.3 dB gains for the B-frame when bit streams are encoded using the TM5 rate control algorithm.

  6. Doppler characteristics of sea clutter.

    SciTech Connect

    Raynal, Ann Marie; Doerry, Armin Walter

    2010-06-01

    Doppler radars can distinguish targets from clutter if the target's velocity along the radar line of sight is beyond that of the clutter. Some targets of interest may have a Doppler shift similar to that of clutter. The nature of sea clutter is different in the clutter and exo-clutter regions. This behavior requires special consideration regarding where a radar can expect to find sea-clutter returns in Doppler space and what detection algorithms are most appropriate to help mitigate false alarms and increase probability of detection of a target. This paper studies the existing state-of-the-art in the understanding of Doppler characteristics of sea clutter and scattering from the ocean to better understand the design and performance choices of a radar in differentiating targets from clutter under prevailing sea conditions.

  7. Efficient target detection in cluttered FLIR imagery

    NASA Astrophysics Data System (ADS)

    Khan, Jesmin F.; Alam, Mohammad S.

    2005-03-01

    In this paper, we investigated automatic target detection and classification of low and high contrast targets present in unknown forward looking infrared (FLIR) image sequence. The detection algorithm, based on morphology based preprocessing, acts as a prescreener that selects possible candidate target regions, comprising both true targets and false alarms and places expected target-sized marker to those preselected regions. The application of simple non-linear grayscale operations in the proposed detection algorithm leads to real-time implementations. By considering the known target and background specific attributes, extracted from the training samples, the clutter rejection module discriminates between true target and false alarms previously identified by the detection algorithm. Two approaches are employed for object classification where one uses local features of the image and the other uses template matching technique such as image correlation. For the first approach, to extract features, we employed two methods - nonlinear filtering for texture energy measurement and wavelet decomposition by expending Daubechies high and low pass filter coefficients. Then for classification, a neural network based classifier is used. In the second approach minimax distance transform correlation filter (MDTCF) is applied that minimizes the average squared distance from the filtered true-class training images to a filtered reference image while maximizing the mean squared distance (MSD) of the filtered false-class training images to this filtered reference image. Then classification is performed using the squared distance of a filtered test image to the chosen filtered reference image. The performance of the proposed technique is analyzed for i) neural network with nonlinear texture filtering, ii) neural network with wavelet decomposition and iii) correlation filtering. Preliminary results indicate that the proposed detection algorithms can locate both hot and cold targets

  8. Extended adaptive filtering for wide-angle SAR image formation

    NASA Astrophysics Data System (ADS)

    Wang, Yanwei; Roberts, William; Li, Jian

    2005-05-01

    For two-dimensional (2-D) spectral analysis, the adaptive filtering based technologies, such as CAPON and APES (Amplitude and Phase EStimation), are developed under the implicit assumption that the data sets are rectangular. However, in real SAR applications, especially for the wide-angle cases, the collected data sets are always non-rectangular. This raises the problem of how to extend the original adaptive filtering based algorithms for such kind of scenarios. In this paper, we propose an extended adaptive filtering (EAF) approach, which includes Extended APES (E-APES) and Extended CAPON (E-CAPON), for arbitrarily shaped 2-D data. The EAF algorithms adopt a missing-data approach where the unavailable data samples close to the collected data set are assumed missing. Using a group of filter-banks with varying sizes, these algorithms are non-iterative and do not require the estimation of the unavailable samples. The improved imaging results of the proposed algorithms are demonstrated by applying them to two different SAR data sets.

  9. Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems.

    PubMed

    Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing

    2016-01-01

    This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches. PMID:27472336

  10. Dip-separated structural filtering using seislet transform and adaptive empirical mode decomposition based dip filter

    NASA Astrophysics Data System (ADS)

    Chen, Yangkang

    2016-07-01

    The seislet transform has been demonstrated to have a better compression performance for seismic data compared with other well-known sparsity promoting transforms, thus it can be used to remove random noise by simply applying a thresholding operator in the seislet domain. Since the seislet transform compresses the seismic data along the local structures, the seislet thresholding can be viewed as a simple structural filtering approach. Because of the dependence on a precise local slope estimation, the seislet transform usually suffers from low compression ratio and high reconstruction error for seismic profiles that have dip conflicts. In order to remove the limitation of seislet thresholding in dealing with conflicting-dip data, I propose a dip-separated filtering strategy. In this method, I first use an adaptive empirical mode decomposition based dip filter to separate the seismic data into several dip bands (5 or 6). Next, I apply seislet thresholding to each separated dip component to remove random noise. Then I combine all the denoised components to form the final denoised data. Compared with other dip filters, the empirical mode decomposition based dip filter is data-adaptive. One only needs to specify the number of dip components to be separated. Both complicated synthetic and field data examples show superior performance of my proposed approach than the traditional alternatives. The dip-separated structural filtering is not limited to seislet thresholding, and can also be extended to all those methods that require slope information.

  11. Dip-separated structural filtering using seislet transform and adaptive empirical mode decomposition based dip filter

    NASA Astrophysics Data System (ADS)

    Chen, Yangkang

    2016-04-01

    The seislet transform has been demonstrated to have a better compression performance for seismic data compared with other well-known sparsity promoting transforms, thus it can be used to remove random noise by simply applying a thresholding operator in the seislet domain. Since the seislet transform compresses the seismic data along the local structures, the seislet thresholding can be viewed as a simple structural filtering approach. Because of the dependence on a precise local slope estimation, the seislet transform usually suffers from low compression ratio and high reconstruction error for seismic profiles that have dip conflicts. In order to remove the limitation of seislet thresholding in dealing with conflicting-dip data, I propose a dip-separated filtering strategy. In this method, I first use an adaptive empirical mode decomposition based dip filter to separate the seismic data into several dip bands (5 or 6). Next, I apply seislet thresholding to each separated dip component to remove random noise. Then I combine all the denoised components to form the final denoised data. Compared with other dip filters, the empirical mode decomposition based dip filter is data-adaptive. One only need to specify the number of dip components to be separated. Both complicated synthetic and field data examples show superior performance of my proposed approach than the traditional alternatives. The dip-separated structural filtering is not limited to seislet thresholding, and can also be extended to all those methods that require slope information.

  12. Fuel-flow filter for internal combustion engine, adaptable for use with a by-pass filter

    SciTech Connect

    Schmidt, R.

    1987-06-16

    This patent describes a filter apparatus for an internal combustion engine to replace a spin-on, full-flow oil filter threadably connected to an oil filter bushing. The engine has an oil system with an oil pump, an oil pan, and an oil cap at a low pressure side of the oil system. The apparatus comprises: a full-flow filter to be connected to the oil filter bushing to permit oil within the oil system to flow into the full-flow filter. The full-flow filter is of such density and filtering capacity that the oil flows from the oil pump through the full-flow filter with a minimum pressure drop; adapter means to permit use of the full-flow filter either with or without a by-pass filter. The adapter means is a nut located at the forward end of the full-flow filter opposite the oil filter bushing and extending outwardly. The nut defines an area that can be either left intact, permitting all of the oil flow outward from the full-flow filter after filtering, or punctured, permitting most of the oil to flow outward from the full-flow filter after filtering. A small portion of the oil to flows outward therefrom prior to filtering. The nut is within a specific range of depth and circumference so as to provide a means for controlling the size of the hole. The nut is inwardly threaded.

  13. Adaptive gain and filtering circuit for a sound reproduction system

    NASA Technical Reports Server (NTRS)

    Engebretson, A. Maynard (Inventor); O'Connell, Michael P. (Inventor)

    1998-01-01

    Adaptive compressive gain and level dependent spectral shaping circuitry for a hearing aid include a microphone to produce an input signal and a plurality of channels connected to a common circuit output. Each channel has a preset frequency response. Each channel includes a filter with a preset frequency response to receive the input signal and to produce a filtered signal, a channel amplifier to amplify the filtered signal to produce a channel output signal, a threshold register to establish a channel threshold level, and a gain circuit. The gain circuit increases the gain of the channel amplifier when the channel output signal falls below the channel threshold level and decreases the gain of the channel amplifier when the channel output signal rises above the channel threshold level. A transducer produces sound in response to the signal passed by the common circuit output.

  14. Kalman filtering to suppress spurious signals in Adaptive Optics control

    SciTech Connect

    Poyneer, L; Veran, J P

    2010-03-29

    In many scenarios, an Adaptive Optics (AO) control system operates in the presence of temporally non-white noise. We use a Kalman filter with a state space formulation that allows suppression of this colored noise, hence improving residual error over the case where the noise is assumed to be white. We demonstrate the effectiveness of this new filter in the case of the estimated Gemini Planet Imager tip-tilt environment, where there are both common-path and non-common path vibrations. We discuss how this same framework can also be used to suppress spatial aliasing during predictive wavefront control assuming frozen flow in a low-order AO system without a spatially filtered wavefront sensor, and present experimental measurements from Altair that clearly reveal these aliased components.

  15. Infinite impulse response modal filtering in visible adaptive optics

    NASA Astrophysics Data System (ADS)

    Agapito, G.; Arcidiacono, C.; Quirós-Pacheco, F.; Puglisi, A.; Esposito, S.

    2012-07-01

    Diffraction limited resolution adaptive optics (AO) correction in visible wavelengths requires a high performance control. In this paper we investigate infinite impulse response filters that optimize the wavefront correction: we tested these algorithms through full numerical simulations of a single-conjugate AO system comprising an adaptive secondary mirror with 1127 actuators and a pyramid wavefront sensor (WFS). The actual practicability of the algorithms depends on both robustness and knowledge of the real system: errors in the system model may even worsen the performance. In particular we checked the robustness of the algorithms in different conditions, proving that the proposed method can reject both disturbance and calibration errors.

  16. Adaptive control of large space structures using recursive lattice filters

    NASA Technical Reports Server (NTRS)

    Sundararajan, N.; Goglia, G. L.

    1985-01-01

    The use of recursive lattice filters for identification and adaptive control of large space structures is studied. Lattice filters were used to identify the structural dynamics model of the flexible structures. This identification model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures is control engaged. This type of validation scheme prevents instability when the overall loop is closed. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods. The method uses the Linear Quadratic Guassian/Loop Transfer Recovery (LQG/LTR) approach to ensure stability against unmodeled higher frequency modes and achieves the desired performance.

  17. Adaptive control of large space structures using recursive lattice filters

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.

    1985-01-01

    The use of recursive lattice filters for identification and adaptive control of large space structures was studied. Lattice filters are used widely in the areas of speech and signal processing. Herein, they are used to identify the structural dynamics model of the flexible structures. This identified model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures control is engaged. This type of validation scheme prevents instability when the overall loop is closed. The results obtained from simulation were compared to those obtained from experiments. In this regard, the flexible beam and grid apparatus at the Aerospace Control Research Lab (ACRL) of NASA Langley Research Center were used as the principal candidates for carrying out the above tasks. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods.

  18. Model Adaptation for Prognostics in a Particle Filtering Framework

    NASA Technical Reports Server (NTRS)

    Saha, Bhaskar; Goebel, Kai Frank

    2011-01-01

    One of the key motivating factors for using particle filters for prognostics is the ability to include model parameters as part of the state vector to be estimated. This performs model adaptation in conjunction with state tracking, and thus, produces a tuned model that can used for long term predictions. This feature of particle filters works in most part due to the fact that they are not subject to the "curse of dimensionality", i.e. the exponential growth of computational complexity with state dimension. However, in practice, this property holds for "well-designed" particle filters only as dimensionality increases. This paper explores the notion of wellness of design in the context of predicting remaining useful life for individual discharge cycles of Li-ion batteries. Prognostic metrics are used to analyze the tradeoff between different model designs and prediction performance. Results demonstrate how sensitivity analysis may be used to arrive at a well-designed prognostic model that can take advantage of the model adaptation properties of a particle filter.

  19. Image super-resolution via adaptive filtering and regularization

    NASA Astrophysics Data System (ADS)

    Ren, Jingbo; Wu, Hao; Dong, Weisheng; Shi, Guangming

    2014-11-01

    Image super-resolution (SR) is widely used in the fields of civil and military, especially for the low-resolution remote sensing images limited by the sensor. Single-image SR refers to the task of restoring a high-resolution (HR) image from the low-resolution image coupled with some prior knowledge as a regularization term. One classic method regularizes image by total variation (TV) and/or wavelet or some other transform which introduce some artifacts. To compress these shortages, a new framework for single image SR is proposed by utilizing an adaptive filter before regularization. The key of our model is that the adaptive filter is used to remove the spatial relevance among pixels first and then only the high frequency (HF) part, which is sparser in TV and transform domain, is considered as the regularization term. Concretely, through transforming the original model, the SR question can be solved by two alternate iteration sub-problems. Before each iteration, the adaptive filter should be updated to estimate the initial HF. A high quality HF part and HR image can be obtained by solving the first and second sub-problem, respectively. In experimental part, a set of remote sensing images captured by Landsat satellites are tested to demonstrate the effectiveness of the proposed framework. Experimental results show the outstanding performance of the proposed method in quantitative evaluation and visual fidelity compared with the state-of-the-art methods.

  20. Frequency-shift low-pass filtering and least mean square adaptive filtering for ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Wang, Shanshan; Li, Chunyu; Ding, Mingyue; Yuchi, Ming

    2016-04-01

    Ultrasound image quality enhancement is a problem of considerable interest in medical imaging modality and an ongoing challenge to date. This paper investigates a method based on frequency-shift low-pass filtering (FSLF) and least mean square adaptive filtering (LMSAF) for ultrasound image quality enhancement. FSLF is used for processing the ultrasound signal in the frequency domain, while LMSAPF in the time domain. Firstly, FSLF shifts the center frequency of the focused signal to zero. Then the real and imaginary part of the complex data are filtered respectively by finite impulse response (FIR) low-pass filter. Thus the information around the center frequency are retained while the undesired ones, especially background noises are filtered. Secondly, LMSAF multiplies the signals with an automatically adjusted weight vector to further eliminate the noises and artifacts. Through the combination of the two filters, the ultrasound image is expected to have less noises and artifacts and higher resolution, and contrast. The proposed method was verified with the RF data of the CIRS phantom 055A captured by SonixTouch DAQ system. Experimental results show that the background noises and artifacts can be efficiently restrained, the wire object has a higher resolution and the contrast ratio (CR) can be enhanced for about 12dB to 15dB at different image depth comparing to delay-and-sum (DAS).

  1. Adaptive distributed Kalman filtering with wind estimation for astronomical adaptive optics.

    PubMed

    Massioni, Paolo; Gilles, Luc; Ellerbroek, Brent

    2015-12-01

    In the framework of adaptive optics (AO) for astronomy, it is a common assumption to consider the atmospheric turbulent layers as "frozen flows" sliding according to the wind velocity profile. For this reason, having knowledge of such a velocity profile is beneficial in terms of AO control system performance. In this paper we show that it is possible to exploit the phase estimate from a Kalman filter running on an AO system in order to estimate wind velocity. This allows the update of the Kalman filter itself with such knowledge, making it adaptive. We have implemented such an adaptive controller based on the distributed version of the Kalman filter, for a realistic simulation of a multi-conjugate AO system with laser guide stars on a 30 m telescope. Simulation results show that this approach is effective and promising and the additional computational cost with respect to the distributed filter is negligible. Comparisons with a previously published slope detection and ranging wind profiler are made and the impact of turbulence profile quantization is assessed. One of the main findings of the paper is that all flavors of the adaptive distributed Kalman filter are impacted more significantly by turbulence profile quantization than the static minimum mean square estimator which does not incorporate wind profile information. PMID:26831389

  2. A New Adaptive Framework for Collaborative Filtering Prediction.

    PubMed

    Almosallam, Ibrahim A; Shang, Yi

    2008-06-01

    Collaborative filtering is one of the most successful techniques for recommendation systems and has been used in many commercial services provided by major companies including Amazon, TiVo and Netflix. In this paper we focus on memory-based collaborative filtering (CF). Existing CF techniques work well on dense data but poorly on sparse data. To address this weakness, we propose to use z-scores instead of explicit ratings and introduce a mechanism that adaptively combines global statistics with item-based values based on data density level. We present a new adaptive framework that encapsulates various CF algorithms and the relationships among them. An adaptive CF predictor is developed that can self adapt from user-based to item-based to hybrid methods based on the amount of available ratings. Our experimental results show that the new predictor consistently obtained more accurate predictions than existing CF methods, with the most significant improvement on sparse data sets. When applied to the Netflix Challenge data set, our method performed better than existing CF and singular value decomposition (SVD) methods and achieved 4.67% improvement over Netflix's system. PMID:21572924

  3. Switched Band-Pass Filters for Adaptive Transceivers

    NASA Technical Reports Server (NTRS)

    Wang, Ray

    2007-01-01

    Switched band-pass filters are key components of proposed adaptive, software- defined radio transceivers that would be parts of envisioned digital-data-communication networks that would enable real-time acquisition and monitoring of data from geographically distributed sensors. Examples of sensors to be connected to such networks include security cameras, radio-frequency identification units, and geolocation units based on the Global Positioning System. Through suitable software configuration and without changing hardware, these transceivers could be made to operate according to any of a number of complex wireless-communication standards that could be characterized by diverse modulation schemes, bandwidths, and data-handling protocols. The adaptive transceivers would include field-programmable gate arrays (FPGAs) and digital signal-processing hardware. In the receiving path of a transceiver, the incoming signal would be amplified by a low-noise amplifier (LNA). The output spectrum of the LNA would be processed by a band-pass filter operating in the frequency range between 900 MHz and 2.4 GHz. Then a down-converter would translate the signal to a lower frequency range to facilitate analog-to-digital conversion, which would be followed by baseband processing by one or more FPGAs. In the transmitting path, a digital stream would first be converted to an analog signal, which would then be up-converted to a selected frequency band before being applied to a transmitting power amplifier. The aforementioned band-pass filter in the receiving path would be a combination of resonant inductor-and-capacitor filters and switched band-pass filters. The overall combination would implement a switch function designed mathematically to exhibit desired frequency responses and to switch the signal in each frequency band to an analog-to-digital converter appropriate for that band to produce a digital intermediate-frequency signal for digital signal processing.

  4. A Study of Clutter Reduction Techniques in Wide Bandwidth HF/VHF Deep Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Hammett, Darien J.

    2002-08-01

    Reducing clutter is one of the most daunting problems a radar processing engineer faces. Clutter causes a significant problem when attempting to detect sub-surface targets, as any significant change in the ground dielectric will produce a return at the receiver. The difficulty in reducing the clutter is compounded by the fact that the spectral characteristics of the clutter are similar to that of the target. While there are many methods that exist to reduce clutter, few do not require a prior information of either the target or the clutter. There are applications, of interest to the electromagnetic community, that are restricted in the amount of a prior information available to them. Estimation-subtraction filters calculate an estimate of the clutter from the statistics of the data collected and subtract that estimate from the original data. The Wiener filter has long been used as a way to suppress noise signals when a target reference is known. Using it to reduce clutter is a relatively new area of research. This research proposes estimation-subtraction filters and an application of the Wiener filter, which do not require a priori information to reduce the clutter of a bi-static synthetic aperture based, wideband deep ground penetrating radar system. The results of applying these filters to data collected in this way, at these depths, are illustrated here for the first time. x

  5. Covariance matching based adaptive unscented Kalman filter for direct filtering in INS/GNSS integration

    NASA Astrophysics Data System (ADS)

    Meng, Yang; Gao, Shesheng; Zhong, Yongmin; Hu, Gaoge; Subic, Aleksandar

    2016-03-01

    The use of the direct filtering approach for INS/GNSS integrated navigation introduces nonlinearity into the system state equation. As the unscented Kalman filter (UKF) is a promising method for nonlinear problems, an obvious solution is to incorporate the UKF concept in the direct filtering approach to address the nonlinearity involved in INS/GNSS integrated navigation. However, the performance of the standard UKF is dependent on the accurate statistical characterizations of system noise. If the noise distributions of inertial instruments and GNSS receivers are not appropriately described, the standard UKF will produce deteriorated or even divergent navigation solutions. This paper presents an adaptive UKF with noise statistic estimator to overcome the limitation of the standard UKF. According to the covariance matching technique, the innovation and residual sequences are used to determine the covariance matrices of the process and measurement noises. The proposed algorithm can estimate and adjust the system noise statistics online, and thus enhance the adaptive capability of the standard UKF. Simulation and experimental results demonstrate that the performance of the proposed algorithm is significantly superior to that of the standard UKF and adaptive-robust UKF under the condition without accurate knowledge on system noise, leading to improved navigation precision.

  6. Statistical-uncertainty-based adaptive filtering of lidar signals

    SciTech Connect

    Fuehrer, P. L.; Friehe, C. A.; Hristov, T. S.; Cooper, D. I.; Eichinger, W. E.

    2000-02-10

    An adaptive filter signal processing technique is developed to overcome the problem of Raman lidar water-vapor mixing ratio (the ratio of the water-vapor density to the dry-air density) with a highly variable statistical uncertainty that increases with decreasing photomultiplier-tube signal strength and masks the true desired water-vapor structure. The technique, applied to horizontal scans, assumes only statistical horizontal homogeneity. The result is a variable spatial resolution water-vapor signal with a constant variance out to a range limit set by a specified signal-to-noise ratio. The technique was applied to Raman water-vapor lidar data obtained at a coastal pier site together with in situ instruments located 320 m from the lidar. The micrometerological humidity data were used to calibrate the ratio of the lidar gains of the H{sub 2}O and the N{sub 2} photomultiplier tubes and set the water-vapor mixing ratio variance for the adaptive filter. For the coastal experiment the effective limit of the lidar range was found to be approximately 200 m for a maximum noise-to-signal variance ratio of 0.1 with the implemented data-reduction procedure. The technique can be adapted to off-horizontal scans with a small reduction in the constraints and is also applicable to other remote-sensing devices that exhibit the same inherent range-dependent signal-to-noise ratio problem. (c) 2000 Optical Society of America.

  7. Fast Source Camera Identification Using Content Adaptive Guided Image Filter.

    PubMed

    Zeng, Hui; Kang, Xiangui

    2016-03-01

    Source camera identification (SCI) is an important topic in image forensics. One of the most effective fingerprints for linking an image to its source camera is the sensor pattern noise, which is estimated as the difference between the content and its denoised version. It is widely believed that the performance of the sensor-based SCI heavily relies on the denoising filter used. This study proposes a novel sensor-based SCI method using content adaptive guided image filter (CAGIF). Thanks to the low complexity nature of the CAGIF, the proposed method is much faster than the state-of-the-art methods, which is a big advantage considering the potential real-time application of SCI. Despite the advantage of speed, experimental results also show that the proposed method can achieve comparable or better performance than the state-of-the-art methods in terms of accuracy. PMID:27404627

  8. An adaptive filter method for spacecraft using gravity assist

    NASA Astrophysics Data System (ADS)

    Ning, Xiaolin; Huang, Panpan; Fang, Jiancheng; Liu, Gang; Ge, Shuzhi Sam

    2015-04-01

    Celestial navigation (CeleNav) has been successfully used during gravity assist (GA) flyby for orbit determination in many deep space missions. Due to spacecraft attitude errors, ephemeris errors, the camera center-finding bias, and the frequency of the images before and after the GA flyby, the statistics of measurement noise cannot be accurately determined, and yet have time-varying characteristics, which may introduce large estimation error and even cause filter divergence. In this paper, an unscented Kalman filter (UKF) with adaptive measurement noise covariance, called ARUKF, is proposed to deal with this problem. ARUKF scales the measurement noise covariance according to the changes in innovation and residual sequences. Simulations demonstrate that ARUKF is robust to the inaccurate initial measurement noise covariance matrix and time-varying measurement noise. The impact factors in the ARUKF are also investigated.

  9. Boosting target tracking using particle filter with flow control

    NASA Astrophysics Data System (ADS)

    Moshtagh, Nima; Chan, Moses W.

    2013-05-01

    Target detection and tracking with passive infrared (IR) sensors can be challenging due to significant degradation and corruption of target signature by atmospheric transmission and clutter effects. This paper summarizes our efforts in phenomenology modeling of boosting targets with IR sensors, and developing algorithms for tracking targets in the presence of background clutter. On the phenomenology modeling side, the clutter images are generated using a high fidelity end-to-end simulation testbed. It models atmospheric transmission, structured clutter and solar reflections to create realistic background images. The dynamics and intensity of a boosting target are modeled and injected onto the background scene. Pixel level images are then generated with respect to the sensor characteristics. On the tracking analysis side, a particle filter for tracking targets in a sequence of clutter images is developed. The particle filter is augmented with a mechanism to control particle flow. Specifically, velocity feedback is used to constrain and control the particles. The performance of the developed "adaptive" particle filter is verified with tracking of a boosting target in the presence of clutter and occlusion.

  10. Attitude determination using an adaptive multiple model filtering Scheme

    NASA Technical Reports Server (NTRS)

    Lam, Quang; Ray, Surendra N.

    1995-01-01

    Attitude determination has been considered as a permanent topic of active research and perhaps remaining as a forever-lasting interest for spacecraft system designers. Its role is to provide a reference for controls such as pointing the directional antennas or solar panels, stabilizing the spacecraft or maneuvering the spacecraft to a new orbit. Least Square Estimation (LSE) technique was utilized to provide attitude determination for the Nimbus 6 and G. Despite its poor performance (estimation accuracy consideration), LSE was considered as an effective and practical approach to meet the urgent need and requirement back in the 70's. One reason for this poor performance associated with the LSE scheme is the lack of dynamic filtering or 'compensation'. In other words, the scheme is based totally on the measurements and no attempts were made to model the dynamic equations of motion of the spacecraft. We propose an adaptive filtering approach which employs a bank of Kalman filters to perform robust attitude estimation. The proposed approach, whose architecture is depicted, is essentially based on the latest proof on the interactive multiple model design framework to handle the unknown of the system noise characteristics or statistics. The concept fundamentally employs a bank of Kalman filter or submodel, instead of using fixed values for the system noise statistics for each submodel (per operating condition) as the traditional multiple model approach does, we use an on-line dynamic system noise identifier to 'identify' the system noise level (statistics) and update the filter noise statistics using 'live' information from the sensor model. The advanced noise identifier, whose architecture is also shown, is implemented using an advanced system identifier. To insure the robust performance for the proposed advanced system identifier, it is also further reinforced by a learning system which is implemented (in the outer loop) using neural networks to identify other unknown

  11. Attitude determination using an adaptive multiple model filtering Scheme

    NASA Astrophysics Data System (ADS)

    Lam, Quang; Ray, Surendra N.

    1995-05-01

    Attitude determination has been considered as a permanent topic of active research and perhaps remaining as a forever-lasting interest for spacecraft system designers. Its role is to provide a reference for controls such as pointing the directional antennas or solar panels, stabilizing the spacecraft or maneuvering the spacecraft to a new orbit. Least Square Estimation (LSE) technique was utilized to provide attitude determination for the Nimbus 6 and G. Despite its poor performance (estimation accuracy consideration), LSE was considered as an effective and practical approach to meet the urgent need and requirement back in the 70's. One reason for this poor performance associated with the LSE scheme is the lack of dynamic filtering or 'compensation'. In other words, the scheme is based totally on the measurements and no attempts were made to model the dynamic equations of motion of the spacecraft. We propose an adaptive filtering approach which employs a bank of Kalman filters to perform robust attitude estimation. The proposed approach, whose architecture is depicted, is essentially based on the latest proof on the interactive multiple model design framework to handle the unknown of the system noise characteristics or statistics. The concept fundamentally employs a bank of Kalman filter or submodel, instead of using fixed values for the system noise statistics for each submodel (per operating condition) as the traditional multiple model approach does, we use an on-line dynamic system noise identifier to 'identify' the system noise level (statistics) and update the filter noise statistics using 'live' information from the sensor model. The advanced noise identifier, whose architecture is also shown, is implemented using an advanced system identifier. To insure the robust performance for the proposed advanced system identifier, it is also further reinforced by a learning system which is implemented (in the outer loop) using neural networks to identify other unknown

  12. Study of adaptive correlation filter synthesis guided by the peak and shape of the correlation output

    NASA Astrophysics Data System (ADS)

    Campos Trujillo, Oliver G.; Díaz Blancas, Gerardo

    2014-09-01

    In recent years, many proposals that consider an adaptive perspective had been developed to solve some drawbacks, such as geometric distortions, background noise and target discrimination. The metrics are based only in the correlation peak output for the filter synthesis. In this paper, the correlation shape is studied to implement adaptive correlation filters guided by the peak and shape of the correlation output. Furthermore, the shape of correlation output is studied to improve the search in the filters bank. In addition, parallel algorithms are developed for accelerated the search in the filters bank. Some results are shown, such as time of synthesis, filter performance and comparisons with other adaptive correlation filter proposals.

  13. Residual mode filters and adaptive control in large space structures

    NASA Technical Reports Server (NTRS)

    Davidson, Roger A.; Balas, Mark J.

    1989-01-01

    One of the most difficult problems in controlling large systems and structures is compensating for the destructive interaction which can occur between the reduced-order model (ROM) of the plant, which is used by the controller, and the unmodeled dynamics of the plant, often called the residual modes. The problem is more significant in the case of large space structures because their naturally light damping and high performance requirements lead to more frequent, destructive residual mode interaction (RMI). Using the design/compensation technique of residual mode filters (RMF's), effective compensation of RMI can be accomplished in a straightforward manner when using linear controllers. The use of RMF's has been shown to be effective for a variety of large structures, including a space-based laser and infinite dimensional systems. However, the dynamics of space structures is often uncertain and may even change over time due to on-orbit erosion from space debris and corrosive chemicals in the upper atmosphere. In this case, adaptive control can be extremely beneficial in meeting the performance requirements of the structure. Adaptive control for large structures is also based on ROM's and so destructive RMI may occur. Unfortunately, adaptive control is inherently nonlinear, and therefore the known results of RMF's cannot be applied. The purpose is to present the results of new research showing the effects of RMI when using adaptive control and the work which will hopefully lead to RMF compensation of this problem.

  14. Multimodal Medical Image Fusion by Adaptive Manifold Filter.

    PubMed

    Geng, Peng; Liu, Shuaiqi; Zhuang, Shanna

    2015-01-01

    Medical image fusion plays an important role in diagnosis and treatment of diseases such as image-guided radiotherapy and surgery. The modified local contrast information is proposed to fuse multimodal medical images. Firstly, the adaptive manifold filter is introduced into filtering source images as the low-frequency part in the modified local contrast. Secondly, the modified spatial frequency of the source images is adopted as the high-frequency part in the modified local contrast. Finally, the pixel with larger modified local contrast is selected into the fused image. The presented scheme outperforms the guided filter method in spatial domain, the dual-tree complex wavelet transform-based method, nonsubsampled contourlet transform-based method, and four classic fusion methods in terms of visual quality. Furthermore, the mutual information values by the presented method are averagely 55%, 41%, and 62% higher than the three methods and those values of edge based similarity measure by the presented method are averagely 13%, 33%, and 14% higher than the three methods for the six pairs of source images. PMID:26664494

  15. On application of adaptive decorrelation filtering to assistive listening

    NASA Astrophysics Data System (ADS)

    Zhao, Yunxin; Yen, Kuan-Chieh; Soli, Sig; Gao, Shawn; Vermiglio, Andy

    2002-02-01

    This paper describes an application of the multichannel signal processing technique of adaptive decorrelation filtering to the design of an assistive listening system. A simulated ``dinner table'' scenario was studied. The speech signal of a desired talker was corrupted by three simultaneous speech jammers and by a speech-shaped diffusive noise. The technique of adaptive decorrelation filtering processing was used to extract the desired speech from the interference speech and noise. The effectiveness of the assistive listening system was evaluated by observing improvements in A-weighted signal-to-noise ratio (SNR) and in sentence intelligibility, where the latter was evaluated in a listening test with eight normal hearing subjects and three subjects with hearing impairments. Significant improvements in SNR and sentence intelligibility were achieved with the use of the assistive listening system. For subjects with normal hearing, the speech reception threshold was improved by 3 to 5 dBA, and for subjects with hearing impairments, the threshold was improved by 4 to 8 dBA.

  16. A wavelet packet adaptive filtering algorithm for enhancing manatee vocalizations.

    PubMed

    Gur, M Berke; Niezrecki, Christopher

    2011-04-01

    Approximately a quarter of all West Indian manatee (Trichechus manatus latirostris) mortalities are attributed to collisions with watercraft. A boater warning system based on the passive acoustic detection of manatee vocalizations is one possible solution to reduce manatee-watercraft collisions. The success of such a warning system depends on effective enhancement of the vocalization signals in the presence of high levels of background noise, in particular, noise emitted from watercraft. Recent research has indicated that wavelet domain pre-processing of the noisy vocalizations is capable of significantly improving the detection ranges of passive acoustic vocalization detectors. In this paper, an adaptive denoising procedure, implemented on the wavelet packet transform coefficients obtained from the noisy vocalization signals, is investigated. The proposed denoising algorithm is shown to improve the manatee detection ranges by a factor ranging from two (minimum) to sixteen (maximum) compared to high-pass filtering alone, when evaluated using real manatee vocalization and background noise signals of varying signal-to-noise ratios (SNR). Furthermore, the proposed method is also shown to outperform a previously suggested feedback adaptive line enhancer (FALE) filter on average 3.4 dB in terms of noise suppression and 0.6 dB in terms of waveform preservation. PMID:21476661

  17. An adaptive filtered back-projection for photoacoustic image reconstruction

    PubMed Central

    Huang, He; Bustamante, Gilbert; Peterson, Ralph; Ye, Jing Yong

    2015-01-01

    Purpose: The purpose of this study is to develop an improved filtered-back-projection (FBP) algorithm for photoacoustic tomography (PAT), which allows image reconstruction with higher quality compared to images reconstructed through traditional algorithms. Methods: A rigorous expression of a weighting function has been derived directly from a photoacoustic wave equation and used as a ramp filter in Fourier domain. The authors’ new algorithm utilizes this weighting function to precisely calculate each photoacoustic signal’s contribution and then reconstructs the image based on the retarded potential generated from the photoacoustic sources. In addition, an adaptive criterion has been derived for selecting the cutoff frequency of a low pass filter. Two computational phantoms were created to test the algorithm. The first phantom contained five spheres with each sphere having different absorbances. The phantom was used to test the capability for correctly representing both the geometry and the relative absorbed energy in a planar measurement system. The authors also used another phantom containing absorbers of different sizes with overlapping geometry to evaluate the performance of the new method for complicated geometry. In addition, random noise background was added to the simulated data, which were obtained by using an arc-shaped array of 50 evenly distributed transducers that spanned 160° over a circle with a radius of 65 mm. A normalized factor between the neighbored transducers was applied for correcting measurement signals in PAT simulations. The authors assumed that the scanned object was mounted on a holder that rotated over the full 360° and the scans were set to a sampling rate of 20.48 MHz. Results: The authors have obtained reconstructed images of the computerized phantoms by utilizing the new FBP algorithm. From the reconstructed image of the first phantom, one can see that this new approach allows not only obtaining a sharp image but also showing

  18. An adaptive filtered back-projection for photoacoustic image reconstruction

    SciTech Connect

    Huang, He; Bustamante, Gilbert; Peterson, Ralph; Ye, Jing Yong

    2015-05-15

    Purpose: The purpose of this study is to develop an improved filtered-back-projection (FBP) algorithm for photoacoustic tomography (PAT), which allows image reconstruction with higher quality compared to images reconstructed through traditional algorithms. Methods: A rigorous expression of a weighting function has been derived directly from a photoacoustic wave equation and used as a ramp filter in Fourier domain. The authors’ new algorithm utilizes this weighting function to precisely calculate each photoacoustic signal’s contribution and then reconstructs the image based on the retarded potential generated from the photoacoustic sources. In addition, an adaptive criterion has been derived for selecting the cutoff frequency of a low pass filter. Two computational phantoms were created to test the algorithm. The first phantom contained five spheres with each sphere having different absorbances. The phantom was used to test the capability for correctly representing both the geometry and the relative absorbed energy in a planar measurement system. The authors also used another phantom containing absorbers of different sizes with overlapping geometry to evaluate the performance of the new method for complicated geometry. In addition, random noise background was added to the simulated data, which were obtained by using an arc-shaped array of 50 evenly distributed transducers that spanned 160° over a circle with a radius of 65 mm. A normalized factor between the neighbored transducers was applied for correcting measurement signals in PAT simulations. The authors assumed that the scanned object was mounted on a holder that rotated over the full 360° and the scans were set to a sampling rate of 20.48 MHz. Results: The authors have obtained reconstructed images of the computerized phantoms by utilizing the new FBP algorithm. From the reconstructed image of the first phantom, one can see that this new approach allows not only obtaining a sharp image but also showing

  19. Optimal waveform-based clutter suppression algorithm for recursive synthetic aperture radar imaging systems

    NASA Astrophysics Data System (ADS)

    Zhu, Binqi; Gao, Yesheng; Wang, Kaizhi; Liu, Xingzhao

    2016-04-01

    A computational method for suppressing clutter and generating clear microwave images of targets is proposed in this paper, which combines synthetic aperture radar (SAR) principles with recursive method and waveform design theory, and it is suitable for SAR for special applications. The nonlinear recursive model is introduced into the SAR operation principle, and the cubature Kalman filter algorithm is used to estimate target and clutter responses in each azimuth position based on their previous states, which are both assumed to be Gaussian distributions. NP criteria-based optimal waveforms are designed repeatedly as the sensor flies along its azimuth path and are used as the transmitting signals. A clutter suppression filter is then designed and added to suppress the clutter response while maintaining most of the target response. Thus, with fewer disturbances from the clutter response, we can generate the SAR image with traditional azimuth matched filters. Our simulations show that the clutter suppression filter significantly reduces the clutter response, and our algorithm greatly improves the SINR of the SAR image based on different clutter suppression filter parameters. As such, this algorithm may be preferable for special target imaging when prior information on the target is available.

  20. Controller-structure interaction compensation using adaptive residual mode filters

    NASA Technical Reports Server (NTRS)

    Davidson, Roger A.; Balas, Mark J.

    1990-01-01

    It is not feasible to construct controllers for large space structures or large scale systems (LSS's) which are of the same order as the structures. The complexity of the dynamics of these systems is such that full knowledge of its behavior cannot by processed by today's controller design methods. The controller for system performance of such a system is therefore based on a much smaller reduced-order model (ROM). Unfortunately, the interaction between the LSS and the ROM-based controller can produce instabilities in the closed-loop system due to the unmodeled dynamics of the LSS. Residual mode filters (RMF's) allow the systematic removal of these instabilities in a matter which does not require a redesign of the controller. In addition RMF's have a strong theoretical basis. As simple first- or second-order filters, the RMF CSI compensation technique is at once modular, simple and highly effective. RMF compensation requires knowledge of the dynamics of the system modes which resulted in the previous closed-loop instabilities (the residual modes), but this information is sometimes known imperfectly. An adaptive, self-tuning RMF design, which compensates for uncertainty in the frequency of the residual mode, has been simulated using continuous-time and discrete-time models of a flexible robot manipulator. Work has also been completed on the discrete-time experimental implementation on the Martin Marietta flexible robot manipulator experiment. This paper will present the results of that work on adaptive, self-tuning RMF's, and will clearly show the advantage of this adaptive compensation technique for controller-structure interaction (CSI) instabilities in actively-controlled LSS's.

  1. Reduced-Rank Adaptive Filtering Using Krylov Subspace

    NASA Astrophysics Data System (ADS)

    Burykh, Sergueï; Abed-Meraim, Karim

    2003-12-01

    A unified view of several recently introduced reduced-rank adaptive filters is presented. As all considered methods use Krylov subspace for rank reduction, the approach taken in this work is inspired from Krylov subspace methods for iterative solutions of linear systems. The alternative interpretation so obtained is used to study the properties of each considered technique and to relate one reduced-rank method to another as well as to algorithms used in computational linear algebra. Practical issues are discussed and low-complexity versions are also included in our study. It is believed that the insight developed in this paper can be further used to improve existing reduced-rank methods according to known results in the domain of Krylov subspace methods.

  2. Adaptive Data Filtering of Inertial Sensors with Variable Bandwidth

    PubMed Central

    Alam, Mushfiqul; Rohac, Jan

    2015-01-01

    MEMS (micro-electro-mechanical system)-based inertial sensors, i.e., accelerometers and angular rate sensors, are commonly used as a cost-effective solution for the purposes of navigation in a broad spectrum of terrestrial and aerospace applications. These tri-axial inertial sensors form an inertial measurement unit (IMU), which is a core unit of navigation systems. Even if MEMS sensors have an advantage in their size, cost, weight and power consumption, they suffer from bias instability, noisy output and insufficient resolution. Furthermore, the sensor's behavior can be significantly affected by strong vibration when it operates in harsh environments. All of these constitute conditions require treatment through data processing. As long as the navigation solution is primarily based on using only inertial data, this paper proposes a novel concept in adaptive data pre-processing by using a variable bandwidth filtering. This approach utilizes sinusoidal estimation to continuously adapt the filtering bandwidth of the accelerometer's data in order to reduce the effects of vibration and sensor noise before attitude estimation is processed. Low frequency vibration generally limits the conditions under which the accelerometers can be used to aid the attitude estimation process, which is primarily based on angular rate data and, thus, decreases its accuracy. In contrast, the proposed pre-processing technique enables using accelerometers as an aiding source by effective data smoothing, even when they are affected by low frequency vibration. Verification of the proposed concept is performed on simulation and real-flight data obtained on an ultra-light aircraft. The results of both types of experiments confirm the suitability of the concept for inertial data pre-processing. PMID:25648711

  3. Adaptive data filtering of inertial sensors with variable bandwidth.

    PubMed

    Alam, Mushfiqul; Rohac, Jan

    2015-01-01

    MEMS (micro-electro-mechanical system)-based inertial sensors, i.e., accelerometers and angular rate sensors, are commonly used as a cost-effective solution for the purposes of navigation in a broad spectrum of terrestrial and aerospace applications. These tri-axial inertial sensors form an inertial measurement unit (IMU), which is a core unit of navigation systems. Even if MEMS sensors have an advantage in their size, cost, weight and power consumption, they suffer from bias instability, noisy output and insufficient resolution. Furthermore, the sensor's behavior can be significantly affected by strong vibration when it operates in harsh environments. All of these constitute conditions require treatment through data processing. As long as the navigation solution is primarily based on using only inertial data, this paper proposes a novel concept in adaptive data pre-processing by using a variable bandwidth filtering. This approach utilizes sinusoidal estimation to continuously adapt the filtering bandwidth of the accelerometer's data in order to reduce the effects of vibration and sensor noise before attitude estimation is processed. Low frequency vibration generally limits the conditions under which the accelerometers can be used to aid the attitude estimation process, which is primarily based on angular rate data and, thus, decreases its accuracy. In contrast, the proposed pre-processing technique enables using accelerometers as an aiding source by effective data smoothing, even when they are affected by low frequency vibration. Verification of the proposed concept is performed on simulation and real-flight data obtained on an ultra-light aircraft. The results of both types of experiments confirm the suitability of the concept for inertial data pre-processing. PMID:25648711

  4. Adaptive noise cancellation based on beehive pattern evolutionary digital filter

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaojun; Shao, Yimin

    2014-01-01

    Evolutionary digital filtering (EDF) exhibits the advantage of avoiding the local optimum problem by using cloning and mating searching rules in an adaptive noise cancellation system. However, convergence performance is restricted by the large population of individuals and the low level of information communication among them. The special beehive structure enables the individuals on neighbour beehive nodes to communicate with each other and thus enhance the information spread and random search ability of the algorithm. By introducing the beehive pattern evolutionary rules into the original EDF, this paper proposes an improved beehive pattern evolutionary digital filter (BP-EDF) to overcome the defects of the original EDF. In the proposed algorithm, a new evolutionary rule which combines competing cloning, complete cloning and assistance mating methods is constructed to enable the individuals distributed on the beehive to communicate with their neighbours. Simulation results are used to demonstrate the improved performance of the proposed algorithm in terms of convergence speed to the global optimum compared with the original methods. Experimental results also verify the effectiveness of the proposed algorithm in extracting feature signals that are contaminated by significant amounts of noise during the fault diagnosis task.

  5. Modeling of Rate-Dependent Hysteresis Using a GPO-Based Adaptive Filter.

    PubMed

    Zhang, Zhen; Ma, Yaopeng

    2016-01-01

    A novel generalized play operator-based (GPO-based) nonlinear adaptive filter is proposed to model rate-dependent hysteresis nonlinearity for smart actuators. In the proposed filter, the input signal vector consists of the output of a tapped delay line. GPOs with various thresholds are used to construct a nonlinear network and connected with the input signals. The output signal of the filter is composed of a linear combination of signals from the output of GPOs. The least-mean-square (LMS) algorithm is used to adjust the weights of the nonlinear filter. The modeling results of four adaptive filter methods are compared: GPO-based adaptive filter, Volterra filter, backlash filter and linear adaptive filter. Moreover, a phenomenological operator-based model, the rate-dependent generalized Prandtl-Ishlinskii (RDGPI) model, is compared to the proposed adaptive filter. The various rate-dependent modeling methods are applied to model the rate-dependent hysteresis of a giant magnetostrictive actuator (GMA). It is shown from the modeling results that the GPO-based adaptive filter can describe the rate-dependent hysteresis nonlinear of the GMA more accurately and effectively. PMID:26861349

  6. Modeling of Rate-Dependent Hysteresis Using a GPO-Based Adaptive Filter

    PubMed Central

    Zhang, Zhen; Ma, Yaopeng

    2016-01-01

    A novel generalized play operator-based (GPO-based) nonlinear adaptive filter is proposed to model rate-dependent hysteresis nonlinearity for smart actuators. In the proposed filter, the input signal vector consists of the output of a tapped delay line. GPOs with various thresholds are used to construct a nonlinear network and connected with the input signals. The output signal of the filter is composed of a linear combination of signals from the output of GPOs. The least-mean-square (LMS) algorithm is used to adjust the weights of the nonlinear filter. The modeling results of four adaptive filter methods are compared: GPO-based adaptive filter, Volterra filter, backlash filter and linear adaptive filter. Moreover, a phenomenological operator-based model, the rate-dependent generalized Prandtl-Ishlinskii (RDGPI) model, is compared to the proposed adaptive filter. The various rate-dependent modeling methods are applied to model the rate-dependent hysteresis of a giant magnetostrictive actuator (GMA). It is shown from the modeling results that the GPO-based adaptive filter can describe the rate-dependent hysteresis nonlinear of the GMA more accurately and effectively. PMID:26861349

  7. Subsurface characterization with localized ensemble Kalman filter employing adaptive thresholding

    NASA Astrophysics Data System (ADS)

    Delijani, Ebrahim Biniaz; Pishvaie, Mahmoud Reza; Boozarjomehry, Ramin Bozorgmehry

    2014-07-01

    Ensemble Kalman filter, EnKF, as a Monte Carlo sequential data assimilation method has emerged promisingly for subsurface media characterization during past decade. Due to high computational cost of large ensemble size, EnKF is limited to small ensemble set in practice. This results in appearance of spurious correlation in covariance structure leading to incorrect or probable divergence of updated realizations. In this paper, a universal/adaptive thresholding method is presented to remove and/or mitigate spurious correlation problem in the forecast covariance matrix. This method is, then, extended to regularize Kalman gain directly. Four different thresholding functions have been considered to threshold forecast covariance and gain matrices. These include hard, soft, lasso and Smoothly Clipped Absolute Deviation (SCAD) functions. Three benchmarks are used to evaluate the performances of these methods. These benchmarks include a small 1D linear model and two 2D water flooding (in petroleum reservoirs) cases whose levels of heterogeneity/nonlinearity are different. It should be noted that beside the adaptive thresholding, the standard distance dependant localization and bootstrap Kalman gain are also implemented for comparison purposes. We assessed each setup with different ensemble sets to investigate the sensitivity of each method on ensemble size. The results indicate that thresholding of forecast covariance yields more reliable performance than Kalman gain. Among thresholding function, SCAD is more robust for both covariance and gain estimation. Our analyses emphasize that not all assimilation cycles do require thresholding and it should be performed wisely during the early assimilation cycles. The proposed scheme of adaptive thresholding outperforms other methods for subsurface characterization of underlying benchmarks.

  8. Vegetation clutter model

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.

    1980-01-01

    The statistical behavior of the radar backscattering coefficient of agricultural crops is examined. The data used were obtained by the microwave active spectrometer (MAS) systems in 1975 and 1976. Based on an evaluation of the angular and spectral variation of the mean, median, and 90-percent dynamic range of the coefficient (dB) histograms, empirical expressions describing the joint angular and frequency dependence of the mean and median were generated for each linear polarization configuration. The clutter model thus generated covers the angular range between 0 deg (nadir) and 80 deg and the frequency range between 1 GHz and 18 GHz. Decorrelation of the coefficient with frequency spacing was also evaluated and modeled.

  9. Adaptive Wiener filter super-resolution of color filter array images.

    PubMed

    Karch, Barry K; Hardie, Russell C

    2013-08-12

    Digital color cameras using a single detector array with a Bayer color filter array (CFA) require interpolation or demosaicing to estimate missing color information and provide full-color images. However, demosaicing does not specifically address fundamental undersampling and aliasing inherent in typical camera designs. Fast non-uniform interpolation based super-resolution (SR) is an attractive approach to reduce or eliminate aliasing and its relatively low computational load is amenable to real-time applications. The adaptive Wiener filter (AWF) SR algorithm was initially developed for grayscale imaging and has not previously been applied to color SR demosaicing. Here, we develop a novel fast SR method for CFA cameras that is based on the AWF SR algorithm and uses global channel-to-channel statistical models. We apply this new method as a stand-alone algorithm and also as an initialization image for a variational SR algorithm. This paper presents the theoretical development of the color AWF SR approach and applies it in performance comparisons to other SR techniques for both simulated and real data. PMID:23938797

  10. An adaptive demodulation approach for bearing fault detection based on adaptive wavelet filtering and spectral subtraction

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Tang, Baoping; Liu, Ziran; Chen, Rengxiang

    2016-02-01

    Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses

  11. Multifrequency space time orthogonal projection (MF-STOP): a radar signal processing algorithm for detecting and discriminating targets in heavy clutter

    NASA Astrophysics Data System (ADS)

    Tamrat, Yalew; Hatleberg, Clancy

    2007-04-01

    In this paper, we present a Multi-Frequency Space-Time Orthogonal (MF-STOP) adaptive filtering approach for detection and discrimination of targets based on a two stage orthogonal projection whereby target parameters can be extracted in the presence of heavy clutter and noise. The proposed technique detects targets within heavy clutter tracked by a radar system. After targets are detected, motion information is extracted that can be used to discriminate threats such as reentry vehicles from other targets. Target detection is generated in stage one by a combination of Windowed Short Time Fast Fourier Transform (WSTFFT) processing and Principal Component Analysis (PCA). Target discrimination is done in a second stage via Partial Least Squares (PLS) using a training filter constructed from the stage one detection. The target is discriminated explicitly by metric criteria such as size or precession. These discriminate features do not have to be known a priori.

  12. Unscented fuzzy-controlled current statistic model and adaptive filtering for tracking maneuvering targets

    NASA Astrophysics Data System (ADS)

    Hu, Hongtao; Jing, Zhongliang; Hu, Shiqiang

    2006-12-01

    A novel adaptive algorithm for tracking maneuvering targets is proposed. The algorithm is implemented with fuzzy-controlled current statistic model adaptive filtering and unscented transformation. A fuzzy system allows the filter to tune the magnitude of maximum accelerations to adapt to different target maneuvers, and unscented transformation can effectively handle nonlinear system. A bearing-only tracking scenario simulation results show the proposed algorithm has a robust advantage over a wide range of maneuvers and overcomes the shortcoming of the traditional current statistic model and adaptive filtering algorithm.

  13. Background adaptive division filtering for hand-held ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Lee, Matthew A.; Anderson, Derek T.; Ball, John E.; White, Julie L.

    2016-05-01

    The challenge in detecting explosive hazards is that there are multiple types of targets buried at different depths in a highlycluttered environment. A wide array of target and clutter signatures exist, which makes detection algorithm design difficult. Such explosive hazards are typically deployed in past and present war zones and they pose a grave threat to the safety of civilians and soldiers alike. This paper focuses on a new image enhancement technique for hand-held ground penetrating radar (GPR). Advantages of the proposed technique is it runs in real-time and it does not require the radar to remain at a constant distance from the ground. Herein, we evaluate the performance of the proposed technique using data collected from a U.S. Army test site, which includes targets with varying amounts of metal content, placement depths, clutter and times of day. Receiver operating characteristic (ROC) curve-based results are presented for the detection of shallow, medium and deeply buried targets. Preliminary results are very encouraging and they demonstrate the usefulness of the proposed filtering technique.

  14. The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation.

    PubMed

    Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck

    2016-01-01

    This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix 'R' and the system noise V-C matrix 'Q'. Then, the global filter uses R to calculate the information allocation factor 'β' for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively. PMID:27438835

  15. The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation

    PubMed Central

    Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck

    2016-01-01

    This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix ‘R’ and the system noise V-C matrix ‘Q’. Then, the global filter uses R to calculate the information allocation factor ‘β’ for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively. PMID:27438835

  16. Simultaneous learning and filtering without delusions: a Bayes-optimal combination of Predictive Inference and Adaptive Filtering.

    PubMed

    Kneissler, Jan; Drugowitsch, Jan; Friston, Karl; Butz, Martin V

    2015-01-01

    Predictive coding appears to be one of the fundamental working principles of brain processing. Amongst other aspects, brains often predict the sensory consequences of their own actions. Predictive coding resembles Kalman filtering, where incoming sensory information is filtered to produce prediction errors for subsequent adaptation and learning. However, to generate prediction errors given motor commands, a suitable temporal forward model is required to generate predictions. While in engineering applications, it is usually assumed that this forward model is known, the brain has to learn it. When filtering sensory input and learning from the residual signal in parallel, a fundamental problem arises: the system can enter a delusional loop when filtering the sensory information using an overly trusted forward model. In this case, learning stalls before accurate convergence because uncertainty about the forward model is not properly accommodated. We present a Bayes-optimal solution to this generic and pernicious problem for the case of linear forward models, which we call Predictive Inference and Adaptive Filtering (PIAF). PIAF filters incoming sensory information and learns the forward model simultaneously. We show that PIAF is formally related to Kalman filtering and to the Recursive Least Squares linear approximation method, but combines these procedures in a Bayes optimal fashion. Numerical evaluations confirm that the delusional loop is precluded and that the learning of the forward model is more than 10-times faster when compared to a naive combination of Kalman filtering and Recursive Least Squares. PMID:25983690

  17. An Adaptive Fourier Filter for Relaxing Time Stepping Constraints for Explicit Solvers

    SciTech Connect

    Gelb, Anne; Archibald, Richard K

    2015-01-01

    Filtering is necessary to stabilize piecewise smooth solutions. The resulting diffusion stabilizes the method, but may fail to resolve the solution near discontinuities. Moreover, high order filtering still requires cost prohibitive time stepping. This paper introduces an adaptive filter that controls spurious modes of the solution, but is not unnecessarily diffusive. Consequently we are able to stabilize the solution with larger time steps, but also take advantage of the accuracy of a high order filter.

  18. An online novel adaptive filter for denoising time series measurements.

    PubMed

    Willis, Andrew J

    2006-04-01

    A nonstationary form of the Wiener filter based on a principal components analysis is described for filtering time series data possibly derived from noisy instrumentation. The theory of the filter is developed, implementation details are presented and two examples are given. The filter operates online, approximating the maximum a posteriori optimal Bayes reconstruction of a signal with arbitrarily distributed and non stationary statistics. PMID:16649562

  19. Interpretation of radar returns from clear air: Discrimination against clutter

    NASA Technical Reports Server (NTRS)

    Rottger, J.

    1983-01-01

    Different kinds of inteference may cause problems to the proper detection and analysis of the atmospheric signals, when using VHF and UHF radars. These are separated into passive and active contributions. Passive contributions are existent in the receiving system without the radar transmitter switched on. Active contributions are due to scatter and reflection of the own transmitted radar signal from unwanted targets, which are called clutter. Of major importance to radar systems are active interference contributions. Different methods can be applied for elimination or at least suppressing unwanted effects. These are; (1) Directional filtering, i.e., applying optimum suppression of antenna sidelobes, (2) Range filtering, i.e., suppressing unwanted signals only in affected range gates, (3) selection by amplitude distributions, (4) Temporal filtering, i.e., recognizing typical temporal variations of the clutter signals, through spectral characteristics, and applying matched filters.

  20. Burst noise reduction of image by decimation and adaptive weighted median filter

    NASA Astrophysics Data System (ADS)

    Nakayama, Fumitaka; Meguro, Mitsuhiko; Hamada, Nozomu

    2000-12-01

    The removal of noise in image is one of the important issues, and useful as a preprocessing for edge detection, motion estimation and so on. Recently, many studies on the nonlinear digital filter for impulsive noise reduction have been reported. The median filter, the representative of the nonlinear filters, is very effective for removing impulsive noise and preserving sharp edge. In some cases, burst (i.e., successive) impulsive noise is added to image, and this type of noise is difficult to remove by using the median filter. In this paper, we propose an Adaptive Weighted Median (AWM) filter with Decimation (AWM-D filter) for burst noise reduction. This method can also be applied to recover large destructive regions, such as blotch and scratch. The proposed filter is an extension of the Decimated Median (DM) filter, which is useful for reducing successive impulsive noise. The DM filter can split long impulsive noise sequences into short ones, and remove burst noise in spite of the short filter window. Nevertheless, the DM filter also has two disadvantages. One is that the signals without added noise is unnecessary filtered. The other is that the position information in the window is not considered in the weight determinative process, as common in the median type filter. To improve detail-preserving property of the DM filter, we use the noise detection procedure and the AWM-D filter, which can be tuned by Least Mean Absolute (LMA) algorithm. The AWM-D filter preserves details more precisely than the median-type filter, because the AWM-D filter has the weights that can control the filter output. Through some simulations, the higher performance of the proposed filter is shown compared with the simple median, the WM filter, and the DM filter.

  1. Adaptive RSOV filter using the FELMS algorithm for nonlinear active noise control systems

    NASA Astrophysics Data System (ADS)

    Zhao, Haiquan; Zeng, Xiangping; He, Zhengyou; Li, Tianrui

    2013-01-01

    This paper presents a recursive second-order Volterra (RSOV) filter to solve the problems of signal saturation and other nonlinear distortions that occur in nonlinear active noise control systems (NANC) used for actual applications. Since this nonlinear filter based on an infinite impulse response (IIR) filter structure can model higher than second-order and third-order nonlinearities for systems where the nonlinearities are harmonically related, the RSOV filter is more effective in NANC systems with either a linear secondary path (LSP) or a nonlinear secondary path (NSP). Simulation results clearly show that the RSOV adaptive filter using the multichannel structure filtered-error least mean square (FELMS) algorithm can further greatly reduce the computational burdens and is more suitable to eliminate nonlinear distortions in NANC systems than a SOV filter, a bilinear filter and a third-order Volterra (TOV) filter.

  2. Discrete cosine transform-based local adaptive filtering of images corrupted by nonstationary noise

    NASA Astrophysics Data System (ADS)

    Lukin, Vladimir V.; Fevralev, Dmitriy V.; Ponomarenko, Nikolay N.; Abramov, Sergey K.; Pogrebnyak, Oleksiy; Egiazarian, Karen O.; Astola, Jaakko T.

    2010-04-01

    In many image-processing applications, observed images are contaminated by a nonstationary noise and no a priori information on noise dependence on local mean or about local properties of noise statistics is available. In order to remove such a noise, a locally adaptive filter has to be applied. We study a locally adaptive filter based on evaluation of image local activity in a ``blind'' manner and on discrete cosine transform computed in overlapping blocks. Two mechanisms of local adaptation are proposed and applied. The first mechanism takes into account local estimates of noise standard deviation while the second one exploits discrimination of homogeneous and heterogeneous image regions by adaptive threshold setting. The designed filter performance is tested for simulated data as well as for real-life remote-sensing and maritime radar images. Recommendations concerning filter parameter setting are provided. An area of applicability of the proposed filter is defined.

  3. Geometric-Algebra LMS Adaptive Filter and Its Application to Rotation Estimation

    NASA Astrophysics Data System (ADS)

    Lopes, Wilder B.; Al-Nuaimi, Anas; Lopes, Cassio G.

    2016-06-01

    This paper exploits Geometric (Clifford) Algebra (GA) theory in order to devise and introduce a new adaptive filtering strategy. From a least-squares cost function, the gradient is calculated following results from Geometric Calculus (GC), the extension of GA to handle differential and integral calculus. The novel GA least-mean-squares (GA-LMS) adaptive filter, which inherits properties from standard adaptive filters and from GA, is developed to recursively estimate a rotor (multivector), a hypercomplex quantity able to describe rotations in any dimension. The adaptive filter (AF) performance is assessed via a 3D point-clouds registration problem, which contains a rotation estimation step. Calculating the AF computational complexity suggests that it can contribute to reduce the cost of a full-blown 3D registration algorithm, especially when the number of points to be processed grows. Moreover, the employed GA/GC framework allows for easily applying the resulting filter to estimating rotors in higher dimensions.

  4. Adaptation of a Filter Assembly to Assess Microbial Bioburden of Pressurant Within a Propulsion System

    NASA Technical Reports Server (NTRS)

    Benardini, James N.; Koukol, Robert C.; Schubert, Wayne W.; Morales, Fabian; Klatte, Marlin F.

    2012-01-01

    A report describes an adaptation of a filter assembly to enable it to be used to filter out microorganisms from a propulsion system. The filter assembly has previously been used for particulates greater than 2 micrometers. Projects that utilize large volumes of nonmetallic materials of planetary protection concern pose a challenge to their bioburden budget, as a conservative specification value of 30 spores per cubic centimeter is typically used. Helium was collected utilizing an adapted filtration approach employing an existing Millipore filter assembly apparatus used by the propulsion team for particulate analysis. The filter holder on the assembly has a 47-mm diameter, and typically a 1.2-5 micrometer pore-size filter is used for particulate analysis making it compatible with commercially available sterilization filters (0.22 micrometers) that are necessary for biological sampling. This adaptation to an existing technology provides a proof-of-concept and a demonstration of successful use in a ground equipment system. This adaptation has demonstrated that the Millipore filter assembly can be utilized to filter out microorganisms from a propulsion system, whereas in previous uses the filter assembly was utilized for particulates greater than 2 micrometers.

  5. Adaptive mean filtering for noise reduction in CT polymer gel dosimetry

    SciTech Connect

    Hilts, Michelle; Jirasek, Andrew

    2008-01-15

    X-ray computed tomography (CT) as a method of extracting 3D dose information from irradiated polymer gel dosimeters is showing potential as a practical means to implement gel dosimetry in a radiation therapy clinic. However, the response of CT contrast to dose is weak and noise reduction is critical in order to achieve adequate dose resolutions with this method. Phantom design and CT imaging technique have both been shown to decrease image noise. In addition, image postprocessing using noise reduction filtering techniques have been proposed. This work evaluates in detail the use of the adaptive mean filter for reducing noise in CT gel dosimetry. Filter performance is systematically tested using both synthetic patterns mimicking a range of clinical dose distribution features as well as actual clinical dose distributions. Both low and high signal-to-noise ratio (SNR) situations are examined. For all cases, the effects of filter kernel size and the number of iterations are investigated. Results indicate that adaptive mean filtering is a highly effective tool for noise reduction CT gel dosimetry. The optimum filtering strategy depends on characteristics of the dose distributions and image noise level. For low noise images (SNR {approx}20), the filtered results are excellent and use of adaptive mean filtering is recommended as a standard processing tool. For high noise images (SNR {approx}5) adaptive mean filtering can also produce excellent results, but filtering must be approached with more caution as spatial and dose distortions of the original dose distribution can occur.

  6. Waveform design for cognitive radar: target detection in heavy clutter

    NASA Astrophysics Data System (ADS)

    Kirk, Benjamin H.; Narayanan, Ram M.; Martone, Anthony F.; Sherbondy, Kelly D.

    2016-05-01

    In many applications of radar systems, detection of targets in environments with heavy clutter and interference can be difficult. It is desired that a radar system should detect targets at a further range as well as be able to detect these targets with very few false positive or negative readings. In a cognitive radar system, there are ways that these negative effects can be mitigated and target detection can be significantly improved. An important metric to focus on for increasing target detectability is the signal-to-clutter ratio (SCR). Cognitive radar offers solutions to issues such as this with the use of a priori knowledge of targets and environments as well as real time adaptations. A feature of cognitive radar that is of interest is the ability to adapt and optimize transmitted waveforms to a given situation. A database is used to hold a priori and dynamic knowledge of the operational environment and targets to be detected, such as clutter characteristics and target radar cross-section (RCS) estimations. Assuming this knowledge is available or can be estimated in real-time, the transmitted waveform can be tailored using methods such as transmission of a spectrum corresponding to the target-to-clutter ratio (TCR). These methods provide significant improvement in distinguishing targets from clutter or interference.

  7. Heterogeneous Multiple Sensors Joint Tracking of Maneuvering Target in Clutter

    PubMed Central

    Wu, Panlong; Li, Xingxiu; Kong, Jianshou; Liu, Jiale

    2015-01-01

    To solve the problem of tracking maneuvering airborne targets in the presence of clutter, an improved interacting multiple model probability data association algorithm (IMMPDA-MDCM) using radar/IR sensors fusion is proposed. Under the architecture of the proposed algorithm, the radar/IR centralized fusion tracking scheme of IMMPDA-MDCM is designed to guarantee the observability of the target state. The interacting multiple model (IMM) deals with the model switching. The modified debiased converted measurement (MDCM) filter accounts for non-linearity in the dynamic system models, and reduces the effect of measurement noise on the covariance effectively. The probability data association (PDA) handles data association and measurement uncertainties in clutter. The simulation results show that the proposed algorithm can improve the tracking precision for maneuvering target in clutters, and has higher tracking precision than the traditional IMMPDA based on EKF and IMMPDA based on DCM algorithm. PMID:26193279

  8. Analysis of dynamic deformation processes with adaptive KALMAN-filtering

    NASA Astrophysics Data System (ADS)

    Eichhorn, Andreas

    2007-05-01

    In this paper the approach of a full system analysis is shown quantifying a dynamic structural ("white-box"-) model for the calculation of thermal deformations of bar-shaped machine elements. The task was motivated from mechanical engineering searching new methods for the precise prediction and computational compensation of thermal influences in the heating and cooling phases of machine tools (i.e. robot arms, etc.). The quantification of thermal deformations under variable dynamic loads requires the modelling of the non-stationary spatial temperature distribution inside the object. Based upon FOURIERS law of heat flow the high-grade non-linear temperature gradient is represented by a system of partial differential equations within the framework of a dynamic Finite Element topology. It is shown that adaptive KALMAN-filtering is suitable to quantify relevant disturbance influences and to identify thermal parameters (i.e. thermal diffusivity) with a deviation of only 0,2%. As result an identified (and verified) parametric model for the realistic prediction respectively simulation of dynamic temperature processes is presented. Classifying the thermal bend as the main deformation quantity of bar-shaped machine tools, the temperature model is extended to a temperature deformation model. In lab tests thermal load steps are applied to an aluminum column. Independent control measurements show that the identified model can be used to predict the columns bend with a mean deviation (r.m.s.) smaller than 10 mgon. These results show that the deformation model is a precise predictor and suitable for realistic simulations of thermal deformations. Experiments with modified heat sources will be necessary to verify the model in further frequency spectra of dynamic thermal loads.

  9. An adaptive Kalman filter approach for cardiorespiratory signal extraction and fusion of non-contacting sensors

    PubMed Central

    2014-01-01

    Background Extracting cardiorespiratory signals from non-invasive and non-contacting sensor arrangements, i.e. magnetic induction sensors, is a challenging task. The respiratory and cardiac signals are mixed on top of a large and time-varying offset and are likely to be disturbed by measurement noise. Basic filtering techniques fail to extract relevant information for monitoring purposes. Methods We present a real-time filtering system based on an adaptive Kalman filter approach that separates signal offsets, respiratory and heart signals from three different sensor channels. It continuously estimates respiration and heart rates, which are fed back into the system model to enhance performance. Sensor and system noise covariance matrices are automatically adapted to the aimed application, thus improving the signal separation capabilities. We apply the filtering to two different subjects with different heart rates and sensor properties and compare the results to the non-adaptive version of the same Kalman filter. Also, the performance, depending on the initialization of the filters, is analyzed using three different configurations ranging from best to worst case. Results Extracted data are compared with reference heart rates derived from a standard pulse-photoplethysmographic sensor and respiration rates from a flowmeter. In the worst case for one of the subjects the adaptive filter obtains mean errors (standard deviations) of -0.2 min −1 (0.3 min −1) and -0.7 bpm (1.7 bpm) (compared to -0.2 min −1 (0.4 min −1) and 42.0 bpm (6.1 bpm) for the non-adaptive filter) for respiration and heart rate, respectively. In bad conditions the heart rate is only correctly measurable when the Kalman matrices are adapted to the target sensor signals. Also, the reduced mean error between the extracted offset and the raw sensor signal shows that adapting the Kalman filter continuously improves the ability to separate the desired signals from the raw sensor data. The average

  10. Reduction of background clutter in structured lighting systems

    DOEpatents

    Carlson, Jeffrey J.; Giles, Michael K.; Padilla, Denise D.; Davidson, Jr., Patrick A.; Novick, David K.; Wilson, Christopher W.

    2010-06-22

    Methods for segmenting the reflected light of an illumination source having a characteristic wavelength from background illumination (i.e. clutter) in structured lighting systems can comprise pulsing the light source used to illuminate a scene, pulsing the light source synchronously with the opening of a shutter in an imaging device, estimating the contribution of background clutter by interpolation of images of the scene collected at multiple spectral bands not including the characteristic wavelength and subtracting the estimated background contribution from an image of the scene comprising the wavelength of the light source and, placing a polarizing filter between the imaging device and the scene, where the illumination source can be polarized in the same orientation as the polarizing filter. Apparatus for segmenting the light of an illumination source from background illumination can comprise an illuminator, an image receiver for receiving images of multiple spectral bands, a processor for calculations and interpolations, and a polarizing filter.

  11. An Efficient Adaptive Weighted Switching Median Filter for Removing High Density Impulse Noise

    NASA Astrophysics Data System (ADS)

    Nair, Madhu S.; Ameera Mol, P. M.

    2014-09-01

    Restoration of images corrupted by impulse noise is a very active research area in image processing. In this paper, an Efficient Adaptive Weighted Switching Median filter for restoration of images that are corrupted by high density impulse noise is proposed. The filtering is performed as a two phase process—a detection phase followed by a filtering phase. In the proposed method, noise detection is done by HEIND algorithm proposed by Duan et al. The filtering algorithm is then applied to the pixels which are detected as noisy by the detection algorithm. All uncorrupted pixels in the image are left unchanged. The filtering window size is chosen adaptively depending on the local noise distribution around each corrupted pixels. Noisy pixels are replaced by a weighted median value of uncorrupted pixels in the filtering window. The weight value assigned to each uncorrupted pixels depends on its closeness to the central pixel.

  12. Adaptive multidirectional frequency domain filter for noise removal in wrapped phase patterns.

    PubMed

    Liu, Guixiong; Chen, Dongxue; Peng, Yanhua; Zeng, Qilin

    2016-08-01

    In order to avoid the detrimental effects of excessive noise in the phase fringe patterns of a laser digital interferometer over the accuracy of phase unwrapping and the successful detection of mechanical fatigue defects, an effective method of adaptive multidirectional frequency domain filtering is introduced based on the characteristics of the energy spectrum of localized wrapped phase patterns. Not only can this method automatically set the cutoff frequency, but it can also effectively filter out noise while preserving the image edge information. Compared with the sine and cosine transform filtering and the multidirectional frequency domain filtering, the experimental results demonstrate that the image filtered by our method has the fewest number of residues and is the closest to the noise-free image, compared to the two aforementioned methods, demonstrating the effectiveness of this adaptive multidirectional frequency domain filter. PMID:27505376

  13. Adaptive Filtering for Large Space Structures: A Closed-Form Solution

    NASA Technical Reports Server (NTRS)

    Rauch, H. E.; Schaechter, D. B.

    1985-01-01

    In a previous paper Schaechter proposes using an extended Kalman filter to estimate adaptively the (slowly varying) frequencies and damping ratios of a large space structure. The time varying gains for estimating the frequencies and damping ratios can be determined in closed form so it is not necessary to integrate the matrix Riccati equations. After certain approximations, the time varying adaptive gain can be written as the product of a constant matrix times a matrix derived from the components of the estimated state vector. This is an important savings of computer resources and allows the adaptive filter to be implemented with approximately the same effort as the nonadaptive filter. The success of this new approach for adaptive filtering was demonstrated using synthetic data from a two mode system.

  14. Applying well flow adapted filtering to transient pumping tests

    NASA Astrophysics Data System (ADS)

    Zech, Alraune; Attinger, Sabine

    2014-05-01

    Transient pumping tests are often used to estimate porous medium characteristics like hydraulic conductivity and storativity. The interpretation of pumping test drawdowns is based on methods which are normally developed under the assumption of homogeneous porous media. However aquifer heterogeneity strongly impacts on well flow pattern, in particular in the vicinity of the pumping well. The purpose of this work is to present a method to interpret drawdowns of transient pumping tests in heterogeneous porous media. With this method we are able to describe the effects that statistical quantities like variance and correlation length have on pumping test drawdowns. Furthermore it allows inferring on the statistical parameters of aquifer heterogeneity from drawdown data by invers estimation, which is not possible using methods for homogeneous media like Theis' solution. The method is based on a representative description of hydraulic conductivity for radial flow regimes. It is derived from a well flow adapted filtering procedure (Coarse Graining), where the heterogeneity of hydraulic conductivity is assumed to be log-normal distributed with a Gaussian correlation structure. applying the up scaled hydraulic conductivity to the groundwater flow equation results in a hydraulic head which depends on the statistical parameters of the porous medium. It describes the drawdown of a transient pumping test in heterogeneous media. We used an ensemble of transient pumping test simulations to verify the up scaled drawdown solution. We generated transient pumping tests in heterogeneous media for various values of the statistical parameters variance and correlation length and evaluated their impact on the drawdown behavior as well as on the temporal evolution. We further examined the impact of several aspects like the location of an observation well or the local conductivity at the pumping well on the drawdown behavior. This work can be understood as an expansion of the work of Zech et

  15. Microwave Photonic Filters for Interference Cancellation and Adaptive Beamforming

    NASA Astrophysics Data System (ADS)

    Chang, John

    Wireless communication has experienced an explosion of growth, especially in the past half- decade, due to the ubiquity of wireless devices, such as tablets, WiFi-enabled devices, and especially smartphones. Proliferation of smartphones with powerful processors and graphic chips have given an increasing amount of people the ability to access anything from anywhere. Unfortunately, this ease of access has greatly increased mobile wireless bandwidth and have begun to stress carrier networks and spectra. Wireless interference cancellation will play a big role alongside the popularity of wire- less communication. In this thesis, we will investigate optical signal processing methods for wireless interference cancellation methods. Optics provide the perfect backdrop for interference cancellation. Mobile wireless data is already aggregated and transported through fiber backhaul networks in practice. By sandwiching the signal processing stage between the receiver and the fiber backhaul, processing can easily be done locally in one location. Further, optics offers the advantages of being instantaneously broadband and size, weight, and power (SWAP). We are primarily concerned with two methods for interference cancellation, based on microwave photonic filters, in this thesis. The first application is for a co-channel situation, in which a transmitter and receiver are co-located and transmitting at the same frequency. A novel analog optical technique extended for multipath interference cancellation of broadband signals is proposed and experimentally demonstrated in this thesis. The proposed architecture was able to achieve a maximum of 40 dB of cancellation over 200 MHz and 50 dB of cancellation over 10 MHz. The broadband nature of the cancellation, along with its depth, demonstrates both the precision of the optical components and the validity of the architecture. Next, we are interested in a scenario with dynamically changing interference, which requires an adaptive photonic

  16. Adaptive box filters for removal of random noise from digital images

    USGS Publications Warehouse

    Eliason, E.M.; McEwen, A.S.

    1990-01-01

    We have developed adaptive box-filtering algorithms to (1) remove random bit errors (pixel values with no relation to the image scene) and (2) smooth noisy data (pixels related to the image scene but with an additive or multiplicative component of noise). For both procedures, we use the standard deviation (??) of those pixels within a local box surrounding each pixel, hence they are adaptive filters. This technique effectively reduces speckle in radar images without eliminating fine details. -from Authors

  17. Object tracking with adaptive HOG detector and adaptive Rao-Blackwellised particle filter

    NASA Astrophysics Data System (ADS)

    Rosa, Stefano; Paleari, Marco; Ariano, Paolo; Bona, Basilio

    2012-01-01

    Scenarios for a manned mission to the Moon or Mars call for astronaut teams to be accompanied by semiautonomous robots. A prerequisite for human-robot interaction is the capability of successfully tracking humans and objects in the environment. In this paper we present a system for real-time visual object tracking in 2D images for mobile robotic systems. The proposed algorithm is able to specialize to individual objects and to adapt to substantial changes in illumination and object appearance during tracking. The algorithm is composed by two main blocks: a detector based on Histogram of Oriented Gradient (HOG) descriptors and linear Support Vector Machines (SVM), and a tracker which is implemented by an adaptive Rao-Blackwellised particle filter (RBPF). The SVM is re-trained online on new samples taken from previous predicted positions. We use the effective sample size to decide when the classifier needs to be re-trained. Position hypotheses for the tracked object are the result of a clustering procedure applied on the set of particles. The algorithm has been tested on challenging video sequences presenting strong changes in object appearance, illumination, and occlusion. Experimental tests show that the presented method is able to achieve near real-time performances with a precision of about 7 pixels on standard video sequences of dimensions 320 × 240.

  18. Improving the response of accelerometers for automotive applications by using LMS adaptive filters: Part II.

    PubMed

    Hernandez, Wilmar; de Vicente, Jesús; Sergiyenko, Oleg Y; Fernández, Eduardo

    2010-01-01

    In this paper, the fast least-mean-squares (LMS) algorithm was used to both eliminate noise corrupting the important information coming from a piezoresisitive accelerometer for automotive applications, and improve the convergence rate of the filtering process based on the conventional LMS algorithm. The response of the accelerometer under test was corrupted by process and measurement noise, and the signal processing stage was carried out by using both conventional filtering, which was already shown in a previous paper, and optimal adaptive filtering. The adaptive filtering process relied on the LMS adaptive filtering family, which has shown to have very good convergence and robustness properties, and here a comparative analysis between the results of the application of the conventional LMS algorithm and the fast LMS algorithm to solve a real-life filtering problem was carried out. In short, in this paper the piezoresistive accelerometer was tested for a multi-frequency acceleration excitation. Due to the kind of test conducted in this paper, the use of conventional filtering was discarded and the choice of one adaptive filter over the other was based on the signal-to-noise ratio improvement and the convergence rate. PMID:22315579

  19. Adaptive Spatial Filtering with Principal Component Analysis for Biomedical Photoacoustic Imaging

    NASA Astrophysics Data System (ADS)

    Nagaoka, Ryo; Yamazaki, Rena; Saijo, Yoshifumi

    Photoacoustic (PA) signal is very sensitive to noise generated by peripheral equipment such as power supply, stepping motor or semiconductor laser. Band-pass filter is not effective because the frequency bandwidth of the PA signal also covers the noise frequency. The objective of the present study is to reduce the noise by using an adaptive spatial filter with principal component analysis (PCA).

  20. Adaptive high temperature superconducting filters for interference rejection

    SciTech Connect

    Raihn, K.F.; Fenzi, N.O.; Hey-Shipton, G.L.; Saito, E.R.; Loung, P.V.; Aidnik, D.L.

    1996-07-01

    An optically switched high temperature superconducting (HTS) band-reject filter bank is presented. Fast low loss switching of high quality (Q) factor HTS filter elements enables digital selection of arbitrary pass-bands and stop-bands. Patterned pieces of GaAs and silicon are used in the manufacture of the photosensitive switches. Fiber optic cabling is used to transfer the optical energy from an LED to the switch. The fiber optic cable minimizes the thermal loading of the filter package and de-couples the switch`s power source from the RF circuit. This paper will discuss the development of a computer-controlled HTS bank of optically switchable, narrow band, high Q bandstop filters which incorporates a cryocooler to maintain the 77 K operating temperature of the HTS microwave circuit.

  1. Performance evaluation of correlation filters for target tracking

    NASA Astrophysics Data System (ADS)

    Gaxiola, Leopoldo N.; Diaz-Ramirez, Victor H.; Tapia, Juan J.; García-Martínez, Pascuala; Cuevas, Andres

    2015-09-01

    A performance evaluation of several state-of-the-art correlation filters within the context of target tracking is presented. The filters are tested using an introduced algorithm that is adapted online using information of current and past scene frames of the scene. The algorithm achieves a high-rate operation by focusing signal processing on a small fragment of the scene in each frame. The correlation filters are tested using several video test sequences that contain geometric modifications of the target, partial occlusions and clutter. The performance of the tested filters is characterized in terms of detection efficiency, tracking accuracy, and computational complexity using objective metrics.

  2. Adaptive iterated function systems filter for images highly corrupted with fixed - Value impulse noise

    NASA Astrophysics Data System (ADS)

    Shanmugavadivu, P.; Eliahim Jeevaraj, P. S.

    2014-06-01

    The Adaptive Iterated Functions Systems (AIFS) Filter presented in this paper has an outstanding potential to attenuate the fixed-value impulse noise in images. This filter has two distinct phases namely noise detection and noise correction which uses Measure of Statistics and Iterated Function Systems (IFS) respectively. The performance of AIFS filter is assessed by three metrics namely, Peak Signal-to-Noise Ratio (PSNR), Mean Structural Similarity Index Matrix (MSSIM) and Human Visual Perception (HVP). The quantitative measures PSNR and MSSIM endorse the merit of this filter in terms of degree of noise suppression and details/edge preservation respectively, in comparison with the high performing filters reported in the recent literature. The qualitative measure HVP confirms the noise suppression ability of the devised filter. This computationally simple noise filter broadly finds application wherein the images are highly degraded by fixed-value impulse noise.

  3. Predicting clutter during anomalous propagation conditions

    NASA Astrophysics Data System (ADS)

    Lee, Susan C.; Maurer, Donald E.; Musser, Keith L.

    1988-06-01

    Excessive clutter caused by anomalous propagation conditions severely degrades radar performance in many regions of the world. This article describes methods that can be used to predict anomalous clutter amplitude for site-specific radar parameters, terrain features, and atmospheric conditions and to predict the effects of radar Doppler processing on evaporation-ducted sea clutter.

  4. Stuttering, Cluttering, and Phonological Complexity: Case Studies

    ERIC Educational Resources Information Center

    LaSalle, Lisa R.; Wolk, Lesley

    2011-01-01

    The phonological complexity of dysfluencies in those who clutter and/or stutter may help us better understand phonetic factors in these two types of fluency disorders. In this preliminary investigation, cases were three 14-year-old males, diagnosed as a Stutterer, a Clutterer, and a Stutterer-Clutterer. Spontaneous speech samples were transcribed,…

  5. Adaptive filtering of radar images for autofocus applications

    NASA Technical Reports Server (NTRS)

    Stiles, J. A.; Frost, V. S.; Gardner, J. S.; Eland, D. R.; Shanmugam, K. S.; Holtzman, J. C.

    1981-01-01

    Autofocus techniques are being designed at the Jet Propulsion Laboratory to automatically choose the filter parameters (i.e., the focus) for the digital synthetic aperture radar correlator; currently, processing relies upon interaction with a human operator who uses his subjective assessment of the quality of the processed SAR data. Algorithms were devised applying image cross-correlation to aid in the choice of filter parameters, but this method also has its drawbacks in that the cross-correlation result may not be readily interpretable. Enhanced performance of the cross-correlation techniques of JPL was hypothesized given that the images to be cross-correlated were first filtered to improve the signal-to-noise ratio for the pair of scenes. The results of experiments are described and images are shown.

  6. Learning Motivation and Adaptive Video Caption Filtering for EFL Learners Using Handheld Devices

    ERIC Educational Resources Information Center

    Hsu, Ching-Kun

    2015-01-01

    The aim of this study was to provide adaptive assistance to improve the listening comprehension of eleventh grade students. This study developed a video-based language learning system for handheld devices, using three levels of caption filtering adapted to student needs. Elementary level captioning excluded 220 English sight words (see Section 1…

  7. Low-Complexity Lossless Compression of Hyperspectral Imagery Via Adaptive Filtering

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew A.

    2005-01-01

    A low-complexity, adaptive predictive technique for lossless compression of hyperspectral data is presented. The technique relies on the sign algorithm from the repertoire of adaptive filtering. The compression effectiveness obtained with the technique is competitive with that of the best of previously described techniques with similar complexity.

  8. Low-Complexity Lossless Compression of Hyperspectral Imagery via Adaptive Filtering

    NASA Technical Reports Server (NTRS)

    Klimesh, M.

    2005-01-01

    A low-complexity, adaptive predictive technique for lossless compression of hyperspectral data is presented. The technique relies on the sign algorithm from the repertoire of adaptive filtering. The compression effectiveness obtained with the technique is competitive with that of the best of previously described techniques with similar complexity.

  9. Block-adaptive filtering and its application to seismic-event detection

    SciTech Connect

    Clark, G.A.

    1981-04-01

    Block digital filtering involves the calculation of a block or finite set of filter output samples from a block of input samples. The motivation for block processing arises from computational advantages of the technique. Block filters take good advantage of parallel processing architectures, which are becoming more and more attractive with the advent of very large scale integrated (VLSI) circuits. This thesis extends the block technique to Wiener and adaptive filters, both of which are statistical filters. The key ingredient to this extension turns out to be the definition of a new performance index, block mean square error (BMSE), which combines the well known sum square error (SSE) and mean square error (MSE). A block adaptive filtering procedure is derived in which the filter coefficients are adjusted once per each output block in accordance with a generalized block least mean-square (BLMS) algorithm. Convergence properties of the BLMS algorithm are studied, including conditions for guaranteed convergence, convergence speed, and convergence accuracy. Simulation examples are given for clarity. Convergence properties of the BLMS and LMS algorithms are analyzed and compared. They are shown to be analogous, and under the proper circumstances, equivalent. The block adaptive filter was applied to the problem of detecting small seismic events in microseismic background noise. The predictor outperformed the world-wide standardized seismograph network (WWSSN) seismometers in improving signal-to-noise ratio (SNR).

  10. Theory and experimental study on low-light-level images by adaptive mode filter

    NASA Astrophysics Data System (ADS)

    Bai, Lianfa; Zhang, Baomin; Liu, Yunfen; Chen, Qian

    1996-09-01

    Real-time low light level (LLL) image processing technology is the important developmental subject in the area of LLL night vision. But there is an essential distinction between the LLL TV image and ordinary TV image, so the conventional digital image processing technique aren't suitable for LLL image. In this paper, the noise theoretical model of LLL imaging system is described and the LLL image processing system is set up. With regard to the characteristics of LLL image and its noise, a novel noise suppression method, adaptive mode filter, is presented. The experimental results show that the adaptive mode filter can suppress the sharp noise of LLL image effectively, and as for the protection of the image edge, the property of adaptive mode filter is better that of median filter. Finally, the processing results and the conclusions are given.

  11. Real-time 3D adaptive filtering for portable imaging systems

    NASA Astrophysics Data System (ADS)

    Bockenbach, Olivier; Ali, Murtaza; Wainwright, Ian; Nadeski, Mark

    2015-03-01

    Portable imaging devices have proven valuable for emergency medical services both in the field and hospital environments and are becoming more prevalent in clinical settings where the use of larger imaging machines is impractical. 3D adaptive filtering is one of the most advanced techniques aimed at noise reduction and feature enhancement, but is computationally very demanding and hence often not able to run with sufficient performance on a portable platform. In recent years, advanced multicore DSPs have been introduced that attain high processing performance while maintaining low levels of power dissipation. These processors enable the implementation of complex algorithms like 3D adaptive filtering, improving the image quality of portable medical imaging devices. In this study, the performance of a 3D adaptive filtering algorithm on a digital signal processor (DSP) is investigated. The performance is assessed by filtering a volume of size 512x256x128 voxels sampled at a pace of 10 MVoxels/sec.

  12. Adaptive box filters for removal of random noise from digital images

    NASA Technical Reports Server (NTRS)

    Eliason, Eric M.; Mcewen, Alfred S.

    1990-01-01

    Adaptive box-filtering algorithms to remove random bit errors and to smooth noisy data have been developed. For both procedures, the standard deviation of those pixels within a local box surrounding each pixel is used. A series of two or three filters with decreasing box sizes can be run to clean up extremely noisy images and to remove bit errors near sharp edges. The second filter, for noise smoothing, is similar to the 'sigma filter' of Lee (1983). The technique effectively reduces speckle in radar images without eliminating fine details.

  13. An Adaptive Kalman Filter using a Simple Residual Tuning Method

    NASA Technical Reports Server (NTRS)

    Harman, Richard R.

    1999-01-01

    One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.

  14. An Adaptive Kalman Filter Using a Simple Residual Tuning Method

    NASA Technical Reports Server (NTRS)

    Harman, Richard R.

    1999-01-01

    One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. A. H. Jazwinski developed a specialized version of this technique for estimation of process noise. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.

  15. New Approach for IIR Adaptive Lattice Filter Structure Using Simultaneous Perturbation Algorithm

    NASA Astrophysics Data System (ADS)

    Martinez, Jorge Ivan Medina; Nakano, Kazushi; Higuchi, Kohji

    Adaptive infinite impulse response (IIR), or recursive, filters are less attractive mainly because of the stability and the difficulties associated with their adaptive algorithms. Therefore, in this paper the adaptive IIR lattice filters are studied in order to devise algorithms that preserve the stability of the corresponding direct-form schemes. We analyze the local properties of stationary points, a transformation achieving this goal is suggested, which gives algorithms that can be efficiently implemented. Application to the Steiglitz-McBride (SM) and Simple Hyperstable Adaptive Recursive Filter (SHARF) algorithms is presented. Also a modified version of Simultaneous Perturbation Stochastic Approximation (SPSA) is presented in order to get the coefficients in a lattice form more efficiently and with a lower computational cost and complexity. The results are compared with previous lattice versions of these algorithms. These previous lattice versions may fail to preserve the stability of stationary points.

  16. Clutter depth discrimination using the wavenumber spectrum.

    PubMed

    Benjamin Reeder, D

    2014-01-01

    Clutter depth is a key parameter in mid-frequency active sonar systems to discriminate between sources of clutter and targets of interest. A method is needed to remotely discriminate clutter depth by information contained in the backscattered signal-without a priori knowledge of that depth. Presented here is an efficient approach for clutter depth estimation using the structure in the wavenumber spectrum. Based on numerical simulations for a simple test case in a shallow water waveguide, this technique demonstrates the potential capability to discriminate between a clutter source in the water column vs one on the seabed. PMID:24437850

  17. Prototype adaptive bow-tie filter based on spatial exposure time modulation

    NASA Astrophysics Data System (ADS)

    Badal, Andreu

    2016-03-01

    In recent years, there has been an increased interest in the development of dynamic bow-tie filters that are able to provide patient-specific x-ray beam shaping. We introduce the first physical prototype of a new adaptive bow-tie filter design based on the concept of "spatial exposure time modulation." While most existing bow-tie filters operate by attenuating the radiation beam differently in different locations using partially attenuating objects, the presented filter shapes the radiation field using two movable completely radio-opaque collimators. The aperture and speed of the collimators is modulated in synchrony with the x-ray exposure to selectively block the radiation emitted to different parts of the object. This mode of operation does not allow the reproduction of every possible attenuation profile, but it can reproduce the profile of any object with an attenuation profile monotonically decreasing from the center to the periphery, such as an object with an elliptical cross section. Therefore, the new adaptive filter provides the same advantages as the currently existing static bow-tie filters, which are typically designed to work for a pre-determined cylindrical object at a fixed distance from the source, and provides the additional capability to adapt its performance at image acquisition time to better compensate for the actual diameter and location of the imaged object. A detailed description of the prototype filter, the implemented control methods, and a preliminary experimental validation of its performance are presented.

  18. An adaptive filter bank for motor imagery based Brain Computer Interface.

    PubMed

    Thomas, Kavitha P; Guan, Cuntai; Tong, Lau Chiew; Prasad, Vinod A

    2008-01-01

    Brain Computer Interface (BCI) provides an alternative communication and control method for people with severe motor disabilities. Motor imagery patterns are widely used in Electroencephalogram (EEG) based BCIs. These motor imagery activities are associated with variation in alpha and beta band power of EEG signals called Event Related Desynchronization/synchronization (ERD/ERS). The dominant frequency bands are subject-specific and therefore performance of motor imagery based BCIs are sensitive to both temporal filtering and spatial filtering. As the optimum filter is strongly subject-dependent, we propose a method that selects the subject-specific discriminative frequency components using time-frequency plots of Fisher ratio of two-class motor imagery patterns. We also propose a low complexity adaptive Finite Impulse Response (FIR) filter bank system based on coefficient decimation technique which can realize the subject-specific bandpass filters adaptively depending on the information of Fisher ratio map. Features are extracted only from the selected frequency components. The proposed adaptive filter bank based system offers average classification accuracy of about 90%, which is slightly better than the existing fixed filter bank system. PMID:19162856

  19. Stent enhancement in digital x-ray fluoroscopy using an adaptive feature enhancement filter

    NASA Astrophysics Data System (ADS)

    Jiang, Yuhao; Zachary, Josey

    2016-03-01

    Fluoroscopic images belong to the classes of low contrast and high noise. Simply lowering radiation dose will render the images unreadable. Feature enhancement filters can reduce patient dose by acquiring images at low dose settings and then digitally restoring them to the original quality. In this study, a stent contrast enhancement filter is developed to selectively improve the contrast of stent contour without dramatically boosting the image noise including quantum noise and clinical background noise. Gabor directional filter banks are implemented to detect the edges and orientations of the stent. A high orientation resolution of 9° is used. To optimize the use of the information obtained from Gabor filters, a computerized Monte Carlo simulation followed by ROC study is used to find the best nonlinear operator. The next stage of filtering process is to extract symmetrical parts in the stent. The global and local symmetry measures are used. The information gathered from previous two filter stages are used to generate a stent contour map. The contour map is then scaled and added back to the original image to get a contrast enhanced stent image. We also apply a spatio-temporal channelized Hotelling observer model and other numerical measures to characterize the response of the filters and contour map to optimize the selections of parameters for image quality. The results are compared to those filtered by an adaptive unsharp masking filter previously developed. It is shown that stent enhancement filter can effectively improve the stent detection and differentiation in the interventional fluoroscopy.

  20. Independent motion detection with a rival penalized adaptive particle filter

    NASA Astrophysics Data System (ADS)

    Becker, Stefan; Hübner, Wolfgang; Arens, Michael

    2014-10-01

    Aggregation of pixel based motion detection into regions of interest, which include views of single moving objects in a scene is an essential pre-processing step in many vision systems. Motion events of this type provide significant information about the object type or build the basis for action recognition. Further, motion is an essential saliency measure, which is able to effectively support high level image analysis. When applied to static cameras, background subtraction methods achieve good results. On the other hand, motion aggregation on freely moving cameras is still a widely unsolved problem. The image flow, measured on a freely moving camera is the result from two major motion types. First the ego-motion of the camera and second object motion, that is independent from the camera motion. When capturing a scene with a camera these two motion types are adverse blended together. In this paper, we propose an approach to detect multiple moving objects from a mobile monocular camera system in an outdoor environment. The overall processing pipeline consists of a fast ego-motion compensation algorithm in the preprocessing stage. Real-time performance is achieved by using a sparse optical flow algorithm as an initial processing stage and a densely applied probabilistic filter in the post-processing stage. Thereby, we follow the idea proposed by Jung and Sukhatme. Normalized intensity differences originating from a sequence of ego-motion compensated difference images represent the probability of moving objects. Noise and registration artefacts are filtered out, using a Bayesian formulation. The resulting a posteriori distribution is located on image regions, showing strong amplitudes in the difference image which are in accordance with the motion prediction. In order to effectively estimate the a posteriori distribution, a particle filter is used. In addition to the fast ego-motion compensation, the main contribution of this paper is the design of the probabilistic

  1. Attitude determination and calibration using a recursive maximum likelihood-based adaptive Kalman filter

    NASA Technical Reports Server (NTRS)

    Kelly, D. A.; Fermelia, A.; Lee, G. K. F.

    1990-01-01

    An adaptive Kalman filter design that utilizes recursive maximum likelihood parameter identification is discussed. At the center of this design is the Kalman filter itself, which has the responsibility for attitude determination. At the same time, the identification algorithm is continually identifying the system parameters. The approach is applicable to nonlinear, as well as linear systems. This adaptive Kalman filter design has much potential for real time implementation, especially considering the fast clock speeds, cache memory and internal RAM available today. The recursive maximum likelihood algorithm is discussed in detail, with special attention directed towards its unique matrix formulation. The procedure for using the algorithm is described along with comments on how this algorithm interacts with the Kalman filter.

  2. Adaptive filtering and prediction of the Southern Oscillation index

    NASA Astrophysics Data System (ADS)

    Keppenne, Christian L.; Ghil, Michael

    1992-12-01

    Singular spectrum analysis (SSA), a variant of principal component analysis, is applied to a time series of the Southern Oscillation index (SOI). The analysis filters out variability unrelated to the Southern Oscillation and separates the high-frequency, 2- to 3-year variability, including the quasi-biennial oscillation, from the lower-frequency 4- to 6-year El Niño cycle. The maximum entropy method (MEM) is applied to forecasting the prefiltered SOI. Prediction based on MEM-associated autoregressive models has useful skill for 30-36 months. A 1993-1994 La Niña event is predicted based on data through February 1992.

  3. Adaptive filtering and prediction of the Southern Oscillation index

    NASA Technical Reports Server (NTRS)

    Keppenne, Christian L.; Ghil, Michael

    1992-01-01

    Singular spectrum analysis (SSA), a variant of principal component analysis, is applied to a time series of the Southern Oscillation index (SOI). The analysis filters out variability unrelated to the Southern Oscillation and separates the high-frequency, 2- to 3-year variability, including the quasi-biennial oscillation, from the lower-frequency 4- to 6-year El Nino cycle. The maximum entropy method (MEM) is applied to forecasting the prefiltered SOI. Prediction based on MEM-associated autoregresive models has useful skill for 30-36 months. A 1993-1994 La Nina event is predicted based on data through February 1992.

  4. Adaptive filtering and prediction of the Southern Oscillation index

    SciTech Connect

    Keppenne, C.L. California Inst. of Technology, Pasadena ); Ghil, M. )

    1992-12-20

    Singular spectrum analysis (SSA), a variant of principal component analysis, is applied to a time series of the Southern Oscillation index (SOI). The analysis filters out variability unrelated to the Southern Oscillation and separates the high-frequency, 2- to 3-year variability, including the quasi-biennial oscillation, from the lower-frequency 4- to 6-year El Nino cycle. The maximum entropy method (MEM) is applied to forecasting the prefiltered SOI. Prediction based on MEM-associated autoregressive models has useful skill for 30-36 months. A 1993-1994 La Nina event is predicted based on data through February 1992. 52 refs., 4 figs.

  5. Predicting Hyper-Chaotic Time Series Using Adaptive Higher-Order Nonlinear Filter

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Shu; Xiao, Xian-Ci

    2001-03-01

    A newly proposed method, i.e. the adaptive higher-order nonlinear finite impulse response (HONFIR) filter based on higher-order sparse Volterra series expansions, is introduced to predict hyper-chaotic time series. The effectiveness of using the adaptive HONFIR filter for making one-step and multi-step predictions is tested based on very few data points by computer-generated hyper-chaotic time series including the Mackey-Glass equation and four-dimensional nonlinear dynamical system. A comparison is made with some neural networks for predicting the Mackey-Glass hyper-chaotic time series. Numerical simulation results show that the adaptive HONFIR filter proposed here is a very powerful tool for making prediction of hyper-chaotic time series.

  6. Adaptive filters for suppressing irregular hostile jamming in direct sequence spread-spectrum system

    NASA Astrophysics Data System (ADS)

    Lee, Jung Hoon; Lee, Choong Woong

    A stable and high-performance adaptive filter for suppressing irregular hostile jamming in direct-sequence (DS) spread-spectrum systems is designed. A gradient-search fast converging algorithm (GFC) is suggested. For the case of a sudden parameter jump or incoming of an interference, the transient behaviors of the receiver using a GFC adaptive filter are investigated and compared with those of the receiver using a least-mean-square (LMS) or a lattice adaptive filter. The results are shown in the response graphs of the simulated receiver during the short period when the characteristic of a jammer is suddenly changed. Steady-state performances of those receivers are also evaluated in the sense of the excess mean-square error over that of an optimum receiver for suppressing stationary interferences.

  7. A study of infrared spectroscopy de-noising based on LMS adaptive filter

    NASA Astrophysics Data System (ADS)

    Mo, Jia-qing; Lv, Xiao-yi; Yu, Xiao

    2015-12-01

    Infrared spectroscopy has been widely used, but which often contains a lot of noise, so the spectral characteristic of the sample is seriously affected. Therefore the de-noising is very important in the spectrum analysis and processing. In the study of infrared spectroscopy, the least mean square (LMS) adaptive filter was applied in the field firstly. LMS adaptive filter algorithm can reserve the detail and envelope of the effective signal when the method was applied to infrared spectroscopy of breast cancer which signal-to-noise ratio (SNR) is lower than 10 dB, contrast and analysis the result with result of wavelet transform and ensemble empirical mode decomposition (EEMD). The three evaluation standards (SNR, root mean square error (RMSE) and the correlation coefficient (ρ)) fully proved de-noising advantages of LMS adaptive filter in infrared spectroscopy of breast cancer.

  8. Radar clutter via ray methods

    NASA Astrophysics Data System (ADS)

    Pappert, R. A.

    1990-05-01

    In a recent study, radar clutter results calculated via waveguide methods were compared with Tappert's backscatter results generated by using parabolic equation and Monte Carlo methods. For the geometries and environments considered, the waveguide results generally broke down for ranges less than about 8 kilometers. In this study, ray methods, along with results of first order scatter theory, are used to calculate clutter for ranges applicable to direct illumination. The latter includes those close in ranges not accessible via waveguide methods. Ray theory comparisons with Tappert's results and waveguide results are given at 9.6 gigahertzs for the standard atmosphere, and for 14 and 28 meters evaporation ducts. Results apply to wind speeds of 10, 20, 30, and 40 knots at a transmitter altitude of 25 meters.

  9. ROI extraction of chest CT images using adaptive opening filter

    NASA Astrophysics Data System (ADS)

    Yamada, Nobuhiro; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Eguchi, Kenji; Omatsu, Hironobu; Kakinuma, Ryutaro; Kaneko, Masahiro; Kusumoto, Masahiko; Nishiyama, Hiroyuki; Moriyama, Noriyuki

    2003-05-01

    We have already developed a prototype of computer-aided diagnosis (CAD) system that can automatically detect suspicious shadows from Chest CT images. But the CAD system cannot detect Ground-Grass-Attenuation perfectly. In many cases, this reason depends on the inaccurate extraction of the region of interests (ROI) that CAD system analyzes, so we need to improve it. In this paper, we propose a method of an accurate extraction of the ROI, and compare proposed method to ordinary method that have used in CAD system. Proposed Method is performed by application of the three steps. Firstly we extract lung area using threshold. Secondly we remove the slowly varying bias field using flexible Opening Filter. This Opening Filter is calculated by the combination of the ordinary opening value and the distribution which CT value and contrast follow. Finally we extract Region of Interest using fuzzy clustering. When we applied proposal method to Chest CT images, we got a good result in which ordinary method cannot achieve. In this study we used the Helical CT images that are obtained under the following measurement: 10mm beam width; 20mm/sec table speed; 120kV tube voltage; 50mA tube current; 10mm reconstruction interval.

  10. An Adaptive Filter for the Removal of Drifting Sinusoidal Noise Without a Reference.

    PubMed

    Kelly, John W; Siewiorek, Daniel P; Smailagic, Asim; Wang, Wei

    2016-01-01

    This paper presents a method for filtering sinusoidal noise with a variable bandwidth filter that is capable of tracking a sinusoid's drifting frequency. The method, which is based on the adaptive noise canceling (ANC) technique, will be referred to here as the adaptive sinusoid canceler (ASC). The ASC eliminates sinusoidal contamination by tracking its frequency and achieving a narrower bandwidth than typical notch filters. The detected frequency is used to digitally generate an internal reference instead of relying on an external one as ANC filters typically do. The filter's bandwidth adjusts to achieve faster and more accurate convergence. In this paper, the focus of the discussion and the data is physiological signals, specifically electrocorticographic (ECoG) neural data contaminated with power line noise, but the presented technique could be applicable to other recordings as well. On simulated data, the ASC was able to reliably track the noise's frequency, properly adjust its bandwidth, and outperform comparative methods including standard notch filters and an adaptive line enhancer. These results were reinforced by visual results obtained from real ECoG data. The ASC showed that it could be an effective method for increasing signal to noise ratio in the presence of drifting sinusoidal noise, which is of significant interest for biomedical applications. PMID:25474814

  11. Seasonal signal capturing in time series of up coordinates by means of adaptive filters

    NASA Astrophysics Data System (ADS)

    Yalvac, S.; Ustun, A.

    2013-12-01

    Digital filters, is a system that performs mathematical operations on a sampled or discrete time signals. Adaptive filters designed for noise canceling are capable tools of decomposing correlated parts of data sets. This kind of filters which optimize itself using Least Mean Square (LMS) algorithm is a powerful tool for understand the truth hidden into the complex data sets like time series in Geosciences. The complex data sets such as CGPS (Continuously operating reference station) station's time series can be understood better with adaptive noise canceling by means of decompose coherent (seasonal effect, tectonic plate motion) and incoherent (noise; site-specific effects) parts of data. In this study, it is aimed to model the subsidence caused by groundwater withdrawal based on the seasonal correlation between consecutive years of CGPS time series. For this purpose, two stations where located into subsidence area of 3 year time series have analyzed with adaptive noise canceling filter. According to the results, the annual movement of these two stations have strong relationship. Also, subsidence behavior are correlated with annual rainfall data. BELD station one year filtered movement KAMN station one year filtered movements

  12. Using adaptive genetic algorithms in the design of morphological filters in textural image processing

    NASA Astrophysics Data System (ADS)

    Li, Wei; Haese-Coat, Veronique; Ronsin, Joseph

    1996-03-01

    An adaptive GA scheme is adopted for the optimal morphological filter design problem. The adaptive crossover and mutation rate which make the GA avoid premature and at the same time assure convergence of the program are successfully used in optimal morphological filter design procedure. In the string coding step, each string (chromosome) is composed of a structuring element coding chain concatenated with a filter sequence coding chain. In decoding step, each string is divided into 3 chains which then are decoded respectively into one structuring element with a size inferior to 5 by 5 and two concatenating morphological filter operators. The fitness function in GA is based on the mean-square-error (MSE) criterion. In string selection step, a stochastic tournament procedure is used to replace the simple roulette wheel program in order to accelerate the convergence. The final convergence of our algorithm is reached by a two step converging strategy. In presented applications of noise removal from texture images, it is found that with the optimized morphological filter sequences, the obtained MSE values are smaller than those using corresponding non-adaptive morphological filters, and the optimized shapes and orientations of structuring elements take approximately the same shapes and orientations as those of the image textons.

  13. New cardiac MRI gating method using event-synchronous adaptive digital filter.

    PubMed

    Park, Hodong; Park, Youngcheol; Cho, Sungpil; Jang, Bongryoel; Lee, Kyoungjoung

    2009-11-01

    When imaging the heart using MRI, an artefact-free electrocardiograph (ECG) signal is not only important for monitoring the patient's heart activity but also essential for cardiac gating to reduce noise in MR images induced by moving organs. The fundamental problem in conventional ECG is the distortion induced by electromagnetic interference. Here, we propose an adaptive algorithm for the suppression of MR gradient artefacts (MRGAs) in ECG leads of a cardiac MRI gating system. We have modeled MRGAs by assuming a source of strong pulses used for dephasing the MR signal. The modeled MRGAs are rectangular pulse-like signals. We used an event-synchronous adaptive digital filter whose reference signal is synchronous to the gradient peaks of MRI. The event detection processor for the event-synchronous adaptive digital filter was implemented using the phase space method-a sort of topology mapping method-and least-squares acceleration filter. For evaluating the efficiency of the proposed method, the filter was tested using simulation and actual data. The proposed method requires a simple experimental setup that does not require extra hardware connections to obtain the reference signals of adaptive digital filter. The proposed algorithm was more effective than the multichannel approach. PMID:19644754

  14. Method and system for training dynamic nonlinear adaptive filters which have embedded memory

    NASA Technical Reports Server (NTRS)

    Rabinowitz, Matthew (Inventor)

    2002-01-01

    Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6.

  15. An Application Specific Instruction Set Processor (ASIP) for Adaptive Filters in Neural Prosthetics.

    PubMed

    Xin, Yao; Li, Will X Y; Zhang, Zhaorui; Cheung, Ray C C; Song, Dong; Berger, Theodore W

    2015-01-01

    Neural coding is an essential process for neuroprosthetic design, in which adaptive filters have been widely utilized. In a practical application, it is needed to switch between different filters, which could be based on continuous observations or point process, when the neuron models, conditions, or system requirements have changed. As candidates of coding chip for neural prostheses, low-power general purpose processors are not computationally efficient especially for large scale neural population coding. Application specific integrated circuits (ASICs) do not have flexibility to switch between different adaptive filters while the cost for design and fabrication is formidable. In this research work, we explore an application specific instruction set processor (ASIP) for adaptive filters in neural decoding activity. The proposed architecture focuses on efficient computation for the most time-consuming matrix/vector operations among commonly used adaptive filters, being able to provide both flexibility and throughput. Evaluation and implementation results are provided to demonstrate that the proposed ASIP design is area-efficient while being competitive to commercial CPUs in computational performance. PMID:26451817

  16. Enhancement and bias removal of optical coherence tomography images: An iterative approach with adaptive bilateral filtering.

    PubMed

    Sudeep, P V; Issac Niwas, S; Palanisamy, P; Rajan, Jeny; Xiaojun, Yu; Wang, Xianghong; Luo, Yuemei; Liu, Linbo

    2016-04-01

    Optical coherence tomography (OCT) has continually evolved and expanded as one of the most valuable routine tests in ophthalmology. However, noise (speckle) in the acquired images causes quality degradation of OCT images and makes it difficult to analyze the acquired images. In this paper, an iterative approach based on bilateral filtering is proposed for speckle reduction in multiframe OCT data. Gamma noise model is assumed for the observed OCT image. First, the adaptive version of the conventional bilateral filter is applied to enhance the multiframe OCT data and then the bias due to noise is reduced from each of the filtered frames. These unbiased filtered frames are then refined using an iterative approach. Finally, these refined frames are averaged to produce the denoised OCT image. Experimental results on phantom images and real OCT retinal images demonstrate the effectiveness of the proposed filter. PMID:26907572

  17. Adaptive identification and control of structural dynamics systems using recursive lattice filters

    NASA Technical Reports Server (NTRS)

    Sundararajan, N.; Montgomery, R. C.; Williams, J. P.

    1985-01-01

    A new approach for adaptive identification and control of structural dynamic systems by using least squares lattice filters thar are widely used in the signal processing area is presented. Testing procedures for interfacing the lattice filter identification methods and modal control method for stable closed loop adaptive control are presented. The methods are illustrated for a free-free beam and for a complex flexible grid, with the basic control objective being vibration suppression. The approach is validated by using both simulations and experimental facilities available at the Langley Research Center.

  18. Stent enhancement using a locally adaptive unsharp masking filter in digital x-ray fluoroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Yuhao; Ekanayake, Eranda

    2014-03-01

    Low exposure X-ray fluoroscopy is used to guide some complicate interventional procedures. Due to the inherent high levels of noise, improving the visibility of some interventional devices such as stent will greatly benefit those interventional procedures. Stent, which is made up of tiny steel wires, is also suffered from contrast dilutions of large flat panel detector pixels. A novel adaptive unsharp masking filter has been developed to improve stent contrast in real-time applications. In unsharp masking processing, the background is estimated and subtracted from the original input image to create a foreground image containing objects of interest. A background estimator is therefore critical in the unsharp masking processing. In this specific study, orientation filter kernels are used as the background estimator. To make the process simple and fast, the kernels average along a line of pixels. A high orientation resolution of 18° is used. A nonlinear operator is then used to combine the information from the images generated from convolving the original background and noise only images with orientation filters. A computerized Monte Carlo simulation followed by ROC study is used to identify the best nonlinear operator. We then apply the unsharp masking filter to the images with stents present. It is shown that the locally adaptive unsharp making filter is an effective filter for improving stent visibility in the interventional fluoroscopy. We also apply a spatio-temporal channelized human observer model to quantitatively optimize and evaluate the filter.

  19. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra

    PubMed Central

    Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin

    2015-01-01

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis. PMID:25619991

  20. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra.

    PubMed

    Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin

    2015-01-01

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis. PMID:25619991

  1. Ocean Clutter Modeling for Ship Detection

    NASA Astrophysics Data System (ADS)

    Tao, Ding; Anfinsen, Stian Normann; Brekke, Camilla

    2013-03-01

    This work addresses the problem of covariance matrix estimation for ocean clutter modeling. For ship detection based on polarimetric synthetic aperture radar (Pol-SAR) imagery and constant false alarm rate (CFAR) detectors, accurate ocean clutter modeling is essential. The covariance matrix provides all the polarimetric information of the ocean clutter and its estimate is always involved in PolSAR detection [1]. The aim of this work is to investigate and compare the behavior of different covariance matrix estimators, i.e., the sample mean, fixedpoint, and maximum likelihood estimators. An approximate maximum likelihood covariance matrix estimator is also proposed and discussed for better computational efficiency. Their performances are evaluated in terms of the Kullback-Leibler (KL) matrix distance, and computational efficiency. Various textured ocean clutter conditions are considered, ranging from high texture to the non-textured case with Gaussian clutter. Experiments are performed on simulated ocean clutter data.

  2. Adaptive error covariances estimation methods for ensemble Kalman filters

    SciTech Connect

    Zhen, Yicun; Harlim, John

    2015-08-01

    This paper presents a computationally fast algorithm for estimating, both, the system and observation noise covariances of nonlinear dynamics, that can be used in an ensemble Kalman filtering framework. The new method is a modification of Belanger's recursive method, to avoid an expensive computational cost in inverting error covariance matrices of product of innovation processes of different lags when the number of observations becomes large. When we use only product of innovation processes up to one-lag, the computational cost is indeed comparable to a recently proposed method by Berry–Sauer's. However, our method is more flexible since it allows for using information from product of innovation processes of more than one-lag. Extensive numerical comparisons between the proposed method and both the original Belanger's and Berry–Sauer's schemes are shown in various examples, ranging from low-dimensional linear and nonlinear systems of SDEs and 40-dimensional stochastically forced Lorenz-96 model. Our numerical results suggest that the proposed scheme is as accurate as the original Belanger's scheme on low-dimensional problems and has a wider range of more accurate estimates compared to Berry–Sauer's method on L-96 example.

  3. Independent component analysis for underwater lidar clutter rejection

    NASA Astrophysics Data System (ADS)

    Illig, David W.; Jemison, William D.; Mullen, Linda J.

    2016-05-01

    This work demonstrates a new statistical approach towards backscatter "clutter" rejection for continuous-wave underwater lidar systems: independent component analysis. Independent component analysis is a statistical signal processing technique which can separate a return of interest from clutter in a statistical domain. After highlighting the statistical processing concepts, we demonstrate that underwater lidar target and backscatter returns have very different distributions, facilitating their separation in a statistical domain. Example profiles are provided showing the results of this separation, and ranging experiment results are presented. In the ranging experiment, performance is compared to a more conventional frequency-domain filtering approach. Target tracking is maintained to 14.5 attenuation lengths in the laboratory test tank environment, a 2.5 attenuation length improvement over the baseline.

  4. Adaptive Control of Linear Modal Systems Using Residual Mode Filters and a Simple Disturbance Estimator

    NASA Technical Reports Server (NTRS)

    Balas, Mark; Frost, Susan

    2012-01-01

    Flexible structures containing a large number of modes can benefit from adaptive control techniques which are well suited to applications that have unknown modeling parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend our adaptive control theory to accommodate troublesome modal subsystems of a plant that might inhibit the adaptive controller. In some cases the plant does not satisfy the requirements of Almost Strict Positive Realness. Instead, there maybe be a modal subsystem that inhibits this property. This section will present new results for our adaptive control theory. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for the troublesome modal subsystem, or the Q modes. Here we present the theory for adaptive controllers modified by RMFs, with attention to the issue of disturbances propagating through the Q modes. We apply the theoretical results to a flexible structure example to illustrate the behavior with and without the residual mode filter.

  5. Detecting discontinuities in time series of upper air data: Demonstration of an adaptive filter technique

    SciTech Connect

    Zurbenko, I.; Chen, J.; Rao, S.T.

    1997-11-01

    The issue of global climate change due to increased anthropogenic emissions of greenhouse gases in the atmosphere has gained considerable attention and importance. Climate change studies require the interpretation of weather data collected in numerous locations and/or over the span of several decades. Unfortunately, these data contain biases caused by changes in instruments and data acquisition procedures. It is essential that biases are identified and/or removed before these data can be used confidently in the context of climate change research. The purpose of this paper is to illustrate the use of an adaptive moving average filter and compare it with traditional parametric methods. The advantage of the adaptive filter over traditional parametric methods is that it is less effected by seasonal patterns and trends. The filter has been applied to upper air relative humidity and temperature data. Applied to generated data, the filter has a root mean squared error accuracy of about 600 days when locating changes of 0.1 standard deviations and about 20 days for changes of 0.5 standard deviations. In some circumstances, the accuracy of location estimation can be improved through parametric techniques used in conjunction with the adaptive filter.

  6. IIR filtering based adaptive active vibration control methodology with online secondary path modeling using PZT actuators

    NASA Astrophysics Data System (ADS)

    Boz, Utku; Basdogan, Ipek

    2015-12-01

    Structural vibrations is a major cause for noise problems, discomfort and mechanical failures in aerospace, automotive and marine systems, which are mainly composed of plate-like structures. In order to reduce structural vibrations on these structures, active vibration control (AVC) is an effective approach. Adaptive filtering methodologies are preferred in AVC due to their ability to adjust themselves for varying dynamics of the structure during the operation. The filtered-X LMS (FXLMS) algorithm is a simple adaptive filtering algorithm widely implemented in active control applications. Proper implementation of FXLMS requires availability of a reference signal to mimic the disturbance and model of the dynamics between the control actuator and the error sensor, namely the secondary path. However, the controller output could interfere with the reference signal and the secondary path dynamics may change during the operation. This interference problem can be resolved by using an infinite impulse response (IIR) filter which considers feedback of the one or more previous control signals to the controller output and the changing secondary path dynamics can be updated using an online modeling technique. In this paper, IIR filtering based filtered-U LMS (FULMS) controller is combined with online secondary path modeling algorithm to suppress the vibrations of a plate-like structure. The results are validated through numerical and experimental studies. The results show that the FULMS with online secondary path modeling approach has more vibration rejection capabilities with higher convergence rate than the FXLMS counterpart.

  7. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    PubMed Central

    Maier, Andreas; Wigström, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu, Lei; Strobel, Norbert; Fahrig, Rebecca

    2011-01-01

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia’s CUDA Interface provided an 8

  8. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    SciTech Connect

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca

    2011-11-15

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold

  9. Improved electromagnetic induction processing with novel adaptive matched filter and matched subspace detection

    NASA Astrophysics Data System (ADS)

    Hayes, Charles E.; McClellan, James H.; Scott, Waymond R.; Kerr, Andrew J.

    2016-05-01

    This work introduces two advances in wide-band electromagnetic induction (EMI) processing: a novel adaptive matched filter (AMF) and matched subspace detection methods. Both advances make use of recent work with a subspace SVD approach to separating the signal, soil, and noise subspaces of the frequency measurements The proposed AMF provides a direct approach to removing the EMI self-response while improving the signal to noise ratio of the data. Unlike previous EMI adaptive downtrack filters, this new filter will not erroneously optimize the EMI soil response instead of the EMI target response because these two responses are projected into separate frequency subspaces. The EMI detection methods in this work elaborate on how the signal and noise subspaces in the frequency measurements are ideal for creating the matched subspace detection (MSD) and constant false alarm rate matched subspace detection (CFAR) metrics developed by Scharf The CFAR detection metric has been shown to be the uniformly most powerful invariant detector.

  10. A multi-stage noise adaptive switching filter for extremely corrupted images

    NASA Astrophysics Data System (ADS)

    Dinh, Hai; Adhami, Reza; Wang, Yi

    2015-07-01

    A multi-stage noise adaptive switching filter (MSNASF) is proposed for the restoration of images extremely corrupted by impulse and impulse-like noise. The filter consists of two steps: noise detection and noise removal. The proposed extrema-based noise detection scheme utilizes the false contouring effect to get better over detection rate at low noise density. It is adaptive and will detect not only impulse but also impulse-like noise. In the noise removal step, a novel multi-stage filtering scheme is proposed. It replaces corrupted pixel with the nearest uncorrupted median to preserve details. When compared with other methods, MSNASF provides better peak signal to noise ratio (PSNR) and structure similarity index (SSIM). A subjective evaluation carried out online also demonstrates that MSNASF yields higher fidelity.

  11. Revisiting the relationship between adaptive smoothing and anisotropic diffusion with modified filters.

    PubMed

    Ham, Bumsub; Min, Dongbo; Sohn, Kwanghoon

    2013-03-01

    Anisotropic diffusion has been known to be closely related to adaptive smoothing and discretized in a similar manner. This paper revisits a fundamental relationship between two approaches. It is shown that adaptive smoothing and anisotropic diffusion have different theoretical backgrounds by exploring their characteristics with the perspective of normalization, evolution step size, and energy flow. Based on this principle, adaptive smoothing is derived from a second order partial differential equation (PDE), not a conventional anisotropic diffusion, via the coupling of Fick's law with a generalized continuity equation where a "source" or "sink" exists, which has not been extensively exploited. We show that the source or sink is closely related to the asymmetry of energy flow as well as the normalization term of adaptive smoothing. It enables us to analyze behaviors of adaptive smoothing, such as the maximum principle and stability with a perspective of a PDE. Ultimately, this relationship provides new insights into application-specific filtering algorithm design. By modeling the source or sink in the PDE, we introduce two specific diffusion filters, the robust anisotropic diffusion and the robust coherence enhancing diffusion, as novel instantiations which are more robust against the outliers than the conventional filters. PMID:23193236

  12. Parametric adaptive estimation and backstepping control of electro-hydraulic actuator with decayed memory filter.

    PubMed

    Guo, Qing; Sun, Ping; Yin, Jing-Min; Yu, Tian; Jiang, Dan

    2016-05-01

    Some unknown parameter estimation of electro-hydraulic system (EHS) should be considered in hydraulic controller design due to many parameter uncertainties in practice. In this study, a parametric adaptive backstepping control method is proposed to improve the dynamic behavior of EHS under parametric uncertainties and unknown disturbance (i.e., hydraulic parameters and external load). The unknown parameters of EHS model are estimated by the parametric adaptive estimation law. Then the recursive backstepping controller is designed by Lyapunov technique to realize the displacement control of EHS. To avoid explosion of virtual control in traditional backstepping, a decayed memory filter is presented to re-estimate the virtual control and the dynamic external load. The effectiveness of the proposed controller has been demonstrated by comparison with the controller without adaptive and filter estimation. The comparative experimental results in critical working conditions indicate the proposed approach can achieve better dynamic performance on the motion control of Two-DOF robotic arm. PMID:26920086

  13. Neural Network Aided Adaptive Extended Kalman Filtering Approach for DGPS Positioning

    NASA Astrophysics Data System (ADS)

    Jwo, Dah-Jing; Huang, Hung-Chih

    2004-09-01

    The extended Kalman filter, when employed in the GPS receiver as the navigation state estimator, provides optimal solutions if the noise statistics for the measurement and system are completely known. In practice, the noise varies with time, which results in performance degradation. The covariance matching method is a conventional adaptive approach for estimation of noise covariance matrices. The technique attempts to make the actual filter residuals consistent with their theoretical covariance. However, this innovation-based adaptive estimation shows very noisy results if the window size is small. To resolve the problem, a multilayered neural network is trained to identify the measurement noise covariance matrix, in which the back-propagation algorithm is employed to iteratively adjust the link weights using the steepest descent technique. Numerical simulations show that based on the proposed approach the adaptation performance is substantially enhanced and the positioning accuracy is substantially improved.

  14. A unified set-based test with adaptive filtering for gene-environment interaction analyses.

    PubMed

    Liu, Qianying; Chen, Lin S; Nicolae, Dan L; Pierce, Brandon L

    2016-06-01

    In genome-wide gene-environment interaction (GxE) studies, a common strategy to improve power is to first conduct a filtering test and retain only the SNPs that pass the filtering in the subsequent GxE analyses. Inspired by two-stage tests and gene-based tests in GxE analysis, we consider the general problem of jointly testing a set of parameters when only a few are truly from the alternative hypothesis and when filtering information is available. We propose a unified set-based test that simultaneously considers filtering on individual parameters and testing on the set. We derive the exact distribution and approximate the power function of the proposed unified statistic in simplified settings, and use them to adaptively calculate the optimal filtering threshold for each set. In the context of gene-based GxE analysis, we show that although the empirical power function may be affected by many factors, the optimal filtering threshold corresponding to the peak of the power curve primarily depends on the size of the gene. We further propose a resampling algorithm to calculate P-values for each gene given the estimated optimal filtering threshold. The performance of the method is evaluated in simulation studies and illustrated via a genome-wide gene-gender interaction analysis using pancreatic cancer genome-wide association data. PMID:26496228

  15. A unified set-based test with adaptive filtering for gene-environment interaction analyses

    PubMed Central

    Liu, Qianying; Chen, Lin S.; Nicolae, Dan L.; Pierce, Brandon L.

    2015-01-01

    Summary In genome-wide gene-environment interaction (GxE) studies, a common strategy to improve power is to first conduct a filtering test and retain only the SNPs that pass the filtering in the subsequent GxE analyses. Inspired by two-stage tests and gene-based tests in GxE analysis, we consider the general problem of jointly testing a set of parameters when only a few are truly from the alternative hypothesis and when filtering information is available. We propose a unified set-based test that simultaneously considers filtering on individual parameters and testing on the set. We derive the exact distribution and approximate the power function of the proposed unified statistic in simplified settings, and use them to adaptively calculate the optimal filtering threshold for each set. In the context of gene-based GxE analysis, we show that although the empirical power function may be affected by many factors, the optimal filtering threshold corresponding to the peak of the power curve primarily depends on the size of the gene. We further propose a resampling algorithm to calculate p-values for each gene given the estimated optimal filtering threshold. The performance of the method is evaluated in simulation studies and illustrated via a genome-wide gene-gender interaction analysis using pancreatic cancer genome-wide association data. PMID:26496228

  16. Filter accuracy for the Lorenz 96 model: Fixed versus adaptive observation operators

    NASA Astrophysics Data System (ADS)

    Law, K. J. H.; Sanz-Alonso, D.; Shukla, A.; Stuart, A. M.

    2016-06-01

    In the context of filtering chaotic dynamical systems it is well-known that partial observations, if sufficiently informative, can be used to control the inherent uncertainty due to chaos. The purpose of this paper is to investigate, both theoretically and numerically, conditions on the observations of chaotic systems under which they can be accurately filtered. In particular, we highlight the advantage of adaptive observation operators over fixed ones. The Lorenz '96 model is used to exemplify our findings. We consider discrete-time and continuous-time observations in our theoretical developments. We prove that, for fixed observation operator, the 3DVAR filter can recover the system state within a neighbourhood determined by the size of the observational noise. It is required that a sufficiently large proportion of the state vector is observed, and an explicit form for such sufficient fixed observation operator is given. Numerical experiments, where the data is incorporated by use of the 3DVAR and extended Kalman filters, suggest that less informative fixed operators than given by our theory can still lead to accurate signal reconstruction. Adaptive observation operators are then studied numerically; we show that, for carefully chosen adaptive observation operators, the proportion of the state vector that needs to be observed is drastically smaller than with a fixed observation operator. Indeed, we show that the number of state coordinates that need to be observed may even be significantly smaller than the total number of positive Lyapunov exponents of the underlying system.

  17. Dynamic Singularity Spectrum Distribution of Sea Clutter

    NASA Astrophysics Data System (ADS)

    Xiong, Gang; Yu, Wenxian; Zhang, Shuning

    2015-12-01

    The fractal and multifractal theory have provided new approaches for radar signal processing and target-detecting under the background of ocean. However, the related research mainly focuses on fractal dimension or multifractal spectrum (MFS) of sea clutter. In this paper, a new dynamic singularity analysis method of sea clutter using MFS distribution is developed, based on moving detrending analysis (DMA-MFSD). Theoretically, we introduce the time information by using cyclic auto-correlation of sea clutter. For transient correlation series, the instantaneous singularity spectrum based on multifractal detrending moving analysis (MF-DMA) algorithm is calculated, and the dynamic singularity spectrum distribution of sea clutter is acquired. In addition, we analyze the time-varying singularity exponent ranges and maximum position function in DMA-MFSD of sea clutter. For the real sea clutter data, we analyze the dynamic singularity spectrum distribution of real sea clutter in level III sea state, and conclude that the radar sea clutter has the non-stationary and time-varying scale characteristic and represents the time-varying singularity spectrum distribution based on the proposed DMA-MFSD method. The DMA-MFSD will also provide reference for nonlinear dynamics and multifractal signal processing.

  18. Ockham's Razor Applied: It's Mission Clutter.

    ERIC Educational Resources Information Center

    DeCicco, Emily K.; Allison, Jeanette

    1999-01-01

    Maintains that assigning schools responsibility for solving societal problems results in mission clutter, the root cause of failure in public schools. Discusses how mission clutter occurred and its dangers, focusing on the loss of critical educational focus, impediment to teacher recruitment and retention, occupational stress, and unfair…

  19. Clock recovering characteristics of adaptive finite-impulse-response filters in digital coherent optical receivers.

    PubMed

    Kikuchi, Kazuro

    2011-03-14

    We analyze the clock-recovery process based on adaptive finite-impulse-response (FIR) filtering in digital coherent optical receivers. When the clock frequency is synchronized between the transmitter and the receiver, only five taps in half-symbol-spaced FIR filters can adjust the sampling phase of analog-to-digital conversion optimally, enabling bit-error rate performance independent of the initial sampling phase. Even if the clock frequency is not synchronized between them, the clock-frequency misalignment can be adjusted within an appropriate block interval; thus, we can achieve an asynchronous clock mode of operation of digital coherent receivers with block processing of the symbol sequence. PMID:21445201

  20. Parameter estimation with an iterative version of the adaptive Gaussian mixture filter

    NASA Astrophysics Data System (ADS)

    Stordal, A.; Lorentzen, R.

    2012-04-01

    The adaptive Gaussian mixture filter (AGM) was introduced in Stordal et. al. (ECMOR 2010) as a robust filter technique for large scale applications and an alternative to the well known ensemble Kalman filter (EnKF). It consists of two analysis steps, one linear update and one weighting/resampling step. The bias of AGM is determined by two parameters, one adaptive weight parameter (forcing the weights to be more uniform to avoid filter collapse) and one pre-determined bandwidth parameter which decides the size of the linear update. It has been shown that if the adaptive parameter approaches one and the bandwidth parameter decrease with increasing sample size, the filter can achieve asymptotic optimality. For large scale applications with a limited sample size the filter solution may be far from optimal as the adaptive parameter gets close to zero depending on how well the samples from the prior distribution match the data. The bandwidth parameter must often be selected significantly different from zero in order to make large enough linear updates to match the data, at the expense of bias in the estimates. In the iterative AGM we take advantage of the fact that the history matching problem is usually estimation of parameters and initial conditions. If the prior distribution of initial conditions and parameters is close to the posterior distribution, it is possible to match the historical data with a small bandwidth parameter and an adaptive weight parameter that gets close to one. Hence the bias of the filter solution is small. In order to obtain this scenario we iteratively run the AGM throughout the data history with a very small bandwidth to create a new prior distribution from the updated samples after each iteration. After a few iterations, nearly all samples from the previous iteration match the data and the above scenario is achieved. A simple toy problem shows that it is possible to reconstruct the true posterior distribution using the iterative version of

  1. Adaptive switching filter for noise removal in highly corrupted depth maps from Time-of-Flight image sensors

    NASA Astrophysics Data System (ADS)

    Lee, Seunghee; Bae, Kwanghyuk; Kyung, Kyu-min; Kim, Tae-Chan

    2012-03-01

    In this work, we present an adaptive switching filter for noise reduction and sharpness preservation in depth maps provided by Time-of-Flight (ToF) image sensors. Median filter and bilateral filter are commonly used in cost-sensitive applications where low computational complexity is needed. However, median filter blurs fine details and edges in depth map while bilateral filter works poorly with impulse noise present in the image. Since the variance of depth is inversely proportional to amplitude, we suggest an adaptive filter that switches between median filter and bilateral filter based on the level of amplitude. If a region of interest has low amplitude indicating low confidence level of measured depth data, then median filter is applied on the depth at the position while regions with high level of amplitude is processed with bilateral filter using Gaussian kernel with adaptive weights. Results show that the suggested algorithm performs surface smoothing and detail preservation as well as median filter and bilateral filter, respectively. By using the suggested algorithm, significant gain in visual quality is obtained in depth maps while low computational cost is maintained.

  2. Clutter interference and the integration time of echoes in the echolocating bat, Eptesicus fuscus.

    PubMed

    Simmons, J A; Freedman, E G; Stevenson, S B; Chen, L; Wohlgenant, T J

    1989-10-01

    The ability of the echolocating bat, Eptesicus fuscus, to detect a sonar target is affected by the presence of other targets along the same axis at slightly different ranges. If echoes from one target arrive at about the same delay as echoes from another target, clutter interference occurs and one set of echoes masks the other. Although the bat's sonar emissions and the echoes themselves are 2 to 5 ms long, echoes (of approximately equal sensation levels--around 15 dB SL) only interfere with each other if they arrive within 200 to 400 microseconds of the same arrival time. This figure is an estimate of the integration time of the bat's sonar receiver for echoes. The fine structure of the clutter-interference data reflects the reinforcement and cancellation of echoes according to their time separation. When clutter interference first occurs, the waveforms of test and cluttering echoes already overlap for much of their duration. The masking effect underlying clutter interference appears specifically due to overlap, not between raw echo waveforms, but between the patterns of mechanical excitation created when echoes pass through bandpass filters equivalent to auditory-nerve tuning curves. While the time scale of clutter interference is substantially shorter than the duration of echo waveforms, it still is much longer than the eventual width of a target's range-axis image expressed in terms of echo delay. PMID:2808907

  3. Clutter Management for Individuals with Multiple Sclerosis

    PubMed Central

    2014-01-01

    Background: Although there is substantial anecdotal evidence that clutter is common among people with multiple sclerosis (MS), the literature contains no reports of studies on the actual prevalence of the problem or its impact on functional performance in this population. Clutter promotes confusion and places individuals in potentially dangerous situations by increasing their risks of falling, losing medications, and misplacing important documents. In addition, it may negatively affect activities of daily living (ADLs). Many common MS symptoms such as decreased mobility, visual or cognitive changes, fatigue, and depression can exacerbate clutter accumulation, which in turn can have detrimental effects on physical, financial, emotional, cognitive, and social functioning. It is critical for MS clinicians to address clutter management in order to improve patients' overall functional independence and participation. Methods: A clutter reduction protocol was developed and implemented at our institution for individuals with MS. Our group program addresses psychosocial issues preventing organization and offers practical strategies for clutter removal and management to improve performance in ADLs. A clutter questionnaire is administered to individuals before and after their participation in the group program. Results: Anecdotal reports indicate that the intervention helped to reduce clutter, promote a more realistic attitude toward “possessions,” and establish a sense of accomplishment in controlling one's environment. Participants also reported fewer falls, feeling less isolated, increased ease in finding their medications, and a general sense of cognitive clarity in accomplishing ADLs. Outcome assessments are now being developed to objectively measure these effects as well as the prevalence of clutter within the MS population. Conclusions: Clutter management is an important area for MS clinicians to address because it can significantly affect patients' functioning

  4. Clutter and signatures from near infrared testbed sensor

    NASA Astrophysics Data System (ADS)

    Sanderson, R. B.; McCalmont, J. F.; Montgomery, J. B.; Johnson, R. S.; McDermott, D. J.

    2008-04-01

    A new tactical airborne multicolor missile warning testbed was developed as part of an Air Force Research Laboratory (AFRL) initiative focusing on the development of sensors operating in the near infrared where commercially available silicon detectors can be used. At these wavelengths, the rejection of solar induced false alarms is a critical issue. Multicolor discrimination provides one of the most promising techniques for improving the performance of missile warning sensors, particularly for heavy clutter situations. This, in turn, requires that multicolor clutter data be collected for both analysis and algorithm development. The developed sensor test bed, as described in previous papers1, is a two-camera system with 1004x1004 FPA coupled with optimized filters integrated with the optics. The collection portion includes a high speed processor coupled with a high capacity disk array capable of collecting up to 48 full frames per second. This configuration allows the collection of temporally correlated, radiometrically calibrated data in two spectral bands that provide a basis for evaluating the performance of spectral discrimination algorithms. The presentation will describe background and clutter data collected from ground and flight locations in both detection and guard bands and the statistical analysis to provide a basis for evaluation of sensor performance. In addition, measurements have been made of discrete targets, both threats and false alarms. The results of these measurements have shown the capability of these sensors to provide a useful discrimination capability to distinguish threats from false alarms.

  5. Adaptive nonlocal means filtering based on local noise level for CT denoising

    SciTech Connect

    Li, Zhoubo; Trzasko, Joshua D.; Lake, David S.; Blezek, Daniel J.; Manduca, Armando; Yu, Lifeng; Fletcher, Joel G.; McCollough, Cynthia H.

    2014-01-15

    Purpose: To develop and evaluate an image-domain noise reduction method based on a modified nonlocal means (NLM) algorithm that is adaptive to local noise level of CT images and to implement this method in a time frame consistent with clinical workflow. Methods: A computationally efficient technique for local noise estimation directly from CT images was developed. A forward projection, based on a 2D fan-beam approximation, was used to generate the projection data, with a noise model incorporating the effects of the bowtie filter and automatic exposure control. The noise propagation from projection data to images was analytically derived. The analytical noise map was validated using repeated scans of a phantom. A 3D NLM denoising algorithm was modified to adapt its denoising strength locally based on this noise map. The performance of this adaptive NLM filter was evaluated in phantom studies in terms of in-plane and cross-plane high-contrast spatial resolution, noise power spectrum (NPS), subjective low-contrast spatial resolution using the American College of Radiology (ACR) accreditation phantom, and objective low-contrast spatial resolution using a channelized Hotelling model observer (CHO). Graphical processing units (GPU) implementation of this noise map calculation and the adaptive NLM filtering were developed to meet demands of clinical workflow. Adaptive NLM was piloted on lower dose scans in clinical practice. Results: The local noise level estimation matches the noise distribution determined from multiple repetitive scans of a phantom, demonstrated by small variations in the ratio map between the analytical noise map and the one calculated from repeated scans. The phantom studies demonstrated that the adaptive NLM filter can reduce noise substantially without degrading the high-contrast spatial resolution, as illustrated by modulation transfer function and slice sensitivity profile results. The NPS results show that adaptive NLM denoising preserves the

  6. Adaptive Laplacian filtering for sensorimotor rhythm-based brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Lu, Jun; McFarland, Dennis J.; Wolpaw, Jonathan R.

    2013-02-01

    Objective. Sensorimotor rhythms (SMRs) are 8-30 Hz oscillations in the electroencephalogram (EEG) recorded from the scalp over sensorimotor cortex that change with movement and/or movement imagery. Many brain-computer interface (BCI) studies have shown that people can learn to control SMR amplitudes and can use that control to move cursors and other objects in one, two or three dimensions. At the same time, if SMR-based BCIs are to be useful for people with neuromuscular disabilities, their accuracy and reliability must be improved substantially. These BCIs often use spatial filtering methods such as common average reference (CAR), Laplacian (LAP) filter or common spatial pattern (CSP) filter to enhance the signal-to-noise ratio of EEG. Here, we test the hypothesis that a new filter design, called an ‘adaptive Laplacian (ALAP) filter’, can provide better performance for SMR-based BCIs. Approach. An ALAP filter employs a Gaussian kernel to construct a smooth spatial gradient of channel weights and then simultaneously seeks the optimal kernel radius of this spatial filter and the regularization parameter of linear ridge regression. This optimization is based on minimizing the leave-one-out cross-validation error through a gradient descent method and is computationally feasible. Main results. Using a variety of kinds of BCI data from a total of 22 individuals, we compare the performances of ALAP filter to CAR, small LAP, large LAP and CSP filters. With a large number of channels and limited data, ALAP performs significantly better than CSP, CAR, small LAP and large LAP both in classification accuracy and in mean-squared error. Using fewer channels restricted to motor areas, ALAP is still superior to CAR, small LAP and large LAP, but equally matched to CSP. Significance. Thus, ALAP may help to improve the accuracy and robustness of SMR-based BCIs.

  7. A 3D approach for object recognition in illuminated scenes with adaptive correlation filters

    NASA Astrophysics Data System (ADS)

    Picos, Kenia; Díaz-Ramírez, Víctor H.

    2015-09-01

    In this paper we solve the problem of pose recognition of a 3D object in non-uniformly illuminated and noisy scenes. The recognition system employs a bank of space-variant correlation filters constructed with an adaptive approach based on local statistical parameters of the input scene. The position and orientation of the target are estimated with the help of the filter bank. For an observed input frame, the algorithm computes the correlation process between the observed image and the bank of filters using a combination of data and task parallelism by taking advantage of a graphics processing unit (GPU) architecture. The pose of the target is estimated by finding the template that better matches the current view of target within the scene. The performance of the proposed system is evaluated in terms of recognition accuracy, location and orientation errors, and computational performance.

  8. Adaptive filtering for reduction of speckle in ultrasonic pulse-echo images.

    PubMed

    Bamber, J C; Daft, C

    1986-01-01

    Current medical ultrasonic scanning instrumentation permits the display of fine image detail (speckle) which does not transfer useful information but degrades the apparent low contrast resolution in the image. An adaptive two-dimensional filter has been developed which uses local features of image texture to recognize and maximally low-pass filter those parts of the image which correspond to fully developed speckle, while substantially preserving information associated with resolved-object structure. A first implementation of the filter is described which uses the ratio of the local variance and the local mean as the speckle recognition feature. Preliminary results of applying this form of display processing to medical ultrasound images are very encouraging; it appears that the visual perception of features such as small discrete structures, subtle fluctuations in mean echo level and changes in image texture may be enhanced relative to that for unprocessed images. PMID:3510500

  9. Design of a nonlinear adaptive filter for suppression of shuttle pilot-induced oscillation tendencies

    NASA Technical Reports Server (NTRS)

    Smith, J. W.; Edwards, J. W.

    1980-01-01

    Analysis of a longitudinal pilot-induced oscillation (PIO) experienced just prior to touchdown on the final flight of the space shuttle's approach landing tests indicated that the source of the problem was a combination of poor basic handling qualities aggravated by time delays through the digital flight control computer and rate limiting of the elevator actuators due to high pilot gain. A nonlinear PIO suppression (PIOS) filter was designed and developed to alleviate the vehicle's PIO tendencies by reducing the gain in the command path. From analytical and simulator studies it was shown that the PIOS filter, in an adaptive fashion, can attenuate the command path gain without adding phase lag to the system. With the pitch attitude loop of a simulated shuttle model closed, the PIOS filter increased the gain margin by a factor of about two.

  10. Biohybrid Control of General Linear Systems Using the Adaptive Filter Model of Cerebellum

    PubMed Central

    Wilson, Emma D.; Assaf, Tareq; Pearson, Martin J.; Rossiter, Jonathan M.; Dean, Paul; Anderson, Sean R.; Porrill, John

    2015-01-01

    The adaptive filter model of the cerebellar microcircuit has been successfully applied to biological motor control problems, such as the vestibulo-ocular reflex (VOR), and to sensory processing problems, such as the adaptive cancelation of reafferent noise. It has also been successfully applied to problems in robotics, such as adaptive camera stabilization and sensor noise cancelation. In previous applications to inverse control problems, the algorithm was applied to the velocity control of a plant dominated by viscous and elastic elements. Naive application of the adaptive filter model to the displacement (as opposed to velocity) control of this plant results in unstable learning and control. To be more generally useful in engineering problems, it is essential to remove this restriction to enable the stable control of plants of any order. We address this problem here by developing a biohybrid model reference adaptive control (MRAC) scheme, which stabilizes the control algorithm for strictly proper plants. We evaluate the performance of this novel cerebellar-inspired algorithm with MRAC scheme in the experimental control of a dielectric electroactive polymer, a class of artificial muscle. The results show that the augmented cerebellar algorithm is able to accurately control the displacement response of the artificial muscle. The proposed solution not only greatly extends the practical applicability of the cerebellar-inspired algorithm, but may also shed light on cerebellar involvement in a wider range of biological control tasks. PMID:26257638

  11. Sensorless control of salient PMSM with adaptive integrator and resistance online identification using strong tracking filter

    NASA Astrophysics Data System (ADS)

    Ma, Shaokang; Wu, Peijun; Ji, Jinhu; Li, Xuchun

    2016-02-01

    This article presents a sensorless control approach of salient PMSM with an online parameter identifier. Adaptive Integrator is proposed and utilised for the estimation of active flux and rotor position. As a result, integrator overflow caused by DC offset is avoided. Meanwhile, an online stator resistance identification algorithm using strong tracking filter is employed, and the identified stator resistance is fed back to the estimating algorithm. Thus, the estimating algorithm can calculate the rotor position correctly. Simulations and experimental results validate the feasibility of both adaptive integrator and the parameter identification method.

  12. Denoising preterm EEG by signal decomposition and adaptive filtering: a comparative study.

    PubMed

    Navarro, X; Porée, F; Beuchée, A; Carrault, G

    2015-03-01

    Electroencephalography (EEG) from preterm infant monitoring systems is usually contaminated by several sources of noise that have to be removed in order to correctly interpret signals and perform automated analysis reliably. Band-pass and adaptive filters (AF) continue to be systematically applied, but their efficacy may be decreased facing preterm EEG patterns such as the tracé alternant and slow delta-waves. In this paper, we propose the combination of EEG decomposition with AF to improve the overall denoising process. Using artificially contaminated signals from real EEGs, we compared the quality of filtered signals applying different decomposition techniques: the discrete wavelet transform, the empirical mode decomposition (EMD) and a recent improved version, the complete ensemble EMD with adaptive noise. Simulations demonstrate that introducing EMD-based techniques prior to AF can reduce up to 30% the root mean squared errors in denoised EEGs. PMID:25659233

  13. Signal subspace analysis for decoherent processes during interferometric fiber-optic gyroscopes using synchronous adaptive filters.

    PubMed

    Li, Yongxiao; Wang, Zinan; Peng, Chao; Li, Zhengbin

    2014-10-10

    Conventional signal processing methods for improving the random walk coefficient and the bias stability of interferometric fiber-optic gyroscopes are usually implemented in one-dimension sequence. In this paper, as a comparison, we allocated synchronous adaptive filters with the calculations of correlations of multidimensional signals in the perspective of the signal subspace. First, two synchronous independent channels are obtained through quadrature demodulation. Next, synchronous adaptive filters were carried out in order to project the original channels to the high related error channels and the approximation channels. The error channel signals were then processed by principal component analysis for suppressing coherent noises. Finally, an optimal state estimation of these error channels and approximation channels based on the Kalman gain coefficient was operated. Experimental results show that this signal processing method improved the raw measurements' variance from 0.0630 [(°/h)2] to 0.0103 [(°/h)2]. PMID:25322393

  14. Adaptive filtering and maximum entropy spectra with application to changes in atmospheric angular momentum

    NASA Technical Reports Server (NTRS)

    Penland, Cecile; Ghil, Michael; Weickmann, Klaus M.

    1991-01-01

    The spectral resolution and statistical significance of a harmonic analysis obtained by low-order MEM can be improved by subjecting the data to an adaptive filter. This adaptive filter consists of projecting the data onto the leading temporal empirical orthogonal functions obtained from singular spectrum analysis (SSA). The combined SSA-MEM method is applied both to a synthetic time series and a time series of AAM data. The procedure is very effective when the background noise is white and less so when the background noise is red. The latter case obtains in the AAM data. Nevertheless, reliable evidence for intraseasonal and interannual oscillations in AAM is detected. The interannual periods include a quasi-biennial one and an LF one, of 5 years, both related to the El Nino/Southern Oscillation. In the intraseasonal band, separate oscillations of about 48.5 and 51 days are ascertained.

  15. Ensembles of adaptive spatial filters increase BCI performance: an online evaluation

    NASA Astrophysics Data System (ADS)

    Sannelli, Claudia; Vidaurre, Carmen; Müller, Klaus-Robert; Blankertz, Benjamin

    2016-08-01

    Objective: In electroencephalographic (EEG) data, signals from distinct sources within the brain are widely spread by volume conduction and superimposed such that sensors receive mixtures of a multitude of signals. This reduction of spatial information strongly hampers single-trial analysis of EEG data as, for example, required for brain–computer interfacing (BCI) when using features from spontaneous brain rhythms. Spatial filtering techniques are therefore greatly needed to extract meaningful information from EEG. Our goal is to show, in online operation, that common spatial pattern patches (CSPP) are valuable to counteract this problem. Approach: Even though the effect of spatial mixing can be encountered by spatial filters, there is a trade-off between performance and the requirement of calibration data. Laplacian derivations do not require calibration data at all, but their performance for single-trial classification is limited. Conversely, data-driven spatial filters, such as common spatial patterns (CSP), can lead to highly distinctive features; however they require a considerable amount of training data. Recently, we showed in an offline analysis that CSPP can establish a valuable compromise. In this paper, we confirm these results in an online BCI study. In order to demonstrate the paramount feature that CSPP requires little training data, we used them in an adaptive setting with 20 participants and focused on users who did not have success with previous BCI approaches. Main results: The results of the study show that CSPP adapts faster and thereby allows users to achieve better feedback within a shorter time than previous approaches performed with Laplacian derivations and CSP filters. The success of the experiment highlights that CSPP has the potential to further reduce BCI inefficiency. Significance: CSPP are a valuable compromise between CSP and Laplacian filters. They allow users to attain better feedback within a shorter time and thus reduce BCI

  16. Radar clutter via waveguide methods

    NASA Astrophysics Data System (ADS)

    Pappert, R. A.

    1989-12-01

    Recent backscatter results generated by Tappert, using parabolic equation and Monte Carlo methods, afford an excellent opportunity to assess the adequacy of concepts such as shadowing and surface tilting often used in concert with ray concepts for line of sight backscatter calculations. In this study, results of first order scatter from rough surfaces are used in conjunction with waveguide formalism to calculate clutter from distant ranges in tropospheric waveguide environments. Comparisons are made with Tappert's results at 9.6 GHz for the standard atmosphere, and for 14 and 28 m evaporation ducts. Results apply to wind speeds of 10, 20, 30 and 40 knots. Averaged backscattered signals calculated by the two methods, for a transmitter altitude of 25 m, agree to within about + or - 10 dB. This is considered surprisingly good agreement in view of the many uncertainties and approximations involved in the calculations.

  17. Blended particle methods with adaptive subspaces for filtering turbulent dynamical systems

    NASA Astrophysics Data System (ADS)

    Qi, Di; Majda, Andrew J.

    2015-04-01

    It is a major challenge throughout science and engineering to improve uncertain model predictions by utilizing noisy data sets from nature. Hybrid methods combining the advantages of traditional particle filters and the Kalman filter offer a promising direction for filtering or data assimilation in high dimensional turbulent dynamical systems. In this paper, blended particle filtering methods that exploit the physical structure of turbulent dynamical systems are developed. Non-Gaussian features of the dynamical system are captured adaptively in an evolving-in-time low dimensional subspace through particle methods, while at the same time statistics in the remaining portion of the phase space are amended by conditional Gaussian mixtures interacting with the particles. The importance of both using the adaptively evolving subspace and introducing conditional Gaussian statistics in the orthogonal part is illustrated here by simple examples. For practical implementation of the algorithms, finding the most probable distributions that characterize the statistics in the phase space as well as effective resampling strategies is discussed to handle realizability and stability issues. To test the performance of the blended algorithms, the forty dimensional Lorenz 96 system is utilized with a five dimensional subspace to run particles. The filters are tested extensively in various turbulent regimes with distinct statistics and with changing observation time frequency and both dense and sparse spatial observations. In real applications perfect dynamical models are always inaccessible considering the complexities in both modeling and computation of high dimensional turbulent system. The effects of model errors from imperfect modeling of the systems are also checked for these methods. The blended methods show uniformly high skill in both capturing non-Gaussian statistics and achieving accurate filtering results in various dynamical regimes with and without model errors.

  18. Gas image enhancement based on adaptive time-domain filtering and morphology

    NASA Astrophysics Data System (ADS)

    Zhang, Changxing; Wang, Lingxue; Li, Jiakun; Long, Yunting; Zhang, Bei

    2011-05-01

    The fingerprint region of most gases is within 3 to 14μm. A mid-wave or long-wave infrared thermal imager is therefore commonly applied in gas detection. With further influence of low gas concentration and heterogeneity of infrared focal plane arrays, the image has numerous drawbacks. These include loud noise, weak gas signal, gridding, and dead points, all of which are particularly evident in sequential images. In order to solve these problems, we take into account the characteristics of the leaking gas image and propose an enhancement method based on adaptive time-domain filtering with morphology. The adaptive time-domain filtering which operates on time sequence images is a hybrid method combining the recursive filtering and mean filtering. It segments gas and background according to a selected threshold; removes speckle noise according to the median; and removes background domain using weighted difference image. The morphology method can not only dilate the gas region along the direction of gas diffusion to greatly enhance the visibility of the leakage area, but also effectively remove the noise, and smooth the contour. Finally, the false color is added to the gas domain. Results show that the gas infrared region is effectively enhanced.

  19. Adaptive filter design based on the LMS algorithm for delay elimination in TCR/FC compensators.

    PubMed

    Hooshmand, Rahmat Allah; Torabian Esfahani, Mahdi

    2011-04-01

    Thyristor controlled reactor with fixed capacitor (TCR/FC) compensators have the capability of compensating reactive power and improving power quality phenomena. Delay in the response of such compensators degrades their performance. In this paper, a new method based on adaptive filters (AF) is proposed in order to eliminate delay and increase the response of the TCR compensator. The algorithm designed for the adaptive filters is performed based on the least mean square (LMS) algorithm. In this design, instead of fixed capacitors, band-pass LC filters are used. To evaluate the filter, a TCR/FC compensator was used for nonlinear and time varying loads of electric arc furnaces (EAFs). These loads caused occurrence of power quality phenomena in the supplying system, such as voltage fluctuation and flicker, odd and even harmonics and unbalancing in voltage and current. The above design was implemented in a realistic system model of a steel complex. The simulation results show that applying the proposed control in the TCR/FC compensator efficiently eliminated delay in the response and improved the performance of the compensator in the power system. PMID:21193194

  20. Removal of Cardiopulmonary Resuscitation Artifacts with an Enhanced Adaptive Filtering Method: An Experimental Trial

    PubMed Central

    Gong, Yushun; Yu, Tao; Chen, Bihua; He, Mi; Li, Yongqin

    2014-01-01

    Current automated external defibrillators mandate interruptions of chest compression to avoid the effect of artifacts produced by CPR for reliable rhythm analyses. But even seconds of interruption of chest compression during CPR adversely affects the rate of restoration of spontaneous circulation and survival. Numerous digital signal processing techniques have been developed to remove the artifacts or interpret the corrupted ECG with promising result, but the performance is still inadequate, especially for nonshockable rhythms. In the present study, we suppressed the CPR artifacts with an enhanced adaptive filtering method. The performance of the method was evaluated by comparing the sensitivity and specificity for shockable rhythm detection before and after filtering the CPR corrupted ECG signals. The dataset comprised 283 segments of shockable and 280 segments of nonshockable ECG signals during CPR recorded from 22 adult pigs that experienced prolonged cardiac arrest. For the unfiltered signals, the sensitivity and specificity were 99.3% and 46.8%, respectively. After filtering, a sensitivity of 93.3% and a specificity of 96.0% were achieved. This animal trial demonstrated that the enhanced adaptive filtering method could significantly improve the detection of nonshockable rhythms without compromising the ability to detect a shockable rhythm during uninterrupted CPR. PMID:24795878

  1. Design of adaptive control systems by means of self-adjusting transversal filters

    NASA Technical Reports Server (NTRS)

    Merhav, S. J.

    1986-01-01

    The design of closed-loop adaptive control systems based on nonparametric identification was addressed. Implementation is by self-adjusting Least Mean Square (LMS) transversal filters. The design concept is Model Reference Adaptive Control (MRAC). Major issues are to preserve the linearity of the error equations of each LMS filter, and to prevent estimation bias that is due to process or measurement noise, thus providing necessary conditions for the convergence and stability of the control system. The controlled element is assumed to be asymptotically stable and minimum phase. Because of the nonparametric Finite Impulse Response (FIR) estimates provided by the LMS filters, a-priori information on the plant model is needed only in broad terms. Following a survey of control system configurations and filter design considerations, system implementation is shown here in Single Input Single Output (SISO) format which is readily extendable to multivariable forms. In extensive computer simulation studies the controlled element is represented by a second-order system with widely varying damping, natural frequency, and relative degree.

  2. Adaptive non-local means filtering based on local noise level for CT denoising

    NASA Astrophysics Data System (ADS)

    Li, Zhoubo; Yu, Lifeng; Trzasko, Joshua D.; Fletcher, Joel G.; McCollough, Cynthia H.; Manduca, Armando

    2012-03-01

    Radiation dose from CT scans is an increasing health concern in the practice of radiology. Higher dose scans can produce clearer images with high diagnostic quality, but may increase the potential risk of radiation-induced cancer or other side effects. Lowering radiation dose alone generally produces a noisier image and may degrade diagnostic performance. Recently, CT dose reduction based on non-local means (NLM) filtering for noise reduction has yielded promising results. However, traditional NLM denoising operates under the assumption that image noise is spatially uniform noise, while in CT images the noise level varies significantly within and across slices. Therefore, applying NLM filtering to CT data using a global filtering strength cannot achieve optimal denoising performance. In this work, we have developed a technique for efficiently estimating the local noise level for CT images, and have modified the NLM algorithm to adapt to local variations in noise level. The local noise level estimation technique matches the true noise distribution determined from multiple repetitive scans of a phantom object very well. The modified NLM algorithm provides more effective denoising of CT data throughout a volume, and may allow significant lowering of radiation dose. Both the noise map calculation and the adaptive NLM filtering can be performed in times that allow integration with the clinical workflow.

  3. Data assimilation for unsaturated flow models with restart adaptive probabilistic collocation based Kalman filter

    NASA Astrophysics Data System (ADS)

    Man, Jun; Li, Weixuan; Zeng, Lingzao; Wu, Laosheng

    2016-06-01

    The ensemble Kalman filter (EnKF) has gained popularity in hydrological data assimilation problems. As a Monte Carlo based method, a sufficiently large ensemble size is usually required to guarantee the accuracy. As an alternative approach, the probabilistic collocation based Kalman filter (PCKF) employs the polynomial chaos expansion (PCE) to represent and propagate the uncertainties in parameters and states. However, PCKF suffers from the so-called "curse of dimensionality". Its computational cost increases drastically with the increasing number of parameters and system nonlinearity. Furthermore, PCKF may fail to provide accurate estimations due to the joint updating scheme for strongly nonlinear models. Motivated by recent developments in uncertainty quantification and EnKF, we propose a restart adaptive probabilistic collocation based Kalman filter (RAPCKF) for data assimilation in unsaturated flow problems. During the implementation of RAPCKF, the important parameters are identified and active PCE basis functions are adaptively selected at each assimilation step; the "restart" scheme is utilized to eliminate the inconsistency between updated model parameters and states variables. The performance of RAPCKF is systematically tested with numerical cases of unsaturated flow models. It is shown that the adaptive approach and restart scheme can significantly improve the performance of PCKF. Moreover, RAPCKF has been demonstrated to be more efficient than EnKF with the same computational cost.

  4. Recursive Bayesian electromagnetic refractivity estimation from radar sea clutter

    NASA Astrophysics Data System (ADS)

    Vasudevan, Sathyanarayanan; Anderson, Richard H.; Kraut, Shawn; Gerstoft, Peter; Rogers, L. Ted; Krolik, Jeffrey L.

    2007-04-01

    Estimation of the range- and height-dependent index of refraction over the sea surface facilitates prediction of ducted microwave propagation loss. In this paper, refractivity estimation from radar clutter returns is performed using a Markov state space model for microwave propagation. Specifically, the parabolic approximation for numerical solution of the wave equation is used to formulate the refractivity from clutter (RFC) problem within a nonlinear recursive Bayesian state estimation framework. RFC under this nonlinear state space formulation is more efficient than global fitting of refractivity parameters when the total number of range-varying parameters exceeds the number of basis functions required to represent the height-dependent field at a given range. Moreover, the range-recursive nature of the estimator can be easily adapted to situations where the refractivity modeling changes at discrete ranges, such as at a shoreline. A fast range-recursive solution for obtaining range-varying refractivity is achieved by using sequential importance sampling extensions to state estimation techniques, namely, the forward and Viterbi algorithms. Simulation and real data results from radar clutter collected off Wallops Island, Virginia, are presented which demonstrate the ability of this method to produce propagation loss estimates that compare favorably with ground truth refractivity measurements.

  5. Ship detection for high resolution optical imagery with adaptive target filter

    NASA Astrophysics Data System (ADS)

    Ju, Hongbin

    2015-10-01

    Ship detection is important due to both its civil and military use. In this paper, we propose a novel ship detection method, Adaptive Target Filter (ATF), for high resolution optical imagery. The proposed framework can be grouped into two stages, where in the first stage, a test image is densely divided into different detection windows and each window is transformed to a feature vector in its feature space. The Histograms of Oriented Gradients (HOG) is accumulated as a basic feature descriptor. In the second stage, the proposed ATF highlights all the ship regions and suppresses the undesired backgrounds adaptively. Each detection window is assigned a score, which represents the degree of the window belonging to a certain ship category. The ATF can be adaptively obtained by the weighted Logistic Regression (WLR) according to the distribution of backgrounds and targets of the input image. The main innovation of our method is that we only need to collect positive training samples to build the filter, while the negative training samples are adaptively generated by the input image. This is different to other classification method such as Support Vector Machine (SVM) and Logistic Regression (LR), which need to collect both positive and negative training samples. The experimental result on 1-m high resolution optical images shows the proposed method achieves a desired ship detection performance with higher quality and robustness than other methods, e.g., SVM and LR.

  6. Filter accuracy for the Lorenz 96 model: Fixed versus adaptive observation operators

    DOE PAGESBeta

    Stuart, Andrew M.; Shukla, Abhishek; Sanz-Alonso, Daniel; Law, K. J. H.

    2016-02-23

    In the context of filtering chaotic dynamical systems it is well-known that partial observations, if sufficiently informative, can be used to control the inherent uncertainty due to chaos. The purpose of this paper is to investigate, both theoretically and numerically, conditions on the observations of chaotic systems under which they can be accurately filtered. In particular, we highlight the advantage of adaptive observation operators over fixed ones. The Lorenz ’96 model is used to exemplify our findings. Here, we consider discrete-time and continuous-time observations in our theoretical developments. We prove that, for fixed observation operator, the 3DVAR filter can recovermore » the system state within a neighbourhood determined by the size of the observational noise. It is required that a sufficiently large proportion of the state vector is observed, and an explicit form for such sufficient fixed observation operator is given. Numerical experiments, where the data is incorporated by use of the 3DVAR and extended Kalman filters, suggest that less informative fixed operators than given by our theory can still lead to accurate signal reconstruction. Adaptive observation operators are then studied numerically; we show that, for carefully chosen adaptive observation operators, the proportion of the state vector that needs to be observed is drastically smaller than with a fixed observation operator. Indeed, we show that the number of state coordinates that need to be observed may even be significantly smaller than the total number of positive Lyapunov exponents of the underlying system.« less

  7. Adaptive Particle Filter for Nonparametric Estimation with Measurement Uncertainty in Wireless Sensor Networks.

    PubMed

    Li, Xiaofan; Zhao, Yubin; Zhang, Sha; Fan, Xiaopeng

    2016-01-01

    Particle filters (PFs) are widely used for nonlinear signal processing in wireless sensor networks (WSNs). However, the measurement uncertainty makes the WSN observations unreliable to the actual case and also degrades the estimation accuracy of the PFs. In addition to the algorithm design, few works focus on improving the likelihood calculation method, since it can be pre-assumed by a given distribution model. In this paper, we propose a novel PF method, which is based on a new likelihood fusion method for WSNs and can further improve the estimation performance. We firstly use a dynamic Gaussian model to describe the nonparametric features of the measurement uncertainty. Then, we propose a likelihood adaptation method that employs the prior information and a belief factor to reduce the measurement noise. The optimal belief factor is attained by deriving the minimum Kullback-Leibler divergence. The likelihood adaptation method can be integrated into any PFs, and we use our method to develop three versions of adaptive PFs for a target tracking system using wireless sensor network. The simulation and experimental results demonstrate that our likelihood adaptation method has greatly improved the estimation performance of PFs in a high noise environment. In addition, the adaptive PFs are highly adaptable to the environment without imposing computational complexity. PMID:27249002

  8. Adaptive Particle Filter for Nonparametric Estimation with Measurement Uncertainty in Wireless Sensor Networks

    PubMed Central

    Li, Xiaofan; Zhao, Yubin; Zhang, Sha; Fan, Xiaopeng

    2016-01-01

    Particle filters (PFs) are widely used for nonlinear signal processing in wireless sensor networks (WSNs). However, the measurement uncertainty makes the WSN observations unreliable to the actual case and also degrades the estimation accuracy of the PFs. In addition to the algorithm design, few works focus on improving the likelihood calculation method, since it can be pre-assumed by a given distribution model. In this paper, we propose a novel PF method, which is based on a new likelihood fusion method for WSNs and can further improve the estimation performance. We firstly use a dynamic Gaussian model to describe the nonparametric features of the measurement uncertainty. Then, we propose a likelihood adaptation method that employs the prior information and a belief factor to reduce the measurement noise. The optimal belief factor is attained by deriving the minimum Kullback–Leibler divergence. The likelihood adaptation method can be integrated into any PFs, and we use our method to develop three versions of adaptive PFs for a target tracking system using wireless sensor network. The simulation and experimental results demonstrate that our likelihood adaptation method has greatly improved the estimation performance of PFs in a high noise environment. In addition, the adaptive PFs are highly adaptable to the environment without imposing computational complexity. PMID:27249002

  9. Eliminating Clutter in Synthetic-Aperture Radar

    NASA Technical Reports Server (NTRS)

    Jain, A.

    1979-01-01

    Diffusion technique reduces clutter noise in coherent SAR (synthetic-aperature radar) image signal without degrading its resolution. Technique makes radar-mapped terrain features more obvious.It also has potential application in holographic microscopy.

  10. Contrast enhancement in microscopy of human thyroid tumors by means of acousto-optic adaptive spatial filtering

    NASA Astrophysics Data System (ADS)

    Yushkov, Konstantin B.; Molchanov, Vladimir Y.; Belousov, Pavel V.; Abrosimov, Aleksander Y.

    2016-01-01

    We report a method for edge enhancement in the images of transparent samples using analog image processing in coherent light. The experimental technique is based on adaptive spatial filtering with an acousto-optic tunable filter in a telecentric optical system. We demonstrate processing of microscopic images of unstained and stained histological sections of human thyroid tumor with improved contrast.

  11. Adaptive Spatial Filtering of Interferometric Data Stack Oriented to Distributed Scatterers

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Xie, C.; Shao, Y.; Yuan, M.

    2013-07-01

    Standard interferometry poses a challenge in non-urban areas due to temporal and spatial decorrelation of the radar signal, where there is high signal noise. Techniques such as Small Baseline Subset Algorithm (SBAS) have been proposed to make use of multiple interferometric combinations to alleviate the problem. However, the interferograms used in SBAS are multilooked with a boxcar (rectangle) filter to reduce phase noise, resulting in a loss of resolution and signal superstition from different objects. In this paper, we proposed a modified adaptive spatial filtering algorithm for accurate estimation of interferogram and coherence without resolution loss even in rural areas, to better support the deformation monitoring with time series interferometric synthetic aperture radar (InSAR) technique. The implemented method identifies the statistically homogenous pixels in a neighbourhood based on the goodness-of-fit test, and then applies an adaptive spatial filtering of interferograms. Three statistical tests for the identification of distributed targets will be presented, applied to real data. PALSAR data of the yellow river delta in China is used for demonstrating the effectiveness of this algorithm in rural areas.

  12. Improving the Response of Accelerometers for Automotive Applications by Using LMS Adaptive Filters

    PubMed Central

    Hernandez, Wilmar; de Vicente, Jesús; Sergiyenko, Oleg; Fernández, Eduardo

    2010-01-01

    In this paper, the least-mean-squares (LMS) algorithm was used to eliminate noise corrupting the important information coming from a piezoresisitive accelerometer for automotive applications. This kind of accelerometer is designed to be easily mounted in hard to reach places on vehicles under test, and they usually feature ranges from 50 to 2,000 g (where is the gravitational acceleration, 9.81 m/s2) and frequency responses to 3,000 Hz or higher, with DC response, durable cables, reliable performance and relatively low cost. However, here we show that the response of the sensor under test had a lot of noise and we carried out the signal processing stage by using both conventional and optimal adaptive filtering. Usually, designers have to build their specific analog and digital signal processing circuits, and this fact increases considerably the cost of the entire sensor system and the results are not always satisfactory, because the relevant signal is sometimes buried in a broad-band noise background where the unwanted information and the relevant signal sometimes share a very similar frequency band. Thus, in order to deal with this problem, here we used the LMS adaptive filtering algorithm and compare it with others based on the kind of filters that are typically used for automotive applications. The experimental results are satisfactory. PMID:22315542

  13. Automated detection scheme of architectural distortion in mammograms using adaptive Gabor filter

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Ruriha; Teramoto, Atsushi; Matsubara, Tomoko; Fujita, Hiroshi

    2013-03-01

    Breast cancer is a serious health concern for all women. Computer-aided detection for mammography has been used for detecting mass and micro-calcification. However, there are challenges regarding the automated detection of the architectural distortion about the sensitivity. In this study, we propose a novel automated method for detecting architectural distortion. Our method consists of the analysis of the mammary gland structure, detection of the distorted region, and reduction of false positive results. We developed the adaptive Gabor filter for analyzing the mammary gland structure that decides filter parameters depending on the thickness of the gland structure. As for post-processing, healthy mammary glands that run from the nipple to the chest wall are eliminated by angle analysis. Moreover, background mammary glands are removed based on the intensity output image obtained from adaptive Gabor filter. The distorted region of the mammary gland is then detected as an initial candidate using a concentration index followed by binarization and labeling. False positives in the initial candidate are eliminated using 23 types of characteristic features and a support vector machine. In the experiments, we compared the automated detection results with interpretations by a radiologist using 50 cases (200 images) from the Digital Database of Screening Mammography (DDSM). As a result, true positive rate was 82.72%, and the number of false positive per image was 1.39. There results indicate that the proposed method may be useful for detecting architectural distortion in mammograms.

  14. High performance 3D adaptive filtering for DSP based portable medical imaging systems

    NASA Astrophysics Data System (ADS)

    Bockenbach, Olivier; Ali, Murtaza; Wainwright, Ian; Nadeski, Mark

    2015-03-01

    Portable medical imaging devices have proven valuable for emergency medical services both in the field and hospital environments and are becoming more prevalent in clinical settings where the use of larger imaging machines is impractical. Despite their constraints on power, size and cost, portable imaging devices must still deliver high quality images. 3D adaptive filtering is one of the most advanced techniques aimed at noise reduction and feature enhancement, but is computationally very demanding and hence often cannot be run with sufficient performance on a portable platform. In recent years, advanced multicore digital signal processors (DSP) have been developed that attain high processing performance while maintaining low levels of power dissipation. These processors enable the implementation of complex algorithms on a portable platform. In this study, the performance of a 3D adaptive filtering algorithm on a DSP is investigated. The performance is assessed by filtering a volume of size 512x256x128 voxels sampled at a pace of 10 MVoxels/sec with an Ultrasound 3D probe. Relative performance and power is addressed between a reference PC (Quad Core CPU) and a TMS320C6678 DSP from Texas Instruments.

  15. Performance Enhancement for a GPS Vector-Tracking Loop Utilizing an Adaptive Iterated Extended Kalman Filter

    PubMed Central

    Chen, Xiyuan; Wang, Xiying; Xu, Yuan

    2014-01-01

    This paper deals with the problem of state estimation for the vector-tracking loop of a software-defined Global Positioning System (GPS) receiver. For a nonlinear system that has the model error and white Gaussian noise, a noise statistics estimator is used to estimate the model error, and based on this, a modified iterated extended Kalman filter (IEKF) named adaptive iterated Kalman filter (AIEKF) is proposed. A vector-tracking GPS receiver utilizing AIEKF is implemented to evaluate the performance of the proposed method. Through road tests, it is shown that the proposed method has an obvious accuracy advantage over the IEKF and Adaptive Extended Kalman filter (AEKF) in position determination. The results show that the proposed method is effective to reduce the root-mean-square error (RMSE) of position (including longitude, latitude and altitude). Comparing with EKF, the position RMSE values of AIEKF are reduced by about 45.1%, 40.9% and 54.6% in the east, north and up directions, respectively. Comparing with IEKF, the position RMSE values of AIEKF are reduced by about 25.7%, 19.3% and 35.7% in the east, north and up directions, respectively. Compared with AEKF, the position RMSE values of AIEKF are reduced by about 21.6%, 15.5% and 30.7% in the east, north and up directions, respectively. PMID:25502124

  16. Using high-order methods on adaptively refined block-structured meshes - discretizations, interpolations, and filters.

    SciTech Connect

    Ray, Jaideep; Lefantzi, Sophia; Najm, Habib N.; Kennedy, Christopher A.

    2006-01-01

    Block-structured adaptively refined meshes (SAMR) strive for efficient resolution of partial differential equations (PDEs) solved on large computational domains by clustering mesh points only where required by large gradients. Previous work has indicated that fourth-order convergence can be achieved on such meshes by using a suitable combination of high-order discretizations, interpolations, and filters and can deliver significant computational savings over conventional second-order methods at engineering error tolerances. In this paper, we explore the interactions between the errors introduced by discretizations, interpolations and filters. We develop general expressions for high-order discretizations, interpolations, and filters, in multiple dimensions, using a Fourier approach, facilitating the high-order SAMR implementation. We derive a formulation for the necessary interpolation order for given discretization and derivative orders. We also illustrate this order relationship empirically using one and two-dimensional model problems on refined meshes. We study the observed increase in accuracy with increasing interpolation order. We also examine the empirically observed order of convergence, as the effective resolution of the mesh is increased by successively adding levels of refinement, with different orders of discretization, interpolation, or filtering.

  17. A novel spatially adaptive guide-filter total variation (SAGFTV) regularization for image restoration

    NASA Astrophysics Data System (ADS)

    Fang, Hao; Li, Qian; Huang, Zhenghua

    2015-12-01

    Denoising algorithms based on gradient dependent energy functionals, such as Perona-Malik, total variation and adaptive total variation denoising, modify images towards piecewise constant functions. Although edge sharpness and location is well preserved, important information, encoded in image features like textures or certain details, is often compromised in the process of denoising. In this paper, We propose a novel Spatially Adaptive Guide-Filtering Total Variation (SAGFTV) regularization with image restoration algorithm for denoising images. The guide-filter is extended to the variational formulations of imaging problem, and the spatially adaptive operator can easily distinguish flat areas from texture areas. Our simulating experiments show the improvement of peak signal noise ratio (PSNR), root mean square error (RMSE) and structure similarity increment measurement (SSIM) over other prior algorithms. The results of both simulating and practical experiments are more appealing visually. This type of processing can be used for a variety of tasks in PDE-based image processing and computer vision, and is stable and meaningful from a mathematical viewpoint.

  18. Use of polarization to improve signal to clutter ratio in an outdoor active imaging system

    NASA Astrophysics Data System (ADS)

    Fontoura, Patrick F.; Giles, Michael K.; Padilla, Denise D.

    2005-08-01

    This paper describes the methodology and presents the results of the design of a polarization-sensitive system used to increase the signal-to-clutter ratio in a robust outdoor structured lighting sensor that uses standard CCD camera technology. This lighting sensor is intended to be used on an autonomous vehicle, looking down to the ground and horizontal to obstacles in an 8 foot range. The kinds of surfaces to be imaged are natural and man-made, such as asphalt, concrete, dirt and grass. The main problem for an outdoor eye-safe laser imaging system is that the reflected energy from background clutter tends to be brighter than the reflected laser energy. A narrow-band optical filter does not reduce significantly the background clutter in bright sunlight, and problems also occur when the surface is highly absorptive, like asphalt. Therefore, most of applications are limited to indoor and controlled outdoor conditions. A series of measurements was made for each of the materials studied in order to find the best configuration for the polarizing system and also to find out the potential improvement in the signal-to-clutter ratio (STC). This process was divided into three parts: characterization of the reflected sunlight, characterization of the reflected laser light, and measurement of the improvement in the STC. The results show that by using polarization properties it is possible to design an optical system that is able to increase the signal-to-clutter ratio from approximately 30% to 100% in the imaging system, depending on the kind of surface and on the incidence angle of the sunlight. The technique was also analyzed for indoor use, with the background clutter being the room illumination. For this specific case, polarization did not improve the signal-to-clutter ratio.

  19. Fuzzy adaptive strong tracking scaled unscented Kalman filter for initial alignment of large misalignment angles.

    PubMed

    Li, Jing; Song, Ningfang; Yang, Gongliu; Jiang, Rui

    2016-07-01

    In the initial alignment process of strapdown inertial navigation system (SINS), large misalignment angles always bring nonlinear problem, which can usually be processed using the scaled unscented Kalman filter (SUKF). In this paper, the problem of large misalignment angles in SINS alignment is further investigated, and the strong tracking scaled unscented Kalman filter (STSUKF) is proposed with fixed parameters to improve convergence speed, while these parameters are artificially constructed and uncertain in real application. To further improve the alignment stability and reduce the parameters selection, this paper proposes a fuzzy adaptive strategy combined with STSUKF (FUZZY-STSUKF). As a result, initial alignment scheme of large misalignment angles based on FUZZY-STSUKF is designed and verified by simulations and turntable experiment. The results show that the scheme improves the accuracy and convergence speed of SINS initial alignment compared with those based on SUKF and STSUKF. PMID:27475606

  20. Fuzzy adaptive strong tracking scaled unscented Kalman filter for initial alignment of large misalignment angles

    NASA Astrophysics Data System (ADS)

    Li, Jing; Song, Ningfang; Yang, Gongliu; Jiang, Rui

    2016-07-01

    In the initial alignment process of strapdown inertial navigation system (SINS), large misalignment angles always bring nonlinear problem, which can usually be processed using the scaled unscented Kalman filter (SUKF). In this paper, the problem of large misalignment angles in SINS alignment is further investigated, and the strong tracking scaled unscented Kalman filter (STSUKF) is proposed with fixed parameters to improve convergence speed, while these parameters are artificially constructed and uncertain in real application. To further improve the alignment stability and reduce the parameters selection, this paper proposes a fuzzy adaptive strategy combined with STSUKF (FUZZY-STSUKF). As a result, initial alignment scheme of large misalignment angles based on FUZZY-STSUKF is designed and verified by simulations and turntable experiment. The results show that the scheme improves the accuracy and convergence speed of SINS initial alignment compared with those based on SUKF and STSUKF.

  1. Automatic artifact suppression in simultaneous tDCS-EEG using adaptive filtering.

    PubMed

    Mancini, Matteo; Pellicciari, Maria Concetta; Brignani, Debora; Mauri, Piercarlo; De Marchis, Cristiano; Miniussi, Carlo; Conforto, Silvia

    2015-08-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation method that can be used in cognitive and clinical protocols in order to modulate neural activity. Although some macro effects are known, the underlying mechanisms are still not clear. tDCS in combination with electroencephalography (EEG) could help to understand these mechanisms from a neural point of view. However, simultaneous tDCS-EEG still remains challenging because of the artifacts that affect the recorded signals. In this paper, an automated artifact cancellation method based on adaptive filtering is proposed. Using independent component analysis (ICA), the artifacts were characterized using data from both a phantom and a group of healthy subjects. The resulting filter can successfully remove tDCS-related artifacts during anodal and cathodal stimulations. PMID:26736856

  2. A DSP-Based Beam Current Monitoring System for Machine Protection Using Adaptive Filtering

    SciTech Connect

    J. Musson; H. Dong; R. Flood; C. Hovater; J. Hereford

    2001-06-01

    The CEBAF accelerator at Jefferson Lab is currently using an analog beam current monitoring (BCM) system for its machine protection system (MPS), which has a loss accuracy of 2 micro-amps. Recent burn-through simulations predict catastrophic beam line component failures below 1 micro-amp of loss, resulting in a blind spot for the MPS. Revised MPS requirements target an ultimate beam loss accuracy of 250 nA. A new beam current monitoring system has been developed which utilizes modern digital receiver technology and digital signal processing concepts. The receiver employs a direct-digital down converter integrated circuit, mated with a Jefferson Lab digital signal processor VME card. Adaptive filtering is used to take advantage of current-dependent burn-through rates. Benefits of such a system include elimination of DC offsets, generic algorithm development, extensive filter options, and interfaces to UNIX-based control systems.

  3. Cardiac fiber tracking using adaptive particle filtering based on tensor rotation invariant in MRI

    NASA Astrophysics Data System (ADS)

    Kong, Fanhui; Liu, Wanyu; Magnin, Isabelle E.; Zhu, Yuemin

    2016-03-01

    Diffusion magnetic resonance imaging (dMRI) is a non-invasive method currently available for cardiac fiber tracking. However, accurate and efficient cardiac fiber tracking is still a challenge. This paper presents a probabilistic cardiac fiber tracking method based on particle filtering. In this framework, an adaptive sampling technique is presented to describe the posterior distribution of fiber orientations by adjusting the number and status of particles according to the fractional anisotropy of diffusion. An observation model is then proposed to update the weight of particles by rotating diffusion tensor from the primary eigenvector to a given fiber orientation while keeping the shape of the tensor invariant. The results on human cardiac dMRI show that the proposed method is robust to noise and outperforms conventional streamline and particle filtering techniques.

  4. Automatic balancing of AMB systems using plural notch filter and adaptive synchronous compensation

    NASA Astrophysics Data System (ADS)

    Xu, Xiangbo; Chen, Shao; Zhang, Yanan

    2016-07-01

    To achieve automatic balancing in active magnetic bearing (AMB) system, a control method with notch filters and synchronous compensators is widely employed. However, the control precision is significantly affected by the synchronous compensation error, which is caused by parameter errors and variations of the power amplifiers. Furthermore, the computation effort may become intolerable if a 4-degree-of-freedom (dof) AMB system is studied. To solve these problems, an adaptive automatic balancing control method in the AMB system is presented in this study. Firstly, a 4-dof radial AMB system is described and analyzed. To simplify the controller design, the 4-dof dynamic equations are transferred into two plural functions related to translation and rotation, respectively. Next, to achieve automatic balancing of the AMB system, two synchronous equations are formed. Solution of them leads to a control strategy based on notch filters and feedforward controllers with an inverse function of the power amplifier. The feedforward controllers can be simplified as synchronous phases and amplitudes. Then, a plural phase-shift notch filter which can identify the synchronous components in 2-dof motions is formulated, and an adaptive compensation method that can form two closed-loop systems to tune the synchronous amplitude of the feedforward controller and the phase of the plural notch filter is proposed. Finally, the proposed control strategy is verified by both simulations and experiments on a test rig of magnetically suspended control moment gyro. The results indicate that this method can fulfill the automatic balancing of the AMB system with a light computational load.

  5. A 2-D orientation-adaptive prediction filter in lifting structures for image coding.

    PubMed

    Gerek, Omer N; Cetin, A Enis

    2006-01-01

    Lifting-style implementations of wavelets are widely used in image coders. A two-dimensional (2-D) edge adaptive lifting structure, which is similar to Daubechies 5/3 wavelet, is presented. The 2-D prediction filter predicts the value of the next polyphase component according to an edge orientation estimator of the image. Consequently, the prediction domain is allowed to rotate +/-45 degrees in regions with diagonal gradient. The gradient estimator is computationally inexpensive with additional costs of only six subtractions per lifting instruction, and no multiplications are required. PMID:16435541

  6. Evaluation of an adaptive filtering algorithm for CT cardiac imaging with EKG modulated tube current

    NASA Astrophysics Data System (ADS)

    Li, Jianying; Hsieh, Jiang; Mohr, Kelly; Okerlund, Darin

    2005-04-01

    We have developed an adaptive filtering algorithm for cardiac CT scans with EKG-modulated tube current to optimize resolution and noise for different cardiac phases and to provide safety net for cases where end-systole phase is used for coronary imaging. This algorithm has been evaluated using patient cardiac CT scans where lower tube currents are used for the systolic phases. In this paper, we present the evaluation results. The results demonstrated that with the use of the proposed algorithm, we could improve image quality for all cardiac phases, while providing greater noise and streak artifact reduction for systole phases where lower CT dose were used.

  7. Comparing masked target transform volume (MTTV) clutter metric to human observer evaluation of visual clutter

    NASA Astrophysics Data System (ADS)

    Camp, H. A.; Moyer, Steven; Moore, Richard K.

    2010-04-01

    The Night Vision and Electronic Sensors Directorate's current time-limited search (TLS) model, which makes use of the targeting task performance (TTP) metric to describe image quality, does not explicitly account for the effects of visual clutter on observer performance. The TLS model is currently based on empirical fits to describe human performance for a time of day, spectrum and environment. Incorporating a clutter metric into the TLS model may reduce the number of these empirical fits needed. The masked target transform volume (MTTV) clutter metric has been previously presented and compared to other clutter metrics. Using real infrared imagery of rural images with varying levels of clutter, NVESD is currently evaluating the appropriateness of the MTTV metric. NVESD had twenty subject matter experts (SME) rank the amount of clutter in each scene in a series of pair-wise comparisons. MTTV metric values were calculated and then compared to the SME observers rankings. The MTTV metric ranked the clutter in a similar manner to the SME evaluation, suggesting that the MTTV metric may emulate SME response. This paper is a first step in quantifying clutter and measuring the agreement to subjective human evaluation.

  8. Impulse noise removal using 1-D switching median filter with adaptive scanning order based on structural context of image

    NASA Astrophysics Data System (ADS)

    Koga, Takanori; Suetake, Noriaki

    2015-02-01

    This paper describes the detail-preserving impulse noise removal performance of a one-dimensional (1-D) switching median filter (SMF) applied along an adaptive space-filling curve. Usually, a SMF with a two-dimensional (2-D) filter window is widely used for impulse noise removal while still preserving detailed parts in an input image. However, the noise detector of the 2-D filter does not always distinguish between the original pixels and the noise-corrupted ones perfectly. In particular, pixels constituting thin lines in an input image tend to be incorrectly detected as noise-corrupted pixels, and such pixels are filtered regardless of the necessity of the filtering. To cope with this problem, we propose a new impulse noise removal method based on a 1-D SMF and a space-filling curve which is adaptively drawn using a minimum spanning tree reflecting structural context of an input image.

  9. Adaptive Fuzzy Hysteresis Band Current Controller for Four-Wire Shunt Active Filter

    NASA Astrophysics Data System (ADS)

    Hamoudi, F.; Chaghi, A.; Amimeur, H.; Merabet, E.

    2008-06-01

    This paper presents an adaptive fuzzy hysteresis band current controller for four-wire shunt active power filters to eliminate harmonics and to compensate reactive power in distribution systems in order to keep currents at the point of common coupling sinusoidal and in phase with the corresponding voltage and the cancel neutral current. The conventional hysteresis band known for its robustness and its advantage in current controlled applications is adapted with a fuzzy logic controller to change the bandwidth according to the operating point in order to keep the frequency modulation at tolerable limits. The algorithm used to identify the reference currents is based on the synchronous reference frame theory (dqγ). Finally, simulation results using Matlab/Simulink are given to validate the proposed control.

  10. AMA- and RWE- Based Adaptive Kalman Filter for Denoising Fiber Optic Gyroscope Drift Signal.

    PubMed

    Yang, Gongliu; Liu, Yuanyuan; Li, Ming; Song, Shunguang

    2015-01-01

    An improved double-factor adaptive Kalman filter called AMA-RWE-DFAKF is proposed to denoise fiber optic gyroscope (FOG) drift signal in both static and dynamic conditions. The first factor is Kalman gain updated by random weighting estimation (RWE) of the covariance matrix of innovation sequence at any time to ensure the lowest noise level of output, but the inertia of KF response increases in dynamic condition. To decrease the inertia, the second factor is the covariance matrix of predicted state vector adjusted by RWE only when discontinuities are detected by adaptive moving average (AMA).The AMA-RWE-DFAKF is applied for denoising FOG static and dynamic signals, its performance is compared with conventional KF (CKF), RWE-based adaptive KF with gain correction (RWE-AKFG), AMA- and RWE- based dual mode adaptive KF (AMA-RWE-DMAKF). Results of Allan variance on static signal and root mean square error (RMSE) on dynamic signal show that this proposed algorithm outperforms all the considered methods in denoising FOG signal. PMID:26512665

  11. AMA- and RWE- Based Adaptive Kalman Filter for Denoising Fiber Optic Gyroscope Drift Signal

    PubMed Central

    Yang, Gongliu; Liu, Yuanyuan; Li, Ming; Song, Shunguang

    2015-01-01

    An improved double-factor adaptive Kalman filter called AMA-RWE-DFAKF is proposed to denoise fiber optic gyroscope (FOG) drift signal in both static and dynamic conditions. The first factor is Kalman gain updated by random weighting estimation (RWE) of the covariance matrix of innovation sequence at any time to ensure the lowest noise level of output, but the inertia of KF response increases in dynamic condition. To decrease the inertia, the second factor is the covariance matrix of predicted state vector adjusted by RWE only when discontinuities are detected by adaptive moving average (AMA).The AMA-RWE-DFAKF is applied for denoising FOG static and dynamic signals, its performance is compared with conventional KF (CKF), RWE-based adaptive KF with gain correction (RWE-AKFG), AMA- and RWE- based dual mode adaptive KF (AMA-RWE-DMAKF). Results of Allan variance on static signal and root mean square error (RMSE) on dynamic signal show that this proposed algorithm outperforms all the considered methods in denoising FOG signal. PMID:26512665

  12. Adaptive Bloom Filter: A Space-Efficient Counting Algorithm for Unpredictable Network Traffic

    NASA Astrophysics Data System (ADS)

    Matsumoto, Yoshihide; Hazeyama, Hiroaki; Kadobayashi, Youki

    The Bloom Filter (BF), a space-and-time-efficient hashcoding method, is used as one of the fundamental modules in several network processing algorithms and applications such as route lookups, cache hits, packet classification, per-flow state management or network monitoring. BF is a simple space-efficient randomized data structure used to represent a data set in order to support membership queries. However, BF generates false positives, and cannot count the number of distinct elements. A counting Bloom Filter (CBF) can count the number of distinct elements, but CBF needs more space than BF. We propose an alternative data structure of CBF, and we called this structure an Adaptive Bloom Filter (ABF). Although ABF uses the same-sized bit-vector used in BF, the number of hash functions employed by ABF is dynamically changed to record the number of appearances of a each key element. Considering the hash collisions, the multiplicity of a each key element on ABF can be estimated from the number of hash functions used to decode the membership of the each key element. Although ABF can realize the same functionality as CBF, ABF requires the same memory size as BF. We describe the construction of ABF and IABF (Improved ABF), and provide a mathematical analysis and simulation using Zipf's distribution. Finally, we show that ABF can be used for an unpredictable data set such as real network traffic.

  13. A characterization of a single-trial adaptive filter and its implementation in the frequency domain.

    PubMed

    Arpaia, J P; Isenhart, R; Sandman, C A

    1989-10-01

    A single-trial adaptive filter (SAF) was implemented in the frequency domain (FDAF) by using the Fast Fourier Transform. The FDAF is significantly more efficient than the SAF. In the data presented the FDAF ran approximately 2 times faster than the SAF. For time series containing larger numbers of data points (n) the efficiency of the calculation will increase on the order of N/Ln(N). The FDAF was tested under a variety of conditions to determine the limits of its usefulness. Pre-filtering the data was found to be necessary to prevent the FDAF from lining up on high frequency activity not related to the signal. The importance of minimizing the amount of low frequency noise was emphasized since it adversely affected the performance of the FDAF and was difficult to filter. The single-trial latencies predicted by the FDAF were much more sensitive to increasing noise than the final wave form. In the absence of excessive low frequency noise a negative exponential relationship was found between the mean error in latency prediction and the SNR estimate. Since the SAF technique is also used to determine signal latency in single sweep data the SNR estimate can be a useful test to determine if the FDAF is locating the signal correctly or merely amplifying chance regularities in noisy data. PMID:2477222

  14. Efficiency and adaptability of the benthic methane filter at Quepos Slide cold seeps, offshore Costa Rica

    NASA Astrophysics Data System (ADS)

    Steeb, P.; Krause, S.; Linke, P.; Hensen, C.; Dale, A. W.; Nuzzo, M.; Treude, T.

    2014-11-01

    Large amounts of methane are delivered by fluids through the erosive forearc of the convergent margin offshore Costa Rica and lead to the formation of cold seeps at the sediment surface. Besides mud extrusion, numerous cold seeps are created by landslides induced by seamount subduction or fluid migration along major faults. Most of the dissolved methane reaching the seafloor at cold seeps is oxidized within the benthic microbial methane filter by anaerobic oxidation of methane (AOM). Measurements of AOM and sulfate reduction as well as numerical modeling of porewater profiles revealed a highly active and efficient benthic methane filter at Quepos Slide site; a landslide on the continental slope between the Nicoya and Osa Peninsula. Integrated areal rates of AOM ranged from 12.9 ± 6.0 to 45.2 ± 11.5 mmol m-2 d-1, with only 1 to 2.5% of the upward methane flux being released into the water column. Additionally, two parallel sediment cores from Quepos Slide were used for in vitro experiments in a recently developed Sediment-F low-Through (SLOT) system to simulate an increased fluid and methane flux from the bottom of the sediment core. The benthic methane filter revealed a high adaptability whereby the methane oxidation efficiency responded to the increased fluid flow within 150-170 days. To our knowledge, this study provides the first estimation of the natural biogeochemical response of seep sediments to changes in fluid flow.

  15. Array model interpolation and subband iterative adaptive filters applied to beamforming-based acoustic echo cancellation.

    PubMed

    Bai, Mingsian R; Chi, Li-Wen; Liang, Li-Huang; Lo, Yi-Yang

    2016-02-01

    In this paper, an evolutionary exposition is given in regard to the enhancing strategies for acoustic echo cancellers (AECs). A fixed beamformer (FBF) is utilized to focus on the near-end speaker while suppressing the echo from the far end. In reality, the array steering vector could differ considerably from the ideal freefield plane wave model. Therefore, an experimental procedure is developed to interpolate a practical array model from the measured frequency responses. Subband (SB) filtering with polyphase implementation is exploited to accelerate the cancellation process. Generalized sidelobe canceller (GSC) composed of an FBF and an adaptive blocking module is combined with AEC to maximize cancellation performance. Another enhancement is an internal iteration (IIT) procedure that enables efficient convergence in the adaptive SB filters within a sample time. Objective tests in terms of echo return loss enhancement (ERLE), perceptual evaluation of speech quality (PESQ), word recognition rate for automatic speech recognition (ASR), and subjective listening tests are conducted to validate the proposed AEC approaches. The results show that the GSC-SB-AEC-IIT approach has attained the highest ERLE without speech quality degradation, even in double-talk scenarios. PMID:26936567

  16. Adaptive Kalman filter based state of charge estimation algorithm for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Zheng, Hong; Liu, Xu; Wei, Min

    2015-09-01

    In order to improve the accuracy of the battery state of charge (SOC) estimation, in this paper we take a lithium-ion battery as an example to study the adaptive Kalman filter based SOC estimation algorithm. Firstly, the second-order battery system model is introduced. Meanwhile, the temperature and charge rate are introduced into the model. Then, the temperature and the charge rate are adopted to estimate the battery SOC, with the help of the parameters of an adaptive Kalman filter based estimation algorithm model. Afterwards, it is verified by the numerical simulation that in the ideal case, the accuracy of SOC estimation can be enhanced by adding two elements, namely, the temperature and charge rate. Finally, the actual road conditions are simulated with ADVISOR, and the simulation results show that the proposed method improves the accuracy of battery SOC estimation under actual road conditions. Thus, its application scope in engineering is greatly expanded. Project supported by the National Natural Science Foundation of China (Grant Nos. 61004048 and 61201010).

  17. Reduction of EEG artifacts in simultaneous EEG-fMRI: Reference layer adaptive filtering (RLAF).

    PubMed

    Steyrl, David; Patz, Franz; Krausz, Gunther; Edlinger, Günter; Müller-Putz, Gernot R

    2015-08-01

    Although simultaneous measurement of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is one of the most valuable methods for studying human brain activity non-invasively, it remains challenging to measure high quality EEG inside the MRI scanner. Recently, a new approach for minimizing residual MRI scanner artifacts in the EEG was presented: reference layer artifact subtraction (RLAS). Here, reference electrodes capture only the artifacts, which are subsequently subtracted from the measurement electrodes. With the present work we demonstrate that replacing the subtraction by adaptive filtering statistically significantly outperforms RLAS. Reference layer adaptive filtering (RLAF) attenuates the average artifact root-mean-square (RMS) voltage of the passive MRI scanner to 0.7 μV (-14.4 dB). RLAS achieves 0.78 μV (-13.5 dB). The combination of average artifact subtraction (AAS) and RLAF reduces the residual average gradient artifact RMS voltage to 2.3 μV (-49.2 dB). AAS alone achieves 5.7 μV (-39.0 dB). All measurements were conducted with an MRI phantom, as the reference layer cap available to us was a prototype. PMID:26737122

  18. Autonomous robotic capture of non-cooperative target by adaptive extended Kalman filter based visual servo

    NASA Astrophysics Data System (ADS)

    Dong, Gangqi; Zhu, Zheng H.

    2016-05-01

    This paper presents a real-time, vision-based algorithm for the pose and motion estimation of non-cooperative targets and its application in visual servo robotic manipulator to perform autonomous capture. A hybrid approach of adaptive extended Kalman filter and photogrammetry is developed for the real-time pose and motion estimation of non-cooperative targets. Based on the pose and motion estimates, the desired pose and trajectory of end-effector is defined and the corresponding desired joint angles of the robotic manipulator are derived by inverse kinematics. A close-loop visual servo control scheme is then developed for the robotic manipulator to track, approach and capture the target. Validating experiments are designed and performed on a custom-built six degrees of freedom robotic manipulator with an eye-in-hand configuration. The experimental results demonstrate the feasibility, effectiveness and robustness of the proposed adaptive extended Kalman filter enabled pose and motion estimation and visual servo strategy.

  19. Small Sample Properties of an Adaptive Filter with Application to Low Volume Statistical Process Control

    SciTech Connect

    CROWDER, STEPHEN V.

    1999-09-01

    In many manufacturing environments such as the nuclear weapons complex, emphasis has shifted from the regular production and delivery of large orders to infrequent small orders. However, the challenge to maintain the same high quality and reliability standards while building much smaller lot sizes remains. To meet this challenge, specific areas need more attention, including fast and on-target process start-up, low volume statistical process control, process characterization with small experiments, and estimating reliability given few actual performance tests of the product. In this paper we address the issue of low volume statistical process control. We investigate an adaptive filtering approach to process monitoring with a relatively short time series of autocorrelated data. The emphasis is on estimation and minimization of mean squared error rather than the traditional hypothesis testing and run length analyses associated with process control charting. We develop an adaptive filtering technique that assumes initial process parameters are unknown, and updates the parameters as more data become available. Using simulation techniques, we study the data requirements (the length of a time series of autocorrelated data) necessary to adequately estimate process parameters. We show that far fewer data values are needed than is typically recommended for process control applications. We also demonstrate the techniques with a case study from the nuclear weapons manufacturing complex.

  20. Small sample properties of an adaptive filter with application to low volume statistical process control

    SciTech Connect

    Crowder, S.V.; Eshleman, L.

    1998-08-01

    In many manufacturing environments such as the nuclear weapons complex, emphasis has shifted from the regular production and delivery of large orders to infrequent small orders. However, the challenge to maintain the same high quality and reliability standards white building much smaller lot sizes remains. To meet this challenge, specific areas need more attention, including fast and on-target process start-up, low volume statistical process control, process characterization with small experiments, and estimating reliability given few actual performance tests of the product. In this paper the authors address the issue of low volume statistical process control. They investigate an adaptive filtering approach to process monitoring with a relatively short time series of autocorrelated data. The emphasis is on estimation and minimization of mean squared error rather than the traditional hypothesis testing and run length analyses associated with process control charting. The authors develop an adaptive filtering technique that assumes initial process parameters are unknown, and updates the parameters as more data become available. Using simulation techniques, they study the data requirements (the length of a time series of autocorrelated data) necessary to adequately estimate process parameters. They show that far fewer data values are needed than is typically recommended for process control applications. And they demonstrate the techniques with a case study from the nuclear weapons manufacturing complex.

  1. Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering

    PubMed Central

    Carmena, Jose M.

    2016-01-01

    Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain’s behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user’s motor intention during CLDA—a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to

  2. Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering.

    PubMed

    Shanechi, Maryam M; Orsborn, Amy L; Carmena, Jose M

    2016-04-01

    Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain's behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user's motor intention during CLDA-a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to parameter

  3. Development of Shunt-Type Three-Phase Active Power Filter with Novel Adaptive Control for Wind Generators

    PubMed Central

    Chen, Ming-Hung

    2015-01-01

    This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters. PMID:26451391

  4. Development of Shunt-Type Three-Phase Active Power Filter with Novel Adaptive Control for Wind Generators.

    PubMed

    Chen, Ming-Hung

    2015-01-01

    This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters. PMID:26451391

  5. Adaptive anisotropic gaussian filtering to reduce acquisition time in cardiac diffusion tensor imaging.

    PubMed

    Mazumder, Ria; Clymer, Bradley D; Mo, Xiaokui; White, Richard D; Kolipaka, Arunark

    2016-06-01

    Diffusion tensor imaging (DTI) is used to quantify myocardial fiber orientation based on helical angles (HA). Accurate HA measurements require multiple excitations (NEX) and/or several diffusion encoding directions (DED). However, increasing NEX and/or DED increases acquisition time (TA). Therefore, in this study, we propose to reduce TA by implementing a 3D adaptive anisotropic Gaussian filter (AAGF) on the DTI data acquired from ex-vivo healthy and infarcted porcine hearts. DTI was performed on ex-vivo hearts [9-healthy, 3-myocardial infarction (MI)] with several combinations of DED and NEX. AAGF, mean (AVF) and median filters (MF) were applied on the primary eigenvectors of the diffusion tensor prior to HA estimation. The performance of AAGF was compared against AVF and MF. Root mean square error (RMSE), concordance correlation-coefficients and Bland-Altman's technique was used to determine optimal combination of DED and NEX that generated the best HA maps in the least possible TA. Lastly, the effect of implementing AAGF on the infarcted porcine hearts was also investigated. RMSE in HA estimation for AAGF was lower compared to AVF or MF. Post-filtering (AAGF) fewer DED and NEX were required to achieve HA maps with similar integrity as those obtained from higher NEX and/or DED. Pathological alterations caused in HA orientation in the MI model were preserved post-filtering (AAGF). Our results demonstrate that AAGF reduces TA without affecting the integrity of the myocardial microstructure. PMID:26843150

  6. Parameter Estimation and Data Management System of Sea Clutter

    NASA Astrophysics Data System (ADS)

    Cong, Bo; Duan, Qingguang; Qu, Yuanxin

    2016-02-01

    In this paper, a parameter estimation and data management system of sea clutter is described, which can acquire the data of sea clutter, implement parameter estimation and realize real-time communications.

  7. Rician noise reduction in magnetic resonance images using adaptive non-local mean and guided image filtering

    NASA Astrophysics Data System (ADS)

    Mahmood, Muhammad Tariq; Chu, Yeon-Ho; Choi, Young-Kyu

    2016-05-01

    This paper proposes a Rician noise reduction method for magnetic resonance (MR) images. The proposed method is based on adaptive non-local mean and guided image filtering techniques. In the first phase, a guidance image is obtained from the noisy image through an adaptive non-local mean filter. Sobel operators are applied to compute the strength of edges which is further used to control the spread of the kernel in non-local mean filtering. In the second phase, the noisy and the guidance images are provided to the guided image filter as input to restore the noise-free image. The improved performance of the proposed method is investigated using the simulated and real data sets of MR images. Its performance is also compared with the previously proposed state-of-the art methods. Comparative analysis demonstrates the superiority of the proposed scheme over the existing approaches.

  8. Rician noise reduction in magnetic resonance images using adaptive non-local mean and guided image filtering

    NASA Astrophysics Data System (ADS)

    Mahmood, Muhammad Tariq; Chu, Yeon-Ho; Choi, Young-Kyu

    2016-06-01

    This paper proposes a Rician noise reduction method for magnetic resonance (MR) images. The proposed method is based on adaptive non-local mean and guided image filtering techniques. In the first phase, a guidance image is obtained from the noisy image through an adaptive non-local mean filter. Sobel operators are applied to compute the strength of edges which is further used to control the spread of the kernel in non-local mean filtering. In the second phase, the noisy and the guidance images are provided to the guided image filter as input to restore the noise-free image. The improved performance of the proposed method is investigated using the simulated and real data sets of MR images. Its performance is also compared with the previously proposed state-of-the art methods. Comparative analysis demonstrates the superiority of the proposed scheme over the existing approaches.

  9. Powerline interference reduction in ECG signals using empirical wavelet transform and adaptive filtering.

    PubMed

    Singh, Omkar; Sunkaria, Ramesh Kumar

    2015-01-01

    Separating an information-bearing signal from the background noise is a general problem in signal processing. In a clinical environment during acquisition of an electrocardiogram (ECG) signal, The ECG signal is corrupted by various noise sources such as powerline interference (PLI), baseline wander and muscle artifacts. This paper presents novel methods for reduction of powerline interference in ECG signals using empirical wavelet transform (EWT) and adaptive filtering. The proposed methods are compared with the empirical mode decomposition (EMD) based PLI cancellation methods. A total of six methods for PLI reduction based on EMD and EWT are analysed and their results are presented in this paper. The EWT-based de-noising methods have less computational complexity and are more efficient as compared with the EMD-based de-noising methods. PMID:25412942

  10. Adaptation of Gabor filters for simulation of human preattentive mechanism for a mobile robot

    NASA Astrophysics Data System (ADS)

    Kulkarni, Naren; Naghdy, Golshah A.

    1993-08-01

    Vision guided mobile robot navigation is complex and requires analysis of tremendous amounts of information in real time. In order to simplify the task and reduce the amount of information, human preattentive mechanism can be adapted [Nag90]. During the preattentive search the scene is analyzed rapidly but in sufficient detail for the attention to be focused on the `area of interest.' The `area of interest' can further be scrutinized in more detail for recognition purposes. This `area of interest' can be a text message to facilitate navigation. Gabor filters and an automated turning mechanism are used to isolate the `area of interest.' These regions are subsequently processed with optimal spatial resolution for perception tasks. This method has clear advantages over the global operators in that, after an initial search, it scans each region of interest with optimum resolution. This reduces the volume of information for recognition stages and ensures that no region is over or under estimated.

  11. Adaptive UAV Attitude Estimation Employing Unscented Kalman Filter, FOAM and Low-Cost MEMS Sensors

    PubMed Central

    de Marina, Héctor García; Espinosa, Felipe; Santos, Carlos

    2012-01-01

    Navigation employing low cost MicroElectroMechanical Systems (MEMS) sensors in Unmanned Aerial Vehicles (UAVs) is an uprising challenge. One important part of this navigation is the right estimation of the attitude angles. Most of the existent algorithms handle the sensor readings in a fixed way, leading to large errors in different mission stages like take-off aerobatic maneuvers. This paper presents an adaptive method to estimate these angles using off-the-shelf components. This paper introduces an Attitude Heading Reference System (AHRS) based on the Unscented Kalman Filter (UKF) using the Fast Optimal Attitude Matrix (FOAM) algorithm as the observation model. The performance of the method is assessed through simulations. Moreover, field experiments are presented using a real fixed-wing UAV. The proposed low cost solution, implemented in a microcontroller, shows a satisfactory real time performance. PMID:23012559

  12. Adaptive Kalman filter for indoor localization using Bluetooth Low Energy and inertial measurement unit.

    PubMed

    Yoon, Paul K; Zihajehzadeh, Shaghayegh; Bong-Soo Kang; Park, Edward J

    2015-08-01

    This paper proposes a novel indoor localization method using the Bluetooth Low Energy (BLE) and an inertial measurement unit (IMU). The multipath and non-line-of-sight errors from low-power wireless localization systems commonly result in outliers, affecting the positioning accuracy. We address this problem by adaptively weighting the estimates from the IMU and BLE in our proposed cascaded Kalman filter (KF). The positioning accuracy is further improved with the Rauch-Tung-Striebel smoother. The performance of the proposed algorithm is compared against that of the standard KF experimentally. The results show that the proposed algorithm can maintain high accuracy for position tracking the sensor in the presence of the outliers. PMID:26736389

  13. An adaptive Kalman filter technique for context-aware heart rate monitoring.

    PubMed

    Xu, Min; Goldfain, Albert; Dellostritto, Jim; Iyengar, Satish

    2012-01-01

    Traditional physiological monitoring systems convert a person's vital sign waveforms, such as heart rate, respiration rate and blood pressure, into meaningful information by comparing the instant reading with a preset threshold or a baseline without considering the contextual information of the person. It would be beneficial to incorporate the contextual data such as activity status of the person to the physiological data in order to obtain a more accurate representation of a person's physiological status. In this paper, we proposed an algorithm based on adaptive Kalman filter that describes the heart rate response with respect to different activity levels. It is towards our final goal of intelligent detection of any abnormality in the person's vital signs. Experimental results are provided to demonstrate the feasibility of the algorithm. PMID:23367423

  14. Adaptive UAV attitude estimation employing unscented Kalman Filter, FOAM and low-cost MEMS sensors.

    PubMed

    de Marina, Héctor García; Espinosa, Felipe; Santos, Carlos

    2012-01-01

    Navigation employing low cost MicroElectroMechanical Systems (MEMS) sensors in Unmanned Aerial Vehicles (UAVs) is an uprising challenge. One important part of this navigation is the right estimation of the attitude angles. Most of the existent algorithms handle the sensor readings in a fixed way, leading to large errors in different mission stages like take-off aerobatic maneuvers. This paper presents an adaptive method to estimate these angles using off-the-shelf components. This paper introduces an Attitude Heading Reference System (AHRS) based on the Unscented Kalman Filter (UKF) using the Fast Optimal Attitude Matrix (FOAM) algorithm as the observation model. The performance of the method is assessed through simulations. Moreover, field experiments are presented using a real fixed-wing UAV. The proposed low cost solution, implemented in a microcontroller, shows a satisfactory real time performance. PMID:23012559

  15. Motion artifact reduction in electrocardiogram using adaptive filtering based on half cell potential monitoring.

    PubMed

    Ko, Byung-hoon; Lee, Takhyung; Choi, Changmok; Kim, Youn-ho; Park, Gunguk; Kang, KyoungHo; Bae, Sang Kon; Shin, Kunsoo

    2012-01-01

    The electrocardiogram (ECG) is the main measurement parameter for effectively diagnosing chronic disease and guiding cardio-fitness therapy. ECGs contaminated by noise or artifacts disrupt the normal functioning of the automatic analysis algorithm. The objective of this study is to evaluate a method of measuring the HCP variation in motion artifacts through direct monitoring. The proposed wearable sensing device has two channels. One channel is used to measure the ECG through a differential amplifier. The other is for monitoring motion artifacts using the modified electrode and the same differential amplifier. Noise reduction was performed using adaptive filtering, based on a reference signal highly correlated with it. Direct measurement of HCP variations can eliminate the need for additional sensors. PMID:23366209

  16. Adaptive filters for monitoring localized brain activity from surface potential time series

    SciTech Connect

    Spencer, M.E. |; Leahy, R.M.; Mosher, J.C. |; Lewis, P.S.

    1992-12-01

    We address the problem of processing electroencephalographic (EEG) data to monitor the time series of the components of a current dipole source vector at a given location in the head. This is the spatial filtering problem for vector sources in a lossy, three dimensional, zero delay medium. Dipolar and distributed sources at other than the desired location are canceled or attenuated with an adaptive linearly constrained minimum variance (LCMV) beamformer. Actual EEG data acquired from a human subject serves as the interference in a case where the desired source is simulated and superimposed on the actual data. It is shown that the LCMV beamformer extracts the desired dipole time series while effectively canceling the subjects interference.

  17. Adaptive filters for monitoring localized brain activity from surface potential time series

    SciTech Connect

    Spencer, M.E. . Signal and Image Processing Inst. TRW, Inc., Redondo Beach, CA ); Leahy, R.M. . Signal and Image Processing Inst.); Mosher, J.C. . Signal and Image Processing Inst. Lo

    1992-01-01

    We address the problem of processing electroencephalographic (EEG) data to monitor the time series of the components of a current dipole source vector at a given location in the head. This is the spatial filtering problem for vector sources in a lossy, three dimensional, zero delay medium. Dipolar and distributed sources at other than the desired location are canceled or attenuated with an adaptive linearly constrained minimum variance (LCMV) beamformer. Actual EEG data acquired from a human subject serves as the interference in a case where the desired source is simulated and superimposed on the actual data. It is shown that the LCMV beamformer extracts the desired dipole time series while effectively canceling the subjects interference.

  18. Color filter array demosaicing: an adaptive progressive interpolation based on the edge type

    NASA Astrophysics Data System (ADS)

    Dong, Qiqi; Liu, Zhaohui

    2015-10-01

    Color filter array (CFA) is one of the key points for single-sensor digital cameras to produce color images. Bayer CFA is the most commonly used pattern. In this array structure, the sampling frequency of green is two times of red or blue, which is consistent with the sensitivity of human eyes to colors. However, each sensor pixel only samples one of three primary color values. To render a full-color image, an interpolation process, commonly referred to CFA demosaicing, is required to estimate the other two missing color values at each pixel. In this paper, we explore an adaptive progressive interpolation based on the edge type algorithm. The proposed demosaicing method consists of two successive steps: an interpolation step that estimates missing color values according to various edges and a post-processing step by iterative interpolation.

  19. Adaptive Kalman filtering for real-time mapping of the visual field

    PubMed Central

    Ward, B. Douglas; Janik, John; Mazaheri, Yousef; Ma, Yan; DeYoe, Edgar A.

    2013-01-01

    This paper demonstrates the feasibility of real-time mapping of the visual field for clinical applications. Specifically, three aspects of this problem were considered: (1) experimental design, (2) statistical analysis, and (3) display of results. Proper experimental design is essential to achieving a successful outcome, particularly for real-time applications. A random-block experimental design was shown to have less sensitivity to measurement noise, as well as greater robustness to error in modeling of the hemodynamic impulse response function (IRF) and greater flexibility than common alternatives. In addition, random encoding of the visual field allows for the detection of voxels that are responsive to multiple, not necessarily contiguous, regions of the visual field. Due to its recursive nature, the Kalman filter is ideally suited for real-time statistical analysis of visual field mapping data. An important feature of the Kalman filter is that it can be used for nonstationary time series analysis. The capability of the Kalman filter to adapt, in real time, to abrupt changes in the baseline arising from subject motion inside the scanner and other external system disturbances is important for the success of clinical applications. The clinician needs real-time information to evaluate the success or failure of the imaging run and to decide whether to extend, modify, or terminate the run. Accordingly, the analytical software provides real-time displays of (1) brain activation maps for each stimulus segment, (2) voxel-wise spatial tuning profiles, (3) time plots of the variability of response parameters, and (4) time plots of activated volume. PMID:22100663

  20. A novel nonlinear adaptive filter using a pipelined second-order Volterra recurrent neural network.

    PubMed

    Zhao, Haiquan; Zhang, Jiashu

    2009-12-01

    To enhance the performance and overcome the heavy computational complexity of recurrent neural networks (RNN), a novel nonlinear adaptive filter based on a pipelined second-order Volterra recurrent neural network (PSOVRNN) is proposed in this paper. A modified real-time recurrent learning (RTRL) algorithm of the proposed filter is derived in much more detail. The PSOVRNN comprises of a number of simple small-scale second-order Volterra recurrent neural network (SOVRNN) modules. In contrast to the standard RNN, these modules of a PSOVRNN can be performed simultaneously in a pipelined parallelism fashion, which can lead to a significant improvement in its total computational efficiency. Moreover, since each module of the PSOVRNN is a SOVRNN in which nonlinearity is introduced by the recursive second-order Volterra (RSOV) expansion, its performance can be further improved. Computer simulations have demonstrated that the PSOVRNN performs better than the pipelined recurrent neural network (PRNN) and RNN for nonlinear colored signals prediction and nonlinear channel equalization. However, the superiority of the PSOVRNN over the PRNN is at the cost of increasing computational complexity due to the introduced nonlinear expansion of each module. PMID:19523787

  1. Bilateral filtering and adaptive tone-mapping for qualified edge and image enhancement

    NASA Astrophysics Data System (ADS)

    Hu, Kuo-Jui; Chang, Ting-Ting; Lu, Min-Yao; Li, Wu-Jeng; Huang, Jih-Fon

    2009-01-01

    Most of high-contrast images are common with dark and bright area. It is difficult to present the detail on both dark and high light areas on display devices. In order to resolve this problem, we proposed a method of image enhancement to improve this image quality and used bilateral filter to keep the detail. In paper, we applied an appropriate algorithm to process images. At first, we use bilateral filter to separate image. One is large scale image and the other is detail image. Second, we made large scale image which was translated into histogram. In order to make the images divided into three stairs, such as lightness, middle-tone and darkness region. We decided two optimal threshold parameters. Finally, according to three images we use different tone-mapping method to process each stair. The tone-mapping method includes adaptive s-curve and gamma curve algorithms. The experiment results of this study revealed image detail and enhancement. To avoid contour phenomenon is in lightness region.

  2. Use of adaptive hybrid filtering process in Crohn's disease lesion detection from real capsule endoscopy videos.

    PubMed

    Charisis, Vasileios S; Hadjileontiadis, Leontios J

    2016-03-01

    The aim of this Letter is to present a new capsule endoscopy (CE) image analysis scheme for the detection of small bowel ulcers that relate to Crohn's disease. More specifically, this scheme is based on: (i) a hybrid adaptive filtering (HAF) process, that utilises genetic algorithms to the curvelet-based representation of images for efficient extraction of the lesion-related morphological characteristics, (ii) differential lacunarity (DL) analysis for texture feature extraction from the HAF-filtered images and (iii) support vector machines for robust classification performance. For the training of the proposed scheme, namely HAF-DL, an 800-image database was used and the evaluation was based on ten 30-second long endoscopic videos. Experimental results, along with comparison with other related efforts, have shown that the HAF-DL approach evidently outperforms the latter in the field of CE image analysis for automated lesion detection, providing higher classification results. The promising performance of HAF-DL paves the way for a complete computer-aided diagnosis system that could support the physicians' clinical practice. PMID:27222730

  3. Adaptive Filter-bank Approach to Restoration and Spectral Analysis of Gapped Data

    NASA Astrophysics Data System (ADS)

    Stoica, Petre; Larsson, Erik G.; Li, Jian

    2000-10-01

    The main topic of this paper is the nonparametric estimation of complex (both amplitude and phase) spectra from gapped data, as well as the restoration of such data. The focus is on the extension of the APES (amplitude and phase estimation) approach to data sequences with gaps. APES, which is one of the most successful existing nonparametric approaches to the spectral analysis of full data sequences, uses a bank of narrowband adaptive (both frequency and data dependent) filters to estimate the spectrum. A recent interpretation of this approach showed that the filterbank used by APES and the resulting spectrum minimize a least-squares (LS) fitting criterion between the filtered sequence and its spectral decomposition. The extended approach, which is called GAPES for somewhat obvious reasons, capitalizes on the aforementioned interpretation: it minimizes the APES-LS fitting criterion with respect to the missing data as well. This should be a sensible thing to do whenever the full data sequence is stationary, and hence the missing data have the same spectral content as the available data. We use both simulated and real data examples to show that GAPES estimated spectra and interpolated data sequences have excellent accuracy. We also show the performance gain achieved by GAPES over two of the most commonly used approaches for gapped-data spectral analysis, viz., the periodogram and the parametric CLEAN method. This work was partly supported by the Swedish Foundation for Strategic Research.

  4. Adaptive spatial filtering of daytime sky noise in a satellite quantum key distribution downlink receiver

    NASA Astrophysics Data System (ADS)

    Gruneisen, Mark T.; Sickmiller, Brett A.; Flanagan, Michael B.; Black, James P.; Stoltenberg, Kurt E.; Duchane, Alexander W.

    2016-02-01

    Spatial filtering is an important technique for reducing sky background noise in a satellite quantum key distribution downlink receiver. Atmospheric turbulence limits the extent to which spatial filtering can reduce sky noise without introducing signal losses. Using atmospheric propagation and compensation simulations, the potential benefit of adaptive optics (AO) to secure key generation (SKG) is quantified. Simulations are performed assuming optical propagation from a low-Earth-orbit satellite to a terrestrial receiver that includes AO. Higher-order AO correction is modeled assuming a Shack-Hartmann wavefront sensor and a continuous-face-sheet deformable mirror. The effects of atmospheric turbulence, tracking, and higher-order AO on the photon capture efficiency are simulated using statistical representations of turbulence and a time-domain wave-optics hardware emulator. SKG rates are calculated for a decoy-state protocol as a function of the receiver field of view for various strengths of turbulence, sky radiances, and pointing angles. The results show that at fields of view smaller than those discussed by others, AO technologies can enhance SKG rates in daylight and enable SKG where it would otherwise be prohibited as a consequence of background optical noise and signal loss due to propagation and turbulence effects.

  5. Local stimulus disambiguation with global motion filters predicts adaptive surround modulation.

    PubMed

    Dellen, Babette; Torras, Carme

    2013-10-01

    Humans have no problem segmenting different motion stimuli despite the ambiguity of local motion signals. Adaptive surround modulation, i.e., the apparent switching between integrative and antagonistic modes, is assumed to play a crucial role in this process. However, so far motion processing models based on local integration have not been able to provide a unifying explanation for this phenomenon. This motivated us to investigate the problem of local stimulus disambiguation in an alternative and fundamentally distinct motion-processing model which uses global motion filters for velocity computation. Local information is reconstructed at the end of the processing stream through the constructive interference of global signals, i.e., inverse transformations. We show that in this model local stimulus disambiguation can be achieved by means of a novel filter embedded in this architecture. This gives rise to both integrative and antagonistic effects which are in agreement with those observed in psychophysical experiments with humans, providing a functional explanation for effects of motion repulsion. PMID:23685285

  6. Clutter free synthetic aperture radar correlator

    NASA Technical Reports Server (NTRS)

    Jain, A.

    1977-01-01

    A synthetic aperture radar correlation system including a moving diffuser located at the image plane of a radar processor is described. The output of the moving diffuser is supplied to a lens whose impulse response is at least as wide as that of the overall processing system. A significant reduction in clutter results is given.

  7. Prediction of over-the-horizon radar clutter using the clutter effects model

    NASA Astrophysics Data System (ADS)

    Lauer, Carl; Nickisch, L. J.; Wortman, William

    1998-07-01

    We have developed an over-the-horizon radar (OTHR ) clutter prediction model to better define equatorial clutter environments. This physics-based model is referred to as the clutter effects model, or CLEM. It is nominally configured toward simulation of the Navy's Relocatable OTHR (ROTHR). Radar signal propagation geometry is computed by ray tracing through a global ionosphere model (driven by geophysical conditions, time, and location). The equatorial ionosphere has high levels of field-aligned irregularities which produce strong clutter environments for OTHR. Strengths of modeled ionospheric irregularities are derived from transionospheric scintillation measurement data. Clutter Doppler and delay spreading is analyzed using multiple phase screen forward diffraction techniques. Technical background on an earlier version of CLEM, which performed three-dimensional (3-D) ray tracing, is given by Lauer et al. [1995]. The current version, which is under discussion here, has been sped up through the use of 2-D ray tracing and substitution of a simpler spectral form for the signal delay-Doppler spectrum; however, the reader may refer to Lauer et al [1995] for background on various aspects of the theory which still pertain, including phase diffraction propagation effects, absorption calculations, and ionospheric structure predictions. This paper describes CLEM models and compares CLEM predictions with clutter measurement data for specific cases.

  8. Mitigating ground clutter effects with lightweight artificial dielectrics

    NASA Astrophysics Data System (ADS)

    Rappaport, Carey M.; Beihold, Fred; Linnehan, Robert

    2001-10-01

    The problem of scattered and transmitted electromagnetic wave distortion by random rough ground surfaces can be reduced by using a lightweight dielectric matching layer. For mine detection applications, it is essential for this layer to be lightweight, low loss, readily conformable, and adaptable to different soil types. Arrays of metal-coated plastic spheres act as lossless artificial dielectrics with impedance determined by the volume packing fraction. By controlling the thickness of insulator surrounding each sphere, a close-packed array with the dielectric properties of soil can be created inside a compliant rolling bag that will conform to the rough surface of the ground. Since this artificial dielectric is matched to the soil, the ground surface interface is 'softened', without an abrupt transition from soil to air. Signals transmitted and received by GPR antennas immersed in the artificial dielectric within the bag will not be corrupted by ground surface clutter. Alternatively, an artificial dielectric layer on the ground with a planar air interface could be used to ensure that the surface reflection is a constant, well-calibrated signal. Computational models indicate complete removal of the ground clutter, even with occasional gaps between the artificial dielectric and the ground. Experimental studies with swept-frequency measurements and impulse GPR indicate that using this dielectric layer matching to a rough loamy soil ground surface is results in signals that are practically indistinguishable from those of an equivalent layer of the same type of soil.

  9. Emergence of band-pass filtering through adaptive spiking in the owl's cochlear nucleus.

    PubMed

    Fontaine, Bertrand; MacLeod, Katrina M; Lubejko, Susan T; Steinberg, Louisa J; Köppl, Christine; Peña, Jose L

    2014-07-15

    In the visual, auditory, and electrosensory modalities, stimuli are defined by first- and second-order attributes. The fast time-pressure signal of a sound, a first-order attribute, is important, for instance, in sound localization and pitch perception, while its slow amplitude-modulated envelope, a second-order attribute, can be used for sound recognition. Ascending the auditory pathway from ear to midbrain, neurons increasingly show a preference for the envelope and are most sensitive to particular envelope modulation frequencies, a tuning considered important for encoding sound identity. The level at which this tuning property emerges along the pathway varies across species, and the mechanism of how this occurs is a matter of debate. In this paper, we target the transition between auditory nerve fibers and the cochlear nucleus angularis (NA). While the owl's auditory nerve fibers simultaneously encode the fast and slow attributes of a sound, one synapse further, NA neurons encode the envelope more efficiently than the auditory nerve. Using in vivo and in vitro electrophysiology and computational analysis, we show that a single-cell mechanism inducing spike threshold adaptation can explain the difference in neural filtering between the two areas. We show that spike threshold adaptation can explain the increased selectivity to modulation frequency, as input level increases in NA. These results demonstrate that a spike generation nonlinearity can modulate the tuning to second-order stimulus features, without invoking network or synaptic mechanisms. PMID:24790170

  10. Iterative version of the QRD for adaptive recursive least squares (RLS) filtering

    NASA Astrophysics Data System (ADS)

    Goetze, Juergen

    1994-10-01

    A modified version of the QR-decomposition (QRD) is presented. It uses approximate Givens rotations instead of exact Givens rotations, i.e., a matrix entry usually annihilated with an exact rotation by an angle (sigma) is only reduced by using an approximate rotation by an angle (sigma) . The approximation of the rotations is based on the idea of CORDIC. Evaluating a CORDIC-based approximate rotation is to determine the angle (sigma) equals (sigma) t equals arctan 2-t, which is closest to the exact rotation angle (sigma) . This angle (sigma) t is applied instead of (sigma) . Using approximate rotations for computing the QRD results in an iterative version of the original QRD. A recursive version of this QRD using CORDIC-based approximate rotations is applied to adaptive RLS filtering. Only a few angles of the CORDIC sequence, r say (r << b, where b is the word length), work as well as using exact rotations (r equals b, original CORDIC). The misadjustment error decreases as r increases. The convergence of the QRD-RLS algorithm, however, is insensitive to the value of r. Adapting the approximation accuracy during the course of the QRD-RLS algorithm is also discussed. Simulations (channel equalization) confirm the results.

  11. Emergence of band-pass filtering through adaptive spiking in the owl's cochlear nucleus

    PubMed Central

    MacLeod, Katrina M.; Lubejko, Susan T.; Steinberg, Louisa J.; Köppl, Christine; Peña, Jose L.

    2014-01-01

    In the visual, auditory, and electrosensory modalities, stimuli are defined by first- and second-order attributes. The fast time-pressure signal of a sound, a first-order attribute, is important, for instance, in sound localization and pitch perception, while its slow amplitude-modulated envelope, a second-order attribute, can be used for sound recognition. Ascending the auditory pathway from ear to midbrain, neurons increasingly show a preference for the envelope and are most sensitive to particular envelope modulation frequencies, a tuning considered important for encoding sound identity. The level at which this tuning property emerges along the pathway varies across species, and the mechanism of how this occurs is a matter of debate. In this paper, we target the transition between auditory nerve fibers and the cochlear nucleus angularis (NA). While the owl's auditory nerve fibers simultaneously encode the fast and slow attributes of a sound, one synapse further, NA neurons encode the envelope more efficiently than the auditory nerve. Using in vivo and in vitro electrophysiology and computational analysis, we show that a single-cell mechanism inducing spike threshold adaptation can explain the difference in neural filtering between the two areas. We show that spike threshold adaptation can explain the increased selectivity to modulation frequency, as input level increases in NA. These results demonstrate that a spike generation nonlinearity can modulate the tuning to second-order stimulus features, without invoking network or synaptic mechanisms. PMID:24790170

  12. Performance Enhancement of Pharmacokinetic Diffuse Fluorescence Tomography by Use of Adaptive Extended Kalman Filtering.

    PubMed

    Wang, Xin; Wu, Linhui; Yi, Xi; Zhang, Yanqi; Zhang, Limin; Zhao, Huijuan; Gao, Feng

    2015-01-01

    Due to both the physiological and morphological differences in the vascularization between healthy and diseased tissues, pharmacokinetic diffuse fluorescence tomography (DFT) can provide contrast-enhanced and comprehensive information for tumor diagnosis and staging. In this regime, the extended Kalman filtering (EKF) based method shows numerous advantages including accurate modeling, online estimation of multiparameters, and universal applicability to any optical fluorophore. Nevertheless the performance of the conventional EKF highly hinges on the exact and inaccessible prior knowledge about the initial values. To address the above issues, an adaptive-EKF scheme is proposed based on a two-compartmental model for the enhancement, which utilizes a variable forgetting-factor to compensate the inaccuracy of the initial states and emphasize the effect of the current data. It is demonstrated using two-dimensional simulative investigations on a circular domain that the proposed adaptive-EKF can obtain preferable estimation of the pharmacokinetic-rates to the conventional-EKF and the enhanced-EKF in terms of quantitativeness, noise robustness, and initialization independence. Further three-dimensional numerical experiments on a digital mouse model validate the efficacy of the method as applied in realistic biological systems. PMID:26089975

  13. Multiframe adaptive Wiener filter super-resolution with JPEG2000-compressed images

    NASA Astrophysics Data System (ADS)

    Narayanan, Barath Narayanan; Hardie, Russell C.; Balster, Eric J.

    2014-12-01

    Historically, Joint Photographic Experts Group 2000 (JPEG2000) image compression and multiframe super-resolution (SR) image processing techniques have evolved separately. In this paper, we propose and compare novel processing architectures for applying multiframe SR with JPEG2000 compression. We propose a modified adaptive Wiener filter (AWF) SR method and study its performance as JPEG2000 is incorporated in different ways. In particular, we perform compression prior to SR and compare this to compression after SR. We also compare both independent-frame compression and difference-frame compression approaches. We find that some of the SR artifacts that result from compression can be reduced by decreasing the assumed global signal-to-noise ratio (SNR) for the AWF SR method. We also propose a novel spatially adaptive SNR estimate for the AWF designed to compensate for the spatially varying compression artifacts in the input frames. The experimental results include the use of simulated imagery for quantitative analysis. We also include real-video results for subjective analysis.

  14. Adaptive Resampling Particle Filters for GPS Carrier-Phase Navigation and Collision Avoidance System

    NASA Astrophysics Data System (ADS)

    Hwang, Soon Sik

    This dissertation addresses three problems: 1) adaptive resampling technique (ART) for Particle Filters, 2) precise relative positioning using Global Positioning System (GPS) Carrier-Phase (CP) measurements applied to nonlinear integer resolution problem for GPS CP navigation using Particle Filters, and 3) collision detection system based on GPS CP broadcasts. First, Monte Carlo filters, called Particle Filters (PF), are widely used where the system is non-linear and non-Gaussian. In real-time applications, their estimation accuracies and efficiencies are significantly affected by the number of particles and the scheduling of relocating weights and samples, the so-called resampling step. In this dissertation, the appropriate number of particles is estimated adaptively such that the error of the sample mean and variance stay in bounds. These bounds are given by the confidence interval of a normal probability distribution for a multi-variate state. Two required number of samples maintaining the mean and variance error within the bounds are derived. The time of resampling is determined when the required sample number for the variance error crosses the required sample number for the mean error. Second, the PF using GPS CP measurements with adaptive resampling is applied to precise relative navigation between two GPS antennas. In order to make use of CP measurements for navigation, the unknown number of cycles between GPS antennas, the so called integer ambiguity, should be resolved. The PF is applied to this integer ambiguity resolution problem where the relative navigation states estimation involves nonlinear observations and nonlinear dynamics equation. Using the PF, the probability density function of the states is estimated by sampling from the position and velocity space and the integer ambiguities are resolved without using the usual hypothesis tests to search for the integer ambiguity. The ART manages the number of position samples and the frequency of the

  15. A novel adaptive discrete cosine transform-domain filter for gap-inpainting of high resolution PET scanners

    SciTech Connect

    Shih, Cheng-Ting; Lin, Hsin-Hon; Chuang, Keh-Shih; Wu, Jay; Chang, Shu-Jun

    2014-08-15

    Purpose: Several positron emission tomography (PET) scanners with special detector block arrangements have been developed in recent years to improve the resolution of PET images. However, the discontinuous detector blocks cause gaps in the sinogram. This study proposes an adaptive discrete cosine transform-based (aDCT) filter for gap-inpainting. Methods: The gap-corrupted sinogram was morphologically closed and subsequently converted to the DCT domain. A certain number of the largest coefficients in the DCT spectrum were identified to determine the low-frequency preservation region. The weighting factors for the remaining coefficients were determined by an exponential weighting function. The aDCT filter was constructed and applied to two digital phantoms and a simulated phantom introduced with various levels of noise. Results: For the Shepp-Logan head phantom, the aDCT filter filled the gaps effectively. For the Jaszczak phantom, no secondary artifacts were induced after aDCT filtering. The percent mean square error and mean structure similarity of the aDCT filter were superior to those of the DCT2 filter at all noise levels. For the simulated striatal dopamine innervation study, the aDCT filter recovered the shape of the striatum and restored the striatum to reference activity ratios to the ideal value. Conclusions: The proposed aDCT filter can recover the missing gap data in the sinogram and improve the image quality and quantitative accuracy of PET images.

  16. Echolocating Big Brown Bats, Eptesicus fuscus, Modulate Pulse Intervals to Overcome Range Ambiguity in Cluttered Surroundings

    PubMed Central

    Wheeler, Alyssa R.; Fulton, Kara A.; Gaudette, Jason E.; Simmons, Ryan A.; Matsuo, Ikuo; Simmons, James A.

    2016-01-01

    Big brown bats (Eptesicus fuscus) emit trains of brief, wideband frequency-modulated (FM) echolocation sounds and use echoes of these sounds to orient, find insects, and guide flight through vegetation. They are observed to emit sounds that alternate between short and long inter-pulse intervals (IPIs), forming sonar sound groups. The occurrence of these strobe groups has been linked to flight in cluttered acoustic environments, but how exactly bats use sonar sound groups to orient and navigate is still a mystery. Here, the production of sound groups during clutter navigation was examined. Controlled flight experiments were conducted where the proximity of the nearest obstacles was systematically decreased while the extended scene was kept constant. Four bats flew along a corridor of varying widths (100, 70, and 40 cm) bounded by rows of vertically hanging plastic chains while in-flight echolocation calls were recorded. Bats shortened their IPIs for more rapid spatial sampling and also grouped their sounds more tightly when flying in narrower corridors. Bats emitted echolocation calls with progressively shorter IPIs over the course of a flight, and began their flights by emitting shorter starting IPI calls when clutter was denser. The percentage of sound groups containing 3 or more calls increased with increasing clutter proximity. Moreover, IPI sequences having internal structure become more pronounced when corridor width narrows. A novel metric for analyzing the temporal organization of sound sequences was developed, and the results indicate that the time interval between echolocation calls depends heavily on the preceding time interval. The occurrence of specific IPI patterns were dependent upon clutter, which suggests that sonar sound grouping may be an adaptive strategy for coping with pulse-echo ambiguity in cluttered surroundings. PMID:27445723

  17. Echolocating Big Brown Bats, Eptesicus fuscus, Modulate Pulse Intervals to Overcome Range Ambiguity in Cluttered Surroundings.

    PubMed

    Wheeler, Alyssa R; Fulton, Kara A; Gaudette, Jason E; Simmons, Ryan A; Matsuo, Ikuo; Simmons, James A

    2016-01-01

    Big brown bats (Eptesicus fuscus) emit trains of brief, wideband frequency-modulated (FM) echolocation sounds and use echoes of these sounds to orient, find insects, and guide flight through vegetation. They are observed to emit sounds that alternate between short and long inter-pulse intervals (IPIs), forming sonar sound groups. The occurrence of these strobe groups has been linked to flight in cluttered acoustic environments, but how exactly bats use sonar sound groups to orient and navigate is still a mystery. Here, the production of sound groups during clutter navigation was examined. Controlled flight experiments were conducted where the proximity of the nearest obstacles was systematically decreased while the extended scene was kept constant. Four bats flew along a corridor of varying widths (100, 70, and 40 cm) bounded by rows of vertically hanging plastic chains while in-flight echolocation calls were recorded. Bats shortened their IPIs for more rapid spatial sampling and also grouped their sounds more tightly when flying in narrower corridors. Bats emitted echolocation calls with progressively shorter IPIs over the course of a flight, and began their flights by emitting shorter starting IPI calls when clutter was denser. The percentage of sound groups containing 3 or more calls increased with increasing clutter proximity. Moreover, IPI sequences having internal structure become more pronounced when corridor width narrows. A novel metric for analyzing the temporal organization of sound sequences was developed, and the results indicate that the time interval between echolocation calls depends heavily on the preceding time interval. The occurrence of specific IPI patterns were dependent upon clutter, which suggests that sonar sound grouping may be an adaptive strategy for coping with pulse-echo ambiguity in cluttered surroundings. PMID:27445723

  18. Gearbox fault diagnosis using adaptive zero phase time-varying filter based on multi-scale chirplet sparse signal decomposition

    NASA Astrophysics Data System (ADS)

    Wu, Chunyan; Liu, Jian; Peng, Fuqiang; Yu, Dejie; Li, Rong

    2013-07-01

    When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To overcome this drawback, the zero phase filter is introduced to the mentioned filter, and a fault diagnosis method for speed-changing gearbox is proposed. Firstly, the gear meshing frequency of each gearbox is estimated by chirplet path pursuit. Then, according to the estimated gear meshing frequencies, an adaptive zero phase time-varying filter(AZPTF) is designed to filter the original signal. Finally, the basis for fault diagnosis is acquired by the envelope order analysis to the filtered signal. The signal consisting of two time-varying amplitude modulation and frequency modulation(AM-FM) signals is respectively analyzed by ATF and AZPTF based on MCSSD. The simulation results show the variances between the original signals and the filtered signals yielded by AZPTF based on MCSSD are 13.67 and 41.14, which are far less than variances (323.45 and 482.86) between the original signals and the filtered signals obtained by ATF based on MCSSD. The experiment results on the vibration signals of gearboxes indicate that the vibration signals of the two speed-changing gearboxes installed on one foundation bed can be separated by AZPTF effectively. Based on the demodulation information of the vibration signal of each gearbox, the fault diagnosis can be implemented. Both simulation and experiment examples prove that the proposed filter can extract a mono-component time-varying AM-FM signal from the multi-component time-varying AM-FM signal without distortion.

  19. Adaptive Control of Non-Minimum Phase Modal Systems Using Residual Mode Filters2. Parts 1 and 2

    NASA Technical Reports Server (NTRS)

    Balas, Mark J.; Frost, Susan

    2011-01-01

    Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. This paper will be divided into two parts. Here in Part I we will review the basic adaptive control approach and introduce the primary ideas. In Part II, we will present the RMF methodology and complete the proofs of all our results. Also, we will apply the above theoretical results to a simple flexible structure example to illustrate the behavior with and without the residual mode filter.

  20. Some adaptive filtering techniques applied to the passive remote sensing problem. [for Tiros-N and Nimbus 6 experiments

    NASA Technical Reports Server (NTRS)

    Toldalagi, P. M.

    1980-01-01

    A review is made of recursive statistical regression techniques incorporating past or past and future observations through smoothing and Kalman filtering, respectively; with results for the cases of the Tiros-N/MSU and Nimbus-6/Scams remote sensing satellite experiments. In response to the lack of a satisfactory model for the medium sounded, which is presently a major limitation on retrieval technique performance, a novel, global approach is proposed which casts the retrieval problem into the framework of adaptive filtering. A numerical implementation of such an adaptive system is presented, with a multilayer, semi-spectral general circulation model for the atmosphere being used to fine-tune the sensor as well as the dynamical equations of a Kalman filter. It is shown that the assimilation of radiometric data becomes a straightforward subproblem.

  1. Clutter and target signature statistics from the DARPA background clutter experiment

    NASA Astrophysics Data System (ADS)

    Rosen, Erik M.; Altshuler, Thomas W.

    1998-09-01

    Clutter is the largest factor contributing to the poor detection rates and high false-alarm rates for mine and unexploded ordnance (UXO) detection systems. The source of this clutter can be either naturally occurring or anthropic. Because the standard detector technologies are anomaly-based systems, few features within the sensor data permit mitigation of false alarms or provide an avenue to enhance detection rates. To achieve operational detection performance, a better understanding of clutter statistics is required at the single pixel level and at the feature level. This paper presents an in-depth assessment of the statistical properties of clutter and target signatures for a specific test site. This assessment uses data collected during the Defense Advanced Research Projects Agency (DARPA) Background Clutter Data Collection Experiment. Pixel-level statistics for electromagnetic induction detection systems are discussed. The resulting statistical distribution functions for clutter and targets exhibit poor separation. Improved separation of the distribution functions is achieved if features are employed. For example, by measuring the particular size and shape features of target signatures, the false-alarm rate can be reduced with minimal decrease in the detection rate. By using feature-level information, improved system performance can be achieved. This improved performance is dependent on the feature-level statistics of a specific site and is always limited by the overlap between the distribution functions of the clutter and target signatures. The resulting performance enhancement -- although significant -- is still far below the level required for very high detection rates and low false- alarm rates.

  2. Conductivity image enhancement in MREIT using adaptively weighted spatial averaging filter

    PubMed Central

    2014-01-01

    Background In magnetic resonance electrical impedance tomography (MREIT), we reconstruct conductivity images using magnetic flux density data induced by externally injected currents. Since we extract magnetic flux density data from acquired MR phase images, the amount of measurement noise increases in regions of weak MR signals. Especially for local regions of MR signal void, there may occur excessive amounts of noise to deteriorate the quality of reconstructed conductivity images. In this paper, we propose a new conductivity image enhancement method as a postprocessing technique to improve the image quality. Methods Within a magnetic flux density image, the amount of noise varies depending on the position-dependent MR signal intensity. Using the MR magnitude image which is always available in MREIT, we estimate noise levels of measured magnetic flux density data in local regions. Based on the noise estimates, we adjust the window size and weights of a spatial averaging filter, which is applied to reconstructed conductivity images. Without relying on a partial differential equation, the new method is fast and can be easily implemented. Results Applying the novel conductivity image enhancement method to experimental data, we could improve the image quality to better distinguish local regions with different conductivity contrasts. From phantom experiments, the estimated conductivity values had 80% less variations inside regions of homogeneous objects. Reconstructed conductivity images from upper and lower abdominal regions of animals showed much less artifacts in local regions of weak MR signals. Conclusion We developed the fast and simple method to enhance the conductivity image quality by adaptively adjusting the weights and window size of the spatial averaging filter using MR magnitude images. Since the new method is implemented as a postprocessing step, we suggest adopting it without or with other preprocessing methods for application studies where conductivity

  3. Improved characterization of slow-moving landslides by means of adaptive NL-InSAR filtering

    NASA Astrophysics Data System (ADS)

    Albiol, David; Iglesias, Rubén.; Sánchez, Francisco; Duro, Javier

    2014-10-01

    Advanced remote sensing techniques based on space-borne Synthetic Aperture Radar (SAR) have been developed during the last decade showing their applicability for the monitoring of surface displacements in landslide areas. This paper presents an advanced Persistent Scatterer Interferometry (PSI) processing based on the Stable Point Network (SPN) technique, developed by the company Altamira-Information, for the monitoring of an active slowmoving landslide in the mountainous environment of El Portalet, Central Spanish Pyrenees. For this purpose, two TerraSAR-X data sets acquired in ascending mode corresponding to the period from April to November 2011, and from August to November 2013, respectively, are employed. The objective of this work is twofold. On the one hand, the benefits of employing Nonlocal Interferomtric SAR (NL-InSAR) adaptive filtering techniques over vegetated scenarios to maximize the chances of detecting natural distributed scatterers, such as bare or rocky areas, and deterministic point-like scatterers, such as man-made structures or poles, is put forward. In this context, the final PSI displacement maps retrieved with the proposed filtering technique are compared in terms of pixels' density and quality with classical PSI, showing a significant improvement. On the other hand, since SAR systems are only sensitive to detect displacements in the line-of-sight (LOS) direction, the importance of projecting the PSI displacement results retrieved along the steepest gradient of the terrain slope is discussed. The improvements presented in this paper are particularly interesting in these type of applications since they clearly allow to better determine the extension and dynamics of complex landslide phenomena.

  4. The generalized frequency-domain adaptive filtering algorithm as an approximation of the block recursive least-squares algorithm

    NASA Astrophysics Data System (ADS)

    Schneider, Martin; Kellermann, Walter

    2016-01-01

    Acoustic echo cancellation (AEC) is a well-known application of adaptive filters in communication acoustics. To implement AEC for multichannel reproduction systems, powerful adaptation algorithms like the generalized frequency-domain adaptive filtering (GFDAF) algorithm are required for satisfactory convergence behavior. In this paper, the GFDAF algorithm is rigorously derived as an approximation of the block recursive least-squares (RLS) algorithm. Thereby, the original formulation of the GFDAF algorithm is generalized while avoiding an error that has been in the original derivation. The presented algorithm formulation is applied to pruned transform-domain loudspeaker-enclosure-microphone models in a mathematically consistent manner. Such pruned models have recently been proposed to cope with the tremendous computational demands of massive multichannel AEC. Beyond its generalization, a regularization of the GFDAF is shown to have a close relation to the well-known block least-mean-squares algorithm.

  5. A family of variable step-size affine projection adaptive filter algorithms using statistics of channel impulse response

    NASA Astrophysics Data System (ADS)

    Shams Esfand Abadi, Mohammad; AbbasZadeh Arani, Seyed Ali Asghar

    2011-12-01

    This paper extends the recently introduced variable step-size (VSS) approach to the family of adaptive filter algorithms. This method uses prior knowledge of the channel impulse response statistic. Accordingly, optimal step-size vector is obtained by minimizing the mean-square deviation (MSD). The presented algorithms are the VSS affine projection algorithm (VSS-APA), the VSS selective partial update NLMS (VSS-SPU-NLMS), the VSS-SPU-APA, and the VSS selective regressor APA (VSS-SR-APA). In VSS-SPU adaptive algorithms the filter coefficients are partially updated which reduce the computational complexity. In VSS-SR-APA, the optimal selection of input regressors is performed during the adaptation. The presented algorithms have good convergence speed, low steady state mean square error (MSE), and low computational complexity features. We demonstrate the good performance of the proposed algorithms through several simulations in system identification scenario.

  6. Adaptive Square-Root Cubature-Quadrature Kalman Particle Filter for satellite attitude determination using vector observations

    NASA Astrophysics Data System (ADS)

    Kiani, Maryam; Pourtakdoust, Seid H.

    2014-12-01

    A novel algorithm is presented in this study for estimation of spacecraft's attitudes and angular rates from vector observations. In this regard, a new cubature-quadrature particle filter (CQPF) is initially developed that uses the Square-Root Cubature-Quadrature Kalman Filter (SR-CQKF) to generate the importance proposal distribution. The developed CQPF scheme avoids the basic limitation of particle filter (PF) with regards to counting the new measurements. Subsequently, CQPF is enhanced to adjust the sample size at every time step utilizing the idea of confidence intervals, thus improving the efficiency and accuracy of the newly proposed adaptive CQPF (ACQPF). In addition, application of the q-method for filter initialization has intensified the computation burden as well. The current study also applies ACQPF to the problem of attitude estimation of a low Earth orbit (LEO) satellite. For this purpose, the undertaken satellite is equipped with a three-axis magnetometer (TAM) as well as a sun sensor pack that provide noisy geomagnetic field data and Sun direction measurements, respectively. The results and performance of the proposed filter are investigated and compared with those of the extended Kalman filter (EKF) and the standard particle filter (PF) utilizing a Monte Carlo simulation. The comparison demonstrates the viability and the accuracy of the proposed nonlinear estimator.

  7. Target scattering estimation in clutter with polarization optimization

    NASA Astrophysics Data System (ADS)

    Cheng, Xu; Shi, Longfei; Chang, Yuliang; Li, Yongzhen; Wang, Xuesong

    2015-12-01

    In this paper, we propose an adaptive waveform polarization method for the estimation of target scattering matrix in the presence of clutter. The proposed sequential algorithm, based on the concept of sequential minimum mean square error (MSE) estimation, to determine the coefficients of the scattering matrix, guarantees the convergence and the resulting computational complexity is linear with the number of iterations. The effectiveness of the proposed method is validated through numerical results, underlining the performance improvement given by joint transmission and reception (Tx/Rx) polarization optimization for the scalar system. Also, the results show that the vector system with transmission polarization optimization provides a comparative performance as the scalar measurement system employing joint Tx/Rx polarization optimization. Less computation burden highlights the advantage of the former mode.

  8. A Model for the Detection of Moving Targets in Visual Clutter Inspired by Insect Physiology

    PubMed Central

    Wiederman, Steven D.; Shoemaker, Patrick A.; O'Carroll, David C.

    2008-01-01

    We present a computational model for target discrimination based on intracellular recordings from neurons in the fly visual system. Determining how insects detect and track small moving features, often against cluttered moving backgrounds, is an intriguing challenge, both from a physiological and a computational perspective. Previous research has characterized higher-order neurons within the fly brain, known as ‘small target motion detectors’ (STMD), that respond robustly to moving features, even when the velocity of the target is matched to the background (i.e. with no relative motion cues). We recorded from intermediate-order neurons in the fly visual system that are well suited as a component along the target detection pathway. This full-wave rectifying, transient cell (RTC) reveals independent adaptation to luminance changes of opposite signs (suggesting separate ON and OFF channels) and fast adaptive temporal mechanisms, similar to other cell types previously described. From this physiological data we have created a numerical model for target discrimination. This model includes nonlinear filtering based on the fly optics, the photoreceptors, the 1st order interneurons (Large Monopolar Cells), and the newly derived parameters for the RTC. We show that our RTC-based target detection model is well matched to properties described for the STMDs, such as contrast sensitivity, height tuning and velocity tuning. The model output shows that the spatiotemporal profile of small targets is sufficiently rare within natural scene imagery to allow our highly nonlinear ‘matched filter’ to successfully detect most targets from the background. Importantly, this model can explain this type of feature discrimination without the need for relative motion cues. PMID:18665213

  9. Array Processing for Radar Clutter Reduction and Imaging of Ice-Bed Interface

    NASA Astrophysics Data System (ADS)

    Gogineni, P.; Leuschen, C.; Li, J.; Hoch, A.; Rodriguez-Morales, F.; Ledford, J.; Jezek, K.

    2007-12-01

    A major challenge in sounding of fast-flowing glaciers in Greenland and Antarctica is surface clutter, which masks weak returns from the ice-bed interface. The surface clutter is also a major problem in sounding and imaging sub-surface interfaces on Mars and other planets. We successfully applied array-processing techniques to reduce clutter and image ice-bed interfaces of polar ice sheets. These techniques and tools have potential applications to planetary observations. We developed a radar with array-processing capability to measure thickness of fast-flowing outlet glaciers and image the ice-bed interface. The radar operates over the frequency range from 140 to 160 MHz with about an 800- Watt peak transmit power with transmit and receive antenna arrays. The radar is designed such that pulse width and duration are programmable. The transmit-antenna array is fed with a beamshaping network to obtain low sidelobes. We designed the receiver such that it can process and digitize signals for each element of an eight- channel array. We collected data over several fast-flowing glaciers using a five-element antenna array, limited by available hardpoints to mount antennas, on a Twin Otter aircraft during the 2006 field season and a four-element array on a NASA P-3 aircraft during the 2007 field season. We used both adaptive and non-adaptive signal-processing algorithms to reduce clutter. We collected data over the Jacobshavn Isbrae and other fast-flowing outlet glaciers, and successfully measured the ice thickness and imaged the ice-bed interface. In this paper, we will provide a brief description of the radar, discuss clutter-reduction algorithms, present sample results, and discuss the application of these techniques to planetary observations.

  10. A new adaptive method to filter terrestrial laser scanner point clouds using morphological filters and spectral information to conserve surface micro-topography

    NASA Astrophysics Data System (ADS)

    Rodríguez-Caballero, E.; Afana, A.; Chamizo, S.; Solé-Benet, A.; Canton, Y.

    2016-07-01

    Terrestrial laser scanning (TLS), widely known as light detection and ranging (LiDAR) technology, is increasingly used to provide highly detailed digital terrain models (DTM) with millimetric precision and accuracy. In order to generate a DTM, TLS data has to be filtered from undesired spurious objects, such as vegetation, artificial structures, etc., Early filtering techniques, successfully applied to airborne laser scanning (ALS), fail when applied to TLS data, as they heavily smooth the terrain surface and do not retain their real morphology. In this article, we present a new methodology for filtering TLS data based on the geometric and radiometric properties of the scanned surfaces. This methodology was built on previous morphological filters that select the minimum point height within a sliding window as the real surface. However, contrary to those methods, which use a fixed window size, the new methodology operates under different spatial scales represented by different window sizes, and can be adapted to different types and sizes of plants. This methodology has been applied to two study areas of differing vegetation type and density. The accuracy of the final DTMs was improved by ∼30% under dense canopy plants and over ∼40% on the open spaces between plants, where other methodologies drastically underestimated the real surface heights. This resulted in more accurate representation of the soil surface and microtopography than up-to-date techniques, eventually having strong implications in hydrological and geomorphological studies.

  11. Model-based adaptive 3D sonar reconstruction in reverberating environments.

    PubMed

    Saucan, Augustin-Alexandru; Sintes, Christophe; Chonavel, Thierry; Caillec, Jean-Marc Le

    2015-10-01

    In this paper, we propose a novel model-based approach for 3D underwater scene reconstruction, i.e., bathymetry, for side scan sonar arrays in complex and highly reverberating environments like shallow water areas. The presence of multipath echoes and volume reverberation generates false depth estimates. To improve the resulting bathymetry, this paper proposes and develops an adaptive filter, based on several original geometrical models. This multimodel approach makes it possible to track and separate the direction of arrival trajectories of multiple echoes impinging the array. Echo tracking is perceived as a model-based processing stage, incorporating prior information on the temporal evolution of echoes in order to reject cluttered observations generated by interfering echoes. The results of the proposed filter on simulated and real sonar data showcase the clutter-free and regularized bathymetric reconstruction. Model validation is carried out with goodness of fit tests, and demonstrates the importance of model-based processing for bathymetry reconstruction. PMID:25974936

  12. Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter and Diagnostic Bayesian Network

    PubMed Central

    Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing

    2016-01-01

    A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method. PMID:26761006

  13. Flexible Riser Monitoring Using Hybrid Magnetic/Optical Strain Gage Techniques through RLS Adaptive Filtering

    NASA Astrophysics Data System (ADS)

    Pipa, Daniel; Morikawa, Sérgio; Pires, Gustavo; Camerini, Claudio; Santos, JoãoMárcio

    2010-12-01

    Flexible riser is a class of flexible pipes which is used to connect subsea pipelines to floating offshore installations, such as FPSOs (floating production/storage/off-loading unit) and SS (semisubmersible) platforms, in oil and gas production. Flexible risers are multilayered pipes typically comprising an inner flexible metal carcass surrounded by polymer layers and spiral wound steel ligaments, also referred to as armor wires. Since these armor wires are made of steel, their magnetic properties are sensitive to the stress they are subjected to. By measuring their magnetic properties in a nonintrusive manner, it is possible to compare the stress in the armor wires, thus allowing the identification of damaged ones. However, one encounters several sources of noise when measuring electromagnetic properties contactlessly, such as movement between specimen and probe, and magnetic noise. This paper describes the development of a new technique for automatic monitoring of armor layers of flexible risers. The proposed approach aims to minimize these current uncertainties by combining electromagnetic measurements with optical strain gage data through a recursive least squares (RLSs) adaptive filter.

  14. Seismic random noise attenuation based on adaptive time-frequency peak filtering

    NASA Astrophysics Data System (ADS)

    Deng, Xinhuan; Ma, Haitao; Li, Yue; Zeng, Qian

    2015-02-01

    Time-frequency peak filtering (TFPF) method uses a specific window with fixed length to recover band-limited signal in stationary random noise. However, the derivatives of signal such as seismic wavelets may change rapidly in some short time intervals. In this case, TFPF equipped with fixed window length will not provide an optimal solution. In this letter, we present an adaptive version of TFPF for seismic random noise attenuation. In our version, the improved intersection of confidence intervals combined with short-time energy criterion is used to preprocess the noisy signal. And then, we choose an appropriate threshold to divide the noisy signal into signal, buffer and noise. Different optimal window lengths are used in each type of segments. We test the proposed method on both synthetic and field seismic data. The experimental results illustrate that the proposed method makes the degree of amplitude preservation raise more than 10% and signal-to-noise (SNR) improve 2-4 dB compared with the original algorithm.

  15. Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter and Diagnostic Bayesian Network.

    PubMed

    Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing

    2016-01-01

    A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method. PMID:26761006

  16. Adaptive-weighted bilateral filtering and other pre-processing techniques for optical coherence tomography.

    PubMed

    Anantrasirichai, N; Nicholson, Lindsay; Morgan, James E; Erchova, Irina; Mortlock, Katie; North, Rachel V; Albon, Julie; Achim, Alin

    2014-09-01

    This paper presents novel pre-processing image enhancement algorithms for retinal optical coherence tomography (OCT). These images contain a large amount of speckle causing them to be grainy and of very low contrast. To make these images valuable for clinical interpretation, we propose a novel method to remove speckle, while preserving useful information contained in each retinal layer. The process starts with multi-scale despeckling based on a dual-tree complex wavelet transform (DT-CWT). We further enhance the OCT image through a smoothing process that uses a novel adaptive-weighted bilateral filter (AWBF). This offers the desirable property of preserving texture within the OCT image layers. The enhanced OCT image is then segmented to extract inner retinal layers that contain useful information for eye research. Our layer segmentation technique is also performed in the DT-CWT domain. Finally we describe an OCT/fundus image registration algorithm which is helpful when two modalities are used together for diagnosis and for information fusion. PMID:25034317

  17. Exploring the Role of Mechanotransduction Activation and Adaptation Kinetics in Hair Cell Filtering Using a Hodgkin-Huxley Approach

    NASA Astrophysics Data System (ADS)

    Wells, Gregg B.; Ricci, Anthony J.

    2011-11-01

    In the auditory system, mechanotransduction occurs in the hair cell sensory hair bundle and is the first major step in the translation of mechanical energy into electrical. Tonotopic variations in the activation kinetics of this process are posited to provide a low pass filter to the input. An adaptation process, also associated with mechanotransduction, is postulated to provide a high pass filter to the input in a tonotopic manner. Together a bandpass filter is created at the hair cell input. Corresponding mechanical components to both activation and adaptation are also suggested to be involved in generating cochlear amplification. A paradox to this story is that hair cells where the mechanotransduction properties are most robust possess an intrinsic electrical resonance mechanism proposed to account for all required tuning and amplification. A simple Hodgkin-Huxley type model is presented to attempt to determine the role of the activation and adaptation kinetics in further tuning hair cells that exhibit electrical resonance. Results further support that steady state mechanotransduction properties are critical for setting the resting potential of the hair cell while the kinetics of activation and adaptation are important for sharpening tuning around the characteristic frequency of the hair cell.

  18. Range ambiguity clutter suppression for bistatic STAP radar

    NASA Astrophysics Data System (ADS)

    Xie, Wenchong; Zhang, Baihua; Wang, Yongliang; Zhu, Yong; Duan, Keqing; Li, Rongfeng

    2013-12-01

    Bistatic pulse-Doppler airborne radar has desirable properties such as the low probability of detection by other radars relative to its monostatic counterpart. However, the clutter characteristics of bistatic airborne radar are more complex than those of monostatic airborne radar. The clutter spectra not only vary severely with range, but also vary with bistatic configuration. In this article, the geometry model of bistatic airborne radar is given, and the approximate estimation expressions for clutter degrees of freedom (DOFs) are presented. Then a novel clutter suppression method for bistatic airborne radar with range ambiguity is presented. The method completes registration-based range ambiguity clutter compensation based on non-uniform sampling and the estimated clutter DOFs. The simulation results illustrate the performance improvement achieved for bistatic airborne radar.

  19. Application of phase coherent transform to cloud clutter suppression

    SciTech Connect

    Ng, L.C.

    1994-11-15

    This paper describes a tracking algorithm using frame-to-frame correlation with frequency domain clutter suppression. Clutter suppression was mechanized via a `Phase Coherent Transform` (PCT) approach. This approach was applied to explore the feasibility of tracking a post-boost rocket from a low earth orbit satellite with real cloud background data. Simulation results show that the PCT/correlation tracking algorithm can perform satisfactorily at signal-to-clutter ratio (SCR) as low as 5 or 7 dB.

  20. A retrospective detection algorithm for extraction of weak targets in clutter and interference environments

    NASA Astrophysics Data System (ADS)

    Prengaman, R. J.; Thurber, R. E.; Bath, W. G.

    A retrospective processing concept for controlling the false alarm rate of target tracking radar is discussed. The system architecture has memory allotted to previous images for comparisons with updated images, thereby raising the possibilities of eliminating spurious images from i.e., chaff, and of plotting target trajectories. Consequently, the radar is run at an enhanced false alarm rate because clutter is filtered out. The system includes retrospective correlations using a bearing/range link structure, update of a velocity profile mask, and decision output based on the mask update. Decisions are generated after an assessment of reasonableness. The system was developed as a means of avoiding clutter in over-ocean surveillance operations.

  1. Design of adaptive reconfigurable control systems using extended-Kalman-filter-based system identification and eigenstructure assignments

    NASA Astrophysics Data System (ADS)

    Wang, Xudong; Syrmos, Vassilis L.

    2004-07-01

    In this paper, an adaptive reconfigurable control system based on extended Kalman filter approach and eigenstructure assignments is proposed. System identification is carried out using an extended Kalman filter (EKF) approach. An eigenstructure assignment (EA) technique is applied for reconfigurable feedback control law design to recover the system dynamic performance. The reconfigurable feedforward controllers are designed to achieve the steady-state tracking using input weighting approach. The proposed scheme can identify not only actuator and sensor variations, but also changes in the system structures using the extended Kalman filtering method. The overall design is robust with respect to uncertainties in the state-space matrices of the reconfigured system. To illustrate the effectiveness of the proposed reconfigurable control system design technique, an aircraft longitudinal vertical takeoff and landing (VTOL) control system is used to demonstrate the reconfiguration procedure.

  2. Estimating self-clutter of the multiple-pulse technique

    NASA Astrophysics Data System (ADS)

    Reimer, A. S.; Hussey, G. C.

    2015-07-01

    Autocorrelation function (ACF) estimates from voltage data measured by high-frequency ionospheric radar systems that utilize the multiple-pulse technique of Farley (1972) are susceptible to interference from self-clutter. Self-clutter is caused by simultaneous returns from multiple transmitted pulses echoing from unwanted, or ambiguous ranges. Without accurate estimates of self-clutter it is impossible to account for all the uncertainty in estimates of the radar ACF. Voltage- and power-based self-clutter estimators are presented and evaluated using a modified version of the radar data simulator of Ribeiro et al. (2013a) and data from the Super Dual Auroral Radar Network (SuperDARN). It is shown that self-clutter caused by ambiguous ranges filled with ground scatter can be accurately estimated using a voltage-based self-clutter estimator but that for ionospheric origin self-clutter a maximal estimator must be used. Two maximal self-clutter estimators are discussed and verified using the radar data simulator. A discussion of the application of the self-clutter estimator as it is applied to ACFs obtained with Saskatoon SuperDARN radar is also presented.

  3. Spectrum characteristics of Denver and Philadelphia ground clutter and the problem of distinguishing wind shear targets from moving clutter

    NASA Technical Reports Server (NTRS)

    Mackenzie, Anne I.

    1992-01-01

    Spectral analysis of 1991 wind shear flight data has provided information about the power spectral density, spectral width, and velocity of ground clutter detected by the wind shear radar at several major airports. Ground clutter must be recognized and separated from weather targets before wind shear can be computed. Information will be presented characterizing and comparing ground clutter and weather target spectra. The information includes (1) spectral widths of stationary ground clutter seen at various scan and tilt angles, (2) power spectral density and velocity of moving ground clutter relative to the stationary ground clutter, and (3) spectral widths and velocities of weather targets. A summary of numerical results in the form of histograms and example numerical results in the form of spectral plots are presented.

  4. A robust data fusion scheme for integrated navigation systems employing fault detection methodology augmented with fuzzy adaptive filtering

    NASA Astrophysics Data System (ADS)

    Ushaq, Muhammad; Fang, Jiancheng

    2013-10-01

    Integrated navigation systems for various applications, generally employs the centralized Kalman filter (CKF) wherein all measured sensor data are communicated to a single central Kalman filter. The advantage of CKF is that there is a minimal loss of information and high precision under benign conditions. But CKF may suffer computational overloading, and poor fault tolerance. The alternative is the federated Kalman filter (FKF) wherein the local estimates can deliver optimal or suboptimal state estimate as per certain information fusion criterion. FKF has enhanced throughput and multiple level fault detection capability. The Standard CKF or FKF require that the system noise and the measurement noise are zero-mean and Gaussian. Moreover it is assumed that covariance of system and measurement noises remain constant. But if the theoretical and actual statistical features employed in Kalman filter are not compatible, the Kalman filter does not render satisfactory solutions and divergence problems also occur. To resolve such problems, in this paper, an adaptive Kalman filter scheme strengthened with fuzzy inference system (FIS) is employed to adapt the statistical features of contributing sensors, online, in the light of real system dynamics and varying measurement noises. The excessive faults are detected and isolated by employing Chi Square test method. As a case study, the presented scheme has been implemented on Strapdown Inertial Navigation System (SINS) integrated with the Celestial Navigation System (CNS), GPS and Doppler radar using FKF. Collectively the overall system can be termed as SINS/CNS/GPS/Doppler integrated navigation system. The simulation results have validated the effectiveness of the presented scheme with significantly enhanced precision, reliability and fault tolerance. Effectiveness of the scheme has been tested against simulated abnormal errors/noises during different time segments of flight. It is believed that the presented scheme can be

  5. Effects of Video Exposure to Cluttering on Undergraduate Students' Perceptions of a Person Who Clutters

    ERIC Educational Resources Information Center

    Farrell, Lindsey M.; Blanchet, Paul G.; Tillery, Kim L.

    2015-01-01

    Background: Previous research suggests a negative stereotype toward people with fluency disorders (i.e. stuttering and/or cluttering), although recent findings suggest that exposure to an actual person who stutters (e.g. a live or video presentation) leads to more positive perceptions of some personality traits. However, there is a paucity of…

  6. Polarimetric clutter modeling: Theory and application

    NASA Technical Reports Server (NTRS)

    Kong, J. A.; Lin, F. C.; Borgeaud, M.; Yueh, H. A.; Swartz, A. A.; Lim, H. H.; Shim, R. T.; Novak, L. M.

    1988-01-01

    The two-layer anisotropic random medium model is used to investigate fully polarimetric scattering properties of earth terrain media. The polarization covariance matrices for the untilted and tilted uniaxial random medium are evaluated using the strong fluctuation theory and distorted Born approximation. In order to account for the azimuthal randomness in the growth direction of leaves in tree and grass fields, an averaging scheme over the azimuthal direction is also applied. It is found that characteristics of terrain clutter can be identified through the analysis of each element of the covariance matrix. Theoretical results are illustrated by the comparison with experimental data provided by MIT Lincoln Laboratory for tree and grass fields.

  7. Theoretical models for polarimetric radar clutter

    NASA Technical Reports Server (NTRS)

    Borgeaud, M.; Shin, R. T.; Kong, J. A.

    1987-01-01

    The Mueller matrix and polarization covariance matrix are described for polarimetric radar systems. The clutter is modeled by a layer of random permittivity, described by a three-dimensional correlation function, with variance, and horizontal and vertical correlation lengths. This model is applied, using the wave theory with Born approximations carried to the second order, to find the backscattering elements of the polarimetric matrices. It is found that 8 out of 16 elements of the Mueller matrix are identically zero, corresponding to a covariance matrix with four zero elements. Theoretical predictions are matched with experimental data for vegetation fields.

  8. High-performance RC bandpass filter is adapted to miniaturized construction

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Miniaturized bandpass filter with RC networks is suitable for use in integrated circuits. The circuit consists of three stages of amplification with additional resistive and capacitive components to obtain the desired characteristics. The advantages of the active RC filter network are the reduction in size and weight and elimination of magnetic materials.

  9. A tracker based on a CPHD filter approach for infrared applications

    NASA Astrophysics Data System (ADS)

    Petetin, Y.; Clark, D.; Ristic, B.; Maltese, D.

    2011-06-01

    Since the derivation of PHD filter, a number of track management schemes have been proposed to adapt the PHD filter for determining the tracks of multiple objects. Nevertheless, the problem remains that such approaches can fail when targets are too close or are crossing. In this paper, we propose to improve the tracking by maintaining a set of locally-based trackers and managing the tracks with an assignment method. Furthermore, the new algorithm is based on a Gaussian mixture implementation of the CPHD filter, by clustering neighbouring Gaussians before the update step and updating each cluster with the CPHD filter update. In order to be computationally efficient, the algorithm includes gating techniques for the local trackers and constructs local cardinality distributions for the targets and clutter within the gated regions. An improvement in multi-object estimation performance has been experienced on both synthetic and real IR data scenarios.

  10. Estimating diffusion properties in complex fiber configurations based on structure-adaptive multi-valued tensor-field filtering

    NASA Astrophysics Data System (ADS)

    Yang, Jianfei; Poot, Dirk H. J.; Arkesteijn, Georgius A. M.; Caan, Matthan W.; van Vliet, Lucas J.; Vos, Frans M.

    2015-03-01

    Conventionally, a single rank-2 tensor is used to assess the white matter integrity in diffusion imaging of the human brain. However, a single tensor fails to describe the diffusion in fiber crossings. Although a dual tensor model is able to do so, the low signal-to-noise ratio hampers reliable parameter estimation as the number of parameters is doubled. We present a framework for structure-adaptive tensor field filtering to enhance the statistical analysis in complex fiber structures. In our framework, a tensor model will be fitted based on an automated relevance determination method. Particularly, a single tensor model is applied to voxels in which the data seems to represent a single fiber and a dualtensor model to voxels appearing to contain crossing fibers. To improve the estimation of the model parameters we propose a structure-adaptive tensor filter that is applied to tensors belonging to the same fiber compartment only. It is demonstrated that the structure-adaptive tensor-field filter improves the continuity and regularity of the estimated tensor field. It outperforms an existing denoising approach called LMMSE, which is applied to the diffusion-weighted images. Track-based spatial statistics analysis of fiber-specific FA maps show that the method sustains the detection of more subtle changes in white matter tracts than the classical single-tensor-based analysis. Thus, the filter enhances the applicability of the dual-tensor model in diffusion imaging research. Specifically, the reliable estimation of two tensor diffusion properties facilitates fiber-specific extraction of diffusion features.

  11. Earth limb infrared clutter model from measurements

    NASA Astrophysics Data System (ADS)

    Kendra, Michael; Mizuno, Donald; Kraemer, Kathleen; O'Neil, Robert

    2011-10-01

    Mid-Course Space Experiment (MSX) infrared (IR) observations in the earth limb were used to obtain spatial power spectral densities (PSDs) for five sensor bands over a wide range of earth limb background clutter conditions. These backgrounds include daytime, nighttime, terminator, aurora, polar mesospheric cloud, atmospheric gravity wave, stratospheric warming, airglow, and other observations collected over approximately 100 episodic data collection events. Using a subset of detectors and restricting detector tangent altitude variations, a total of more than 33,000 high-quality PSDs were generated. For infrared detection of unresolved objects where the solid angle of the object is much smaller than the instantaneous field-of-view of a sensor element, the spectral component at high spatial frequencies is a critical metric. PSDs were therefore constructed in the spatial domain using one minute data segments, which allowed spatial scale assessment from 0.01-10 cycles/km. PSDs that met the clutter model selection criteria were identified, accumulated, and processed to obtain a small set of empirical, altitude-based model parameters. We describe the MSX sensor bands, data and data processing employed for PSD generation and final reduction to obtain model parameters. Key model features are discussed with emphasis on object detection against stressing limb backgrounds. The model was constructed in a way that facilitates optical design and system engineering application. In particular, it may be used to address Space Situational Awareness (SSA) questions.

  12. Radiation dose reduction with application of non-linear adaptive filters for abdominal CT

    PubMed Central

    Singh, Sarabjeet; Kalra, Mannudeep K; Sung, Mi Kim; Back, Anni; Blake, Michael A

    2012-01-01

    AIM: To evaluate the effect of non-linear adaptive filters (NLAF) on abdominal computed tomography (CT) images acquired at different radiation dose levels. METHODS: Nineteen patients (mean age 61.6 ± 7.9 years, M:F = 8:11) gave informed consent for an Institutional Review Board approved prospective study involving acquisition of 4 additional image series (200, 150, 100, 50 mAs and 120 kVp) on a 64 slice multidetector row CT scanner over an identical 10 cm length in the abdomen. The CT images acquired at 150, 100 and 50 mAs were processed with the NLAF. Two radiologists reviewed unprocessed and processed images for image quality in a blinded randomized manner. CT dose index volume, dose length product, patient weight, transverse diameters, objective noise and CT numbers were recorded. Data were analyzed using Analysis of Variance and Wilcoxon signed rank test. RESULTS: Of the 31 lesions detected in abdominal CT images, 28 lesions were less than 1 cm in size. Subjective image noise was graded as unacceptable in unprocessed images at 50 and 100 mAs, and in NLAF processed images at 50 mAs only. In NLAF processed images, objective image noise was decreased by 21% (14.4 ± 4/18.2 ± 4.9) at 150 mAs, 28.3% (15.7 ± 5.6/21.9 ± 4) at 100 mAs and by 39.4% (18.8 ± 9/30.4 ± 9.2) at 50 mAs compared to unprocessed images acquired at respective radiation dose levels. At 100 mAs the visibility of smaller structures improved from suboptimal in unprocessed images to excellent in NLAF processed images, whereas diagnostic confidence was respectively improved from probably confident to fully confident. CONCLUSION: NLAF lowers image noise, improves the visibility of small structures and maintains lesion conspicuity at down to 100 mAs for abdominal CT. PMID:22328968

  13. Capturing dynamics on multiple timescales: a hybrid approach for cluttered electromagnetic data

    SciTech Connect

    Pawley, Norma H; Myers, Kary L; Galbraith, John M; Brumby, Steven P

    2009-01-01

    Many problems in electromagnetic signal analysis exhibit dynamics on a wide range of time scales against nonstationary clutter and noise. We consider a problem in which the relevant time scales can range from nanoseconds to hours or days (12 or 13 orders of magnitude). We present a hybrid algorithm currently designed to capture the dynamic behavior at scales from nanoseconds to milliseconds (6 orders of magnitude) while remaining robust to clutter and noise. We draw from techniques of adaptive feature extraction, statistical machine learning, and discrete process modeling and present results on a simulated multimode problem. Our goals are to find a representation of the signal that allows us to identify which pulses were produced by a target emitter and to determine the operational mode of the target.

  14. A new family of Gaussian filters with adaptive lobe location and smoothing strength for efficient image restoration

    NASA Astrophysics Data System (ADS)

    Seddik, Hassene

    2014-12-01

    Noise can occur during image capture, transmission, or processing phases. Image de-noising is a very important step in image processing, and many approaches are developed in order to achieve this goal such as the Gaussian filter which is efficient in noise removal. Its smoothing efficiency depends on the value of its standard deviation. The mask representing the filter presents generally static weights with invariant lobe. In this paper, an adaptive de-noising approach is proposed. The proposed approach uses a Gaussian kernel with variable width and direction called adaptive Gaussian kernel (AGK). In each processed window of the image, the smoothing strength changes according to the image content, noise kind, and intensity. In addition, the location of its lobe changes in eight different directions over the processed window. This directional variability avoids averaging details by the highest mask weights in order to preserve the edges and the borders. The recovered data is de-noised efficiently without introducing blur or losing details. A comparative study with the static Gaussian filter and other recent techniques is presented to prove the efficiency of the proposed approach.

  15. FOG Random Drift Signal Denoising Based on the Improved AR Model and Modified Sage-Husa Adaptive Kalman Filter.

    PubMed

    Sun, Jin; Xu, Xiaosu; Liu, Yiting; Zhang, Tao; Li, Yao

    2016-01-01

    In order to reduce the influence of fiber optic gyroscope (FOG) random drift error on inertial navigation systems, an improved auto regressive (AR) model is put forward in this paper. First, based on real-time observations at each restart of the gyroscope, the model of FOG random drift can be established online. In the improved AR model, the FOG measured signal is employed instead of the zero mean signals. Then, the modified Sage-Husa adaptive Kalman filter (SHAKF) is introduced, which can directly carry out real-time filtering on the FOG signals. Finally, static and dynamic experiments are done to verify the effectiveness. The filtering results are analyzed with Allan variance. The analysis results show that the improved AR model has high fitting accuracy and strong adaptability, and the minimum fitting accuracy of single noise is 93.2%. Based on the improved AR(3) model, the denoising method of SHAKF is more effective than traditional methods, and its effect is better than 30%. The random drift error of FOG is reduced effectively, and the precision of the FOG is improved. PMID:27420062

  16. FOG Random Drift Signal Denoising Based on the Improved AR Model and Modified Sage-Husa Adaptive Kalman Filter

    PubMed Central

    Sun, Jin; Xu, Xiaosu; Liu, Yiting; Zhang, Tao; Li, Yao

    2016-01-01

    In order to reduce the influence of fiber optic gyroscope (FOG) random drift error on inertial navigation systems, an improved auto regressive (AR) model is put forward in this paper. First, based on real-time observations at each restart of the gyroscope, the model of FOG random drift can be established online. In the improved AR model, the FOG measured signal is employed instead of the zero mean signals. Then, the modified Sage-Husa adaptive Kalman filter (SHAKF) is introduced, which can directly carry out real-time filtering on the FOG signals. Finally, static and dynamic experiments are done to verify the effectiveness. The filtering results are analyzed with Allan variance. The analysis results show that the improved AR model has high fitting accuracy and strong adaptability, and the minimum fitting accuracy of single noise is 93.2%. Based on the improved AR(3) model, the denoising method of SHAKF is more effective than traditional methods, and its effect is better than 30%. The random drift error of FOG is reduced effectively, and the precision of the FOG is improved. PMID:27420062

  17. Artificial intelligence techniques for clutter identification with polarimetric radar signatures

    NASA Astrophysics Data System (ADS)

    Islam, Tanvir; Rico-Ramirez, Miguel A.; Han, Dawei; Srivastava, Prashant K.

    2012-06-01

    The use of different artificial intelligence (AI) techniques for clutter signals identification in the context of radar based precipitation estimation is presented. The clutter signals considered are because of ground clutter, sea clutter and anomalous propagation whereas the explored AI techniques include the support vector machine (SVM), the artificial neural network (ANN), the decision tree (DT), and the nearest neighbour (NN) systems. Eight different radar measurement combinations comprising of various polarimetric spectral signatures — the reflectivity (ZH), differential reflectivity (ZDR), differential propagation phase (ΦDP), cross-correlation coefficient (ρHV), velocity (V) and spectral width (W) from a C-band polarimetric radar are taken into account as input vectors to the AI systems. The results reveal that all four AI classifiers can identify the clutter echoes with around 98-99% accuracy when all radar input signatures are used. As standalone input vectors, the polarimetric textures of the ΦDP and the ZDR have also demonstrated excellent skills distinguishing clutter echoes with an accuracy of 97-98% approximately. If no polarimetric signature is available, a combination of the texture of ZH, V and W representing typical measurements from a single-polarization Doppler radar may be used for clutter identification, but with a lower accuracy when compared to the use of polarimetric radar measurements. In contrast, the use of ZH or W alone is found less reliable for clutter classification. Among the AI techniques, the SVM has a slightly better score in terms of various clutter identification indicators as compared to the others. Conversely, the NN algorithm has shown a lower performance in identifying the clutter echoes correctly considering the standalone radar signatures as inputs. Despite this, the performance among the different AI techniques is comparable indicating the suitability of the developed systems, and this is further supported when

  18. Mitigating ground clutter effects for mine detection with lightweight artificial dielectrics

    NASA Astrophysics Data System (ADS)

    Linnehan, Robert; Rappaport, Carey M.

    2002-08-01

    Ground surface roughness is problematic when using a radar impulse to detect and locate land mines. Waves scatter from a random rough ground surface in unpredictable ways, contributing to clutter that is particularly hard to suppress. This clutter has proven experimentally and computationally to distort and obscure the desired scattered field from a buried target. To overcome this effect we have developed a lightweight, artificial dielectric that can be placed over a chosen area that will mimic flat ground and mitigate clutter effects. An artificial dielectric of close-packed array of small insulated metal-coated plastic spheres and lossless uniform plastic spheres can be formulated to match the dielectric properties soil. The ratio of these two spheres in the collection is adjusted to match a particular soil type and the moisture content. Placing them in a conformable bag and ensuring a flat upper interface with the air, ground reflections from an impulse radar can effectively be removed to reveal a target scattering signature. Furthermore, a matched filter can be used to distinguish between a landmine and a false alarm (such as a rock) The artificial dielectric was matched by running experiments in the frequency and time domains. A 1 GHz center frequency impulse ground penetrating radar was used to collect time signals and compare different cases: flat ground, rough ground and rough ground with artificial dielectric. Results indicate excellent rough surface reflection removal and target signal enhancement.

  19. Adaptive filtering in spatial vision: evidence from feature marking in plaids.

    PubMed

    Georgeson, M A; Meese, T S

    1999-01-01

    Much evidence shows that early vision employs an array of spatial filters tuned for different spatial frequencies and orientations. We suggest that for moderately low spatial frequencies these preliminary filters are not treated independently, but are used to perform grouping and segmentation in the patchwise Fourier domain. For example, consider a stationary plaid made from two superimposed sinusoidal gratings of the same contrast and spatial frequency oriented +/- 45 degrees from vertical. Most of the energy in a wavelet-like (e.g. simple-cell) transform of this stimulus is in the oblique orientations, but typically it looks like a compound structure containing blurred vertical and horizontal edges. This checkerboard structure corresponds with the locations of zero crossings in the output of an isotropic (circular) filter, synthesised from the linear sum of a set of oriented basis-filters (Georgeson, 1992 Proceedings of the Royal Society of London, Series B 249 235-245). However, the addition of a third harmonic in square-wave phase causes almost complete perceptual segmentation of the plaid into two overlapping oblique gratings. Here we confirm this result psychophysically using a feature-marking technique, and argue that this perceptual segmentation cannot be understood in terms of the zero crossings marked in the output of any static linear filter that is sensitive to all of the plaid's components. If it is assumed that zero crossings or similar are an appropriate feature-primitive in human vision, our results require a flexible process that combines and segments early basis-filters according to prevailing image conditions. Thus, we suggest that combination and segmentation of spatial filters in the patchwise Fourier domain underpins the perceptual segmentation observed in our experiments. Under this kind of image-processing scheme, registration across spatial scales occurs at the level of spatial filters, before features are extracted. This contrasts with

  20. Adaptation of filtered back-projection to compton imaging with non-uniform azimuthal geometry

    NASA Astrophysics Data System (ADS)

    Lee, Hyounggun; Lee, Taewoong; Lee, Wonho

    2016-05-01

    For Compton image reconstruction, analytic reconstruction methods such as filtered backprojection have been used for real-time imaging. The conventional filtered back-projection method assumes a uniformly distributed azimuthal response in the detector system. In this study, we applied filtered back-projection to the experimental data from detector systems with limited azimuthal angle coverage ranges and estimated the limitations of the analytic reconstruction methods when applied to these systems. For the system with a uniform azimuthal response, the images reconstructed by using filtered back-projection showed better angular resolutions than the images obtained by using simple back-projection did. However, when filtered back-projection was applied to reconstruct Compton images based on measurements performed by using Compton cameras with limited response geometries, the reconstructed images exhibited artifacts caused by the geometrical limitations. Our proposed method employs the Compton camera's rotation to overcome the angular response limitations; when the rotation method was applied in this study, the artifacts in the reconstructed images caused by angular response limitations were minimized. With this method, filtered back-projection can be applied to reconstruct real-time Compton images even when the radiation measurements are performed by using Compton cameras with non-uniform azimuthal response geometries.

  1. Guided filter and adaptive learning rate based non-uniformity correction algorithm for infrared focal plane array

    NASA Astrophysics Data System (ADS)

    Sheng-Hui, Rong; Hui-Xin, Zhou; Han-Lin, Qin; Rui, Lai; Kun, Qian

    2016-05-01

    Imaging non-uniformity of infrared focal plane array (IRFPA) behaves as fixed-pattern noise superimposed on the image, which affects the imaging quality of infrared system seriously. In scene-based non-uniformity correction methods, the drawbacks of ghosting artifacts and image blurring affect the sensitivity of the IRFPA imaging system seriously and decrease the image quality visibly. This paper proposes an improved neural network non-uniformity correction method with adaptive learning rate. On the one hand, using guided filter, the proposed algorithm decreases the effect of ghosting artifacts. On the other hand, due to the inappropriate learning rate is the main reason of image blurring, the proposed algorithm utilizes an adaptive learning rate with a temporal domain factor to eliminate the effect of image blurring. In short, the proposed algorithm combines the merits of the guided filter and the adaptive learning rate. Several real and simulated infrared image sequences are utilized to verify the performance of the proposed algorithm. The experiment results indicate that the proposed algorithm can not only reduce the non-uniformity with less ghosting artifacts but also overcome the problems of image blurring in static areas.

  2. Wireless rake-receiver using adaptive filter with a family of partial update algorithms in noise cancellation applications

    NASA Astrophysics Data System (ADS)

    Fayadh, Rashid A.; Malek, F.; Fadhil, Hilal A.; Aldhaibani, Jaafar A.; Salman, M. K.; Abdullah, Farah Salwani

    2015-05-01

    For high data rate propagation in wireless ultra-wideband (UWB) communication systems, the inter-symbol interference (ISI), multiple-access interference (MAI), and multiple-users interference (MUI) are influencing the performance of the wireless systems. In this paper, the rake-receiver was presented with the spread signal by direct sequence spread spectrum (DS-SS) technique. The adaptive rake-receiver structure was shown with adjusting the receiver tap weights using least mean squares (LMS), normalized least mean squares (NLMS), and affine projection algorithms (APA) to support the weak signals by noise cancellation and mitigate the interferences. To minimize the data convergence speed and to reduce the computational complexity by the previous algorithms, a well-known approach of partial-updates (PU) adaptive filters were employed with algorithms, such as sequential-partial, periodic-partial, M-max-partial, and selective-partial updates (SPU) in the proposed system. The simulation results of bit error rate (BER) versus signal-to-noise ratio (SNR) are illustrated to show the performance of partial-update algorithms that have nearly comparable performance with the full update adaptive filters. Furthermore, the SPU-partial has closed performance to the full-NLMS and full-APA while the M-max-partial has closed performance to the full-LMS updates algorithms.

  3. Local Ensemble Transform Kalman Filter: a non stationary control law for complex adaptive optics systems on ELTs

    NASA Astrophysics Data System (ADS)

    Gray, Morgan; Petit, Cyril; Rodionov, Sergey; Bertino, Laurent; Bocquet, Marc; Fusco, Thierry

    2013-12-01

    We propose a new algorithm for an AO control law which allows to reduce the computation burden in the case of an Extremely Large Telescope and to deal with a non stationary behavior of the atmospheric turbulence. This approach uses Ensemble Transform Kalman Filter (ETKF) and localizations by domains decomposition: the assimilation is split into local domains on the pupil of the telescope and each of the update data assimilation for each domain is performed independently. This kind of assimilation enables parallel computation of much less data during the update stage. This is a Kalman Filter adaptation for large scale systems with a non stationary turbulence when the explicit storage and manipulation of extremely large covariance matrices are impossible. This distributed parallel environment implementation is highlighted and studied in the context of an ELT application. First simulation results are proposed to assess our theoretical analysis and to demonstrate the potentiality of this new approach for an AO control law on ELTs.

  4. Development of Tremor Suppression Control System Using Adaptive Filter and Its Application to Meal-assist Robot

    NASA Astrophysics Data System (ADS)

    Yano, Ken'ichi; Ohara, Eiichi; Horihata, Satoshi; Aoki, Takaaki; Nishimoto, Yutaka

    A robot that supports independent living by assisting with eating and other activities which use the operator's own hand would be helpful for people suffering from tremors of the hand or any other body part. The proposed system using adaptive filter estimates tremor frequencies with a time-varying property and individual differences online. In this study, the estimated frequency is used to adjusting the tremor suppression filter which insulates the voluntary motion signal from the sensor signal containing tremor components. These system are integrated into the control system of the Meal-Assist Robot. As a result, the developed system makes it possible for the person with a tremor to manipulate the supporting robot without causing operability to deteriorate and without hazards due to improper operation.

  5. The impact of head movements on EEG and contact impedance: an adaptive filtering solution for motion artifact reduction.

    PubMed

    Mihajlovic, Vojkan; Patki, Shrishail; Grundlehner, Bernard

    2014-01-01

    Designing and developing a comfortable and convenient EEG system for daily usage that can provide reliable and robust EEG signal, encompasses a number of challenges. Among them, the most ambitious is the reduction of artifacts due to body movements. This paper studies the effect of head movement artifacts on the EEG signal and on the dry electrode-tissue impedance (ETI), monitored continuously using the imec's wireless EEG headset. We have shown that motion artifacts have huge impact on the EEG spectral content in the frequency range lower than 20 Hz. Coherence and spectral analysis revealed that ETI is not capable of describing disturbances at very low frequencies (below 2 Hz). Therefore, we devised a motion artifact reduction (MAR) method that uses a combination of a band-pass filtering and multi-channel adaptive filtering (AF), suitable for real-time MAR. This method was capable of substantially reducing artifacts produced by head movements. PMID:25571131

  6. Classification of radar clutter using neural networks.

    PubMed

    Haykin, S; Deng, C

    1991-01-01

    A classifier that incorporates both preprocessing and postprocessing procedures as well as a multilayer feedforward network (based on the back-propagation algorithm) in its design to distinguish between several major classes of radar returns including weather, birds, and aircraft is described. The classifier achieves an average classification accuracy of 89% on generalization for data collected during a single scan of the radar antenna. The procedures of feature selection for neural network training, the classifier design considerations, the learning algorithm development, the implementation, and the experimental results of the neural clutter classifier, which is simulated on a Warp systolic computer, are discussed. A comparative evaluation of the multilayer neural network with a traditional Bayes classifier is presented. PMID:18282874

  7. Multi-Sensor Single Target Bearing-Only Tracking in Clutter

    NASA Astrophysics Data System (ADS)

    Mallick, Mahendra; Kirubarajan, T.

    2001-10-01

    In this paper, we have addressed the single target multiple acoustic UGS tracking in clutter using the particle filter (PF) algorithm. We have used realistic values for the probability of detection and false alarm. We have demonstrated that the PF algorithm works in a robust manner when the probability of detection is low and the false alarm is high as is the case in realistic harsh scenarios. In our future work, we plan to compare the performance of the PF with the EKF using the PDA approach and analyze the estimation accuracy by varying the accuracy of the acoustic sensor measurement.

  8. Target shape perception and clutter rejection use the same mechanism in bat sonar.

    PubMed

    Warnecke, Michaela; Simmons, James A

    2016-05-01

    Big brown bats (Eptesicus fuscus) emit frequency-modulated (FM) biosonar sounds containing two or more harmonic sweeps. Echoes from frontally located targets arrive with first and second harmonics intact, leading to focused delay images. Echoes from offside or distant objects arrive with the second harmonic relatively weaker (lowpass-filtered), leading to defocused images, which prevents their clutter interference effects (Bates et al. J Exp Biol 214:394-401, 2011). Realistic targets contain several glints at slightly different distances and reflect several echoes at correspondingly different delays. The bat registers the delay of the nearest glint's echoes in the time domain. The delays of echoes from the farther glints are registered in the frequency domain, from interference nulls in the spectrum. Lowpass-filtering of echoes directly affects the image of the nearest glint by defocusing the delay image. However, lowpass-filtering also is superimposed on the interference spectrum used to register the farther glints, which distorts the pattern of interference nulls, defocusing the farther glints inversely, in the spectral domain, before they are perceived as delays. Differences in blurring between time-domain and frequency-domain parts of images identifies separate computational paths to perceptually reconstruct objects and prevent interference from off-side or distant clutter. PMID:27041334

  9. Linear adaptive noise-reduction filters for tomographic imaging: Optimizing for minimum mean square error

    SciTech Connect

    Sun, W Y

    1993-04-01

    This thesis solves the problem of finding the optimal linear noise-reduction filter for linear tomographic image reconstruction. The optimization is data dependent and results in minimizing the mean-square error of the reconstructed image. The error is defined as the difference between the result and the best possible reconstruction. Applications for the optimal filter include reconstructions of positron emission tomographic (PET), X-ray computed tomographic, single-photon emission tomographic, and nuclear magnetic resonance imaging. Using high resolution PET as an example, the optimal filter is derived and presented for the convolution backprojection, Moore-Penrose pseudoinverse, and the natural-pixel basis set reconstruction methods. Simulations and experimental results are presented for the convolution backprojection method.

  10. Optimal-adaptive filters for modelling spectral shape, site amplification, and source scaling

    USGS Publications Warehouse

    Safak, Erdal

    1989-01-01

    This paper introduces some applications of optimal filtering techniques to earthquake engineering by using the so-called ARMAX models. Three applications are presented: (a) spectral modelling of ground accelerations, (b) site amplification (i.e., the relationship between two records obtained at different sites during an earthquake), and (c) source scaling (i.e., the relationship between two records obtained at a site during two different earthquakes). A numerical example for each application is presented by using recorded ground motions. The results show that the optimal filtering techniques provide elegant solutions to above problems, and can be a useful tool in earthquake engineering.

  11. Clutter in the GMTI range-velocity map.

    SciTech Connect

    Doerry, Armin Walter

    2009-04-01

    Ground Moving Target Indicator (GMTI) radar maps echo data to range and range-rate, which is a function of a moving target's velocity and its position within the antenna beam footprint. Even stationary clutter will exhibit an apparent motion spectrum and can interfere with moving vehicle detections. Consequently it is very important for a radar to understand how stationary clutter maps into radar measurements of range and velocity. This mapping depends on a wide variety of factors, including details of the radar motion, orientation, and the 3-D topography of the clutter.

  12. Capturing dynamics on multiple time scales: a multilevel fusion approach for cluttered electromagnetic data

    NASA Astrophysics Data System (ADS)

    Brumby, Steven P.; Myers, Kary L.; Pawley, Norma H.

    2010-04-01

    Many problems in electromagnetic signal analysis exhibit dynamics on a wide range of time scales. Further, these dynamics may involve both continuous source generation processes and discrete source mode dynamics. These rich temporal characteristics can present challenges for standard modeling approaches, particularly in the presence of nonstationary noise and clutter sources. Here we demonstrate a hybrid algorithm designed to capture the dynamic behavior at all relevant time scales while remaining robust to clutter and noise at each time scale. We draw from techniques of adaptive feature extraction, statistical machine learning, and discrete process modeling to construct our hybrid algorithm. We describe our approach and present results applying our hybrid algorithm to a simulated dataset based on an example radio beacon identification problem: civilian air traffic control. This application illustrates the multi-scale complexity of the problems we wish to address. We consider a multi-mode air traffic control radar emitter operating against a cluttered background of competing radars and continuous-wave communications signals (radios, TV broadcasts). Our goals are to find a compact representation of the radio frequency measurements, identify which pulses were emitted by the target source, and determine the mode of the source.

  13. Sea clutter constituent synthesis approach based on a new decomposition model

    NASA Astrophysics Data System (ADS)

    Zhang, Shengmiao; Li, Jun; He, Zishu; Zhang, Wei; Li, Huiyong

    2015-12-01

    In this paper, a sea clutter decomposition model is newlxy proposed. The decomposition structure is organized according to a comparison study between measured sea clutter and Lorenz chaotic signals. Based on the decomposition model, a sea clutter constituent synthesis approach is developed to reconstruct sea clutter series with neural networks. Simulation results demonstrate the effectiveness and stability of the proposed approach.

  14. Efficiency and adaptability of the benthic methane filter at Quepos Slide cold seeps, offshore of Costa Rica

    NASA Astrophysics Data System (ADS)

    Steeb, P.; Krause, S.; Linke, P.; Hensen, C.; Dale, A. W.; Nuzzo, M.; Treude, T.

    2015-11-01

    Large amounts of methane are delivered by fluids through the erosive forearc of the convergent margin offshore of Costa Rica and lead to the formation of cold seeps at the sediment surface. Besides mud extrusion, numerous cold seeps are created by landslides induced by seamount subduction or fluid migration along major faults. Most of the dissolved methane migrating through the sediments of cold seeps is oxidized within the benthic microbial methane filter by anaerobic oxidation of methane (AOM). Measurements of AOM and sulfate reduction as well as numerical modeling of porewater profiles revealed a highly active and efficient benthic methane filter at the Quepos Slide site, a landslide on the continental slope between the Nicoya and Osa Peninsula. Integrated areal rates of AOM ranged from 12.9 ± 6.0 to 45.2 ± 11.5 mmol m-2 d-1, with only 1 to 2.5 % of the upward methane flux being released into the water column. Additionally, two parallel sediment cores from Quepos Slide were used for in vitro experiments in a recently developed sediment-flow-through (SLOT) system to simulate an increased fluid and methane flux from the bottom of the sediment core. The benthic methane filter revealed a high adaptability whereby the methane oxidation efficiency responded to the increased fluid flow within ca. 170 d. To our knowledge, this study provides the first estimation of the natural biogeochemical response of seep sediments to changes in fluid flow.

  15. Adaptive Kalman filtering based internal temperature estimation with an equivalent electrical network thermal model for hard-cased batteries

    NASA Astrophysics Data System (ADS)

    Dai, Haifeng; Zhu, Letao; Zhu, Jiangong; Wei, Xuezhe; Sun, Zechang

    2015-10-01

    The accurate monitoring of battery cell temperature is indispensible to the design of battery thermal management system. To obtain the internal temperature of a battery cell online, an adaptive temperature estimation method based on Kalman filtering and an equivalent time-variant electrical network thermal (EENT) model is proposed. The EENT model uses electrical components to simulate the battery thermodynamics, and the model parameters are obtained with a least square algorithm. With a discrete state-space description of the EENT model, a Kalman filtering (KF) based internal temperature estimator is developed. Moreover, considering the possible time-varying external heat exchange coefficient, a joint Kalman filtering (JKF) based estimator is designed to simultaneously estimate the internal temperature and the external thermal resistance. Several experiments using the hard-cased LiFePO4 cells with embedded temperature sensors have been conducted to validate the proposed method. Validation results show that, the EENT model expresses the battery thermodynamics well, the KF based temperature estimator tracks the real central temperature accurately even with a poor initialization, and the JKF based estimator can simultaneously estimate both central temperature and external thermal resistance precisely. The maximum estimation errors of the KF- and JKF-based estimators are less than 1.8 °C and 1 °C respectively.

  16. Acceleration amplitude-phase regulation for electro-hydraulic servo shaking table based on LMS adaptive filtering algorithm

    NASA Astrophysics Data System (ADS)

    Yao, Jianjun; Di, Duotao; Jiang, Guilin; Gao, Shuang

    2012-10-01

    Electro-hydraulic servo shaking table usually requires good control performance for acceleration replication. The poles of the electro-hydraulic servo shaking table are placed by three-variable control method using pole placement theory. The system frequency band is thus extended and the system stability is also enhanced. The phase delay and amplitude attenuation phenomenon occurs in electro-hydraulic servo shaking table corresponding to an acceleration sinusoidal input. The method for phase delay and amplitude attenuation elimination based on LMS adaptive filtering algorithm is proposed here. The task is accomplished by adjusting the weights using LMS adaptive filtering algorithm when there exits phase delay and amplitude attenuation between the input and its corresponding acceleration response. The reference input is weighted in such a way that it makes the system output track the input efficiently. The weighted input signal is inputted to the control system such that the output phase delay and amplitude attenuation are all cancelled. The above concept is used as a basis for the development of amplitude-phase regulation (APR) algorithm. The method does not need to estimate the system model and has good real-time performance. Experimental results demonstrate the efficiency and validity of the proposed APR control scheme.

  17. Adaptive unscented Kalman filter based state of energy and power capability estimation approach for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Zhang, Weige; Shi, Wei; Ma, Zeyu

    2015-09-01

    Accurate estimations of battery energy and available power capability are of great of importance for realizing an efficient and reliable operation of electric vehicles. To improve the estimation accuracy and reliability for battery state of energy and power capability, a novel model-based joint estimation approach has been proposed against uncertain external operating conditions and internal degradation status of battery cells. Firstly, it proposes a three-dimensional response surface open circuit voltage model to calibrate the estimation inaccuracies of battery state of energy. Secondly, the adaptive unscented Kalman filter (AUKF) is employed to develop a novel model-based joint state estimator for battery state of energy and power capability. The AUKF algorithm utilizes the well-known features of the Kalman filter but employs the method of unscented transform (UT) and adaptive error covariance matching technology to improve the state estimation accuracy. Thirdly, the proposed joint estimator has been verified by a LiFePO4 lithium-ion battery cell under different operating temperatures and aging levels. The result indicates that the estimation errors of battery voltage and state-of-energy are less than 2% even if given a large erroneous initial value, which makes the state of available power capability predict more accurate and reliable for the electric vehicles application.

  18. Feedforward compensation control of rotor imbalance for high-speed magnetically suspended centrifugal compressors using a novel adaptive notch filter

    NASA Astrophysics Data System (ADS)

    Zheng, Shiqiang; Feng, Rui

    2016-03-01

    This paper introduces a feedforward control strategy combined with a novel adaptive notch filter to solve the problem of rotor imbalance in high-speed Magnetically Suspended Centrifugal Compressors (MSCCs). Unbalance vibration force of rotor in MSCC is mainly composed of current stiffness force and displacement stiffness force. In this paper, the mathematical model of the unbalance vibration with the proportional-integral-derivative (PID) control laws is presented. In order to reduce the unbalance vibration, a novel adaptive notch filter is proposed to identify the synchronous frequency displacement of the rotor as a compensation signal to eliminate the current stiffness force. In addition, a feedforward channel from position component to control output is introduced to compensate displacement stiffness force to achieve a better performance. A simplified inverse model of power amplifier is included in the feedforward channel to reject the degrade performance caused by its low-pass characteristic. Simulation and experimental results on a MSCC demonstrate a significant effect on the synchronous vibration suppression of the magnetically suspended rotor at a high speed.

  19. Multi-Target Tracking With Time-Varying Clutter Rate and Detection Profile: Application to Time-Lapse Cell Microscopy Sequences.

    PubMed

    Rezatofighi, Seyed Hamid; Gould, Stephen; Vo, Ba Tuong; Vo, Ba-Ngu; Mele, Katarina; Hartley, Richard

    2015-06-01

    Quantitative analysis of the dynamics of tiny cellular and sub-cellular structures, known as particles, in time-lapse cell microscopy sequences requires the development of a reliable multi-target tracking method capable of tracking numerous similar targets in the presence of high levels of noise, high target density, complex motion patterns and intricate interactions. In this paper, we propose a framework for tracking these structures based on the random finite set Bayesian filtering framework. We focus on challenging biological applications where image characteristics such as noise and background intensity change during the acquisition process. Under these conditions, detection methods usually fail to detect all particles and are often followed by missed detections and many spurious measurements with unknown and time-varying rates. To deal with this, we propose a bootstrap filter composed of an estimator and a tracker. The estimator adaptively estimates the required meta parameters for the tracker such as clutter rate and the detection probability of the targets, while the tracker estimates the state of the targets. Our results show that the proposed approach can outperform state-of-the-art particle trackers on both synthetic and real data in this regime. PMID:25594963

  20. Auroral-clutter predictions for Fylingdales, England. Interim report

    SciTech Connect

    Tsunoda, R.T.

    1991-07-01

    Radar clutter produced by auroral processes in the ionospheric E layer, called auroral clutter, can have severe deleterious effects on surveillance radars that operate in the subauroral regions. Auroral clutter characteristics, however, are practically impossible to characterize with a statistical description because of the large number of controlling parameters. Recently, a predictive code called Comprehensive E-Region Auroral Clutter (CERAC) model has been written that used knowledge of the underlying physics and semiempirical data as its basis. This is a description of the predictions of the CERAC model for a surveillance radar located at Fylingdales, England. The results include predictions of occurrence, radar cross section, and Doppler velocity, all as functions of radar elevation, azimuth, range, and time.

  1. Integrated adaptive filtering and design for control experiments of flexible structures

    NASA Technical Reports Server (NTRS)

    Huang, Jen-Kuang

    1991-01-01

    A novel method is presented of identifying a state space model and a state estimator for linear stochastic systems from input and output data. The method is primarily based on the relations between the state space model and the finite difference model for linear stochastic systems derived through projection filters. It is proven that least squares identification of a finite difference model converges to the model derived from the projection filters. System pulse response samples are computed from the coefficients of the finite difference model. In estimating the corresponding state estimator gain, a z-domain method is used. First the deterministic component of the output is subtracted out, and then the state estimator gain is obtained by whitening the remaining signal. Experimental example is used to illustrate the feasibility of the method.

  2. Adaptive Kalman filter implementation by a neural network scheme for tracking maneuvering targets

    NASA Astrophysics Data System (ADS)

    Amoozegar, Farid; Sundareshan, Malur K.

    1995-07-01

    Conventional target tracking algorithms based on linear estimation techniques perform quite efficiently when the target motion does not involve maneuvers. Target maneuvers involving short term accelerations, however, cause a bias (e.g. jump) in the measurement sequence, which unless compensated, results in divergence of the Kalman filter that provides estimates of target position and velocity, in turn leading to a loss of track. Accurate compensation for the bias requires processing more samples of the input signals which adds to the computational complexity. The waiting time for more samples can also result in a total loss of track since the target can begin a new maneuver and if the target begins a new maneuver before the first one is compensated for, the filter would never converge. Most of the proposed algorithms in the current literature hence have the disadvantage of losing the target in short term accelerations, i.e., when the duration of acceleration is comparable to the time period between the measurements. The time lag for maneuver modelings, which have been based on Bayesian probability calculations and linear estimation shall propose a neural network scheme for the modeling of target maneuvers. The primary motivation for employing compensation. The parallel processing capability of a properly trained neural network can permit fast processing of features to yield correct acceleration estimates and hence can take the burden off the primary Kalman filter which still provides the target position and velocity estimates.

  3. Adaptive DCT-based filtering of images corrupted by spatially correlated noise

    NASA Astrophysics Data System (ADS)

    Ponomarenko, Nikolay N.; Lukin, Vladimir V.; Zelensky, Aleksandr A.; Astola, Jaakko T.; Egiazarian, Karen O.

    2008-02-01

    Majority of image filtering techniques are designed under assumption that noise is of special, a priori known type and it is i.i.d., i.e. spatially uncorrelated. However, in many practical situations the latter assumption is not true due to several reasons. Moreover, spatial correlation properties of noise might be rather different and a priori unknown. Then the assumption that noise is i.i.d. under real conditions of spatially correlated noise commonly leads to considerable decrease of a used filter effectiveness in comparison to a case if this spatial correlation is taken into account. Our paper deals with two basic aspects. The first one is how to modify a denoising algorithm, in particular, a discrete cosine transform (DCT) based filter in order to incorporate a priori or preliminarily obtained knowledge of spatial correlation characteristics of noise. The second aspect is how to estimate spatial correlation characteristics of noise for a given image with appropriate accuracy and robustness under condition that there is some a priori information about, at least, noise type and statistics like variance (for additive noise case) or relative variance (for multiplicative noise). We also present simulation results showing the effectiveness (the benefit) of taking into consideration noise correlation properties.

  4. Limits to Clutter Cancellation in Multi-Aperture GMTI Data

    SciTech Connect

    Doerry, Armin W.; Bickel, Douglas L.

    2015-03-01

    Multi-aperture or multi-subaperture antennas are fundamental to Ground Moving Target Indicator (GMTI) radar systems in order to detect slow-moving targets with Doppler characteristics similar to clutter. Herein we examine the performance of several subaperture architectures for their clutter cancelling performance. Significantly, more antenna phase centers isn’t always better, and in fact is sometimes worse, for detecting targets.

  5. 51. WEST ACROSS CLUTTER TO WEST WALL OF WELLSERVICE SHED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. WEST ACROSS CLUTTER TO WEST WALL OF WELL-SERVICE SHED ADDITION ON REAR OF FACTORY BUILDING. AT LOWER RIGHT FOREGROUND IS 1960S PICKUP TRUCK, THE LAST MOTOR VEHICLE USED IN WELL SERVICE BY THE KREGEL WINDMILL COMPANY. MOST OF THE OBJECTS VISIBLE IN THIS VIEW ARE CLUTTER NOT RELATED TO THE WELL SERVICE BUSINESS. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  6. Triangle search experiment to isolate scene clutter effects

    NASA Astrophysics Data System (ADS)

    Moore, Richard K.; Camp, H. A.; Moyer, Steve; Halford, Carl E.

    2010-04-01

    A perception experiment was performed in an effort to measure the effect of clutter on search performance while keeping target size, target contrast, and system bandwidth constant. In the NVESD time-limited search (TLS) model, detection performance is said to only vary with changes in target size and target-to-background contrast, if the imaging system and the search time limit are left constant4,8. The results of this experiment show that changes in scene clutter produce changes in detection performance when these other factors remain unchanged, thereby making a stronger case for the inclusion of a clutter metric into the NVESD TLS model. When using real imagery, it is difficult to find good examples of change in clutter without changes in target size, contrast, noise, or other factors also being present. Using computer generated imagery of triangles and tilted squares allowed the clutter aspect of search to be experimentally isolated. When applied to imagery in the perception experiment, the masked target transform volume clutter metric was shown to correlate well with the average observer response time.

  7. Masked target transform volume clutter metric applied to vehicle search

    NASA Astrophysics Data System (ADS)

    Moore, Richard K.; Camp, H. A.; Moyer, Steve; Halford, Carl E.

    2010-04-01

    The Night Vision and Electronic Sensors Directorate's current time-limited search model, which makes use of the targeting task performance (TTP) metric to describe imager quality, does not explicitly account for the effects of clutter on observer performance. The masked target transform volume (MTTV) clutter metric has been presented previously, but is first applied to the results of a vehicle search perception experiment with simulated thermal imagery here. NVESD's Electro-Optical Simulator program was used to generate hundreds of synthetic images of tracked vehicles hidden in a rural environment. 12 observers searched for the tracked vehicles and their performance is compared to the MTTV clutter level, signal-to-clutter ratios using several clutter metrics from open literature, and to the product of target size and contrast. The investigated clutter metrics included the Schmeider-Weathersby statistical variance, Silk's statistical variance, Aviram's probability of edge detection metric, and Chang's target structural similarity metric. The MTTV was shown to better model observer performance as measured by the perception experiment than any of the other compared metrics, including the product of target size and contrast.

  8. Calibrated and geocoded clutter from an airborne multispectral scanner

    NASA Astrophysics Data System (ADS)

    Heuer, Markus; Bruehlmann, Ralph; John, Marc-Andre; Schmid, Konrad J.; Hueppi, Rudolph; Koenig, Reto

    1999-07-01

    Robustness of automatic target recognition (ATR) to varying observation conditions and countermeasures is substantially increased by use of multispectral sensors. Assessment of such ATR systems is performed by captive flight tests and simulations (HWIL or complete modeling). Although the clutter components of a scene can be generated with specified statistics, clutter maps directly obtained from measurement are required for validation of a simulation. In addition, urban scenes have non-stationary characteristics and are difficult to simulate. The present paper describes a scanner, data acquisition and processing system used for the generation of realistic clutter maps incorporating infrared, passive and active millimeter wave channels. The sensors are mounted on a helicopter with coincident line-of-sight, enabling us to measure consistent clutter signatures under varying observation conditions. Position and attitude data from GPS and an inertial measurement unit, respectively, are used to geometrically correct the raw scanner data. After sensor calibration the original voltage signals are converted to physical units, i.e. temperatures and reflectivities, describing the clutter independently of the scanning sensor, thus allowing us the use of the clutter maps in tests of a priori unknown multispectral sensors. The data correction procedures are described and results are presented.

  9. Modeling visual clutter perception using proto-object segmentation

    PubMed Central

    Yu, Chen-Ping; Samaras, Dimitris; Zelinsky, Gregory J.

    2014-01-01

    We introduce the proto-object model of visual clutter perception. This unsupervised model segments an image into superpixels, then merges neighboring superpixels that share a common color cluster to obtain proto-objects—defined here as spatially extended regions of coherent features. Clutter is estimated by simply counting the number of proto-objects. We tested this model using 90 images of realistic scenes that were ranked by observers from least to most cluttered. Comparing this behaviorally obtained ranking to a ranking based on the model clutter estimates, we found a significant correlation between the two (Spearman's ρ = 0.814, p < 0.001). We also found that the proto-object model was highly robust to changes in its parameters and was generalizable to unseen images. We compared the proto-object model to six other models of clutter perception and demonstrated that it outperformed each, in some cases dramatically. Importantly, we also showed that the proto-object model was a better predictor of clutter perception than an actual count of the number of objects in the scenes, suggesting that the set size of a scene may be better described by proto-objects than objects. We conclude that the success of the proto-object model is due in part to its use of an intermediate level of visual representation—one between features and objects—and that this is evidence for the potential importance of a proto-object representation in many common visual percepts and tasks. PMID:24904121

  10. Depth discrimination from occlusions in 3D clutter.

    PubMed

    Langer, Michael S; Zheng, Haomin; Rezvankhah, Shayan

    2016-09-01

    Objects such as trees, shrubs, and tall grass consist of thousands of small surfaces that are distributed over a three-dimensional (3D) volume. To perceive the depth of surfaces within 3D clutter, a visual system can use binocular stereo and motion parallax. However, such parallax cues are less reliable in 3D clutter because surfaces tend to be partly occluded. Occlusions provide depth information, but it is unknown whether visual systems use occlusion cues to aid depth perception in 3D clutter, as previous studies have addressed occlusions for simple scene geometries only. Here, we present a set of depth discrimination experiments that examine depth from occlusion cues in 3D clutter, and how these cues interact with stereo and motion parallax. We identify two probabilistic occlusion cues. The first is based on the fraction of an object that is visible. The second is based on the depth range of the occluders. We show that human observers use both of these occlusion cues. We also define ideal observers that are based on these occlusion cues. Human observer performance is close to ideal using the visibility cue but far from ideal using the range cue. A key reason for the latter is that the range cue depends on depth estimation of the clutter itself which is unreliable. Our results provide new fundamental constraints on the depth information that is available from occlusions in 3D clutter, and how the occlusion cues are combined with binocular stereo and motion parallax cues. PMID:27618514

  11. An adaptive extended Kalman filter for fluorescence diffuse optical tomography of tumor pharmacokinetics

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Wu, Linhui; Yi, Xi; Zhang, Limin; Gao, Feng; Zhao, Huijuan

    2014-03-01

    According to the morphological differences in the vascularization between healthy and diseased tissues, pharmacokinetic-rate images of fluorophore can provide diagnostic information for tumor differentiation, and especially have the potential for staging of tumors. In this paper, fluorescence diffuse optical tomography method is firstly used to acquire metabolism-related time-course images of the fluorophore concentration. Based on a two-compartment model comprised of plasma and extracelluar-extravascular space, we next propose an adaptive-EKF framework to estimate the pharmacokinetic-rate images. With the aid of a forgetting factor, the adaptive-EKF compensate the inaccuracy initial values and emphasize the effect of the current data in order to realize a better online estimation compared with the conventional EKF. We use simulate data to evaluate the performance of the proposed methodology. The results suggest that the adaptive-EKF can obtain preferable pharmacokinetic-rate images than the conventional EKF with higher quantitativeness and noise robustness.

  12. High-Pass Filtering at Vestibular Frequencies by Transducer Adaptation in Mammalian Saccular Hair Cells

    NASA Astrophysics Data System (ADS)

    Songer, Jocelyn E.; Eatock, Ruth Anne

    2011-11-01

    The mammalian saccule detects head tilt and low-frequency head accelerations as well as higher-frequency bone vibrations and sounds. It has two different hair cell types, I and II, dispersed throughout two morphologically distinct regions, the striola and extrastriola. Afferents from the two zones have distinct response dynamics which may arise partly from zonal differences in hair cell properties. We find that type II hair cells in the rat saccular epithelium adapt with a time course appropriate for influencing afferent responses to head motions. Moreover, striolar type II hair cells adapted by a greater extent than extrastriolar type II hair cells and had greater phase leads in the mid-frequency range (5-50 Hz). These differences suggest that hair cell transduction may contribute to zonal differences in the adaptation of vestibular afferents to head motions.

  13. PMHT Approach for Multi-Target Multi-Sensor Sonar Tracking in Clutter

    PubMed Central

    Li, Xiaohua; Li, Yaan; Yu, Jing; Chen, Xiao; Dai, Miao

    2015-01-01

    Multi-sensor sonar tracking has many advantages, such as the potential to reduce the overall measurement uncertainty and the possibility to hide the receiver. However, the use of multi-target multi-sensor sonar tracking is challenging because of the complexity of the underwater environment, especially the low target detection probability and extremely large number of false alarms caused by reverberation. In this work, to solve the problem of multi-target multi-sensor sonar tracking in the presence of clutter, a novel probabilistic multi-hypothesis tracker (PMHT) approach based on the extended Kalman filter (EKF) and unscented Kalman filter (UKF) is proposed. The PMHT can efficiently handle the unknown measurements-to-targets and measurements-to-transmitters data association ambiguity. The EKF and UKF are used to deal with the high degree of nonlinearity in the measurement model. The simulation results show that the proposed algorithm can improve the target tracking performance in a cluttered environment greatly, and its computational load is low. PMID:26561817

  14. PMHT Approach for Multi-Target Multi-Sensor Sonar Tracking in Clutter.

    PubMed

    Li, Xiaohua; Li, Yaan; Yu, Jing; Chen, Xiao; Dai, Miao

    2015-01-01

    Multi-sensor sonar tracking has many advantages, such as the potential to reduce the overall measurement uncertainty and the possibility to hide the receiver. However, the use of multi-target multi-sensor sonar tracking is challenging because of the complexity of the underwater environment, especially the low target detection probability and extremely large number of false alarms caused by reverberation. In this work, to solve the problem of multi-target multi-sensor sonar tracking in the presence of clutter, a novel probabilistic multi-hypothesis tracker (PMHT) approach based on the extended Kalman filter (EKF) and unscented Kalman filter (UKF) is proposed. The PMHT can efficiently handle the unknown measurements-to-targets and measurements-to-transmitters data association ambiguity. The EKF and UKF are used to deal with the high degree of nonlinearity in the measurement model. The simulation results show that the proposed algorithm can improve the target tracking performance in a cluttered environment greatly, and its computational load is low. PMID:26561817

  15. Clutter suppression interferometry system design and processing

    NASA Astrophysics Data System (ADS)

    Knight, Chad; Deming, Ross; Gunther, Jake

    2015-05-01

    Clutter suppression interferometry (CSI) has received extensive attention due to its multi-modal capability to detect slow-moving targets, and concurrently form high-resolution synthetic aperture radar (SAR) images from the same data. The ability to continuously augment SAR images with geo-located ground moving target indicators (GMTI) provides valuable real-time situational awareness that is important for many applications. CSI can be accomplished with minimal hardware and processing resources. This makes CSI a natural candidate for applications where size, weight and power (SWaP) are constrained, such as unmanned aerial vehicles (UAVs) and small satellites. This paper will discuss the theory for optimal CSI system configuration focusing on sparse time-varying transmit and receive array manifold due to SWaP considerations. The underlying signal model will be presented and discussed as well as the potential benefits that a sparse time-varying transmit receive manifold provides. The high-level processing objectives will be detailed and examined on simulated data. Then actual SAR data collected with the Space Dynamic Laboratory (SDL) FlexSAR radar system will be analyzed. The simulated data contrasted with actual SAR data helps illustrate the challenges and limitations found in practice vs. theory. A new novel approach incorporating sparse signal processing is discussed that has the potential to reduce false- alarm rates and improve detections.

  16. Ultrawideband radar clutter measurements and analysis

    NASA Astrophysics Data System (ADS)

    Tuley, Michael T.; Sheen, David M.; Collins, H. D.; Sager, Earl V.; Schultheis, A. C.

    1993-05-01

    This paper reports the results of ultrawideband radar clutter measurements made by Battelle- Pacific Northwest Laboratories and the System Planning Corporation near Sequim, WA. The measurement area is a mountainous coniferous forest with occasional roads and clear-cut areas. Local grazing angles range from near zero to approximately 40 degree(s). Very limited data are also presented from measurements made in a desert-type terrain near Richland, WA. Two ultrawideband radar systems were employed in the data collection. An impulse system providing an approximate one nanosecond monocycle pulse (bandwidth of 300 MHz - 1000 MHz) acquired data over a 0.7 km2 area (121,000 resolution cells). A step chirp radar with the same total bandwidth as the impulse system collected data over a 6.2 km2 area (780,000 resolution cells), including the area sampled by the impulse system. Wideband TEM horn antennas (log-periodic antennas for the step chirp system) deployed on a 19 m horizontally scanned aperture were used for transmission and reception, providing a 1.5 degree(s) azimuth resolution at 300 MHz for both systems.

  17. Automatic identification and removal of ocular artifacts in EEG--improved adaptive predictor filtering for portable applications.

    PubMed

    Zhao, Qinglin; Hu, Bin; Shi, Yujun; Li, Yang; Moore, Philip; Sun, Minghou; Peng, Hong

    2014-06-01

    Electroencephalogram (EEG) signals have a long history of use as a noninvasive approach to measure brain function. An essential component in EEG-based applications is the removal of Ocular Artifacts (OA) from the EEG signals. In this paper we propose a hybrid de-noising method combining Discrete Wavelet Transformation (DWT) and an Adaptive Predictor Filter (APF). A particularly novel feature of the proposed method is the use of the APF based on an adaptive autoregressive model for prediction of the waveform of signals in the ocular artifact zones. In our test, based on simulated data, the accuracy of noise removal in the proposed model was significantly increased when compared to existing methods including: Wavelet Packet Transform (WPT) and Independent Component Analysis (ICA), Discrete Wavelet Transform (DWT) and Adaptive Noise Cancellation (ANC). The results demonstrate that the proposed method achieved a lower mean square error and higher correlation between the original and corrected EEG. The proposed method has also been evaluated using data from calibration trials for the Online Predictive Tools for Intervention in Mental Illness (OPTIMI) project. The results of this evaluation indicate an improvement in performance in terms of the recovery of true EEG signals with EEG tracking and computational speed in the analysis. The proposed method is well suited to applications in portable environments where the constraints with respect to acceptable wearable sensor attachments usually dictate single channel devices. PMID:24802943

  18. An adaptive compensation algorithm for temperature drift of micro-electro-mechanical systems gyroscopes using a strong tracking Kalman filter.

    PubMed

    Feng, Yibo; Li, Xisheng; Zhang, Xiaojuan

    2015-01-01

    We present an adaptive algorithm for a system integrated with micro-electro-mechanical systems (MEMS) gyroscopes and a compass to eliminate the influence from the environment, compensate the temperature drift precisely, and improve the accuracy of the MEMS gyroscope. We use a simplified drift model and changing but appropriate model parameters to implement this algorithm. The model of MEMS gyroscope temperature drift is constructed mostly on the basis of the temperature sensitivity of the gyroscope. As the state variables of a strong tracking Kalman filter (STKF), the parameters of the temperature drift model can be calculated to adapt to the environment under the support of the compass. These parameters change intelligently with the environment to maintain the precision of the MEMS gyroscope in the changing temperature. The heading error is less than 0.6° in the static temperature experiment, and also is kept in the range from 5° to -2° in the dynamic outdoor experiment. This demonstrates that the proposed algorithm exhibits strong adaptability to a changing temperature, and performs significantly better than KF and MLR to compensate the temperature drift of a gyroscope and eliminate the influence of temperature variation. PMID:25985165

  19. An Adaptive Compensation Algorithm for Temperature Drift of Micro-Electro-Mechanical Systems Gyroscopes Using a Strong Tracking Kalman Filter

    PubMed Central

    Feng, Yibo; Li, Xisheng; Zhang, Xiaojuan

    2015-01-01

    We present an adaptive algorithm for a system integrated with micro-electro-mechanical systems (MEMS) gyroscopes and a compass to eliminate the influence from the environment, compensate the temperature drift precisely, and improve the accuracy of the MEMS gyroscope. We use a simplified drift model and changing but appropriate model parameters to implement this algorithm. The model of MEMS gyroscope temperature drift is constructed mostly on the basis of the temperature sensitivity of the gyroscope. As the state variables of a strong tracking Kalman filter (STKF), the parameters of the temperature drift model can be calculated to adapt to the environment under the support of the compass. These parameters change intelligently with the environment to maintain the precision of the MEMS gyroscope in the changing temperature. The heading error is less than 0.6° in the static temperature experiment, and also is kept in the range from 5° to −2° in the dynamic outdoor experiment. This demonstrates that the proposed algorithm exhibits strong adaptability to a changing temperature, and performs significantly better than KF and MLR to compensate the temperature drift of a gyroscope and eliminate the influence of temperature variation. PMID:25985165

  20. Adaptive-filtering of trisomy 21: risk of Down syndrome depends on family size and age of previous child

    NASA Astrophysics Data System (ADS)

    Neuhäuser, Markus; Krackow, Sven

    2007-02-01

    The neonatal incidence rate of Down syndrome (DS) is well-known to accelerate strongly with maternal age. This non-linearity renders mere accumulation of defects at recombination during prolonged first meiotic prophase implausible as an explanation for DS rate increase with maternal age, but might be anticipated from chromosomal drive (CD) for trisomy 21. Alternatively, as there is selection against genetically disadvantaged embryos, the screening system that eliminates embryos with trisomy 21 might decay with maternal age. In this paper, we provide the first evidence for relaxed filtering stringency (RFS) to represent an adaptive maternal response that could explain accelerating DS rates with maternal age. Using historical data, we show that the proportion of aberrant live births decrease with increased family size in older mothers, that inter-birth intervals are longer before affected neonates than before normal ones, and that primiparae exhibit elevated levels of DS incidence at higher age. These findings are predicted by adaptive RFS but cannot be explained by the currently available alternative non-adaptive hypotheses, including CD. The identification of the relaxation control mechanism and therapeutic restoration of a stringent screen may have considerable medical implications.

  1. A tunable electrochromic fabry-perot filter for adaptive optics applications.

    SciTech Connect

    Blaich, Jonathan David; Kammler, Daniel R.; Ambrosini, Andrea; Sweatt, William C.; Verley, Jason C.; Heller, Edwin J.; Yelton, William Graham

    2006-10-01

    The potential for electrochromic (EC) materials to be incorporated into a Fabry-Perot (FP) filter to allow modest amounts of tuning was evaluated by both experimental methods and modeling. A combination of chemical vapor deposition (CVD), physical vapor deposition (PVD), and electrochemical methods was used to produce an ECFP film stack consisting of an EC WO{sub 3}/Ta{sub 2}O{sub 5}/NiO{sub x}H{sub y} film stack (with indium-tin-oxide electrodes) sandwiched between two Si{sub 3}N{sub 4}/SiO{sub 2} dielectric reflector stacks. A process to produce a NiO{sub x}H{sub y} charge storage layer that freed the EC stack from dependence on atmospheric humidity and allowed construction of this complex EC-FP stack was developed. The refractive index (n) and extinction coefficient (k) for each layer in the EC-FP film stack was measured between 300 and 1700 nm. A prototype EC-FP filter was produced that had a transmission at 500 nm of 36%, and a FWHM of 10 nm. A general modeling approach that takes into account the desired pass band location, pass band width, required transmission and EC optical constants in order to estimate the maximum tuning from an EC-FP filter was developed. Modeling shows that minor thickness changes in the prototype stack developed in this project should yield a filter with a transmission at 600 nm of 33% and a FWHM of 9.6 nm, which could be tuned to 598 nm with a FWHM of 12.1 nm and a transmission of 16%. Additional modeling shows that if the EC WO{sub 3} absorption centers were optimized, then a shift from 600 nm to 598 nm could be made with a FWHM of 11.3 nm and a transmission of 20%. If (at 600 nm) the FWHM is decreased to 1 nm and transmission maintained at a reasonable level (e.g. 30%), only fractions of a nm of tuning would be possible with the film stack considered in this study. These tradeoffs may improve at other wavelengths or with EC materials different than those considered here. Finally, based on our limited investigation and material set

  2. Multiple Model Adaptive Two-Step Filter and Motion Tracking Sliding-Mode Guidance for Missiles with Time Lag in Acceleration

    NASA Astrophysics Data System (ADS)

    Zhou, Di; Zhang, Yong-An; Duan, Guang-Ren

    The two-step filter has been combined with a modified Sage-Husa time-varying measurement noise statistical estimator, which is able to estimate the covariance of measurement noise on line, to generate an adaptive two-step filter. In many practical applications such as the bearings-only guidance, some model parameters and the process noise covariance are also unknown a priori. Based on the adaptive two-step filter, we utilize multiple models in the first-step filtering as well as in the time update of the second-step filtering to handle the uncertainties of model parameters and process noise covariance. In each timestep of the multiple model filtering, probabilistic weights punishing the estimates of first-step state from different models, and their associated covariance matrices are acquired according to Bayes’ rule. The weighted sum of the estimates of first-step state and that of the associated covariance matrices are extracted as the ultimate estimate and covariance of the first-step state, and are used as measurement information for the measurement update of the second-step state. Thus there is still only one iteration process and no apparent enhancement of computation burden. A motion tracking sliding-mode guidance law is presented for missiles with non-negligible delays in actual acceleration. This guidance law guarantees guidance accuracy and is able to enhance observability in bearings-only tracking. In bearings-only cases, the multiple model adaptive two-step filter is applied to the motion tracking sliding-mode guidance law, supplying relative range, relative velocity, and target acceleration information. In simulation experiments satisfactory filtering and guidance results are obtained, even if the filter runs into unknown target maneuvers and unknown time-varying measurement noise covariance, and the guidance law has to deal with a large time lag in acceleration.

  3. Multi-Target Joint Detection and Estimation Error Bound for the Sensor with Clutter and Missed Detection

    PubMed Central

    Lian, Feng; Zhang, Guang-Hua; Duan, Zhan-Sheng; Han, Chong-Zhao

    2016-01-01

    The error bound is a typical measure of the limiting performance of all filters for the given sensor measurement setting. This is of practical importance in guiding the design and management of sensors to improve target tracking performance. Within the random finite set (RFS) framework, an error bound for joint detection and estimation (JDE) of multiple targets using a single sensor with clutter and missed detection is developed by using multi-Bernoulli or Poisson approximation to multi-target Bayes recursion. Here, JDE refers to jointly estimating the number and states of targets from a sequence of sensor measurements. In order to obtain the results of this paper, all detectors and estimators are restricted to maximum a posteriori (MAP) detectors and unbiased estimators, and the second-order optimal sub-pattern assignment (OSPA) distance is used to measure the error metric between the true and estimated state sets. The simulation results show that clutter density and detection probability have significant impact on the error bound, and the effectiveness of the proposed bound is verified by indicating the performance limitations of the single-sensor probability hypothesis density (PHD) and cardinalized PHD (CPHD) filters for various clutter densities and detection probabilities. PMID:26828499

  4. Multi-Target Joint Detection and Estimation Error Bound for the Sensor with Clutter and Missed Detection.

    PubMed

    Lian, Feng; Zhang, Guang-Hua; Duan, Zhan-Sheng; Han, Chong-Zhao

    2016-01-01

    The error bound is a typical measure of the limiting performance of all filters for the given sensor measurement setting. This is of practical importance in guiding the design and management of sensors to improve target tracking performance. Within the random finite set (RFS) framework, an error bound for joint detection and estimation (JDE) of multiple targets using a single sensor with clutter and missed detection is developed by using multi-Bernoulli or Poisson approximation to multi-target Bayes recursion. Here, JDE refers to jointly estimating the number and states of targets from a sequence of sensor measurements. In order to obtain the results of this paper, all detectors and estimators are restricted to maximum a posteriori (MAP) detectors and unbiased estimators, and the second-order optimal sub-pattern assignment (OSPA) distance is used to measure the error metric between the true and estimated state sets. The simulation results show that clutter density and detection probability have significant impact on the error bound, and the effectiveness of the proposed bound is verified by indicating the performance limitations of the single-sensor probability hypothesis density (PHD) and cardinalized PHD (CPHD) filters for various clutter densities and detection probabilities. PMID:26828499

  5. A reevaluation of achromatic spatio-temporal vision: Nonoriented filters are monocular, they adapt, and can be used for decision making at high flicker speeds

    PubMed Central

    Meese, Tim S; Baker, Daniel H

    2011-01-01

    Masking, adaptation, and summation paradigms have been used to investigate the characteristics of early spatio-temporal vision. Each has been taken to provide evidence for (i) oriented and (ii) nonoriented spatial-filtering mechanisms. However, subsequent findings suggest that the evidence for nonoriented mechanisms has been misinterpreted: those experiments might have revealed the characteristics of suppression (eg, gain control), not excitation, or merely the isotropic subunits of the oriented detecting mechanisms. To shed light on this, we used all three paradigms to focus on the ‘high-speed’ corner of spatio-temporal vision (low spatial frequency, high temporal frequency), where cross-oriented achromatic effects are greatest. We used flickering Gabor patches as targets and a 2IFC procedure for monocular, binocular, and dichoptic stimulus presentations. To account for our results, we devised a simple model involving an isotropic monocular filter-stage feeding orientation-tuned binocular filters. Both filter stages are adaptable, and their outputs are available to the decision stage following nonlinear contrast transduction. However, the monocular isotropic filters (i) adapt only to high-speed stimuli—consistent with a magnocellular subcortical substrate—and (ii) benefit decision making only for high-speed stimuli (ie, isotropic monocular outputs are available only for high-speed stimuli). According to this model, the visual processes revealed by masking, adaptation, and summation are related but not identical. PMID:23145234

  6. An Adaptive Particle Filtering Approach to Tracking Modes in a Varying Shallow Ocean Environment

    SciTech Connect

    Candy, J V

    2011-03-22

    The shallow ocean environment is ever changing mostly due to temperature variations in its upper layers (< 100m) directly affecting sound propagation throughout. The need to develop processors that are capable of tracking these changes implies a stochastic as well as an 'adaptive' design. The stochastic requirement follows directly from the multitude of variations created by uncertain parameters and noise. Some work has been accomplished in this area, but the stochastic nature was constrained to Gaussian uncertainties. It has been clear for a long time that this constraint was not particularly realistic leading a Bayesian approach that enables the representation of any uncertainty distribution. Sequential Bayesian techniques enable a class of processors capable of performing in an uncertain, nonstationary (varying statistics), non-Gaussian, variable shallow ocean. In this paper adaptive processors providing enhanced signals for acoustic hydrophonemeasurements on a vertical array as well as enhanced modal function estimates are developed. Synthetic data is provided to demonstrate that this approach is viable.

  7. Simulation of underresolved turbulent flows by adaptive filtering using the high order discontinuous Galerkin spectral element method

    NASA Astrophysics Data System (ADS)

    Flad, David; Beck, Andrea; Munz, Claus-Dieter

    2016-05-01

    Scale-resolving simulations of turbulent flows in complex domains demand accurate and efficient numerical schemes, as well as geometrical flexibility. For underresolved situations, the avoidance of aliasing errors is a strong demand for stability. For continuous and discontinuous Galerkin schemes, an effective way to prevent aliasing errors is to increase the quadrature precision of the projection operator to account for the non-linearity of the operands (polynomial dealiasing, overintegration). But this increases the computational costs extensively. In this work, we present a novel spatially and temporally adaptive dealiasing strategy by projection filtering. We show this to be more efficient for underresolved turbulence than the classical overintegration strategy. For this novel approach, we discuss the implementation strategy and the indicator details, show its accuracy and efficiency for a decaying homogeneous isotropic turbulence and the transitional Taylor-Green vortex and compare it to the original overintegration approach and a state of the art variational multi-scale eddy viscosity formulation.

  8. An optimized DSP implementation of adaptive filtering and ICA for motion artifact reduction in ambulatory ECG monitoring.

    PubMed

    Berset, Torfinn; Geng, Di; Romero, Iñaki

    2012-01-01

    Noise from motion artifacts is currently one of the main challenges in the field of ambulatory ECG recording. To address this problem, we propose the use of two different approaches. First, an adaptive filter with electrode-skin impedance as a reference signal is described. Secondly, a multi-channel ECG algorithm based on Independent Component Analysis is introduced. Both algorithms have been designed and further optimized for real-time work embedded in a dedicated Digital Signal Processor. We show that both algorithms improve the performance of a beat detection algorithm when applied in high noise conditions. In addition, an efficient way of choosing this methods is suggested with the aim of reduce the overall total system power consumption. PMID:23367417

  9. Computationally Efficient Locally Adaptive Demosaicing of Color Filter Array Images Using the Dual-Tree Complex Wavelet Packet Transform

    PubMed Central

    Aelterman, Jan; Goossens, Bart; De Vylder, Jonas; Pižurica, Aleksandra; Philips, Wilfried

    2013-01-01

    Most digital cameras use an array of alternating color filters to capture the varied colors in a scene with a single sensor chip. Reconstruction of a full color image from such a color mosaic is what constitutes demosaicing. In this paper, a technique is proposed that performs this demosaicing in a way that incurs a very low computational cost. This is done through a (dual-tree complex) wavelet interpretation of the demosaicing problem. By using a novel locally adaptive approach for demosaicing (complex) wavelet coefficients, we show that many of the common demosaicing artifacts can be avoided in an efficient way. Results demonstrate that the proposed method is competitive with respect to the current state of the art, but incurs a lower computational cost. The wavelet approach also allows for computationally effective denoising or deblurring approaches. PMID:23671575

  10. Distributed parameter system coupled ARMA expansion identification and adaptive parallel IIR filtering - A unified problem statement. [Auto Regressive Moving-Average

    NASA Technical Reports Server (NTRS)

    Johnson, C. R., Jr.; Balas, M. J.

    1980-01-01

    A novel interconnection of distributed parameter system (DPS) identification and adaptive filtering is presented, which culminates in a common statement of coupled autoregressive, moving-average expansion or parallel infinite impulse response configuration adaptive parameterization. The common restricted complexity filter objectives are seen as similar to the reduced-order requirements of the DPS expansion description. The interconnection presents the possibility of an exchange of problem formulations and solution approaches not yet easily addressed in the common finite dimensional lumped-parameter system context. It is concluded that the shared problems raised are nevertheless many and difficult.

  11. Global Infrasound Association Based on Probabilistic Clutter Categorization

    NASA Astrophysics Data System (ADS)

    Arora, N. S.; Mialle, P.

    2015-12-01

    The IDC collects waveforms from a global network of infrasound sensors maintained by the IMS, and automatically detects signal onsets and associates them to form event hypotheses. However, a large number of signal onsets are due to local clutter sources such as microbaroms (from standing waves in the oceans), waterfalls, dams, gas flares, surf (ocean breaking waves) etc. These sources are either too diffuse or too local to form events. Worse still, the repetitive nature of this clutter leads to a large number of false event hypotheses due to the random matching of clutter at multiple stations. Previous studies, for example [1], have worked on categorization of clutter using long term trends on detection azimuth, frequency, and amplitude at each station. In this work we continue the same line of reasoning to build a probabilistic model of clutter that is used as part of NET-VISA [2], a Bayesian approach to network processing. The resulting model is a fusion of seismic, hydro-acoustic and infrasound processing built on a unified probabilistic framework. Notes: The attached figure shows all the unassociated arrivals detected at IMS station I09BR for 2012 distributed by azimuth and center frequency. (The title displays the bandwidth of the kernel density estimate along the azimuth and frequency dimensions).This plot shows multiple micro-barom sources as well as other sources of infrasound clutter. A diverse clutter-field such as this one is quite common for most IMS infrasound stations, and it highlights the dangers of forming events without due consideration of this source of noise. References: [1] Infrasound categorization Towards a statistics-based approach. J. Vergoz, P. Gaillard, A. Le Pichon, N. Brachet, and L. Ceranna. ITW 2011 [2] NET-VISA: Network Processing Vertically Integrated Seismic Analysis. N. S. Arora, S. Russell, and E. Sudderth. BSSA 2013.

  12. Mie Light-Scattering Granulometer with an Adaptive Numerical Filtering Method. II. Experiments.

    PubMed

    Hespel, L; Delfour, A; Guillame, B

    2001-02-20

    A nephelometer is presented that theoretically requires no absolute calibration. This instrument is used for determining the particle-size distribution of various scattering media (aerosols, fogs, rocket exhausts, engine plumes, and the like) from angular static light-scattering measurements. An inverse procedure is used, which consists of a least-squares method and a regularization scheme based on numerical filtering. To retrieve the distribution function one matches the experimental data with theoretical patterns derived from Mie theory. The main principles of the inverse method are briefly presented, and the nephelometer is then described with the associated partial calibration procedure. Finally, the whole granulometer system (inverse method and nephelometer) is validated by comparison of measurements of scattering media with calibrated monodisperse or known size distribution functions. PMID:18357082

  13. Empirical performance of the spectral independent morphological adaptive classifier

    NASA Astrophysics Data System (ADS)

    Montgomery, Joel B.; Montgomery, Christine T.; Sanderson, Richard B.; McCalmont, John F.

    2008-04-01

    Effective missile warning and countermeasures continue to be an unfulfilled goal for the Air Force including the wider military and civilian aerospace community. To make the necessary detection and jamming timeframes dictated by today's proliferated missiles and near-term upgraded threats, sensors with required sensitivity, field of regard, and spatial resolution are being pursued in conjunction with advanced processing techniques allowing for detection and discrimination beyond 10 km. The greatest driver of any missile warning system is detection and correct declaration, in which all targets need to be detected with a high confidence and with very few false alarms. Generally, imaging sensors are limited in their detection capability by the presence of heavy background clutter, sun glints, and inherent sensor noise. Many threat environments include false alarm sources like burning fuels, flares, exploding ordinance, and industrial emitters. Spectral discrimination has been shown to be one of the most effective methods of improving the performance of typical missile warning sensors, particularly for heavy clutter situations. Its utility has been demonstrated in the field and on-board multiple aircraft. Utilization of the background and clutter spectral content, coupled with additional spatial and temporal filtering techniques, have yielded robust adaptive real-time algorithms to increase signal-to-clutter ratios against point targets, and thereby to increase detection range. The algorithm outlined is the result of continued work with reported results against visible missile tactical data. The results are summarized and compared in terms of computational cost expected to be implemented on a real-time field-programmable gate array (FPGA) processor.

  14. Signal quality improvement of holographic data storage using adaptive two-dimensional filter

    NASA Astrophysics Data System (ADS)

    Takahata, Yosuke; Kondo, Yo; Yoshida, Shuhei; Yamamoto, Manabu

    2010-05-01

    Holographic data storage is being widely studied for the purpose of developing next-generation large optical memories. A prospective use of this type of memory is in building image archives in large-scale data centers. In particular, demand for energy conservation at data centers, and therefore for holographic data storage, is growing. In holographic data storage, interference between bits occurs owing to wave aberration in the optical system, shrinkage of the medium, and crosstalk noise from neighboring holograms during multiplex recording; as a result of the interference, the reproduced image deteriorates and the bit error rate (BER) increases. In this study, to reduce the BER in both off-axis-type recording and coaxial-type recording, a two-dimensional finite impulse response (FIR) filter is applied to a reproduced image that has been recorded by angle multiplex recording and shift multiplex recording. First, for the optimization of the FIR filter coefficients, the linear minimum mean square error (LMMSE) method is applied; this method optimizes the coefficients by reducing the BER. Furthermore, for evaluating the optimization performance of the LMMSE method, the optimization performance is compared with that of the real-coded genetic algorithm (RCGA), which has the capability to search a wide range of coefficients. The optimization by the LMMSE method has been found to be excellent for off-axis-type recording but not for coaxial-type recording. It is speculated that this is because of the brightness irregularity in the reproduced image, resulting from crosstalk. On the other hand, a marked reduction in the BER is observed using the RCGA, despite the brightness irregularity. In this study, the effectiveness of the LMMSE method for signals recorded by coaxial-type recording, in which large brightness irregularity is expected, is examined using automatic gain control (AGC). It is found that the application of AGC reduces the BER even in the case of coaxial

  15. Local ensemble transform Kalman filter, a fast non-stationary control law for adaptive optics on ELTs: theoretical aspects and first simulation results.

    PubMed

    Gray, Morgan; Petit, Cyril; Rodionov, Sergey; Bocquet, Marc; Bertino, Laurent; Ferrari, Marc; Fusco, Thierry

    2014-08-25

    We propose a new algorithm for an adaptive optics system control law, based on the Linear Quadratic Gaussian approach and a Kalman Filter adaptation with localizations. It allows to handle non-stationary behaviors, to obtain performance close to the optimality defined with the residual phase variance minimization criterion, and to reduce the computational burden with an intrinsically parallel implementation on the Extremely Large Telescopes (ELTs). PMID:25321291

  16. Filtering Based Adaptive Visual Odometry Sensor Framework Robust to Blurred Images

    PubMed Central

    Zhao, Haiying; Liu, Yong; Xie, Xiaojia; Liao, Yiyi; Liu, Xixi

    2016-01-01

    Visual odometry (VO) estimation from blurred image is a challenging problem in practical robot applications, and the blurred images will severely reduce the estimation accuracy of the VO. In this paper, we address the problem of visual odometry estimation from blurred images, and present an adaptive visual odometry estimation framework robust to blurred images. Our approach employs an objective measure of images, named small image gradient distribution (SIGD), to evaluate the blurring degree of the image, then an adaptive blurred image classification algorithm is proposed to recognize the blurred images, finally we propose an anti-blurred key-frame selection algorithm to enable the VO robust to blurred images. We also carried out varied comparable experiments to evaluate the performance of the VO algorithms with our anti-blur framework under varied blurred images, and the experimental results show that our approach can achieve superior performance comparing to the state-of-the-art methods under the condition with blurred images while not increasing too much computation cost to the original VO algorithms. PMID:27399704

  17. Filtering Based Adaptive Visual Odometry Sensor Framework Robust to Blurred Images.

    PubMed

    Zhao, Haiying; Liu, Yong; Xie, Xiaojia; Liao, Yiyi; Liu, Xixi

    2016-01-01

    Visual odometry (VO) estimation from blurred image is a challenging problem in practical robot applications, and the blurred images will severely reduce the estimation accuracy of the VO. In this paper, we address the problem of visual odometry estimation from blurred images, and present an adaptive visual odometry estimation framework robust to blurred images. Our approach employs an objective measure of images, named small image gradient distribution (SIGD), to evaluate the blurring degree of the image, then an adaptive blurred image classification algorithm is proposed to recognize the blurred images, finally we propose an anti-blurred key-frame selection algorithm to enable the VO robust to blurred images. We also carried out varied comparable experiments to evaluate the performance of the VO algorithms with our anti-blur framework under varied blurred images, and the experimental results show that our approach can achieve superior performance comparing to the state-of-the-art methods under the condition with blurred images while not increasing too much computation cost to the original VO algorithms. PMID:27399704

  18. Robust fundamental frequency estimation in sustained vowels: Detailed algorithmic comparisons and information fusion with adaptive Kalman filtering

    PubMed Central

    Tsanas, Athanasios; Zañartu, Matías; Little, Max A.; Fox, Cynthia; Ramig, Lorraine O.; Clifford, Gari D.

    2014-01-01

    There has been consistent interest among speech signal processing researchers in the accurate estimation of the fundamental frequency (F0) of speech signals. This study examines ten F0 estimation algorithms (some well-established and some proposed more recently) to determine which of these algorithms is, on average, better able to estimate F0 in the sustained vowel /a/. Moreover, a robust method for adaptively weighting the estimates of individual F0 estimation algorithms based on quality and performance measures is proposed, using an adaptive Kalman filter (KF) framework. The accuracy of the algorithms is validated using (a) a database of 117 synthetic realistic phonations obtained using a sophisticated physiological model of speech production and (b) a database of 65 recordings of human phonations where the glottal cycles are calculated from electroglottograph signals. On average, the sawtooth waveform inspired pitch estimator and the nearly defect-free algorithms provided the best individual F0 estimates, and the proposed KF approach resulted in a ∼16% improvement in accuracy over the best single F0 estimation algorithm. These findings may be useful in speech signal processing applications where sustained vowels are used to assess vocal quality, when very accurate F0 estimation is required. PMID:24815269

  19. ASICs Approach for the Implementation of a Symmetric Triangular Fuzzy Coprocessor and Its Application to Adaptive Filtering

    NASA Technical Reports Server (NTRS)

    Starks, Scott; Abdel-Hafeez, Saleh; Usevitch, Bryan

    1997-01-01

    This paper discusses the implementation of a fuzzy logic system using an ASICs design approach. The approach is based upon combining the inherent advantages of symmetric triangular membership functions and fuzzy singleton sets to obtain a novel structure for fuzzy logic system application development. The resulting structure utilizes a fuzzy static RAM to store the rule-base and the end-points of the triangular membership functions. This provides advantages over other approaches in which all sampled values of membership functions for all universes must be stored. The fuzzy coprocessor structure implements the fuzzification and defuzzification processes through a two-stage parallel pipeline architecture which is capable of executing complex fuzzy computations in less than 0.55us with an accuracy of more than 95%, thus making it suitable for a wide range of applications. Using the approach presented in this paper, a fuzzy logic rule-base can be directly downloaded via a host processor to an onchip rule-base memory with a size of 64 words. The fuzzy coprocessor's design supports up to 49 rules for seven fuzzy membership functions associated with each of the chip's two input variables. This feature allows designers to create fuzzy logic systems without the need for additional on-board memory. Finally, the paper reports on simulation studies that were conducted for several adaptive filter applications using the least mean squared adaptive algorithm for adjusting the knowledge rule-base.

  20. Robust fundamental frequency estimation in sustained vowels: detailed algorithmic comparisons and information fusion with adaptive Kalman filtering.

    PubMed

    Tsanas, Athanasios; Zañartu, Matías; Little, Max A; Fox, Cynthia; Ramig, Lorraine O; Clifford, Gari D

    2014-05-01

    There has been consistent interest among speech signal processing researchers in the accurate estimation of the fundamental frequency (F(0)) of speech signals. This study examines ten F(0) estimation algorithms (some well-established and some proposed more recently) to determine which of these algorithms is, on average, better able to estimate F(0) in the sustained vowel /a/. Moreover, a robust method for adaptively weighting the estimates of individual F(0) estimation algorithms based on quality and performance measures is proposed, using an adaptive Kalman filter (KF) framework. The accuracy of the algorithms is validated using (a) a database of 117 synthetic realistic phonations obtained using a sophisticated physiological model of speech production and (b) a database of 65 recordings of human phonations where the glottal cycles are calculated from electroglottograph signals. On average, the sawtooth waveform inspired pitch estimator and the nearly defect-free algorithms provided the best individual F(0) estimates, and the proposed KF approach resulted in a ∼16% improvement in accuracy over the best single F(0) estimation algorithm. These findings may be useful in speech signal processing applications where sustained vowels are used to assess vocal quality, when very accurate F(0) estimation is required. PMID:24815269

  1. Method for modelling sea surface clutter in complicated propagation environments

    NASA Astrophysics Data System (ADS)

    Dockery, G. D.

    1990-04-01

    An approach for predicting clutter levels in complicated propagation conditions using an advanced propagation model and one of several empirical clutter cross-section models is described. Incident power and grazing angle information is obtained using a parabolic equation/Fourier split-step technique to predict the distribution of energy in complicated, range-varying environments. Such environments also require the use of an algorithm that establishes a physically reasonable range-interpolation scheme for the measured refractivity profiles. The reflectivity of the sea surface is represented using a clutter cross-section model that was developed originally by the Georgia Institutue of Technology and subsequently modified to include the effects of arbitrary refractive conditions. Predicted clutter power levels generated by the new procedure are compared with clutter measured at 2.9 GHz during propagation experiments conducted at the NASA Wallops Flight Facility on Virginia's Eastern Shore. During these experiments, high-resolution refractivity data were collected in both range and altitude by an instrumented helicopter.

  2. Global Infrasound Association Based on Probabilistic Clutter Categorization

    NASA Astrophysics Data System (ADS)

    Arora, Nimar; Mialle, Pierrick

    2016-04-01

    The IDC advances its methods and continuously improves its automatic system for the infrasound technology. The IDC focuses on enhancing the automatic system for the identification of valid signals and the optimization of the network detection threshold by identifying ways to refine signal characterization methodology and association criteria. An objective of this study is to reduce the number of associated infrasound arrivals that are rejected from the automatic bulletins when generating the reviewed event bulletins. Indeed, a considerable number of signal detections are due to local clutter sources such as microbaroms, waterfalls, dams, gas flares, surf (ocean breaking waves) etc. These sources are either too diffuse or too local to form events. Worse still, the repetitive nature of this clutter leads to a large number of false event hypotheses due to the random matching of clutter at multiple stations. Previous studies, for example [1], have worked on categorization of clutter using long term trends on detection azimuth, frequency, and amplitude at each station. In this work we continue the same line of reasoning to build a probabilistic model of clutter that is used as part of NETVISA [2], a Bayesian approach to network processing. The resulting model is a fusion of seismic, hydroacoustic and infrasound processing built on a unified probabilistic framework. References: [1] Infrasound categorization Towards a statistics based approach. J. Vergoz, P. Gaillard, A. Le Pichon, N. Brachet, and L. Ceranna. ITW 2011 [2] NETVISA: Network Processing Vertically Integrated Seismic Analysis. N. S. Arora, S. Russell, and E. Sudderth. BSSA 2013

  3. Ultrawideband radar clutter measurements of forested terrain, 1991--1992

    SciTech Connect

    Sheen, D.M.; Severtsen, R.H.; Prince, J.M.; Davis, K.C.; Collins, H.D.

    1993-06-01

    The ultrawideband (UWB) radar clutter measurements project was conducted to provide radar clutter data for new ultrawideband radar systems which are currently under development. A particular goal of this project is to determine if conventional narrow band clutter data may be extrapolated to the UWB case. This report documents measurements conducted in 1991 and additional measurements conducted in 1992. The original project consisted of clutter measurements of forested terrain in the Olympic National Forest near Sequim, WA. The impulse radar system used a 30 kW peak impulse source with a 2 Gigasample/second digitizer to form a UHF (300--1000 MHz) ultrawideband impulse radar system. Additional measurements were conducted in parallel using a Systems Planning Corporation (SPC) step-chirp radar system. This system utilized pulse widths of 1330 nanoseconds over a bandwidth of 300--1000 MHz to obtain similar resolution to the impulse system. Due to the slow digitizer data throughput in the impulse radar system, data collection rates were significantly higher using the step-chirp system. Additional forest clutter measurements were undertaken in 1992 to increase the amount of data available, and especially to increase the amount of data from the impulse radar system.

  4. A multiresolution approach to image enhancement via histogram shaping and adaptive Wiener filtering

    NASA Astrophysics Data System (ADS)

    Pace, T.; Manville, D.; Lee, H.; Cloud, G.; Puritz, J.

    2008-04-01

    It is critical in military applications to be able to extract features in imagery that may be of interest to the viewer at any time of the day or night. Infrared (IR) imagery is ideally suited for producing these types of images. However, even under the best of circumstances, the traditional approach of applying a global automatic gain control (AGC) to the digital image may not provide the user with local area details that may be of interest. Processing the imagery locally can enhance additional features and characteristics in the image which provide the viewer with an improved understanding of the scene being observed. This paper describes a multi-resolution pyramid approach for decomposing an image, enhancing its contrast by remapping the histograms to desired pdfs, filtering them and recombining them to create an output image with much more visible detail than the input image. The technique improves the local area image contrast in light and dark areas providing the warfighter with significantly improved situational awareness.

  5. The algorithm analysis on non-uniformity correction based on LMS adaptive filtering

    NASA Astrophysics Data System (ADS)

    Zhan, Dongjun; Wang, Qun; Wang, Chensheng; Chen, Huawang

    2010-11-01

    The traditional least mean square (LMS) algorithm has the performance of good adaptivity to noise, but there are several disadvantages in the traditional LMS algorithm, such as the defect in desired value of pending pixels, undetermined original coefficients, which result in slow convergence speed and long convergence period. Method to solve the desired value of pending pixel has improved based on these problems, also, the correction gain and offset coefficients worked out by the method of two-point temperature non-uniformity correction (NUC) as the original coefficients, which has improved the convergence speed. The simulation with real infrared images has proved that the new LMS algorithm has the advantages of better correction effect. Finally, the algorithm is implemented on the hardware structure of FPGA+DSP.

  6. Adaptive Iterated Extended Kalman Filter and Its Application to Autonomous Integrated Navigation for Indoor Robot

    PubMed Central

    Chen, Xiyuan; Li, Qinghua

    2014-01-01

    As the core of the integrated navigation system, the data fusion algorithm should be designed seriously. In order to improve the accuracy of data fusion, this work proposed an adaptive iterated extended Kalman (AIEKF) which used the noise statistics estimator in the iterated extended Kalman (IEKF), and then AIEKF is used to deal with the nonlinear problem in the inertial navigation systems (INS)/wireless sensors networks (WSNs)-integrated navigation system. Practical test has been done to evaluate the performance of the proposed method. The results show that the proposed method is effective to reduce the mean root-mean-square error (RMSE) of position by about 92.53%, 67.93%, 55.97%, and 30.09% compared with the INS only, WSN, EKF, and IEKF. PMID:24693225

  7. Adaptive iterated extended Kalman filter and its application to autonomous integrated navigation for indoor robot.

    PubMed

    Xu, Yuan; Chen, Xiyuan; Li, Qinghua

    2014-01-01

    As the core of the integrated navigation system, the data fusion algorithm should be designed seriously. In order to improve the accuracy of data fusion, this work proposed an adaptive iterated extended Kalman (AIEKF) which used the noise statistics estimator in the iterated extended Kalman (IEKF), and then AIEKF is used to deal with the nonlinear problem in the inertial navigation systems (INS)/wireless sensors networks (WSNs)-integrated navigation system. Practical test has been done to evaluate the performance of the proposed method. The results show that the proposed method is effective to reduce the mean root-mean-square error (RMSE) of position by about 92.53%, 67.93%, 55.97%, and 30.09% compared with the INS only, WSN, EKF, and IEKF. PMID:24693225

  8. Optimization of exposure in panoramic radiography while maintaining image quality using adaptive filtering.

    PubMed

    Svenson, Björn; Larsson, Lars; Båth, Magnus

    2016-01-01

    Objective The purpose of the present study was to investigate the potential of using advanced external adaptive image processing for maintaining image quality while reducing exposure in dental panoramic storage phosphor plate (SPP) radiography. Materials and methods Thirty-seven SPP radiographs of a skull phantom were acquired using a Scanora panoramic X-ray machine with various tube load, tube voltage, SPP sensitivity and filtration settings. The radiographs were processed using General Operator Processor (GOP) technology. Fifteen dentists, all within the dental radiology field, compared the structural image quality of each radiograph with a reference image on a 5-point rating scale in a visual grading characteristics (VGC) study. The reference image was acquired with the acquisition parameters commonly used in daily operation (70 kVp, 150 mAs and sensitivity class 200) and processed using the standard process parameters supplied by the modality vendor. Results All GOP-processed images with similar (or higher) dose as the reference image resulted in higher image quality than the reference. All GOP-processed images with similar image quality as the reference image were acquired at a lower dose than the reference. This indicates that the external image processing improved the image quality compared with the standard processing. Regarding acquisition parameters, no strong dependency of the image quality on the radiation quality was seen and the image quality was mainly affected by the dose. Conclusions The present study indicates that advanced external adaptive image processing may be beneficial in panoramic radiography for increasing the image quality of SPP radiographs or for reducing the exposure while maintaining image quality. PMID:26478956

  9. Reliable motion detection of small targets in video with low signal-to-clutter ratios

    SciTech Connect

    Nichols, S.A.; Naylor, R.B.

    1995-07-01

    Studies show that vigilance decreases rapidly after several minutes when human operators are required to search live video for infrequent intrusion detections. Therefore, there is a need for systems which can automatically detect targets in live video and reserve the operator`s attention for assessment only. Thus far, automated systems have not simultaneously provided adequate detection sensitivity, false alarm suppression, and ease of setup when used in external, unconstrained environments. This unsatisfactory performance can be exacerbated by poor video imagery with low contrast, high noise, dynamic clutter, image misregistration, and/or the presence of small, slow, or erratically moving targets. This paper describes a highly adaptive video motion detection and tracking algorithm which has been developed as part of Sandia`s Advanced Exterior Sensor (AES) program. The AES is a wide-area detection and assessment system for use in unconstrained exterior security applications. The AES detection and tracking algorithm provides good performance under stressing data and environmental conditions. Features of the algorithm include: reliable detection with negligible false alarm rate of variable velocity targets having low signal-to-clutter ratios; reliable tracking of targets that exhibit motion that is non-inertial, i.e., varies in direction and velocity; automatic adaptation to both infrared and visible imagery with variable quality; and suppression of false alarms caused by sensor flaws and/or cutouts.

  10. Skylab communications carrier 16536G and filter bypass adapter assembly 12535G. [development of communications equipment for use with Skylab spacecraft

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Communications equipment for use with the Skylab project is examined to show compliance with contract requirements. The items of equipment considered are: (1) communications carrier assemblies, (2) filter bypass adapter assemblies, and (3) sub-assemblies, parts, and repairs. Additional information is provided concerning contract requirements, test requirements, and failure investigation actions.

  11. Reverberation clutter induced by nonlinear internal waves in shallow water.

    PubMed

    Henyey, Frank S; Tang, Dajun

    2013-10-01

    Clutter is related to false alarms for active sonar. It is demonstrated that, in shallow water, target-like clutter in reverberation signals can be caused by nonlinear internal waves. A nonlinear internal wave is modeled using measured stratification on the New Jersey shelf. Reverberation in the presence of the internal wave is modeled numerically. Calculations show that acoustic energy propagating near a sound speed minimum is deflected as a high intensity, higher angle beam into the bottom, where it is backscattered along the reciprocal path. The interaction of sound with the internal wave is isolated in space, hence resulting in a target-like clutter, which is found to be greater than 10 dB above the mean reverberation level. PMID:24116532

  12. Observations of ground clutter using a millimeter wave radar

    NASA Astrophysics Data System (ADS)

    Sekine, Matsuo; Musha, Toshimitsu; Chikara, Sakae; Saji, Keiichi; Hagiwara, Seiji

    1990-02-01

    Ground clutter was measured using a millimeter-wave radar with frequency 34.86 GHz, which is located on the campus of the University of Electro-Communications. The pulsewidth of the radar was 30 nsec. Thus the spatial resolution was as small as 4.5 m. It is found that the clutter amplitude distribution obeys a Weibull distribution with shape parameter c = 0.497 to 0.675 at depression angles of 0.8 to 1.9 deg when reflectors are ordinary terrain and such structures as landing strips at airport and buildings. To improve target detectability in such Weibull distributed ground clutter, a Weibull CFAR system will be required.

  13. Aortic pressure wave reconstruction during exercise is improved by adaptive filtering: a pilot study.

    PubMed

    Stok, Wim J; Westerhof, Berend E; Guelen, Ilja; Karemaker, John M

    2011-08-01

    Reconstruction of central aortic pressure from a peripheral measurement by a generalized transfer function (genTF) works well at rest and mild exercise at lower heart rates, but becomes less accurate during heavy exercise. Particularly, systolic and pulse pressure estimations deteriorate, thereby underestimating central pressure. We tested individualization of the TF (indTF) by adapting its resonance frequency at the various levels of exercise. In seven males (age 44-57) with coronary artery disease, central and peripheral pressures were measured simultaneously. The optimal resonance frequency was predicted from regression formulas using variables derived from the individual's peripheral pressure pulse, including a pulse contour estimation of cardiac output (pcCO). In addition, reconstructed pressures were calibrated to central mean and diastolic pressure at each exercise level. Using a genTF and without calibration, the error in estimated aortic pulse pressure was -7.5 ± 6.4 mmHg, which was reduced to 0.2 ± 5.7 mmHg with the indTFs using pcCO for prediction. Calibration resulted in less scatter at the cost of a small bias (2.7 mmHg). In exercise, the indTFs predict systolic and pulse pressure better than the genTF. This pilot study shows that it is possible to individualize the peripheral to aortic pressure transfer function, thereby improving accuracy in central blood pressure assessment during exercise. PMID:21720842

  14. Automatic front-crawl temporal phase detection using adaptive filtering of inertial signals.

    PubMed

    Dadashi, Farzin; Crettenand, Florent; Millet, Grégoire P; Seifert, Ludovic; Komar, John; Aminian, Kamiar

    2013-01-01

    This study introduces a novel approach for automatic temporal phase detection and inter-arm coordination estimation in front-crawl swimming using inertial measurement units (IMUs). We examined the validity of our method by comparison against a video-based system. Three waterproofed IMUs (composed of 3D accelerometer, 3D gyroscope) were placed on both forearms and the sacrum of the swimmer. We used two underwater video cameras in side and frontal views as our reference system. Two independent operators performed the video analysis. To test our methodology, seven well-trained swimmers performed three 300 m trials in a 50 m indoor pool. Each trial was in a different coordination mode quantified by the index of coordination. We detected different phases of the arm stroke by employing orientation estimation techniques and a new adaptive change detection algorithm on inertial signals. The difference of 0.2 ± 3.9% between our estimation and video-based system in assessment of the index of coordination was comparable to experienced operators' difference (1.1 ± 3.6%). The 95% limits of agreement of the difference between the two systems in estimation of the temporal phases were always less than 7.9% of the cycle duration. The inertial system offers an automatic easy-to-use system with timely feedback for the study of swimming. PMID:23560703

  15. Sonar pulse wave form optimization in cluttered environments

    NASA Astrophysics Data System (ADS)

    Weichman, Peter B.

    2006-09-01

    A theory of active sonar (or radar) pulse wave form design, for optimal target detection in cluttered environments, is presented. The received target signal is maximized via a cost function L that incorporates both the signal-to-noise ratio and a generalization of the Heisenberg uncertainty principle, which is used to balance bandwidth (or range resolution) against signal gain. The optimal pulse wave form is the ground state solution to a one-dimensional Schrödinger-type equation in frequency space, with an effective potential energy that tends to concentrate pulse energy in frequency bands where the target reflectivity dominates the clutter reflectivity.

  16. Sonar pulse wave form optimization in cluttered environments.

    PubMed

    Weichman, Peter B

    2006-09-01

    A theory of active sonar (or radar) pulse wave form design, for optimal target detection in cluttered environments, is presented. The received target signal is maximized via a cost function L that incorporates both the signal-to-noise ratio and a generalization of the Heisenberg uncertainty principle, which is used to balance bandwidth (or range resolution) against signal gain. The optimal pulse wave form is the ground state solution to a one-dimensional Schrödinger-type equation in frequency space, with an effective potential energy that tends to concentrate pulse energy in frequency bands where the target reflectivity dominates the clutter reflectivity. PMID:17025776

  17. Insect-Inspired Self-Motion Estimation with Dense Flow Fields—An Adaptive Matched Filter Approach

    PubMed Central

    Strübbe, Simon; Stürzl, Wolfgang; Egelhaaf, Martin

    2015-01-01

    The control of self-motion is a basic, but complex task for both technical and biological systems. Various algorithms have been proposed that allow the estimation of self-motion from the optic flow on the eyes. We show that two apparently very different approaches to solve this task, one technically and one biologically inspired, can be transformed into each other under certain conditions. One estimator of self-motion is based on a matched filter approach; it has been developed to describe the function of motion sensitive cells in the fly brain. The other estimator, the Koenderink and van Doorn (KvD) algorithm, was derived analytically with a technical background. If the distances to the objects in the environment can be assumed to be known, the two estimators are linear and equivalent, but are expressed in different mathematical forms. However, for most situations it is unrealistic to assume that the distances are known. Therefore, the depth structure of the environment needs to be determined in parallel to the self-motion parameters and leads to a non-linear problem. It is shown that the standard least mean square approach that is used by the KvD algorithm leads to a biased estimator. We derive a modification of this algorithm in order to remove the bias and demonstrate its improved performance by means of numerical simulations. For self-motion estimation it is beneficial to have a spherical visual field, similar to many flying insects. We show that in this case the representation of the depth structure of the environment derived from the optic flow can be simplified. Based on this result, we develop an adaptive matched filter approach for systems with a nearly spherical visual field. Then only eight parameters about the environment have to be memorized and updated during self-motion. PMID:26308839

  18. Accurate three-dimensional pose recognition from monocular images using template matched filtering

    NASA Astrophysics Data System (ADS)

    Picos, Kenia; Diaz-Ramirez, Victor H.; Kober, Vitaly; Montemayor, Antonio S.; Pantrigo, Juan J.

    2016-06-01

    An accurate algorithm for three-dimensional (3-D) pose recognition of a rigid object is presented. The algorithm is based on adaptive template matched filtering and local search optimization. When a scene image is captured, a bank of correlation filters is constructed to find the best correspondence between the current view of the target in the scene and a target image synthesized by means of computer graphics. The synthetic image is created using a known 3-D model of the target and an iterative procedure based on local search. Computer simulation results obtained with the proposed algorithm in synthetic and real-life scenes are presented and discussed in terms of accuracy of pose recognition in the presence of noise, cluttered background, and occlusion. Experimental results show that our proposal presents high accuracy for 3-D pose estimation using monocular images.

  19. Techniques for Clutter Suppression in the Presence of Body Movements during the Detection of Respiratory Activity through UWB Radars

    PubMed Central

    Lazaro, Antonio; Girbau, David; Villarino, Ramon

    2014-01-01

    This paper focuses on the feasibility of tracking the chest wall movement of a human subject during respiration from the waveforms recorded using an impulse-radio (IR) ultra-wideband radar. The paper describes the signal processing to estimate sleep apnea detection and breathing rate. Some techniques to solve several problems in these types of measurements, such as the clutter suppression, body movement and body orientation detection are described. Clutter suppression is achieved using a moving averaging filter to dynamically estimate it. The artifacts caused by body movements are removed using a threshold method before analyzing the breathing signal. The motion is detected using the time delay that maximizes the received signal after a clutter removing algorithm is applied. The periods in which the standard deviations of the time delay exceed a threshold are considered macro-movements and they are neglected. The sleep apnea intervals are detected when the breathing signal is below a threshold. The breathing rate is determined from the robust spectrum estimation based on Lomb periodogram algorithm. On the other hand the breathing signal amplitude depends on the body orientation respect to the antennas, and this could be a problem. In this case, in order to maximize the signal-to-noise ratio, multiple sensors are proposed to ensure that the backscattered signal can be detected by at least one sensor, regardless of the direction the human subject is facing. The feasibility of the system is compared with signals recorded by a microphone. PMID:24514883

  20. Assembly Processes under Severe Abiotic Filtering: Adaptation Mechanisms of Weed Vegetation to the Gradient of Soil Constraints

    PubMed Central

    Nikolic, Nina; Böcker, Reinhard; Kostic-Kravljanac, Ljiljana; Nikolic, Miroslav

    2014-01-01

    Questions Effects of soil on vegetation patterns are commonly obscured by other environmental factors; clear and general relationships are difficult to find. How would community assembly processes be affected by a substantial change in soil characteristics when all other relevant factors are held constant? In particular, can we identify some functional adaptations which would underpin such soil-induced vegetation response? Location Eastern Serbia: fields partially damaged by long-term and large-scale fluvial deposition of sulphidic waste from a Cu mine; subcontinental/submediterranean climate. Methods We analysed the multivariate response of cereal weed assemblages (including biomass and foliar analyses) to a strong man-made soil gradient (from highly calcareous to highly acidic, nutrient-poor soils) over short distances (field scale). Results The soil gradient favoured a substitution of calcicoles by calcifuges, and an increase in abundance of pseudometallophytes, with preferences for Atlantic climate, broad geographical distribution, hemicryptophytic life form, adapted to low-nutrient and acidic soils, with lower concentrations of Ca, and very narrow range of Cu concentrations in leaves. The trends of abundance of the different ecological groups of indicator species along the soil gradient were systematically reflected in the maintenance of leaf P concentrations, and strong homeostasis in biomass N:P ratio. Conclusion Using annual weed vegetation at the field scale as a fairly simple model, we demonstrated links between gradients in soil properties (pH, nutrient availability) and floristic composition that are normally encountered over large geographic distances. We showed that leaf nutrient status, in particular the maintenance of leaf P concentrations and strong homeostasis of biomass N:P ratio, underpinned a clear functional response of vegetation to mineral stress. These findings can help to understand assembly processes leading to unusual, novel combinations

  1. A Simplified Baseband Prefilter Model with Adaptive Kalman Filter for Ultra-Tight COMPASS/INS Integration

    PubMed Central

    Luo, Yong; Wu, Wenqi; Babu, Ravindra; Tang, Kanghua; Luo, Bing

    2012-01-01

    COMPASS is an indigenously developed Chinese global navigation satellite system and will share many features in common with GPS (Global Positioning System). Since the ultra-tight GPS/INS (Inertial Navigation System) integration shows its advantage over independent GPS receivers in many scenarios, the federated ultra-tight COMPASS/INS integration has been investigated in this paper, particularly, by proposing a simplified prefilter model. Compared with a traditional prefilter model, the state space of this simplified system contains only carrier phase, carrier frequency and carrier frequency rate tracking errors. A two-quadrant arctangent discriminator output is used as a measurement. Since the code tracking error related parameters were excluded from the state space of traditional prefilter models, the code/carrier divergence would destroy the carrier tracking process, and therefore an adaptive Kalman filter algorithm tuning process noise covariance matrix based on state correction sequence was incorporated to compensate for the divergence. The federated ultra-tight COMPASS/INS integration was implemented with a hardware COMPASS intermediate frequency (IF), and INS's accelerometers and gyroscopes signal sampling system. Field and simulation test results showed almost similar tracking and navigation performances for both the traditional prefilter model and the proposed system; however, the latter largely decreased the computational load. PMID:23012564

  2. A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter

    NASA Astrophysics Data System (ADS)

    Xiong, Rui; Gong, Xianzhi; Mi, Chunting Chris; Sun, Fengchun

    2013-12-01

    This paper presents a novel data-driven based approach for the estimation of the state of charge (SoC) of multiple types of lithium ion battery (LiB) cells with adaptive extended Kalman filter (AEKF). A modified second-order RC network based battery model is employed for the state estimation. Based on the battery model and experimental data, the SoC variation per mV voltage for different types of battery chemistry is analyzed and the parameters are identified. The AEKF algorithm is then employed to achieve accurate data-driven based SoC estimation, and the multi-parameter, closed loop feedback system is used to achieve robustness. The accuracy and convergence of the proposed approach is analyzed for different types of LiB cells, including convergence behavior of the model with a large initial SoC error. The results show that the proposed approach has good accuracy for different types of LiB cells, especially for C/LFP LiB cell that has a flat open circuit voltage (OCV) curve. The experimental results show good agreement with the estimation results with maximum error being less than 3%.

  3. Higher-order ambulatory electrocardiogram identification and motion artifact suppression with adaptive second- and third-order Volterra filters

    NASA Astrophysics Data System (ADS)

    Sabry-Rizk, Madiha; Zgallai, Walid; El-Khafif, Sahar; Carson, Ewart; Grattan, Kenneth T. V.

    1998-10-01

    The objective of this paper is to demonstrate how, in a few seconds, a relatively simple ECG monitor, PC and advanced signal processing algorithms could pinpoint microvolts - late potentials - result from an infarct zone in the heart and is used as an indicator in identifying patients prone to ventricular tachycardia which, if left untreated, leads to ventricular fibrillation. We will characterize recorded ECG data obtained from the standard three vector electrodes during exercise in terms of their higher-order statistical features. Essentially we use adaptive LMS- and Kalman-based second- and third-order Volterra filters to model the non- linear low-frequency P and T waves and motion artifacts which might overlap with the QRS complex and lead to false positive QRS detection. We will illustrate the effectiveness of this new approach by mapping out bispectral regions with a strong bicoherence manifestation and showing their corresponding temporal/spatial origins. Furthermore, we will present a few examples of our own application of these non-invasive techniques to illustrate what we see as their promise for analysis of heart abnormality.

  4. Adaptive Volterra filter with continuous lp-norm using a logarithmic cost for nonlinear active noise control

    NASA Astrophysics Data System (ADS)

    Lu, Lu; Zhao, Haiquan

    2016-03-01

    The filtered-x least mean lp-norm (FxLMP) algorithm is proven to be useful for nonlinear active noise control (NANC) systems. However, its performance deteriorates when the impulsive noises are presented in NANC systems. To surmount this shortcoming, a new nonlinear adaptive algorithm based on Volterra expansion model (VFxlogLMP) is developed in this paper, which is derived by minimizing the lp-norm of logarithmic cost. It is found that the FxLMP and VFxlogLMP require to select an appropriate value of p according to the prior information on noise characteristics, which prohibit their practical applications. Based on VFxlogLMP algorithm, we proposed a continuous lp-norm algorithm with logarithmic cost (VFxlogCLMP), which does not need the parameter selection and thresholds estimation. Benefiting from the various error norms for 1≤p≤2, it remains the robustness of VFxlogLMP. Moreover, the convergence behavior of VFxlogCLMP for moving average secondary paths and stochastic input signals is performed. Compared to the existing algorithms, two versions of the proposed algorithms have much better convergence and stability in impulsive noise environments.

  5. Adaptive match filter based method for time vs. amplitude characterization of microvolt ECG T-wave alternans.

    PubMed

    Burattini, Laura; Zareba, Wojciech; Burattini, Roberto

    2008-09-01

    To develop a new method for non-invasive identification of patients prone to ventricular tachyarrhythmia and sudden cardiac death, an adaptive match-filter (AMF) was applied to detect and characterize T-wave alternans (TWA) in 200 coronary artery diseased (CAD) patients compared with 176 healthy (H) subjects. TWA was characterized in terms of duration (TWAD), amplitude (TWAA), and magnitude (TWAM, defined as the product of TWAD times TWAA). A criterion derived from these parameters, estimated over the H-population, allowed discrimination between a risk (TWA+) and a normality (NO TWA) zone in the TWAD-TWAA plane. To gain further ability to discriminate among different risk levels, the TWA+ zone was divided into four sub-zones respectively characterized by low duration and low amplitude (LDLA), low duration and high amplitude (LDHA), high duration and low amplitude (HDLA), and high duration and high amplitude (HDHA). With our methodology, 21 CAD-patients (10.5%) were identified as TWA+, 9 falling in the LDLA zone, 4 in the HDLA, 7 in the LDHA, and 1 in the HDHA. These results are in agreement with clinical expectations and pave the way to further clinical follow-up studies finalized to analyze pathophysiological implications and risk factors associated to each TWA+ zone. PMID:18618261

  6. Ultrasound nondestructive evaluation (NDE) imaging with transducer arrays and adaptive processing.

    PubMed

    Li, Minghui; Hayward, Gordon

    2012-01-01

    This paper addresses the challenging problem of ultrasonic non-destructive evaluation (NDE) imaging with adaptive transducer arrays. In NDE applications, most materials like concrete, stainless steel and carbon-reinforced composites used extensively in industries and civil engineering exhibit heterogeneous internal structure. When inspected using ultrasound, the signals from defects are significantly corrupted by the echoes form randomly distributed scatterers, even defects that are much larger than these random reflectors are difficult to detect with the conventional delay-and-sum operation. We propose to apply adaptive beamforming to the received data samples to reduce the interference and clutter noise. Beamforming is to manipulate the array beam pattern by appropriately weighting the per-element delayed data samples prior to summing them. The adaptive weights are computed from the statistical analysis of the data samples. This delay-weight-and-sum process can be explained as applying a lateral spatial filter to the signals across the probe aperture. Simulations show that the clutter noise is reduced by more than 30 dB and the lateral resolution is enhanced simultaneously when adaptive beamforming is applied. In experiments inspecting a steel block with side-drilled holes, good quantitative agreement with simulation results is demonstrated. PMID:22368457

  7. Adaptive optical filter

    DOEpatents

    Whittemore, Stephen Richard

    2013-09-10

    Imaging systems include a detector and a spatial light modulator (SLM) that is coupled so as to control image intensity at the detector based on predetermined detector limits. By iteratively adjusting SLM element values, image intensity at one or all detector elements or portions of an imaging detector can be controlled to be within limits. The SLM can be secured to the detector at a spacing such that the SLM is effectively at an image focal plane. In some applications, the SLM can be adjusted to impart visible or hidden watermarks to images or to reduce image intensity at one or a selected set of detector elements so as to reduce detector blooming

  8. Vibration control of a flexible beam driven by a ball-screw stage with adaptive notch filters and a line enhancer

    NASA Astrophysics Data System (ADS)

    Wu, Shang-Teh; Lian, Sing-Han; Chen, Sheng-Han

    2015-07-01

    For a low-stiffness beam driven by a ball-screw stage, the lateral vibrations cannot be adequately controlled by a collocated compensator based on rotary-encoder feedback alone. Acceleration signals at the tip of the flexible beam are measured for active vibration control in addition to the collocated compensator. A second-order bandpass filter (a line enhancer) and two notch filters are included in the acceleration-feedback loop to raise modal dampings for the first and the second flexible modes without exciting higher-frequency resonances. A novel adaptation algorithm is devised to tune the center frequencies of the notch filters in real time. It consists of a second-order low-pass filter, a second-order bandpass filter and a phase detector. Improvement of the control system is elaborated progressively with the root-locus and bode-plot analyses, along with a physical interpretation. Extensive testings are conducted on an experimental device to verify the effectiveness of the control method.

  9. Anti-aliasing Wiener filtering for wave-front reconstruction in the spatial-frequency domain for high-order astronomical adaptive-optics systems.

    PubMed

    Correia, Carlos M; Teixeira, Joel

    2014-12-01

    Computationally efficient wave-front reconstruction techniques for astronomical adaptive-optics (AO) systems have seen great development in the past decade. Algorithms developed in the spatial-frequency (Fourier) domain have gathered much attention, especially for high-contrast imaging systems. In this paper we present the Wiener filter (resulting in the maximization of the Strehl ratio) and further develop formulae for the anti-aliasing (AA) Wiener filter that optimally takes into account high-order wave-front terms folded in-band during the sensing (i.e., discrete sampling) process. We employ a continuous spatial-frequency representation for the forward measurement operators and derive the Wiener filter when aliasing is explicitly taken into account. We further investigate and compare to classical estimates using least-squares filters the reconstructed wave-front, measurement noise, and aliasing propagation coefficients as a function of the system order. Regarding high-contrast systems, we provide achievable performance results as a function of an ensemble of forward models for the Shack-Hartmann wave-front sensor (using sparse and nonsparse representations) and compute point-spread-function raw intensities. We find that for a 32×32 single-conjugated AOs system the aliasing propagation coefficient is roughly 60% of the least-squares filters, whereas the noise propagation is around 80%. Contrast improvements of factors of up to 2 are achievable across the field in the H band. For current and next-generation high-contrast imagers, despite better aliasing mitigation, AA Wiener filtering cannot be used as a standalone method and must therefore be used in combination with optical spatial filters deployed before image formation actually takes place. PMID:25606767

  10. Clutter modeling of the Denver Airport and surrounding areas

    NASA Technical Reports Server (NTRS)

    Harrah, Steven D.; Delmore, Victor E.; Onstott, Robert G.

    1991-01-01

    To accurately simulate and evaluate an airborne Doppler radar as a wind shear detection and avoidance sensor, the ground clutter surrounding a typical airport must be quantified. To do this, an imaging airborne Synthetic Aperture Radar (SAR) was employed to investigate and map the normalized radar cross sections (NRCS) of the ground terrain surrounding the Denver Stapleton Airport during November of 1988. Images of the Stapleton ground clutter scene were obtained at a variety of aspect and elevation angles (extending to near-grazing) at both HH and VV polarizations. Presented here, in viewgraph form with commentary, are the method of data collection, the specific observations obtained of the Denver area, a summary of the quantitative analysis performed on the SAR images to date, and the statistical modeling of several of the more interesting stationary targets in the SAR database. Additionally, the accompanying moving target database, containing NRCS and velocity information, is described.

  11. Small target detection using quantum genetic morphological filter

    NASA Astrophysics Data System (ADS)

    Deng, Lizhen; Zhu, Hu; Wei, Yantao; Lu, Guanmin; Wei, Yu

    2015-12-01

    Small target detection plays a crucial role in infrared warning and tracking systems. A background suppression method using morphological filter based on quantum genetic algorithm (QGMF) is presented to detect small targets in infrared image. Structure element of morphological filter is encoded and the best structure element is selected using quantum genetic algorithm. The optimized structure element is used for background suppression to detect small target. Experimental results demonstrate that QGMF has good performance in clutter suppression, and obtains higher signal-to-clutter ratio gain (SCRG) and background suppression factor (BSF) than the one using the fixed structure element with the same size.

  12. Modelling of microwave propagation and clutter in a maritime environment

    NASA Astrophysics Data System (ADS)

    Vogel, M. H.

    1994-07-01

    For a radar system in a maritime environment, the probability of detection of a target at a low altitude is strongly dependent on the conditions of the atmosphere and the sea surface. In order to determine the detection probability of a target at low altitude, these conditions should be taken into account. This paper presents numerical methods to calculate electromagnetic propagation in an evaporation duct and to calculate sea clutter returns.

  13. Polarization dependence in ultrawideband impulsive radar target versus clutter discrimination

    NASA Astrophysics Data System (ADS)

    Boerner, Wolfgang-Martin; Liu, Chuan-Li; Zhang, Xin; Naik, Vivek

    1992-05-01

    An account is given of the basic principles of radar polarimetry, and various optimization procedures for the propagation (scattering) range operator equation and the received-power expressions are presented and compared. On the basis of a complete description of isolated and distributed scatterers, polarimetric target classification, target vs clutter discrimination, and optimal polarimetric contrast enhancement algorithms are derived; these should be useful in the interpretation of wideband polarimetric data sets obtained with wideband coherent, dual (orthogonal) polarization channel radar systems.

  14. Radar returns from ground clutter in vicinity of airports

    NASA Technical Reports Server (NTRS)

    Raemer, H. R.; Rahgavan, R.; Bhattacharya, A.

    1988-01-01

    The objective of this project is to develop a dynamic simulation of the received signals from natural and man-made ground features in the vicinity of airports. The simulation is run during landing and takeoff stages of a flight. Vugraphs of noteworthy features of the simulation, ground clutter data bases, the development of algorithms for terrain features, typical wave theory results, and a gravity wave height profile are given.

  15. African Swine Fever Diagnosis Adapted to Tropical Conditions by the Use of Dried-blood Filter Papers.

    PubMed

    Randriamparany, T; Kouakou, K V; Michaud, V; Fernández-Pinero, J; Gallardo, C; Le Potier, M-F; Rabenarivahiny, R; Couacy-Hymann, E; Raherimandimby, M; Albina, E

    2016-08-01

    The performance of Whatman 3-MM filter papers for the collection, drying, shipment and long-term storage of blood at ambient temperature, and for the detection of African swine fever virus and antibodies was assessed. Conventional and real-time PCR, viral isolation and antibody detection by ELISA were performed on paired samples (blood/tissue versus dried-blood 3-MM filter papers) collected from experimentally infected pigs and from farm pigs in Madagascar and Côte d'Ivoire. 3-MM filter papers were used directly in the conventional and real-time PCR without previous extraction of nucleic acids. Tests that performed better with 3-MM filter papers were in descending order: virus isolation, real-time UPL PCR and conventional PCR. The analytical sensitivity of real-time UPL PCR on filter papers was similar to conventional testing (virus isolation or conventional PCR) on organs or blood. In addition, blood-dried filter papers were tested in ELISA for antibody detection and the observed sensitivity was very close to conventional detection on serum samples and gave comparable results. Filter papers were stored up to 9 months at 20-25°C and for 2 months at 37°C without significant loss of sensitivity for virus genome detection. All tests on 3-MM filter papers had 100% specificity compared to the gold standards. Whatman 3-MM filter papers have the advantage of being cheap and of preserving virus viability for future virus isolation and characterization. In this study, Whatman 3-MM filter papers proved to be a suitable support for the collection, storage and use of blood in remote areas of tropical countries without the need for a cold chain and thus provide new possibilities for antibody testing and virus isolation. PMID:25430732

  16. The depth of distractor processing in search with clutter.

    PubMed

    Bravo, Mary J; Farid, Hany

    2007-01-01

    Some search tasks involve looking for a category target in clutter. This is the task faced, for example, by a baggage screener looking for weapons in a suitcase. Such tasks presumably involve the segmentation and recognition of the target object, but it is unknown whether they also involve the segmentation and recognition of the distractor objects. To examine the depth of distractor processing in this task, we had observers search through cluttered displays composed of normal and chimerical distractors. The normal distractors were photographs of recognizable objects, while the chimerical distractors were created by interchanging parts between the normal objects. The obsever's task was to identify the display quadrant that contained an animal or a vehicle target. We varied the difficulty of the search task by varying target and distractor discriminability, target uncertainty, and target occlusion. Only when the target was partially occluded did we find an effect of distractor type. In this case, observers may have found the target through a process of mentally eliminating whole distractor objects. When the target was unoccluded, we found no evidence that observers selected and rejected whole distractors during search. This second result supports our previous claim that often the items for search in clutter are not whole objects. PMID:17718361

  17. Sensitivity analysis and performance estimation of refractivity from clutter techniques

    NASA Astrophysics Data System (ADS)

    Yardim, Caglar; Gerstoft, Peter; Hodgkiss, William S.

    2009-02-01

    Refractivity from clutter (RFC) refers to techniques that estimate the atmospheric refractivity profile from radar clutter returns. A RFC algorithm works by finding the environment whose simulated clutter pattern matches the radar measured one. This paper introduces a procedure to compute RFC estimator performance. It addresses the major factors such as the radar parameters, the sea surface characteristics, and the environment (region, time of the day, season) that affect the estimator performance and formalizes an error metric combining all of these. This is important for applications such as calculating the optimal radar parameters, selecting the best RFC inversion algorithm under a set of conditions, and creating a regional performance map of a RFC system. The performance metric is used to compute the RFC performance of a non-Bayesian evaporation duct estimator. A Bayesian estimator that incorporates meteorological statistics in the inversion is introduced and compared to the non-Bayesian estimator. The performance metric is used to determine the optimal radar parameters of the evaporation duct estimator for six scenarios. An evaporation duct inversion performance map for a S band radar is created for the larger Mediterranean/Arabian Sea region.

  18. Adaptation.

    PubMed

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  19. Ground clutter measurements using the NASA airborne doppler radar: Description of clutter at the Denver and Philadelphia airports

    NASA Technical Reports Server (NTRS)

    Harrah, Steven D.; Delnore, Victor E.; Goodrich, Michael S.; Vonhagel, Chris

    1992-01-01

    Detection of hazardous wind shears from an airborne platform, using commercial sized radar hardware, has been debated and researched for several years. The primary concern has been the requirement for 'look-down' capability in a Doppler radar during the approach and landing phases of flight. During 'look-down' operation, the received signal (weather signature) will be corrupted by ground clutter returns. Ground clutter at and around urban airports can have large values of Normalized Radar Cross Section (NRCS) producing clutter returns which could saturate the radar's receiver, thus disabling the radar entirely, or at least from its intended function. The purpose of this research was to investigate the NRCS levels in an airport environment (scene), and to characterize the NRCS distribution across a variety of radar parameters. These results are also compared to results of a similar study using Synthetic Aperture Radar (SAR) images of the same scenes. This was necessary in order to quantify and characterize the differences and similarities between results derived from the real-aperature system flown on the NASA 737 aircraft and parametric studies which have previously been performed using the NASA airborne radar simulation program.

  20. Study of the algorithm of backtracking decoupling and adaptive extended Kalman filter based on the quaternion expanded to the state variable for underwater glider navigation.

    PubMed

    Huang, Haoqian; Chen, Xiyuan; Zhou, Zhikai; Xu, Yuan; Lv, Caiping

    2014-01-01

    High accuracy attitude and position determination is very important for underwater gliders. The cross-coupling among three attitude angles (heading angle, pitch angle and roll angle) becomes more serious when pitch or roll motion occurs. This cross-coupling makes attitude angles inaccurate or even erroneous. Therefore, the high accuracy attitude and position determination becomes a difficult problem for a practical underwater glider. To solve this problem, this paper proposes backing decoupling and adaptive extended Kalman filter (EKF) based on the quaternion expanded to the state variable (BD-AEKF). The backtracking decoupling can eliminate effectively the cross-coupling among the three attitudes when pitch or roll motion occurs. After decoupling, the adaptive extended Kalman filter (AEKF) based on quaternion expanded to the state variable further smoothes the filtering output to improve the accuracy and stability of attitude and position determination. In order to evaluate the performance of the proposed BD-AEKF method, the pitch and roll motion are simulated and the proposed method performance is analyzed and compared with the traditional method. Simulation results demonstrate the proposed BD-AEKF performs better. Furthermore, for further verification, a new underwater navigation system is designed, and the three-axis non-magnetic turn table experiments and the vehicle experiments are done. The results show that the proposed BD-AEKF is effective in eliminating cross-coupling and reducing the errors compared with the conventional method. PMID:25479331

  1. Study of the Algorithm of Backtracking Decoupling and Adaptive Extended Kalman Filter Based on the Quaternion Expanded to the State Variable for Underwater Glider Navigation

    PubMed Central

    Huang, Haoqian; Chen, Xiyuan; Zhou, Zhikai; Xu, Yuan; Lv, Caiping

    2014-01-01

    High accuracy attitude and position determination is very important for underwater gliders. The cross-coupling among three attitude angles (heading angle, pitch angle and roll angle) becomes more serious when pitch or roll motion occurs. This cross-coupling makes attitude angles inaccurate or even erroneous. Therefore, the high accuracy attitude and position determination becomes a difficult problem for a practical underwater glider. To solve this problem, this paper proposes backing decoupling and adaptive extended Kalman filter (EKF) based on the quaternion expanded to the state variable (BD-AEKF). The backtracking decoupling can eliminate effectively the cross-coupling among the three attitudes when pitch or roll motion occurs. After decoupling, the adaptive extended Kalman filter (AEKF) based on quaternion expanded to the state variable further smoothes the filtering output to improve the accuracy and stability of attitude and position determination. In order to evaluate the performance of the proposed BD-AEKF method, the pitch and roll motion are simulated and the proposed method performance is analyzed and compared with the traditional method. Simulation results demonstrate the proposed BD-AEKF performs better. Furthermore, for further verification, a new underwater navigation system is designed, and the three-axis non-magnetic turn table experiments and the vehicle experiments are done. The results show that the proposed BD-AEKF is effective in eliminating cross-coupling and reducing the errors compared with the conventional method. PMID:25479331

  2. Sequential measurement-driven multi-target Bayesian filter

    NASA Astrophysics Data System (ADS)

    Liu, Zong-xiang; Li, Li-juan; Xie, Wei-xin; Li, Liang-qun

    2015-12-01

    Bayesian filter is an efficient approach for multi-target tracking in the presence of clutter. Recently, considerable attention has been focused on probability hypothesis density (PHD) filter, which is an intensity approximation of the multi-target Bayesian filter. However, PHD filter is inapplicable to cases in which target detection probability is low. The use of this filter may result in a delay in data processing because it handles received measurements periodically, once every sampling period. To track multiple targets in the case of low detection probability and to handle received measurements in real time, we propose a sequential measurement-driven Bayesian filter. The proposed filter jointly propagates the marginal distributions and existence probabilities of each target in the filter recursion. We also present an implementation of the proposed filter for linear Gaussian models. Simulation results demonstrate that the proposed filter can more accurately track multiple targets than the Gaussian mixture PHD filter or cardinalized PHD filter.

  3. Radar cross section statistics of cultural clutter at Ku-band

    NASA Astrophysics Data System (ADS)

    Raynal, Ann Marie; Bickel, Douglas L.; Dubbert, Dale F.; Verge, Tobias J.; Burns, Bryan L.; Dunkel, Ralf; Doerry, Armin W.

    2012-06-01

    Knowing the statistical characteristics of the radar cross-section (RCS) of man-made, or cultural clutter, is crucial to the success of clutter mitigation, radar target detection algorithms, and radar system requirements in urban environments. Open literature studies regarding the statistical nature of cultural clutter focus primarily on radar probability models or limited experimental data analysis of specific locations and frequencies. This paper seeks to expand the existing body of work on cultural clutter RCS statistics at Ku-band for ground moving target indication (GMTI) and synthetic aperture radar (SAR) applications. We examine the normalized RCS probability distributions of cultural clutter in several urban scenes, across aspect and elevation angle, for vertical transmit/receive (VV) polarizations, and at diverse resolutions, using experimental data collected at Ku-band. We further describe frequency and RCS strength statistics of clutter discretes per unit area to understand system demands on radars operating in urban environments in this band.

  4. A structural difference based image clutter metric with brain cognitive model constraints

    NASA Astrophysics Data System (ADS)

    Xu, Dejiang; Shi, Zelin; Luo, Haibo

    2013-03-01

    Previous clutter metrics have less than the desired accuracy in predicting targeting performance, in this paper, a structural difference based image clutter metric is proposed based on the given definition of image clutter metric. According to the sensitivity of human visual perception to image structural information, a structural similarity measure between the target and clutter images is firstly established. Previous clutter metrics not considering brain cognitive characteristics, we define an information content weight measure by introducing the widely accepted brain cognitive information extracting model in the field of image quality assessment (IQA), and then, pool the structural similarity measure to be a clutter metric, which can be entitled BSD metric. Comparative field tests show that BSD metric makes a more significant improvement than previously proposed metrics in predicting target acquisition performance including detection probability and search time.

  5. Peripheral adaptive filtering in human olfaction? Three studies on prevalence and effects of olfactory training in specific anosmia in more than 1600 participants.

    PubMed

    Croy, Ilona; Olgun, Selda; Mueller, Laura; Schmidt, Anna; Muench, Marcus; Hummel, Cornelia; Gisselmann, Guenter; Hatt, Hanns; Hummel, Thomas

    2015-12-01

    Selective processing of environmental stimuli improves processing capacity and allows adaptive modulation of behavior. The thalamus provides an effective filter of central sensory information processing. As olfactory projections, however, largely bypass the thalamus, other filter mechanisms must consequently have evolved for the sense of smell. We investigated whether specific anosmia - the inability to perceive a specific odor whereas detection of other substances is unaffected - represents an effective peripheral filter of olfactory information processing. In contrast to previous studies, we showed in a sample of 1600 normosmic subjects, that specific anosmia is by no means a rare phenomenon. Instead, while the affected odor is highly individual, the general probability of occurrence of specific anosmia is close to 1. In addition, 25 subjects performed daily olfactory training sessions with enhanced exposure to their particular "missing" smells for the duration of three months. This resulted in a significant improvement of sensitivity towards the respective specific odors. We propose specific anosmia to occur as a rule, rather than an exception, in the sense of smell. The lack of perception of certain odors may constitute a flexible peripheral filter mechanism, which can be altered by exposure. PMID:26457822

  6. Removing interfering clutter associated with radar pulses that an airborne radar receives from a radar transponder

    DOEpatents

    Ormesher, Richard C.; Axline, Robert M.

    2008-12-02

    Interfering clutter in radar pulses received by an airborne radar system from a radar transponder can be suppressed by developing a representation of the incoming echo-voltage time-series that permits the clutter associated with predetermined parts of the time-series to be estimated. These estimates can be used to estimate and suppress the clutter associated with other parts of the time-series.

  7. Clutter-Doppler spectral analysis for a space-based radar

    NASA Astrophysics Data System (ADS)

    Mokole, Eric L.

    1991-05-01

    The impact of worst-case, ionospheric scintillation on the clutter-Doppler spectrum is analyzed for a space-based radar that operates between 100 and 1300 MHz. Analytical expressions for the spectrum are derived for a narrow, Gaussian antenna beam. For normal system parameters, the analytical expressions, combined with data from the Defense Nuclear Agency's Wideband satellite experiment, are used to compare the relative significance of the components of the clutter-Doppler spread for a range cell and to obtain the clutter-Doppler spread over the antenna's mainlobe. In addition, lower bounds are determined on the achievable reduction in the clutter-Doppler spread of a system.

  8. Sea clutter reduction and target enhancement by neural networks in a marine radar system.

    PubMed

    Vicen-Bueno, Raúl; Carrasco-Álvarez, Rubén; Rosa-Zurera, Manuel; Nieto-Borge, José Carlos

    2009-01-01

    The presence of sea clutter in marine radar signals is sometimes not desired. So, efficient radar signal processing techniques are needed to reduce it. In this way, nonlinear signal processing techniques based on neural networks (NNs) are used in the proposed clutter reduction system. The developed experiments show promising results characterized by different subjective (visual analysis of the processed radar images) and objective (clutter reduction, target enhancement and signal-to-clutter ratio improvement) criteria. Moreover, a deep study of the NN structure is done, where the low computational cost and the high processing speed of the proposed NN structure are emphasized. PMID:22573993

  9. Reducing Surface Clutter in Cloud Profiling Radar Data

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Pak, Kyung; Durden, Stephen; Im, Eastwood

    2008-01-01

    An algorithm has been devised to reduce ground clutter in the data products of the CloudSat Cloud Profiling Radar (CPR), which is a nadir-looking radar instrument, in orbit around the Earth, that measures power backscattered by clouds as a function of distance from the instrument. Ground clutter contaminates the CPR data in the lowest 1 km of the atmospheric profile, heretofore making it impossible to use CPR data to satisfy the scientific interest in studying clouds and light rainfall at low altitude. The algorithm is based partly on the fact that the CloudSat orbit is such that the geodetic altitude of the CPR varies continuously over a range of approximately 25 km. As the geodetic altitude changes, the radar timing parameters are changed at intervals defined by flight software in order to keep the troposphere inside a data-collection time window. However, within each interval, the surface of the Earth continuously "scans through" (that is, it moves across) a few range bins of the data time window. For each radar profile, only few samples [one for every range-bin increment ((Delta)r = 240 m)] of the surface-clutter signature are available around the range bin in which the peak of surface return is observed, but samples in consecutive radar profiles are offset slightly (by amounts much less than (Delta)r) with respect to each other according to the relative change in geodetic altitude. As a consequence, in a case in which the surface area under examination is homogenous (e.g., an ocean surface), a sequence of consecutive radar profiles of the surface in that area contains samples of the surface response with range resolution (Delta)p much finer than the range-bin increment ((Delta)p << r). Once the high-resolution surface response has thus become available, the profile of surface clutter can be accurately estimated by use of a conventional maximum-correlation scheme: A translated and scaled version of the high-resolution surface response is fitted to the observed

  10. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  11. Shadow Probability of Detection and False Alarm for Median-Filtered SAR Imagery

    SciTech Connect

    Raynal, Ann Marie; Doerry, Armin Walter; Miller, John A.; Bishop, Edward E.; Horndt, Volker

    2014-06-01

    Median filtering reduces speckle in synthetic aperture radar (SAR) imagery while preserving edges, at the expense of coarsening the resolution, by replacing the center pixel of a sliding window by the median value. For shadow detection, this approach helps distinguish shadows from clutter more easily, while preserving shadow shape delineations. However, the nonlinear operation alters the shadow and clutter distributions and statistics, which must be taken into consideration when computing probability of detection and false alarm metrics. Depending on system parameters, median filtering can improve probability of detection and false alarm by orders of magnitude. Herein, we examine shadow probability of detection and false alarm in a homogeneous, ideal clutter background after median filter post-processing. Some comments on multi-look processing effects with and without median filtering are also made.

  12. Study on dim target detection and discrimination from sea clutter

    NASA Astrophysics Data System (ADS)

    Wang, Wen-guang; Sun, Zuo-wei; Li, Chen-ming; Wang, Jun

    2013-04-01

    Dim target detection from sea clutter is one of the difficult topics in ocean remote sensing application. By aiming at the shortcoming of false alarms when using track before detect (TBD) based on dynamic programming, a new discrimination method called statistics of direction histogram (SDH) is proposed, which is based on different features of trajectories between the true target and false one. Moreover, a new series of discrimination schemes of SDH and Local Extreme Value method (LEV) are studied and applied to simulate the actually measured radar data. The results show that the given discrimination is effective to reduce false alarms during dim targets detection.

  13. Random neural network recognition of shaped objects in strong clutter

    NASA Astrophysics Data System (ADS)

    Bakircioglu, Hakan; Gelenbe, Erol

    1998-04-01

    Detecting objects in images containing strong clutter is an important issue in a variety of applications such as medical imaging and automatic target recognition. Artificial neural networks are used as non-parametric pattern recognizers to cope with different problems due to their inherent ability to learn from training data. In this paper we propose a neural approach based on the Random Neural Network model (Gelenbe 1989, 1990, 1991, 1993), to detect shaped targets with the help of multiple neural networks whose outputs are combined for making decisions.

  14. A radar sea clutter model for atmospheric ducting conditions

    NASA Astrophysics Data System (ADS)

    Snyder, F. P.

    1984-07-01

    The Integrated Refractive Effects Prediction System (IREPS) should consider sea clutter effects under atmospheric ducting conditions. The IREPS, undergoing research and development at Naval Ocean Systems Center (NOSC), is intended to provide a shipboard environmental data processing and display capability to assess refractive effects of the lower atmosphere for naval EM systems. Although intended to be incorporated eventually as a part of the Tactical Environment Support System (TESS), the IREPS is currently configured as an interim version based on a Hewlett-Packard 9845 desktop calculator. A comprehensive discussion of the IREPS capabilities is presented by Hitney et al. (1981), while a discussion of the IREPS propagation models is presented by Hattan (1982).

  15. Refractivity estimation from sea clutter: An invited review

    NASA Astrophysics Data System (ADS)

    Karimian, Ali; Yardim, Caglar; Gerstoft, Peter; Hodgkiss, William S.; Barrios, Amalia E.

    2011-12-01

    Non-standard radio wave propagation in the atmosphere is caused by anomalous changes of the atmospheric refractivity index. In recent years, refractivity from clutter (RFC) has been an active field of research to complement traditional ways of measuring the refractivity profile in maritime environments which rely on direct sensing of the environmental parameters. Higher temporal and spatial resolution of the refractivity profile, together with a lower cost and convenience of operations have been the promising factors that brought RFC under consideration. Presented is an overview of the basic concepts, research and achievements in the field of RFC. Topics that require more attention in future studies also are discussed.

  16. Development of adaptive noise reduction filter algorithm for pediatric body images in a multi-detector CT

    NASA Astrophysics Data System (ADS)

    Nishimaru, Eiji; Ichikawa, Katsuhiro; Okita, Izumi; Ninomiya, Yuuji; Tomoshige, Yukihiro; Kurokawa, Takehiro; Ono, Yutaka; Nakamura, Yuko; Suzuki, Masayuki

    2008-03-01

    Recently, several kinds of post-processing image filters which reduce the noise of computed tomography (CT) images have been proposed. However, these image filters are mostly for adults. Because these are not very effective in small (< 20 cm) display fields of view (FOV), we cannot use them for pediatric body images (e.g., premature babies and infant children). We have developed a new noise reduction filter algorithm for pediatric body CT images. This algorithm is based on a 3D post-processing in which the output pixel values are calculated by nonlinear interpolation in z-directions on original volumetric-data-sets. This algorithm does not need the in-plane (axial plane) processing, so the spatial resolution does not change. From the phantom studies, our algorithm could reduce SD up to 40% without affecting the spatial resolution of x-y plane and z-axis, and improved the CNR up to 30%. This newly developed filter algorithm will be useful for the diagnosis and radiation dose reduction of the pediatric body CT images.

  17. Least-mean-square spatial filter for IR sensors.

    PubMed

    Takken, E H; Friedman, D; Milton, A F; Nitzberg, R

    1979-12-15

    A new least-mean-square filter is defined for signal-detection problems. The technique is proposed for scanning IR surveillance systems operating in poorly characterized but primarily low-frequency clutter interference. Near-optimal detection of point-source targets is predicted both for continuous-time and sampled-data systems. PMID:20216783

  18. Improvement in Accuracy of Ultrasonic Measurement of Transient Change in Viscoelasticity of Radial Arterial Wall Due to Flow-Mediated Dilation by Adaptive Low-Pass Filtering

    NASA Astrophysics Data System (ADS)

    Ikeshita, Kazuki; Hasegawa, Hideyuki; Kanai, Hiroshi

    2012-07-01

    In our previous study, the stress-strain relationship of the radial arterial wall was measured and the viscoelasticity of the intima-media region was estimated from the stress-strain relationship. Furthermore, the transient change in viscoelasticity due to flow-mediated dilation (FMD) was estimated by the automated detection of wall boundaries. In the present study, the strain rate was adaptively filtered to improve the accuracy of viscoelasticity estimation by decreasing the high-frequency noise. Additionally, in a basic experiment, this method was validated using a silicone tube (simulating artery). In the basic experiment, the elasticity was estimated with a mean error of 1.2%. The elasticity measured at each beam position was highly reproducible among measurements, whereas there was a slight variation in measured elasticity among beams. Consequently, in in vivo measurements, the normalized mean square error (MSE) was clearly decreased. Additionally, the stress-strain relationship of the radial arterial wall was obtained and the viscoelasticity was estimated accurately. The inner small loop, which corresponds to the negative pressure wave caused by the closure of the aortic valve, can be observed using the adaptive low-pass filtering (LPF). Moreover, the transient changes in these parameters were similar to those in the previous study. These results show the potential of the proposed method for the thorough analysis of the transient change in viscoelasticity due to FMD.

  19. DARPA background clutter data collection experiment: excavation results

    NASA Astrophysics Data System (ADS)

    George, Vivian; Altshuler, Thomas W.; Rosen, Erik M.

    1998-09-01

    Most technologies in use or proposed for use to detect landmines and unexploded ordnance (UXO) suffer from unacceptably high false-alarm rates, even at modest probabilities of detection. High false-alarm rates are a consequence of the inability to discriminate real UXO and landmines from man-made and naturally occurring clutter. The goal of the Defense Advanced Research Project Agency (DARPA)- sponsored Background Clutter Data Collection Experiment is to provide data which will support the development of techniques that are more adept at discriminating UXO from benign, man- made objects. During the fall of 1996, high areal density site surveys were completed using the following sensor types: magnetometer, infrared, electromagnetic induction, and ground- penetrating radar. Preliminary analysis of the data confirmed that a large number of anomalies in the sensor data are visually indistinguishable from anomalies that are a result of emplaced inert UXO or landmines. The Firing Point 20 site at Fort A. P. Hill exhibits the largest number of these ordnance- like anomalies. To determine the source of a subset of these sensor response anomalies, a 1-week excavation effort was conducted. This paper presents an analysis of the data to determine the candidate locations for, the procedures used during, and the results of the excavation.

  20. Insect Detection of Small Targets Moving in Visual Clutter

    PubMed Central

    Barnett, Paul D; O'Carroll, David C

    2006-01-01

    Detection of targets that move within visual clutter is a common task for animals searching for prey or conspecifics, a task made even more difficult when a moving pursuer needs to analyze targets against the motion of background texture (clutter). Despite the limited optical acuity of the compound eye of insects, this challenging task seems to have been solved by their tiny visual system. Here we describe neurons found in the male hoverfly,Eristalis tenax, that respond selectively to small moving targets. Although many of these target neurons are inhibited by the motion of a background pattern, others respond to target motion within the receptive field under a surprisingly large range of background motion stimuli. Some neurons respond whether or not there is a speed differential between target and background. Analysis of responses to very small targets (smaller than the size of the visual field of single photoreceptors) or those targets with reduced contrast shows that these neurons have extraordinarily high contrast sensitivity. Our data suggest that rejection of background motion may result from extreme selectivity for small targets contrasting against local patches of the background, combined with this high sensitivity, such that background patterns rarely contain features that satisfactorily drive the neuron. PMID:16448249

  1. Rotation-invariant nonrigid point set matching in cluttered scenes.

    PubMed

    Lian, Wei; Zhang, Lei; Zhang, David

    2012-05-01

    This paper addresses the problem of rotation-invariant nonrigid point set matching. The shape context (SC) feature descriptor is used because of its strong discriminative nature, whereas edges in the graphs constructed by point sets are used to determine the orientations of SCs. Similar to lengths or directions, oriented SCs constructed this way can be regarded as attributes of edges. By matching edges between two point sets, rotation invariance is achieved. Two novel ways of constructing graphs on a model point set are proposed, aiming at making the orientations of SCs as robust to disturbances as possible. The structures of these graphs facilitate the use of dynamic programming (DP) for optimization. The strong discriminative nature of SC, the special structure of the model graphs, and the global optimality of DP make our methods robust to various types of disturbances, particularly clutters. The extensive experiments on both synthetic and real data validated the robustness of the proposed methods to various types of disturbances. They can robustly detect the desired shapes in complex and highly cluttered scenes. PMID:22514129

  2. Wind turbine clutter mitigation in coastal UHF radar.

    PubMed

    Yang, Jing; Pan, Chao; Wang, Caijun; Jiang, Dapeng; Wen, Biyang

    2014-01-01

    Coastal UHF radar provides a unique capability to measure the sea surface dynamic parameters and detect small moving targets, by exploiting the low energy loss of electromagnetic waves propagating along the salty and good conducting ocean surface. It could compensate the blind zone of HF surface wave radar at close range and reach further distance than microwave radars. However, its performance is susceptible to wind turbines which are usually installed on the shore. The size of a wind turbine is much larger than the wavelength of radio waves at UHF band, which results in large radar cross section. Furthermore, the rotation of blades adds time-varying Doppler frequency to the clutter and makes the suppression difficult. This paper proposes a mitigation method which is based on the specific periodicity of wind turbine clutter and performed mainly in the time-frequency domain. Field experimental data of a newly developed UHF radar are used to verify this method, and the results prove its effectiveness. PMID:24550709

  3. Geolocation of multiple emitters in the presence of clutter

    NASA Astrophysics Data System (ADS)

    Sathyan, Thuraiappah; Kirubarajan, Thiagalingam; Sinha, Abhijit

    2004-08-01

    In geolocating by time difference of arrival (TDOA), an array of sensors at known locations receive the signal from an emitter whose location is to be estimated. Signals received at two sensors are used to obtain the TDOA measurement. A number of algorithms are available to solve the set of nonlinear TDOA equations whose solution is the emitter location. An implicit assumption in these algorithms is that all the measurements obtained are from a single emitter. In practice, however, one has to deal with measurement origin uncertainty, which is a result of either multiple emitters being present in the region of interest, or clutter returns. In this paper, a method to determine the location of multiple emitters in a cluttered environment is presented. Several unmanned aerial vehicles (UAVs) are assumed as receivers of the electromagnetic emission from the emitter. Emissions received by different UAVs are used to obtain the TDOAs. Using a constrained optimization procedure, measurement-to-emitter associations are determined. Then, the resulting nonlinear equations are solved to find the emitter locations. An Interacting Multiple Model (IMM) estimator is used to track the located sources and to obtain their motion parameters.

  4. Wind Turbine Clutter Mitigation in Coastal UHF Radar

    PubMed Central

    Wang, Caijun; Jiang, Dapeng; Wen, Biyang

    2014-01-01

    Coastal UHF radar provides a unique capability to measure the sea surface dynamic parameters and detect small moving targets, by exploiting the low energy loss of electromagnetic waves propagating along the salty and good conducting ocean surface. It could compensate the blind zone of HF surface wave radar at close range and reach further distance than microwave radars. However, its performance is susceptible to wind turbines which are usually installed on the shore. The size of a wind turbine is much larger than the wavelength of radio waves at UHF band, which results in large radar cross section. Furthermore, the rotation of blades adds time-varying Doppler frequency to the clutter and makes the suppression difficult. This paper proposes a mitigation method which is based on the specific periodicity of wind turbine clutter and performed mainly in the time-frequency domain. Field experimental data of a newly developed UHF radar are used to verify this method, and the results prove its effectiveness. PMID:24550709

  5. Detection of slow-moving targets in sea clutter by HRR generalized detector

    NASA Astrophysics Data System (ADS)

    Tuzlukov, Vyacheslav

    2012-06-01

    The radar detection of targets in the presence of sea clutter has relied upon the radial velocity of targets with respect to the radar platform either by exploiting the relative target Doppler frequency (for targets with sufficient radial velocity) or by discerning the paths targets traverse from scan to scan. For targets with little to no rapid velocity component, though, it can become quite difficult to differentiate targets from the surrounding sea clutter. The present paper addresses the detection of slow-moving targets in sea clutter using the high resolution radar (HRR) based on the generalized detector (GD) constructed in accordance with the generalized approach to signal processing (GASP) in noise such that the target has perceptible extent in range. Under the assumption of completely random sea clutter spikes based on a ɛ-contaminated mixture model with the signal and clutter powers known, the best detection performance results from using the GD and is compared with that of the likelihood ratio test (LRT GD). For realistic sea clutter, the clutter spikes tend to be a localized phenomenon. Based upon observations from real radar data measurements, a heuristic approach exploiting a salient aspect of the idealized GD is developed which is shown to perform well and possesses superiority over the LRT GD performance when applied to real measure sea clutter.

  6. Double Layered-Background Removal Filter for Detecting Small Infrared Targets in Heterogenous Backgrounds

    NASA Astrophysics Data System (ADS)

    Kim, Sungho

    2011-01-01

    Detecting small targets is essential for mitigating the sea-based Infrared search and track (IRST) problem. It is easy to detect small targets in homogeneous backgrounds such as the sky. When targets are on the border line of heterogeneous backgrounds such as the horizon in the sky and sea surface, solving the problem of detection becomes difficult. This paper presents a novel spatial filtering method, called Double Layered-Background Removal Filter (DL-BRF), for achieving high detection rates and low false alarm rates. DL-BRF consists of a Modified-Mean Subtraction Filter (M-MSF) and a consecutive Local-Directional Background Removal Filter (L-DBRF). M-MSF enhances the target signal and reduces background noise. L-DBRF removes horizontal structures, which upgrade the signal-to-clutter ratio and background suppression factor. L-DBRF used after M-MSF enhances the synergistic performance of horizontal target detection. Additionally, the adaptive Hysteresis threshold-based scheme is a suitable detection method. We validate the superior performance of the proposed method via three types of evaluation tests, including a real test scenario.

  7. Detection of targets colocalized in clutter by big brown bats (Eptesicus fuscus)

    PubMed Central

    Stamper, Sarah A.; Simmons, James A.; DeLong, Caroline M.; Bragg, Rebecca

    2008-01-01

    Echolocating big brown bats (Eptesicus fuscus) frequently catch insects during aerial pursuits in open spaces, but they also capture prey swarming on vegetation, and from substrates. To evaluate perception of targets on cluttered surfaces, big brown bats were trained in a two-alternative forced-choice task to locate a target, varying in height, that was embedded partway in holes (clutter) cut in a foam surface. The holes were colocalized with the possible positions of the target at distances ranging from 25 to 35 cm. For successful perception of the target, the bat had to detect the echoes contributed by the target in the same time window that contained echoes from the clutter. Performance was assessed in terms of target reflective strength relative to clutter strength in the same time window. The bats detected the target whenever the target strength was greater than 1–2 dB above the clutter. PMID:18647008

  8. A Method for the Automatic Detection of Insect Clutter in Doppler-Radar Returns.

    SciTech Connect

    Luke,E.; Kollias, P.; Johnson, K.

    2006-06-12

    The accurate detection and removal of insect clutter from millimeter wavelength cloud radar (MMCR) returns is of high importance to boundary layer cloud research (e.g., Geerts et al., 2005). When only radar Doppler moments are available, it is difficult to produce a reliable screening of insect clutter from cloud returns because their distributions overlap. Hence, screening of MMCR insect clutter has historically involved a laborious manual process of cross-referencing radar moments against measurements from other collocated instruments, such as lidar. Our study looks beyond traditional radar moments to ask whether analysis of recorded Doppler spectra can serve as the basis for reliable, automatic insect clutter screening. We focus on the MMCR operated by the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program at its Southern Great Plains (SGP) facility in Oklahoma. Here, archiving of full Doppler spectra began in September 2003, and during the warmer months, a pronounced insect presence regularly introduces clutter into boundary layer returns.

  9. Reverberation clutter from subcutaneous tissue layers: simulation and in vivo demonstrations.

    PubMed

    Dahl, Jeremy J; Sheth, Niral M

    2014-04-01

    The degradation of ultrasonic image quality is typically attributed to aberration and reverberation. Although the sources and impact of aberration are well understood, very little is known about the source and impact of image degradation caused by reverberation. Reverberation is typically associated with multiple reflections at two interfaces along the same propagation path, as with the arterial wall or a metal sphere. However, the reverberation that results in image degradation includes more complex interaction between the propagating wave and the tissue. Simulations of wave propagation in realistic and simplified models of the abdominal wall are used to illustrate the characteristics of coherent and diffuse clutter generated by reverberation. In the realistic models, diffuse reverberation clutter is divided into that originating from the tissue interfaces and that originating from sub-resolution diffuse scatterers. In the simplified models, the magnitude of the reverberation clutter is observed as angle and density of the connective tissue are altered. The results suggest that multi-path scattering from the connective tissue/fat interfaces is a dominant component of reverberation clutter. Diffuse reverberation clutter is maximal when the connective tissue is near normal to the beam direction and increases with the density of connective tissue layers at these large angles. The presence of a thick fascial or fibrous layer at the distal boundary of the abdominal wall magnifies the amount of reverberation clutter. The simulations also illustrate that compression of the abdominal layer, a technique often used to mitigate clutter in overweight and obese patients, increases the decay of reverberation clutter with depth. In addition, rotation of the transducer or steering of the beam with respect to highly reflecting boundaries can reduce coherent clutter and transform it to diffuse clutter, which can be further reduced using coherence-based beamforming techniques. In

  10. A method and apparatus for signal filtering

    NASA Astrophysics Data System (ADS)

    Alexander, Edward M.; Spezio, Anthony E.

    1994-08-01

    A signal filter, and method of signal filtering, in which an optical signal is spatially dispersed according to frequency, and undesired frequencies blocked out, is introduced. In an embodiment, a Bragg cell receives a (typically microwave) signal, and transduces it to an acoustic signal. A light source, e.g. a laser diode, directs light through the acoustic signal in a known manner so as to produce an optical output which is spatially dispersed according to frequency. A programmable spatial light modulator blocks out unwanted frequency components. Upon removal of the optical carrier, e.g. by heterodyning the spatial light modulator's output with a reference signal from the light source, the components can be recombined into a resultant filtered signal. The invention can be used as a repeater, a military electronic countermeasure, in environments which have large amounts of electromagnetic clutter but in which one does not want the clutter repeated. The spatial light modulator can be programmed to pass only frequency components in which one is interested, thus blocking the clutter from the repeated signal.

  11. Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats.

    PubMed

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2009-03-30

    We propose theoretically and demonstrate experimentally an optical architecture for flexible Ultra-Wideband pulse generation. It is based on an N-tap reconfigurable microwave photonic filter fed by a laser array by using phase inversion in a Mach-Zehnder modulator. Since a large number of positive and negative coefficients can be easily implemented, UWB pulses fitted to the FCC mask requirements can be generated. As an example, a four tap pulse generator is experimentally demonstrated which complies with the FCC regulation. The proposed pulse generator allows different pulse modulation formats since the amplitude, polarity and time delay of generated pulse is controlled. PMID:19333263

  12. Ambient background particulate composition, outdoor natural background: interferents/clutter

    NASA Astrophysics Data System (ADS)

    Paterno, Dorothea

    2012-06-01

    It has proven a very difficult task to discriminate an actual BW threat from the natural occurring ambient particulate aerosol, which includes a significant fraction of particles consisting of mixed mineral and biological material. The interferent particles [clutter] (bio and non bio) concentration varies widely both by location, weather and season and diurnally. Naturally occurring background particulates are composed of fungal and bacterial spores both fragments and components, plant fragments and debris, animal fragments and debris, all of which may be associated with inert dust or combustion material. Some or all of which could also be considered to be an interferent to a biological warfare detector and cause these biodector systems to cause False Alarms by non specific BW bio detectors. I will share analysis of current long term background data sets.

  13. Real-time and reliable human detection in clutter scene

    NASA Astrophysics Data System (ADS)

    Tan, Yumei; Luo, Xiaoshu; Xia, Haiying

    2013-10-01

    To solve the problem that traditional HOG approach for human detection can not achieve real-time detection due to its time-consuming detection, an efficient algorithm based on first segmentation then identify method for real-time human detection is proposed to achieve real-time human detection in clutter scene. Firstly, the ViBe algorithm is used to segment all possible human target regions quickly, and more accurate moving objects is obtained by using the YUV color space to eliminate the shadow; secondly, using the body geometry knowledge can help to found the valid human areas by screening the regions of interest; finally, linear support vector machine (SVM) classifier and HOG are applied to train for human body classifier, to achieve accurate positioning of human body's locations. The results of our comparative experiments demonstrated that the approach proposed can obtain high accuracy, good real-time performance and strong robustness.

  14. A continuous-time adaptive particle filter for estimations under measurement time uncertainties with an application to a plasma-leucine mixed effects model

    PubMed Central

    2013-01-01

    Background When mathematical modelling is applied to many different application areas, a common task is the estimation of states and parameters based on measurements. With this kind of inference making, uncertainties in the time when the measurements have been taken are often neglected, but especially in applications taken from the life sciences, this kind of errors can considerably influence the estimation results. As an example in the context of personalized medicine, the model-based assessment of the effectiveness of drugs is becoming to play an important role. Systems biology may help here by providing good pharmacokinetic and pharmacodynamic (PK/PD) models. Inference on these systems based on data gained from clinical studies with several patient groups becomes a major challenge. Particle filters are a promising approach to tackle these difficulties but are by itself not ready to handle uncertainties in measurement times. Results In this article, we describe a variant of the standard particle filter (PF) algorithm which allows state and parameter estimation with the inclusion of measurement time uncertainties (MTU). The modified particle filter, which we call MTU-PF, also allows the application of an adaptive stepsize choice in the time-continuous case to avoid degeneracy problems. The modification is based on the model assumption of uncertain measurement times. While the assumption of randomness in the measurements themselves is common, the corresponding measurement times are generally taken as deterministic and exactly known. Especially in cases where the data are gained from measurements on blood or tissue samples, a relatively high uncertainty in the true measurement time seems to be a natural assumption. Our method is appropriate in cases where relatively few data are used from a relatively large number of groups or individuals, which introduce mixed effects in the model. This is a typical setting of clinical studies. We demonstrate the method on a small

  15. The Zigbee wireless ECG measurement system design with a motion artifact remove algorithm by using adaptive filter and moving weighted factor

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeokjun; Oh, Sechang; Varadan, Vijay K.

    2012-04-01

    , a filter including a moving weighted factor, peak to peak detection, and interpolation techniques. In addition, this paper introduces an adaptive filter in order to extract clear ECG signal by using extracted baseline noise signal and measured signal from sensor.

  16. An Efficient Adaptive Angle-Doppler Compensation Approach for Non-Sidelooking Airborne Radar STAP.

    PubMed

    Shen, Mingwei; Yu, Jia; Wu, Di; Zhu, Daiyin

    2015-01-01

    In this study, the effects of non-sidelooking airborne radar clutter dispersion on space-time adaptive processing (STAP) is considered, and an efficient adaptive angle-Doppler compensation (EAADC) approach is proposed to improve the clutter suppression performance. In order to reduce the computational complexity, the reduced-dimension sparse reconstruction (RDSR) technique is introduced into the angle-Doppler spectrum estimation to extract the required parameters for compensating the clutter spectral center misalignment. Simulation results to demonstrate the effectiveness of the proposed algorithm are presented. PMID:26053755

  17. Remotely serviced filter and housing

    DOEpatents

    Ross, Maurice J.; Zaladonis, Larry A.

    1988-09-27

    A filter system for a hot cell comprises a housing adapted for input of air or other gas to be filtered, flow of the air through a filter element, and exit of filtered air. The housing is tapered at the top to make it easy to insert a filter cartridge using an overhead crane. The filter cartridge holds the filter element while the air or other gas is passed through the filter element. Captive bolts in trunnion nuts are readily operated by electromechanical manipulators operating power wrenches to secure and release the filter cartridge. The filter cartridge is adapted to make it easy to change a filter element by using a master-slave manipulator at a shielded window station.

  18. Study of clutter origin in in-vivo epi-optoacoustic imaging of human forearms

    NASA Astrophysics Data System (ADS)

    Preisser, Stefan; Held, Gerrit; Akarçay, Hidayet G.; Jaeger, Michael; Frenz, Martin

    2016-09-01

    Epi-optoacoustic (OA) imaging offers flexible clinical diagnostics of the human body when the irradiation optic is attached to or directly integrated into the acoustic probe. Epi-OA images, however, encounter clutter that deteriorates contrast and significantly limits imaging depth. This study elaborates clutter origin in clinical epi-optoacoustic imaging using a linear array probe for scanning the human forearm. We demonstrate that the clutter strength strongly varies with the imaging location but stays stable over time, indicating that clutter is caused by anatomical structures. OA transients which are generated by strong optical absorbers located at the irradiation spot were identified to be the main source of clutter. These transients obscure deep in-plane OA signals when detected by the transducer either directly or after being acoustically scattered in the imaging plane. In addition, OA transients generated in the skin below the probe result in acoustic reverberations, which cause problems in image interpretation and limit imaging depth. Understanding clutter origin allows a better interpretation of clinical OA imaging, helps to design clutter compensation techniques and raises the prospect of contrast optimization via the design of the irradiation geometry.

  19. An AEGIS-CPHD Filter to Maintain Custody of GEO Space Objects with Limited Tracking Data

    NASA Astrophysics Data System (ADS)

    Gehly, S.; Jones, B.; Axelrad, P.

    2014-09-01

    The problem of space situational awareness (SSA) involves characterizing space objects subject to nonlinear dynamics and sparse measurements. Space objects in GEO are primarily tracked using optical sensors, which have limited fields of view, imperfect ability to detect objects, and are limited to taking measurements at night, all of which result in large gaps between measurements. In addition, the nonlinear dynamics result in state uncertainty representations which are generally non-Gaussian. When estimating the states of a catalog of space objects, these issues must be resolved within the framework of a multitarget filter. To address the issue of non-Gaussian uncertainty, the Adaptive Entropy-based Gaussian-mixture Information Synthesis (AEGIS) filter can be used. AEGIS is an implementation of the Unscented Kalman Filter (UKF) using an adaptive number of Gaussian mixture components to approximate the non-Gaussian state probability density function (pdf). Mixture components are split when nonlinearity is detected during propagation, typically during long data gaps, and can be merged or removed following measurement updates to reduce computational effort. Previous research has examined the use of AEGIS in multitarget filters based in Finite Set Statistics (FISST), including the Probability Hypothesis Density (PHD) filter and Cardinalized PHD (CPHD) filter. This paper uses the CPHD filter because in other applications it has been demonstrated to be more effective at estimating and maintaining the cardinality, or number of objects present, when objects are often leaving the sensor field of view (FOV). An important consideration in implementing the filter is the computation of the probability of detection. Existing formulations use a state-dependent probability of detection to assign a value based on whether the mean estimated state is in the sensor FOV. This paper employs a more realistic development by mapping the full state pdf into measurement space and

  20. Sensor-fault tolerant control of a powered lower limb prosthesis by mixing mode-specific adaptive Kalman filters.

    PubMed

    Dutta, Anirban; Koerding, Konrad; Perreault, Eric; Hargrove, Levi

    2011-01-01

    Machine learning methods for interfacing humans with machines is an emerging area. Here we propose a novel algorithm for interfacing humans with powered lower limb prostheses for restoring control of naturalistic gait following amputation. Unlike most previous neural machine interfaces, our approach fuses control information from the user with sensor information from the prosthesis to approximate the closed loop behavior of the unimpaired sensorimotor system. We present a Bayesian framework to control an artificial knee by probabilistically mixing of process state estimates from different Kalman filters, each addressing separate regimes of locomotion such as level ground walking, walking up a ramp, and walking down a ramp. We show its utility as a mode classifier that is tolerant to temporary sensor faults which are frequently experienced in practical applications. PMID:22255142