Utilizing optical coherence tomography for CAD/CAM of indirect dental restorations
NASA Astrophysics Data System (ADS)
Chityala, Ravishankar; Vidal, Carola; Jones, Robert
Optical Coherence Tomography (OCT) has seen broad application in dentistry including early carious lesion detection and imaging defects in resin composite restorations. This study investigates expanding the clinical usefulness by investigating methods to use OCT for obtaining three-dimensional (3D) digital impressions, which can be integrated to CAD/CAM manufacturing of indirect restorations. 3D surface topography `before' and `after' a cavity preparation was acquired by an intraoral cross polarization swept source OCT (CP-OCT) system with a Micro-Electro-Mechanical System (MEMS) scanning mirror. Image registration and segmentation methods were used to digitally construct a replacement restoration that modeled the original surface morphology of a hydroxyapatite sample. After high resolution additive manufacturing (e.g. polymer 3D printing) of the replacement restoration, micro-CT imaging was performed to examine the marginal adaptation. This study establishes the protocol for further investigation of integrating OCT with CAD/CAM of indirect dental restorations.
Limbal Stem Cell Preservation During Proton Beam Irradiation for Diffuse Iris Melanoma.
Singh, Arun D; Dupps, William J; Biscotti, Charles V; Suh, John H; Lathrop, Kira L; Nairn, John P; Shih, Helen
2017-01-01
To report the outcome after limbal stem cell preservation during proton beam irradiation for diffuse iris melanoma. This is a single-case report of diffuse iris melanoma that was managed with proton beam radiation (53 Gy), wherein preemptively harvested superior and inferior limbal stem cells before radiation were replaced after irradiation. Regeneration of the palisades of Vogt and the limbal stem cells was documented by an optical coherence tomography-based imaging protocol. At 24 months after radiation therapy, best-corrected visual acuity was 20/25. The cornea was clear without evidence of limbal stem cell dysfunction. Clinical examination (including gonioscopy and ultrasound biomicroscopy [UBM]) was indicative of local control, and systemic surveillance was negative for metastatic disease. At posttransplant (21 months), there were more palisade structures visible in both anterior and posterior regions of the superior and inferior limbus, and the linear presentation of the inferior palisades appears to have regenerated. Diffuse iris melanoma can be managed successfully with proton beam radiation while preserving corneal limbal stem cells by harvesting them before radiation and then replacing them after irradiation. Regeneration of the palisades of Vogt could be documented by an optical coherence tomography-based imaging protocol.
NASA Astrophysics Data System (ADS)
Sun, Xiaole; Djordjevic, Ivan B.; Neifeld, Mark A.
2016-03-01
Free-space optical (FSO) channels can be characterized by random power fluctuations due to atmospheric turbulence, which is known as scintillation. Weak coherent source based FSO quantum key distribution (QKD) systems suffer from the scintillation effect because during the deep channel fading the expected detection rate drops, which then gives an eavesdropper opportunity to get additional information about protocol by performing photon number splitting (PNS) attack and blocking single-photon pulses without changing QBER. To overcome this problem, in this paper, we study a large-alphabet QKD protocol, which is achieved by using pulse-position modulation (PPM)-like approach that utilizes the time-frequency uncertainty relation of the weak coherent photon state, called here TF-PPM-QKD protocol. We first complete finite size analysis for TF-PPM-QKD protocol to give practical bounds against non-negligible statistical fluctuation due to finite resources in practical implementations. The impact of scintillation under strong atmospheric turbulence regime is studied then. To overcome the secure key rate performance degradation of TF-PPM-QKD caused by scintillation, we propose an adaptation method for compensating the scintillation impact. By changing source intensity according to the channel state information (CSI), obtained by classical channel, the adaptation method improves the performance of QKD system with respect to the secret key rate. The CSI of a time-varying channel can be predicted using stochastic models, such as autoregressive (AR) models. Based on the channel state predictions, we change the source intensity to the optimal value to achieve a higher secret key rate. We demonstrate that the improvement of the adaptation method is dependent on the prediction accuracy.
Wong, Kevin S K; Jian, Yifan; Cua, Michelle; Bonora, Stefano; Zawadzki, Robert J; Sarunic, Marinko V
2015-02-01
Wavefront sensorless adaptive optics optical coherence tomography (WSAO-OCT) is a novel imaging technique for in vivo high-resolution depth-resolved imaging that mitigates some of the challenges encountered with the use of sensor-based adaptive optics designs. This technique replaces the Hartmann Shack wavefront sensor used to measure aberrations with a depth-resolved image-driven optimization algorithm, with the metric based on the OCT volumes acquired in real-time. The custom-built ultrahigh-speed GPU processing platform and fast modal optimization algorithm presented in this paper was essential in enabling real-time, in vivo imaging of human retinas with wavefront sensorless AO correction. WSAO-OCT is especially advantageous for developing a clinical high-resolution retinal imaging system as it enables the use of a compact, low-cost and robust lens-based adaptive optics design. In this report, we describe our WSAO-OCT system for imaging the human photoreceptor mosaic in vivo. We validated our system performance by imaging the retina at several eccentricities, and demonstrated the improvement in photoreceptor visibility with WSAO compensation.
Integrative Bioengineering Institute
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eddington, David; Magin,L,Richard; Hetling, John
2009-01-09
Microfabrication enables many exciting experimental possibilities for medicine and biology that are not attainable through traditional methods. However, in order for microfabricated devices to have an impact they must not only provide a robust solution to a current unmet need, but also be simple enough to seamlessly integrate into standard protocols. Broad dissemination of bioMEMS has been stymied by the common aim of replacing established and well accepted protocols with equally or more complex devices, methods, or materials. The marriage of a complex, difficult to fabricate bioMEMS device with a highly variable biological system is rarely successful. Instead, the designmore » philosophy of my lab aims to leverage a beneficial microscale phenomena (e.g. fast diffusion at the microscale) within a bioMEMS device and adapt to established methods (e.g. multiwell plate cell culture) and demonstrate a new paradigm for the field (adapt instead of replace). In order for the field of bioMEMS to mature beyond novel proof-of-concept demonstrations, researchers must focus on developing systems leveraging these phenomena and integrating into standard labs, which have largely been ignored. Towards this aim, the Integrative Bioengineering Institute has been established.« less
Implementation of a timed, electronic, assessment-driven potassium-replacement protocol.
Zielenski, Christopher; Crabtree, Adam; Le, Tien; Marlatt, Alyse; Ng, Dana; Tran, Alan
2017-06-15
The adherence to and effectiveness and safety of a timed, electronic, assessment-driven potassium-replacement protocol (TARP) were compared with an electronic nurse-driven replacement protocol (NRP) are reported. A retrospective observational study was conducted in a community hospital evaluating protocol adherence, effectiveness, and safety for 2 potassium-replacement protocols. All adults on medical units with an order for potassium replacement per protocol during the 3-month trial periods were reviewed. All patients requiring potassium replacement per protocol were included in the analysis. Adherence to the protocol was assessed by evaluating the dose of potassium administered and performance of reassessments. Effectiveness of the protocol was assessed by evaluating the time to achieve target potassium levels. Safety was assessed by evaluating the route of administration and occurrence of hyperkalemia. A total of 300 patients treated using potassium-replacement protocols required potassium replacement during the study period, with 148 patients in the NRP group requiring 491 instances of potassium replacement. In the TARP group a total of 564 instances requiring potassium replacement corresponded to 152 patients. Of the 491 instances requiring replacement in the NRP group, the correct dose was administered and reassessment performed 117 times (23.8%). Overall adherence ( p < 0.05), correct dose given ( p < 0.05), average time from blood draw to potassium replacement ( p < 0.0001), use of oral replacement ( p < 0.05), and time to achieve target potassium level within 12 hours ( p < 0.05) were significantly improved in the TARP group. The TARP improved the effectiveness and safety of potassium-replacement therapy over the traditional NRP without negatively affecting timeliness of care. Copyright © 2017 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Continuous-variable quantum key distribution with a leakage from state preparation
NASA Astrophysics Data System (ADS)
Derkach, Ivan; Usenko, Vladyslav C.; Filip, Radim
2017-12-01
We address side-channel leakage in a trusted preparation station of continuous-variable quantum key distribution with coherent and squeezed states. We consider two different scenarios: multimode Gaussian modulation, directly accessible to an eavesdropper, or side-channel loss of the signal states prior to the modulation stage. We show the negative impact of excessive modulation on both the coherent- and squeezed-state protocols. The impact is more pronounced for squeezed-state protocols and may require optimization of squeezing in the case of noisy quantum channels. Further, we demonstrate that the coherent-state protocol is immune to side-channel signal state leakage prior to modulation, while the squeezed-state protocol is vulnerable to such attacks, becoming more sensitive to the noise in the channel. In the general case of noisy quantum channels the signal squeezing can be optimized to provide best performance of the protocol in the presence of side-channel leakage prior to modulation. Our results demonstrate that leakage from the trusted source in continuous-variable quantum key distribution should not be underestimated and squeezing optimization is needed to overcome coherent state protocols.
Experimental evaluation of multiprocessor cache-based error recovery
NASA Technical Reports Server (NTRS)
Janssens, Bob; Fuchs, W. K.
1991-01-01
Several variations of cache-based checkpointing for rollback error recovery in shared-memory multiprocessors have been recently developed. By modifying the cache replacement policy, these techniques use the inherent redundancy in the memory hierarchy to periodically checkpoint the computation state. Three schemes, different in the manner in which they avoid rollback propagation, are evaluated. By simulation with address traces from parallel applications running on an Encore Multimax shared-memory multiprocessor, the performance effect of integrating the recovery schemes in the cache coherence protocol are evaluated. The results indicate that the cache-based schemes can provide checkpointing capability with low performance overhead but uncontrollable high variability in the checkpoint interval.
Virtual memory support for distributed computing environments using a shared data object model
NASA Astrophysics Data System (ADS)
Huang, F.; Bacon, J.; Mapp, G.
1995-12-01
Conventional storage management systems provide one interface for accessing memory segments and another for accessing secondary storage objects. This hinders application programming and affects overall system performance due to mandatory data copying and user/kernel boundary crossings, which in the microkernel case may involve context switches. Memory-mapping techniques may be used to provide programmers with a unified view of the storage system. This paper extends such techniques to support a shared data object model for distributed computing environments in which good support for coherence and synchronization is essential. The approach is based on a microkernel, typed memory objects, and integrated coherence control. A microkernel architecture is used to support multiple coherence protocols and the addition of new protocols. Memory objects are typed and applications can choose the most suitable protocols for different types of object to avoid protocol mismatch. Low-level coherence control is integrated with high-level concurrency control so that the number of messages required to maintain memory coherence is reduced and system-wide synchronization is realized without severely impacting the system performance. These features together contribute a novel approach to the support for flexible coherence under application control.
Replacing missing data between airborne SAR coherent image pairs
Musgrove, Cameron H.; West, James C.
2017-07-31
For synthetic aperture radar systems, missing data samples can cause severe image distortion. When multiple, coherent data collections exist and the missing data samples do not overlap between collections, there exists the possibility of replacing data samples between collections. For airborne radar, the known and unknown motion of the aircraft prevents direct data sample replacement to repair image features. Finally, this paper presents a method to calculate the necessary phase corrections to enable data sample replacement using only the collected radar data.
Replacing missing data between airborne SAR coherent image pairs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musgrove, Cameron H.; West, James C.
For synthetic aperture radar systems, missing data samples can cause severe image distortion. When multiple, coherent data collections exist and the missing data samples do not overlap between collections, there exists the possibility of replacing data samples between collections. For airborne radar, the known and unknown motion of the aircraft prevents direct data sample replacement to repair image features. Finally, this paper presents a method to calculate the necessary phase corrections to enable data sample replacement using only the collected radar data.
Adaptive coupling optimized spiking coherence and synchronization in Newman-Watts neuronal networks
NASA Astrophysics Data System (ADS)
Gong, Yubing; Xu, Bo; Wu, Ya'nan
2013-09-01
In this paper, we have numerically studied the effect of adaptive coupling on the temporal coherence and synchronization of spiking activity in Newman-Watts Hodgkin-Huxley neuronal networks. It is found that random shortcuts can enhance the spiking synchronization more rapidly when the increment speed of adaptive coupling is increased and can optimize the temporal coherence of spikes only when the increment speed of adaptive coupling is appropriate. It is also found that adaptive coupling strength can enhance the synchronization of spikes and can optimize the temporal coherence of spikes when random shortcuts are appropriate. These results show that adaptive coupling has a big influence on random shortcuts related spiking activity and can enhance and optimize the temporal coherence and synchronization of spiking activity of the network. These findings can help better understand the roles of adaptive coupling for improving the information processing and transmission in neural systems.
Practical quantum appointment scheduling
NASA Astrophysics Data System (ADS)
Touchette, Dave; Lovitz, Benjamin; Lütkenhaus, Norbert
2018-04-01
We propose a protocol based on coherent states and linear optics operations for solving the appointment-scheduling problem. Our main protocol leaks strictly less information about each party's input than the optimal classical protocol, even when considering experimental errors. Along with the ability to generate constant-amplitude coherent states over two modes, this protocol requires the ability to transfer these modes back-and-forth between the two parties multiple times with very low losses. The implementation requirements are thus still challenging. Along the way, we develop tools to study quantum information cost of interactive protocols in the finite regime.
NASA Astrophysics Data System (ADS)
Guo, Rui; Zhou, Lan; Gu, Shi-Pu; Wang, Xing-Fu; Sheng, Yu-Bo
2017-03-01
The concatenated Greenberger-Horne-Zeilinger (C-GHZ) state is a new type of multipartite entangled state, which has potential application in future quantum information. In this paper, we propose a protocol of constructing arbitrary C-GHZ entangled state approximatively. Different from previous protocols, each logic qubit is encoded in the coherent state. This protocol is based on the linear optics, which is feasible in experimental technology. This protocol may be useful in quantum information based on the C-GHZ state.
NASA Astrophysics Data System (ADS)
Huang, Duan; Huang, Peng; Wang, Tao; Li, Huasheng; Zhou, Yingming; Zeng, Guihua
2016-09-01
We propose and experimentally demonstrate a continuous-variable quantum key distribution (CV-QKD) protocol using dual-phase-modulated coherent states. We show that the modulation scheme of our protocol works equivalently to that of the Gaussian-modulated coherent-states (GMCS) protocol, but shows better experimental feasibility in the plug-and-play configuration. Besides, it waives the necessity of propagation of a local oscillator (LO) between legitimate users and generates a real local LO for quantum measurement. Our protocol is proposed independent of the one-way GMCS QKD without sending a LO [Opt. Lett. 40, 3695 (2015), 10.1364/OL.40.003695; Phys. Rev. X 5, 041009 (2015), 10.1103/PhysRevX.5.041009; Phys. Rev. X 5, 041010 (2015), 10.1103/PhysRevX.5.041010]. In those recent works, the system stability will suffer the impact of polarization drifts induced by environmental perturbations, and two independent frequency-locked laser sources are necessary to achieve reliable coherent detection. In the proposed protocol, these previous problems can be resolved. We derive the security bounds for our protocol against collective attacks, and we also perform a proof-of-principle experiment to confirm the utility of our proposal in real-life applications. Such an efficient scheme provides a way of removing the security loopholes associated with the transmitting LO, which have been a notoriously hard problem in continuous-variable quantum communication.
Quantum computing with Majorana fermion codes
NASA Astrophysics Data System (ADS)
Litinski, Daniel; von Oppen, Felix
2018-05-01
We establish a unified framework for Majorana-based fault-tolerant quantum computation with Majorana surface codes and Majorana color codes. All logical Clifford gates are implemented with zero-time overhead. This is done by introducing a protocol for Pauli product measurements with tetrons and hexons which only requires local 4-Majorana parity measurements. An analogous protocol is used in the fault-tolerant setting, where tetrons and hexons are replaced by Majorana surface code patches, and parity measurements are replaced by lattice surgery, still only requiring local few-Majorana parity measurements. To this end, we discuss twist defects in Majorana fermion surface codes and adapt the technique of twist-based lattice surgery to fermionic codes. Moreover, we propose a family of codes that we refer to as Majorana color codes, which are obtained by concatenating Majorana surface codes with small Majorana fermion codes. Majorana surface and color codes can be used to decrease the space overhead and stabilizer weight compared to their bosonic counterparts.
Coherent Multimodal Sensory Information Allows Switching between Gravitoinertial Contexts
Barbiero, Marie; Rousseau, Célia; Papaxanthis, Charalambos; White, Olivier
2017-01-01
Whether the central nervous system is capable to switch between contexts critically depends on experimental details. Motor control studies regularly adopt robotic devices to perturb the dynamics of a certain task. Other approaches investigate motor control by altering the gravitoinertial context itself as in parabolic flights and human centrifuges. In contrast to conventional robotic experiments, where only the hand is perturbed, these gravitoinertial or immersive settings coherently plunge participants into new environments. However, radically different they are, perfect adaptation of motor responses are commonly reported. In object manipulation tasks, this translates into a good matching of the grasping force or grip force to the destabilizing load force. One possible bias in these protocols is the predictability of the forthcoming dynamics. Here we test whether the successful switching and adaptation processes observed in immersive environments are a consequence of the fact that participants can predict the perturbation schedule. We used a short arm human centrifuge to decouple the effects of space and time on the dynamics of an object manipulation task by adding an unnatural explicit position-dependent force. We created different dynamical contexts by asking 20 participants to move the object at three different paces. These contextual sessions were interleaved such that we could simulate concurrent learning. We assessed adaptation by measuring how grip force was adjusted to this unnatural load force. We found that the motor system can switch between new unusual dynamical contexts, as reported by surprisingly well-adjusted grip forces, and that this capacity is not a mere consequence of the ability to predict the time course of the upcoming dynamics. We posit that a coherent flow of multimodal sensory information born in a homogeneous milieu allows switching between dynamical contexts. PMID:28553233
Predictors of adaptation in Icelandic and American families of young children with chronic asthma.
Svavarsdottir, Erla Kolbrun; Rayens, Mary Kay; McCubbin, Marilyn
2005-01-01
The purposes of this international study were to determine the predictors of adaptation and to assess potential moderating effects of parents' sense of coherence and family hardiness on the relationship of severity of illness of a child with asthma and family and caregiving demands as predictors of family adaptation. For both parents, sense of coherence and family hardiness predicted family adaptation. Icelandic mothers perceived their family's adaptation more favorably than did their American counterparts. For the fathers, family demands predicted adaptation. Sense of coherence moderated the effect of family demands on adaptation for both parents. These findings underscore the importance of strengthening individual and family resiliency as a mechanism for improving family adaptation.
Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farfurnik, D.; Jarmola, A.; Pham, L. M.
2015-08-24
In this study, we demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T 1 effects and DD microwave pulses are used to increase the transverse coherence time T 2 from ~0.7ms up to ~30ms. Furthermore, we extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We also identify that themore » optimal control scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.« less
Lu, Chen D; Lee, ByungKun; Schottenhamml, Julia; Maier, Andreas; Pugh, Edward N; Fujimoto, James G
2017-09-01
To examine outer retinal band changes after flash stimulus and subsequent dark adaptation with ultrahigh-resolution optical coherence tomography (UHR-OCT). Five dark-adapted left eyes of five normal subjects were imaged with 3-μm axial-resolution UHR-OCT during 30 minutes of dark adaptation following 96%, 54%, 23%, and 0% full-field and 54% half-field rhodopsin bleach. We identified the ellipsoid zone inner segment/outer segment (EZ[IS/OS]), cone interdigitation zone (CIZ), rod interdigitation zone (RIZ), retinal pigment epithelium (RPE), and Bruch's membrane (BM) axial positions and generated two-dimensional thickness maps of the EZ(IS/OS) to the four bands. The average thickness over an area of the thickness map was compared against that of the dark-adapted baselines. The time-dependent thickness changes (photoresponses) were statistically compared against 0% bleach. Dark adaptometry was performed with the same bleaching protocol. The EZ(IS/OS)-CIZ photoresponse was significantly different at 96% (P < 0.0001) and 54% (P = 0.006) bleach. At all three bleaching levels, the EZ(IS/OS)-RIZ, -RPE, and -BM responses were significantly different (P < 0.0001). The EZ(IS/OS)-CIZ and EZ(IS/OS)-RIZ time courses were similar to the recovery of rod- and cone-mediated sensitivity, respectively, measured with dark adaptometry. The maximal EZ(IS/OS)-CIZ and EZ(IS/OS)-RIZ response magnitudes doubled from 54% to 96% bleach. Both EZ(IS/OS)-RPE and EZ(IS/OS)-BM responses resembled dampened oscillations that were graded in amplitude and duration with bleaching intensity. Half-field photoresponses were localized to the stimulated retina. With noninvasive, near-infrared UHR-OCT, we characterized three distinct, spatially localized photoresponses in the outer retinal bands. These photoresponses have potential value as physical correlates of photoreceptor function.
Skondra, Dimitra; Nesper, Peter L; Fawzi, Amani A
2017-05-16
To report a case of acute exudative polymorphous vitelliform maculopathy including the findings of optical coherence tomography angiography and adaptive optics scanning laser ophthalmoscopy. Findings on clinical examination, color fundus photography, spectral-domain optical coherence tomography, infrared reflectance, autofluorescence, optical coherence tomography angiography, and adaptive optics scanning laser ophthalmoscopy. A 54-year-old white man with no significant medical history and history of smoking presented with bilateral multiple serous and vitelliform detachments consistent with acute exudative polymorphous vitelliform maculopathy. Extensive infectious, inflammatory, and malignancy workup was negative. Spectral-domain optical coherence tomography showed thickened, hyperreflective ellipsoid zone, subretinal fluid, and focal as well as diffuse subretinal hyperreflective material corresponding to the vitelliform lesions. Optical coherence tomography angiography showed normal retinal and choroidal vasculature, whereas adaptive optics scanning laser ophthalmoscopy showed circular focal "target" lesions at the level of the photoreceptors in the area of foveal detachment. Multimodal imaging is valuable in evaluating patients with acute exudative polymorphous vitelliform maculopathy.
High-Frequency Intermuscular Coherence between Arm Muscles during Robot-Mediated Motor Adaptation
Pizzamiglio, Sara; De Lillo, Martina; Naeem, Usman; Abdalla, Hassan; Turner, Duncan L.
2017-01-01
Adaptation of arm reaching in a novel force field involves co-contraction of upper limb muscles, but it is not known how the co-ordination of multiple muscle activation is orchestrated. We have used intermuscular coherence (IMC) to test whether a coherent intermuscular coupling between muscle pairs is responsible for novel patterns of activation during adaptation of reaching in a force field. Subjects (N = 16) performed reaching trials during a null force field, then during a velocity-dependent force field and then again during a null force field. Reaching trajectory error increased during early adaptation to the force-field and subsequently decreased during later adaptation. Co-contraction in the majority of all possible muscle pairs also increased during early adaptation and decreased during later adaptation. In contrast, IMC increased during later adaptation and only in a subset of muscle pairs. IMC consistently occurred in frequencies between ~40–100 Hz and during the period of arm movement, suggesting that a coherent intermuscular coupling between those muscles contributing to adaptation enable a reduction in wasteful co-contraction and energetic cost during reaching. PMID:28119620
General immunity and superadditivity of two-way Gaussian quantum cryptography.
Ottaviani, Carlo; Pirandola, Stefano
2016-03-01
We consider two-way continuous-variable quantum key distribution, studying its security against general eavesdropping strategies. Assuming the asymptotic limit of many signals exchanged, we prove that two-way Gaussian protocols are immune to coherent attacks. More precisely we show the general superadditivity of the two-way security thresholds, which are proven to be higher than the corresponding one-way counterparts in all cases. We perform the security analysis first reducing the general eavesdropping to a two-mode coherent Gaussian attack, and then showing that the superadditivity is achieved by exploiting the random on/off switching of the two-way quantum communication. This allows the parties to choose the appropriate communication instances to prepare the key, accordingly to the tomography of the quantum channel. The random opening and closing of the circuit represents, in fact, an additional degree of freedom allowing the parties to convert, a posteriori, the two-mode correlations of the eavesdropping into noise. The eavesdropper is assumed to have no access to the on/off switching and, indeed, cannot adapt her attack. We explicitly prove that this mechanism enhances the security performance, no matter if the eavesdropper performs collective or coherent attacks.
General immunity and superadditivity of two-way Gaussian quantum cryptography
Ottaviani, Carlo; Pirandola, Stefano
2016-01-01
We consider two-way continuous-variable quantum key distribution, studying its security against general eavesdropping strategies. Assuming the asymptotic limit of many signals exchanged, we prove that two-way Gaussian protocols are immune to coherent attacks. More precisely we show the general superadditivity of the two-way security thresholds, which are proven to be higher than the corresponding one-way counterparts in all cases. We perform the security analysis first reducing the general eavesdropping to a two-mode coherent Gaussian attack, and then showing that the superadditivity is achieved by exploiting the random on/off switching of the two-way quantum communication. This allows the parties to choose the appropriate communication instances to prepare the key, accordingly to the tomography of the quantum channel. The random opening and closing of the circuit represents, in fact, an additional degree of freedom allowing the parties to convert, a posteriori, the two-mode correlations of the eavesdropping into noise. The eavesdropper is assumed to have no access to the on/off switching and, indeed, cannot adapt her attack. We explicitly prove that this mechanism enhances the security performance, no matter if the eavesdropper performs collective or coherent attacks. PMID:26928053
Quantum fingerprinting with coherent states and a constant mean number of photons
NASA Astrophysics Data System (ADS)
Arrazola, Juan Miguel; Lütkenhaus, Norbert
2014-06-01
We present a protocol for quantum fingerprinting that is ready to be implemented with current technology and is robust to experimental errors. The basis of our scheme is an implementation of the signal states in terms of a coherent state in a superposition of time-bin modes. Experimentally, this requires only the ability to prepare coherent states of low amplitude and to interfere them in a balanced beam splitter. The states used in the protocol are arbitrarily close in trace distance to states of O (log2n) qubits, thus exhibiting an exponential separation in abstract communication complexity compared to the classical case. The protocol uses a number of optical modes that is proportional to the size n of the input bit strings but a total mean photon number that is constant and independent of n. Given the expended resources, our protocol achieves a task that is provably impossible using classical communication only. In fact, even in the presence of realistic experimental errors and loss, we show that there exist a large range of input sizes for which our quantum protocol transmits an amount of information that can be more than two orders of magnitude smaller than a classical fingerprinting protocol.
Wilczyński, Michał; Pośpiech-Zabierek, Aleksandra
2015-01-01
The accurate measurement of the anterior chamber internal diameter and depth is important in ophthalmic diagnosis and before some eye surgery procedures. The purpose of the study was to compare the white-to-white distance measurements performed using the IOL-Master and photography with internal anterior chamber diameter determined using slit lamp adapted optical coherence tomography in healthy eyes, and to compare anterior chamber depth measurements by IOL-Master and slit lamp adapted optical coherence tomography. The data were gathered prospectively from a non-randomized consecutive series of patients. The examined group consisted of 46 eyes of 39 patients. White-to-white was measured using IOL-Master and photographs of the eye were taken with a digital camera. Internal anterior chamber diameter was measured with slit-lamp adapted optical coherence tomography. Anterior chamber depth was measured using the IOL Master and slit-lamp adapted optical coherence tomography. Statistical analysis was performed using parametric tests. A Bland-Altman plot was drawn. White-to-white distance by the IOL Master was 11.8 +/- 0.40 mm, on photographs it was 11.29 +/- 0.58 mm and internal anterior chamber diameter by slit-lamp adapted optical coherence tomography was 11.34?0.54 mm. A significant difference was found between IOL-Master and slit-lamp adapted optical coherence tomography (p<0.01), as well as between IOL Master and digital photographs (p<0.01). There was no difference between SL-OCT and digital photographs (p>0.05). All measurements were correlated (Spearman p<0.001). Mean anterior chamber depth determined using the IOL-Master was 2.99 +/- 0.50 mm and by slit-lamp adapted optical coherence tomography was 2.56 +/- 0.46 mm. The difference was statistically significant (p<0.001). The correlation between the values was also statistically significant (Spearman, p<0.001). Automated measurements using IOL-Master yield constantly higher values than measurements based on direct eye visualization slit-lamp adapted optical coherence tomography and digital photographs. In order to obtain accurate measurements of the internal anterior chamber diameter and anterior chamber depth, a method involving direct visualization of intraocular structures should be used.
Beating the photon-number-splitting attack in practical quantum cryptography.
Wang, Xiang-Bin
2005-06-17
We propose an efficient method to verify the upper bound of the fraction of counts caused by multiphoton pulses in practical quantum key distribution using weak coherent light, given whatever type of Eve's action. The protocol simply uses two coherent states for the signal pulses and vacuum for the decoy pulse. Our verified upper bound is sufficiently tight for quantum key distribution with a very lossy channel, in both the asymptotic and nonasymptotic case. So far our protocol is the only decoy-state protocol that works efficiently for currently existing setups.
Marginal adaptation of ceramic veneers investigated with en face optical coherence tomography
NASA Astrophysics Data System (ADS)
Sinescu, Cosmin; Negruţiu, Meda-Lavinia; Petrescu, Emanuela; Rominu, Mihai; Marcauteanu, Corina; Rominu, Roxana; Hughes, Michael; Bradu, Adrian; Dobre, George; Podoleanu, Adrian G.
2009-07-01
The aim of this study was to analyze the quality of marginal adaptation and gap width of Empress veneers using en-face optical coherence tomography. The results prove the necessity of investigating the marginal adaptation after each veneer bonding process.
NASA Astrophysics Data System (ADS)
Zhou, Jian; Guo, Ying
2017-02-01
A continuous-variable measurement-device-independent (CV-MDI) multipartite quantum communication protocol is designed to realize multipartite communication based on the GHZ state analysis using Gaussian coherent states. It can remove detector side attack as the multi-mode measurement is blindly done in a suitable Black Box. The entanglement-based CV-MDI multipartite communication scheme and the equivalent prepare-and-measurement scheme are proposed to analyze the security and guide experiment, respectively. The general eavesdropping and coherent attack are considered for the security analysis. Subsequently, all the attacks are ascribed to coherent attack against imperfect links. The asymptotic key rate of the asymmetric configuration is also derived with the numeric simulations illustrating the performance of the proposed protocol.
Insertion of coherence requests for debugging a multiprocessor
Blumrich, Matthias A.; Salapura, Valentina
2010-02-23
A method and system are disclosed to insert coherence events in a multiprocessor computer system, and to present those coherence events to the processors of the multiprocessor computer system for analysis and debugging purposes. The coherence events are inserted in the computer system by adding one or more special insert registers. By writing into the insert registers, coherence events are inserted in the multiprocessor system as if they were generated by the normal coherence protocol. Once these coherence events are processed, the processing of coherence events can continue in the normal operation mode.
Ip, David; Fu, Nga Yue
2015-01-01
Background This study evaluated whether half-yearly hyaluronic acid injection together with low-level laser therapy in addition to standard conventional physical therapy can successfully postpone the need for joint replacement surgery in elderly patients with bilateral symptomatic tricompartmental knee arthritis. Methods In this prospective, double-blind, placebo-controlled study, 70 consecutive unselected elderly patients with bilateral tricompartmental knee arthritis were assigned at random to either one of two conservative treatment protocols to either one of the painful knees. Protocol A consisted of conventional physical therapy plus a sham light source plus saline injection, and protocol B consisted of protocol A with addition of half-yearly hyaluronic acid injection as well as low-level laser treatment instead of using saline and a sham light source. Treatment failure was defined as breakthrough pain necessitating joint replacement. Results Among the 140 painful knees treated with either protocol A or protocol B, only one of the 70 painful knees treated by protocol B required joint replacement, whereas 15 of the 70 painful knees treated by protocol A needed joint replacement surgery (P<0.05). Conclusion We conclude that half-yearly hyaluronic acid injections together with low-level laser therapy should be incorporated into the standard conservative treatment protocol for symptomatic knee arthritis, because it may prolong the longevity of the knee joint without the need for joint replacement. PMID:26346122
Relating quantum privacy and quantum coherence: an operational approach.
Devetak, I; Winter, A
2004-08-20
Given many realizations of a state or a channel as a resource, two parties can generate a secret key as well as entanglement. We describe protocols to perform the secret key distillation (as it turns out, with optimal rate). Then we show how to achieve optimal entanglement generation rates by "coherent" implementation of a class of secret key agreement protocols, proving the long-conjectured "hashing inequality."
Coherent communication with continuous quantum variables
NASA Astrophysics Data System (ADS)
Wilde, Mark M.; Krovi, Hari; Brun, Todd A.
2007-06-01
The coherent bit (cobit) channel is a resource intermediate between classical and quantum communication. It produces coherent versions of teleportation and superdense coding. We extend the cobit channel to continuous variables by providing a definition of the coherent nat (conat) channel. We construct several coherent protocols that use both a position-quadrature and a momentum-quadrature conat channel with finite squeezing. Finally, we show that the quality of squeezing diminishes through successive compositions of coherent teleportation and superdense coding.
Optimal quantum operations at zero energy cost
NASA Astrophysics Data System (ADS)
Chiribella, Giulio; Yang, Yuxiang
2017-08-01
Quantum technologies are developing powerful tools to generate and manipulate coherent superpositions of different energy levels. Envisaging a new generation of energy-efficient quantum devices, here we explore how coherence can be manipulated without exchanging energy with the surrounding environment. We start from the task of converting a coherent superposition of energy eigenstates into another. We identify the optimal energy-preserving operations, both in the deterministic and in the probabilistic scenario. We then design a recursive protocol, wherein a branching sequence of energy-preserving filters increases the probability of success while reaching maximum fidelity at each iteration. Building on the recursive protocol, we construct efficient approximations of the optimal fidelity-probability trade-off, by taking coherent superpositions of the different branches generated by probabilistic filtering. The benefits of this construction are illustrated in applications to quantum metrology, quantum cloning, coherent state amplification, and ancilla-driven computation. Finally, we extend our results to transitions where the input state is generally mixed and we apply our findings to the task of purifying quantum coherence.
Ranabhat, Sunita; Ghate, Rucha; Bhatta, Laxmi Dutt; Agrawal, Nand Kishor; Tankha, Sunil
2018-06-01
Least Developed Countries are likely to be hit the hardest by climate change and need focused efforts towards adaptation. Nepal recognizes that it needs to integrate climate change adaptation into various policies, but limited understanding of how to make these policies coherent is among the factors that hinder effective adaptation action. This can lead to wasted resources and lost opportunities. This paper applies concepts from policy coherence for development frameworks and policy content analysis to examine coherence in Nepal's climate and forest policies-and discusses the factors hindering effective implementation. The policies are analyzed at the horizontal/external level at three layers-motivation, measures, and planned implementation process. The paper finds that policies are more consistent on motivation level and adaptation measures, but are less coherent on implementation. The National Adaptation Programme of Action (NAPA) is more explicit in identifying institutions, organizations, roles and responsibilities, resource allocation (financial), and a monitoring and evaluation plan for climate change adaptation while other policies such as Climate Change Policy 2011, National Biodiversity Strategy and Action Plan 2014-2020, Forest Policy 2015, and Forest Sector Strategy 2016 have critical gaps in this area. This paper conclude that formulation of a policy, articulating targets, and mobilizing financial resources are in themselves not sufficient to effectively address climate change adaptation. Policy-based legislation is required, together with development of a supportive collaborative multi-stakeholder approach at different levels of governance, backed up by effective, collaborative monitoring and enforcement.
NASA Astrophysics Data System (ADS)
Ranabhat, Sunita; Ghate, Rucha; Bhatta, Laxmi Dutt; Agrawal, Nand Kishor; Tankha, Sunil
2018-06-01
Least Developed Countries are likely to be hit the hardest by climate change and need focused efforts towards adaptation. Nepal recognizes that it needs to integrate climate change adaptation into various policies, but limited understanding of how to make these policies coherent is among the factors that hinder effective adaptation action. This can lead to wasted resources and lost opportunities. This paper applies concepts from policy coherence for development frameworks and policy content analysis to examine coherence in Nepal's climate and forest policies—and discusses the factors hindering effective implementation. The policies are analyzed at the horizontal/external level at three layers—motivation, measures, and planned implementation process. The paper finds that policies are more consistent on motivation level and adaptation measures, but are less coherent on implementation. The National Adaptation Programme of Action (NAPA) is more explicit in identifying institutions, organizations, roles and responsibilities, resource allocation (financial), and a monitoring and evaluation plan for climate change adaptation while other policies such as Climate Change Policy 2011, National Biodiversity Strategy and Action Plan 2014-2020, Forest Policy 2015, and Forest Sector Strategy 2016 have critical gaps in this area. This paper conclude that formulation of a policy, articulating targets, and mobilizing financial resources are in themselves not sufficient to effectively address climate change adaptation. Policy-based legislation is required, together with development of a supportive collaborative multi-stakeholder approach at different levels of governance, backed up by effective, collaborative monitoring and enforcement.
Squeezed-state quantum key distribution with a Rindler observer
NASA Astrophysics Data System (ADS)
Zhou, Jian; Shi, Ronghua; Guo, Ying
2018-03-01
Lengthening the maximum transmission distance of quantum key distribution plays a vital role in quantum information processing. In this paper, we propose a directional squeezed-state protocol with signals detected by a Rindler observer in the relativistic quantum field framework. We derive an analytical solution to the transmission problem of squeezed states from the inertial sender to the accelerated receiver. The variance of the involved signal mode is closer to optimality than that of the coherent-state-based protocol. Simulation results show that the proposed protocol has better performance than the coherent-state counterpart especially in terms of the maximal transmission distance.
Ip, David
2015-12-01
The current study evaluates whether the addition of low-level laser therapy into standard conventional physical therapy in elderly with bilateral symptomatic tri-compartmental knee arthritis can successfully postpone the need for joint replacement surgery. A prospective randomized cohort study of 100 consecutive unselected elderly patients with bilateral symptomatic knee arthritis with each knee randomized to receive either treatment protocol A consisting of conventional physical therapy or protocol B which is the same as protocol A with added low-level laser therapy. The mean follow-up was 6 years. Treatment failure was defined as breakthrough pain which necessitated joint replacement surgery. After a follow-up of 6 years, patients clearly benefited from treatment with protocol B as only one knee needed joint replacement surgery, while nine patients treated with protocol A needed surgery (p < 0.05). We conclude low-level laser therapy should be incorporated into standard conservative treatment protocol for symptomatic knee arthritis.
García-Patrón, Raúl; Pirandola, Stefano; Lloyd, Seth; Shapiro, Jeffrey H
2009-05-29
In this Letter we define a family of entanglement distribution protocols assisted by feedback classical communication that gives an operational interpretation to reverse coherent information, i.e., the symmetric counterpart of the well-known coherent information. This leads to the definition of a new entanglement distribution capacity that exceeds the unassisted capacity for some interesting channels.
Auto-Generated Semantic Processing Services
NASA Technical Reports Server (NTRS)
Davis, Rodney; Hupf, Greg
2009-01-01
Auto-Generated Semantic Processing (AGSP) Services is a suite of software tools for automated generation of other computer programs, denoted cross-platform semantic adapters, that support interoperability of computer-based communication systems that utilize a variety of both new and legacy communication software running in a variety of operating- system/computer-hardware combinations. AGSP has numerous potential uses in military, space-exploration, and other government applications as well as in commercial telecommunications. The cross-platform semantic adapters take advantage of common features of computer- based communication systems to enforce semantics, messaging protocols, and standards of processing of streams of binary data to ensure integrity of data and consistency of meaning among interoperating systems. The auto-generation aspect of AGSP Services reduces development time and effort by emphasizing specification and minimizing implementation: In effect, the design, building, and debugging of software for effecting conversions among complex communication protocols, custom device mappings, and unique data-manipulation algorithms is replaced with metadata specifications that map to an abstract platform-independent communications model. AGSP Services is modular and has been shown to be easily integrable into new and legacy NASA flight and ground communication systems.
Quantum key distribution using continuous-variable non-Gaussian states
NASA Astrophysics Data System (ADS)
Borelli, L. F. M.; Aguiar, L. S.; Roversi, J. A.; Vidiella-Barranco, A.
2016-02-01
In this work, we present a quantum key distribution protocol using continuous-variable non-Gaussian states, homodyne detection and post-selection. The employed signal states are the photon added then subtracted coherent states (PASCS) in which one photon is added and subsequently one photon is subtracted from the field. We analyze the performance of our protocol, compared with a coherent state-based protocol, for two different attacks that could be carried out by the eavesdropper (Eve). We calculate the secret key rate transmission in a lossy line for a superior channel (beam-splitter) attack, and we show that we may increase the secret key generation rate by using the non-Gaussian PASCS rather than coherent states. We also consider the simultaneous quadrature measurement (intercept-resend) attack, and we show that the efficiency of Eve's attack is substantially reduced if PASCS are used as signal states.
An adaptive deep-coupled GNSS/INS navigation system with hybrid pre-filter processing
NASA Astrophysics Data System (ADS)
Wu, Mouyan; Ding, Jicheng; Zhao, Lin; Kang, Yingyao; Luo, Zhibin
2018-02-01
The deep-coupling of a global navigation satellite system (GNSS) with an inertial navigation system (INS) can provide accurate and reliable navigation information. There are several kinds of deeply-coupled structures. These can be divided mainly into coherent and non-coherent pre-filter based structures, which have their own strong advantages and disadvantages, especially in accuracy and robustness. In this paper, the existing pre-filters of the deeply-coupled structures are analyzed and modified to improve them firstly. Then, an adaptive GNSS/INS deeply-coupled algorithm with hybrid pre-filters processing is proposed to combine the advantages of coherent and non-coherent structures. An adaptive hysteresis controller is designed to implement the hybrid pre-filters processing strategy. The simulation and vehicle test results show that the adaptive deeply-coupled algorithm with hybrid pre-filters processing can effectively improve navigation accuracy and robustness, especially in a GNSS-challenged environment.
Nonclassical light in interferometric measurements
NASA Technical Reports Server (NTRS)
Ansari, N. A.; Difiore, L.; Romano, R.; Solimeno, S.; Zaccaria, F.; Manko, Margarita A.; Manko, Vladimir I.
1995-01-01
It is shown that the even and odd coherent light and other nonclassical states of light like superposition of coherent states with different phases may replace the squeezed light in an interferometric gravitational wave detector to increase its sensitivity.
NASA Astrophysics Data System (ADS)
Raghava, Gudapati Naresh; Zhou, Longwen; Gong, Jiangbin
2017-08-01
In Thouless pump, the charge transport in a one-dimensional insulator over an adiabatic cycle is topologically quantized. For nonequilibrium initial states, however, interband coherence will induce a previously unknown contribution to Thouless pumping. Though not geometric in nature, this contribution is independent of the time scale of the pumping protocol. In this work, we perform a detailed analysis of our previous finding [H.L. Wang et al., Phys. Rev. B 91, 085420 (2015)] in an already available cold-atom setup. We show that initial states with interband coherence can be obtained via a quench of the system's Hamiltonian. Adiabatic pumping in the post-quench system are then examined both theoretically and numerically, in which the interband coherence is shown to play an important role and can hence be observed experimentally. By choosing adiabatic protocols with different switching-on rates, we also show that the contribution of interband coherence to adiabatic pumping can be tuned. It is further proposed that the interband coherence induced correction to Thouless pumping may be useful in capturing a topological phase transition point. All our results have direct experimental interests.
Experimental Quantum Randomness Processing Using Superconducting Qubits
NASA Astrophysics Data System (ADS)
Yuan, Xiao; Liu, Ke; Xu, Yuan; Wang, Weiting; Ma, Yuwei; Zhang, Fang; Yan, Zhaopeng; Vijay, R.; Sun, Luyan; Ma, Xiongfeng
2016-07-01
Coherently manipulating multipartite quantum correlations leads to remarkable advantages in quantum information processing. A fundamental question is whether such quantum advantages persist only by exploiting multipartite correlations, such as entanglement. Recently, Dale, Jennings, and Rudolph negated the question by showing that a randomness processing, quantum Bernoulli factory, using quantum coherence, is strictly more powerful than the one with classical mechanics. In this Letter, focusing on the same scenario, we propose a theoretical protocol that is classically impossible but can be implemented solely using quantum coherence without entanglement. We demonstrate the protocol by exploiting the high-fidelity quantum state preparation and measurement with a superconducting qubit in the circuit quantum electrodynamics architecture and a nearly quantum-limited parametric amplifier. Our experiment shows the advantage of using quantum coherence of a single qubit for information processing even when multipartite correlation is not present.
Lu, Chen D.; Lee, ByungKun; Schottenhamml, Julia; Maier, Andreas; Pugh, Edward N.; Fujimoto, James G.
2017-01-01
Purpose To examine outer retinal band changes after flash stimulus and subsequent dark adaptation with ultrahigh-resolution optical coherence tomography (UHR-OCT). Methods Five dark-adapted left eyes of five normal subjects were imaged with 3-μm axial-resolution UHR-OCT during 30 minutes of dark adaptation following 96%, 54%, 23%, and 0% full-field and 54% half-field rhodopsin bleach. We identified the ellipsoid zone inner segment/outer segment (EZ[IS/OS]), cone interdigitation zone (CIZ), rod interdigitation zone (RIZ), retinal pigment epithelium (RPE), and Bruch's membrane (BM) axial positions and generated two-dimensional thickness maps of the EZ(IS/OS) to the four bands. The average thickness over an area of the thickness map was compared against that of the dark-adapted baselines. The time-dependent thickness changes (photoresponses) were statistically compared against 0% bleach. Dark adaptometry was performed with the same bleaching protocol. Results The EZ(IS/OS)-CIZ photoresponse was significantly different at 96% (P < 0.0001) and 54% (P = 0.006) bleach. At all three bleaching levels, the EZ(IS/OS)-RIZ, -RPE, and -BM responses were significantly different (P < 0.0001). The EZ(IS/OS)-CIZ and EZ(IS/OS)-RIZ time courses were similar to the recovery of rod- and cone-mediated sensitivity, respectively, measured with dark adaptometry. The maximal EZ(IS/OS)-CIZ and EZ(IS/OS)-RIZ response magnitudes doubled from 54% to 96% bleach. Both EZ(IS/OS)-RPE and EZ(IS/OS)-BM responses resembled dampened oscillations that were graded in amplitude and duration with bleaching intensity. Half-field photoresponses were localized to the stimulated retina. Conclusions With noninvasive, near-infrared UHR-OCT, we characterized three distinct, spatially localized photoresponses in the outer retinal bands. These photoresponses have potential value as physical correlates of photoreceptor function. PMID:28898357
Cache Coherence Protocols for Large-Scale Multiprocessors
1990-09-01
and is compared with the other protocols for large-scale machines. In later analysis, this coherence method is designated by the acronym OCPD , which...private read misses 2 6 6 ( OCPD ) private write misses 2 6 6 Table 4.2: Transaction Types and Costs. the performance of the memory system. These...methodologies. Figure 4-2 shows the processor utiliza- tions of the Weather program, with special code in the dyn-nic post-mortem sched- 94 OCPD DlrINB
Lateral Coherence and Mixing in the Coastal Ocean: Adaptive Sampling using Gliders
2011-09-30
Coherence and Mixing in the Coastal Ocean: Adaptive Sampling using Gliders R. Kipp Shearman Jonathan D. Nash James N. Moum John A. Barth College of...These structures evolve yet are often persistent on O (3 day) timescales, so are ideally suited to be adaptively sampled by autonomous gliders that...processes driving lateral dispersion, we plan to deploy 4 AUV gliders to perform intensive, adaptive surveys. Newly-enhanced to measure turbulent mixing
Phase estimation of coherent states with a noiseless linear amplifier
NASA Astrophysics Data System (ADS)
Assad, Syed M.; Bradshaw, Mark; Lam, Ping Koy
Amplification of quantum states is inevitably accompanied with the introduction of noise at the output. For protocols that are probabilistic with heralded success, noiseless linear amplification in theory may still be possible. When the protocol is successful, it can lead to an output that is a noiselessly amplified copy of the input. When the protocol is unsuccessful, the output state is degraded and is usually discarded. Probabilistic protocols may improve the performance of some quantum information protocols, but not for metrology if the whole statistics is taken into consideration. We calculate the precision limits on estimating the phase of coherent states using a noiseless linear amplifier by computing its quantum Fisher information and we show that on average, the noiseless linear amplifier does not improve the phase estimate. We also discuss the case where abstention from measurement can reduce the cost for estimation.
No information flow using statistical fluctuations and quantum cryptography
NASA Astrophysics Data System (ADS)
Larsson, Jan-Åke
2004-04-01
The communication protocol of Home and Whitaker [
Two-dimensional distributed-phase-reference protocol for quantum key distribution
NASA Astrophysics Data System (ADS)
Bacco, Davide; Christensen, Jesper Bjerge; Castaneda, Mario A. Usuga; Ding, Yunhong; Forchhammer, Søren; Rottwitt, Karsten; Oxenløwe, Leif Katsuo
2016-12-01
Quantum key distribution (QKD) and quantum communication enable the secure exchange of information between remote parties. Currently, the distributed-phase-reference (DPR) protocols, which are based on weak coherent pulses, are among the most practical solutions for long-range QKD. During the last 10 years, long-distance fiber-based DPR systems have been successfully demonstrated, although fundamental obstacles such as intrinsic channel losses limit their performance. Here, we introduce the first two-dimensional DPR-QKD protocol in which information is encoded in the time and phase of weak coherent pulses. The ability of extracting two bits of information per detection event, enables a higher secret key rate in specific realistic network scenarios. Moreover, despite the use of more dimensions, the proposed protocol remains simple, practical, and fully integrable.
Two-dimensional distributed-phase-reference protocol for quantum key distribution.
Bacco, Davide; Christensen, Jesper Bjerge; Castaneda, Mario A Usuga; Ding, Yunhong; Forchhammer, Søren; Rottwitt, Karsten; Oxenløwe, Leif Katsuo
2016-12-22
Quantum key distribution (QKD) and quantum communication enable the secure exchange of information between remote parties. Currently, the distributed-phase-reference (DPR) protocols, which are based on weak coherent pulses, are among the most practical solutions for long-range QKD. During the last 10 years, long-distance fiber-based DPR systems have been successfully demonstrated, although fundamental obstacles such as intrinsic channel losses limit their performance. Here, we introduce the first two-dimensional DPR-QKD protocol in which information is encoded in the time and phase of weak coherent pulses. The ability of extracting two bits of information per detection event, enables a higher secret key rate in specific realistic network scenarios. Moreover, despite the use of more dimensions, the proposed protocol remains simple, practical, and fully integrable.
Two-dimensional distributed-phase-reference protocol for quantum key distribution
Bacco, Davide; Christensen, Jesper Bjerge; Castaneda, Mario A. Usuga; Ding, Yunhong; Forchhammer, Søren; Rottwitt, Karsten; Oxenløwe, Leif Katsuo
2016-01-01
Quantum key distribution (QKD) and quantum communication enable the secure exchange of information between remote parties. Currently, the distributed-phase-reference (DPR) protocols, which are based on weak coherent pulses, are among the most practical solutions for long-range QKD. During the last 10 years, long-distance fiber-based DPR systems have been successfully demonstrated, although fundamental obstacles such as intrinsic channel losses limit their performance. Here, we introduce the first two-dimensional DPR-QKD protocol in which information is encoded in the time and phase of weak coherent pulses. The ability of extracting two bits of information per detection event, enables a higher secret key rate in specific realistic network scenarios. Moreover, despite the use of more dimensions, the proposed protocol remains simple, practical, and fully integrable. PMID:28004821
NASA Astrophysics Data System (ADS)
Aarthi, G.; Ramachandra Reddy, G.
2018-03-01
In our paper, the impact of adaptive transmission schemes: (i) optimal rate adaptation (ORA) and (ii) channel inversion with fixed rate (CIFR) on the average spectral efficiency (ASE) are explored for free-space optical (FSO) communications with On-Off Keying (OOK), Polarization shift keying (POLSK), and Coherent optical wireless communication (Coherent OWC) systems under different turbulence regimes. Further to enhance the ASE we have incorporated aperture averaging effects along with the above adaptive schemes. The results indicate that ORA adaptation scheme has the advantage of improving the ASE performance compared with CIFR under moderate and strong turbulence regime. The coherent OWC system with ORA excels the other modulation schemes and could achieve ASE performance of 49.8 bits/s/Hz at the average transmitted optical power of 6 dBm under strong turbulence. By adding aperture averaging effect we could achieve an ASE of 50.5 bits/s/Hz under the same conditions. This makes ORA with Coherent OWC modulation as a favorable candidate for improving the ASE of the FSO communication system.
Coherence in quantum estimation
NASA Astrophysics Data System (ADS)
Giorda, Paolo; Allegra, Michele
2018-01-01
The geometry of quantum states provides a unifying framework for estimation processes based on quantum probes, and it establishes the ultimate bounds of the achievable precision. We show a relation between the statistical distance between infinitesimally close quantum states and the second order variation of the coherence of the optimal measurement basis with respect to the state of the probe. In quantum phase estimation protocols, this leads to propose coherence as the relevant resource that one has to engineer and control to optimize the estimation precision. Furthermore, the main object of the theory i.e. the symmetric logarithmic derivative, in many cases allows one to identify a proper factorization of the whole Hilbert space in two subsystems. The factorization allows one to discuss the role of coherence versus correlations in estimation protocols; to show how certain estimation processes can be completely or effectively described within a single-qubit subsystem; and to derive lower bounds for the scaling of the estimation precision with the number of probes used. We illustrate how the framework works for both noiseless and noisy estimation procedures, in particular those based on multi-qubit GHZ-states. Finally we succinctly analyze estimation protocols based on zero-temperature critical behavior. We identify the coherence that is at the heart of their efficiency, and we show how it exhibits the non-analyticities and scaling behavior proper of a large class of quantum phase transitions.
Security proof of continuous-variable quantum key distribution using three coherent states
NASA Astrophysics Data System (ADS)
Brádler, Kamil; Weedbrook, Christian
2018-02-01
We introduce a ternary quantum key distribution (QKD) protocol and asymptotic security proof based on three coherent states and homodyne detection. Previous work had considered the binary case of two coherent states and here we nontrivially extend this to three. Our motivation is to leverage the practical benefits of both discrete and continuous (Gaussian) encoding schemes creating a best-of-both-worlds approach; namely, the postprocessing of discrete encodings and the hardware benefits of continuous ones. We present a thorough and detailed security proof in the limit of infinite signal states which allows us to lower bound the secret key rate. We calculate this is in the context of collective eavesdropping attacks and reverse reconciliation postprocessing. Finally, we compare the ternary coherent state protocol to other well-known QKD schemes (and fundamental repeaterless limits) in terms of secret key rates and loss.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrick, G.K.; Frizzell, R.T.; Cherrington, A.D.
In the 7-days fasted conscious dog, unlike the postabsorptive conscious dog, somatostatin infusion results in decreased levels of nonesterified fatty acids (NEFA) and increased glucose utilization (R{sub d}) even when insulin and glucagon levels are held constant. The aim of this study was to determine whether NEFA replacement in such animals would prevent the increase in R{sub d}. In each of three protocols there was an 80-min tracer equilibration period, a 40-min basal period, and a 3-h test period. During the test period in the first protocol saline was infused, in the second protocol somatostatin was infused along with intraportalmore » replacement amounts of insulin and glucagon (hormone replacement), while in the third protocol somatostatin plus the pancreatic hormones were infused with concurrent heparin plus Intralipid infusion. Glucose turnover was assessed using (3-{sup 3}H)glucose. The peripheral levels of insulin, glucagon, and glucose were similar and constant in all three protocols; however, during somatostatin infusion, exogenous glucose infusion was necessary to maintain euglycemia. The NEFA level was constant during saline infusion and decreased in the hormone replacement protocol. In the hormone replacement plus NEFA protocol, the NEFA level did not change during the first 90-min period and then increased during the second 90-min period. After a prolonged fast in the dog, (1) somatostatin directly or indirectly inhibits adipose tissue NEFA release and causes a decrease in the plasma NEFA level, and (2) this decrease in the NEFA level causes an increase in R{sub d}.« less
NASA Astrophysics Data System (ADS)
Dutta, Shovan; Mueller, Erich J.
2018-03-01
We present and analyze a protocol in which polaritons in a noncoplanar optical cavity form fractional quantum Hall states. We model the formation of these states and present techniques for subsequently creating anyons and measuring their fractional exchange statistics. In this protocol, we use a rapid adiabatic passage scheme to sequentially add polaritons to the system, such that the system is coherently driven from n - to (n +1 )-particle Laughlin states. Quasiholes are created by slowly moving local pinning potentials in from outside the cloud. They are braided by dragging the pinning centers around one another, and the resulting phases are measured interferometrically. The most technically challenging issue with implementing our procedure is that maintaining adiabaticity and coherence requires that the two-particle interaction energy V0 be sufficiently large compared to the single-polariton decay rate γ , V0/γ ≫10 N2lnN , where N is the number of particles in the target state. While this condition is very demanding for present-day experiments where V0/γ ˜50 , our protocol presents a significant advance over the existing protocols in the literature.
NASA Astrophysics Data System (ADS)
Gong, Yubing; Xie, Huijuan
2017-09-01
Using spike-timing-dependent plasticity (STDP), we study the effect of channel noise on temporal coherence and synchronization of adaptive scale-free Hodgkin-Huxley neuronal networks with time delay. It is found that the spiking regularity and spatial synchronization of the neurons intermittently increase and decrease as channel noise intensity is varied, exhibiting transitions of temporal coherence and synchronization. Moreover, this phenomenon depends on time delay, STDP, and network average degree. As time delay increases, the phenomenon is weakened, however, there are optimal STDP and network average degree by which the phenomenon becomes strongest. These results show that channel noise can intermittently enhance the temporal coherence and synchronization of the delayed adaptive neuronal networks. These findings provide a new insight into channel noise for the information processing and transmission in neural systems.
Labriola, Leanne T; Legarreta, Andrew D; Legarreta, John E; Nadler, Zach; Gallagher, Denise; Hammer, Daniel X; Ferguson, R Daniel; Iftimia, Nicusor; Wollstein, Gadi; Schuman, Joel S
2016-01-01
To elucidate the location of pathological changes in multiple evanescent white dot syndrome (MEWDS) with the use of multimodal adaptive optics (AO) imaging. A 5-year observational case study of a 24-year-old female with recurrent MEWDS. Full examination included history, Snellen chart visual acuity, pupil assessment, intraocular pressures, slit lamp evaluation, dilated fundoscopic exam, imaging with Fourier-domain optical coherence tomography (FD-OCT), blue-light fundus autofluorescence (FAF), fundus photography, fluorescein angiography, and adaptive-optics optical coherence tomography. Three distinct acute episodes of MEWDS occurred during the period of follow-up. Fourier-domain optical coherence tomography and adaptive-optics imaging showed disturbance in the photoreceptor outer segments (PR OS) in the posterior pole with each flare. The degree of disturbance at the photoreceptor level corresponded to size and extent of the visual field changes. All findings were transient with delineation of the photoreceptor recovery from the outer edges of the lesion inward. Hyperautofluorescence was seen during acute flares. Increase in choroidal thickness did occur with each active flare but resolved. Although changes in the choroid and RPE can be observed in MEWDS, Fourier-domain optical coherence tomography, and multimodal adaptive optics imaging localized the visually significant changes seen in this disease at the level of the photoreceptors. These transient retinal changes specifically occur at the level of the inner segment ellipsoid and OS/RPE line. En face optical coherence tomography imaging provides a detailed, yet noninvasive method for following the convalescence of MEWDS and provides insight into the structural and functional relationship of this transient inflammatory retinal disease.
Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging
Cua, Michelle; Wahl, Daniel J.; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J.; Jian, Yifan; Sarunic, Marinko V.
2016-01-01
Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems. PMID:27599635
Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.
Cua, Michelle; Wahl, Daniel J; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J; Jian, Yifan; Sarunic, Marinko V
2016-09-07
Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems.
No information flow using statistical fluctuations and quantum cryptography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsson, Jan-Aake
2004-04-01
The communication protocol of Home and Whitaker [Phys. Rev. A 67, 022306 (2003)] is examined in some detail, and found to work equally well using a separable state. The protocol is in fact completely classical, based on postselection of suitable experimental runs. The quantum-cryptography protocol proposed in the same publication is also examined, and this protocol uses entanglement, a strictly quantum property of the system. An individual eavesdropping attack on each qubit pair would be detected by the security test proposed in the mentioned paper. However, the key is provided by groups of qubits, and there exists a coherent attack,more » internal to these groups, that will go unnoticed in that security test. A modified test is proposed here that will ensure security, even against such a coherent attack.« less
Chen, Mo; Liu, Chao; Rui, Daoman; Xian, Hao
2018-02-19
Although there is an urgent demand, it is still a tremendous challenge to use the coherent optical communication technology to the satellite-to-ground data transmission system especially at large zenith angle due to the influence of atmospheric turbulence. Adaptive optics (AO) is a considerable scheme to solve the problem. In this paper, we integrate the adaptive optics (AO) to the coherent laser communications and the performances of mixing efficiency as well as bit-error-rate (BER) at different zenith angles are studied. The analytical results show that the increasing of zenith angle can severely decrease the performances of the coherent detection, and increase the BER to higher than 10 -3 , which is unacceptable. The simulative results of coherent detection with AO compensation indicate that the larger mixing efficiency and lower BER can be performed by the coherent receiver with a high-mode AO compensation. The experiment of correcting the atmospheric turbulence wavefront distortion using a 249-element AO system at large zenith angles is carried out. The result demonstrates that the AO system has a significant improvement on satellite-to-ground coherent optical communication system at large zenith angle. It also indicates that the 249-element AO system can only meet the needs of coherent communication systems at zenith angle smaller than 65̊ for the 1.8m telescope under weak and moderate turbulence.
Analysis of steps adapted protocol in cardiac rehabilitation in the hospital phase
Winkelmann, Eliane Roseli; Dallazen, Fernanda; Bronzatti, Angela Beerbaum Steinke; Lorenzoni, Juliara Cristina Werner; Windmöller, Pollyana
2015-01-01
Objective To analyze a cardiac rehabilitation adapted protocol in physical therapy during the postoperative hospital phase of cardiac surgery in a service of high complexity, in aspects regarded to complications and mortality prevalence and hospitalization days. Methods This is an observational cross-sectional, retrospective and analytical study performed by investigating 99 patients who underwent cardiac surgery for coronary artery bypass graft, heart valve replacement or a combination of both. Step program adapted for rehabilitation after cardiac surgery was analyzed under the command of the physiotherapy professional team. Results In average, a patient stays for two days in the Intensive Care Unit and three to four days in the hospital room, totalizing six days of hospitalization. Fatalities occurred in a higher percentage during hospitalization (5.1%) and up to two years period (8.6%) when compared to 30 days after hospital discharge (1.1%). Among the postoperative complications, the hemodynamic (63.4%) and respiratory (42.6%) were the most prevalent. 36-42% of complications occurred between the immediate postoperative period and the second postoperative day. The hospital discharge started from the fifth postoperative day. We can observe that in each following day, the patients are evolving in achieving the Steps, where Step 3 was the most used during the rehabilitation phase I. Conclusion This evolution program by steps can to guide the physical rehabilitation at the hospital in patients after cardiac surgery. PMID:25859866
Analysis of steps adapted protocol in cardiac rehabilitation in the hospital phase.
Winkelmann, Eliane Roseli; Dallazen, Fernanda; Bronzatti, Angela Beerbaum Steinke; Lorenzoni, Juliara Cristina Werner; Windmöller, Pollyana
2015-01-01
To analyze a cardiac rehabilitation adapted protocol in physical therapy during the postoperative hospital phase of cardiac surgery in a service of high complexity, in aspects regarded to complications and mortality prevalence and hospitalization days. This is an observational cross-sectional, retrospective and analytical study performed by investigating 99 patients who underwent cardiac surgery for coronary artery bypass graft, heart valve replacement or a combination of both. Step program adapted for rehabilitation after cardiac surgery was analyzed under the command of the physiotherapy professional team. In average, a patient stays for two days in the Intensive Care Unit and three to four days in the hospital room, totalizing six days of hospitalization. Fatalities occurred in a higher percentage during hospitalization (5.1%) and up to two years period (8.6%) when compared to 30 days after hospital discharge (1.1%). Among the postoperative complications, the hemodynamic (63.4%) and respiratory (42.6%) were the most prevalent. 36-42% of complications occurred between the immediate postoperative period and the second postoperative day. The hospital discharge started from the fifth postoperative day. We can observe that in each following day, the patients are evolving in achieving the Steps, where Step 3 was the most used during the rehabilitation phase I. This evolution program by steps can to guide the physical rehabilitation at the hospital in patients after cardiac surgery.
Families of quantum fingerprinting protocols
NASA Astrophysics Data System (ADS)
Lovitz, Benjamin; Lütkenhaus, Norbert
2018-03-01
We introduce several families of quantum fingerprinting protocols to evaluate the equality function on two n -bit strings in the simultaneous message passing model. The original quantum fingerprinting protocol uses a tensor product of a small number of O (logn ) -qubit high-dimensional signals [H. Buhrman et al., Phys. Rev. Lett. 87, 167902 (2001), 10.1103/PhysRevLett.87.167902], whereas a recently proposed optical protocol uses a tensor product of O (n ) single-qubit signals, while maintaining the O (logn ) information leakage of the original protocol [J. M. Arazola and N. Lütkenhaus, Phys. Rev. A 89, 062305 (2014), 10.1103/PhysRevA.89.062305]. We find a family of protocols which interpolate between the original and optical protocols while maintaining the O (logn ) information leakage, thus demonstrating a tradeoff between the number of signals sent and the dimension of each signal. There has been interest in experimental realization of the recently proposed optical protocol using coherent states [F. Xu et al., Nat. Commun. 6, 8735 (2015), 10.1038/ncomms9735; J.-Y. Guan et al., Phys. Rev. Lett. 116, 240502 (2016), 10.1103/PhysRevLett.116.240502], but as the required number of laser pulses grows linearly with the input size n , eventual challenges for the long-time stability of experimental setups arise. We find a coherent state protocol which reduces the number of signals by a factor 1/2 while also reducing the information leakage. Our reduction makes use of a simple modulation scheme in optical phase space, and we find that more complex modulation schemes are not advantageous. Using a similar technique, we improve a recently proposed coherent state protocol for evaluating the Euclidean distance between two real unit vectors [N. Kumar et al., Phys. Rev. A 95, 032337 (2017), 10.1103/PhysRevA.95.032337] by reducing the number of signals by a factor 1/2 and also reducing the information leakage.
Cao, Cong; Wang, Chuan; He, Ling-Yan; Zhang, Ru
2013-02-25
We investigate an atomic entanglement purification protocol based on the coherent state input-output process by working in low-Q cavity in the atom-cavity intermediate coupling region. The information of entangled states are encoded in three-level configured single atoms confined in separated one-side optical micro-cavities. Using the coherent state input-output process, we design a two-qubit parity check module (PCM), which allows the quantum nondemolition measurement for the atomic qubits, and show its use for remote parities to distill a high-fidelity atomic entangled ensemble from an initial mixed state ensemble nonlocally. The proposed scheme can further be used for unknown atomic states entanglement concentration. Also by exploiting the PCM, we describe a modified scheme for atomic entanglement concentration by introducing ancillary single atoms. As the coherent state input-output process is robust and scalable in realistic applications, and the detection in the PCM is based on the intensity of outgoing coherent state, the present protocols may be widely used in large-scaled and solid-based quantum repeater and quantum information processing.
Risks and benefits of citrate anticoagulation for continuous renal replacement therapy.
Shum, H P; Yan, W W; Chan, T M
2015-04-01
Heparin, despite its significant side-effects, is the most commonly used anticoagulant for continuous renal replacement therapy in critical care setting. In recent years, citrate has gained much popularity by improving continuous renal replacement therapy circuit survival and decreasing blood transfusion requirements. However, its complex metabolic consequences warrant modification in the design of the citrate-based continuous renal replacement therapy protocol. With thorough understanding of the therapeutic mechanism of citrate, a simple and practicable protocol can be devised. Citrate-based continuous renal replacement therapy can be safely and widely used in the clinical setting with appropriate clinical staff training.
An Adaptive Insertion and Promotion Policy for Partitioned Shared Caches
NASA Astrophysics Data System (ADS)
Mahrom, Norfadila; Liebelt, Michael; Raof, Rafikha Aliana A.; Daud, Shuhaizar; Hafizah Ghazali, Nur
2018-03-01
Cache replacement policies in chip multiprocessors (CMP) have been investigated extensively and proven able to enhance shared cache management. However, competition among multiple processors executing different threads that require simultaneous access to a shared memory may cause cache contention and memory coherence problems on the chip. These issues also exist due to some drawbacks of the commonly used Least Recently Used (LRU) policy employed in multiprocessor systems, which are because of the cache lines residing in the cache longer than required. In image processing analysis of for example extra pulmonary tuberculosis (TB), an accurate diagnosis for tissue specimen is required. Therefore, a fast and reliable shared memory management system to execute algorithms for processing vast amount of specimen image is needed. In this paper, the effects of the cache replacement policy in a partitioned shared cache are investigated. The goal is to quantify whether better performance can be achieved by using less complex replacement strategies. This paper proposes a Middle Insertion 2 Positions Promotion (MI2PP) policy to eliminate cache misses that could adversely affect the access patterns and the throughput of the processors in the system. The policy employs a static predefined insertion point, near distance promotion, and the concept of ownership in the eviction policy to effectively improve cache thrashing and to avoid resource stealing among the processors.
Rational modulation of neuronal processing with applied electric fields.
Bikson, Marom; Radman, Thomas; Datta, Abhishek
2006-01-01
Traditional approaches to electrical stimulation, using trains of supra-threshold pulses to trigger action potentials, may be replaced or augmented by using 'rational' sub-threshold stimulation protocols that incorporate knowledge of single neuron geometry, inhomogeneous tissue properties, and nervous system information coding. Sub-threshold stimulation, at intensities (well) below those sufficient to trigger action potentials, may none-the-less exert a profound effect on brain function through modulation of concomitant neuronal activity. For example, small DC fields may coherently polarize a network of neurons and thus modulate the simultaneous processing of afferent synaptic input as well as resulting changes in synaptic plasticity. Through 'activity-dependent plasticity', sub-threshold fields may allow specific targeting of pathological networks and are thus particularly suitable to overcome the poor anatomical focus of noninvasive (transcranial) electrical stimulation. Additional approaches to improve targeting in transcranial stimulation using novel electrode configurations are also introduced.
Pilot-aided feedforward data recovery in optical coherent communications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Bing
2017-09-19
A method and a system for pilot-aided feedforward data recovery are provided. The method and system include a receiver including a strong local oscillator operating in a free running mode independent of a signal light source. The phase relation between the signal light source and the local oscillator source is determined based on quadrature measurements on pilot pulses from the signal light source. Using the above phase relation, information encoded in an incoming signal can be recovered, optionally for use in communication with classical coherent communication protocols and quantum communication protocols.
Atmospheric free-space coherent optical communications with adaptive optics
NASA Astrophysics Data System (ADS)
Ting, Chueh; Zhang, Chengyu; Yang, Zikai
2017-02-01
Free-space coherent optical communications have a potential application to offer last mile bottleneck solution in future local area networks (LAN) because of their information carrier, information security and license-free status. Coherent optical communication systems using orthogonal frequency division multiplexing (OFDM) digital modulation are successfully demonstrated in a long-haul tens Giga bits via optical fiber, but they are not yet available in free space due to atmospheric turbulence-induced channel fading. Adaptive optics is recognized as a promising technology to mitigate the effects of atmospheric turbulence in free-space optics. In this paper, a free-space coherent optical communication system using an OFDM digital modulation scheme and adaptive optics (FSO OFDM AO) is proposed, a Gamma-Gamma distribution statistical channel fading model for the FSO OFDM AO system is examined, and FSO OFDM AO system performance is evaluated in terms of bit error rate (BER) versus various propagation distances.
The Simulation of Read-time Scalable Coherent Interface
NASA Technical Reports Server (NTRS)
Li, Qiang; Grant, Terry; Grover, Radhika S.
1997-01-01
Scalable Coherent Interface (SCI, IEEE/ANSI Std 1596-1992) (SCI1, SCI2) is a high performance interconnect for shared memory multiprocessor systems. In this project we investigate an SCI Real Time Protocols (RTSCI1) using Directed Flow Control Symbols. We studied the issues of efficient generation of control symbols, and created a simulation model of the protocol on a ring-based SCI system. This report presents the results of the study. The project has been implemented using SES/Workbench. The details that follow encompass aspects of both SCI and Flow Control Protocols, as well as the effect of realistic client/server processing delay. The report is organized as follows. Section 2 provides a description of the simulation model. Section 3 describes the protocol implementation details. The next three sections of the report elaborate on the workload, results and conclusions. Appended to the report is a description of the tool, SES/Workbench, used in our simulation, and internal details of our implementation of the protocol.
Quantum cryptography as a retrodiction problem.
Werner, A H; Franz, T; Werner, R F
2009-11-27
We propose a quantum key distribution protocol based on a quantum retrodiction protocol, known as the Mean King problem. The protocol uses a two way quantum channel. We show security against coherent attacks in a transmission-error free scenario, even if Eve is allowed to attack both transmissions. This establishes a connection between retrodiction and key distribution.
Nakahara, Takehiro; Jinzaki, Masahiro; Niwamae, Nogiku; Saito, Yuuichirou; Arai, Masashi; Tsushima, Yoshito; Kuribayashi, Sachio; Kurabayashi, Masahiko
2014-01-01
Despite the improvement of cardiac CT, right heart visualization remains challenging. We herein describe a new method, called the time-adjusted gradual replacement injection protocol. The aim of this study was to compare this protocol with the split-bolus injection protocol. Fifty-two patients who had undergone dual-source cardiac CT were retrospectively recruited. Twenty-six patients were injected by using the split-bolus injection protocol, and 26 patients were injected by using the time-adjusted gradual replacement injection protocol. For this method, we injected contrast medium for 10 seconds at a flow rate of 0.07 × body weight mL/s, then gradually replaced the contrast material with saline until 2 seconds before finishing the scans. The CT attenuation was measured in 4 chambers, the aorta, and the coronary arteries. The visualization of the anatomic structures and the occurrence and severity of streak artifacts were scored for the cardiac structures in the heart. For the analyses, either Welch t-test or Student t-test was performed. In the right heart, the CT values and visualization scores were significantly higher in the time-adjusted replacement injection group than in the split-bolus injection group, whereas the artifact scores were comparable between the 2 groups. The CT values, visualization scores, and artifact scores of the left heart were not significantly different between the 2 groups. In this study, the time-adjusted gradual replacement injection protocol provided excellent attenuation for visualization of the right heart. This method may help to accurately evaluate the right cardiac anatomy and thereby identify any potential diseases. Copyright © 2014 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Qi, Bing; Lougovski, Pavel; Pooser, Raphael; Grice, Warren; Bobrek, Miljko
2015-10-01
Continuous-variable quantum key distribution (CV-QKD) protocols based on coherent detection have been studied extensively in both theory and experiment. In all the existing implementations of CV-QKD, both the quantum signal and the local oscillator (LO) are generated from the same laser and propagate through the insecure quantum channel. This arrangement may open security loopholes and limit the potential applications of CV-QKD. In this paper, we propose and demonstrate a pilot-aided feedforward data recovery scheme that enables reliable coherent detection using a "locally" generated LO. Using two independent commercial laser sources and a spool of 25-km optical fiber, we construct a coherent communication system. The variance of the phase noise introduced by the proposed scheme is measured to be 0.04 (rad2 ), which is small enough to enable secure key distribution. This technology also opens the door for other quantum communication protocols, such as the recently proposed measurement-device-independent CV-QKD, where independent light sources are employed by different users.
La-CTP: Loop-Aware Routing for Energy-Harvesting Wireless Sensor Networks.
Sun, Guodong; Shang, Xinna; Zuo, Yan
2018-02-02
In emerging energy-harvesting wireless sensor networks (EH-WSN), the sensor nodes can harvest environmental energy to drive their operation, releasing the user's burden in terms of frequent battery replacement, and even enabling perpetual sensing systems. In EH-WSN applications, usually, the node in energy-harvesting or recharging state has to stop working until it completes the energy replenishment. However, such temporary departures of recharging nodes severely impact the packet routing, and one immediate result is the routing loop problem. Controlling loops in connectivity-intermittent EH-WSN in an efficient way is a big challenge in practice, and so far, users still lack of effective and practicable routing protocols with loop handling. Based on the Collection Tree Protocol (CTP) widely used in traditional wireless sensor networks, this paper proposes a loop-aware routing protocol for real-world EH-WSNs, called La-CTP, which involves a new parent updating metric and a proactive, adaptive beaconing scheme to effectively suppress the occurrence of loops and unlock unavoidable loops, respectively. We constructed a 100-node testbed to evaluate La-CTP, and the experimental results showed its efficacy and efficiency.
NASA Astrophysics Data System (ADS)
Devetak, Igor; Harrow, Aram W.; Winter, Andreas
2004-12-01
We introduce three new quantum protocols involving noisy quantum channels and entangled states, and relate them operationally and conceptually with four well-known old protocols. Two of the new protocols (the mother and father) can generate the other five “child” protocols by direct application of teleportation and superdense coding, and can be derived in turn by making the old protocols “coherent.” This gives very simple proofs for two famous old protocols (the hashing inequality and quantum channel capacity) and provides the basis for optimal trade-off curves in several quantum information processing tasks.
Brayda, Luca; Campus, Claudio; Memeo, Mariacarla; Lucagrossi, Laura
2015-01-01
Tactile maps are efficient tools to improve spatial understanding and mobility skills of visually impaired people. Their limited adaptability can be compensated with haptic devices which display graphical information, but their assessment is frequently limited to performance-based metrics only which can hide potential spatial abilities in O&M protocols. We assess a low-tech tactile mouse able to deliver three-dimensional content considering how performance, mental workload, behavior, and anxiety status vary with task difficulty and gender in congenitally blind, late blind, and sighted subjects. Results show that task difficulty coherently modulates the efficiency and difficulty to build mental maps, regardless of visual experience. Although exhibiting attitudes that were similar and gender-independent, the females had lower performance and higher cognitive load, especially when congenitally blind. All groups showed a significant decrease in anxiety after using the device. Tactile graphics with our device seems therefore to be applicable with different visual experiences, with no negative emotional consequences of mentally demanding spatial tasks. Going beyond performance-based assessment, our methodology can help with better targeting technological solutions in orientation and mobility protocols.
Quantum cryptography without switching.
Weedbrook, Christian; Lance, Andrew M; Bowen, Warwick P; Symul, Thomas; Ralph, Timothy C; Lam, Ping Koy
2004-10-22
We propose a new coherent state quantum key distribution protocol that eliminates the need to randomly switch between measurement bases. This protocol provides significantly higher secret key rates with increased bandwidths than previous schemes that only make single quadrature measurements. It also offers the further advantage of simplicity compared to all previous protocols which, to date, have relied on switching.
On the role of dealing with quantum coherence in amplitude amplification
NASA Astrophysics Data System (ADS)
Rastegin, Alexey E.
2018-07-01
Amplitude amplification is one of primary tools in building algorithms for quantum computers. This technique generalizes key ideas of the Grover search algorithm. Potentially useful modifications are connected with changing phases in the rotation operations and replacing the intermediate Hadamard transform with arbitrary unitary one. In addition, arbitrary initial distribution of the amplitudes may be prepared. We examine trade-off relations between measures of quantum coherence and the success probability in amplitude amplification processes. As measures of coherence, the geometric coherence and the relative entropy of coherence are considered. In terms of the relative entropy of coherence, complementarity relations with the success probability seem to be the most expository. The general relations presented are illustrated within several model scenarios of amplitude amplification processes.
NASA Astrophysics Data System (ADS)
Derkach, Ivan D.; Peuntinger, Christian; Ruppert, László; Heim, Bettina; Gunthner, Kevin; Usenko, Vladyslav C.; Elser, Dominique; Marquardt, Christoph; Filip, Radim; Leuchs, Gerd
2016-10-01
Continuous-variable quantum key distribution is a practical application of quantum information theory that is aimed at generation of secret cryptographic key between two remote trusted parties and that uses multi-photon quantum states as carriers of key bits. Remote parties share the secret key via a quantum channel, that presumably is under control of of an eavesdropper, and which properties must be taken into account in the security analysis. Well-studied fiber-optical quantum channels commonly possess stable transmittance and low noise levels, while free-space channels represent a simpler, less demanding and more flexible alternative, but suffer from atmospheric effects such as turbulence that in particular causes a non-uniform transmittance distribution referred to as fading. Nonetheless free-space channels, providing an unobstructed line-of-sight, are more apt for short, mid-range and potentially long-range (using satellites) communication and will play an important role in the future development and implementation of QKD networks. It was previously theoretically shown that coherent-state CV QKD should be in principle possible to implement over a free-space fading channel, but strong transmittance fluctuations result in the significant modulation-dependent channel excess noise. In this regime the post-selection of highly transmitting sub-channels may be needed, which can even restore the security of the protocol in the strongly turbulent channels. We now report the first proof-of-principle experimental test of coherent state CV QKD protocol using different levels Gaussian modulation over a mid-range (1.6-kilometer long) free-space atmospheric quantum channel. The transmittance of the link was characterized using intensity measurements for the reference but channel estimation using the modulated coherent states was also studied. We consider security against Gaussian collective attacks, that were shown to be optimal against CV QKD protocols . We assumed a general entangling cloner collective attack (modeled using data obtained from the state measurement results on both trusted sides of the protocol), that allows to purify the noise added in the quantum channel . Our security analysis of coherent-state protocol also took into account the effect of imperfect channel estimation, limited post-processing efficiency and finite data ensemble size on the performance of the protocol. In this regime we observe the positive key rate even without the need of applying post-selection. We show the positive improvement of the key rate with increase of the modulation variance, still remaining low enough to tolerate the transmittance fluctuations. The obtained results show that coherent-state CV QKD protocol that uses real free-space atmospheric channel can withstand negative influence of transmittance fluctuations, limited post-processing efficiency, imperfect channel estimation and other finite-size effects, and be successfully implemented. Our result paves the way to the full-scale implementation of the CV QKD in real free-space channels at mid-range distances.
Adaptive semantic tag mining from heterogeneous clinical research texts.
Hao, T; Weng, C
2015-01-01
To develop an adaptive approach to mine frequent semantic tags (FSTs) from heterogeneous clinical research texts. We develop a "plug-n-play" framework that integrates replaceable unsupervised kernel algorithms with formatting, functional, and utility wrappers for FST mining. Temporal information identification and semantic equivalence detection were two example functional wrappers. We first compared this approach's recall and efficiency for mining FSTs from ClinicalTrials.gov to that of a recently published tag-mining algorithm. Then we assessed this approach's adaptability to two other types of clinical research texts: clinical data requests and clinical trial protocols, by comparing the prevalence trends of FSTs across three texts. Our approach increased the average recall and speed by 12.8% and 47.02% respectively upon the baseline when mining FSTs from ClinicalTrials.gov, and maintained an overlap in relevant FSTs with the base- line ranging between 76.9% and 100% for varying FST frequency thresholds. The FSTs saturated when the data size reached 200 documents. Consistent trends in the prevalence of FST were observed across the three texts as the data size or frequency threshold changed. This paper contributes an adaptive tag-mining framework that is scalable and adaptable without sacrificing its recall. This component-based architectural design can be potentially generalizable to improve the adaptability of other clinical text mining methods.
Secure Continuous Variable Teleportation and Einstein-Podolsky-Rosen Steering
NASA Astrophysics Data System (ADS)
He, Qiongyi; Rosales-Zárate, Laura; Adesso, Gerardo; Reid, Margaret D.
2015-10-01
We investigate the resources needed for secure teleportation of coherent states. We extend continuous variable teleportation to include quantum teleamplification protocols that allow nonunity classical gains and a preamplification or postattenuation of the coherent state. We show that, for arbitrary Gaussian protocols and a significant class of Gaussian resources, two-way steering is required to achieve a teleportation fidelity beyond the no-cloning threshold. This provides an operational connection between Gaussian steerability and secure teleportation. We present practical recipes suggesting that heralded noiseless preamplification may enable high-fidelity heralded teleportation, using minimally entangled yet steerable resources.
An adaptive replacement algorithm for paged-memory computer systems.
NASA Technical Reports Server (NTRS)
Thorington, J. M., Jr.; Irwin, J. D.
1972-01-01
A general class of adaptive replacement schemes for use in paged memories is developed. One such algorithm, called SIM, is simulated using a probability model that generates memory traces, and the results of the simulation of this adaptive scheme are compared with those obtained using the best nonlookahead algorithms. A technique for implementing this type of adaptive replacement algorithm with state of the art digital hardware is also presented.
Environment spectrum and coherence behaviours in a rare-earth doped crystal for quantum memory.
Gong, Bo; Tu, Tao; Zhou, Zhong-Quan; Zhu, Xing-Yu; Li, Chuan-Feng; Guo, Guang-Can
2017-12-21
We theoretically investigate the dynamics of environment and coherence behaviours of the central ion in a quantum memory based on a rare-earth doped crystal. The interactions between the central ion and the bath spins suppress the flip-flop rate of the neighbour bath spins and yield a specific environment spectral density S(ω). Under dynamical decoupling pulses, this spectrum provides a general scaling for the coherence envelope and coherence time, which significantly extend over a range on an hour-long time scale. The characterized environment spectrum with ultra-long coherence time can be used to implement various quantum communication and information processing protocols.
Spectral-domain optical coherence tomography of roth spots.
Giovinazzo, Jerome; Mrejen, Sarah; Freund, K Bailey
2013-01-01
To describe the retinal findings of subacute bacterial endocarditis, their evolution after treatment, and analysis with spectral-domain optical coherence tomography. Retrospective chart review. A 21-year-old man presented with the sudden onset of a central scotoma in his left eye because of a sub-internal limiting membrane hemorrhage overlying the left fovea. When examined 2 weeks later, Roth spots were noted in his right eye. The patient was immediately referred to his internist and diagnosed with subacute bacterial endocarditis with cultures positive for Streptococcus viridans. He subsequently underwent aortic valve replacement surgery after 4 weeks of intravenous antibiotic therapy. When examined 4 weeks after valve replacement surgery, there was regression of the Roth spots. The present case demonstrates the importance of a funduscopic examination in the early diagnosis and management of subacute bacterial endocarditis. The analysis of Roth spots with spectral-domain optical coherence tomography suggested that they were septic emboli.
Shirai, Tomohiro; Barnes, Thomas H
2002-02-01
A liquid-crystal adaptive optics system using all-optical feedback interferometry is applied to partially coherent imaging through a phase disturbance. A theoretical analysis based on the propagation of the cross-spectral density shows that the blurred image due to the phase disturbance can be restored, in principle, irrespective of the state of coherence of the light illuminating the object. Experimental verification of the theory has been performed for two cases when the object to be imaged is illuminated by spatially coherent light originating from a He-Ne laser and by spatially incoherent white light from a halogen lamp. We observed in both cases that images blurred by the phase disturbance were successfully restored, in agreement with the theory, immediately after the adaptive optics system was activated. The origin of the deviation of the experimental results from the theory, together with the effect of the feedback misalignment inherent in our optical arrangement, is also discussed.
NASA Technical Reports Server (NTRS)
Miles, Jeffrey Hilton
2015-01-01
A cross-power spectrum phase based adaptive technique is discussed which iteratively determines the time delay between two digitized signals that are coherent. The adaptive delay algorithm belongs to a class of algorithms that identifies a minimum of a pattern matching function. The algorithm uses a gradient technique to find the value of the adaptive delay that minimizes a cost function based in part on the slope of a linear function that fits the measured cross power spectrum phase and in part on the standard error of the curve fit. This procedure is applied to data from a Honeywell TECH977 static-engine test. Data was obtained using a combustor probe, two turbine exit probes, and far-field microphones. Signals from this instrumentation are used estimate the post-combustion residence time in the combustor. Comparison with previous studies of the post-combustion residence time validates this approach. In addition, the procedure removes the bias due to misalignment of signals in the calculation of coherence which is a first step in applying array processing methods to the magnitude squared coherence data. The procedure also provides an estimate of the cross-spectrum phase-offset.
Sharabi, Adi; Levi, Uzi; Margalit, Malka
2012-01-01
The study examined the contributions of individual and familial variables for the prediction of loneliness as a developmental risk and the sense of coherence as a protective factor. The sample consisted of 287 children from grades 5-6. Their loneliness, sense of coherence, hope, effort, and family climate were assessed. Separate hierarchical multiple regression analyses revealed that family cohesion and children's hope contributed to the explanation of the risk and protective outcomes. Yet, the contribution of the family adaptability was not significant. Cluster analysis of the family climate dimensions (i.e., cohesion and adaptability) was performed to clarify the interactive roles of family adaptability together with family cohesion. The authors identified 4 separate family profiles: Children in the 2 cohesive families' clusters (Cohesive Structured Families and Cohesive Adaptable Families) reported the lowest levels of loneliness and the highest levels of personal strengths. Children within rigid and noncohesive family cluster reported the highest levels of loneliness and the lowest levels of children's sense of coherence. The unique role of the family flexibility within nonsupportive family systems was demonstrated. The results further clarified the unique profiles' characteristics of the different family clusters and their adjustment indexes in terms of loneliness and personal strengths.
Munch, Inger Christine; Altuntas, Cigdem; Li, Xiao Qiang; Jackson, Gregory R; Klefter, Oliver Niels; Larsen, Michael
2016-07-11
Dark adaptation is an energy-requiring process in the outer retina nourished by the profusely perfused choroid. We hypothesized that variations in choroidal thickness might affect the rate of dark adaptation. Cross-sectional, observational study of 42 healthy university students (mean age 25 ± 2.0 years, 29 % men) who were examined using an abbreviated automated dark adaptometry protocol with a 2° diameter stimulus centered 5° above the point of fixation. The early, linear part of the rod-mediated dark adaptation curve was analyzed to extract the time required to reach a sensitivity of 5.0 × 10(-3) cd/m2 (time to rod intercept) and the slope (rod adaptation rate). The choroid was imaged using enhanced-depth imaging spectral-domain optical coherence tomography (EDI-OCT). The time to the rod intercept was 7.3 ± 0.94 (range 5.1 - 10.2) min. Choroidal thickness 2.5° above the fovea was 348 ± 104 (range 153-534) μm. There was no significant correlation between any of the two measures of rod-mediated dark adaptation and choroidal thickness (time to rod intercept versus choroidal thickness 0.072 (CI95 -0.23 to 0.38) min/100 μm, P = 0.64, adjusted for age and sex). There was no association between the time-to-rod-intercept or the dark adaptation rate and axial length, refraction, gender or age. Choroidal thickness, refraction and ocular axial length had no detectable effect on rod-mediated dark adaptation in healthy young subjects. Our results do not support that variations in dark adaptation can be attributed to variations in choroidal thickness.
Strength and coherence of binocular rivalry depends on shared stimulus complexity.
Alais, David; Melcher, David
2007-01-01
Presenting incompatible images to the eyes results in alternations of conscious perception, a phenomenon known as binocular rivalry. We examined rivalry using either simple stimuli (oriented gratings) or coherent visual objects (faces, houses etc). Two rivalry characteristics were measured: Depth of rivalry suppression and coherence of alternations. Rivalry between coherent visual objects exhibits deep suppression and coherent rivalry, whereas rivalry between gratings exhibits shallow suppression and piecemeal rivalry. Interestingly, rivalry between a simple and a complex stimulus displays the same characteristics (shallow and piecemeal) as rivalry between two simple stimuli. Thus, complex stimuli fail to rival globally unless the fellow stimulus is also global. We also conducted a face adaptation experiment. Adaptation to rivaling faces improved subsequent face discrimination (as expected), but adaptation to a rivaling face/grating pair did not. To explain this, we suggest rivalry must be an early and local process (at least initially), instigated by the failure of binocular fusion, which can then become globally organized by feedback from higher-level areas when both rivalry stimuli are global, so that rivalry tends to oscillate coherently. These globally assembled images then flow through object processing areas, with the dominant image gaining in relative strength in a form of 'biased competition', therefore accounting for the deeper suppression of global images. In contrast, when only one eye receives a global image, local piecemeal suppression from the fellow eye overrides the organizing effects of global feedback to prevent coherent image formation. This indicates the primacy of local over global processes in rivalry.
Stumpf, Janice L; Kurian, Rebecca M; Vuong, Jennifer; Dang, Kimberlyn; Kraft, Michael D
2014-04-01
Alkalinized Viokase pancreatic enzyme tablets restored patency to 71.9% of occluded Dobhoff tubes in a prospective study. After removal of Viokase tablets from the US market, the hospital protocol for unclogging enteral feeding tubes was adapted to use Creon pancreatic enzyme delayed-release capsules, despite the lack of published data. To evaluate the effectiveness of a Creon-based protocol to clear occluded enteral feeding tubes. This retrospective study included all adult and pediatric patients seen in the emergency department or in an inpatient setting who received Creon 12 000 units lipase delayed-release capsule dissolved in a solution of sodium bicarbonate 650 mg and sterile water for clearing occluded enteral feeding tubes between May 1 and November 30, 2010. The Creon protocol was deemed effective if tube clearance was documented in the medical record or if enteral feedings were resumed with no note regarding tube replacement. Alkalinized Creon delayed-release capsules were administered to 83 patients with a total of 118 clogged tubes. Three poorly documented cases and 5 tubes with mechanical clogs were excluded from data analysis. Patency was restored to 53 of 110 (48.2%) occluded tubes. More than 1 treatment course was attempted in 5 cases, with success in 3. An alkalinized Creon pancreatic enzyme protocol was effective in clearing approximately half of the occluded enteral feeding tubes in this retrospective study, an efficacy rate much less than that previously reported in the literature with a Viokase-based protocol.
de Jonge, Paul K J D; Sloff, Marije; Janke, Heinz P; Kortmann, Barbara B M; de Gier, Robert P E; Geutjes, Paul J; Oosterwijk, Egbert; Feitz, Wout F J
2017-10-01
It is common to test medical devices in large animal studies that are or could also be used in humans. In this short report we describe the use of a ureteral J-stent for the evaluation of biodegradable tubular constructs for tissue reconstruction, and the regeneration of ureters in Saanen goats. Similarly to a previous study in pigs, the ureteral J-stent was blindly inserted until some resistance was met. During evaluation of the goats after three months, perforation of the renal cortex by the stent was observed in four out of seven animals. These results indicated that blind stent placement was not possible in goats. In four new goats, clinical protocols were followed using X-ray and iodinated contrast fluids to visualize the kidney and stent during stent placement. With this adaptation the stents were successfully placed in the kidneys of these four new goats with minimal additional effort. It is likely that other groups in other fields ran into similar problems that could have been avoided by following clinical protocols. Therefore, we would like to stress the importance of following clinical protocols when using medical devices in animals to prevent unnecessary suffering and to reduce the number of animals needed.
Qi, Bing; Lougovski, Pavel; Pooser, Raphael C.; ...
2015-10-21
Continuous-variable quantum key distribution (CV-QKD) protocols based on coherent detection have been studied extensively in both theory and experiment. In all the existing implementations of CV-QKD, both the quantum signal and the local oscillator (LO) are generated from the same laser and propagate through the insecure quantum channel. This arrangement may open security loopholes and limit the potential applications of CV-QKD. In our paper, we propose and demonstrate a pilot-aided feedforward data recovery scheme that enables reliable coherent detection using a “locally” generated LO. Using two independent commercial laser sources and a spool of 25-km optical fiber, we construct amore » coherent communication system. The variance of the phase noise introduced by the proposed scheme is measured to be 0.04 (rad 2), which is small enough to enable secure key distribution. This technology opens the door for other quantum communication protocols, such as the recently proposed measurement-device-independent CV-QKD, where independent light sources are employed by different users.« less
Test One to Test Many: A Unified Approach to Quantum Benchmarks
NASA Astrophysics Data System (ADS)
Bai, Ge; Chiribella, Giulio
2018-04-01
Quantum benchmarks are routinely used to validate the experimental demonstration of quantum information protocols. Many relevant protocols, however, involve an infinite set of input states, of which only a finite subset can be used to test the quality of the implementation. This is a problem, because the benchmark for the finitely many states used in the test can be higher than the original benchmark calculated for infinitely many states. This situation arises in the teleportation and storage of coherent states, for which the benchmark of 50% fidelity is commonly used in experiments, although finite sets of coherent states normally lead to higher benchmarks. Here, we show that the average fidelity over all coherent states can be indirectly probed with a single setup, requiring only two-mode squeezing, a 50-50 beam splitter, and homodyne detection. Our setup enables a rigorous experimental validation of quantum teleportation, storage, amplification, attenuation, and purification of noisy coherent states. More generally, we prove that every quantum benchmark can be tested by preparing a single entangled state and measuring a single observable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Shigenari; Department of Electronics and Electrical Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522; Takeoka, Masahiro
2006-04-15
We present a simple protocol to purify a coherent-state superposition that has undergone a linear lossy channel. The scheme constitutes only a single beam splitter and a homodyne detector, and thus is experimentally feasible. In practice, a superposition of coherent states is transformed into a classical mixture of coherent states by linear loss, which is usually the dominant decoherence mechanism in optical systems. We also address the possibility of producing a larger amplitude superposition state from decohered states, and show that in most cases the decoherence of the states are amplified along with the amplitude.
NASA Astrophysics Data System (ADS)
Acín, Antonio; Gisin, Nicolas; Scarani, Valerio
2004-01-01
We propose a class of quantum cryptography protocols that are robust against photon-number-splitting attacks (PNS) in a weak coherent-pulse implementation. We give a quite exhaustive analysis of several eavesdropping attacks on these schemes. The honest parties (Alice and Bob) use present-day technology, in particular an attenuated laser as an approximation of a single-photon source. The idea of the protocols is to exploit the nonorthogonality of quantum states to decrease the information accessible to Eve due to the multiphoton pulses produced by the imperfect source. The distance at which the key distribution becomes insecure due to the PNS attack is significantly increased compared to the existing schemes. We also show that strong-pulse implementations, where a strong pulse is included as a reference, allow for key distribution robust against photon-number-splitting attacks.
Continuous variable quantum cryptography using coherent states.
Grosshans, Frédéric; Grangier, Philippe
2002-02-04
We propose several methods for quantum key distribution (QKD) based on the generation and transmission of random distributions of coherent or squeezed states, and we show that they are secure against individual eavesdropping attacks. These protocols require that the transmission of the optical line between Alice and Bob is larger than 50%, but they do not rely on "sub-shot-noise" features such as squeezing. Their security is a direct consequence of the no-cloning theorem, which limits the signal-to-noise ratio of possible quantum measurements on the transmission line. Our approach can also be used for evaluating various QKD protocols using light with Gaussian statistics.
Phase coherence adaptive processor for automatic signal detection and identification
NASA Astrophysics Data System (ADS)
Wagstaff, Ronald A.
2006-05-01
A continuously adapting acoustic signal processor with an automatic detection/decision aid is presented. Its purpose is to preserve the signals of tactical interest, and filter out other signals and noise. It utilizes single sensor or beamformed spectral data and transforms the signal and noise phase angles into "aligned phase angles" (APA). The APA increase the phase temporal coherence of signals and leave the noise incoherent. Coherence thresholds are set, which are representative of the type of source "threat vehicle" and the geographic area or volume in which it is operating. These thresholds separate signals, based on the "quality" of their APA coherence. An example is presented in which signals from a submerged source in the ocean are preserved, while clutter signals from ships and noise are entirely eliminated. Furthermore, the "signals of interest" were identified by the processor's automatic detection aid. Similar performance is expected for air and ground vehicles. The processor's equations are formulated in such a manner that they can be tuned to eliminate noise and exploit signal, based on the "quality" of their APA temporal coherence. The mathematical formulation for this processor is presented, including the method by which the processor continuously self-adapts. Results show nearly complete elimination of noise, with only the selected category of signals remaining, and accompanying enhancements in spectral and spatial resolution. In most cases, the concept of signal-to-noise ratio looses significance, and "adaptive automated /decision aid" is more relevant.
Digital equalization of time-delay array receivers on coherent laser communications.
Belmonte, Aniceto
2017-01-15
Field conjugation arrays use adaptive combining techniques on multi-aperture receivers to improve the performance of coherent laser communication links by mitigating the consequences of atmospheric turbulence on the down-converted coherent power. However, this motivates the use of complex receivers as optical signals collected by different apertures need to be adaptively processed, co-phased, and scaled before they are combined. Here, we show that multiple apertures, coupled with optical delay lines, combine retarded versions of a signal at a single coherent receiver, which uses digital equalization to obtain diversity gain against atmospheric fading. We found in our analysis that, instead of field conjugation arrays, digital equalization of time-delay multi-aperture receivers is a simpler and more versatile approach to accomplish reduction of atmospheric fading.
Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong
2013-11-01
This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10(-2) Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.
NASA Astrophysics Data System (ADS)
Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong
2013-11-01
This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10-2 Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.
Adaptive optics scanning laser ophthalmoscopy in fundus imaging, a review and update.
Zhang, Bing; Li, Ni; Kang, Jie; He, Yi; Chen, Xiao-Ming
2017-01-01
Adaptive optics scanning laser ophthalmoscopy (AO-SLO) has been a promising technique in funds imaging with growing popularity. This review firstly gives a brief history of adaptive optics (AO) and AO-SLO. Then it compares AO-SLO with conventional imaging methods (fundus fluorescein angiography, fundus autofluorescence, indocyanine green angiography and optical coherence tomography) and other AO techniques (adaptive optics flood-illumination ophthalmoscopy and adaptive optics optical coherence tomography). Furthermore, an update of current research situation in AO-SLO is made based on different fundus structures as photoreceptors (cones and rods), fundus vessels, retinal pigment epithelium layer, retinal nerve fiber layer, ganglion cell layer and lamina cribrosa. Finally, this review indicates possible research directions of AO-SLO in future.
Adaptive optics scanning laser ophthalmoscopy in fundus imaging, a review and update
Zhang, Bing; Li, Ni; Kang, Jie; He, Yi; Chen, Xiao-Ming
2017-01-01
Adaptive optics scanning laser ophthalmoscopy (AO-SLO) has been a promising technique in funds imaging with growing popularity. This review firstly gives a brief history of adaptive optics (AO) and AO-SLO. Then it compares AO-SLO with conventional imaging methods (fundus fluorescein angiography, fundus autofluorescence, indocyanine green angiography and optical coherence tomography) and other AO techniques (adaptive optics flood-illumination ophthalmoscopy and adaptive optics optical coherence tomography). Furthermore, an update of current research situation in AO-SLO is made based on different fundus structures as photoreceptors (cones and rods), fundus vessels, retinal pigment epithelium layer, retinal nerve fiber layer, ganglion cell layer and lamina cribrosa. Finally, this review indicates possible research directions of AO-SLO in future. PMID:29181321
Sengupta, Ranit
2015-01-01
Despite recent progress in our understanding of sensorimotor integration in speech learning, a comprehensive framework to investigate its neural basis is lacking at behaviorally relevant timescales. Structural and functional imaging studies in humans have helped us identify brain networks that support speech but fail to capture the precise spatiotemporal coordination within the networks that takes place during speech learning. Here we use neuronal oscillations to investigate interactions within speech motor networks in a paradigm of speech motor adaptation under altered feedback with continuous recording of EEG in which subjects adapted to the real-time auditory perturbation of a target vowel sound. As subjects adapted to the task, concurrent changes were observed in the theta-gamma phase coherence during speech planning at several distinct scalp regions that is consistent with the establishment of a feedforward map. In particular, there was an increase in coherence over the central region and a decrease over the fronto-temporal regions, revealing a redistribution of coherence over an interacting network of brain regions that could be a general feature of error-based motor learning in general. Our findings have implications for understanding the neural basis of speech motor learning and could elucidate how transient breakdown of neuronal communication within speech networks relates to speech disorders. PMID:25632078
Wu, Jinlu
2013-01-01
Laboratory education can play a vital role in developing a learner's autonomy and scientific inquiry skills. In an innovative, mutation-based learning (MBL) approach, students were instructed to redesign a teacher-designed standard experimental protocol by a "mutation" method in a molecular genetics laboratory course. Students could choose to delete, add, reverse, or replace certain steps of the standard protocol to explore questions of interest to them in a given experimental scenario. They wrote experimental proposals to address their rationales and hypotheses for the "mutations"; conducted experiments in parallel, according to both standard and mutated protocols; and then compared and analyzed results to write individual lab reports. Various autonomy-supportive measures were provided in the entire experimental process. Analyses of student work and feedback suggest that students using the MBL approach 1) spend more time discussing experiments, 2) use more scientific inquiry skills, and 3) find the increased autonomy afforded by MBL more enjoyable than do students following regimented instructions in a conventional "cookbook"-style laboratory. Furthermore, the MBL approach does not incur an obvious increase in labor and financial costs, which makes it feasible for easy adaptation and implementation in a large class.
La-CTP: Loop-Aware Routing for Energy-Harvesting Wireless Sensor Networks
Sun, Guodong; Shang, Xinna; Zuo, Yan
2018-01-01
In emerging energy-harvesting wireless sensor networks (EH-WSN), the sensor nodes can harvest environmental energy to drive their operation, releasing the user’s burden in terms of frequent battery replacement, and even enabling perpetual sensing systems. In EH-WSN applications, usually, the node in energy-harvesting or recharging state has to stop working until it completes the energy replenishment. However, such temporary departures of recharging nodes severely impact the packet routing, and one immediate result is the routing loop problem. Controlling loops in connectivity-intermittent EH-WSN in an efficient way is a big challenge in practice, and so far, users still lack of effective and practicable routing protocols with loop handling. Based on the Collection Tree Protocol (CTP) widely used in traditional wireless sensor networks, this paper proposes a loop-aware routing protocol for real-world EH-WSNs, called La-CTP, which involves a new parent updating metric and a proactive, adaptive beaconing scheme to effectively suppress the occurrence of loops and unlock unavoidable loops, respectively. We constructed a 100-node testbed to evaluate La-CTP, and the experimental results showed its efficacy and efficiency. PMID:29393876
Accurate quantum Z rotations with less magic
NASA Astrophysics Data System (ADS)
Landahl, Andrew; Cesare, Chris
2013-03-01
We present quantum protocols for executing arbitrarily accurate π /2k rotations of a qubit about its Z axis. Unlike reduced instruction set computing (RISC) protocols which use a two-step process of synthesizing high-fidelity ``magic'' states from which T = Z (π / 4) gates can be teleported and then compiling a sequence of adaptive stabilizer operations and T gates to approximate Z (π /2k) , our complex instruction set computing (CISC) protocol distills magic states for the Z (π /2k) gates directly. Replacing this two-step process with a single step results in substantial reductions in the number of gates needed. The key to our construction is a family of shortened quantum Reed-Muller codes of length 2 k + 2 - 1 , whose distillation threshold shrinks with k but is greater than 0.85% for k <= 6 . AJL and CC were supported in part by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Context matters: Anterior and posterior cortical midline responses to sad movie scenes.
Schlochtermeier, L H; Pehrs, C; Bakels, J-H; Jacobs, A M; Kappelhoff, H; Kuchinke, L
2017-04-15
Narrative movies can create powerful emotional responses. While recent research has advanced the understanding of neural networks involved in immersive movie viewing, their modulation within a movie's dynamic context remains inconclusive. In this study, 24 healthy participants passively watched sad scene climaxes taken from 24 romantic comedies, while brain activity was measured using functional magnetic resonance (fMRI). To study effects of context, the sad scene climaxes were presented with either coherent scene context, replaced non-coherent context or without context. In a second viewing, the same clips were rated continuously for sadness. The ratings varied over time with peaks of experienced sadness within the assumed climax intervals. Activations in anterior and posterior cortical midline regions increased if presented with both coherent and replaced context, while activation in the temporal gyri decreased. This difference was more pronounced for the coherent context condition. Psycho-Physiological interactions (PPI) analyses showed a context-dependent coupling of midline regions with occipital visual and sub-cortical reward regions. Our results demonstrate the pivotal role of midline structures and their interaction with perceptual and reward areas in processing contextually embedded socio-emotional information in movies. Copyright © 2017 Elsevier B.V. All rights reserved.
Quantum Transduction with Adaptive Control
NASA Astrophysics Data System (ADS)
Zhang, Mengzhen; Zou, Chang-Ling; Jiang, Liang
2018-01-01
Quantum transducers play a crucial role in hybrid quantum networks. A good quantum transducer can faithfully convert quantum signals from one mode to another with minimum decoherence. Most investigations of quantum transduction are based on the protocol of direct mode conversion. However, the direct protocol requires the matching condition, which in practice is not always feasible. Here we propose an adaptive protocol for quantum transducers, which can convert quantum signals without requiring the matching condition. The adaptive protocol only consists of Gaussian operations, feasible in various physical platforms. Moreover, we show that the adaptive protocol can be robust against imperfections associated with finite squeezing, thermal noise, and homodyne detection, and it can be implemented to realize quantum state transfer between microwave and optical modes.
Quantum Transduction with Adaptive Control.
Zhang, Mengzhen; Zou, Chang-Ling; Jiang, Liang
2018-01-12
Quantum transducers play a crucial role in hybrid quantum networks. A good quantum transducer can faithfully convert quantum signals from one mode to another with minimum decoherence. Most investigations of quantum transduction are based on the protocol of direct mode conversion. However, the direct protocol requires the matching condition, which in practice is not always feasible. Here we propose an adaptive protocol for quantum transducers, which can convert quantum signals without requiring the matching condition. The adaptive protocol only consists of Gaussian operations, feasible in various physical platforms. Moreover, we show that the adaptive protocol can be robust against imperfections associated with finite squeezing, thermal noise, and homodyne detection, and it can be implemented to realize quantum state transfer between microwave and optical modes.
ERIC Educational Resources Information Center
Elmore, Richard F.; Forman, Michelle L.; Stosich, Elizabeth L.; Bocala, Candice
2014-01-01
Purpose: In this paper we describe the Internal Coherence (IC) model of assessment and professional development, a set of clinical tools and practices designed to help practitioners foster the organizational conditions required for whole-school instructional improvement. Proposed Conceptual Argument: We argue that the data captured by the IC…
Security proof of a three-state quantum-key-distribution protocol without rotational symmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fung, C.-H.F.; Lo, H.-K.
2006-10-15
Standard security proofs of quantum-key-distribution (QKD) protocols often rely on symmetry arguments. In this paper, we prove the security of a three-state protocol that does not possess rotational symmetry. The three-state QKD protocol we consider involves three qubit states, where the first two states |0{sub z}> and |1{sub z}> can contribute to key generation, and the third state |+>=(|0{sub z}>+|1{sub z}>)/{radical}(2) is for channel estimation. This protocol has been proposed and implemented experimentally in some frequency-based QKD systems where the three states can be prepared easily. Thus, by founding on the security of this three-state protocol, we prove that thesemore » QKD schemes are, in fact, unconditionally secure against any attacks allowed by quantum mechanics. The main task in our proof is to upper bound the phase error rate of the qubits given the bit error rates observed. Unconditional security can then be proved not only for the ideal case of a single-photon source and perfect detectors, but also for the realistic case of a phase-randomized weak coherent light source and imperfect threshold detectors. Our result in the phase error rate upper bound is independent of the loss in the channel. Also, we compare the three-state protocol with the Bennett-Brassard 1984 (BB84) protocol. For the single-photon source case, our result proves that the BB84 protocol strictly tolerates a higher quantum bit error rate than the three-state protocol, while for the coherent-source case, the BB84 protocol achieves a higher key generation rate and secure distance than the three-state protocol when a decoy-state method is used.« less
A preprocessor for the Urbana coherent-scatter radar
NASA Technical Reports Server (NTRS)
Zendt, F. T.; Bowhill, S. A.
1982-01-01
The design, interfacing, testing, and operation of a preprocessor to increase the altitude and temporal resolution of the present coherent-scatter system are described. This system upgrade requires an increase in the data collection rate. Replacing the present, relatively slow, ADC with two high speed ADCs achieves the increased echo sampling rate desired. To stay within the capabilities of the main computer's I/O and processing rate the data must be reduced before transfer to the main computer. Thus the preprocessor also coherently integrates the data before transfer.
ERIC Educational Resources Information Center
Szczesiul, Stacy Agee
2014-01-01
This article explores the use of protocol-structured dialogue in promoting reflective practices and shared theories of action within a district leadership team. Protocols have been used to make individuals' theories of action visible and subject to evaluation. This is important for leaders trying to establish coherence across a system; in…
NASA Astrophysics Data System (ADS)
Denning, Emil V.; Iles-Smith, Jake; McCutcheon, Dara P. S.; Mork, Jesper
2017-12-01
Multiphoton entangled states are a crucial resource for many applications in quantum information science. Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon correlations via a confined electron spin, but dephasing caused by the host nuclear spin environment typically limits coherence (and hence entanglement) between photons to the spin T2* time of a few nanoseconds. We propose a protocol for the deterministic generation of multiphoton entangled states that is inherently robust against the dominating slow nuclear spin environment fluctuations, meaning that coherence and entanglement is instead limited only by the much longer spin T2 time of microseconds. Unlike previous protocols, the present scheme allows for the generation of very low error probability polarization encoded three-photon GHZ states and larger entangled states, without the need for spin echo or nuclear spin calming techniques.
Optimal continuous variable quantum teleportation protocol for realistic settings
NASA Astrophysics Data System (ADS)
Luiz, F. S.; Rigolin, Gustavo
2015-03-01
We show the optimal setup that allows Alice to teleport coherent states | α > to Bob giving the greatest fidelity (efficiency) when one takes into account two realistic assumptions. The first one is the fact that in any actual implementation of the continuous variable teleportation protocol (CVTP) Alice and Bob necessarily share non-maximally entangled states (two-mode finitely squeezed states). The second one assumes that Alice's pool of possible coherent states to be teleported to Bob does not cover the whole complex plane (| α | < ∞). The optimal strategy is achieved by tuning three parameters in the original CVTP, namely, Alice's beam splitter transmittance and Bob's displacements in position and momentum implemented on the teleported state. These slight changes in the protocol are currently easy to be implemented and, as we show, give considerable gain in performance for a variety of possible pool of input states with Alice.
Continuous variable quantum key distribution with modulated entangled states.
Madsen, Lars S; Usenko, Vladyslav C; Lassen, Mikael; Filip, Radim; Andersen, Ulrik L
2012-01-01
Quantum key distribution enables two remote parties to grow a shared key, which they can use for unconditionally secure communication over a certain distance. The maximal distance depends on the loss and the excess noise of the connecting quantum channel. Several quantum key distribution schemes based on coherent states and continuous variable measurements are resilient to high loss in the channel, but are strongly affected by small amounts of channel excess noise. Here we propose and experimentally address a continuous variable quantum key distribution protocol that uses modulated fragile entangled states of light to greatly enhance the robustness to channel noise. We experimentally demonstrate that the resulting quantum key distribution protocol can tolerate more noise than the benchmark set by the ideal continuous variable coherent state protocol. Our scheme represents a very promising avenue for extending the distance for which secure communication is possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acin, Antonio; Gisin, Nicolas; Scarani, Valerio
2004-01-01
We propose a class of quantum cryptography protocols that are robust against photon-number-splitting attacks (PNS) in a weak coherent-pulse implementation. We give a quite exhaustive analysis of several eavesdropping attacks on these schemes. The honest parties (Alice and Bob) use present-day technology, in particular an attenuated laser as an approximation of a single-photon source. The idea of the protocols is to exploit the nonorthogonality of quantum states to decrease the information accessible to Eve due to the multiphoton pulses produced by the imperfect source. The distance at which the key distribution becomes insecure due to the PNS attack is significantlymore » increased compared to the existing schemes. We also show that strong-pulse implementations, where a strong pulse is included as a reference, allow for key distribution robust against photon-number-splitting attacks.« less
A two-hop based adaptive routing protocol for real-time wireless sensor networks.
Rachamalla, Sandhya; Kancherla, Anitha Sheela
2016-01-01
One of the most important and challenging issues in wireless sensor networks (WSNs) is to optimally manage the limited energy of nodes without degrading the routing efficiency. In this paper, we propose an energy-efficient adaptive routing mechanism for WSNs, which saves energy of nodes by removing the much delayed packets without degrading the real-time performance of the used routing protocol. It uses the adaptive transmission power algorithm which is based on the attenuation of the wireless link to improve the energy efficiency. The proposed routing mechanism can be associated with any geographic routing protocol and its performance is evaluated by integrating with the well known two-hop based real-time routing protocol, PATH and the resulting protocol is energy-efficient adaptive routing protocol (EE-ARP). The EE-ARP performs well in terms of energy consumption, deadline miss ratio, packet drop and end-to-end delay.
NASA Astrophysics Data System (ADS)
Jian, Yifan; Xu, Jing; Zawadzki, Robert J.; Sarunic, Marinko V.
2013-03-01
Small animal models of human retinal diseases are a critical component of vision research. In this report, we present an ultrahigh-resolution ultrahigh-speed adaptive optics optical coherence tomography (AO-OCT) system for small animal retinal imaging (mouse, fish, etc.). We adapted our imaging system to different types of small animals in accordance with the optical properties of their eyes. Results of AO-OCT images of small animal retinas acquired with AO correction are presented. Cellular structures including nerve fiber bundles, capillary networks and detailed double-cone photoreceptors are visualized.
Adaptive-optics optical coherence tomography processing using a graphics processing unit.
Shafer, Brandon A; Kriske, Jeffery E; Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Lee, John Jaehwan; Miller, Donald T
2014-01-01
Graphics processing units are increasingly being used for scientific computing for their powerful parallel processing abilities, and moderate price compared to super computers and computing grids. In this paper we have used a general purpose graphics processing unit to process adaptive-optics optical coherence tomography (AOOCT) images in real time. Increasing the processing speed of AOOCT is an essential step in moving the super high resolution technology closer to clinical viability.
76 FR 2607 - Airworthiness Directives; MD Helicopters, Inc. (MDHI) Model MD900 Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-14
... to operate at a reduced speed until you replace each tube adapter with an improved tube adapter. We... complying with paragraphs (a) through (e) of this AD, you may replace both VSCS tube adapters, P/N 500N7218-1, with airworthy VSCS tube adapters, P/N 900C2010303-101. If you install VSCS tube adapters, P/N...
Khalique, Omar K; Pulerwitz, Todd C; Halliburton, Sandra S; Kodali, Susheel K; Hahn, Rebecca T; Nazif, Tamim M; Vahl, Torsten P; George, Isaac; Leon, Martin B; D'Souza, Belinda; Einstein, Andrew J
2016-01-01
Transcatheter aortic valve replacement (TAVR) is performed frequently in patients with severe, symptomatic aortic stenosis who are at high risk or inoperable for open surgical aortic valve replacement. Computed tomography angiography (CTA) has become the gold standard imaging modality for pre-TAVR cardiac anatomic and vascular access assessment. Traditionally, cardiac CTA has been most frequently used for assessment of coronary artery stenosis, and scanning protocols have generally been tailored for this purpose. Pre-TAVR CTA has different goals than coronary CTA and the high prevalence of chronic kidney disease in the TAVR patient population creates a particular need to optimize protocols for a reduction in iodinated contrast volume. This document reviews details which allow the physician to tailor CTA examinations to maximize image quality and minimize harm, while factoring in multiple patient and scanner variables which must be considered in customizing a pre-TAVR protocol. Copyright © 2016 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.
An aftereffect of adaptation to mean size
Corbett, Jennifer E.; Wurnitsch, Nicole; Schwartz, Alex; Whitney, David
2013-01-01
The visual system rapidly represents the mean size of sets of objects. Here, we investigated whether mean size is explicitly encoded by the visual system, along a single dimension like texture, numerosity, and other visual dimensions susceptible to adaptation. Observers adapted to two sets of dots with different mean sizes, presented simultaneously in opposite visual fields. After adaptation, two test patches replaced the adapting dot sets, and participants judged which test appeared to have the larger average dot diameter. They generally perceived the test that replaced the smaller mean size adapting set as being larger than the test that replaced the larger adapting set. This differential aftereffect held for single test dots (Experiment 2) and high-pass filtered displays (Experiment 3), and changed systematically as a function of the variance of the adapting dot sets (Experiment 4), providing additional support that mean size is adaptable, and therefore explicitly encoded dimension of visual scenes. PMID:24348083
Coherent population trapping with a controlled dissipation: applications in optical metrology
NASA Astrophysics Data System (ADS)
Nicolas, L.; Delord, T.; Jamonneau, P.; Coto, R.; Maze, J.; Jacques, V.; Hétet, G.
2018-03-01
We analyze the properties of a pulsed coherent population trapping protocol that uses a controlled decay from the excited state in a Λ-level scheme. We study this problem analytically and numerically and find regimes where narrow transmission, absorption, or fluorescence spectral lines occur. We then look for optimal frequency measurements using these spectral features by computing the Allan deviation in the presence of ground state decoherence and show that the protocol is on a par with Ramsey-CPT. We discuss possible implementations with ensembles of alkali atoms and single ions and demonstrate that typical pulsed-CPT experiments that are realized on femto-second timescales can be implemented on micro-seconds timescales using this scheme.
Furrer, F; Franz, T; Berta, M; Leverrier, A; Scholz, V B; Tomamichel, M; Werner, R F
2012-09-07
We provide a security analysis for continuous variable quantum key distribution protocols based on the transmission of two-mode squeezed vacuum states measured via homodyne detection. We employ a version of the entropic uncertainty relation for smooth entropies to give a lower bound on the number of secret bits which can be extracted from a finite number of runs of the protocol. This bound is valid under general coherent attacks, and gives rise to keys which are composably secure. For comparison, we also give a lower bound valid under the assumption of collective attacks. For both scenarios, we find positive key rates using experimental parameters reachable today.
Electronic structure and relative stability of the coherent and semi-coherent HfO2/III-V interfaces
NASA Astrophysics Data System (ADS)
Lahti, A.; Levämäki, H.; Mäkelä, J.; Tuominen, M.; Yasir, M.; Dahl, J.; Kuzmin, M.; Laukkanen, P.; Kokko, K.; Punkkinen, M. P. J.
2018-01-01
III-V semiconductors are prominent alternatives to silicon in metal oxide semiconductor devices. Hafnium dioxide (HfO2) is a promising oxide with a high dielectric constant to replace silicon dioxide (SiO2). The potentiality of the oxide/III-V semiconductor interfaces is diminished due to high density of defects leading to the Fermi level pinning. The character of the harmful defects has been intensively debated. It is very important to understand thermodynamics and atomic structures of the interfaces to interpret experiments and design methods to reduce the defect density. Various realistic gap defect state free models for the HfO2/III-V(100) interfaces are presented. Relative energies of several coherent and semi-coherent oxide/III-V semiconductor interfaces are determined for the first time. The coherent and semi-coherent interfaces represent the main interface types, based on the Ga-O bridges and As (P) dimers, respectively.
Phase noise suppression for coherent optical block transmission systems: a unified framework.
Yang, Chuanchuan; Yang, Feng; Wang, Ziyu
2011-08-29
A unified framework for phase noise suppression is proposed in this paper, which could be applied in any coherent optical block transmission systems, including coherent optical orthogonal frequency-division multiplexing (CO-OFDM), coherent optical single-carrier frequency-domain equalization block transmission (CO-SCFDE), etc. Based on adaptive modeling of phase noise, unified observation equations for different coherent optical block transmission systems are constructed, which lead to unified phase noise estimation and suppression. Numerical results demonstrate that the proposal is powerful in mitigating laser phase noise.
Zhang, Zheshen; Voss, Paul L
2009-07-06
We propose a continuous variable based quantum key distribution protocol that makes use of discretely signaled coherent light and reverse error reconciliation. We present a rigorous security proof against collective attacks with realistic lossy, noisy quantum channels, imperfect detector efficiency, and detector electronic noise. This protocol is promising for convenient, high-speed operation at link distances up to 50 km with the use of post-selection.
Tojo, Naoki; Nakamura, Tomoko; Fuchizawa, Chiharu; Oiwake, Toshihiko; Hayashi, Atsushi
2013-01-01
The purpose of this study was to examine cone photoreceptors in the macula of patients with retinitis pigmentosa using an adaptive optics fundus camera and to investigate any correlations between cone photoreceptor density and findings on optical coherence tomography and fundus autofluorescence. We examined two patients with typical retinitis pigmentosa who underwent ophthalmological examination, including measurement of visual acuity, and gathering of electroretinographic, optical coherence tomographic, fundus autofluorescent, and adaptive optics fundus images. The cone photoreceptors in the adaptive optics images of the two patients with retinitis pigmentosa and five healthy subjects were analyzed. An abnormal parafoveal ring of high-density fundus autofluorescence was observed in the macula in both patients. The border of the ring corresponded to the border of the external limiting membrane and the inner segment and outer segment line in the optical coherence tomographic images. Cone photoreceptors at the abnormal parafoveal ring were blurred and decreased in the adaptive optics images. The blurred area corresponded to the abnormal parafoveal ring in the fundus autofluorescence images. Cone densities were low at the blurred areas and at the nasal and temporal retina along a line from the fovea compared with those of healthy controls. The results for cone spacing and Voronoi domains in the macula corresponded with those for the cone densities. Cone densities were heavily decreased in the macula, especially at the parafoveal ring on high-density fundus autofluorescence in both patients with retinitis pigmentosa. Adaptive optics images enabled us to observe in vivo changes in the cone photoreceptors of patients with retinitis pigmentosa, which corresponded to changes in the optical coherence tomographic and fundus autofluorescence images.
Stirman, Shannon Wiltsey; Gamarra, Jennifer; Bartlett, Brooke; Calloway, Amber; Gutner, Cassidy
2017-12-01
This review describes methods used to examine the modifications and adaptations to evidence-based psychological treatments (EBPTs), assesses what is known about the impact of modifications and adaptations to EBPTs, and makes recommendations for future research and clinical care. One hundred eight primary studies and three meta-analyses were identified. All studies examined planned adaptations, and many simultaneously investigated multiple types of adaptations. With the exception of studies on adding or removing specific EBPT elements, few studies compared adapted EBPTs to the original protocols. There was little evidence that adaptations in the studies were detrimental, but there was also limited consistent evidence that adapted protocols outperformed the original protocols, with the exception of adding components to EBPTs. Implications for EBPT delivery and future research are discussed.
2014-01-01
This article attempts to define terminology and to describe a process for writing adaptive, early phase study protocols which are transparent, self-intuitive and uniform. It provides a step by step guide, giving templates from projects which received regulatory authorisation and were successfully performed in the UK. During adaptive studies evolving data is used to modify the trial design and conduct within the protocol-defined remit. Adaptations within that remit are documented using non-substantial protocol amendments which do not require regulatory or ethical review. This concept is efficient in gathering relevant data in exploratory early phase studies, ethical and time- and cost-effective. PMID:24980283
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Bing; Lougovski, Pavel; Pooser, Raphael C.
Continuous-variable quantum key distribution (CV-QKD) protocols based on coherent detection have been studied extensively in both theory and experiment. In all the existing implementations of CV-QKD, both the quantum signal and the local oscillator (LO) are generated from the same laser and propagate through the insecure quantum channel. This arrangement may open security loopholes and limit the potential applications of CV-QKD. In our paper, we propose and demonstrate a pilot-aided feedforward data recovery scheme that enables reliable coherent detection using a “locally” generated LO. Using two independent commercial laser sources and a spool of 25-km optical fiber, we construct amore » coherent communication system. The variance of the phase noise introduced by the proposed scheme is measured to be 0.04 (rad 2), which is small enough to enable secure key distribution. This technology opens the door for other quantum communication protocols, such as the recently proposed measurement-device-independent CV-QKD, where independent light sources are employed by different users.« less
Liu, Rui; Milkie, Daniel E; Kerlin, Aaron; MacLennan, Bryan; Ji, Na
2014-01-27
In traditional zonal wavefront sensing for adaptive optics, after local wavefront gradients are obtained, the entire wavefront can be calculated by assuming that the wavefront is a continuous surface. Such an approach will lead to sub-optimal performance in reconstructing wavefronts which are either discontinuous or undersampled by the zonal wavefront sensor. Here, we report a new method to reconstruct the wavefront by directly measuring local wavefront phases in parallel using multidither coherent optical adaptive technique. This method determines the relative phases of each pupil segment independently, and thus produces an accurate wavefront for even discontinuous wavefronts. We implemented this method in an adaptive optical two-photon fluorescence microscopy and demonstrated its superior performance in correcting large or discontinuous aberrations.
On-line upgrade of program modules using AdaPT
NASA Technical Reports Server (NTRS)
Waldrop, Raymond S.; Volz, Richard A.; Smith, Gary W.; Goldsack, Stephen J.; Holzbach-Valero, A. A.
1993-01-01
One purpose of our research is the investigation of the effectiveness and expressiveness of AdaPT, a set of language extensions to Ada 83, for distributed systems. As a part of that effort, we are now investigating the subject of replacing, e.g. upgrading, software modules while the software system remains in operation. The AdaPT language extensions provide a good basis for this investigation for several reasons: they include the concept of specific, self-contained program modules which can be manipulated; support for program configuration is included in the language; and although the discussion will be in terms of the AdaPT language, the AdaPT to Ada 83 conversion methodology being developed as another part of this project will provide a basis for the application of our findings to Ada 83 and Ada 9X systems. The purpose of this investigation is to explore the basic mechanisms of the replacement process. With this purpose in mind, we will avoid including issues whose presence would obscure these basic mechanisms by introducing additional, unrelated concerns. Thus, while replacement in the presence of real-time deadlines, heterogeneous systems, and unreliable networks is certainly a topic of interest, we will first gain an understanding of the basic processes in the absence of such concerns. The extension of the replacement process to more complex situations can be made later. A previous report established an overview of the module replacement problem, a taxonomy of the various aspects of the replacement process, and a solution to one case in the replacement taxonomy. This report provides solutions to additional cases in the replacement process taxonomy: replacement of partitions with state and replacement of nodes. The solutions presented here establish the basic principles for module replacement. Extension of these solutions to other more complicated cases in the replacement taxonomy is direct, though requiring substantial work beyond the available funding.
Gaussian error correction of quantum states in a correlated noisy channel.
Lassen, Mikael; Berni, Adriano; Madsen, Lars S; Filip, Radim; Andersen, Ulrik L
2013-11-01
Noise is the main obstacle for the realization of fault-tolerant quantum information processing and secure communication over long distances. In this work, we propose a communication protocol relying on simple linear optics that optimally protects quantum states from non-Markovian or correlated noise. We implement the protocol experimentally and demonstrate the near-ideal protection of coherent and entangled states in an extremely noisy channel. Since all real-life channels are exhibiting pronounced non-Markovian behavior, the proposed protocol will have immediate implications in improving the performance of various quantum information protocols.
Esper, Maria Angela Lacerda Rangel; Nicolau, Renata Amadei; Arisawa, Emília Angela Lo Schiavo
2011-09-01
Phototherapy with low-level coherent light (laser) has been reported as an analgesic and anti-inflammatory as well as having a positive effect in tissue repair in orthodontics. However, there are few clinical studies using low-level LED therapy (non-coherent light). The aim of the present study was to analyze the pain symptoms after orthodontic tooth movement associated with and not associated with coherent and non-coherent phototherapy. Fifty-five volunteers (mean age = 24.1 ± 8.1 years) were randomly divided into four groups: G1 (control), G2 (placebo), G3 (protocol 1: laser, InGaAlP, 660 nm, 4 J/cm(2), 0.03 W, 25 s), G4 (protocol 2: LED, GaAlAs, 640 nm with 40 nm full-bandwidth at half-maximum, 4 J/cm(2), 0.10 W, 70 s). Separators were used to induce orthodontic pain and the volunteers pain levels were scored with the visual analog scale (VAS) after the separator placement, after the therapy (placebo, laser, or LED), and after 2, 24, 48, 72, 96, and 120 h. The laser group did not have statistically significant results in the reduction of pain level compared to the LED group. The LED group had a significant reduction in pain levels between 2 and 120 h compared to the control and the laser groups. The LED therapy showed a significant reduction in pain sensitivity (an average of 56%), after the orthodontic tooth movement when compared to the control group.
Continuous Feedback and Macroscopic Coherence
NASA Technical Reports Server (NTRS)
Tombesi, Paolo; Vitali, David
1996-01-01
We show that a model, recently introduced for quantum nondemolition measurements of a quantum observable, can be adapted to obtain a measurement scheme which is able to slow down the destruction of macroscopic coherence due to the measurement apparatus.
Effects of quantum coherence on work statistics
NASA Astrophysics Data System (ADS)
Xu, Bao-Ming; Zou, Jian; Guo, Li-Sha; Kong, Xiang-Mu
2018-05-01
In the conventional two-point measurement scheme of quantum thermodynamics, quantum coherence is destroyed by the first measurement. But as we know the coherence really plays an important role in the quantum thermodynamics process, and how to describe the work statistics for a quantum coherent process is still an open question. In this paper, we use the full counting statistics method to investigate the effects of quantum coherence on work statistics. First, we give a general discussion and show that for a quantum coherent process, work statistics is very different from that of the two-point measurement scheme, specifically the average work is increased or decreased and the work fluctuation can be decreased by quantum coherence, which strongly depends on the relative phase, the energy level structure, and the external protocol. Then, we concretely consider a quenched one-dimensional transverse Ising model and show that quantum coherence has a more significant influence on work statistics in the ferromagnetism regime compared with that in the paramagnetism regime, so that due to the presence of quantum coherence the work statistics can exhibit the critical phenomenon even at high temperature.
Phase-insensitive storage of coherences by reversible mapping onto long-lived populations
NASA Astrophysics Data System (ADS)
Mieth, Simon; Genov, Genko T.; Yatsenko, Leonid P.; Vitanov, Nikolay V.; Halfmann, Thomas
2016-01-01
We theoretically develop and experimentally demonstrate a coherence population mapping (CPM) protocol to store atomic coherences in long-lived populations, enabling storage times far beyond the typically very short decoherence times of quantum systems. The amplitude and phase of an atomic coherence is written onto the populations of a three-state system by specifically designed sequences of radiation pulses from two coupling fields. As an important feature, the CPM sequences enable a retrieval efficiency, which is insensitive to the phase of the initial coherence. The information is preserved in every individual atom of the medium, enabling applications in purely homogeneously or inhomogeneously broadened ensembles even when stochastic phase jumps are the main source of decoherence. We experimentally confirm the theoretical predictions by applying CPM for storage of atomic coherences in a doped solid, reaching storage times in the regime of 1 min.
Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.
2010-09-07
This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.
Towards an ab initio theory for metal L-edge soft X-ray spectroscopy of molecular aggregates.
Preuße, Marie; Bokarev, Sergey I; Aziz, Saadullah G; Kühn, Oliver
2016-11-01
The Frenkel exciton model was adapted to describe X-ray absorption and resonant inelastic scattering spectra of polynuclear transition metal complexes by means of the restricted active space self-consistent field method. The proposed approach allows to substantially decrease the requirements on computational resources if compared to a full supermolecular quantum chemical treatment. This holds true, in particular, in cases where the dipole approximation to the electronic transition charge density can be applied. The computational protocol was applied to the calculation of X-ray spectra of the hemin complex, which forms dimers in aqueous solution. The aggregation effects were found to be comparable to the spectral alterations due to the replacement of the axial ligand by solvent molecules.
Security of Continuous-Variable Quantum Key Distribution via a Gaussian de Finetti Reduction
NASA Astrophysics Data System (ADS)
Leverrier, Anthony
2017-05-01
Establishing the security of continuous-variable quantum key distribution against general attacks in a realistic finite-size regime is an outstanding open problem in the field of theoretical quantum cryptography if we restrict our attention to protocols that rely on the exchange of coherent states. Indeed, techniques based on the uncertainty principle are not known to work for such protocols, and the usual tools based on de Finetti reductions only provide security for unrealistically large block lengths. We address this problem here by considering a new type of Gaussian de Finetti reduction, that exploits the invariance of some continuous-variable protocols under the action of the unitary group U (n ) (instead of the symmetric group Sn as in usual de Finetti theorems), and by introducing generalized S U (2 ,2 ) coherent states. Crucially, combined with an energy test, this allows us to truncate the Hilbert space globally instead as at the single-mode level as in previous approaches that failed to provide security in realistic conditions. Our reduction shows that it is sufficient to prove the security of these protocols against Gaussian collective attacks in order to obtain security against general attacks, thereby confirming rigorously the widely held belief that Gaussian attacks are indeed optimal against such protocols.
Security of Continuous-Variable Quantum Key Distribution via a Gaussian de Finetti Reduction.
Leverrier, Anthony
2017-05-19
Establishing the security of continuous-variable quantum key distribution against general attacks in a realistic finite-size regime is an outstanding open problem in the field of theoretical quantum cryptography if we restrict our attention to protocols that rely on the exchange of coherent states. Indeed, techniques based on the uncertainty principle are not known to work for such protocols, and the usual tools based on de Finetti reductions only provide security for unrealistically large block lengths. We address this problem here by considering a new type of Gaussian de Finetti reduction, that exploits the invariance of some continuous-variable protocols under the action of the unitary group U(n) (instead of the symmetric group S_{n} as in usual de Finetti theorems), and by introducing generalized SU(2,2) coherent states. Crucially, combined with an energy test, this allows us to truncate the Hilbert space globally instead as at the single-mode level as in previous approaches that failed to provide security in realistic conditions. Our reduction shows that it is sufficient to prove the security of these protocols against Gaussian collective attacks in order to obtain security against general attacks, thereby confirming rigorously the widely held belief that Gaussian attacks are indeed optimal against such protocols.
Noise adaptive wavelet thresholding for speckle noise removal in optical coherence tomography.
Zaki, Farzana; Wang, Yahui; Su, Hao; Yuan, Xin; Liu, Xuan
2017-05-01
Optical coherence tomography (OCT) is based on coherence detection of interferometric signals and hence inevitably suffers from speckle noise. To remove speckle noise in OCT images, wavelet domain thresholding has demonstrated significant advantages in suppressing noise magnitude while preserving image sharpness. However, speckle noise in OCT images has different characteristics in different spatial scales, which has not been considered in previous applications of wavelet domain thresholding. In this study, we demonstrate a noise adaptive wavelet thresholding (NAWT) algorithm that exploits the difference of noise characteristics in different wavelet sub-bands. The algorithm is simple, fast, effective and is closely related to the physical origin of speckle noise in OCT image. Our results demonstrate that NAWT outperforms conventional wavelet thresholding.
Chen, Hao; Wang, Yi-jie; Yang, Li; Sui, Jian-feng; Hu, Zhi-an; Hu, Bo
2016-01-01
Associative learning is thought to require coordinated activities among distributed brain regions. For example, to direct behavior appropriately, the medial prefrontal cortex (mPFC) must encode and maintain sensory information and then interact with the cerebellum during trace eyeblink conditioning (TEBC), a commonly-used associative learning model. However, the mechanisms by which these two distant areas interact remain elusive. By simultaneously recording local field potential (LFP) signals from the mPFC and the cerebellum in guinea pigs undergoing TEBC, we found that theta-frequency (5.0–12.0 Hz) oscillations in the mPFC and the cerebellum became strongly synchronized following presentation of auditory conditioned stimulus. Intriguingly, the conditioned eyeblink response (CR) with adaptive timing occurred preferentially in the trials where mPFC-cerebellum theta coherence was stronger. Moreover, both the mPFC-cerebellum theta coherence and the adaptive CR performance were impaired after the disruption of endogenous orexins in the cerebellum. Finally, association of the mPFC -cerebellum theta coherence with adaptive CR performance was time-limited occurring in the early stage of associative learning. These findings suggest that the mPFC and the cerebellum may act together to contribute to the adaptive performance of associative learning behavior by means of theta synchronization. PMID:26879632
2015-02-06
additional pages if necessary.) PROTOCOL#: FDG20140008A DATE: 6 February 2015 PROTOCOL TITLE: A Pilot Study of Common Bile Duct Reconstruction with...obstruction or bile peritonitis. This was reported to the IACUC chair. 9. REDUCTION, REFINEMENT, OR REPLACEMENT OF ANIMAL USE; REPLACEMENT...benefit the DoD/USAF? We developed a porcine model of common bile duct injury and interposition grafting, gained experience managing these patients
Round-robin differential-phase-shift quantum key distribution with heralded pair-coherent sources
NASA Astrophysics Data System (ADS)
Wang, Le; Zhao, Shengmei
2017-04-01
Round-robin differential-phase-shift (RRDPS) quantum key distribution (QKD) scheme provides an effective way to overcome the signal disturbance from the transmission process. However, most RRDPS-QKD schemes use weak coherent pulses (WCPs) as the replacement of the perfect single-photon source. Considering the heralded pair-coherent source (HPCS) can efficiently remove the shortcomings of WCPs, we propose a RRDPS-QKD scheme with HPCS in this paper. Both infinite-intensity decoy-state method and practical three-intensity decoy-state method are adopted to discuss the tight bound of the key rate of the proposed scheme. The results show that HPCS is a better candidate for the replacement of the perfect single-photon source, and both the key rate and the transmission distance are greatly increased in comparison with those results with WCPs when the length of the pulse trains is small. Simultaneously, the performance of the proposed scheme using three-intensity decoy states is close to that result using infinite-intensity decoy states when the length of pulse trains is small.
X-ray-generated heralded macroscopical quantum entanglement of two nuclear ensembles.
Liao, Wen-Te; Keitel, Christoph H; Pálffy, Adriana
2016-09-19
Heralded entanglement between macroscopical samples is an important resource for present quantum technology protocols, allowing quantum communication over large distances. In such protocols, optical photons are typically used as information and entanglement carriers between macroscopic quantum memories placed in remote locations. Here we investigate theoretically a new implementation which employs more robust x-ray quanta to generate heralded entanglement between two crystal-hosted macroscopical nuclear ensembles. Mössbauer nuclei in the two crystals interact collectively with an x-ray spontaneous parametric down conversion photon that generates heralded macroscopical entanglement with coherence times of approximately 100 ns at room temperature. The quantum phase between the entangled crystals can be conveniently manipulated by magnetic field rotations at the samples. The inherent long nuclear coherence times allow also for mechanical manipulations of the samples, for instance to check the stability of entanglement in the x-ray setup. Our results pave the way for first quantum communication protocols that use x-ray qubits.
Tenten-Diepenmaat, Marloes; Dekker, Joost; Steenbergen, Menno; Huybrechts, Elleke; Roorda, Leo D; van Schaardenburg, Dirkjan; Bus, Sicco A; van der Leeden, Marike
2016-03-01
Improving foot orthoses (FOs) in patients with rheumatoid arthritis (RA) by using in-shoe plantar pressure measurements seems promising. The objectives of this study were to evaluate (1) the outcome on plantar pressure distribution of FOs that were adapted using in-shoe plantar pressure measurements according to a protocol and (2) the protocol feasibility. Forty-five RA patients with foot problems were included in this observational proof-of concept study. FOs were custom-made by a podiatrist according to usual care. Regions of Interest (ROIs) for plantar pressure reduction were selected. According to a protocol, usual care FOs were evaluated using in-shoe plantar pressure measurements and, if necessary, adapted. Plantar pressure-time integrals at the ROIs were compared between the following conditions: (1) no-FO versus usual care FO and (2) usual care FO versus adapted FO. Semi-structured interviews were held with patients and podiatrists to evaluate the feasibility of the protocol. Adapted FOs were developed in 70% of the patients. In these patients, usual care FOs showed a mean 9% reduction in pressure-time integral at forefoot ROIs compared to no-FOs (p=0.01). FO adaptation led to an additional mean 3% reduction in pressure-time integral (p=0.05). The protocol was considered feasible by patients. Podiatrists considered the protocol more useful to achieve individual rather than general treatment goals. A final protocol was proposed. Using in-shoe plantar pressure measurements for adapting foot orthoses for patients with RA leads to a small additional plantar pressure reduction in the forefoot. Further research on the clinical relevance of this outcome is required. Copyright © 2016. Published by Elsevier B.V.
Speckle reduction in optical coherence tomography by adaptive total variation method
NASA Astrophysics Data System (ADS)
Wu, Tong; Shi, Yaoyao; Liu, Youwen; He, Chongjun
2015-12-01
An adaptive total variation method based on the combination of speckle statistics and total variation restoration is proposed and developed for reducing speckle noise in optical coherence tomography (OCT) images. The statistical distribution of the speckle noise in OCT image is investigated and measured. With the measured parameters such as the mean value and variance of the speckle noise, the OCT image is restored by the adaptive total variation restoration method. The adaptive total variation restoration algorithm was applied to the OCT images of a volunteer's hand skin, which showed effective speckle noise reduction and image quality improvement. For image quality comparison, the commonly used median filtering method was also applied to the same images to reduce the speckle noise. The measured results demonstrate the superior performance of the adaptive total variation restoration method in terms of image signal-to-noise ratio, equivalent number of looks, contrast-to-noise ratio, and mean square error.
Observable measure of quantum coherence in finite dimensional systems.
Girolami, Davide
2014-10-24
Quantum coherence is the key resource for quantum technology, with applications in quantum optics, information processing, metrology, and cryptography. Yet, there is no universally efficient method for quantifying coherence either in theoretical or in experimental practice. I introduce a framework for measuring quantum coherence in finite dimensional systems. I define a theoretical measure which satisfies the reliability criteria established in the context of quantum resource theories. Then, I present an experimental scheme implementable with current technology which evaluates the quantum coherence of an unknown state of a d-dimensional system by performing two programmable measurements on an ancillary qubit, in place of the O(d2) direct measurements required by full state reconstruction. The result yields a benchmark for monitoring quantum effects in complex systems, e.g., certifying nonclassicality in quantum protocols and probing the quantum behavior of biological complexes.
Wu, Jinlu
2013-01-01
Laboratory education can play a vital role in developing a learner's autonomy and scientific inquiry skills. In an innovative, mutation-based learning (MBL) approach, students were instructed to redesign a teacher-designed standard experimental protocol by a “mutation” method in a molecular genetics laboratory course. Students could choose to delete, add, reverse, or replace certain steps of the standard protocol to explore questions of interest to them in a given experimental scenario. They wrote experimental proposals to address their rationales and hypotheses for the “mutations”; conducted experiments in parallel, according to both standard and mutated protocols; and then compared and analyzed results to write individual lab reports. Various autonomy-supportive measures were provided in the entire experimental process. Analyses of student work and feedback suggest that students using the MBL approach 1) spend more time discussing experiments, 2) use more scientific inquiry skills, and 3) find the increased autonomy afforded by MBL more enjoyable than do students following regimented instructions in a conventional “cookbook”-style laboratory. Furthermore, the MBL approach does not incur an obvious increase in labor and financial costs, which makes it feasible for easy adaptation and implementation in a large class. PMID:24006394
Optical coherence tomography: A guide to interpretation of common macular diseases
Bhende, Muna; Shetty, Sharan; Parthasarathy, Mohana Kuppuswamy; Ramya, S
2018-01-01
Optical coherence tomography is a quick, non invasive and reproducible imaging tool for macular lesions and has become an essential part of retina practice. This review address the common protocols for imaging the macula, basics of image interpretation, features of common macular disorders with clues to differentiate mimickers and an introduction to choroidal imaging. It includes case examples and also a practical algorithm for interpretation. PMID:29283118
Iterative tailoring of optical quantum states with homodyne measurements.
Etesse, Jean; Kanseri, Bhaskar; Tualle-Brouri, Rosa
2014-12-01
As they can travel long distances, free space optical quantum states are good candidates for carrying information in quantum information technology protocols. These states, however, are often complex to produce and require protocols whose success probability drops quickly with an increase of the mean photon number. Here we propose a new protocol for the generation and growth of arbitrary states, based on one by one coherent adjunctions of the simple state superposition α|0〉 + β|1〉. Due to the nature of the protocol, which allows for the use of quantum memories, it can lead to high performances.
Sivaprasad, Sobha; Arden, Geoffrey; Prevost, A Toby; Crosby-Nwaobi, Roxanne; Holmes, Helen; Kelly, Joanna; Murphy, Caroline; Rubin, Gary; Vasconcelos, Joanna; Hykin, Philip
2014-11-22
This study will evaluate hypoxia, as a novel concept in the pathogenesis of diabetic macular oedema (DMO). As the oxygen demand of the eye is maximum during dark-adaptation, we hypothesize that wearing light-masks during sleep will cause regression and prevent the development and progression of DMO. The study protocol comprises both an efficacy and mechanistic evaluation to test this hypothesis. This is a phase III randomised controlled single-masked multicentre clinical trial to test the clinical efficacy of light-masks at preventing dark-adaptation in the treatment of non-central DMO. Three hundred patients with non-centre-involving DMO in at least one eye will be randomised 1:1 to light-masks and control masks (with no light) to be used during sleep at night for a period of 24 months. The primary outcome is regression of non-central oedema by assessing change in the zone of maximal retinal thickness at baseline on optical coherence tomography (SD-OCT). Secondary outcomes will evaluate the prevention of development and progression of DMO by assessing changes in retinal thickness in different regions of the macula, macular volume, refracted visual acuity and level of retinopathy. Safety parameters will include sleep disturbance. Adverse events and measures of compliance will be assessed over 24 months. Participants recruited to the mechanistic sub-study will have additional retinal oximetry, multifocal electroretinography (ERG) and microperimetry to evaluate the role of hypoxia by assessing and comparing changes induced by supplemental oxygen and the light-masks at 12 months. The outcomes of this study will provide insight into the pathogenesis of DMO and provide evidence on whether a simple, non-invasive device in the form of a light-mask can help prevent the progression to centre-involving DMO and visual impairment in people with diabetes.
NASA Technical Reports Server (NTRS)
Anderson, Richard
1994-01-01
The concept in the initial alignment of the segmented mirror adaptive optics telescope called the phased array mirror extendable large aperture telescope (Pamela) is to produce an optical transfer function (OTF) which closely approximates the diffraction limited value which would correspond to a system pupil function that is unity over the aperture and zero outside. There are differences in the theory of intensity measurements between coherent and incoherent radiation. As a result, some of the classical quantities which describe the performance of an optical system for incoherent radiation can not be defined for a coherent field. The most important quantity describing the quality of an optical system is the OTF and for a coherent source the OTF is not defined. Instead a coherent transfer function (CTF) is defined. The main conclusion of the paper is that an incoherent collimated source and not a collimated laser source is preferred to calibrate the Hartmann wavefront sensor (WFS) of an aligned adaptive optical system. A distant laser source can be used with minimum problems to correct the system for atmospheric turbulence. The collimation of the HeNe laser alignment source can be improved by using a very small pin hole in the spatial filter so only the central portion of the beam is transmitted and the beam from the filter is nearly constant in amplitude. The size of this pin hole will be limited by the sensitivity of the lateral effect diode (LEDD) elements.
ERIC Educational Resources Information Center
Hass-Cohen, Noah; Clyde Findlay, Joanna; Carr, Richard; Vanderlan, Jessica
2014-01-01
The Check ("Check, Change What You Need To Change and/or Keep What You Want") art therapy protocol is a sequence of directives for treating trauma that is grounded in neurobiological theory and designed to facilitate trauma narrative processing, autobiographical coherency, and the rebalancing of dysregulated responses to psychosocial…
Blind quantum computing with weak coherent pulses.
Dunjko, Vedran; Kashefi, Elham; Leverrier, Anthony
2012-05-18
The universal blind quantum computation (UBQC) protocol [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual IEEE Symposiumon Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, USA, 2009), pp. 517-526.] allows a client to perform quantum computation on a remote server. In an ideal setting, perfect privacy is guaranteed if the client is capable of producing specific, randomly chosen single qubit states. While from a theoretical point of view, this may constitute the lowest possible quantum requirement, from a pragmatic point of view, generation of such states to be sent along long distances can never be achieved perfectly. We introduce the concept of ϵ blindness for UBQC, in analogy to the concept of ϵ security developed for other cryptographic protocols, allowing us to characterize the robustness and security properties of the protocol under possible imperfections. We also present a remote blind single qubit preparation protocol with weak coherent pulses for the client to prepare, in a delegated fashion, quantum states arbitrarily close to perfect random single qubit states. This allows us to efficiently achieve ϵ-blind UBQC for any ϵ>0, even if the channel between the client and the server is arbitrarily lossy.
Blind Quantum Computing with Weak Coherent Pulses
NASA Astrophysics Data System (ADS)
Dunjko, Vedran; Kashefi, Elham; Leverrier, Anthony
2012-05-01
The universal blind quantum computation (UBQC) protocol [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual IEEE Symposiumon Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, USA, 2009), pp. 517-526.] allows a client to perform quantum computation on a remote server. In an ideal setting, perfect privacy is guaranteed if the client is capable of producing specific, randomly chosen single qubit states. While from a theoretical point of view, this may constitute the lowest possible quantum requirement, from a pragmatic point of view, generation of such states to be sent along long distances can never be achieved perfectly. We introduce the concept of ɛ blindness for UBQC, in analogy to the concept of ɛ security developed for other cryptographic protocols, allowing us to characterize the robustness and security properties of the protocol under possible imperfections. We also present a remote blind single qubit preparation protocol with weak coherent pulses for the client to prepare, in a delegated fashion, quantum states arbitrarily close to perfect random single qubit states. This allows us to efficiently achieve ɛ-blind UBQC for any ɛ>0, even if the channel between the client and the server is arbitrarily lossy.
Joshua S. Halofsky; Daniel C. Donato; Jerry F. Franklin; Jessica E. Halofsky; David L. Peterson; Brian J. Harvey
2018-01-01
Building resilience to natural disturbances is a key to managing forests for adaptation to climate change. To date, most climate adaptation guidance has focused on recommendations for frequent-fire forests, leaving few published guidelines for forests that naturally experience infrequent, stand-replacing wildfires. Because most such forests are inherently resilient to...
Tu, Haohua; Zhao, Youbo; Liu, Yuan; Liu, Yuan-Zhi; Boppart, Stephen
2014-08-25
Optical sources in the visible region immediately adjacent to the near-infrared biological optical window are preferred in imaging techniques such as spectroscopic optical coherence tomography of endogenous absorptive molecules and two-photon fluorescence microscopy of intrinsic fluorophores. However, existing sources based on fiber supercontinuum generation are known to have high relative intensity noise and low spectral coherence, which may degrade imaging performance. Here we compare the optical noise and pulse compressibility of three high-power fiber Cherenkov radiation sources developed recently, and evaluate their potential to replace the existing supercontinuum sources in these imaging techniques.
NASA Astrophysics Data System (ADS)
Waldman, Jerry; Danylov, Andriy A.; Goyette, Thomas M.; Coulombe, Michael J.; Giles, Robert H.; Gatesman, Andrew J.; Goodhue, William D.; Li, Jin; Linden, Kurt J.; Nixon, William E.
2009-02-01
Coherent terahertz radar systems, using CO2 laser-pumped molecular lasers have been used during the past decade for radar scale modeling applications, as well as proof-of-principle demonstrations of remote detection of concealed weapons. The presentation will consider the potential for replacement of molecular laser sources by quantum cascade lasers. While the temporal and spatial characteristics of current THz QCLs limit their applicability, rapid progress is being made in resolving these issues. Specifications for satisfying the requirements of coherent short-range THz radars will be reviewed and the feasibility of incorporating existing QCL devices into such systems will be described.
NASA Astrophysics Data System (ADS)
Gregory, M.; Troendle, D.; Muehlnikel, G.; Heine, F.; Meyer, R.; Lutzer, M.; Czichy, R.
2013-03-01
Tesat is performing inter-satellite links (ISLs) for over 5 years now. Besides the successful demonstration of the suitability of coherent laser communication for high speed data transmission in space, Tesat has also conducted two major satellite to ground link (SGL) campaigns during the last 3 years. A transportable ground station has been developed to measure the impact of atmospheric turbulence to the coherent system. The SGLs have been performed between the Tesat optical ground station and the two LEO satellites TerraSAR-X and NFIRE, both equipped with a Tesat LCT. The capability of the LCTs of measuring the signal intensity on a direct detection sensor and on a coherent sensor simultaneously makes the system unique for investigating the atmospheric distortion impacts. In this paper the main results of the SGL campaigns are presented, including BER performance for the uplink and downlink. Measured scintillation profiles versus elevation angles at different weather conditions are illustrated. Finally preliminary results of an adaptive optics system are presented that has been developed to be used in the transportable adaptive optical ground station (T-AOGS) acting as the counter terminal for the LCT mounted on Alphasat, a geostationary satellite of the European Space Agency (ESA), in autumn 2013.
Qi, Bing; Lim, Charles Ci Wen
2018-05-07
Recently, we proposed a simultaneous quantum and classical communication (SQCC) protocol where random numbers for quantum key distribution and bits for classical communication are encoded on the same weak coherent pulse and decoded by the same coherent receiver. Such a scheme could be appealing in practice since a single coherent communication system can be used for multiple purposes. However, previous studies show that the SQCC protocol can tolerate only very small phase noise. This makes it incompatible with the coherent communication scheme using a true local oscillator (LO), which presents a relatively high phase noise due to the fact thatmore » the signal and the LO are generated from two independent lasers. We improve the phase noise tolerance of the SQCC scheme using a true LO by adopting a refined noise model where phase noises originating from different sources are treated differently: on the one hand, phase noise associated with the coherent receiver may be regarded as trusted noise since the detector can be calibrated locally and the photon statistics of the detected signals can be determined from the measurement results; on the other hand, phase noise due to the instability of fiber interferometers may be regarded as untrusted noise since its randomness (from the adversary’s point of view) is hard to justify. Simulation results show the tolerable phase noise in this refined noise model is significantly higher than that in the previous study, where all of the phase noises are assumed to be untrusted. In conclusion, we conduct an experiment to show that the required phase stability can be achieved in a coherent communication system using a true LO.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Bing; Lim, Charles Ci Wen
Recently, we proposed a simultaneous quantum and classical communication (SQCC) protocol where random numbers for quantum key distribution and bits for classical communication are encoded on the same weak coherent pulse and decoded by the same coherent receiver. Such a scheme could be appealing in practice since a single coherent communication system can be used for multiple purposes. However, previous studies show that the SQCC protocol can tolerate only very small phase noise. This makes it incompatible with the coherent communication scheme using a true local oscillator (LO), which presents a relatively high phase noise due to the fact thatmore » the signal and the LO are generated from two independent lasers. We improve the phase noise tolerance of the SQCC scheme using a true LO by adopting a refined noise model where phase noises originating from different sources are treated differently: on the one hand, phase noise associated with the coherent receiver may be regarded as trusted noise since the detector can be calibrated locally and the photon statistics of the detected signals can be determined from the measurement results; on the other hand, phase noise due to the instability of fiber interferometers may be regarded as untrusted noise since its randomness (from the adversary’s point of view) is hard to justify. Simulation results show the tolerable phase noise in this refined noise model is significantly higher than that in the previous study, where all of the phase noises are assumed to be untrusted. In conclusion, we conduct an experiment to show that the required phase stability can be achieved in a coherent communication system using a true LO.« less
NASA Astrophysics Data System (ADS)
Qi, Bing; Lim, Charles Ci Wen
2018-05-01
Recently, we proposed a simultaneous quantum and classical communication (SQCC) protocol where random numbers for quantum key distribution and bits for classical communication are encoded on the same weak coherent pulse and decoded by the same coherent receiver. Such a scheme could be appealing in practice since a single coherent communication system can be used for multiple purposes. However, previous studies show that the SQCC protocol can tolerate only very small phase noise. This makes it incompatible with the coherent communication scheme using a true local oscillator (LO), which presents a relatively high phase noise due to the fact that the signal and the LO are generated from two independent lasers. We improve the phase noise tolerance of the SQCC scheme using a true LO by adopting a refined noise model where phase noises originating from different sources are treated differently: on the one hand, phase noise associated with the coherent receiver may be regarded as trusted noise since the detector can be calibrated locally and the photon statistics of the detected signals can be determined from the measurement results; on the other hand, phase noise due to the instability of fiber interferometers may be regarded as untrusted noise since its randomness (from the adversary's point of view) is hard to justify. Simulation results show the tolerable phase noise in this refined noise model is significantly higher than that in the previous study, where all of the phase noises are assumed to be untrusted. We conduct an experiment to show that the required phase stability can be achieved in a coherent communication system using a true LO.
Application of Soft Computing in Coherent Communications Phase Synchronization
NASA Technical Reports Server (NTRS)
Drake, Jeffrey T.; Prasad, Nadipuram R.
2000-01-01
The use of soft computing techniques in coherent communications phase synchronization provides an alternative to analytical or hard computing methods. This paper discusses a novel use of Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for phase synchronization in coherent communications systems utilizing Multiple Phase Shift Keying (MPSK) modulation. A brief overview of the M-PSK digital communications bandpass modulation technique is presented and it's requisite need for phase synchronization is discussed. We briefly describe the hybrid platform developed by Jang that incorporates fuzzy/neural structures namely the, Adaptive Neuro-Fuzzy Interference Systems (ANFIS). We then discuss application of ANFIS to phase estimation for M-PSK. The modeling of both explicit, and implicit phase estimation schemes for M-PSK symbols with unknown structure are discussed. Performance results from simulation of the above scheme is presented.
Coherent inflation for large quantum superpositions of levitated microspheres
NASA Astrophysics Data System (ADS)
Romero-Isart, Oriol
2017-12-01
We show that coherent inflation (CI), namely quantum dynamics generated by inverted conservative potentials acting on the center of mass of a massive object, is an enabling tool to prepare large spatial quantum superpositions in a double-slit experiment. Combined with cryogenic, extreme high vacuum, and low-vibration environments, we argue that it is experimentally feasible to exploit CI to prepare the center of mass of a micrometer-sized object in a spatial quantum superposition comparable to its size. In such a hitherto unexplored parameter regime gravitationally-induced decoherence could be unambiguously falsified. We present a protocol to implement CI in a double-slit experiment by letting a levitated microsphere traverse a static potential landscape. Such a protocol could be experimentally implemented with an all-magnetic scheme using superconducting microspheres.
Green, Esther; Ballantyne, Barbara; Tarasuk, Joy; Skrutkowski, Myriam; Carley, Meg; Chapman, Kim; Kuziemsky, Craig; Kolari, Erin; Sabo, Brenda; Saucier, Andréanne; Shaw, Tara; Tardif, Lucie; Truant, Tracy; Cummings, Greta G.; Howell, Doris
2016-01-01
ABSTRACT Background The pan‐Canadian Oncology Symptom Triage and Remote Support (COSTaRS) team developed 13 evidence‐informed protocols for symptom management. Aim To build an effective and sustainable approach for implementing the COSTaRS protocols for nurses providing telephone‐based symptom support to cancer patients. Methods A comparative case study was guided by the Knowledge to Action Framework. Three cases were created for three Canadian oncology programs that have nurses providing telephone support. Teams of researchers and knowledge users: (a) assessed barriers and facilitators influencing protocol use, (b) adapted protocols for local use, (c) intervened to address barriers, (d) monitored use, and (e) assessed barriers and facilitators influencing sustained use. Analysis was within and across cases. Results At baseline, >85% nurses rated protocols positively but barriers were identified (64‐80% needed training). Patients and families identified similar barriers and thought protocols would enhance consistency among nurses teaching self‐management. Twenty‐two COSTaRS workshops reached 85% to 97% of targeted nurses (N = 119). Nurses felt more confident with symptom management and using the COSTaRS protocols (p < .01). Protocol adaptations addressed barriers (e.g., health records approval, creating pocket versions, distributing with telephone messages). Chart audits revealed that protocols used were documented for 11% to 47% of patient calls. Sustained use requires organizational alignment and ongoing leadership support. Linking Evidence to Action Protocol uptake was similar to trials that have evaluated tailored interventions to improve professional practice by overcoming identified barriers. Collaborating with knowledge users facilitated interpretation of findings, aided protocol adaptation, and supported implementation. Protocol implementation in nursing requires a tailored approach. A multifaceted intervention approach increased nurses’ use of evidence‐informed protocols during telephone calls with patients about symptoms. Training and other interventions improved nurses’ confidence with using COSTaRS protocols and their uptake was evident in some documented telephone calls. Protocols could be adapted for use by patients and nurses globally. PMID:27243574
A dual-modal retinal imaging system with adaptive optics.
Meadway, Alexander; Girkin, Christopher A; Zhang, Yuhua
2013-12-02
An adaptive optics scanning laser ophthalmoscope (AO-SLO) is adapted to provide optical coherence tomography (OCT) imaging. The AO-SLO function is unchanged. The system uses the same light source, scanning optics, and adaptive optics in both imaging modes. The result is a dual-modal system that can acquire retinal images in both en face and cross-section planes at the single cell level. A new spectral shaping method is developed to reduce the large sidelobes in the coherence profile of the OCT imaging when a non-ideal source is used with a minimal introduction of noise. The technique uses a combination of two existing digital techniques. The thickness and position of the traditionally named inner segment/outer segment junction are measured from individual photoreceptors. In-vivo images of healthy and diseased human retinas are demonstrated.
Adaptive low-power listening MAC protocol based on transmission rates.
Hwang, Kwang-il; Yi, Gangman
2014-01-01
Even though existing low-power listening (LPL) protocols have enabled ultra-low-power operation in wireless sensor networks (WSN), they do not address trade-off between energy and delay, since they focused only on energy aspect. However, in recent years, a growing interest in various WSN applications is requiring new design factors, such as minimum delay and higher reliability, as well as energy efficiency. Therefore, in this paper we propose a novel sensor multiple access control (MAC) protocol, transmission rate based adaptive low-power listening MAC protocol (TRA-MAC), which is a kind of preamble-based LPL but is capable of controlling preamble sensing cycle adaptively to transmission rates. Through experiments, it is demonstrated that TRA-MAC enables LPL cycle (LC) and preamble transmission length to adapt dynamically to varying transmission rates, compensating trade-off between energy and response time.
Quantum key distribution with entangled photon sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma Xiongfeng; Fung, Chi-Hang Fred; Lo, H.-K.
2007-07-15
A parametric down-conversion (PDC) source can be used as either a triggered single-photon source or an entangled-photon source in quantum key distribution (QKD). The triggering PDC QKD has already been studied in the literature. On the other hand, a model and a post-processing protocol for the entanglement PDC QKD are still missing. We fill in this important gap by proposing such a model and a post-processing protocol for the entanglement PDC QKD. Although the PDC model is proposed to study the entanglement-based QKD, we emphasize that our generic model may also be useful for other non-QKD experiments involving a PDCmore » source. Since an entangled PDC source is a basis-independent source, we apply Koashi and Preskill's security analysis to the entanglement PDC QKD. We also investigate the entanglement PDC QKD with two-way classical communications. We find that the recurrence scheme increases the key rate and the Gottesman-Lo protocol helps tolerate higher channel losses. By simulating a recent 144-km open-air PDC experiment, we compare three implementations: entanglement PDC QKD, triggering PDC QKD, and coherent-state QKD. The simulation result suggests that the entanglement PDC QKD can tolerate higher channel losses than the coherent-state QKD. The coherent-state QKD with decoy states is able to achieve highest key rate in the low- and medium-loss regions. By applying the Gottesman-Lo two-way post-processing protocol, the entanglement PDC QKD can tolerate up to 70 dB combined channel losses (35 dB for each channel) provided that the PDC source is placed in between Alice and Bob. After considering statistical fluctuations, the PDC setup can tolerate up to 53 dB channel losses.« less
Replacement of missing teeth with fiber-reinforced composite FPDs: clinical protocol.
Bouillaguet, Serge; Schütt, Andrea; Marin, Isabelle; Etechami, Leila; Di Salvo, Giancarlo; Krejci, Ivo
2003-04-01
The concept of minimally invasive preparation protocols has resulted in reduced loss of critical tooth structures and maintenance of optimal strength, form, and aesthetics. While various treatment options have been described for single-tooth replacement, fiber-reinforced composite (FRC) fixed partial dentures (FPDs) provide a viable treatment alternative with proven mechanical properties, aesthetics, and function. This article presents several clinical scenarios in which minimally invasive adhesive FRC FPDs are provided to deliver enhanced predictability, strength, and durability.
New indices from microneurography to investigate the arterial baroreflex.
Laurin, Alexandre; Lloyd, Matthew G; Hachiya, Tesshin; Saito, Mitsuru; Claydon, Victoria E; Blaber, Andrew
2017-06-01
Baroreflex-mediated changes in heart rate and vascular resistance in response to variations in blood pressure are critical to maintain homeostasis. We aimed to develop time domain analysis methods to complement existing cross-spectral techniques in the investigation of the vascular resistance baroreflex response to orthostatic stress. A secondary goal was to apply these methods to distinguish between levels of orthostatic tolerance using baseline data. Eleven healthy, normotensive males participated in a graded lower body negative pressure protocol. Within individual neurogenic baroreflex cycles, the amount of muscle sympathetic nerve activity (MSNA), the diastolic pressure stimulus and response amplitudes, diastolic pressure to MSNA burst stimulus and response times, as well as the stimulus and response slopes between diastolic pressure and MSNA were computed. Coherence, gain, and frequency of highest coherence between systolic/diastolic arterial pressure (SAP/DAP) and RR-interval time series were also computed. The number of MSNA bursts per low-frequency cycle increased from 2.55 ± 0.68 at baseline to 5.44 ± 1.56 at -40 mmHg of LBNP Stimulus time decreased (3.21 ± 1.48-1.46 ± 0.43 sec), as did response time (3.47 ± 0.86-2.37 ± 0.27 sec). At baseline, DAP-RR coherence, DAP-RR gain, and the time delay between decreases in DAP and MSNA bursts were higher in participants who experienced symptoms of presyncope. Results clarified the role of different branches of the baroreflex loop, and suggested functional adaptation of neuronal pathways to orthostatic stress. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
NASA Astrophysics Data System (ADS)
Mori, Ryuhei
2016-11-01
Brassard et al. [Phys. Rev. Lett. 96, 250401 (2006), 10.1103/PhysRevLett.96.250401] showed that shared nonlocal boxes with a CHSH (Clauser, Horne, Shimony, and Holt) probability greater than 3/+√{6 } 6 yield trivial communication complexity. There still exists a gap with the maximum CHSH probability 2/+√{2 } 4 achievable by quantum mechanics. It is an interesting open question to determine the exact threshold for the trivial communication complexity. Brassard et al.'s idea is based on recursive bias amplification by the three-input majority function. It was not obvious if another choice of function exhibits stronger bias amplification. We show that the three-input majority function is the unique optimal function, so that one cannot improve the threshold 3/+√{6 } 6 by Brassard et al.'s bias amplification. In this work, protocols for computing the function used for the bias amplification are restricted to be nonadaptive protocols or a particular adaptive protocol inspired by Pawłowski et al.'s protocol for information causality [Nature (London) 461, 1101 (2009), 10.1038/nature08400]. We first show an adaptive protocol inspired by Pawłowski et al.'s protocol, and then show that the adaptive protocol improves upon nonadaptive protocols. Finally, we show that the three-input majority function is the unique optimal function for the bias amplification if we apply the adaptive protocol to each step of the bias amplification.
Daruich, Alejandra; Matet, Alexandre; Schalenbourg, Ann; Zografos, Leonidas
2018-05-03
To evaluate, in eyes with radiation maculopathy, the effect of 2-month-interval anti-vascular endothelial growth factor therapy on best-corrected visual acuity and foveal avascular zone (FAZ) enlargement using optical coherence tomography angiography. Consecutive treatment-naive patients with radiation maculopathy after proton beam irradiation for choroidal melanoma were retrospectively included. Clinical and optical coherence tomography angiography data at baseline and the 6-month visit were recorded. Two independent observers measured FAZ area manually on 3 × 3-mm optical coherence tomography angiography images of the superficial capillary plexus and deep capillary plexus. Patients were encouraged to follow strictly a 2-month-interval intravitreal anti-vascular endothelial growth factor treatment by either bevacizumab or ranibizumab. Findings were analyzed based on the adherence to the treatment scheme. According to the adherence to the bimonthly anti-vascular endothelial growth factor treatment protocol, patients were categorized into 3 groups: treatment protocol (n = 19, strict adherence), variable intervals (n = 11, intervals other than 2 months), and no treatment (n = 11). The estimated radiation dose to the foveola in each group was 49 ± 16, 46 ± 17, and 46 ± 18 cobalt gray equivalent, respectively (P = 0.85). For the entire cohort, best-corrected visual acuity loss (P < 0.02) and FAZ enlargement (P < 0.0001) were observed over 6 months. Best-corrected visual acuity loss was significantly less pronounced in the treatment-protocol group than in the variable-interval and no-treatment groups (P = 0.007 and P = 0.004). The FAZ enlargement was lower in the treatment-protocol group compared with the variable-interval group for both superficial capillary plexus (P = 0.029) and deep capillary plexus (P = 0.03), and to the no-treatment group for the deep capillary plexus only (P = 0.016). Decrease in best-corrected visual acuity and FAZ enlargement on optical coherence tomography angiography occurred over 6 months in eyes with radiation maculopathy and were significantly reduced under 2-month-interval anti-vascular endothelial growth factor therapy.
Adaptive frequency-domain equalization in digital coherent optical receivers.
Faruk, Md Saifuddin; Kikuchi, Kazuro
2011-06-20
We propose a novel frequency-domain adaptive equalizer in digital coherent optical receivers, which can reduce computational complexity of the conventional time-domain adaptive equalizer based on finite-impulse-response (FIR) filters. The proposed equalizer can operate on the input sequence sampled by free-running analog-to-digital converters (ADCs) at the rate of two samples per symbol; therefore, the arbitrary initial sampling phase of ADCs can be adjusted so that the best symbol-spaced sequence is produced. The equalizer can also be configured in the butterfly structure, which enables demultiplexing of polarization tributaries apart from equalization of linear transmission impairments. The performance of the proposed equalization scheme is verified by 40-Gbits/s dual-polarization quadrature phase-shift keying (QPSK) transmission experiments.
Remote Entanglement by Coherent Multiplication of Concurrent Quantum Signals
NASA Astrophysics Data System (ADS)
Roy, Ananda; Jiang, Liang; Stone, A. Douglas; Devoret, Michel
2015-10-01
Concurrent remote entanglement of distant, noninteracting quantum entities is a crucial function for quantum information processing. In contrast with the existing protocols which employ the addition of signals to generate entanglement between two remote qubits, the continuous variable protocol we present is based on the multiplication of signals. This protocol can be straightforwardly implemented by a novel Josephson junction mixing circuit. Our scheme would be able to generate provable entanglement even in the presence of practical imperfections: finite quantum efficiency of detectors and undesired photon loss in current state-of-the-art devices.
Kessler, Terrance J; Bunkenburg, Joachim; Huang, Hu; Kozlov, Alexei; Meyerhofer, David D
2004-03-15
Petawatt solid-state lasers require meter-sized gratings to reach multiple-kilojoule energy levels without laser-induced damage. As an alternative to large single gratings, we demonstrate that smaller, coherently added (tiled) gratings can be used for subpicosecond-pulse compression. A Fourier-transform-limited, 650-fs chirped-pulse-amplified laser pulse is maintained by replacing a single compression grating with a tiled-grating assembly. Grating tiling provides a means to scale the energy and irradiance of short-pulse lasers.
Ocean waves and turbulence as observed with an adaptive coherent multifrequency radar
NASA Technical Reports Server (NTRS)
Gjessing, D. T.; Hjelmstad, J.
1984-01-01
An adaptive coherent multifrequency radar system is developed for several applications. The velocity distribution (Doppler spectrum) and spectral intensity of 15 different irregularity scales (waves and turbulence) can be measured simultaneously. Changing the azimuth angle of the antennas at regular intervals, the directivity of the wave/turbulence pattern on the sea surface can also be studied. A series of measurements for different air/sea conditions are carried out from a coast based platform. Experiments in the Atlantic are also performed with the same equipment making use of the NASA Electra aircraft. The multifrequency radar allows the measurement of the velocity distribution (""coherent and incoherent component'') associated with 15 different ocean irregularity scales simultaneously in a directional manner. It is possible to study the different air/sea mechanisms in some degree of detail.
Vorontsov, Mikhail; Weyrauch, Thomas; Lachinova, Svetlana; Gatz, Micah; Carhart, Gary
2012-07-15
Maximization of a projected laser beam's power density at a remotely located extended object (speckle target) can be achieved by using an adaptive optics (AO) technique based on sensing and optimization of the target-return speckle field's statistical characteristics, referred to here as speckle metrics (SM). SM AO was demonstrated in a target-in-the-loop coherent beam combining experiment using a bistatic laser beam projection system composed of a coherent fiber-array transmitter and a power-in-the-bucket receiver. SM sensing utilized a 50 MHz rate dithering of the projected beam that provided a stair-mode approximation of the outgoing combined beam's wavefront tip and tilt with subaperture piston phases. Fiber-integrated phase shifters were used for both the dithering and SM optimization with stochastic parallel gradient descent control.
Spectral coherent-state quantum cryptography.
Cincotti, Gabriella; Spiekman, Leo; Wada, Naoya; Kitayama, Ken-ichi
2008-11-01
A novel implementation of quantum-noise optical cryptography is proposed, which is based on a simplified architecture that allows long-haul, high-speed transmission in a fiber optical network. By using a single multiport encoder/decoder and 16 phase shifters, this new approach can provide the same confidentiality as other implementations of Yuen's encryption protocol, which use a larger number of phase or polarization coherent states. Data confidentiality and error probability for authorized and unauthorized receivers are carefully analyzed.
NASA Astrophysics Data System (ADS)
Gärttner, Martin; Bohnet, Justin G.; Safavi-Naini, Arghavan; Wall, Michael L.; Bollinger, John J.; Rey, Ana Maria
2017-08-01
Controllable arrays of ions and ultracold atoms can simulate complex many-body phenomena and may provide insights into unsolved problems in modern science. To this end, experimentally feasible protocols for quantifying the buildup of quantum correlations and coherence are needed, as performing full state tomography does not scale favourably with the number of particles. Here we develop and experimentally demonstrate such a protocol, which uses time reversal of the many-body dynamics to measure out-of-time-order correlation functions (OTOCs) in a long-range Ising spin quantum simulator with more than 100 ions in a Penning trap. By measuring a family of OTOCs as a function of a tunable parameter we obtain fine-grained information about the state of the system encoded in the multiple quantum coherence spectrum, extract the quantum state purity, and demonstrate the buildup of up to 8-body correlations. Future applications of this protocol could enable studies of many-body localization, quantum phase transitions, and tests of the holographic duality between quantum and gravitational systems.
The APOSTEL recommendations for reporting quantitative optical coherence tomography studies.
Cruz-Herranz, Andrés; Balk, Lisanne J; Oberwahrenbrock, Timm; Saidha, Shiv; Martinez-Lapiscina, Elena H; Lagreze, Wolf A; Schuman, Joel S; Villoslada, Pablo; Calabresi, Peter; Balcer, Laura; Petzold, Axel; Green, Ari J; Paul, Friedemann; Brandt, Alexander U; Albrecht, Philipp
2016-06-14
To develop consensus recommendations for reporting of quantitative optical coherence tomography (OCT) study results. A panel of experienced OCT researchers (including 11 neurologists, 2 ophthalmologists, and 2 neuroscientists) discussed requirements for performing and reporting quantitative analyses of retinal morphology and developed a list of initial recommendations based on experience and previous studies. The list of recommendations was subsequently revised during several meetings of the coordinating group. We provide a 9-point checklist encompassing aspects deemed relevant when reporting quantitative OCT studies. The areas covered are study protocol, acquisition device, acquisition settings, scanning protocol, funduscopic imaging, postacquisition data selection, postacquisition data analysis, recommended nomenclature, and statistical analysis. The Advised Protocol for OCT Study Terminology and Elements recommendations include core items to standardize and improve quality of reporting in quantitative OCT studies. The recommendations will make reporting of quantitative OCT studies more consistent and in line with existing standards for reporting research in other biomedical areas. The recommendations originated from expert consensus and thus represent Class IV evidence. They will need to be regularly adjusted according to new insights and practices. © 2016 American Academy of Neurology.
NASA Astrophysics Data System (ADS)
Ottaviani, Carlo; Spedalieri, Gaetana; Braunstein, Samuel L.; Pirandola, Stefano
2015-02-01
We consider the continuous-variable protocol of Pirandola et al. [arXiv:1312.4104] where the secret key is established by the measurement of an untrusted relay. In this network protocol, two authorized parties are connected to an untrusted relay by insecure quantum links. Secret correlations are generated by a continuous-variable Bell detection performed on incoming coherent states. In the present work we provide a detailed study of the symmetric configuration, where the relay is midway between the parties. We analyze symmetric eavesdropping strategies against the quantum links explicitly showing that, at fixed transmissivity and thermal noise, two-mode coherent attacks are optimal, manifestly outperforming one-mode collective attacks based on independent entangling cloners. Such an advantage is shown both in terms of security threshold and secret-key rate.
A controlled ac Stark echo for quantum memories.
Ham, Byoung S
2017-08-09
A quantum memory protocol of controlled ac Stark echoes (CASE) based on a double rephasing photon echo scheme via controlled Rabi flopping is proposed. The double rephasing scheme of photon echoes inherently satisfies the no-population inversion requirement for quantum memories, but the resultant absorptive echo remains a fundamental problem. Herein, it is reported that the first echo in the double rephasing scheme can be dynamically controlled so that it does not affect the second echo, which is accomplished by using unbalanced ac Stark shifts. Then, the second echo is coherently controlled to be emissive via controlled coherence conversion. Finally a near perfect ultralong CASE is presented using a backward echo scheme. Compared with other methods such as dc Stark echoes, the present protocol is all-optical with advantages of wavelength-selective dynamic control of quantum processing for erasing, buffering, and channel multiplexing.
NASA Astrophysics Data System (ADS)
Tátrai, Erika; Ranganathan, Sudarshan; Ferencz, Mária; Debuc, Delia Cabrera; Somfai, Gábor Márk
2011-05-01
Purpose: To compare thickness measurements between Fourier-domain optical coherence tomography (FD-OCT) and time-domain OCT images analyzed with a custom-built OCT retinal image analysis software (OCTRIMA). Methods: Macular mapping (MM) by StratusOCT and MM5 and MM6 scanning protocols by an RTVue-100 FD-OCT device are performed on 11 subjects with no retinal pathology. Retinal thickness (RT) and the thickness of the ganglion cell complex (GCC) obtained with the MM6 protocol are compared for each early treatment diabetic retinopathy study (ETDRS)-like region with corresponding results obtained with OCTRIMA. RT results are compared by analysis of variance with Dunnett post hoc test, while GCC results are compared by paired t-test. Results: A high correlation is obtained for the RT between OCTRIMA and MM5 and MM6 protocols. In all regions, the StratusOCT provide the lowest RT values (mean difference 43 +/- 8 μm compared to OCTRIMA, and 42 +/- 14 μm compared to RTVue MM6). All RTVue GCC measurements were significantly thicker (mean difference between 6 and 12 μm) than the GCC measurements of OCTRIMA. Conclusion: High correspondence of RT measurements is obtained not only for RT but also for the segmentation of intraretinal layers between FD-OCT and StratusOCT-derived OCTRIMA analysis. However, a correction factor is required to compensate for OCT-specific differences to make measurements more comparable to any available OCT device.
NASA Astrophysics Data System (ADS)
Kawakami, Shun; Sasaki, Toshihiko; Koashi, Masato
2017-07-01
An essential step in quantum key distribution is the estimation of parameters related to the leaked amount of information, which is usually done by sampling of the communication data. When the data size is finite, the final key rate depends on how the estimation process handles statistical fluctuations. Many of the present security analyses are based on the method with simple random sampling, where hypergeometric distribution or its known bounds are used for the estimation. Here we propose a concise method based on Bernoulli sampling, which is related to binomial distribution. Our method is suitable for the Bennett-Brassard 1984 (BB84) protocol with weak coherent pulses [C. H. Bennett and G. Brassard, Proceedings of the IEEE Conference on Computers, Systems and Signal Processing (IEEE, New York, 1984), Vol. 175], reducing the number of estimated parameters to achieve a higher key generation rate compared to the method with simple random sampling. We also apply the method to prove the security of the differential-quadrature-phase-shift (DQPS) protocol in the finite-key regime. The result indicates that the advantage of the DQPS protocol over the phase-encoding BB84 protocol in terms of the key rate, which was previously confirmed in the asymptotic regime, persists in the finite-key regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yujie, E-mail: styojm@physics.tamu.edu; Voronine, Dmitri V.; Sokolov, Alexei V.
2015-08-15
We report a versatile setup based on the femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman scattering. The setup uses a femtosecond Ti:Sapphire oscillator source and a folded 4f pulse shaper, in which the pulse shaping is carried out through conventional optical elements and does not require a spatial light modulator. Our setup is simple in alignment, and can be easily switched between the collinear single-beam and the noncollinear two-beam configurations. We demonstrate the capability for investigating both transparent and highly scattering samples by detecting transmitted and reflected signals, respectively.
Distance-Based and Low Energy Adaptive Clustering Protocol for Wireless Sensor Networks
Gani, Abdullah; Anisi, Mohammad Hossein; Ab Hamid, Siti Hafizah; Akhunzada, Adnan; Khan, Muhammad Khurram
2016-01-01
A wireless sensor network (WSN) comprises small sensor nodes with limited energy capabilities. The power constraints of WSNs necessitate efficient energy utilization to extend the overall network lifetime of these networks. We propose a distance-based and low-energy adaptive clustering (DISCPLN) protocol to streamline the green issue of efficient energy utilization in WSNs. We also enhance our proposed protocol into the multi-hop-DISCPLN protocol to increase the lifetime of the network in terms of high throughput with minimum delay time and packet loss. We also propose the mobile-DISCPLN protocol to maintain the stability of the network. The modelling and comparison of these protocols with their corresponding benchmarks exhibit promising results. PMID:27658194
Establishing Goals and Maintaining Coherence in Multiparty Computer-Mediated Communication
ERIC Educational Resources Information Center
Groen, Martin; Noyes, Jan
2013-01-01
Communicating via text-only computer-mediated communication (CMC) channels is associated with a number of issues that would impair users in achieving dialogue coherence and goals. It has been suggested that humans have devised novel adaptive strategies to deal with those issues. However, it could be that humans rely on "classic"…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Igure, V. M.; Williams, R. D.
2006-07-01
Supervisory control and data acquisition (SCADA) networks have replaced discrete wiring for many industrial processes, and the efficiency of the network alternative suggests a trend toward more SCADA networks in the future. This paper broadly considers SCADA to include distributed control systems (DCS) and digital control systems. These networks offer many advantages, but they also introduce potential vulnerabilities that can be exploited by adversaries. Inter-connectivity exposes SCADA networks to many of the same threats that face the public internet and many of the established defenses therefore show promise if adapted to the SCADA differences. This paper provides an overview ofmore » security issues in SCADA networks and ongoing efforts to improve the security of these networks. Initially, a few samples from the range of threats to SCADA network security are offered. Next, attention is focused on security assessment of SCADA communication protocols. Three challenges must be addressed to strengthen SCADA networks. Access control mechanisms need to be introduced or strengthened, improvements are needed inside of the network to enhance security and network monitoring, and SCADA security management improvements and policies are needed. This paper discusses each of these challenges. This paper uses the Profibus protocol as an example to illustrate some of the vulnerabilities that arise within SCADA networks. The example Profibus security assessment establishes a network model and an attacker model before proceeding to a list of example attacks. (authors)« less
Adiabatic passage in photon-echo quantum memories
NASA Astrophysics Data System (ADS)
Demeter, Gabor
2013-11-01
Photon-echo-based quantum memories use inhomogeneously broadened, optically thick ensembles of absorbers to store a weak optical signal and employ various protocols to rephase the atomic coherences for information retrieval. We study the application of two consecutive, frequency-chirped control pulses for coherence rephasing in an ensemble with a “natural” inhomogeneous broadening. Although propagation effects distort the two control pulses differently, chirped pulses that drive adiabatic passage can rephase atomic coherences in an optically thick storage medium. Combined with spatial phase-mismatching techniques to prevent primary echo emission, coherences can be rephased around the ground state to achieve secondary echo emission with close to unit efficiency. Potential advantages over similar schemes working with π pulses include greater potential signal fidelity, reduced noise due to spontaneous emission, and better capability for the storage of multiple memory channels.
NASA Astrophysics Data System (ADS)
Chen, Huaiguang; Fu, Shujun; Wang, Hong; Lv, Hongli; Zhang, Caiming
2018-03-01
As a high-resolution imaging mode of biological tissues and materials, optical coherence tomography (OCT) is widely used in medical diagnosis and analysis. However, OCT images are often degraded by annoying speckle noise inherent in its imaging process. Employing the bilateral sparse representation an adaptive singular value shrinking method is proposed for its highly sparse approximation of image data. Adopting the generalized likelihood ratio as similarity criterion for block matching and an adaptive feature-oriented backward projection strategy, the proposed algorithm can restore better underlying layered structures and details of the OCT image with effective speckle attenuation. The experimental results demonstrate that the proposed algorithm achieves a state-of-the-art despeckling performance in terms of both quantitative measurement and visual interpretation.
Efficient dynamic coherence transfer relying on offset locking using optical phase-locked loop
NASA Astrophysics Data System (ADS)
Xie, Weilin; Dong, Yi; Bretenaker, Fabien; Shi, Hongxiao; Zhou, Qian; Xia, Zongyang; Qin, Jie; Zhang, Lin; Lin, Xi; Hu, Weisheng
2018-01-01
We design and experimentally demonstrate a highly efficient coherence transfer based on composite optical phaselocked loop comprising multiple feedback servo loops. The heterodyne offset-locking is achieved by conducting an acousto-optic frequency shifter in combination with the current tuning and the temperature controlling of the semiconductor laser. The adaptation of the composite optical phase-locked loop enables the tight coherence transfer from a frequency comb to a semiconductor laser in a fully dynamic manner.
Ultradispersive adaptive prism based on a coherently prepared atomic medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sautenkov, Vladimir A.; P. N. Lebedev Institute of Physics, Moscow 119991; Li Hebin
2010-06-15
We have experimentally demonstrated an ultra-dispersive optical prism made from a coherently driven Rb atomic vapor. The prism possesses spectral angular dispersion that is 6 orders of magnitude higher than that of a prism made of optical glass; such angular dispersion allows one to spatially resolve light beams with different frequencies separated by a few kilohertz. The prism operates near the resonant frequency of atomic vapor and its dispersion is optically controlled by a coherent driving field.
Protocol Independent Adaptive Route Update for VANET
Rasheed, Asim; Qayyum, Amir
2014-01-01
High relative node velocity and high active node density have presented challenges to existing routing approaches within highly scaled ad hoc wireless networks, such as Vehicular Ad hoc Networks (VANET). Efficient routing requires finding optimum route with minimum delay, updating it on availability of a better one, and repairing it on link breakages. Current routing protocols are generally focused on finding and maintaining an efficient route, with very less emphasis on route update. Adaptive route update usually becomes impractical for dense networks due to large routing overheads. This paper presents an adaptive route update approach which can provide solution for any baseline routing protocol. The proposed adaptation eliminates the classification of reactive and proactive by categorizing them as logical conditions to find and update the route. PMID:24723807
Lee, Joo-Young; Wakabayashi, Hitoshi; Wijayanto, Titis; Hashiguchi, Nobuko; Saat, Mohamed; Tochihara, Yutaka
2011-12-01
For the coherent understanding of heat acclimatization in tropical natives, we compared ethnic differences between tropical and temperate natives during resting, passive and active heating conditions. Experimental protocols included: (1) a resting condition (an air temperature of 28°C with 50% RH), (2) a passive heating condition (28°C with 50% RH; leg immersion in a hot tub at a water temperature of 42°C), and (3) an active heating condition (32°C with 70% RH; a bicycle exercise). Morphologically and physically matched tropical natives (ten Malaysian males, MY) and temperate natives (ten Japanese males, JP) participated in all three trials. The results saw that: tropical natives had a higher resting rectal temperature and lower hand and foot temperatures at rest, smaller rise of rectal temperature and greater temperature rise in bodily extremities, and a lower sensation of thirst during passive and active heating than the matched temperate natives. It is suggested that tropical natives' homeostasis during heating is effectively controlled with the improved stability in internal body temperature and the increased capability of vascular circulation in extremities, with a lower thirst sensation. The enhanced stability of internal body temperature and the extended thermoregulatory capability of vascular circulation in the extremities of tropical natives can be interpreted as an interactive change to accomplish a thermal dynamic equilibrium in hot environments. These heat adaptive traits were explained by Wilder's law of initial value and Werner's process and controller adaptation model.
High-speed data encryption over 25 km of fiber by two-mode coherent-state quantum cryptography.
Corndorf, Eric; Barbosa, Geraldo; Liang, Chuang; Yuen, Horace P; Kumar, Prem
2003-11-01
We demonstrate high-speed (250 Mbps) data encryption over 25 km of telecommunication fiber by use of coherent states. For the parameter values used in the experiment, the demonstration is secure against individual ciphertext-only eavesdropping attacks near the transmitter with ideal detection equipment. Whereas other quantum-cryptographic schemes require the use of fragile quantum states and ultrasensitive detection equipment, our protocol is loss tolerant, uses off-the-shelf components, and is optically amplifiable.
Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources.
Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue
2015-10-16
In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation.
NASA Astrophysics Data System (ADS)
Tan, Bingyao; Hosseinaee, Zohreh; Bizheva, Kostadinka
2017-11-01
The variability in the spatial orientation of retinal blood vessels near the optic nerve head (ONH) results in imprecision of the measured Doppler angle and therefore the pulsatile blood flow (BF), when those parameters are evaluated using Doppler OCT imaging protocols based on dual-concentric circular scans. Here, we utilized a dense concentric circle scanning protocol and evaluated its precision for measuring pulsatile retinal BF in rats for different numbers of the circular scans. An spectral domain optical coherence tomography (SD-OCT) system operating in the 1060-nm spectral range with image acquisition rate of 47,000 A-scans/s was used to acquire concentric circular scans centered at the rat's ONH, with diameters ranging from 0.8 to 1.0 mm. A custom, automatic blood vessel segmentation algorithm was used to track the spatial orientation of the retinal blood vessels in three dimensions, evaluate the spatially dependent Doppler angle and calculate more accurately the axial BF for each major retinal blood vessel. Metrics such as retinal BF, pulsatility index, and resistance index were evaluated for each and all of the major retinal blood vessels. The performance of the proposed dense concentric circle scanning protocols was compared with that of the dual-circle scanning protocol. Results showed a 3.8±2.2 deg difference in the Doppler angle calculation between the two approaches, which resulted in ˜7% difference in the calculated retinal BF.
Coherent Optical Adaptive Techniques (COAT)
1975-01-01
8217 neceeemry and Identity by block number) Laser Phased Array Adaptive Optics Atmospheric-Turbulence and Thermal Blooming Compensation 20...characteristics of an experimental, visible wavelength, eighteen-element, self-adaptive optical phased array. Measurements on a well-characterized...V LOCAL PHASING ■ LOOP OPTICAL DETECTOR’ LOCAL LOCK / ROOF TOP "^/PROPAGATION’ ^ GLINT ■lm FOCAL LENGTH LENS DETECTOR DMWI rh
Meal replacements as a weight loss tool in a population with severe mental illness.
Gelberg, Hollie A; Kwan, Crystal L; Mena, Shirley J; Erickson, Zachary D; Baker, Matthew R; Chamberlin, Valery; Nguyen, Charles; Rosen, Jennifer A; Shah, Chandresh; Ames, Donna
2015-12-01
Weight gain and worsening metabolic parameters are often side effects of antipsychotic medications used by individuals with severe mental illness. To address this, a randomized, controlled research study of a behavioral weight management program for individuals with severe mental illness was undertaken to assess its efficacy. Patients unable to meet weight loss goals during the first portion of the year-long study were given the option of using meal replacement shakes in an effort to assist with weight loss. Specific requirements for use of meal replacement shakes were specified in the study protocol; only five patients were able to use the shakes in accordance with the protocol and lose weight while improving metabolic parameters. Case studies of two subjects are presented, illustrating the challenges and obstacles they faced, as well as their successes. Taking responsibility for their own weight loss, remaining motivated through the end of the study, and incorporating the meal replacement shakes into a daily routine were factors found in common with these patients. Use of meal replacements shakes with this population may be effective. Published by Elsevier Ltd.
Coherent attack on oblivious transfer based on single-qubit rotations
NASA Astrophysics Data System (ADS)
He, Guang Ping
2018-04-01
Recently a bit-string quantum oblivious transfer (OT) protocol based on single-qubit rotations was proposed (Rodrigues et al 2017 J. Phys. A: Math. Theor. 50 205301) and proven secure against few-qubit measurements. However, it was left as an open question whether the protocol remains secure against general attacks. Here, we close the gap by showing that if the receiver Bob can perform collective measurements on all qubits, then he can learn Alice’s secret message with a probability close to one. Thus the protocol fails to meet the security criterion of OT.
Prediction of psychosis across protocols and risk cohorts using automated language analysis
Corcoran, Cheryl M.; Carrillo, Facundo; Fernández‐Slezak, Diego; Bedi, Gillinder; Klim, Casimir; Javitt, Daniel C.; Bearden, Carrie E.; Cecchi, Guillermo A.
2018-01-01
Language and speech are the primary source of data for psychiatrists to diagnose and treat mental disorders. In psychosis, the very structure of language can be disturbed, including semantic coherence (e.g., derailment and tangentiality) and syntactic complexity (e.g., concreteness). Subtle disturbances in language are evident in schizophrenia even prior to first psychosis onset, during prodromal stages. Using computer‐based natural language processing analyses, we previously showed that, among English‐speaking clinical (e.g., ultra) high‐risk youths, baseline reduction in semantic coherence (the flow of meaning in speech) and in syntactic complexity could predict subsequent psychosis onset with high accuracy. Herein, we aimed to cross‐validate these automated linguistic analytic methods in a second larger risk cohort, also English‐speaking, and to discriminate speech in psychosis from normal speech. We identified an automated machine‐learning speech classifier – comprising decreased semantic coherence, greater variance in that coherence, and reduced usage of possessive pronouns – that had an 83% accuracy in predicting psychosis onset (intra‐protocol), a cross‐validated accuracy of 79% of psychosis onset prediction in the original risk cohort (cross‐protocol), and a 72% accuracy in discriminating the speech of recent‐onset psychosis patients from that of healthy individuals. The classifier was highly correlated with previously identified manual linguistic predictors. Our findings support the utility and validity of automated natural language processing methods to characterize disturbances in semantics and syntax across stages of psychotic disorder. The next steps will be to apply these methods in larger risk cohorts to further test reproducibility, also in languages other than English, and identify sources of variability. This technology has the potential to improve prediction of psychosis outcome among at‐risk youths and identify linguistic targets for remediation and preventive intervention. More broadly, automated linguistic analysis can be a powerful tool for diagnosis and treatment across neuropsychiatry. PMID:29352548
Prediction of psychosis across protocols and risk cohorts using automated language analysis.
Corcoran, Cheryl M; Carrillo, Facundo; Fernández-Slezak, Diego; Bedi, Gillinder; Klim, Casimir; Javitt, Daniel C; Bearden, Carrie E; Cecchi, Guillermo A
2018-02-01
Language and speech are the primary source of data for psychiatrists to diagnose and treat mental disorders. In psychosis, the very structure of language can be disturbed, including semantic coherence (e.g., derailment and tangentiality) and syntactic complexity (e.g., concreteness). Subtle disturbances in language are evident in schizophrenia even prior to first psychosis onset, during prodromal stages. Using computer-based natural language processing analyses, we previously showed that, among English-speaking clinical (e.g., ultra) high-risk youths, baseline reduction in semantic coherence (the flow of meaning in speech) and in syntactic complexity could predict subsequent psychosis onset with high accuracy. Herein, we aimed to cross-validate these automated linguistic analytic methods in a second larger risk cohort, also English-speaking, and to discriminate speech in psychosis from normal speech. We identified an automated machine-learning speech classifier - comprising decreased semantic coherence, greater variance in that coherence, and reduced usage of possessive pronouns - that had an 83% accuracy in predicting psychosis onset (intra-protocol), a cross-validated accuracy of 79% of psychosis onset prediction in the original risk cohort (cross-protocol), and a 72% accuracy in discriminating the speech of recent-onset psychosis patients from that of healthy individuals. The classifier was highly correlated with previously identified manual linguistic predictors. Our findings support the utility and validity of automated natural language processing methods to characterize disturbances in semantics and syntax across stages of psychotic disorder. The next steps will be to apply these methods in larger risk cohorts to further test reproducibility, also in languages other than English, and identify sources of variability. This technology has the potential to improve prediction of psychosis outcome among at-risk youths and identify linguistic targets for remediation and preventive intervention. More broadly, automated linguistic analysis can be a powerful tool for diagnosis and treatment across neuropsychiatry. © 2018 World Psychiatric Association.
Radio-frequency low-coherence interferometry.
Fernández-Pousa, Carlos R; Mora, José; Maestre, Haroldo; Corral, Pablo
2014-06-15
A method for retrieving low-coherence interferograms, based on the use of a microwave photonics filter, is proposed and demonstrated. The method is equivalent to the double-interferometer technique, with the scanning interferometer replaced by an analog fiber-optics link and the visibility recorded as the amplitude of its radio-frequency (RF) response. As a low-coherence interferometry system, it shows a decrease of resolution induced by the fiber's third-order dispersion (β3). As a displacement sensor, it provides highly linear and slope-scalable readouts of the interferometer's optical path difference in terms of RF, even in the presence of third-order dispersion. In a proof-of-concept experiment, we demonstrate 20-μm displacement readouts using C-band EDFA sources and standard single-mode fiber.
NASA Astrophysics Data System (ADS)
Yang, Can; Ma, Cheng; Hu, Linxi; He, Guangqiang
2018-06-01
We present a hierarchical modulation coherent communication protocol, which simultaneously achieves classical optical communication and continuous-variable quantum key distribution. Our hierarchical modulation scheme consists of a quadrature phase-shifting keying modulation for classical communication and a four-state discrete modulation for continuous-variable quantum key distribution. The simulation results based on practical parameters show that it is feasible to transmit both quantum information and classical information on a single carrier. We obtained a secure key rate of 10^{-3} bits/pulse to 10^{-1} bits/pulse within 40 kilometers, and in the meantime the maximum bit error rate for classical information is about 10^{-7}. Because continuous-variable quantum key distribution protocol is compatible with standard telecommunication technology, we think our hierarchical modulation scheme can be used to upgrade the digital communication systems to extend system function in the future.
Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corndorf, Eric; Liang Chuang; Kanter, Gregory S.
2005-06-15
We demonstrate high-rate randomized data-encryption through optical fibers using the inherent quantum-measurement noise of coherent states of light. Specifically, we demonstrate 650 Mbit/s data encryption through a 10 Gbit/s data-bearing, in-line amplified 200-km-long line. In our protocol, legitimate users (who share a short secret key) communicate using an M-ry signal set while an attacker (who does not share the secret key) is forced to contend with the fundamental and irreducible quantum-measurement noise of coherent states. Implementations of our protocol using both polarization-encoded signal sets as well as polarization-insensitive phase-keyed signal sets are experimentally and theoretically evaluated. Different from the performancemore » criteria for the cryptographic objective of key generation (quantum key-generation), one possible set of performance criteria for the cryptographic objective of data encryption is established and carefully considered.« less
Replacing thermal sprayed zinc anodes on cathodically protected steel reinforced concrete bridges.
DOT National Transportation Integrated Search
2011-09-01
This research aimed to address questions underlying the replacement of arc-sprayed zinc anodes on cathodically protected steel reinforced concrete bridges and to develop a protocol to prepare the concrete surface for the new anode, through a combinat...
Replacing thermal sprayed zinc anodes on cathodically protected steel reinforced concrete bridges.
DOT National Transportation Integrated Search
2011-08-01
"This research aimed to address questions underlying the replacement of arc-sprayed zinc anodes on cathodically protected steel reinforced concrete bridges and to develop a protocol to prepare the concrete surface for the new anode, through a combina...
Testing protocols to ensure performance of high asphalt binder replacement mixes using RAP and RAS.
DOT National Transportation Integrated Search
2015-12-01
The use of reclaimed asphalt pavement (RAP) and recycled asphalt shingles (RAS) in asphalt concrete (AC) mixtures can reduce demand for virgin aggregates and asphalt binder, bringing environmental and economic benefits. However, replacing virgin asph...
Science as the Center of a Coherent, Integrated Early Childhood Curriculum
ERIC Educational Resources Information Center
French, Lucia
2004-01-01
This article describes the ScienceStart! Curriculum, an early childhood curriculum that takes coherently organized science content as the hub of an integrated approach. ScienceStart! maps onto the typical preschool day and may be adapted for use in full-day or half-day preschool programs. It is designed to support the important developmental…
Jin, Zhigang; Ma, Yingying; Su, Yishan; Li, Shuo; Fu, Xiaomei
2017-07-19
Underwater sensor networks (UWSNs) have become a hot research topic because of their various aquatic applications. As the underwater sensor nodes are powered by built-in batteries which are difficult to replace, extending the network lifetime is a most urgent need. Due to the low and variable transmission speed of sound, the design of reliable routing algorithms for UWSNs is challenging. In this paper, we propose a Q-learning based delay-aware routing (QDAR) algorithm to extend the lifetime of underwater sensor networks. In QDAR, a data collection phase is designed to adapt to the dynamic environment. With the application of the Q-learning technique, QDAR can determine a global optimal next hop rather than a greedy one. We define an action-utility function in which residual energy and propagation delay are both considered for adequate routing decisions. Thus, the QDAR algorithm can extend the network lifetime by uniformly distributing the residual energy and provide lower end-to-end delay. The simulation results show that our protocol can yield nearly the same network lifetime, and can reduce the end-to-end delay by 20-25% compared with a classic lifetime-extended routing protocol (QELAR).
Ma, Yingying; Su, Yishan; Li, Shuo; Fu, Xiaomei
2017-01-01
Underwater sensor networks (UWSNs) have become a hot research topic because of their various aquatic applications. As the underwater sensor nodes are powered by built-in batteries which are difficult to replace, extending the network lifetime is a most urgent need. Due to the low and variable transmission speed of sound, the design of reliable routing algorithms for UWSNs is challenging. In this paper, we propose a Q-learning based delay-aware routing (QDAR) algorithm to extend the lifetime of underwater sensor networks. In QDAR, a data collection phase is designed to adapt to the dynamic environment. With the application of the Q-learning technique, QDAR can determine a global optimal next hop rather than a greedy one. We define an action-utility function in which residual energy and propagation delay are both considered for adequate routing decisions. Thus, the QDAR algorithm can extend the network lifetime by uniformly distributing the residual energy and provide lower end-to-end delay. The simulation results show that our protocol can yield nearly the same network lifetime, and can reduce the end-to-end delay by 20–25% compared with a classic lifetime-extended routing protocol (QELAR). PMID:28753951
FD/DAMA Scheme For Mobile/Satellite Communications
NASA Technical Reports Server (NTRS)
Yan, Tsun-Yee; Wang, Charles C.; Cheng, Unjeng; Rafferty, William; Dessouky, Khaled I.
1992-01-01
Integrated-Adaptive Mobile Access Protocol (I-AMAP) proposed to allocate communication channels to subscribers in first-generation MSAT-X mobile/satellite communication network. Based on concept of frequency-division/demand-assigned multiple access (FD/DAMA) where partition of available spectrum adapted to subscribers' demands for service. Requests processed, and competing requests resolved according to channel-access protocol, or free-access tree algorithm described in "Connection Protocol for Mobile/Satellite Communications" (NPO-17735). Assigned spectrum utilized efficiently.
NASA Astrophysics Data System (ADS)
Krüger, Alexander; Hansen, Anja; Matthias, Ben; Ripken, Tammo
2014-02-01
Although fs-laser surgery is clinically established in the field of corneal flap cutting for laser in situ keratomileusis, surgery with fs-laser in the posterior part of the eye is impaired by focus degradation due to aberrations. Precise targeting and keeping of safety distance to the retina also relies on an intraoperative depth resolved imaging. We demonstrate a concept for image guided fs-laser surgery in the vitreous body combining adaptive optics (AO) for focus reshaping and optical coherence tomography (OCT) for focus position guidance. The setup of the laboratory system consist of an 800 nm fs-laser which is focused into a simple eye model via a closed loop adaptive optics system with Hartmann-Shack sensor and a deformable mirror to correct for wavefront aberrations. A spectral domain optical coherence tomography system is used to target phantom structures in the eye model. Both systems are set up to share the same scanner and focusing optics. The use of adaptive optics results in a lowered threshold energy for laser induced breakdown and an increased cutting precision. 3D OCT imaging of porcine retinal tissue prior and immediately after fs-laser cutting is also demonstrated. In the near future OCT and AO will be two essential assistive components in possible clinical systems for fs-laser based eye surgery beyond the cornea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, D; France, E; Lambert, J
Purpose: Medical Physics teams can now play a critical role to help plan and provide studied approaches for traumatic brachial plexus MR imaging (tbpMRI). This is especially important for coordination with uncommon applications, since it is challenging to select the right modality, parameters, and train technologists on the essential components. For this work, we started with a review of the medical literature, performed crossover/volunteer studies to bring tbpMRI to practice with greater image QC and protocol management. Methods: To the best of our knowledge, we reviewed the known searchable domain for tbpMRI. We found 69 total articles since 2000. Articlesmore » were evaluated with our published protocol for literature management (LIMES3). Two physicists and two radiologists condensed the information from all articles into a knowledgebase. Results: The initial literature demonstrated great heterogeneity, which was a sign that this area needed greater consistency. Despite inconsistency and imprecision, we extracted the most relevant targets using our long-term experience with protocol development in MSK. We ran volunteers on six different magnets of various field strengths with multiple receiver coils, and rebuilt a coherent protocol for tbpMRI. Our radiologists rated LIMES3 work as superior. We have received referrals from the ER and have conducted four patient evaluations. Conclusion: Traumatic brachial plexus MRI has great possible benefits for patients. This work supports the complexity of tbpMRI scanning. As this is rarely performed, it requires a more diligent protocol workflow, coordination of caregivers, and education within multiple clinical departments. Choosing the correct imaging exam can be critical, as patients can have significant neuropathy and/or paralysis. The LIMES3 protocol is well liked at our institution, and forms the cornerstone of understanding for our work. Our literature management led to a better clinical protocol creation despite the diffuse and inconclusive information presented in the existing medical literature.« less
Extended depth of focus adaptive optics spectral domain optical coherence tomography
Sasaki, Kazuhiro; Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki
2012-01-01
We present an adaptive optics spectral domain optical coherence tomography (AO-SDOCT) with a long focal range by active phase modulation of the pupil. A long focal range is achieved by introducing AO-controlled third-order spherical aberration (SA). The property of SA and its effects on focal range are investigated in detail using the Huygens-Fresnel principle, beam profile measurement and OCT imaging of a phantom. The results indicate that the focal range is extended by applying SA, and the direction of extension can be controlled by the sign of applied SA. Finally, we demonstrated in vivo human retinal imaging by altering the applied SA. PMID:23082278
Extended depth of focus adaptive optics spectral domain optical coherence tomography.
Sasaki, Kazuhiro; Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki
2012-10-01
We present an adaptive optics spectral domain optical coherence tomography (AO-SDOCT) with a long focal range by active phase modulation of the pupil. A long focal range is achieved by introducing AO-controlled third-order spherical aberration (SA). The property of SA and its effects on focal range are investigated in detail using the Huygens-Fresnel principle, beam profile measurement and OCT imaging of a phantom. The results indicate that the focal range is extended by applying SA, and the direction of extension can be controlled by the sign of applied SA. Finally, we demonstrated in vivo human retinal imaging by altering the applied SA.
Roberts, Philipp K; Nesper, Peter L; Onishi, Alex C; Skondra, Dimitra; Jampol, Lee M; Fawzi, Amani A
2018-01-01
To characterize lesions of acute posterior multifocal placoid pigment epitheliopathy (APMPPE) by multimodal imaging including adaptive optics scanning laser ophthalmoscopy (AOSLO). We included patients with APMPPE at different stages of evolution of the placoid lesions. Color fundus photography, spectral domain optical coherence tomography, infrared reflectance, fundus autofluorescence, and AOSLO images were obtained and registered to correlate microstructural changes. Eight eyes of four patients (two women) were included and analyzed by multimodal imaging. Photoreceptor reflectivity within APMPPE lesions was more heterogeneous than in adjacent healthy areas. Hyperpigmentation on color fundus photography appeared hyperreflective on infrared reflectance and on AOSLO. Irregularity of the interdigitation zone and the photoreceptor inner and outer segment junctions (IS/OS) on spectral domain optical coherence tomography was associated with photoreceptor hyporeflectivity on AOSLO. Interruption of the interdigitation zone or IS/OS was associated with loss of photoreceptor reflectivity on AOSLO. Irregularities in the reflectivity of the photoreceptor mosaic are visible on AOSLO even in inactive APMPPE lesions, where the photoreceptor bands on spectral domain optical coherence tomography have recovered. Adaptive optics scanning laser ophthalmoscopy combined with multimodal imaging has the potential to enhance our understanding of photoreceptor involvement in APMPPE.
NASA Astrophysics Data System (ADS)
Boroomand, Ameneh; Tan, Bingyao; Wong, Alexander; Bizheva, Kostadinka
2015-03-01
The axial resolution of Spectral Domain Optical Coherence Tomography (SD-OCT) images degrades with scanning depth due to the limited number of pixels and the pixel size of the camera, any aberrations in the spectrometer optics and wavelength dependent scattering and absorption in the imaged object [1]. Here we propose a novel algorithm which compensates for the blurring effect of these factors of the depth-dependent axial Point Spread Function (PSF) in SDOCT images. The proposed method is based on a Maximum A Posteriori (MAP) reconstruction framework which takes advantage of a Stochastic Fully Connected Conditional Random Field (SFCRF) model. The aim is to compensate for the depth-dependent axial blur in SD-OCT images and simultaneously suppress the speckle noise which is inherent to all OCT images. Applying the proposed depth-dependent axial resolution enhancement technique to an OCT image of cucumber considerably improved the axial resolution of the image especially at higher imaging depths and allowed for better visualization of cellular membrane and nuclei. Comparing the result of our proposed method with the conventional Lucy-Richardson deconvolution algorithm clearly demonstrates the efficiency of our proposed technique in better visualization and preservation of fine details and structures in the imaged sample, as well as better speckle noise suppression. This illustrates the potential usefulness of our proposed technique as a suitable replacement for the hardware approaches which are often very costly and complicated.
Measuring Phagosome pH by Ratiometric Fluorescence Microscopy
Nunes, Paula; Guido, Daniele; Demaurex, Nicolas
2015-01-01
Phagocytosis is a fundamental process through which innate immune cells engulf bacteria, apoptotic cells or other foreign particles in order to kill or neutralize the ingested material, or to present it as antigens and initiate adaptive immune responses. The pH of phagosomes is a critical parameter regulating fission or fusion with endomembranes and activation of proteolytic enzymes, events that allow the phagocytic vacuole to mature into a degradative organelle. In addition, translocation of H+ is required for the production of high levels of reactive oxygen species (ROS), which are essential for efficient killing and signaling to other host tissues. Many intracellular pathogens subvert phagocytic killing by limiting phagosomal acidification, highlighting the importance of pH in phagosome biology. Here we describe a ratiometric method for measuring phagosomal pH in neutrophils using fluorescein isothiocyanate (FITC)-labeled zymosan as phagocytic targets, and live-cell imaging. The assay is based on the fluorescence properties of FITC, which is quenched by acidic pH when excited at 490 nm but not when excited at 440 nm, allowing quantification of a pH-dependent ratio, rather than absolute fluorescence, of a single dye. A detailed protocol for performing in situ dye calibration and conversion of ratio to real pH values is also provided. Single-dye ratiometric methods are generally considered superior to single wavelength or dual-dye pseudo-ratiometric protocols, as they are less sensitive to perturbations such as bleaching, focus changes, laser variations, and uneven labeling, which distort the measured signal. This method can be easily modified to measure pH in other phagocytic cell types, and zymosan can be replaced by any other amine-containing particle, from inert beads to living microorganisms. Finally, this method can be adapted to make use of other fluorescent probes sensitive to different pH ranges or other phagosomal activities, making it a generalized protocol for the functional imaging of phagosomes. PMID:26710109
NASA Astrophysics Data System (ADS)
Nikulin, Vladimir V.; Hughes, David H.; Malowicki, John; Bedi, Vijit
2015-05-01
Free-space optical communication channels offer secure links with low probability of interception and detection. Despite their point-to-point topology, additional security features may be required in privacy-critical applications. Encryption can be achieved at the physical layer by using quantized values of photons, which makes exploitation of such quantum communication links extremely difficult. One example of such technology is keyed communication in quantum noise, a novel quantum modulation protocol that offers ultra-secure communication with competitive performance characteristics. Its utilization relies on specific coherent measurements to decrypt the signal. The process of measurements is complicated by the inherent and irreducible quantum noise of coherent states. This problem is different from traditional laser communication with coherent detection; therefore continuous efforts are being made to improve the measurement techniques. Quantum-based encryption systems that use the phase of the signal as the information carrier impose aggressive requirements on the accuracy of the measurements when an unauthorized party attempts intercepting the data stream. Therefore, analysis of the secrecy of the data becomes extremely important. In this paper, we present the results of a study that had a goal of assessment of potential vulnerability of the running key. Basic results of the laboratory measurements are combined with simulation studies and statistical analysis that can be used for both conceptual improvement of the encryption approach and for quantitative comparison of secrecy of different quantum communication protocols.
Adaptive 4d Psi-Based Change Detection
NASA Astrophysics Data System (ADS)
Yang, Chia-Hsiang; Soergel, Uwe
2018-04-01
In a previous work, we proposed a PSI-based 4D change detection to detect disappearing and emerging PS points (3D) along with their occurrence dates (1D). Such change points are usually caused by anthropic events, e.g., building constructions in cities. This method first divides an entire SAR image stack into several subsets by a set of break dates. The PS points, which are selected based on their temporal coherences before or after a break date, are regarded as change candidates. Change points are then extracted from these candidates according to their change indices, which are modelled from their temporal coherences of divided image subsets. Finally, we check the evolution of the change indices for each change point to detect the break date that this change occurred. The experiment validated both feasibility and applicability of our method. However, two questions still remain. First, selection of temporal coherence threshold associates with a trade-off between quality and quantity of PS points. This selection is also crucial for the amount of change points in a more complex way. Second, heuristic selection of change index thresholds brings vulnerability and causes loss of change points. In this study, we adapt our approach to identify change points based on statistical characteristics of change indices rather than thresholding. The experiment validates this adaptive approach and shows increase of change points compared with the old version. In addition, we also explore and discuss optimal selection of temporal coherence threshold.
Measurement of Salivary Cortisone to Assess the Adequacy of Hydrocortisone Replacement.
Raff, Hershel
2016-04-01
This Commentary discusses the study of Debono et al (19) and focuses on the potential use of multiple salivary cortisone measurements to evaluate the adequacy of hydrocortisone replacement therapy. Salivary cortisone, typically measured using liquid chromatography-tandem mass spectrometry, accurately reflects plasma free cortisol because of the expression of 11-β -hydroxysteroid dehydrogenase in the salivary gland. Debono et al showed that multiple, sequential salivary cortisone measurements obtained over a 12-hour period correlated with plasma free cortisol in subjects receiving intravenous or oral hydrocortisone (authentic cortisol). Hopefully, these studies will lead to a simplified protocol with fewer samples for the measurement of salivary cortisone that can reliably assess the adequacy of hydrocortisone replacement in patients with adrenal insufficiency. This protocol has to be cost-effective and be feasible to obtain timed salivary samples accurately at home. It would be a significant advance to be able to monitor hydrocortisone replacement therapy with as few as one or two salivary cortisone measurements.
Data dissemination using gossiping in wireless sensor networks
NASA Astrophysics Data System (ADS)
Medidi, Muralidhar; Ding, Jin; Medidi, Sirisha
2005-06-01
Disseminating data among sensors is a fundamental operation in energy-constrained wireless sensor networks. We present a gossip-based adaptive protocol for data dissemination to improve energy efficiency of this operation. To overcome the data implosion problems associated with dissemination operation, our protocol uses meta-data to name the data using high-level data descriptors and negotiation to eliminate redundant transmissions of duplicate data in the network. Further, we adapt the gossiping with data aggregation possibilities in sensor networks. We simulated our data dissemination protocol, and compared it to the SPIN protocol. We find that our protocol improves on the energy consumption by about 20% over others, while improving significantly over the data dissemination rate of gossiping.
The separation of vibrational coherence from ground- and excited-electronic states in P3HT film
NASA Astrophysics Data System (ADS)
Song, Yin; Hellmann, Christoph; Stingelin, Natalie; Scholes, Gregory D.
2015-06-01
Concurrence of the vibrational coherence and ultrafast electron transfer has been observed in polymer/fullerene blends. However, it is difficult to experimentally investigate the role that the excited-state vibrational coherence plays during the electron transfer process since vibrational coherence from the ground- and excited-electronic states is usually temporally and spectrally overlapped. Here, we performed 2-dimensional electronic spectroscopy (2D ES) measurements on poly(3-hexylthiophene) (P3HT) films. By Fourier transforming the whole 2D ES datasets ( S ( λ 1 , T ˜ 2 , λ 3 ) ) along the population time ( T ˜ 2 ) axis, we develop and propose a protocol capable of separating vibrational coherence from the ground- and excited-electronic states in 3D rephasing and nonrephasing beating maps ( S ( λ 1 , ν ˜ 2 , λ 3 ) ). We found that the vibrational coherence from pure excited electronic states appears at positive frequency ( + ν ˜ 2 ) in the rephasing beating map and at negative frequency ( - ν ˜ 2 ) in the nonrephasing beating map. Furthermore, we also found that vibrational coherence from excited electronic state had a long dephasing time of 244 fs. The long-lived excited-state vibrational coherence indicates that coherence may be involved in the electron transfer process. Our findings not only shed light on the mechanism of ultrafast electron transfer in organic photovoltaics but also are beneficial for the study of the coherence effect on photoexcited dynamics in other systems.
The research and development of the adaptive optics in ophthalmology
NASA Astrophysics Data System (ADS)
Wu, Chuhan; Zhang, Xiaofang; Chen, Weilin
2015-08-01
Recently the combination of adaptive optics and ophthalmology has made great progress and become highly effective. The retina disease is diagnosed by retina imaging technique based on scanning optical system, so the scanning of eye requires optical system characterized by great ability of anti-moving and optical aberration correction. The adaptive optics possesses high level of adaptability and is available for real time imaging, which meets the requirement of medical retina detection with accurate images. Now the Scanning Laser Ophthalmoscope and the Optical Coherence Tomography are widely used, which are the core techniques in the area of medical retina detection. Based on the above techniques, in China, a few adaptive optics systems used for eye medical scanning have been designed by some researchers from The Institute of Optics And Electronics of CAS(The Chinese Academy of Sciences); some foreign research institutions have adopted other methods to eliminate the interference of eye moving and optical aberration; there are many relevant patents at home and abroad. In this paper, the principles and relevant technique details of the Scanning Laser Ophthalmoscope and the Optical Coherence Tomography are described. And the recent development and progress of adaptive optics in the field of eye retina imaging are analyzed and summarized.
Cell response to quasi-monochromatic light with different coherence
NASA Astrophysics Data System (ADS)
Budagovsky, A. V.; Solovykh, N. V.; Budagovskaya, O. N.; Budagovsky, I. A.
2015-04-01
The problem of the light coherence effect on the magnitude of the photoinduced cell response is discussed. The origins of ambiguous interpretation of the known experimental results are considered. Using the biological models, essentially differing in anatomy, morphology and biological functions (acrospires of radish, blackberry microsprouts cultivated in vitro, plum pollen), the effect of statistical properties of quasi-monochromatic light (λmax = 633 nm) on the magnitude of the photoinduced cell response is shown. It is found that for relatively low spatial coherence, the cell functional activity changes insignificantly. The maximal enhancement of growing processes (stimulating effect) is observed when the coherence length Lcoh and the correlation radius rcor are greater than the cell size, i.e., the entire cell fits into the field coherence volume. In this case, the representative indicators (germination of seeds and pollen, the spears length) exceeds those of non-irradiated objects by 1.7 - 3.9 times. For more correct assessment of the effect of light statistical properties on photocontrol processes, it is proposed to replace the qualitative description (coherent - incoherent) with the quantitative one, using the determination of spatial and temporal correlation functions and comparing them with the characteristic dimensions of the biological structures, e.g., the cell size.
Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources
Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue
2015-01-01
In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation. PMID:26471947
pretreatment conditions and biological digestion methods, which might not be detected by large-scale ) "Coherent Raman Microscopy Analysis of Plant Cell Walls," Biomass Conversion: Methods and Protocols, Methods in Molecular Biology (2012) "Chemical, Ultrastructural and Supramolecular Analysis
Lateral Coherence and Mixing in the Coastal Ocean: Adaptive Sampling using Gliders
2012-09-30
Adaptive Sampling using Gliders R. Kipp Shearman Jonathan D. Nash James N. Moum John A. Barth College of Oceanic & Atmospheric Sciences Oregon State...persistent on O (3 day) timescales, so are ideally suited to be adaptively sampled by autonomous gliders that actively report both turbulent and...plan to deploy 4 AUV gliders to perform intensive, adaptive surveys. Newly-enhanced to measure turbulent mixing, water-column currents and dye
ERIC Educational Resources Information Center
Perigo, Levi
2013-01-01
In this dissertation, the author examined the capabilities of Internet Protocol version 6 (IPv6) in regard to replacing Internet Protocol version 4 (IPv4) as the internetworking technology for Medium-sized Businesses (MBs) in the Information Systems (IS) field. Transition to IPv6 is inevitable, and, thus, organizations are adopting this protocol…
Robinson, P; Hodgson, R; Grainger, A J
2015-01-01
Objective: To assess whether a single isotropic three-dimensional (3D) fast spin echo (FSE) proton density fat-saturated (PD FS) sequence reconstructed in three planes could replace the three PD (FS) sequences in our standard protocol at 1.5 T (Siemens Avanto, Erlangen, Germany). Methods: A 3D FSE PD water excitation sequence was included in the protocol for 95 consecutive patients referred for routine knee MRI. This was used to produce offline reconstructions in axial, sagittal and coronal planes. Two radiologists independently assessed each case twice, once using the standard MRI protocol and once replacing the standard PD (FS) sequences with reconstructions from the 3D data set. Following scoring, the observer reviewed the 3D data set and performed multiplanar reformats to see if this altered confidence. The menisci, ligaments and cartilage were assessed, and statistical analysis was performed using the standard sequence as the reference standard. Results: The reporting accuracy was as follows: medial meniscus (MM) = 90.9%, lateral meniscus (LM) = 93.7%, anterior cruciate ligament (ACL) = 98.9% and cartilage surfaces = 85.8%. Agreement among the readers was for the standard protocol: MM kappa = 0.91, LM = 0.89, ACL = 0.98 and cartilage = 0.84; and for the 3D protocol: MM = 0.86, LM = 0.77, ACL = 0.94 and cartilage = 0.64. Conclusion: A 3D PD FSE sequence reconstructed in three planes gives reduced accuracy and decreased concordance among readers compared with conventional sequences when evaluating the menisci and cartilage with a 1.5-T MRI scanner. Advances in knowledge: Using the existing 1.5-T MR systems, a 3D FSE sequence should not replace two-dimensional sequences. PMID:26067920
Qin, J; Choi, K S; Ho, Simon S M; Heng, P A
2008-01-01
A force prediction algorithm is proposed to facilitate virtual-reality (VR) based collaborative surgical simulation by reducing the effect of network latencies. State regeneration is used to correct the estimated prediction. This algorithm is incorporated into an adaptive transmission protocol in which auxiliary features such as view synchronization and coupling control are equipped to ensure the system consistency. We implemented this protocol using multi-threaded technique on a cluster-based network architecture.
Probing polariton dynamics in trapped ions with phase-coherent two-dimensional spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gessner, Manuel; Schlawin, Frank; Buchleitner, Andreas
2015-06-07
We devise a phase-coherent three-pulse protocol to probe the polariton dynamics in a trapped-ion quantum simulation. In contrast to conventional nonlinear signals, the presented scheme does not change the number of excitations in the system, allowing for the investigation of the dynamics within an N-excitation manifold. In the particular case of a filling factor one (N excitations in an N-ion chain), the proposed interaction induces coherent transitions between a delocalized phonon superfluid and a localized atomic insulator phase. Numerical simulations of a two-ion chain demonstrate that the resulting two-dimensional spectra allow for the unambiguous identification of the distinct phases, andmore » the two-dimensional line shapes efficiently characterize the relevant decoherence mechanism.« less
Standifird, Tyler W; Saxton, Arnold M; Coe, Dawn P; Cates, Harold E; Reinbolt, Jeffrey A; Zhang, Songning
2016-01-01
This study compared biomechanics during stair ascent in replaced and non-replaced limbs of total knee arthroplasty (TKA) patients with control limbs of healthy participants. Thirteen TKA patients and fifteen controls performed stair ascent. Replaced and non-replaced knees of TKA patients were less flexed at contact compared to controls. The loading response peak knee extension moment was greater in control and non-replaced knees compared with replaced. The push-off peak knee abduction moment was elevated in replaced limbs compared to controls. Loading and push-off peak hip abduction moments were greater in replaced limbs compared to controls. The push-off peak hip abduction moment was greater in non-replaced limbs compared to controls. Future rehabilitation protocols should consider the replaced knee and also the non-replaced knee and surrounding joints. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhao, Mingtao; Kuo, Anthony N; Izatt, Joseph A
2010-04-26
Capable of three-dimensional imaging of the cornea with micrometer-scale resolution, spectral domain-optical coherence tomography (SDOCT) offers potential advantages over Placido ring and Scheimpflug photography based systems for accurate extraction of quantitative keratometric parameters. In this work, an SDOCT scanning protocol and motion correction algorithm were implemented to minimize the effects of patient motion during data acquisition. Procedures are described for correction of image data artifacts resulting from 3D refraction of SDOCT light in the cornea and from non-idealities of the scanning system geometry performed as a pre-requisite for accurate parameter extraction. Zernike polynomial 3D reconstruction and a recursive half searching algorithm (RHSA) were implemented to extract clinical keratometric parameters including anterior and posterior radii of curvature, central cornea optical power, central corneal thickness, and thickness maps of the cornea. Accuracy and repeatability of the extracted parameters obtained using a commercial 859nm SDOCT retinal imaging system with a corneal adapter were assessed using a rigid gas permeable (RGP) contact lens as a phantom target. Extraction of these parameters was performed in vivo in 3 patients and compared to commercial Placido topography and Scheimpflug photography systems. The repeatability of SDOCT central corneal power measured in vivo was 0.18 Diopters, and the difference observed between the systems averaged 0.1 Diopters between SDOCT and Scheimpflug photography, and 0.6 Diopters between SDOCT and Placido topography.
Angular coherence in ultrasound imaging: Theory and applications
Li, You Leo; Dahl, Jeremy J.
2017-01-01
The popularity of plane-wave transmits at multiple transmit angles for synthetic transmit aperture (or coherent compounding) has spawned a number of adaptations and new developments of ultrasonic imaging. However, the coherence properties of backscattered signals with plane-wave transmits at different angles are unknown and may impact a subset of these techniques. To provide a framework for the analysis of the coherence properties of such signals, this article introduces the angular coherence theory in medical ultrasound imaging. The theory indicates that the correlation function of such signals forms a Fourier transform pair with autocorrelation function of the receive aperture function. This conclusion can be considered as an extended form of the van Cittert Zernike theorem. The theory is validated with simulation and experimental results obtained on speckle targets. On the basis of the angular coherence of the backscattered wave, a new short-lag angular coherence beamformer is proposed and compared with an existing spatial-coherence-based beamformer. An application of the theory in phase shift estimation and speed of sound estimation is also presented. PMID:28372139
Experimental realization of self-guided quantum coherence freezing
NASA Astrophysics Data System (ADS)
Yu, Shang; Wang, Yi-Tao; Ke, Zhi-Jin; Liu, Wei; Zhang, Wen-Hao; Chen, Geng; Tang, Jian-Shun; Li, Chuan-Feng; Guo, Guang-Can
2017-12-01
Quantum coherence is the most essential characteristic of quantum physics, specifcially, when it is subject to the resource-theoretical framework, it is considered as the most fundamental resource for quantum techniques. Other quantum resources, e.g., entanglement, are all based on coherence. Therefore, it becomes urgently important to learn how to preserve coherence in quantum channels. The best preservation is coherence freezing, which has been studied recently. However, in these studies, the freezing condition is theoretically calculated, and there still lacks a practical way to achieve this freezing; in addition the channels are usually fixed, but actually, there are also degrees of freedom that can be used to adapt the channels to quantum states. Here we develop a self-guided quantum coherence freezing method, which can guide either the quantum channels (tunable-channel scheme with upgraded channels) or the initial state (fixed-channel scheme) to the coherence-freezing zone from any starting estimate. Specifically, in the fixed-channel scheme, the final-iterative quantum states all satisfy the previously calculated freezing condition. This coincidence demonstrates the validity of our method. Our work will be helpful for the better protection of quantum coherence.
Continuous-variable quantum key distribution in uniform fast-fading channels
NASA Astrophysics Data System (ADS)
Papanastasiou, Panagiotis; Weedbrook, Christian; Pirandola, Stefano
2018-03-01
We investigate the performance of several continuous-variable quantum key distribution protocols in the presence of uniform fading channels. These are lossy channels whose transmissivity changes according to a uniform probability distribution. We assume the worst-case scenario where an eavesdropper induces a fast-fading process, where she chooses the instantaneous transmissivity while the remote parties may only detect the mean statistical effect. We analyze coherent-state protocols in various configurations, including the one-way switching protocol in reverse reconciliation, the measurement-device-independent protocol in the symmetric configuration, and its extension to a three-party network. We show that, regardless of the advantage given to the eavesdropper (control of the fading), these protocols can still achieve high rates under realistic attacks, within reasonable values for the variance of the probability distribution associated with the fading process.
Computational adaptive optics for broadband optical interferometric tomography of biological tissue.
Adie, Steven G; Graf, Benedikt W; Ahmad, Adeel; Carney, P Scott; Boppart, Stephen A
2012-05-08
Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists.
Kodama, Wataru; Nakasako, Masayoshi
2011-08-01
Coherent x-ray diffraction microscopy is a novel technique in the structural analyses of particles that are difficult to crystallize, such as the biological particles composing living cells. As water is indispensable for maintaining particles in functional structures, sufficient hydration of targeted particles is required during sample preparation for diffraction microscopy experiments. However, the water enveloping particles also contributes significantly to the diffraction patterns and reduces the electron-density contrast of the sample particles. In this study, we propose a protocol for the structural analyses of particles in water by applying a three-dimensional reconstruction method in real space for the projection images phase-retrieved from diffraction patterns, together with a developed density modification technique. We examined the feasibility of the protocol through three simulations involving a protein molecule in a vacuum, and enveloped in either a droplet or a cube-shaped water. The simulations were carried out for the diffraction patterns in the reciprocal planes normal to the incident x-ray beam. This assumption and the simulation conditions corresponded to experiments using x-ray wavelengths of shorter than 0.03 Å. The analyses demonstrated that our protocol provided an interpretable electron-density map. Based on the results, we discuss the advantages and limitations of the proposed protocol and its practical application for experimental data. In particular, we examined the influence of Poisson noise in diffraction patterns on the reconstructed three-dimensional electron density in the proposed protocol.
Lei, Yuming; Bao, Shancheng; Wang, Jinsung
2016-09-07
Sensorimotor adaptation can be induced by action observation, and also by passive training. Here, we investigated the effect of a protocol that combined action observation and passive training on visuomotor adaptation, by comparing it with the effect of action observation or passive training alone. Subjects were divided into five conditions during the training session: (1) action observation, in which the subjects watched a video of a model who adapted to a novel visuomotor rotation; (2) proprioceptive training, in which the subject's arm was moved passively to target locations that were associated with desired trajectories; (3) combined training, in which the subjects watched the video of a model during a half of the session and experienced passive movements during the other half; (4) active training, in which the subjects adapted actively to the rotation; and (5) a control condition, in which the subjects did not perform any task. Following that session, all subjects adapted to the same visuomotor rotation. Results showed that the subjects in the combined training condition adapted to the rotation significantly better than those in the observation or proprioceptive training condition, although their performance was not as good as that of those who adapted actively. These findings suggest that although a protocol that combines action observation and passive training consists of all the processes involved in active training (error detection and correction, effector-specific and proprioceptively based reaching movements), these processes in that protocol may work differently as compared to a protocol in which the same processes are engaged actively. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Collective attacks and unconditional security in continuous variable quantum key distribution.
Grosshans, Frédéric
2005-01-21
We present here an information theoretic study of Gaussian collective attacks on the continuous variable key distribution protocols based on Gaussian modulation of coherent states. These attacks, overlooked in previous security studies, give a finite advantage to the eavesdropper in the experimentally relevant lossy channel, but are not powerful enough to reduce the range of the reverse reconciliation protocols. Secret key rates are given for the ideal case where Bob performs optimal collective measurements, as well as for the realistic cases where he performs homodyne or heterodyne measurements. We also apply the generic security proof of Christiandl et al. to obtain unconditionally secure rates for these protocols.
Smith, Orla M; Wald, Ron; Adhikari, Neill K J; Pope, Karen; Weir, Matthew A; Bagshaw, Sean M
2013-10-05
Acute kidney injury is a common and devastating complication of critical illness, for which renal replacement therapy is frequently needed to manage severe cases. While a recent systematic review suggested that "earlier" initiation of renal replacement therapy improves survival, completed trials are limited due to small size, single-centre status, and use of variable definitions to define "early" renal replacement therapy initiation. This is an open-label pilot randomized controlled trial. One hundred critically ill patients with severe acute kidney injury will be randomly allocated 1:1 to receive "accelerated" initiation of renal replacement therapy or "standard" initiation at 12 centers across Canada. In the accelerated arm, participants will have a venous catheter placed and renal replacement therapy will be initiated within 12 hours of fulfilling eligibility. In the standard initiation arm, participants will be monitored over 7 days to identify indications for renal replacement therapy. For participants in the standard arm with persistent acute kidney injury, defined as a serum creatinine not declining >50% from the value at the time of eligibility, the initiation of RRT will be discouraged unless one or more of the following criteria are fulfilled: serum potassium ≥6.0 mmol/L; serum bicarbonate ≤10 mmol/L; severe respiratory failure (PaO₂/FiO₂<200) or persisting acute kidney injury for ≥72 hours after fulfilling eligibility. The inclusion criteria are designed to identify a population of critically ill adults with severe acute kidney injury who are likely to need renal replacement therapy during their hospitalization, but not immediately. The primary outcome is protocol adherence (>90%). Secondary outcomes include measures of feasibility (proportion of eligible patients enrolled in the trial, proportion of enrolled patients followed to 90 days for assessment of vital status and the need for renal replacement therapy) and safety (occurrence of adverse events). The optimal timing of renal replacement therapy initiation in patients with severe acute kidney injury remains uncertain, representing an important knowledge gap and a priority for high-quality research. This pilot trial is necessary to establish protocol feasibility, confirm the safety of participants and obtain estimated events rates for design of a large definitive trial. NCT01557361.
Adaptive tracking of a time-varying field with a quantum sensor
NASA Astrophysics Data System (ADS)
Bonato, Cristian; Berry, Dominic W.
2017-05-01
Sensors based on single spins can enable magnetic-field detection with very high sensitivity and spatial resolution. Previous work has concentrated on sensing of a constant magnetic field or a periodic signal. Here, we instead investigate the problem of estimating a field with nonperiodic variation described by a Wiener process. We propose and study, by numerical simulations, an adaptive tracking protocol based on Bayesian estimation. The tracking protocol updates the probability distribution for the magnetic field based on measurement outcomes and adapts the choice of sensing time and phase in real time. By taking the statistical properties of the signal into account, our protocol strongly reduces the required measurement time. This leads to a reduction of the error in the estimation of a time-varying signal by up to a factor of four compare with protocols that do not take this information into account.
NASA Astrophysics Data System (ADS)
Guan, Guangying; Song, Shaozhen; Huang, Zhihong; Yang, Ying
2015-03-01
Generation of functional tissue in vitro through tissue engineering technique is a promising direction to repair and replace malfunctioned organ and tissue in the modern medicine for various diseases which could not been treated well by conventional therapy. Similar to the embryo development, the generation of tissue in vitro is a highly dynamic processing. Obtaining the feedback of the processing real time is highly demanded. In this study, a new methodology has been explored aiming to monitor the morphological and mechanical property alteration of bone tissue engineering constructs simultaneously. Optical coherence elastography (OCE) equipped with a LDS V201 permanent magnet shaker and a modulated acoustic radiation force (ARF) to provide a vibration signal, has been used for the real time and non-destructive monitoring. A phantom construct system has been used to optimize the measurement conditions in which agar hydrogel with concentration from 0, 0.75 to 2% with/without hydroxyappatite particles have been injected to 3D porous poly (lactic acid) scaffolds to simulate the collagenous extracellular matrix (ECM) and mineralized ECM. The structural and elastography images of the constructs have clearly demonstrated the linear relation with the increased mechanical property versus the increase of agar concentration within the pores of the scaffolds. The MG63 bone cells seeded in the scaffolds and cultured for 4 weeks have been monitored by the established protocol exhibiting the increased mechanical strength in the pore wall where the ECM or mineralized ECM was assumed to be formed in comparison to empty pores. This study confirms that OCE-ARF could become a valuable tool in regenerative medicine to assess the biological events during in vitro culture and conditioning.
The coherence of synthetic telomeres.
Acevedo, O L; Dickinson, L A; Macke, T J; Thomas, C A
1991-01-01
The chromosomal telomeres of Oxytricha were synthesized and their ability to cohere examined on non-denaturing acrylamide gels containing the stabilizing cation K+. At least 5 different mobility species were observed, in addition to that of the monomeric telomere. By cohering synthetic telomeres containing different lengths of subtelomeric DNA, we showed that each of the different mobility species was a dimer of two telomeres. Since the different mobility species did not differ in numbers or sequences of nucleotides, they must correspond to different molecular shapes probably caused by different degrees of bending of the dimer. Paradoxically, telomeres with longer subtelomeric stems cohered more efficiently. In the presence of K+, solutions had to be heated to over 90 degrees before the telomeres separated. Various synthetic constructs, restriction endonuclease and dimethyl sulfate protection experiments showed that the only nucleotides involved in the cohered structures were the 16 base 'tails' of sequence 3'G4T4G4T4. Extension of this motif was actually inimical to coherence. Oligomers containing 2 G4T4 motifs protected their GN7 positions by forming dimers, those with 5 G4T4 could do so by internal folding, but the 3' terminal group of G4 was left unprotected. This suggests that only four groups of G4 are necessary for the cohered structure. Single-chain specific nuclease, S1, as well as osmium tetroxide, which oxidizes the thymine residues of single chains, reacted less efficiently with the cohered structures. Synthetic telomeres containing inosine replacing guanosine were not observed to cohere, indicating that the C2-NH2 is strongly stabilizing. The cohered structures appear to be unusually compact and sturdy units in which four G4 blocks form quadruplexes stabilized by K+. A new model for the cohered structure is presented. Images PMID:1648206
Wavelet tree structure based speckle noise removal for optical coherence tomography
NASA Astrophysics Data System (ADS)
Yuan, Xin; Liu, Xuan; Liu, Yang
2018-02-01
We report a new speckle noise removal algorithm in optical coherence tomography (OCT). Though wavelet domain thresholding algorithms have demonstrated superior advantages in suppressing noise magnitude and preserving image sharpness in OCT, the wavelet tree structure has not been investigated in previous applications. In this work, we propose an adaptive wavelet thresholding algorithm via exploiting the tree structure in wavelet coefficients to remove the speckle noise in OCT images. The threshold for each wavelet band is adaptively selected following a special rule to retain the structure of the image across different wavelet layers. Our results demonstrate that the proposed algorithm outperforms conventional wavelet thresholding, with significant advantages in preserving image features.
An Adaptive Model of Student Performance Using Inverse Bayes
ERIC Educational Resources Information Center
Lang, Charles
2014-01-01
This article proposes a coherent framework for the use of Inverse Bayesian estimation to summarize and make predictions about student behaviour in adaptive educational settings. The Inverse Bayes Filter utilizes Bayes theorem to estimate the relative impact of contextual factors and internal student factors on student performance using time series…
Optimized quantum sensing with a single electron spin using real-time adaptive measurements.
Bonato, C; Blok, M S; Dinani, H T; Berry, D W; Markham, M L; Twitchen, D J; Hanson, R
2016-03-01
Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz(-1/2) over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.
Optimized quantum sensing with a single electron spin using real-time adaptive measurements
NASA Astrophysics Data System (ADS)
Bonato, C.; Blok, M. S.; Dinani, H. T.; Berry, D. W.; Markham, M. L.; Twitchen, D. J.; Hanson, R.
2016-03-01
Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz-1/2 over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.
A fast and mild decellularization protocol for obtaining extracellular matrix.
Mirzarafie, Ariana; Grainger, Rhian K; Thomas, Ben; Bains, William; Ustok, Fatma I; Lowe, Chris R
2014-04-01
Degradation of extracellular matrix (ECM) function with age is a major cause of loss of tissue function with age that we would wish to reverse. Tissue engineering to provide replacement tissue requires an ECM-mimicking scaffold for cell organization. The standard protocols for achieving this take 10 days and include steps that may change the protein structure of the ECM. Here we describe a much shorter protocol for decellularizing chicken muscle, skin, and tendon samples that achieves the same efficiency as the original protocol without protein cross-link interference. Our protocol can be completed in 72 hr.
Kind, Amy J H; Brenny-Fitzpatrick, Maria; Leahy-Gross, Kris; Mirr, Jacquelyn; Chapman, Elizabeth; Frey, Brooke; Houlahan, Beth
2016-02-01
The Department of Veterans Affairs (VA) Coordinated-Transitional Care (C-TraC) program is a low-cost transitional care program that uses hospital-based nurse case managers, inpatient team integration, and in-depth posthospital telephone contacts to support high-risk patients and their caregivers as they transition from hospital to community. The low-cost, primarily telephone-based C-TraC program reduced 30-day rehospitalizations by one-third, leading to significant cost savings at one VA hospital. Non-VA hospitals have expressed interest in launching C-TraC, but non-VA hospitals differ in important ways from VA hospitals, particularly in terms of context, culture, and resources. The objective of this project was to adapt C-TraC to the specific context of one non-VA setting using a modified Replicating Effective Programs (REP) implementation theory model and to test the feasibility of this protocolized implementation approach. The modified REP model uses a mentored phased-based implementation with intensive preimplementation activities and harnesses key local stakeholders to adapt processes and goals to local context. Using this protocolized implementation approach, an adapted C-TraC protocol was created and launched at the non-VA hospital in July 2013. In its first 16 months, C-TraC successfully enrolled 1,247 individuals with 3.2 full-time nurse case managers, achieving good fidelity for core protocol steps. C-TraC participants experienced a 30-day rehospitalization rate of 10.8%, compared with 16.6% for a contemporary comparison group of similar individuals for whom C-TraC was not available (n = 1,307) (P < .001). The new C-TraC program continues in operation. Use of a modified REP model to guide protocolized adaptation to local context resulted in a C-TraC program that was feasible and sustained in a real-world non-VA setting. A modified REP implementation framework may be an appropriate foundational step for other clinical programs seeking to harness protocolized adaptation in mentored dissemination activities. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.
An Intraoperative Site-specific Bone Density Device: A Pilot Test Case.
Arosio, Paolo; Moschioni, Monica; Banfi, Luca Maria; Di Stefano, Anilo Alessio
2015-08-01
This paper reports a case of all-on-four rehabilitation where bone density at implant sites was assessed both through preoperative computed tomographic (CT) scans and using a micromotor working as an intraoperative bone density measurement device. Implant-supported rehabilitation is a predictable treatment option for tooth replacement whose success depends on the clinician's experience, the implant characteristics and location and patient-related factors. Among the latter, bone density is a determinant for the achievement of primary implant stability and, eventually, for implant success. The ability to measure bone density at the placement site before implant insertion could be important in the clinical setting. A patient complaining of masticatory impairment was presented with a plan calling for extraction of all her compromised teeth, followed by implant rehabilitation. A week before surgery, she underwent CT examination, and the bone density on the CT scans was measured. When the implant osteotomies were created, the bone density was again measured with a micromotor endowed with an instantaneous torque-measuring system. The implant placement protocols were adapted for each implant, according to the intraoperative measurements, and the patient was rehabilitated following an all-on-four immediate loading protocol. The bone density device provided valuable information beyond that obtained from CT scans, allowing for site-specific, intraoperative assessment of bone density immediately before implant placement and an estimation of primary stability just after implant insertion. Measuring jaw-bone density could help clinicians to select implant-placement protocols and loading strategies based on site-specific bone features.
ERIC Educational Resources Information Center
Penuel, William R.; Shaw, Sam; Bell, Philip; Hopkins, Megan; Neill, Tiffany; Farrell, Caitlin C.
2018-01-01
This paper describes a Networked Improvement Community comprised of a network of 13 states focused on improving coherence and equity in state systems of science education. Grounded in principles of improvement science adapted from healthcare, we are developing and testing resources for formative assessment in science, with the aim of developing…
Ground-up-to-Space (GUTS) Laser Propagation Code Description and Manual
1984-06-01
34itteiy bean quality, and turbulence. Essentially, these effects are replaced by a phase screen at the aperture which multiplies the initial complex ...coherence length # Po , in terms of Fned’s [fief. 35] coher- ence cianeter , r». 75 Po = r /2 . 1 (3.21) Substituting Fried’s definition for r Po = 2.1 ? Ql f...comhination of the two are used, lrel tb = j~l-(d/b) 21 lrel u + (d/b) 2 Irel t (3-WJ kuere d is the apertue dianeter and b is the waist cianeter cf th€ teas
Control of estrus and ovulation in beef heifers.
Patterson, David J; Thomas, Jordan M; Martin, Neal T; Nash, Justin M; Smith, Michael F
2013-11-01
Expanded use of artificial insemination (AI) and/or adoption of emerging reproductive technologies for beef heifers and cows require precise methods of estrous-cycle control. New protocols for inducing and synchronizing a fertile estrus in replacement beef heifers and postpartum beef cows in which progestins are used provide new opportunities for beef producers to synchronize estrus and ovulation and to facilitate fixed-time AI. This article reviews the various estrous synchronization protocols currently available for use in replacement beef heifers. New methods of inducing and synchronizing estrus now create the opportunity to significantly expand the use of AI in the United States cowherd. Copyright © 2013 Elsevier Inc. All rights reserved.
Wu, Ed X.; Tang, Haiying; Tong, Christopher; Heymsfield, Steve B.; Vasselli, Joseph R.
2015-01-01
This study aimed to develop a quantitative and in vivo magnetic resonance imaging (MRI) approach to investigate the muscle growth effects of anabolic steroids. A protocol of MRI acquisition on a standard clinical 1.5 Tesla scanner and quantitative image analysis was established and employed to measure the individual muscle and organ volumes in the intact and castrated guinea pigs undergoing a 16-week treatment protocol by two well-documented anabolic steroids, testosterone and nandrolone, via implanted silastic capsules. High correlations between the in vivo MRI and postmortem dissection measurements were observed for shoulder muscle complex (R = 0.86), masseter (R=0.79), temporalis (R=0.95), neck muscle complex (R=0.58), prostate gland and seminal vesicles (R=0.98), and testis (R=0.96). Furthermore, the longitudinal MRI measurements yielded adequate sensitivity to detect the restoration of growth to or towards normal in castrated guinea pigs by replacing circulating steroid levels to physiological or slightly higher levels, as expected. These results demonstrated that quantitative MRI using a standard clinical scanner provides accurate and sensitive measurement of individual muscles and organs, and this in vivo MRI protocol in conjunction with the castrated guinea pig model constitutes an effective platform to investigate the longitudinal and cross-sectional growth effects of other potential anabolic steroids. The quantitative MRI protocol developed can also be readily adapted for human studies on most clinical MRI scanner to investigate the anabolic steroid growth effects, or monitor the changes in individual muscle and organ volume and geometry following injury, strength training, neuromuscular disorders, and pharmacological or surgical interventions. PMID:18241900
Zeng, Yuanyuan; Sreenan, Cormac J; Sitanayah, Lanny; Xiong, Naixue; Park, Jong Hyuk; Zheng, Guilin
2011-01-01
Fire hazard monitoring and evacuation for building environments is a novel application area for the deployment of wireless sensor networks. In this context, adaptive routing is essential in order to ensure safe and timely data delivery in building evacuation and fire fighting resource applications. Existing routing mechanisms for wireless sensor networks are not well suited for building fires, especially as they do not consider critical and dynamic network scenarios. In this paper, an emergency-adaptive, real-time and robust routing protocol is presented for emergency situations such as building fire hazard applications. The protocol adapts to handle dynamic emergency scenarios and works well with the routing hole problem. Theoretical analysis and simulation results indicate that our protocol provides a real-time routing mechanism that is well suited for dynamic emergency scenarios in building fires when compared with other related work.
Zeng, Yuanyuan; Sreenan, Cormac J.; Sitanayah, Lanny; Xiong, Naixue; Park, Jong Hyuk; Zheng, Guilin
2011-01-01
Fire hazard monitoring and evacuation for building environments is a novel application area for the deployment of wireless sensor networks. In this context, adaptive routing is essential in order to ensure safe and timely data delivery in building evacuation and fire fighting resource applications. Existing routing mechanisms for wireless sensor networks are not well suited for building fires, especially as they do not consider critical and dynamic network scenarios. In this paper, an emergency-adaptive, real-time and robust routing protocol is presented for emergency situations such as building fire hazard applications. The protocol adapts to handle dynamic emergency scenarios and works well with the routing hole problem. Theoretical analysis and simulation results indicate that our protocol provides a real-time routing mechanism that is well suited for dynamic emergency scenarios in building fires when compared with other related work. PMID:22163774
Wu, Chris Y; Jansen, Michael E; Andrade, Jorge; Chui, Toco Y P; Do, Anna T; Rosen, Richard B; Deobhakta, Avnish
2018-01-01
Solar retinopathy is a rare form of retinal injury that occurs after direct sungazing. To enhance understanding of the structural changes that occur in solar retinopathy by obtaining high-resolution in vivo en face images. Case report of a young adult woman who presented to the New York Eye and Ear Infirmary with symptoms of acute solar retinopathy after viewing the solar eclipse on August 21, 2017. Results of comprehensive ophthalmic examination and images obtained by fundus photography, microperimetry, spectral-domain optical coherence tomography (OCT), adaptive optics scanning light ophthalmoscopy, OCT angiography, and en face OCT. The patient was examined after viewing the solar eclipse. Visual acuity was 20/20 OD and 20/25 OS. The patient was left-eye dominant. Spectral-domain OCT images were consistent with mild and severe acute solar retinopathy in the right and left eye, respectively. Microperimetry was normal in the right eye but showed paracentral decreased retinal sensitivity in the left eye with a central absolute scotoma. Adaptive optics images of the right eye showed a small region of nonwaveguiding photoreceptors, while images of the left eye showed a large area of abnormal and nonwaveguiding photoreceptors. Optical coherence tomography angiography images were normal in both eyes. En face OCT images of the right eye showed a small circular hyperreflective area, with central hyporeflectivity in the outer retina of the right eye. The left eye showed a hyperreflective lesion that intensified in area from inner to middle retina and became mostly hyporeflective in the outer retina. The shape of the lesion on adaptive optics and en face OCT images of the left eye corresponded to the shape of the scotoma drawn by the patient on Amsler grid. Acute solar retinopathy can present with foveal cone photoreceptor mosaic disturbances on adaptive optics scanning light ophthalmoscopy imaging. Corresponding reflectivity changes can be seen on en face OCT, especially in the middle and outer retina. Young adults may be especially vulnerable and need to be better informed of the risks of viewing the sun with inadequate protective eyewear.
Relations Between Narrative Coherence, Identity, and Psychological Well-being in Emerging Adulthood
Waters, Theodore E. A.; Fivush, Robyn
2014-01-01
Objective The hypothesis that the ability to construct a coherent account of personal experience is reflective, or predictive, of psychological adjustment cuts across numerous domains of psychological science. It has been argued that coherent accounts of identity are especially adaptive. We tested these hypotheses by examining relations between narrative coherence of personally significant autobiographical memories and three psychological well-being components (Purpose and Meaning; Positive Self View; Positive Relationships). We also examined the potential moderation of the relations between coherence and well-being by assessing the identity content of each narrative. Method We collected two autobiographical narratives of personally significant events from 103 undergraduate students and coded them for coherence and identity content. Two additional narratives about generic/recurring events were also collected and coded for coherence. Results We confirmed the prediction that constructing coherent autobiographical narratives is related to psychological well-being. Further, we found that this relation was moderated by the narratives’ relevance to identity and that this moderation held after controlling for narrative ability more generally (i.e. coherence of generic/recurring events). Conclusion These data lend strong support to the coherent narrative identity hypothesis and the prediction that unique events are a critical feature of identity construction in emerging adulthood. PMID:25110125
Holographic optical coherence imaging of tumor spheroids
NASA Astrophysics Data System (ADS)
Yu, P.; Mustata, M.; Turek, J. J.; French, P. M. W.; Melloch, M. R.; Nolte, D. D.
2003-07-01
We present depth-resolved coherence-domain images of living tissue using a dynamic holographic semiconductor film. An AlGaAs photorefractive quantum-well device is used in an adaptive interferometer that records coherent backscattered (image-bearing) light from inside rat osteogenic sarcoma tumor spheroids up to 1 mm in diameter in vitro. The data consist of sequential holographic image frames at successive depths through the tumor represented as a visual video "fly-through." The images from the tumor spheroids reveal heterogeneous structures presumably caused by necrosis and microcalcifications characteristic of human tumors in their early avascular growth.
de Kroon, Marlou L A; Bulthuis, Jozien; Mulder, Wico; Schaafsma, Frederieke G; Anema, Johannes R
2016-12-01
Since the extent of sick leave and the problems of vocational school students are relatively large, we aimed to tailor a sick leave protocol at Dutch lower secondary education schools to the particular context of vocational schools. Four steps of the iterative process of Intervention Mapping (IM) to adapt this protocol were carried out: (1) performing a needs assessment and defining a program objective, (2) determining the performance and change objectives, (3) identifying theory-based methods and practical strategies and (4) developing a program plan. Interviews with students using structured questionnaires, in-depth interviews with relevant stakeholders, a literature research and, finally, a pilot implementation were carried out. A sick leave protocol was developed that was feasible and acceptable for all stakeholders. The main barriers for widespread implementation are time constraints in both monitoring and acting upon sick leave by school and youth health care. The iterative process of IM has shown its merits in the adaptation of the manual 'A quick return to school is much better' to a sick leave protocol for vocational school students.
An adaptive density-based routing protocol for flying Ad Hoc networks
NASA Astrophysics Data System (ADS)
Zheng, Xueli; Qi, Qian; Wang, Qingwen; Li, Yongqiang
2017-10-01
An Adaptive Density-based Routing Protocol (ADRP) for Flying Ad Hoc Networks (FANETs) is proposed in this paper. The main objective is to calculate forwarding probability adaptively in order to increase the efficiency of forwarding in FANETs. ADRP dynamically fine-tunes the rebroadcasting probability of a node for routing request packets according to the number of neighbour nodes. Indeed, it is more interesting to privilege the retransmission by nodes with little neighbour nodes. We describe the protocol, implement it and evaluate its performance using NS-2 network simulator. Simulation results reveal that ADRP achieves better performance in terms of the packet delivery fraction, average end-to-end delay, normalized routing load, normalized MAC load and throughput, which is respectively compared with AODV.
Finite-data-size study on practical universal blind quantum computation
NASA Astrophysics Data System (ADS)
Zhao, Qiang; Li, Qiong
2018-07-01
The universal blind quantum computation with weak coherent pulses protocol is a practical scheme to allow a client to delegate a computation to a remote server while the computation hidden. However, in the practical protocol, a finite data size will influence the preparation efficiency in the remote blind qubit state preparation (RBSP). In this paper, a modified RBSP protocol with two decoy states is studied in the finite data size. The issue of its statistical fluctuations is analyzed thoroughly. The theoretical analysis and simulation results show that two-decoy-state case with statistical fluctuation is closer to the asymptotic case than the one-decoy-state case with statistical fluctuation. Particularly, the two-decoy-state protocol can achieve a longer communication distance than the one-decoy-state case in this statistical fluctuation situation.
Bernard, Lise; Roche, Béatrice; Batisse, Marie; Maqdasy, Salwan; Terral, Daniel; Sautou, Valérie; Tauveron, Igor
2016-10-01
In non-critically ill patients, the use of an insulin syringe pump allows the management of temporary situations during which other therapies cannot be used (failure of subcutaneous injections, awaiting advice from the diabetes team, emergency situations, prolonged corticosteroid therapy, initiation of an artificial nutrition, need for a fasting status, etc.). To manage the risks related to this «never event», the use of a standard validated protocol for insulin administration and monitoring is an essential prerequisite. To this end, a multidisciplinary approach is recommended. With the support of our subcommission «Endocrinology-Diabetology», we proceeded with a «step-by-step process» to create such a standardized protocol: (1) review of all existing protocols in our hospital; (2) overview of the literature data concerning insulin infusion protocols developed by multidisciplinary teams in France and abroad; (3) development of a standardized protocol for non-intensive care unit patients, respecting the current recommendations and adapting it to the working habits of health teams; and (4) validation of the protocol Two protocols based on the same structure but adapted to the health status of the patient have been developed. The protocols are divided in to three parts: (1) golden rules to make the use of the protocol appropriate and safe; (2) the algorithm (a double entry table) corresponding to a dynamic adaptation of insulin doses, clearly defining the target and the 'at risk situations'; and (3) practical aspects of the protocol: preparation of the syringe, treatment initiation and traceability. The protocols have been validated by the institution. Our standardized insulin infusion protocol is simple, easy to implement, safe and is likely to be applicable in diverse care units. However, the efficiency, safety and the workability of our protocols have to be clinically evaluated. © 2016 John Wiley & Sons, Ltd.
Tsang, Lap Fung; Cheng, Hang Cheong; Ho, Hon Shuen; Hsu, Yung Chak; Chow, Chiu Man; Law, Heung Wah; Fong, Lup Chau; Leung, Lok Ming; Kong, Ivy Ching Yan; Chan, Chi Wai; Sham, Alice So Yuen
2016-05-01
Although various drains have long been used in total joint replacement, evidence suggests inconsistent practice exists in the use of drainage systems including intermittently applying suction or free of drainage suction, and variations in the optimal timing for wound drain removal. A comprehensive systematic review of available evidence up to 2013 was conducted in a previous study and a protocol was adapted for clinical application according to the summary of the retrieved information (Tsang, 2015). To determine if the protocol could reduce blood loss and blood transfusion after operation and to develop a record form so as to enhance communication of drainage record amongst surgeons and nurses. A quasi-experimental time-series design was undertaken. In the conventional group, surgeons ordered free drainage if the drain output was more than 300 ml. The time of removal of the drain was based on their professional judgement. In the protocol group the method of drainage was dependant of the drainage output as was the timing of the removal of the drain. A standardized record form was developed to guide operating room and orthopaedic ward nurses to manage the drainage system. The drain was removed significantly earlier in the protocol group. Blood loss rate at the first hour of post-operation was extremely low in the protocol group due to clamping effect. Blood loss in volume during the first three hours in the protocol group was significantly lower than that in the conventional group. Only in 11.1% and 4% of cases was it necessary to clamp at the three and four hour post-operative hours. No clamping was required at the two and eight hour postoperative period. There was no significant difference in blood loss during the removal of the drain and during blood transfusion, which was required for patients upon removal of the drain in the two groups. This is the first clinical study to develop an evidence-based protocol to manage wound drain effectively in Hong Kong. Total blood loss and blood transfusions were not significantly different between the conventional and protocol groups. A standard documentation document is beneficial to enhance communication between doctors and nurses as well as to monitor and observe drainage effectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cell response to quasi-monochromatic light with different coherence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budagovsky, A V; Solovykh, N V; Budagovskaya, O N
The problem of the light coherence effect on the magnitude of the photoinduced cell response is discussed. The origins of ambiguous interpretation of the known experimental results are considered. Using the biological models, essentially differing in anatomy, morphology and biological functions (acrospires of radish, blackberry microsprouts cultivated in vitro, plum pollen), the effect of statistical properties of quasi-monochromatic light (λ{sub max} = 633 nm) on the magnitude of the photoinduced cell response is shown. It is found that for relatively low spatial coherence, the cell functional activity changes insignificantly. The maximal enhancement of growing processes (stimulating effect) is observed whenmore » the coherence length L{sub coh} and the correlation radius r{sub cor} are greater than the cell size, i.e., the entire cell fits into the field coherence volume. In this case, the representative indicators (germination of seeds and pollen, the spears length) exceeds those of non-irradiated objects by 1.7 – 3.9 times. For more correct assessment of the effect of light statistical properties on photocontrol processes, it is proposed to replace the qualitative description (coherent – incoherent) with the quantitative one, using the determination of spatial and temporal correlation functions and comparing them with the characteristic dimensions of the biological structures, e.g., the cell size. (biophotonics)« less
Schuelke, Matthew J; Day, Eric Anthony; McEntire, Lauren E; Boatman, Jazmine Espejo; Wang, Xiaoqian; Kowollik, Vanessa; Boatman, Paul R
2009-07-01
The authors examined the relative criterion-related validity of knowledge structure coherence and two accuracy-based indices (closeness and correlation) as well as the utility of using a combination of knowledge structure indices in the prediction of skill acquisition and transfer. Findings from an aggregation of 5 independent samples (N = 958) whose participants underwent training on a complex computer simulation indicated that coherence and the accuracy-based indices yielded comparable zero-order predictive validities. Support for the incremental validity of using a combination of indices was mixed; the most, albeit small, gain came in pairing coherence and closeness when predicting transfer. After controlling for baseline skill, general mental ability, and declarative knowledge, only coherence explained a statistically significant amount of unique variance in transfer. Overall, the results suggested that the different indices largely overlap in their representation of knowledge organization, but that coherence better reflects adaptable aspects of knowledge organization important to skill transfer.
NASA Astrophysics Data System (ADS)
Smet, K.; de Neufville, R.; van der Vlist, M.
2017-12-01
This work presents an innovative approach for replacement planning for aging water infrastructure given uncertain future conditions. We draw upon two existing methodologies to develop an integrated long-term replacement planning framework. We first expand the concept of Adaptation Tipping Points to generate long-term planning timelines that incorporate drivers of investment related to both internal structural processes as well as changes in external operating conditions. Then, we use Engineering Options to explore different actions taken at key moments in this timeline. Contrasting to the traditionally more static approach to infrastructure design, designing the next generation of infrastructure so it can be changed incrementally is a promising method to safeguard current investments given future uncertainty. This up-front inclusion of structural options in the system actively facilitates future adaptation, transforming uncertainty management in infrastructure planning from reactive to more proactive. A two-part model underpins this approach. A simulation model generates diverse future conditions, allowing development of timelines of intervention moments in the structure's life. This feeds into an economic model, evaluating the lifetime performance of different replacement strategies, making explicit the value of different designs and their flexibility. A proof of concept study demonstrates this approach for a pumping station. The strategic planning timelines for this structure demonstrate that moments when capital interventions become necessary due to reduced functionality from structural degradation or changed operating conditions are widely spread over the structure's life. The disparate timing of these necessary interventions supports an incremental, adaptive mindset when considering end-of-life and replacement decisions. The analysis then explores different replacement decisions, varying the size and specific options included in the proposed new structure. Results show that incremental adaptive designs and incorporating options can improve economic performance, as compared to traditional, "build it once & build it big" designs. The benefit from incorporating flexibility varies with structural functionality, future conditions and the specific options examined.
37 CFR 7.29 - Effect of replacement on U.S. registration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 37 Patents, Trademarks, and Copyrights 1 2011-07-01 2011-07-01 false Effect of replacement on U.S. registration. 7.29 Section 7.29 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK OFFICE, DEPARTMENT OF COMMERCE RULES OF PRACTICE IN FILINGS PURSUANT TO THE PROTOCOL RELATING TO THE MADRID AGREEMENT...
37 CFR 7.29 - Effect of replacement on U.S. registration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Effect of replacement on U.S. registration. 7.29 Section 7.29 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK OFFICE, DEPARTMENT OF COMMERCE RULES OF PRACTICE IN FILINGS PURSUANT TO THE PROTOCOL RELATING TO THE MADRID AGREEMENT...
37 CFR 7.29 - Effect of replacement on U.S. registration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 37 Patents, Trademarks, and Copyrights 1 2012-07-01 2012-07-01 false Effect of replacement on U.S. registration. 7.29 Section 7.29 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK OFFICE, DEPARTMENT OF COMMERCE RULES OF PRACTICE IN FILINGS PURSUANT TO THE PROTOCOL RELATING TO THE MADRID AGREEMENT...
37 CFR 7.29 - Effect of replacement on U.S. registration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 37 Patents, Trademarks, and Copyrights 1 2013-07-01 2013-07-01 false Effect of replacement on U.S. registration. 7.29 Section 7.29 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK OFFICE, DEPARTMENT OF COMMERCE RULES OF PRACTICE IN FILINGS PURSUANT TO THE PROTOCOL RELATING TO THE MADRID AGREEMENT...
37 CFR 7.29 - Effect of replacement on U.S. registration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 37 Patents, Trademarks, and Copyrights 1 2014-07-01 2014-07-01 false Effect of replacement on U.S. registration. 7.29 Section 7.29 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK OFFICE, DEPARTMENT OF COMMERCE RULES OF PRACTICE IN FILINGS PURSUANT TO THE PROTOCOL RELATING TO THE MADRID AGREEMENT...
Salamonson, Yenna; Ramjan, Lucie M; van den Nieuwenhuizen, Simon; Metcalfe, Lauren; Chang, Sungwon; Everett, Bronwyn
2016-03-01
This paper examines the relationship between nursing students' sense of coherence, self-regulated learning and academic performance in bioscience. While there is increasing recognition of a need to foster students' self-regulated learning, little is known about the relationship of psychological strengths, particularly sense of coherence and academic performance. Using a prospective, correlational design, 563 first year nursing students completed the three dimensions of sense of coherence scale - comprehensibility, manageability and meaningfulness, and five components of self-regulated learning strategy - elaboration, organisation, rehearsal, self-efficacy and task value. Cluster analysis was used to group respondents into three clusters, based on their sense of coherence subscale scores. Although there were no sociodemographic differences in sense of coherence subscale scores, those with higher sense of coherence were more likely to adopt self-regulated learning strategies. Furthermore, academic grades collected at the end of semester revealed that higher sense of coherence was consistently related to achieving higher academic grades across all four units of study. Students with higher sense of coherence were more self-regulated in their learning approach. More importantly, the study suggests that sense of coherence may be an explanatory factor for students' successful adaptation and transition in higher education, as indicated by the positive relationship of sense of coherence to academic performance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Emerging criteria for the low-coherence cannot classify category.
Speranza, Anna Maria; Nicolais, Giampaolo; Maggiora Vergano, Carola; Dazzi, Nino
2017-12-01
As suggested by Main et al., to respond to the need for an adaptation of the existing Adult Attachment Interview (AAI) coding system, especially regarding the application to nonnormative samples, this study presents additional criteria that characterize the low-coherence cannot classify (CC) category. Three AAIs were selected from a sample of parents of maltreated children. All transcripts indicated a very low coherence, with no evidence of contradictory insecure discourse strategies. Moreover, global category descriptors were identified, together with specific indices of discourse characteristics and features that highlight the breakdown in reasoning and discourse experienced by the speakers. The aim of the study is to illustrate new criteria to identify and rate a low-coherence CC profile toward the operationalization of this pervasively unintegrated state of mind. Through the definition of additional criteria for low-coherence CC category, our study helps the AAI and its coding system be more flexible and effective when dealing with clinical samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Yao, E-mail: yaoyao@fudan.edu.cn
The deep sub-Ohmic spin–boson model shows a longstanding non-Markovian coherence at low temperature. Motivating to quench this robust coherence, the thermal effect is unitarily incorporated into the time evolution of the model, which is calculated by the adaptive time-dependent density matrix renormalization group algorithm combined with the orthogonal polynomials theory. Via introducing a unitary heating operator to the bosonic bath, the bath is heated up so that a majority portion of the bosonic excited states is occupied. It is found in this situation the coherence of the spin is quickly quenched even in the coherent regime, in which the non-Markovianmore » feature dominates. With this finding we come up with a novel way to implement the unitary equilibration, the essential term of the eigenstate-thermalization hypothesis, through a short-time evolution of the model.« less
NASA Astrophysics Data System (ADS)
Nikolopoulos, Georgios M.
2018-01-01
We consider a recently proposed entity authentication protocol in which a physical unclonable key is interrogated by random coherent states of light, and the quadratures of the scattered light are analyzed by means of a coarse-grained homodyne detection. We derive a sufficient condition for the protocol to be secure against an emulation attack in which an adversary knows the challenge-response properties of the key and moreover, he can access the challenges during the verification. The security analysis relies on Holevo's bound and Fano's inequality, and suggests that the protocol is secure against the emulation attack for a broad range of physical parameters that are within reach of today's technology.
Hsiao, Chiu-Yueh; Tsai, Yun-Fang
2015-06-01
To assess the degree of caregiver burden and family functioning among Taiwanese primary family caregivers of people with schizophrenia and to test its association with demographic characteristics, family demands, sense of coherence and family hardiness. Family caregiving is a great concern in mental illness. Yet, the correlates of caregiver burden and family functioning in primary family caregivers of individuals with schizophrenia still remain unclear. A cross-sectional descriptive study. A convenience sample of 137 primary family caregivers was recruited from two psychiatric outpatient clinics in Taiwan. Measures included a demographic information sheet and the Chinese versions of the Family Stressors Index, Family Strains Index, 13-item Sense of Coherence Scale, 18-item Caregiver Burden Scale, Family Hardiness Index and Family Adaptability, Partnership, Growth, Affection, and Resolve Index. Data analysis included descriptive statistics, Pearson's product-moment correlation coefficients, t-test, one-way analysis of variance and a stepwise multiple linear regression. Female caregivers, additional dependent relatives, increased family demands and decreased sense of coherence significantly increased caregiver burden, whereas siblings as caregivers reported lower degrees of burden than parental caregivers. Family caregivers with lower family demands, increased family hardiness and higher educational level had significantly enhanced family functioning. Sense of coherence was significantly correlated with family hardiness. Our findings highlighted the importance of sense of coherence and family hardiness in individual and family adaptation. Special attention needs to focus on therapeutic interventions that enhance sense of coherence and family hardiness, thereby improving the perception of burden of care and family functioning. Given the nature of family caregiving in schizophrenia, understanding of correlates of caregiver burden and family functioning would help provide useful avenues for the development of family-focused intervention in psychiatric mental health nursing practice. © 2014 John Wiley & Sons Ltd.
Schmid, P J; Sayadi, T
2017-03-13
The dynamics of coherent structures near the wall of a turbulent boundary layer is investigated with the aim of a low-dimensional representation of its essential features. Based on a triple decomposition into mean, coherent and incoherent motion and a dynamic mode decomposition to recover statistical information about the incoherent part of the flow field, a driven linear system coupling first- and second-order moments of the coherent structures is derived and analysed. The transfer function for this system, evaluated for a wall-parallel plane, confirms a strong bias towards streamwise elongated structures, and is proposed as an 'impedance' boundary condition which replaces the bulk of the transport between the coherent velocity field and the coherent Reynolds stresses, thus acting as a wall model for large-eddy simulations (LES). It is interesting to note that the boundary condition is non-local in space and time. The extracted model is capable of reproducing the principal Reynolds stress components for the pretransitional, transitional and fully turbulent boundary layer.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).
Jian, Yifan; Xu, Jing; Gradowski, Martin A.; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.
2014-01-01
We present wavefront sensorless adaptive optics (WSAO) Fourier domain optical coherence tomography (FD-OCT) for in vivo small animal retinal imaging. WSAO is attractive especially for mouse retinal imaging because it simplifies optical design and eliminates the need for wavefront sensing, which is difficult in the small animal eye. GPU accelerated processing of the OCT data permitted real-time extraction of image quality metrics (intensity) for arbitrarily selected retinal layers to be optimized. Modal control of a commercially available segmented deformable mirror (IrisAO Inc.) provided rapid convergence using a sequential search algorithm. Image quality improvements with WSAO OCT are presented for both pigmented and albino mouse retinal data, acquired in vivo. PMID:24575347
Generation of dark hollow beam via coherent combination based on adaptive optics.
Zheng, Yi; Wang, Xiaohua; Shen, Feng; Li, Xinyang
2010-12-20
A novel method for generating a dark hollow beam (DHB) is proposed and studied both theoretically and experimentally. A coherent combination technique for laser arrays is implemented based on adaptive optics (AO). A beam arraying structure and an active segmented mirror are designed and described. Piston errors are extracted by a zero-order interference detection system with the help of a custom-made photo-detectors array. An algorithm called the extremum approach is adopted to calculate feedback control signals. A dynamic piston error is imported by LiNbO3 to test the capability of the AO servo. In a closed loop the stable and clear DHB is obtained. The experimental results confirm the feasibility of the concept.
Yanoga, Fatoumata; Gentile, Ronald C; Chui, Toco Y P; Freund, K Bailey; Fell, Millie; Dolz-Marco, Rosa; Rosen, Richard B
2018-02-27
To report a case of persistent retinal toxicity associated with a high dose of sildenafil citrate intake. Single retrospective case report. A 31-year-old white man with no medical history presented with complaints of bilateral multicolored photopsias and erythropsia (red-tinted vision), shortly after taking sildenafil citrate-purchased through the internet. Patient was found to have cone photoreceptor damage, demonstrated using electroretinogram, optical coherence tomography, and adaptive optics imaging. The patient's symptoms and the photoreceptor structural changes persisted for several months. Sildenafil citrate is a widely used erectile dysfunction medication that is typically associated with transient visual symptoms in normal dosage. At high dosage, sildenafil citrate can lead to persistent retinal toxicity in certain individuals.
Data-aided adaptive weighted channel equalizer for coherent optical OFDM.
Mousa-Pasandi, Mohammad E; Plant, David V
2010-02-15
We report an adaptive weighted channel equalizer (AWCE) for orthogonal frequency division multiplexing (OFDM) and study its performance for long-haul coherent optical OFDM (CO-OFDM) transmission systems. This equalizer updates the equalization parameters on a symbol-by-symbol basis thus can track slight drifts of the optical channel. This is suitable to combat polarization mode dispersion (PMD) degradation while increasing the periodicity of pilot symbols which can be translated into a significant overhead reduction. Furthermore, AWCE can increase the precision of RF-pilot enabled phase noise estimation in the presence of noise, using data-aided phase noise estimation. Simulation results corroborate the capability of AWCE in both overhead reduction and improving the quality of the phase noise compensation (PNC).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, R; Lakshmanan, M; Fong, G
Purpose: Coherent scatter based imaging has shown improved contrast and molecular specificity over conventional digital mammography however the biological risks have not been quantified due to a lack of accurate information on absorbed dose. This study intends to characterize the dose distribution and average glandular dose from coded aperture coherent scatter spectral imaging of the breast. The dose deposited in the breast from this new diagnostic imaging modality has not yet been quantitatively evaluated. Here, various digitized anthropomorphic phantoms are tested in a Monte Carlo simulation to evaluate the absorbed dose distribution and average glandular dose using clinically feasible scanmore » protocols. Methods: Geant4 Monte Carlo radiation transport simulation software is used to replicate the coded aperture coherent scatter spectral imaging system. Energy sensitive, photon counting detectors are used to characterize the x-ray beam spectra for various imaging protocols. This input spectra is cross-validated with the results from XSPECT, a commercially available application that yields x-ray tube specific spectra for the operating parameters employed. XSPECT is also used to determine the appropriate number of photons emitted per mAs of tube current at a given kVp tube potential. With the implementation of the XCAT digital anthropomorphic breast phantom library, a variety of breast sizes with differing anatomical structure are evaluated. Simulations were performed with and without compression of the breast for dose comparison. Results: Through the Monte Carlo evaluation of a diverse population of breast types imaged under real-world scan conditions, a clinically relevant average glandular dose for this new imaging modality is extrapolated. Conclusion: With access to the physical coherent scatter imaging system used in the simulation, the results of this Monte Carlo study may be used to directly influence the future development of the modality to keep breast dose to a minimum while still maintaining clinically viable image quality.« less
A scale-based connected coherence tree algorithm for image segmentation.
Ding, Jundi; Ma, Runing; Chen, Songcan
2008-02-01
This paper presents a connected coherence tree algorithm (CCTA) for image segmentation with no prior knowledge. It aims to find regions of semantic coherence based on the proposed epsilon-neighbor coherence segmentation criterion. More specifically, with an adaptive spatial scale and an appropriate intensity-difference scale, CCTA often achieves several sets of coherent neighboring pixels which maximize the probability of being a single image content (including kinds of complex backgrounds). In practice, each set of coherent neighboring pixels corresponds to a coherence class (CC). The fact that each CC just contains a single equivalence class (EC) ensures the separability of an arbitrary image theoretically. In addition, the resultant CCs are represented by tree-based data structures, named connected coherence tree (CCT)s. In this sense, CCTA is a graph-based image analysis algorithm, which expresses three advantages: 1) its fundamental idea, epsilon-neighbor coherence segmentation criterion, is easy to interpret and comprehend; 2) it is efficient due to a linear computational complexity in the number of image pixels; 3) both subjective comparisons and objective evaluation have shown that it is effective for the tasks of semantic object segmentation and figure-ground separation in a wide variety of images. Those images either contain tiny, long and thin objects or are severely degraded by noise, uneven lighting, occlusion, poor illumination, and shadow.
Pulerwitz, Todd C.; Khalique, Omar K.; Nazif, Tamim N.; Rozenshtein, Anna; Pearson, Gregory D.N.; Hahn, Rebecca T.; Vahl, Torsten P.; Kodali, Susheel K.; George, Isaac; Leon, Martin B.; D'Souza, Belinda; Po, Ming Jack; Einstein, Andrew J.
2016-01-01
Background Transcatheter aortic valve replacement (TAVR) is a lifesaving procedure for many patients high risk for surgical aortic valve replacement. The prevalence of chronic kidney disease (CKD) is high in this population, and thus a very low contrast volume (VLCV) computed tomography angiography (CTA) protocol providing comprehensive cardiac and vascular imaging would be valuable. Methods 52 patients with severe, symptomatic aortic valve disease, undergoing pre-TAVR CTA assessment from 2013-4 at Columbia University Medical Center were studied, including all 26 patients with CKD (eGFR<30mL/min) who underwent a novel VLCV protocol (20mL of iohexol at 2.5mL/s), and 26 standard-contrast-volume (SCV) protocol patients. Using a 320-slice volumetric scanner, the protocol included ECG-gated volume scanning of the aortic root followed by medium-pitch helical vascular scanning through the femoral arteries. Two experienced cardiologists performed aortic annulus and root measurements. Vascular image quality was assessed by two radiologists using a 4-point scale. Results VLCV patients had mean(±SD) age 86±6.5, BMI 23.9±3.4 kg/m2 with 54% men; SCV patients age 83±8.8, BMI 28.7±5.3 kg/m2, 65% men. There was excellent intra- and inter-observer agreement for annular and root measurements, and excellent agreement with 3D-transesophageal echocardiographic measurements. Both radiologists found diagnostic-quality vascular imaging in 96% of VLCV and 100% of SCV cases, with excellent inter-observer agreement. Conclusions This study is the first of its kind to report the feasibility and reproducibility of measurements for a VLCV protocol for comprehensive pre-TAVR CTA. There was excellent agreement of cardiac measurements and almost all studies were diagnostic quality for vascular access assessment. PMID:27061253
Adaptive Control System of Hydraulic Pressure Based on The Mathematical Modeling
NASA Astrophysics Data System (ADS)
Pilipenko, A. V.; Pilipenko, A. P.; Kanatnikov, N. V.
2016-04-01
In this paper, the authors highlight the problem of replacing an old heavy industrial equipment, and offer the replacement of obsolete control systems on the modern adaptive control system, which takes into account changes in the hydraulic system of the press and compensates them with a corrective action. The proposed system can reduce a water hammer and thereby increase the durability of the hydraulic system and tools.
Ferret, Yann; Caillault, Aurélie; Sebda, Shéhérazade; Duez, Marc; Grardel, Nathalie; Duployez, Nicolas; Villenet, Céline; Figeac, Martin; Preudhomme, Claude; Salson, Mikaël; Giraud, Mathieu
2016-05-01
High-throughput sequencing (HTS) is considered a technical revolution that has improved our knowledge of lymphoid and autoimmune diseases, changing our approach to leukaemia both at diagnosis and during follow-up. As part of an immunoglobulin/T cell receptor-based minimal residual disease (MRD) assessment of acute lymphoblastic leukaemia patients, we assessed the performance and feasibility of the replacement of the first steps of the approach based on DNA isolation and Sanger sequencing, using a HTS protocol combined with bioinformatics analysis and visualization using the Vidjil software. We prospectively analysed the diagnostic and relapse samples of 34 paediatric patients, thus identifying 125 leukaemic clones with recombinations on multiple loci (TRG, TRD, IGH and IGK), including Dd2/Dd3 and Intron/KDE rearrangements. Sequencing failures were halved (14% vs. 34%, P = 0.0007), enabling more patients to be monitored. Furthermore, more markers per patient could be monitored, reducing the probability of false negative MRD results. The whole analysis, from sample receipt to clinical validation, was shorter than our current diagnostic protocol, with equal resources. V(D)J recombination was successfully assigned by the software, even for unusual recombinations. This study emphasizes the progress that HTS with adapted bioinformatics tools can bring to the diagnosis of leukaemia patients. © 2016 John Wiley & Sons Ltd.
Pappas, Evangelos; Zampeli, Franceska; Xergia, Sofia A; Georgoulis, Anastasios D
2013-04-01
Technological advances in recent years have allowed the easy and accurate assessment of knee motion during athletic activities. Subsequently, thousands of studies have been published that greatly improved our understanding of the aetiology, surgical reconstruction techniques and prevention of anterior cruciate ligament (ACL) injuries. The purpose of this review is to summarize the evidence from biomechanical studies on ACL-related research. High-impact articles that enhanced understanding of ACL injury aetiology, rehabilitation, prevention and adaptations after reconstruction were selected. The importance of restoring internal tibial rotation after ACL reconstruction has emerged in several studies. Criteria-based, individualized rehabilitation protocols have replaced the traditional time-based protocols. Excessive knee valgus, poor trunk control, excessive quadriceps forces and leg asymmetries have been identified as potential high risk biomechanical factors for ACL tear. Injury prevention programmes have emerged as low cost and effective means of preventing ACL injuries, particularly in female athletes. As a result of biomechanical research, clinicians have a better understanding of ACL injury aetiology, prevention and rehabilitation. Athletes exhibiting neuromuscular deficits predisposing them to ACL injury can be identified and enrolled into prevention programmes. Clinicians should assess ACL-reconstructed patients for excessive internal tibial rotation that may lead to poor outcomes.
Adaptive and reliably acknowledged FSO communications
NASA Astrophysics Data System (ADS)
Fitz, Michael P.; Halford, Thomas R.; Kose, Cenk; Cromwell, Jonathan; Gordon, Steven
2015-05-01
Atmospheric turbulence causes the receive signal intensity on free space optical (FSO) communication links to vary over time. Scintillation fades can stymie connectivity for milliseconds at a time. To approach the information-theoretic limits of communication in such time-varying channels, it necessary to either code across extremely long blocks of data - thereby inducing unacceptable delays - or to vary the code rate according to the instantaneous channel conditions. We describe the design, laboratory testing, and over-the-air testing of an FSO modem that employs a protocol with adaptive coded modulation (ACM) and hybrid automatic repeat request. For links with fixed throughput, this protocol provides a 10dB reduction in the required received signal-to-noise ratio (SNR); for links with fixed range, this protocol provides the greater than a 3x increase in throughput. Independent U.S. Government tests demonstrate that our protocol effectively adapts the code rate to match the instantaneous channel conditions. The modem is able to provide throughputs in excess of 850 Mbps on links with ranges greater than 15 kilometers.
Grizzle, R E; Ward, L G; Fredriksson, D W; Irish, J D; Langan, R; Heinig, C S; Greene, J K; Abeels, H A; Peter, C R; Eberhardt, A L
2014-11-15
The seafloor at an open ocean finfish aquaculture facility in the western Gulf of Maine, USA was monitored from 1999 to 2008 by sampling sites inside a predicted impact area modeled by oceanographic conditions and fecal and food settling characteristics, and nearby reference sites. Univariate and multivariate analyses of benthic community measures from box core samples indicated minimal or no significant differences between impact and reference areas. These findings resulted in development of an adaptive monitoring protocol involving initial low-cost methods that required more intensive and costly efforts only when negative impacts were initially indicated. The continued growth of marine aquaculture is dependent on further development of farming methods that minimize negative environmental impacts, as well as effective monitoring protocols. Adaptive monitoring protocols, such as the one described herein, coupled with mathematical modeling approaches, have the potential to provide effective protection of the environment while minimize monitoring effort and costs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Insufficiency of avoided crossings for witnessing large-scale quantum coherence in flux qubits
NASA Astrophysics Data System (ADS)
Fröwis, Florian; Yadin, Benjamin; Gisin, Nicolas
2018-04-01
Do experiments based on superconducting loops segmented with Josephson junctions (e.g., flux qubits) show macroscopic quantum behavior in the sense of Schrödinger's cat example? Various arguments based on microscopic and phenomenological models were recently adduced in this debate. We approach this problem by adapting (to flux qubits) the framework of large-scale quantum coherence, which was already successfully applied to spin ensembles and photonic systems. We show that contemporary experiments might show quantum coherence more than 100 times larger than experiments in the classical regime. However, we argue that the often-used demonstration of an avoided crossing in the energy spectrum is not sufficient to make a conclusion about the presence of large-scale quantum coherence. Alternative, rigorous witnesses are proposed.
NASA Astrophysics Data System (ADS)
The present conference on global telecommunications discusses topics in the fields of Integrated Services Digital Network (ISDN) technology field trial planning and results to date, motion video coding, ISDN networking, future network communications security, flexible and intelligent voice/data networks, Asian and Pacific lightwave and radio systems, subscriber radio systems, the performance of distributed systems, signal processing theory, satellite communications modulation and coding, and terminals for the handicapped. Also discussed are knowledge-based technologies for communications systems, future satellite transmissions, high quality image services, novel digital signal processors, broadband network access interface, traffic engineering for ISDN design and planning, telecommunications software, coherent optical communications, multimedia terminal systems, advanced speed coding, portable and mobile radio communications, multi-Gbit/second lightwave transmission systems, enhanced capability digital terminals, communications network reliability, advanced antimultipath fading techniques, undersea lightwave transmission, image coding, modulation and synchronization, adaptive signal processing, integrated optical devices, VLSI technologies for ISDN, field performance of packet switching, CSMA protocols, optical transport system architectures for broadband ISDN, mobile satellite communications, indoor wireless communication, echo cancellation in communications, and distributed network algorithms.
Morgan, Jessica I. W.
2016-01-01
Purpose Over the past 25 years, optical coherence tomography (OCT) and adaptive optics (AO) ophthalmoscopy have revolutionised our ability to non-invasively observe the living retina. The purpose of this review is to highlight the techniques and human clinical applications of recent advances in OCT and adaptive optics scanning laser/light ophthalmoscopy (AOSLO) ophthalmic imaging. Recent findings Optical coherence tomography retinal and optic nerve head (ONH) imaging technology allows high resolution in the axial direction resulting in cross-sectional visualisation of retinal and ONH lamination. Complementary AO ophthalmoscopy gives high resolution in the transverse direction resulting in en face visualisation of retinal cell mosaics. Innovative detection schemes applied to OCT and AOSLO technologies (such as spectral domain OCT, OCT angiography, confocal and non-confocal AOSLO, fluorescence, and AO-OCT) have enabled high contrast between retinal and ONH structures in three dimensions and have allowed in vivo retinal imaging to approach that of histological quality. In addition, both OCT and AOSLO have shown the capability to detect retinal reflectance changes in response to visual stimuli, paving the way for future studies to investigate objective biomarkers of visual function at the cellular level. Increasingly, these imaging techniques are being applied to clinical studies of the normal and diseased visual system. Summary Optical coherence tomography and AOSLO technologies are capable of elucidating the structure and function of the retina and ONH noninvasively with unprecedented resolution and contrast. The techniques have proven their worth in both basic science and clinical applications and each will continue to be utilised in future studies for many years to come. PMID:27112222
NASA Astrophysics Data System (ADS)
Laverick, Kiarn T.; Wiseman, Howard M.; Dinani, Hossein T.; Berry, Dominic W.
2018-04-01
The problem of measuring a time-varying phase, even when the statistics of the variation is known, is considerably harder than that of measuring a constant phase. In particular, the usual bounds on accuracy, such as the 1 /(4 n ¯) standard quantum limit with coherent states, do not apply. Here, by restricting to coherent states, we are able to analytically obtain the achievable accuracy, the equivalent of the standard quantum limit, for a wide class of phase variation. In particular, we consider the case where the phase has Gaussian statistics and a power-law spectrum equal to κp -1/|ω| p for large ω , for some p >1 . For coherent states with mean photon flux N , we give the quantum Cramér-Rao bound on the mean-square phase error as [psin(π /p ) ] -1(4N /κ ) -(p -1 )/p . Next, we consider whether the bound can be achieved by an adaptive homodyne measurement in the limit N /κ ≫1 , which allows the photocurrent to be linearized. Applying the optimal filtering for the resultant linear Gaussian system, we find the same scaling with N , but with a prefactor larger by a factor of p . By contrast, if we employ optimal smoothing we can exactly obtain the quantum Cramér-Rao bound. That is, contrary to previously considered (p =2 ) cases of phase estimation, here the improvement offered by smoothing over filtering is not limited to a factor of 2 but rather can be unbounded by a factor of p . We also study numerically the performance of these estimators for an adaptive measurement in the limit where N /κ is not large and find a more complicated picture.
Morgan, Jessica I W
2016-05-01
Over the past 25 years, optical coherence tomography (OCT) and adaptive optics (AO) ophthalmoscopy have revolutionised our ability to non-invasively observe the living retina. The purpose of this review is to highlight the techniques and human clinical applications of recent advances in OCT and adaptive optics scanning laser/light ophthalmoscopy (AOSLO) ophthalmic imaging. Optical coherence tomography retinal and optic nerve head (ONH) imaging technology allows high resolution in the axial direction resulting in cross-sectional visualisation of retinal and ONH lamination. Complementary AO ophthalmoscopy gives high resolution in the transverse direction resulting in en face visualisation of retinal cell mosaics. Innovative detection schemes applied to OCT and AOSLO technologies (such as spectral domain OCT, OCT angiography, confocal and non-confocal AOSLO, fluorescence, and AO-OCT) have enabled high contrast between retinal and ONH structures in three dimensions and have allowed in vivo retinal imaging to approach that of histological quality. In addition, both OCT and AOSLO have shown the capability to detect retinal reflectance changes in response to visual stimuli, paving the way for future studies to investigate objective biomarkers of visual function at the cellular level. Increasingly, these imaging techniques are being applied to clinical studies of the normal and diseased visual system. Optical coherence tomography and AOSLO technologies are capable of elucidating the structure and function of the retina and ONH noninvasively with unprecedented resolution and contrast. The techniques have proven their worth in both basic science and clinical applications and each will continue to be utilised in future studies for many years to come. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.
NASA Astrophysics Data System (ADS)
Matthias, Ben; Brockmann, Dorothee; Hansen, Anja; Horke, Konstanze; Knoop, Gesche; Gewohn, Timo; Zabic, Miroslav; Krüger, Alexander; Ripken, Tammo
2015-03-01
Fs-lasers are well established in ophthalmic surgery as high precision tools for corneal flap cutting during laser in situ keratomileusis (LASIK) and increasingly utilized for cutting the crystalline lens, e.g. in assisting cataract surgery. For addressing eye structures beyond the cornea, an intraoperative depth resolved imaging is crucial to the safety and success of the surgical procedure due to interindividual anatomical disparities. Extending the field of application even deeper to the posterior eye segment, individual eye aberrations cannot be neglected anymore and surgery with fs-laser is impaired by focus degradation. Our demonstrated concept for image-guided vitreo-retinal fs-laser surgery combines adaptive optics (AO) for spatial beam shaping and optical coherence tomography (OCT) for focus positioning guidance. The laboratory setup comprises an adaptive optics assisted 800 nm fs-laser system and is extended by a Fourier domain optical coherence tomography system. Phantom structures are targeted, which mimic tractional epiretinal membranes in front of excised porcine retina within an eye model. AO and OCT are set up to share the same scanning and focusing optics. A Hartmann-Shack sensor is employed for aberration measurement and a deformable mirror for aberration correction. By means of adaptive optics the threshold energy for laser induced optical breakdown is lowered and cutting precision is increased. 3D OCT imaging of typical ocular tissue structures is achieved with sufficient resolution and the images can be used for orientation of the fs-laser beam. We present targeted dissection of the phantom structures and its evaluation regarding retinal damage.
Security of Distributed-Phase-Reference Quantum Key Distribution
NASA Astrophysics Data System (ADS)
Moroder, Tobias; Curty, Marcos; Lim, Charles Ci Wen; Thinh, Le Phuc; Zbinden, Hugo; Gisin, Nicolas
2012-12-01
Distributed-phase-reference quantum key distribution stands out for its easy implementation with present day technology. For many years, a full security proof of these schemes in a realistic setting has been elusive. We solve this long-standing problem and present a generic method to prove the security of such protocols against general attacks. To illustrate our result, we provide lower bounds on the key generation rate of a variant of the coherent-one-way quantum key distribution protocol. In contrast to standard predictions, it appears to scale quadratically with the system transmittance.
Multi-element array signal reconstruction with adaptive least-squares algorithms
NASA Technical Reports Server (NTRS)
Kumar, R.
1992-01-01
Two versions of the adaptive least-squares algorithm are presented for combining signals from multiple feeds placed in the focal plane of a mechanical antenna whose reflector surface is distorted due to various deformations. Coherent signal combining techniques based on the adaptive least-squares algorithm are examined for nearly optimally and adaptively combining the outputs of the feeds. The performance of the two versions is evaluated by simulations. It is demonstrated for the example considered that both of the adaptive least-squares algorithms are capable of offsetting most of the loss in the antenna gain incurred due to reflector surface deformations.
Script Reforms--Are They Necessary?
ERIC Educational Resources Information Center
James, Gregory
Script reform, the modification of an existing writing system, is often confused with script replacement of one writing system with another. Turkish underwent the replacement of Arabic script by an adaptation of Roman script under Kamel Ataturk, but a similar replacement in Persian was rejected because of the high rate of existing literacy in…
NASA Astrophysics Data System (ADS)
Jaillon, Franck; Makita, Shuichi; Yasuno, Yoshiaki
2012-03-01
Ability of a new version of one-micrometer dual-beam optical coherence angiography (OCA) based on Doppler optical coherence tomography (OCT), is demonstrated for choroidal vasculature imaging. A particular feature of this system is the adjustable time delay between two probe beams. This allows changing the measurable velocity range of moving constituents such as blood without alteration of the scanning protocol. Since choroidal vasculature is made of vessels having blood flows with different velocities, this technique provides a way of discriminating vessels according to the velocity range of their inner flow. An example of choroid imaging of a normal emmetropic eye is here given. It is shown that combining images acquired with different velocity ranges provides an enhanced vasculature representation. This method may be then useful for pathological choroid characterization.
Symmetrically private information retrieval based on blind quantum computing
NASA Astrophysics Data System (ADS)
Sun, Zhiwei; Yu, Jianping; Wang, Ping; Xu, Lingling
2015-05-01
Universal blind quantum computation (UBQC) is a new secure quantum computing protocol which allows a user Alice who does not have any sophisticated quantum technology to delegate her computing to a server Bob without leaking any privacy. Using the features of UBQC, we propose a protocol to achieve symmetrically private information retrieval, which allows a quantum limited Alice to query an item from Bob with a fully fledged quantum computer; meanwhile, the privacy of both parties is preserved. The security of our protocol is based on the assumption that malicious Alice has no quantum computer, which avoids the impossibility proof of Lo. For the honest Alice, she is almost classical and only requires minimal quantum resources to carry out the proposed protocol. Therefore, she does not need any expensive laboratory which can maintain the coherence of complicated quantum experimental setups.
Rothman, Adam L; Mangalesh, Shwetha; Chen, Xi; Toth, Cynthia A
2016-01-01
Preterm infants with retinopathy of prematurity are at increased risk of poor neurodevelopmental outcomes. Because the neurosensory retina is an extension of the central nervous system, anatomic abnormalities in the anterior visual pathway often relate to system and central nervous system health. We describe optical coherence tomography as a powerful imaging modality that has recently been adapted to the infant population and provides noninvasive, high-resolution, cross-sectional imaging of the infant eye at the bedside. Optical coherence tomography has increased understanding of normal eye development and has identified several potential biomarkers of brain abnormalities and poorer neurodevelopment. PMID:28539807
Modulated Source Interferometry with Combined Amplitude and Frequency Modulation
NASA Technical Reports Server (NTRS)
Gutierrez, Roman C. (Inventor)
1998-01-01
An improved interferometer is produced by modifying a conventional interferometer to include amplitude and/or frequency modulation of a coherent light source at radio or higher frequencies. The phase of the modulation signal can be detected in an interfering beam from an interferometer and can be used to determine the actual optical phase of the beam. As such, this improvement can be adapted to virtually any two-beam interferometer, including: Michelson, Mach-Zehnder, and Sagnac interferometers. The use of an amplitude modulated coherent tight source results in an interferometer that combines the wide range advantages of coherent interferometry with the precise distance measurement advantages of white light interferometry.
Guerrilla Video: A New Protocol for Producing Classroom Video
ERIC Educational Resources Information Center
Fadde, Peter; Rich, Peter
2010-01-01
Contemporary changes in pedagogy point to the need for a higher level of video production value in most classroom video, replacing the default video protocol of an unattended camera in the back of the classroom. The rich and complex environment of today's classroom can be captured more fully using the higher level, but still easily manageable,…
ERIC Educational Resources Information Center
Vonlintel, Drew James
2015-01-01
This dissertation examines the efficacy of peer tutor training in adapted physical education (APE). A peer tutor evaluation form was created to assess the skills of untrained peer tutors (n = 12). Once skills were assessed, a peer tutor training protocol was created. The protocol was implemented in a peer tutor training program. After peer tutors…
NASA Technical Reports Server (NTRS)
Pang, Jackson; Liddicoat, Albert; Ralston, Jesse; Pingree, Paula
2006-01-01
The current implementation of the Telecommunications Protocol Processing Subsystem Using Reconfigurable Interoperable Gate Arrays (TRIGA) is equipped with CFDP protocol and CCSDS Telemetry and Telecommand framing schemes to replace the CPU intensive software counterpart implementation for reliable deep space communication. We present the hardware/software co-design methodology used to accomplish high data rate throughput. The hardware CFDP protocol stack implementation is then compared against the two recent flight implementations. The results from our experiments show that TRIGA offers more than 3 orders of magnitude throughput improvement with less than one-tenth of the power consumption.
Application Transparent HTTP Over a Disruption Tolerant Smartnet
2014-09-01
American Standard Code for Information Interchange BP Bundle Protocol BPA bundle protocol agent CLA convergence layer adapters CPU central processing...forwarding them through the plugin pipeline. The initial version of the DTNInput plugin uses the BBN Spindle bundle protocol agent ( BPA ) implementation
Adaptive transmission based on multi-relay selection and rate-compatible LDPC codes
NASA Astrophysics Data System (ADS)
Su, Hualing; He, Yucheng; Zhou, Lin
2017-08-01
In order to adapt to the dynamical changeable channel condition and improve the transmissive reliability of the system, a cooperation system of rate-compatible low density parity check (RC-LDPC) codes combining with multi-relay selection protocol is proposed. In traditional relay selection protocol, only the channel state information (CSI) of source-relay and the CSI of relay-destination has been considered. The multi-relay selection protocol proposed by this paper takes the CSI between relays into extra account in order to obtain more chances of collabration. Additionally, the idea of hybrid automatic request retransmission (HARQ) and rate-compatible are introduced. Simulation results show that the transmissive reliability of the system can be significantly improved by the proposed protocol.
Cooperative Energy Harvesting-Adaptive MAC Protocol for WBANs
Esteves, Volker; Antonopoulos, Angelos; Kartsakli, Elli; Puig-Vidal, Manel; Miribel-Català, Pere; Verikoukis, Christos
2015-01-01
In this paper, we introduce a cooperative medium access control (MAC) protocol, named cooperative energy harvesting (CEH)-MAC, that adapts its operation to the energy harvesting (EH) conditions in wireless body area networks (WBANs). In particular, the proposed protocol exploits the EH information in order to set an idle time that allows the relay nodes to charge their batteries and complete the cooperation phase successfully. Extensive simulations have shown that CEH-MAC significantly improves the network performance in terms of throughput, delay and energy efficiency compared to the cooperative operation of the baseline IEEE 802.15.6 standard. PMID:26029950
Experimental demonstration of the anti-maser
NASA Astrophysics Data System (ADS)
Mazzocco, Anthony; Aviles, Michael; Andrews, Jim; Dawson, Nathan; Crescimanno, Michael
2012-10-01
We denote by ``anti-maser'' a coherent perfect absorption (CPA) process in the radio frequency domain. We demonstrate several experimental realizations of the anti-maser suitable for an advanced undergraduate laboratory. Students designed, assembled and tested these devices, as well as the inexpensive laboratory setup and experimental protocol for displaying various CPA phenomenon.
NASA Astrophysics Data System (ADS)
Kim, Ji-hyun; Han, Jae-Ho; Jeong, Jichai
2015-09-01
Integration time and reference intensity are important factors for achieving high signal-to-noise ratio (SNR) and sensitivity in optical coherence tomography (OCT). In this context, we present an adaptive optimization method of reference intensity for OCT setup. The reference intensity is automatically controlled by tilting a beam position using a Galvanometric scanning mirror system. Before sample scanning, the OCT system acquires two dimensional intensity map with normalized intensity and variables in color spaces using false-color mapping. Then, the system increases or decreases reference intensity following the map data for optimization with a given algorithm. In our experiments, the proposed method successfully corrected the reference intensity with maintaining spectral shape, enabled to change integration time without manual calibration of the reference intensity, and prevented image degradation due to over-saturation and insufficient reference intensity. Also, SNR and sensitivity could be improved by increasing integration time with automatic adjustment of the reference intensity. We believe that our findings can significantly aid in the optimization of SNR and sensitivity for optical coherence tomography systems.
Wu, Yanwei; Guo, Pan; Chen, Siying; Chen, He; Zhang, Yinchao
2017-04-01
Auto-adaptive background subtraction (AABS) is proposed as a denoising method for data processing of the coherent Doppler lidar (CDL). The method is proposed specifically for a low-signal-to-noise-ratio regime, in which the drifting power spectral density of CDL data occurs. Unlike the periodogram maximum (PM) and adaptive iteratively reweighted penalized least squares (airPLS), the proposed method presents reliable peaks and is thus advantageous in identifying peak locations. According to the analysis results of simulated and actually measured data, the proposed method outperforms the airPLS method and the PM algorithm in the furthest detectable range. The proposed method improves the detection range approximately up to 16.7% and 40% when compared to the airPLS method and the PM method, respectively. It also has smaller mean wind velocity and standard error values than the airPLS and PM methods. The AABS approach improves the quality of Doppler shift estimates and can be applied to obtain the whole wind profiling by the CDL.
Wen, Hong; Wang, Longye; Xie, Ping; Song, Liang; Tang, Jie; Liao, Runfa
2017-01-01
In this paper, we propose an adaptive single differential coherent detection (SDCD) scheme for the binary phase shift keying (BPSK) signals in IEEE 802.15.4 Wireless Sensor Networks (WSNs). In particular, the residual carrier frequency offset effect (CFOE) for differential detection is adaptively estimated, with only linear operation, according to the changing channel conditions. It was found that the carrier frequency offset (CFO) and chip signal-to-noise ratio (SNR) conditions do not need a priori knowledge. This partly benefits from that the combination of the trigonometric approximation sin−1(x)≈x and a useful assumption, namely, the asymptotic or high chip SNR, is considered for simplification of the full estimation scheme. Simulation results demonstrate that the proposed algorithm can achieve an accurate estimation and the detection performance can completely meet the requirement of the IEEE 802.15.4 standard, although with a little loss of reliability and robustness as compared with the conventional optimal single-symbol detector. PMID:29278404
Zhang, Gaoyuan; Wen, Hong; Wang, Longye; Xie, Ping; Song, Liang; Tang, Jie; Liao, Runfa
2017-12-26
In this paper, we propose an adaptive single differential coherent detection (SDCD) scheme for the binary phase shift keying (BPSK) signals in IEEE 802.15.4 Wireless Sensor Networks (WSNs). In particular, the residual carrier frequency offset effect (CFOE) for differential detection is adaptively estimated, with only linear operation, according to the changing channel conditions. It was found that the carrier frequency offset (CFO) and chip signal-to-noise ratio (SNR) conditions do not need a priori knowledge. This partly benefits from that the combination of the trigonometric approximation sin - 1 ( x ) ≈ x and a useful assumption, namely, the asymptotic or high chip SNR, is considered for simplification of the full estimation scheme. Simulation results demonstrate that the proposed algorithm can achieve an accurate estimation and the detection performance can completely meet the requirement of the IEEE 802.15.4 standard, although with a little loss of reliability and robustness as compared with the conventional optimal single-symbol detector.
Adapting Controlled-source Coherence Analysis to Dense Array Data in Earthquake Seismology
NASA Astrophysics Data System (ADS)
Schwarz, B.; Sigloch, K.; Nissen-Meyer, T.
2017-12-01
Exploration seismology deals with highly coherent wave fields generated by repeatable controlled sources and recorded by dense receiver arrays, whose geometry is tailored to back-scattered energy normally neglected in earthquake seismology. Owing to these favorable conditions, stacking and coherence analysis are routinely employed to suppress incoherent noise and regularize the data, thereby strongly contributing to the success of subsequent processing steps, including migration for the imaging of back-scattering interfaces or waveform tomography for the inversion of velocity structure. Attempts have been made to utilize wave field coherence on the length scales of passive-source seismology, e.g. for the imaging of transition-zone discontinuities or the core-mantle-boundary using reflected precursors. Results are however often deteriorated due to the sparse station coverage and interference of faint back-scattered with transmitted phases. USArray sampled wave fields generated by earthquake sources at an unprecedented density and similar array deployments are ongoing or planned in Alaska, the Alps and Canada. This makes the local coherence of earthquake data an increasingly valuable resource to exploit.Building on the experience in controlled-source surveys, we aim to extend the well-established concept of beam-forming to the richer toolbox that is nowadays used in seismic exploration. We suggest adapted strategies for local data coherence analysis, where summation is performed with operators that extract the local slope and curvature of wave fronts emerging at the receiver array. Besides estimating wave front properties, we demonstrate that the inherent data summation can also be used to generate virtual station responses at intermediate locations where no actual deployment was performed. Owing to the fact that stacking acts as a directional filter, interfering coherent wave fields can be efficiently separated from each other by means of coherent subtraction. We propose to construct exploration-type trace gathers, systematically investigate the potential to improve the quality and regularity of realistic synthetic earthquake data and present attempts at separating transmitted and back-scattered wave fields for the improved imaging of Earth's large-scale discontinuities.
Rectangular Relief Diffraction Gratings for Coherent Lidar Beam Deflection
NASA Technical Reports Server (NTRS)
Cole, H. J.; Dixit, S. N.; Shore, B. W.; Chambers, D. M.; Britten, J. A.; Kavaya, M. J.
1999-01-01
LIDAR systems require a light transmitting system for sending a laser light pulse into space and a receiving system for collecting the retro-scattered light, separating it from the outgoing beam and analyzing the received signal for calculating wind velocities. Currently, a shuttle manifested coherent LIDAR experiment called SPARCLE (SPAce Readiness Coherent Lidar Experiment) includes a silicon wedge (or prism) in its design in order to deflect the outgoing beam 30 degrees relative to the incident direction. The intent of this paper is to present two optical design approaches that may enable the replacement of the optical wedge component (in future, larger aperture, post-SPARCLE missions) with a surface relief transmission diffraction grating. Such a grating could be etched into a lightweight, flat, fused quartz substrate. The potential advantages of a diffractive beam deflector include reduced weight, reduced power requirements for the driving scanning motor, reduced optical sensitivity to thermal gradients, and increased dynamic stability.
1989-07-01
825. Lazarus , R. S., & Folkman , S. (1984). Stress, appraisal, and coping. New York: Springer. mcCuIbin, H. I., & Lavee, Y . (1986). Strengthenirg Army...Soirani, 1988; Lazarus & Folkman , 1984; Mckbbin & Patterson, 1983), family adaptation was defined broadly as a crmposite of the overall adjustment of...ongr- y of expectations that members and spouses had prior to arrival in West Germany with their actual experiences since arrival (Alpha: Members = .91
Clark, Mark E; McGwin, Gerald; Neely, David; Feist, Richard; Mason, John O; Thomley, Martin; White, Milton F; Ozaydin, Bunyamin; Girkin, Christopher A; Owsley, Cynthia
2011-10-01
To examine associations between retinal thickness and rod-mediated dark adaptation in older adults with non-exudative age-related maculopathy (ARM) or normal macular health. A cross-sectional study was conducted with 74 adults ≥ 50 years old from the comprehensive ophthalmology and retina services of an academic eye centre. ARM presence and disease severity in the enrolment eye was defined by the masked grading of stereofundus photos using the Clinical Age-Related Maculopathy grading system. High-definition, spectral-domain optical coherence tomography was used to estimate retinal thickness in a grid of regions in the macula. Rod-mediated dark adaptation, recovery of light sensitivity after a photo-bleach, was measured over a 20-min period for a 500 nm target presented at 5° on the inferior vertical meridian. Main outcomes of interest were retinal thickness in the macula (μm) and parameters of rod-mediated dark adaptation (second slope, third slope, average sensitivity, final sensitivity). In non-exudative disease retinal thickness was decreased in greater disease severity; thinner retina was associated with reductions in average and final rod-mediated sensitivity even after adjustment for age and visual acuity. Impairment in rod-mediated dark adaptation in non-exudative ARM is associated with macular thinning.
High power CO2 coherent ladar haven't quit the stage of military affairs
NASA Astrophysics Data System (ADS)
Zhang, Heyong
2015-05-01
The invention of the laser in 1960 created the possibility of using a source of coherent light as a transmitter for a laser radar (ladar). Coherent ladar shares many of the basic features of more common microwave radars. However, it is the extremely short operating wavelength of lasers that introduces new military applications, especially in the area of missile identification, space target tracking, remote rang finding, camouflage discrimination and toxic agent detection. Therefore, the most popular application field such as laser imaging and ranging were focused on CO2 laser in the last few decades. But during the development of solid state and fiber laser, some people said that the CO2 laser will be disappeared and will be replaced by the solid and fiber laser in the field of military and industry. The coherent CO2 laser radar will have the same destiny in the field of military affairs. However, to my opinion, the high power CO2 laser will be the most important laser source for laser radar and countermeasure in the future.
Jaeken, Laurent; Vasilievich Matveev, Vladimir
2012-01-01
Observations of coherent cellular behavior cannot be integrated into widely accepted membrane (pump) theory (MT) and its steady state energetics because of the thermal noise of assumed ordinary cell water and freely soluble cytoplasmic K+. However, Ling disproved MT and proposed an alternative based on coherence, showing that rest (R) and action (A) are two different phases of protoplasm with different energy levels. The R-state is a coherent metastable low-entropy state as water and K+ are bound to unfolded proteins. The A-state is the higher-entropy state because water and K+ are free. The R-to-A phase transition is regarded as a mechanism to release energy for biological work, replacing the classical concept of high-energy bonds. Subsequent inactivation during the endergonic A-to-R phase transition needs an input of metabolic energy to restore the low entropy R-state. Matveev’s native aggregation hypothesis allows to integrate the energetic details of globular proteins into this view. PMID:23264833
Handwriting assessment of Franco-Quebec primary school-age students
Couture, Mélanie; Morin, Marie-France; Coallier, Mélissa; Lavigne, Audrey; Archambault, Patricia; Bolduc, Émilie; Chartier, Émilie; Liard, Karolane; Jasmin, Emmanuelle
2016-12-01
Reasons for referring school-age children to occupational therapy mainly relate to handwriting problems. However, there are no validated tools or reference values for assessing handwriting in francophone children in Canada. This study aimed to adapt and validate the writing tasks described in an English Canadian handwriting assessment protocol and to develop reference values for handwriting speed for francophone children. Three writing tasks from the Handwriting Assessment Protocol-2nd Edition (near-point and far-point copying and dictation) were adapted for Québec French children and administered to 141 Grade 1 ( n = 73) and Grade 2 ( n = 68) students. Reference values for handwriting speed were obtained for near point and far point copying tasks. This adapted protocol and these reference values for speed will improve occupational therapy handwriting assessments for the target population.
NASA Astrophysics Data System (ADS)
Blavier, Marie; Blanco, Leonardo; Glanc, Marie; Pouplard, Florence; Tick, Sarah; Maksimovic, Ivan; Mugnier, Laurent; Chènegros, Guillaume; Rousset, Gérard; Lacombe, François; Pâques, Michel; Le Gargasson, Jean-François; Sahel, José-Alain
2009-02-01
Retinal pathologies, like ARMD or glaucoma, need to be early detected, requiring imaging instruments with resolution at a cellular scale. However, in vivo retinal cells studies and early diagnoses are severely limited by the lack of resolution on eye-fundus images from classical ophthalmologic instruments. We built a 2D retina imager using Adaptive Optics to improve lateral resolution. This imager is currently used in clinical environment. We are currently developing a time domain full-field optical coherence tomograph. The first step was to conceive the images reconstruction algorithms and validation was realized on non-biological samples. Ex vivo retina are currently being imaged. The final step will consist in coupling both setups to acquire high resolution retina cross-sections.
Achieving Optimal Quantum Acceleration of Frequency Estimation Using Adaptive Coherent Control.
Naghiloo, M; Jordan, A N; Murch, K W
2017-11-03
Precision measurements of frequency are critical to accurate time keeping and are fundamentally limited by quantum measurement uncertainties. While for time-independent quantum Hamiltonians the uncertainty of any parameter scales at best as 1/T, where T is the duration of the experiment, recent theoretical works have predicted that explicitly time-dependent Hamiltonians can yield a 1/T^{2} scaling of the uncertainty for an oscillation frequency. This quantum acceleration in precision requires coherent control, which is generally adaptive. We experimentally realize this quantum improvement in frequency sensitivity with superconducting circuits, using a single transmon qubit. With optimal control pulses, the theoretically ideal frequency precision scaling is reached for times shorter than the decoherence time. This result demonstrates a fundamental quantum advantage for frequency estimation.
Exposed Subcutaneous Implantable Devices: An Operative Protocol for Management and Salvage
D’Arpa, Salvatore; Cordova, Adriana; Moschella, Francesco
2015-01-01
Background: Implantable venous and electrical devices are prone to exposure and infection. Indications for management are controversial, but—especially if infected—exposed devices are often removed and an additional operation is needed to replace the device, causing a delay in chemotherapy and prolonging healing time. We present our protocol for device salvage, on which limited literature is available. Methods: Between 2007 and 2013, 17 patients were treated (12 venous access ports, 3 cardiac pacemakers, and 2 subcutaneous neural stimulators). Most patients were operated within 7 days from exposure. All patients received only a single perioperative dose of prophylactic antibiotic. In cases of gross infection (n = 1), the device was immediately replaced. In the absence of clinical signs of infection: Complete capsulectomy and aggressive cleaning with an n-acetylcysteine solution and saline solution. Primary exposure of venous ports with sufficient skin coverage (n = 10): the device was covered with local skin flaps. Recurrent cases, cases with insufficient skin coverage or big devices (n = 7): the device was moved to a subpectoral pocket. Mean follow-up was 19 months. Results: Sixteen devices were saved. Only one grossly infected pacemaker was removed and replaced immediately. Only in 1 case, exposure of a venous port recurred after 18 months and was successfully moved to a subpectoral pocket. Chemotherapy was always restarted as scheduled and electrical devices remained functional. Conclusions: This protocol allows—with a straightforward operation and simple measures—to save exposed devices even several days after exposure. Submuscular placement or immediate replacement is indicated only in selected cases. PMID:26034650
Schwedhelm, L; Kirchner, D; Klaus, B; Bachmann, L
2013-04-01
Many diarrheic calves suffer from metabolic acidosis, which is commonly treated by oral rehydration therapy. Oral rehydration solutions can be prepared in water, milk, or milk replacer. Therefore, the aim of the study was to verify dietary effects of water- or milk replacer-based oral rehydration solutions on parameters of acid-base balance in calves with experimentally induced hyperchloremic and dl-lactate acidosis. In 12 calves, hyperchloremic or dl-lactate acidosis was induced by HCl or dl-lactic acid infusions according to protocols outlined in previous literature. Immediately after induction, the calves were fed with milk replacer or water- or milk replacer-based oral rehydration solutions, or remained fasting, respectively. Blood samples were taken to monitor acid-base status over an experimental period of 4h. Using the protocols, all calves revealed a manifest hyperchloremic or dl-lactate acidosis. Because of high infusion volumes, plasma volume was expanded and effects of feeding regimens on blood parameters were rare. Unexpected clinical aberrations occurred after repeated induction of dl-lactate acidosis: all calves developed a thrombophlebitis of the jugular vein, whereas HCl infusion had no effect on endothelium. Induction of acidosis via infusion is not suitable to study dietary effects. A protocol to induce acidosis and dehydration simultaneously is required to duplicate the metabolic conditions of diarrheic calves. In further investigations, attention should be focused on effects of d-lactate or its metabolites on endothelial tissue. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Teleportation of atomic and photonic states in low-Q cavity QED
NASA Astrophysics Data System (ADS)
Peng, Zhao-Hui; Zou, Jian; Liu, Xiao-Juan; Kuang, Le-Man
2012-11-01
We propose two alternative teleportation protocols in low-Q cavity QED. Through the input-output process of photons, we can generate atom-photon entangled states as the quantum channel. Then we propose to teleport single-atom (two-atom entangled) state using coherent photonic states, and to teleport single photonic state with the assistance of three-level atom. The distinct feature of our protocols is that we can teleport both atomic and photonic states via the input-output process of photons in the low-Q cavity. Furthermore, as our protocols work in low-Q cavities and only involve virtual excitation of atoms, they are insensitive to both cavity decay and atomic spontaneous emission, and may be feasible with current technology.
Extended analysis of the Trojan-horse attack in quantum key distribution
NASA Astrophysics Data System (ADS)
Vinay, Scott E.; Kok, Pieter
2018-04-01
The discrete-variable quantum key distribution protocols based on the 1984 protocol of Bennett and Brassard (BB84) are known to be secure against an eavesdropper, Eve, intercepting the flying qubits and performing any quantum operation on them. However, these protocols may still be vulnerable to side-channel attacks. We investigate the Trojan-horse side-channel attack where Eve sends her own state into Alice's apparatus and measures the reflected state to estimate the key. We prove that the separable coherent state is optimal for Eve among the class of multimode Gaussian attack states, even in the presence of thermal noise. We then provide a bound on the secret key rate in the case where Eve may use any separable state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datta, Nilanjana, E-mail: n.datta@statslab.cam.ac.uk; Hsieh, Min-Hsiu, E-mail: Min-Hsiu.Hsieh@uts.edu.au; Oppenheim, Jonathan, E-mail: j.oppenheim@ucl.ac.uk
State redistribution is the protocol in which given an arbitrary tripartite quantum state, with two of the subsystems initially being with Alice and one being with Bob, the goal is for Alice to send one of her subsystems to Bob, possibly with the help of prior shared entanglement. We derive an upper bound on the second order asymptotic expansion for the quantum communication cost of achieving state redistribution with a given finite accuracy. In proving our result, we also obtain an upper bound on the quantum communication cost of this protocol in the one-shot setting, by using the protocol ofmore » coherent state merging as a primitive.« less
One-sided measurement-device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Cao, Wen-Fei; Zhen, Yi-Zheng; Zheng, Yu-Lin; Li, Li; Chen, Zeng-Bing; Liu, Nai-Le; Chen, Kai
2018-01-01
Measurement-device-independent quantum key distribution (MDI-QKD) protocol was proposed to remove all the detector side channel attacks, while its security relies on the trusted encoding systems. Here we propose a one-sided MDI-QKD (1SMDI-QKD) protocol, which enjoys detection loophole-free advantage, and at the same time weakens the state preparation assumption in MDI-QKD. The 1SMDI-QKD can be regarded as a modified MDI-QKD, in which Bob's encoding system is trusted, while Alice's is uncharacterized. For the practical implementation, we also provide a scheme by utilizing coherent light source with an analytical two decoy state estimation method. Simulation with realistic experimental parameters shows that the protocol has a promising performance, and thus can be applied to practical QKD applications.
Stevens, Catherine J.; Tardieu, Julien; Dunbar-Hall, Peter; Best, Catherine T.; Tillmann, Barbara
2013-01-01
Listeners' musical perception is influenced by cues that can be stored in short-term memory (e.g., within the same musical piece) or long-term memory (e.g., based on one's own musical culture). The present study tested how these cues (referred to as, respectively, proximal and distal cues) influence the perception of music from an unfamiliar culture. Western listeners who were naïve to Gamelan music judged completeness and coherence for newly constructed melodies in the Balinese gamelan tradition. In these melodies, we manipulated the final tone with three possibilities: the original gong tone, an in-scale tone replacement or an out-of-scale tone replacement. We also manipulated the musical timbre employed in Gamelan pieces. We hypothesized that novice listeners are sensitive to out-of-scale changes, but not in-scale changes, and that this might be influenced by the more unfamiliar timbre created by Gamelan “sister” instruments whose harmonics beat with the harmonics of the other instrument, creating a timbrally “shimmering” sound. The results showed: (1) out-of-scale endings were judged less complete than original gong and in-scale endings; (2) for melodies played with “sister” instruments, in-scale endings were judged as less complete than original endings. Furthermore, melodies using the original scale tones were judged more coherent than melodies containing few or multiple tone replacements; melodies played on single instruments were judged more coherent than the same melodies played on sister instruments. Additionally, there is some indication of within-session statistical learning, with expectations for the initially-novel materials developing during the course of the experiment. The data suggest the influence of both distal cues (e.g., previously unfamiliar timbres) and proximal cues (within the same sequence and over the experimental session) on the perception of melodies from other cultural systems based on unfamiliar tunings and scale systems. PMID:24223562
ERIC Educational Resources Information Center
Piercy, Fred P.; Franz, Nancy; Donaldson, Joseph L.; Richard, Robert F.
2011-01-01
The purpose of this paper is to reflect on our efforts to balance consistency in our multi-year participatory action research study with the need to adapt our research protocol to what we are learning along the way. While both are important, we share several examples of how our flexibility and openness to adapt our protocol to our research…
Jia, Kun; Eltzov, Evgeni; Marks, Robert S; Ionescu, Rodica E
2013-10-01
The effects of carbofuran toxicity on a genetically modified bacterial strain E. coli DPD2794 were enhanced using a new bioluminescent protocol which consisted of three consecutive steps: incubation, washing and luminescence reading. Specifically, in the first step, several concentrations of carbofuran aqueous solutions were incubated with different bacterial suspensions at recorded optical densities for different lengths of time. Thereafter, the resulting bacterial/toxicant mixtures were centrifuged and the aged cellular supernatant replaced with fresh medium. In the final step, the carbofuran- induced bioluminescence to the exposed E. coli DPD2794 bacteria was shown to provide a faster and higher intensity when recorded at a higher temperature at30°C which is not usually used in the literature. It was found that the incubation time and the replacement of aged cellular medium were essential factors to distinguish different concentrations of carbofuran in the bioluminescent assays. From our results, the optimum incubation time for a "light ON" bioluminescence detection of the effect of carbofuran was 6h. Thanks to the replacement of the aged cellular medium, a group of additional peaks starting around 30min were observed and we used the corresponding areas under the curve (AUC) at different contents of carbofuran to produce the calibration curve. Based on the new protocol, a carbofuran concentration of 0.5pg/mL can be easily determined in a microtiter plate bioluminescent assay, while a non-wash protocol provides an unexplainable order of curve evolutionswhich does not allow the user to determine the concentration. Copyright © 2013 Elsevier Inc. All rights reserved.
Simple and versatile long range swept source for optical coherence tomography applications
NASA Astrophysics Data System (ADS)
Bräuer, Bastian; Lippok, Norman; Murdoch, Stuart G.; Vanholsbeeck, Frédérique
2015-12-01
We present a versatile long coherence length swept-source laser design for optical coherence tomography applications. This design consists of a polygonal spinning mirror and an optical gain chip in a modified Littman-Metcalf cavity. A narrowband intra-cavity filter is implemented through multiple passes off a diffraction grating set at grazing incidence. The key advantage of this design is that it can be readily adapted to any wavelength regions for which broadband gain chips are available. We demonstrate this by implementing sources at 1650 nm, 1550 nm, 1310 nm and 1050 nm. In particular, we present a 1310 nm swept source laser with 24 mm coherence length, 95 nm optical bandwidth, 2 kHz maximum sweep frequency and 7.5 mW average output power. These parameters make it a suitable source for the imaging of biological samples.
Kellum, John A; Chawla, Lakhmir S; Keener, Christopher; Singbartl, Kai; Palevsky, Paul M; Pike, Francis L; Yealy, Donald M; Huang, David T; Angus, Derek C
2016-02-01
Septic shock is a common cause of acute kidney injury (AKI), and fluid resuscitation is a major part of therapy. To determine if structured resuscitation designed to alter fluid, blood, and vasopressor use affects the development or severity of AKI or outcomes. Ancillary study to the ProCESS (Protocolized Care for Early Septic Shock) trial of alternative resuscitation strategies (two protocols vs. usual care) for septic shock. We studied 1,243 patients and classified AKI using serum creatinine and urine output. We determined recovery status at hospital discharge, examined rates of renal replacement therapy and fluid overload, and measured biomarkers of kidney damage. Among patients without evidence of AKI at enrollment, 37.6% of protocolized care and 38.1% of usual care patients developed kidney injury (P = 0.90). AKI duration (P = 0.59) and rates of renal replacement therapy did not differ between study arms (6.9% for protocolized care and 4.3% for usual care; P = 0.08). Fluid overload occurred in 8.3% of protocolized care and 6.3% of usual care patients (P = 0.26). Among patients with severe AKI, complete and partial recovery was 50.7 and 13.2% for protocolized patients and 49.1 and 13.4% for usual care patients (P = 0.93). Sixty-day hospital mortality was 6.2% for patients without AKI, 16.8% for those with stage 1, and 27.7% for stages 2 to 3. In patients with septic shock, AKI is common and associated with adverse outcomes, but it is not influenced by protocolized resuscitation compared with usual care.
Loss Tolerance in One-Way Quantum Computation via Counterfactual Error Correction
NASA Astrophysics Data System (ADS)
Varnava, Michael; Browne, Daniel E.; Rudolph, Terry
2006-09-01
We introduce a scheme for fault tolerantly dealing with losses (or other “leakage” errors) in cluster state computation that can tolerate up to 50% qubit loss. This is achieved passively using an adaptive strategy of measurement—no coherent measurements or coherent correction is required. Since the scheme relies on inferring information about what would have been the outcome of a measurement had one been able to carry it out, we call this counterfactual error correction.
Ethanol wet-bonding technique sensitivity assessed by AFM.
Osorio, E; Toledano, M; Aguilera, F S; Tay, F R; Osorio, R
2010-11-01
In ethanol wet bonding, water is replaced by ethanol to maintain dehydrated collagen matrices in an extended state to facilitate resin infiltration. Since short ethanol dehydration protocols may be ineffective, this study tested the null hypothesis that there are no differences in ethanol dehydration protocols for maintaining the surface roughness, fibril diameter, and interfibrillar spaces of acid-etched dentin. Polished human dentin surfaces were etched with phosphoric acid and water-rinsed. Tested protocols were: (1) water-rinse (control); (2) 100% ethanol-rinse (1-min); (3) 100% ethanol-rinse (5-min); and (4) progressive ethanol replacement (50-100%). Surface roughness, fibril diameter, and interfibrillar spaces were determined with atomic force microscopy and analyzed by one-way analysis of variance and the Student-Newman-Keuls test (α = 0.05). Dentin roughness and fibril diameter significantly decreased when 100% ethanol (1-5 min) was used for rinsing (p < 0.001). Absolute ethanol produced collapse and shrinkage of collagen fibrils. Ascending ethanol concentrations did not collapse the matrix and shrank the fibrils less than absolute ethanol-rinses.
Gaussian-modulated coherent-state measurement-device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Ma, Xiang-Chun; Sun, Shi-Hai; Jiang, Mu-Sheng; Gui, Ming; Liang, Lin-Mei
2014-04-01
Measurement-device-independent quantum key distribution (MDI-QKD), leaving the detection procedure to the third partner and thus being immune to all detector side-channel attacks, is very promising for the construction of high-security quantum information networks. We propose a scheme to implement MDI-QKD, but with continuous variables instead of discrete ones, i.e., with the source of Gaussian-modulated coherent states, based on the principle of continuous-variable entanglement swapping. This protocol not only can be implemented with current telecom components but also has high key rates compared to its discrete counterpart; thus it will be highly compatible with quantum networks.
Smart Acoustic Network Using Combined FSK-PSK, Adaptive Beamforming and Equalization
2002-09-30
sonar data transmission from underwater vehicle during mission. The two-year objectives for the high-reliability acoustic network using multiple... sonar laboratory) and used for acoustic networking during underwater vehicle operation. The joint adaptive coherent path beamformer method consists...broadband communications transducer, while the low noise preamplifier conditions received signals for analog to digital conversion. External user
Smart Acoustic Network Using Combined FSK-PSK, Adaptive, Beamforming and Equalization
2001-09-30
sonar data transmission from underwater vehicle during mission. The two-year objectives for the high-reliability acoustic network using multiple... sonar laboratory) and used for acoustic networking during underwater vehicle operation. The joint adaptive coherent path beamformer method consists...broadband communications transducer, while the low noise preamplifier conditions received signals for analog to digital conversion. External user
76 FR 69123 - Airworthiness Directives; MD Helicopters, Inc. Model MD900 Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-08
... complying with paragraphs (a) through (e) of this AD, you may replace both VSCS tube adapters, P/N 500N7218-1, with airworthy VSCS tube adapters, P/N 900C2010303-101. If you install VSCS tube adapters, P/N... each affected tube adapter with a newly-designed tube adapter, which provides terminating action for...
Coherent Image Layout using an Adaptive Visual Vocabulary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dillard, Scott E.; Henry, Michael J.; Bohn, Shawn J.
When querying a huge image database containing millions of images, the result of the query may still contain many thousands of images that need to be presented to the user. We consider the problem of arranging such a large set of images into a visually coherent layout, one that places similar images next to each other. Image similarity is determined using a bag-of-features model, and the layout is constructed from a hierarchical clustering of the image set by mapping an in-order traversal of the hierarchy tree into a space-filling curve. This layout method provides strong locality guarantees so we aremore » able to quantitatively evaluate performance using standard image retrieval benchmarks. Performance of the bag-of-features method is best when the vocabulary is learned on the image set being clustered. Because learning a large, discriminative vocabulary is a computationally demanding task, we present a novel method for efficiently adapting a generic visual vocabulary to a particular dataset. We evaluate our clustering and vocabulary adaptation methods on a variety of image datasets and show that adapting a generic vocabulary to a particular set of images improves performance on both hierarchical clustering and image retrieval tasks.« less
FAST CARS: Engineering a laser spectroscopic technique for rapid identification of bacterial spores
Scully, M. O.; Kattawar, G. W.; Lucht, R. P.; Opatrný, T.; Pilloff, H.; Rebane, A.; Sokolov, A. V.; Zubairy, M. S.
2002-01-01
Airborne contaminants, e.g., bacterial spores, are usually analyzed by time-consuming microscopic, chemical, and biological assays. Current research into real-time laser spectroscopic detectors of such contaminants is based on e.g., resonance fluorescence. The present approach derives from recent experiments in which atoms and molecules are prepared by one (or more) coherent laser(s) and probed by another set of lasers. However, generating and using maximally coherent oscillation in macromolecules having an enormous number of degrees of freedom is challenging. In particular, the short dephasing times and rapid internal conversion rates are major obstacles. However, adiabatic fast passage techniques and the ability to generate combs of phase-coherent femtosecond pulses provide tools for the generation and utilization of maximal quantum coherence in large molecules and biopolymers. We call this technique FAST CARS (femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman spectroscopy), and the present article proposes and analyses ways in which it could be used to rapidly identify preselected molecules in real time. PMID:12177405
Blind quantum computation over a collective-noise channel
NASA Astrophysics Data System (ADS)
Takeuchi, Yuki; Fujii, Keisuke; Ikuta, Rikizo; Yamamoto, Takashi; Imoto, Nobuyuki
2016-05-01
Blind quantum computation (BQC) allows a client (Alice), who only possesses relatively poor quantum devices, to delegate universal quantum computation to a server (Bob) in such a way that Bob cannot know Alice's inputs, algorithm, and outputs. The quantum channel between Alice and Bob is noisy, and the loss over the long-distance quantum communication should also be taken into account. Here we propose to use decoherence-free subspace (DFS) to overcome the collective noise in the quantum channel for BQC, which we call DFS-BQC. We propose three variations of DFS-BQC protocols. One of them, a coherent-light-assisted DFS-BQC protocol, allows Alice to faithfully send the signal photons with a probability proportional to a transmission rate of the quantum channel. In all cases, we combine the ideas based on DFS and the Broadbent-Fitzsimons-Kashefi protocol, which is one of the BQC protocols, without degrading unconditional security. The proposed DFS-based schemes are generic and hence can be applied to other BQC protocols where Alice sends quantum states to Bob.
Photonic lantern adaptive spatial mode control in LMA fiber amplifiers.
Montoya, Juan; Aleshire, Chris; Hwang, Christopher; Fontaine, Nicolas K; Velázquez-Benítez, Amado; Martz, Dale H; Fan, T Y; Ripin, Dan
2016-02-22
We demonstrate adaptive-spatial mode control (ASMC) in few-moded double-clad large mode area (LMA) fiber amplifiers by using an all-fiber-based photonic lantern. Three single-mode fiber inputs are used to adaptively inject the appropriate superposition of input modes in a multimode gain fiber to achieve the desired mode at the output. By actively adjusting the relative phase of the single-mode inputs, near-unity coherent combination resulting in a single fundamental mode at the output is achieved.
Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor
NASA Astrophysics Data System (ADS)
Schmitt, Simon; Gefen, Tuvia; Stürner, Felix M.; Unden, Thomas; Wolff, Gerhard; Müller, Christoph; Scheuer, Jochen; Naydenov, Boris; Markham, Matthew; Pezzagna, Sebastien; Meijer, Jan; Schwarz, Ilai; Plenio, Martin; Retzker, Alex; McGuinness, Liam P.; Jelezko, Fedor
2017-05-01
Precise timekeeping is critical to metrology, forming the basis by which standards of time, length, and fundamental constants are determined. Stable clocks are particularly valuable in spectroscopy because they define the ultimate frequency precision that can be reached. In quantum metrology, the qubit coherence time defines the clock stability, from which the spectral linewidth and frequency precision are determined. We demonstrate a quantum sensing protocol in which the spectral precision goes beyond the sensor coherence time and is limited by the stability of a classical clock. Using this technique, we observed a precision in frequency estimation scaling in time T as T-3/2 for classical oscillating fields. The narrow linewidth magnetometer based on single spins in diamond is used to sense nanoscale magnetic fields with an intrinsic frequency resolution of 607 microhertz, which is eight orders of magnitude narrower than the qubit coherence time.
NASA Astrophysics Data System (ADS)
Lupo, Cosmo; Ottaviani, Carlo; Papanastasiou, Panagiotis; Pirandola, Stefano
2018-05-01
We present a rigorous security analysis of continuous-variable measurement-device-independent quantum key distribution (CV MDI QKD) in a finite-size scenario. The security proof is obtained in two steps: by first assessing the security against collective Gaussian attacks, and then extending to the most general class of coherent attacks via the Gaussian de Finetti reduction. Our result combines recent state-of-the-art security proofs for CV QKD with findings about min-entropy calculus and parameter estimation. In doing so, we improve the finite-size estimate of the secret key rate. Our conclusions confirm that CV MDI protocols allow for high rates on the metropolitan scale, and may achieve a nonzero secret key rate against the most general class of coherent attacks after 107-109 quantum signal transmissions, depending on loss and noise, and on the required level of security.
Pimashkin, Alexey; Gladkov, Arseniy; Mukhina, Irina; Kazantsev, Victor
2013-01-01
Learning in neuronal networks can be investigated using dissociated cultures on multielectrode arrays supplied with appropriate closed-loop stimulation. It was shown in previous studies that weakly respondent neurons on the electrodes can be trained to increase their evoked spiking rate within a predefined time window after the stimulus. Such neurons can be associated with weak synaptic connections in nearby culture network. The stimulation leads to the increase in the connectivity and in the response. However, it was not possible to perform the learning protocol for the neurons on electrodes with relatively strong synaptic inputs and responding at higher rates. We proposed an adaptive closed-loop stimulation protocol capable to achieve learning even for the highly respondent electrodes. It means that the culture network can reorganize appropriately its synaptic connectivity to generate a desired response. We introduced an adaptive reinforcement condition accounting for the response variability in control stimulation. It significantly enhanced the learning protocol to a large number of responding electrodes independently on its base response level. We also found that learning effect preserved after 4–6 h after training. PMID:23745105
Ploner, Stefan B; Moult, Eric M; Choi, WooJhon; Waheed, Nadia K; Lee, ByungKun; Novais, Eduardo A; Cole, Emily D; Potsaid, Benjamin; Husvogt, Lennart; Schottenhamml, Julia; Maier, Andreas; Rosenfeld, Philip J; Duker, Jay S; Hornegger, Joachim; Fujimoto, James G
2016-12-01
Currently available optical coherence tomography angiography systems provide information about blood flux but only limited information about blood flow speed. The authors develop a method for mapping the previously proposed variable interscan time analysis (VISTA) algorithm into a color display that encodes relative blood flow speed. Optical coherence tomography angiography was performed with a 1,050 nm, 400 kHz A-scan rate, swept source optical coherence tomography system using a 5 repeated B-scan protocol. Variable interscan time analysis was used to compute the optical coherence tomography angiography signal from B-scan pairs having 1.5 millisecond and 3.0 milliseconds interscan times. The resulting VISTA data were then mapped to a color space for display. The authors evaluated the VISTA visualization algorithm in normal eyes (n = 2), nonproliferative diabetic retinopathy eyes (n = 6), proliferative diabetic retinopathy eyes (n = 3), geographic atrophy eyes (n = 4), and exudative age-related macular degeneration eyes (n = 2). All eyes showed blood flow speed variations, and all eyes with pathology showed abnormal blood flow speeds compared with controls. The authors developed a novel method for mapping VISTA into a color display, allowing visualization of relative blood flow speeds. The method was found useful, in a small case series, for visualizing blood flow speeds in a variety of ocular diseases and serves as a step toward quantitative optical coherence tomography angiography.
Two-way QKD with single-photon-added coherent states
NASA Astrophysics Data System (ADS)
Miranda, Mario; Mundarain, Douglas
2017-12-01
In this work we present a two-way quantum key distribution (QKD) scheme that uses single-photon-added coherent states and displacement operations. The first party randomly sends coherent states (CS) or single-photon-added coherent states (SPACS) to the second party. The latter sends back the same state it received. Both parties decide which kind of states they are receiving by detecting or not a photon on the received signal after displacement operations. The first party must determine whether its sent and received states are equal; otherwise, the case must be discarded. We are going to show that an eavesdropper provided with a beam splitter gets the same information in any of the non-discarded cases. The key can be obtained by assigning 0 to CS and 1 to SPACS in the non-discarded cases. This protocol guarantees keys' security in the presence of a beam splitter attack even for states with a high number of photons in the sent signal. It also works in a lossy quantum channel, becoming a good bet for improving long-distance QKD.
Arbitrary unitary transformations on optical states using a quantum memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Geoff T.; Pinel, Olivier; Hosseini, Mahdi
2014-12-04
We show that optical memories arranged along an optical path can perform arbitrary unitary transformations on frequency domain optical states. The protocol offers favourable scaling and can be used with any quantum memory that uses an off-resonant Raman transition to reversibly transfer optical information to an atomic spin coherence.
A mechanical protocol to replicate impact in walking footwear.
Price, Carina; Cooper, Glen; Graham-Smith, Philip; Jones, Richard
2014-01-01
Impact testing is undertaken to quantify the shock absorption characteristics of footwear. The current widely reported mechanical testing method mimics the heel impact in running and therefore applies excessive energy to walking footwear. The purpose of this study was to modify the ASTM protocol F1614 (Procedure A) to better represent walking gait. This was achieved by collecting kinematic and kinetic data while participants walked in four different styles of walking footwear (trainer, oxford shoe, flip-flop and triple-density sandal). The quantified heel-velocity and effective mass at ground-impact were then replicated in a mechanical protocol. The kinematic data identified different impact characteristics in the footwear styles. Significantly faster heel velocity towards the floor was recorded walking in the toe-post sandals (flip-flop and triple-density sandal) compared with other conditions (e.g. flip-flop: 0.36±0.05 ms(-1) versus trainer: 0.18±0.06 ms(-1)). The mechanical protocol was adapted by altering the mass and drop height specific to the data captured for each shoe (e.g. flip-flop: drop height 7 mm, mass 16.2 kg). As expected, the adapted mechanical protocol produced significantly lower peak force and accelerometer values than the ASTM protocol (p<.001). The mean difference between the human and adapted protocol was 12.7±17.5% (p<.001) for peak acceleration and 25.2±17.7% (p=.786) for peak force. This paper demonstrates that altered mechanical test protocols can more closely replicate loading on the lower limb in walking. This therefore suggests that testing of material properties of footbeds not only needs to be gait style specific (e.g. running versus walking), but also footwear style specific. Copyright © 2014 Elsevier B.V. All rights reserved.
Adaptive plasma for cancer therapy: physics, mechanism and applications
NASA Astrophysics Data System (ADS)
Keidar, Michael
2017-10-01
One of the most promising applications of cold atmospheric plasma (CAP) is the cancer therapy. The uniqueness of plasma is in its ability to change composition in situ. Plasma self-organization could lead to formation of coherent plasma structures. These coherent structures tend to modulate plasma chemistry and composition, including reactive species, the electric field and charged particles. Formation of coherent plasma structures allows the plasma to adapt to external boundary conditions, such as different cells types and their contextual tissues. In this talk we will explore possibilities and opportunities that the adaptive plasma therapeutic system might offer. We shall define such an adaptive system as a plasma device that is able to adjust the plasma composition to obtain optimal desirable outcomes through its interaction with cells and tissues. The efficacy of cold plasma in a pre-clinical model of various cancer types such as lung, bladder, breast, head, neck, brain and skin has been demonstrated. Both in-vitro and in-vivo studies revealed that cold plasmas selectively kill cancer cells. Recently mechanism of plasma selectivity based on aquaporin hypothesis has been proposed. Aquaporins (AQPs) are the confirmed membrane channels of H2O2 and other large molecules. We have demonstrated that the anti-cancer capacity of plasma could be inhibited by silencing the expression of AQPs. Additional possible cell feedback mechanism was recently discovered. It is associated with production of reactive species during direct CAP treatment by cancer cells. Selective production of hydrogen peroxide by different cells can lead to adaptation of chemistry at the plasma-cell interface based on the cellular input. In particular we have found that the discharge voltage is an important factor affecting the ratio of reactive oxygen species to reactive nitrogen species in the gas phase and this correlates well with effect of hydrogen peroxide production by cells. This work was supported by a National Science Foundation, Grant No. 1465061.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bostedt, Christoph
2014-06-30
Christoph Bostedt, a senior staff scientist at SLAC's Linac Coherent Light Source X-ray laser, provides a sneak peek of a powerful new instrument, called LAMP, that is now available for experiments that probe the atomic and molecular realm. LAMP replaces and updates the first instrument at LCLS, dubbed CAMP, which will be installed at an X-ray laser in Germany.
Bostedt, Christoph
2018-01-16
Christoph Bostedt, a senior staff scientist at SLAC's Linac Coherent Light Source X-ray laser, provides a sneak peek of a powerful new instrument, called LAMP, that is now available for experiments that probe the atomic and molecular realm. LAMP replaces and updates the first instrument at LCLS, dubbed CAMP, which will be installed at an X-ray laser in Germany.
Robust Distant Entanglement Generation Using Coherent Multiphoton Scattering
NASA Astrophysics Data System (ADS)
Chan, Ching-Kit; Sham, L. J.
2013-02-01
We describe a protocol to entangle two qubits at a distance by using resonance fluorescence. The scheme makes use of the postselection of large and distinguishable fluorescence signals corresponding to entangled and unentangled qubit states and has the merits of both high success probability and high entanglement fidelity owing to the multiphoton nature. Our result shows that the entanglement generation is robust against photon fluctuations in the fluorescence signals for a wide range of driving fields. We also demonstrate that this new protocol has an average entanglement duration within the decoherence time of corresponding qubit systems, based on current experimental photon efficiency.
Visibility-Based Hypothesis Testing Using Higher-Order Optical Interference
NASA Astrophysics Data System (ADS)
Jachura, Michał; Jarzyna, Marcin; Lipka, Michał; Wasilewski, Wojciech; Banaszek, Konrad
2018-03-01
Many quantum information protocols rely on optical interference to compare data sets with efficiency or security unattainable by classical means. Standard implementations exploit first-order coherence between signals whose preparation requires a shared phase reference. Here, we analyze and experimentally demonstrate the binary discrimination of visibility hypotheses based on higher-order interference for optical signals with a random relative phase. This provides a robust protocol implementation primitive when a phase lock is unavailable or impractical. With the primitive cost quantified by the total detected optical energy, optimal operation is typically reached in the few-photon regime.
Robust distant entanglement generation using coherent multiphoton scattering.
Chan, Ching-Kit; Sham, L J
2013-02-15
We describe a protocol to entangle two qubits at a distance by using resonance fluorescence. The scheme makes use of the postselection of large and distinguishable fluorescence signals corresponding to entangled and unentangled qubit states and has the merits of both high success probability and high entanglement fidelity owing to the multiphoton nature. Our result shows that the entanglement generation is robust against photon fluctuations in the fluorescence signals for a wide range of driving fields. We also demonstrate that this new protocol has an average entanglement duration within the decoherence time of corresponding qubit systems, based on current experimental photon efficiency.
Optical Profilometers Using Adaptive Signal Processing
NASA Technical Reports Server (NTRS)
Hall, Gregory A.; Youngquist, Robert; Mikhael, Wasfy
2006-01-01
A method of adaptive signal processing has been proposed as the basis of a new generation of interferometric optical profilometers for measuring surfaces. The proposed profilometers would be portable, hand-held units. Sizes could be thus reduced because the adaptive-signal-processing method would make it possible to substitute lower-power coherent light sources (e.g., laser diodes) for white light sources and would eliminate the need for most of the optical components of current white-light profilometers. The adaptive-signal-processing method would make it possible to attain scanning ranges of the order of decimeters in the proposed profilometers.
Twin-mediated epitaxial growth of highly lattice-mismatched Cu/Ag core-shell nanowires.
Weng, Wei-Lun; Hsu, Chin-Yu; Lee, Jheng-Syun; Fan, Hsin-Hsin; Liao, Chien-Neng
2018-05-31
Lattice-mismatch is an important factor for the heteroepitaxial growth of core-shell nanostructures. A large lattice-mismatch usually leads to a non-coherent interface or a polycrystalline shell layer. In this study, a conformal Ag layer is coated on Cu nanowires with dense nanoscale twin boundaries through a galvanic replacement reaction. Despite a large lattice mismatch between Ag and Cu (∼12.6%), the Ag shell replicates the twinning structure in Cu nanowires and grows epitaxially on the nanotwinned Cu nanowire. A twin-mediated growth mechanism is proposed to explain the epitaxy of high lattice-mismatch bimetallic systems in which the misfit dislocations are accommodated by coherent twin boundaries.
Birefringence insensitive optical coherence domain reflectometry system
Everett, Matthew J.; Davis, Joseph G.
2002-01-01
A birefringence insensitive fiber optic optical coherence domain reflectometry (OCDR) system is provided containing non-polarization maintaining (non-PM) fiber in the sample arm and the reference arm without suffering from signal degradation caused by birefringence. The use of non-PM fiber significantly reduces the cost of the OCDR system and provides a disposable or multiplexed section of the sample arm. The dispersion in the reference arm and sample arm of the OCDR system are matched to achieve high resolution imaging. This system is useful in medical applications or for non-medical in situ probes. The disposable section of non-PM fiber in the sample arm can be conveniently replaced when contaminated by a sample or a patient.
AFRL Projects to Replace Cadmium
2005-03-01
Protocol does not – Identify/ select a material or process – Impose processing restrictions on candidates – Implement a material or process into production...within proper limits • Use XRF to measure composition and thickness – Strippability • Remove coating within 60 minutes • Replate coating and pass...product information available? Magnetron Sputtering to Replace Cd • Task 2: Coating Deposition and Screening – Selection of qualified vendors and
Review of Evidence for Adult Diabetic Ketoacidosis Management Protocols.
Tran, Tara T T; Pease, Anthony; Wood, Anna J; Zajac, Jeffrey D; Mårtensson, Johan; Bellomo, Rinaldo; Ekinci, Elif I I
2017-01-01
Diabetic ketoacidosis (DKA) is an endocrine emergency with associated risk of morbidity and mortality. Despite this, DKA management lacks strong evidence due to the absence of large randomised controlled trials (RCTs). To review existing studies investigating inpatient DKA management in adults, focusing on intravenous (IV) fluids; insulin administration; potassium, bicarbonate, and phosphate replacement; and DKA management protocols and impact of DKA resolution rates on outcomes. Ovid Medline searches were conducted with limits "all adult" and published between "1973 to current" applied. National consensus statements were also reviewed. Eligibility was determined by two reviewers' assessment of title, abstract, and availability. A total of 85 eligible articles published between 1973 and 2016 were reviewed. The salient findings were (i) Crystalloids are favoured over colloids though evidence is lacking. The preferred crystalloid and hydration rates remain contentious. (ii) IV infusion of regular human insulin is preferred over the subcutaneous route or rapid acting insulin analogues. Administering an initial IV insulin bolus before low-dose insulin infusions obviates the need for supplemental insulin. Consensus-statements recommend fixed weight-based over "sliding scale" insulin infusions although evidence is weak. (iii) Potassium replacement is imperative although no trials compare replacement rates. (iv) Bicarbonate replacement offers no benefit in DKA with pH > 6.9. In severe metabolic acidosis with pH < 6.9, there is lack of both data and consensus regarding bicarbonate administration. (v) There is no evidence that phosphate replacement offers outcome benefits. Guidelines consider replacement appropriate in patients with cardiac dysfunction, anaemia, respiratory depression, or phosphate levels <0.32 mmol/L. (vi) Upon resolution of DKA, subcutaneous insulin is recommended with IV insulin infusions ceased with an overlap of 1-2 h. (vii) DKA resolution rates are often used as end points in studies, despite a lack of evidence that rapid resolution improves outcome. (viii) Implementation of DKA protocols lacks strong evidence for adherence but may lead to improved clinical outcomes. There are major deficiencies in evidence for optimal management of DKA. Current practice is guided by weak evidence and consensus opinion. All aspects of DKA management require RCTs to affirm or redirect management and formulate consensus evidence-based practice to improve patient outcomes.
ERIC Educational Resources Information Center
Hurh, Won Moo; Kim, Kwang Chung
1984-01-01
"Adhesive adaptation" occurs when aspects of a new culture and social relations with members of the host society are added on to immigrants' traditional culture and social networks, without replacing or modifying any significant part of the old. Interviews with 615 Korean immigrants empirically confirmed this adaptation model. (Author/KH)
Balestrini, Kira; Holt, Gregory; Mirsaeidi, Mehdi; Calderon-Candelario, Rafael; Whitney, Philip; Salathe, Matthias
2018-01-01
Background Understanding vaping patterns of electronic cigarette (EC) use is important to understand the real-life exposure to EC vapor. Long term information on vaping topography in relation to tobacco cigarette (TC) smoking cessation success has not been explored. Methods Observational non-blinded study where active TC smokers were asked to replace TC with EC over 4 weeks (replacement phase, RP) followed by exclusive EC use for an additional 12 weeks (maintenance phase, MP). TC use and EC compliance was monitored weekly. Subjects were classified as success or failure whether or not they completed the protocol. Vaping information was stored and downloaded directly from the EC device and averaged per calendar day for analysis. Results From 25 subjects that followed the protocol, sixteen succeeded in completing the RP and 8 the MP (32%). No significant differences in baseline characteristics were noted between subjects in the success and failure groups including markers of nicotine addiction, plasma cotinine levels or smoking history. Success subjects showed significantly longer puff duration (seconds per vape) and total overall vapor exposure (number of vapes x average vape duration or vape-seconds) in both study phases. Furthermore, subjects in the success group continued to increase the number of vapes, device voltage and wattage significantly as they transitioned into the MP. After an initial drop, subjects in the success group were able to regain plasma cotinine levels comparable to their TC use while subjects in the failure group could not. Cotinine levels significantly correlated with the average number of daily vapes and vapes-seconds, but not with other vaping parameters. Conclusion The topography of smokers who adhere to exclusive EC use reflects a progressive and dynamic device adaptation over weeks to maintain baseline cotinine levels. The higher inhaled volume over time should be considered when addressing the potential toxic effects of EC and the variable EC adherence when addressing public health policies regarding their use. PMID:29694428
Guerrero-Cignarella, Andrea; Luna Diaz, Landy V; Balestrini, Kira; Holt, Gregory; Mirsaeidi, Mehdi; Calderon-Candelario, Rafael; Whitney, Philip; Salathe, Matthias; Campos, Michael A
2018-01-01
Understanding vaping patterns of electronic cigarette (EC) use is important to understand the real-life exposure to EC vapor. Long term information on vaping topography in relation to tobacco cigarette (TC) smoking cessation success has not been explored. Observational non-blinded study where active TC smokers were asked to replace TC with EC over 4 weeks (replacement phase, RP) followed by exclusive EC use for an additional 12 weeks (maintenance phase, MP). TC use and EC compliance was monitored weekly. Subjects were classified as success or failure whether or not they completed the protocol. Vaping information was stored and downloaded directly from the EC device and averaged per calendar day for analysis. From 25 subjects that followed the protocol, sixteen succeeded in completing the RP and 8 the MP (32%). No significant differences in baseline characteristics were noted between subjects in the success and failure groups including markers of nicotine addiction, plasma cotinine levels or smoking history. Success subjects showed significantly longer puff duration (seconds per vape) and total overall vapor exposure (number of vapes x average vape duration or vape-seconds) in both study phases. Furthermore, subjects in the success group continued to increase the number of vapes, device voltage and wattage significantly as they transitioned into the MP. After an initial drop, subjects in the success group were able to regain plasma cotinine levels comparable to their TC use while subjects in the failure group could not. Cotinine levels significantly correlated with the average number of daily vapes and vapes-seconds, but not with other vaping parameters. The topography of smokers who adhere to exclusive EC use reflects a progressive and dynamic device adaptation over weeks to maintain baseline cotinine levels. The higher inhaled volume over time should be considered when addressing the potential toxic effects of EC and the variable EC adherence when addressing public health policies regarding their use.
Network Upgrade for the SLC: Control System Modifications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crane, M.; Mackenzie, R.; Sass, R.
2011-09-09
Current communications between the SLAC Linear Collider control system central host and the SLCmicros is built upon the SLAC developed SLCNET communication hardware and protocols. We will describe how the Internet Suite of protocols (TCP/IP) are used to replace the SLCNET protocol interface. The major communication pathways and their individual requirements are described. A proxy server is used to reduce the number of total system TCP/IP connections. The SLCmicros were upgraded to use Ethernet and TCP/IP as well as SLCNET. Design choices and implementation experiences are addressed.
QUANTUM CONTROL OF LIGHT: From Slow Light and FAST CARS to Nuclear γ-ray Spectroscopy
NASA Astrophysics Data System (ADS)
Scully, Marlan
2007-06-01
In recent work we have demonstrated strong coherent backward wave oscillation using forward propagating fields only. This surprising result is achieved by applying laser fields to an ultra-dispersive medium with proper chosen detunings to excite a molecular vibrational coherence that corresponds to a backward propagating wave [PRL, 97, 113001 (2006)]. The physics then has much in common with propagation of ultra-slow light. Applications of coherent scattering and remote sensing to the detection of bio and chemical pathogens (e.g., anthrax) via Coherent Anti-Raman Scattering together with Femtosecond Adaptive Spectroscopic Techniques (FAST CARS [Opt. Comm., 244, 423 (2005)]) will be discussed. Furthermore, the interplay between quantum optics (Dicke super and sub-radiant states) and nuclear physics (forward scattering of γ radiation) provides interesting problems and insights into the quantum control of scattered light [PRL, 96, 010501 (2005)].
Pulerwitz, Todd C; Khalique, Omar K; Nazif, Tamim N; Rozenshtein, Anna; Pearson, Gregory D N; Hahn, Rebecca T; Vahl, Torsten P; Kodali, Susheel K; George, Isaac; Leon, Martin B; D'Souza, Belinda; Po, Ming Jack; Einstein, Andrew J
2016-01-01
Transcatheter aortic valve replacement (TAVR) is a lifesaving procedure for many patients high risk for surgical aortic valve replacement. The prevalence of chronic kidney disease (CKD) is high in this population, and thus a very low contrast volume (VLCV) computed tomography angiography (CTA) protocol providing comprehensive cardiac and vascular imaging would be valuable. 52 patients with severe, symptomatic aortic valve disease, undergoing pre-TAVR CTA assessment from 2013-4 at Columbia University Medical Center were studied, including all 26 patients with CKD (eGFR<30 mL/min) who underwent a novel VLCV protocol (20 mL of iohexol at 2.5 mL/s), and 26 standard-contrast-volume (SCV) protocol patients. Using a 320-slice volumetric scanner, the protocol included ECG-gated volume scanning of the aortic root followed by medium-pitch helical vascular scanning through the femoral arteries. Two experienced cardiologists performed aortic annulus and root measurements. Vascular image quality was assessed by two radiologists using a 4-point scale. VLCV patients had mean (±SD) age 86 ± 6.5, BMI 23.9 ± 3.4 kg/m(2) with 54% men; SCV patients age 83 ± 8.8, BMI 28.7 ± 5.3 kg/m(2), 65% men. There was excellent intra- and inter-observer agreement for annular and root measurements, and excellent agreement with 3D-transesophageal echocardiographic measurements. Both radiologists found diagnostic-quality vascular imaging in 96% of VLCV and 100% of SCV cases, with excellent inter-observer agreement. This study is the first of its kind to report the feasibility and reproducibility of measurements for a VLCV protocol for comprehensive pre-TAVR CTA. There was excellent agreement of cardiac measurements and almost all studies were diagnostic quality for vascular access assessment. Copyright © 2016 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.
Liu, Wei; Yao, Kainan; Huang, Danian; Lin, Xudong; Wang, Liang; Lv, Yaowen
2016-06-13
The Greenwood frequency (GF) is influential in performance improvement for the coherent free space optical communications (CFSOC) system with a closed-loop adaptive optics (AO) unit. We analyze the impact of tilt and high-order aberrations on the mixing efficiency (ME) and bit-error-rate (BER) under different GF. The root-mean-square value (RMS) of the ME related to the RMS of the tilt aberrations, and the GF is derived to estimate the volatility of the ME. Furthermore, a numerical simulation is applied to verify the theoretical analysis, and an experimental correction system is designed with a double-stage fast-steering-mirror and a 97-element continuous surface deformable mirror. The conclusions of this paper provide a reference for designing the AO system for the CFSOC system.
Coherent and noncoherent low-power diodes in clinical practice
NASA Astrophysics Data System (ADS)
Antipa, Ciprian; Pascu, Mihail-Lucian; Stanciulescu, Viorica; Vlaiculescu, Mihaela; Ionescu, Elena; Bordea, Daniel
1997-05-01
Clinical efficacy of the low power laser (LPL) in medical treatments is still not well established. In a double blind, placebo controlled study, we tried to find out first which type of LPL is more efficient, and second if coherence is an important character for clinical efficacy. We treated 1228 patients having different rheumatic diseases, with low power diode, used as follows: A group: IR coherent diode, continuous emission, 3 mW power; B group: IR coherent diode, pulsed emission, output power about 3 mW; C group: IR noncoherent diode continuous emission 9 mW power; D group: both IR diode lasers (continuous or pulsed) and HeNe laser, continuous emission, 2 mW power; E group: placebo laser as control group. The energy dose used for every group was the same, as well as the clinical protocols. The positive results were: 66.16% for A group; 64.06% for B group; 48.87% for C group; 76.66% for D group, and 39.07% for E group. Finally, we showed that LPL is really efficient in the treatment of some rheumatic diseases, especially when red and IR diode laser were used in combination. The type of emission (continuous or pulsed) is not important, but coherence is obviously necessary for clinical efficacy.
Kozák, László; Szilágyi, Zoltán; Vágó, Barbara; Kakuk, Annamária; Tóth, László; Molnár, István; Pócsi, István
2018-04-01
The hypocrealean fungus Claviceps paspali is a parasite of wild grasses. This fungus is widely utilized in the pharmaceutical industry for the manufacture of ergot alkaloids, but also produces tremorgenic and neurotoxic indole-diterpene (IDT) secondary metabolites such as paspalitrems A and B. IDTs cause significant losses in agriculture and represent health hazards that threaten food security. Conversely, IDTs may also be utilized as lead compounds for pharmaceutical drug discovery. Current protoplast-mediated transformation protocols of C. paspali are inadequate as they suffer from inefficiencies in protoplast regeneration, a low frequency of DNA integration, and a low mitotic stability of the nascent transformants. We adapted and optimized Agrobacterium tumefaciens-mediated transformation (ATMT) for C. paspali and validated this method with the straightforward creation of a mutant strain of this fungus featuring a targeted replacement of key genes in the putative IDT biosynthetic gene cluster. Complete abrogation of IDT production in isolates of the mutant strain proved the predicted involvement of the target genes in the biosynthesis of IDTs. The mutant isolates continued to produce ergot alkaloids undisturbed, indicating that equivalent mutants generated in industrial ergot producers may have a better safety profile as they are devoid of IDT-type mycotoxins. Meanwhile, ATMT optimized for Claviceps spp. may open the door for the facile genetic engineering of these industrially and ecologically important organisms.
High Contrast Ultrafast Imaging of the Human Heart
Papadacci, Clement; Pernot, Mathieu; Couade, Mathieu; Fink, Mathias; Tanter, Mickael
2014-01-01
Non-invasive ultrafast imaging for human cardiac applications is a big challenge to image intrinsic waves such as electromechanical waves or remotely induced shear waves in elastography imaging techniques. In this paper we propose to perform ultrafast imaging of the heart with adapted sector size by using diverging waves emitted from a classical transthoracic cardiac phased array probe. As in ultrafast imaging with plane wave coherent compounding, diverging waves can be summed coherently to obtain high-quality images of the entire heart at high frame rate in a full field-of-view. To image shear waves propagation at high SNR, the field-of-view can be adapted by changing the angular aperture of the transmitted wave. Backscattered echoes from successive circular wave acquisitions are coherently summed at every location in the image to improve the image quality while maintaining very high frame rates. The transmitted diverging waves, angular apertures and subapertures size are tested in simulation and ultrafast coherent compounding is implemented on a commercial scanner. The improvement of the imaging quality is quantified in phantom and in vivo on human heart. Imaging shear wave propagation at 2500 frame/s using 5 diverging waves provides a strong increase of the Signal to noise ratio of the tissue velocity estimates while maintaining a high frame rate. Finally, ultrafast imaging with a 1 to 5 diverging waves is used to image the human heart at a frame rate of 900 frames/s over an entire cardiac cycle. Thanks to spatial coherent compounding, a strong improvement of imaging quality is obtained with a small number of transmitted diverging waves and a high frame rate, which allows imaging the propagation of electromechanical and shear waves with good image quality. PMID:24474135
Adaptive hybrid optimal quantum control for imprecisely characterized systems.
Egger, D J; Wilhelm, F K
2014-06-20
Optimal quantum control theory carries a huge promise for quantum technology. Its experimental application, however, is often hindered by imprecise knowledge of the input variables, the quantum system's parameters. We show how to overcome this by adaptive hybrid optimal control, using a protocol named Ad-HOC. This protocol combines open- and closed-loop optimal control by first performing a gradient search towards a near-optimal control pulse and then an experimental fidelity estimation with a gradient-free method. For typical settings in solid-state quantum information processing, adaptive hybrid optimal control enhances gate fidelities by an order of magnitude, making optimal control theory applicable and useful.
ZeroCal: Automatic MAC Protocol Calibration
NASA Astrophysics Data System (ADS)
Meier, Andreas; Woehrle, Matthias; Zimmerling, Marco; Thiele, Lothar
Sensor network MAC protocols are typically configured for an intended deployment scenario once and for all at compile time. This approach, however, leads to suboptimal performance if the network conditions deviate from the expectations. We present ZeroCal, a distributed algorithm that allows nodes to dynamically adapt to variations in traffic volume. Using ZeroCal, each node autonomously configures its MAC protocol at runtime, thereby trying to reduce the maximum energy consumption among all nodes. While the algorithm is readily usable for any asynchronous low-power listening or low-power probing protocol, we validate and demonstrate the effectiveness of ZeroCal on X-MAC. Extensive testbed experiments and simulations indicate that ZeroCal quickly adapts to traffic variations. We further show that ZeroCal extends network lifetime by 50% compared to an optimal configuration with identical and static MAC parameters at all nodes.
Extraction of High Quality DNA from Seized Moroccan Cannabis Resin (Hashish)
El Alaoui, Moulay Abdelaziz; Melloul, Marouane; Alaoui Amine, Sanaâ; Stambouli, Hamid; El Bouri, Aziz; Soulaymani, Abdelmajid; El Fahime, Elmostafa
2013-01-01
The extraction and purification of nucleic acids is the first step in most molecular biology analysis techniques. The objective of this work is to obtain highly purified nucleic acids derived from Cannabis sativa resin seizure in order to conduct a DNA typing method for the individualization of cannabis resin samples. To obtain highly purified nucleic acids from cannabis resin (Hashish) free from contaminants that cause inhibition of PCR reaction, we have tested two protocols: the CTAB protocol of Wagner and a CTAB protocol described by Somma (2004) adapted for difficult matrix. We obtained high quality genomic DNA from 8 cannabis resin seizures using the adapted protocol. DNA extracted by the Wagner CTAB protocol failed to give polymerase chain reaction (PCR) amplification of tetrahydrocannabinolic acid (THCA) synthase coding gene. However, the extracted DNA by the second protocol permits amplification of THCA synthase coding gene using different sets of primers as assessed by PCR. We describe here for the first time the possibility of DNA extraction from (Hashish) resin derived from Cannabis sativa. This allows the use of DNA molecular tests under special forensic circumstances. PMID:24124454
A universal data access and protocol integration mechanism for smart home
NASA Astrophysics Data System (ADS)
Shao, Pengfei; Yang, Qi; Zhang, Xuan
2013-03-01
With the lack of standardized or completely missing communication interfaces in home electronics, there is no perfect solution to address every aspect in smart homes based on existing protocols and technologies. In addition, the central control unit (CCU) of smart home system working point-to-point between the multiple application interfaces and the underlying hardware interfaces leads to its complicated architecture and unpleasant performance. A flexible data access and protocol integration mechanism is required. The current paper offers a universal, comprehensive data access and protocol integration mechanism for a smart home. The universal mechanism works as a middleware adapter with unified agreements of the communication interfaces and protocols, offers an abstraction of the application level from the hardware specific and decoupling the hardware interface modules from the application level. Further abstraction for the application interfaces and the underlying hardware interfaces are executed based on adaption layer to provide unified interfaces for more flexible user applications and hardware protocol integration. This new universal mechanism fundamentally changes the architecture of the smart home and in some way meets the practical requirement of smart homes more flexible and desirable.
Sefuba, Maria; Walingo, Tom; Takawira, Fambirai
2015-09-18
This paper presents an Energy Efficient Medium Access Control (MAC) protocol for clustered wireless sensor networks that aims to improve energy efficiency and delay performance. The proposed protocol employs an adaptive cross-layer intra-cluster scheduling and an inter-cluster relay selection diversity. The scheduling is based on available data packets and remaining energy level of the source node (SN). This helps to minimize idle listening on nodes without data to transmit as well as reducing control packet overhead. The relay selection diversity is carried out between clusters, by the cluster head (CH), and the base station (BS). The diversity helps to improve network reliability and prolong the network lifetime. Relay selection is determined based on the communication distance, the remaining energy and the channel quality indicator (CQI) for the relay cluster head (RCH). An analytical framework for energy consumption and transmission delay for the proposed MAC protocol is presented in this work. The performance of the proposed MAC protocol is evaluated based on transmission delay, energy consumption, and network lifetime. The results obtained indicate that the proposed MAC protocol provides improved performance than traditional cluster based MAC protocols.
Sefuba, Maria; Walingo, Tom; Takawira, Fambirai
2015-01-01
This paper presents an Energy Efficient Medium Access Control (MAC) protocol for clustered wireless sensor networks that aims to improve energy efficiency and delay performance. The proposed protocol employs an adaptive cross-layer intra-cluster scheduling and an inter-cluster relay selection diversity. The scheduling is based on available data packets and remaining energy level of the source node (SN). This helps to minimize idle listening on nodes without data to transmit as well as reducing control packet overhead. The relay selection diversity is carried out between clusters, by the cluster head (CH), and the base station (BS). The diversity helps to improve network reliability and prolong the network lifetime. Relay selection is determined based on the communication distance, the remaining energy and the channel quality indicator (CQI) for the relay cluster head (RCH). An analytical framework for energy consumption and transmission delay for the proposed MAC protocol is presented in this work. The performance of the proposed MAC protocol is evaluated based on transmission delay, energy consumption, and network lifetime. The results obtained indicate that the proposed MAC protocol provides improved performance than traditional cluster based MAC protocols. PMID:26393608
A rapid infusion protocol is safe for total dose iron polymaltose: time for change.
Garg, M; Morrison, G; Friedman, A; Lau, A; Lau, D; Gibson, P R
2011-07-01
Intravenous correction of iron deficiency by total dose iron polymaltose is inexpensive and safe, but current protocols entail prolonged administration over more than 4 h. This results in reduced patient acceptance, and hospital resource strain. We aimed to assess prospectively the safety of a rapid intravenous protocol and compare this with historical controls. Consecutive patients in whom intravenous iron replacement was indicated were invited to have up to 1.5 g iron polymaltose by a 58-min infusion protocol after an initial 15-min test dose without pre-medication. Infusion-related adverse events (AE) and delayed AE over the ensuing 5 days were also prospectively documented and graded as mild, moderate or severe. One hundred patients, 63 female, mean age 54 (range 18-85) years were studied. Thirty-four infusion-related AE to iron polymaltose occurred in a total of 24 patients--25 mild, 8 moderate and 1 severe; higher than previously reported for a slow protocol iron infusion. Thirty-one delayed AE occurred in 26 patients--26 mild, 3 moderate and 2 severe; similar to previously reported. All but five patients reported they would prefer iron replacement through the rapid protocol again. The presence of inflammatory bowel disease (IBD) predicted infusion-related reactions (54% vs 14% without IBD, P < 0.001) and the serum C-reactive protein was higher in those with reactions (P = 0.043). Iron polymaltose can be successfully administered using a rapid total dose infusion protocol and was well accepted by patients. It offers significant cost, resource utilization and time benefits for the patient and hospital system. © 2011 The Authors. Internal Medicine Journal © 2011 Royal Australasian College of Physicians.
The role of MRI in axillary lymph node imaging in breast cancer patients: a systematic review.
Kuijs, V J L; Moossdorff, M; Schipper, R J; Beets-Tan, R G H; Heuts, E M; Keymeulen, K B M I; Smidt, M L; Lobbes, M B I
2015-04-01
To assess whether MRI can exclude axillary lymph node metastasis, potentially replacing sentinel lymph node biopsy (SLNB), and consequently eliminating the risk of SLNB-associated morbidity. PubMed, Cochrane, Medline and Embase databases were searched for relevant publications up to July 2014. Studies were selected based on predefined inclusion and exclusion criteria and independently assessed by two reviewers using a standardised extraction form. Sixteen eligible studies were selected from 1,372 publications identified by the search. A dedicated axillary protocol [sensitivity 84.7 %, negative predictive value (NPV) 95.0 %] was superior to a standard protocol covering both the breast and axilla simultaneously (sensitivity 82.0 %, NPV 82.6 %). Dynamic, contrast-enhanced MRI had a lower median sensitivity (60.0 %) and NPV (80.0 %) compared to non-enhanced T1w/T2w sequences (88.4, 94.7 %), diffusion-weighted imaging (84.2, 90.6 %) and ultrasmall superparamagnetic iron oxide (USPIO)- enhanced T2*w sequences (83.0, 95.9 %). The most promising results seem to be achievable when using non-enhanced T1w/T2w and USPIO-enhanced T2*w sequences in combination with a dedicated axillary protocol (sensitivity 84.7 % and NPV 95.0 %). The diagnostic performance of some MRI protocols for excluding axillary lymph node metastases approaches the NPV needed to replace SLNB. However, current observations are based on studies with heterogeneous study designs and limited populations. • Some axillary MRI protocols approach the NPV of an SLNB procedure. • Dedicated axillary MRI is more accurate than protocols also covering the breast. • T1w/T2w protocols combined with USPIO-enhanced sequences are the most promising sequences.
Butterfield, Timothy A; Herzog, Walter
2006-02-01
It is generally accepted that eccentric exercise, when performed by a muscle that is unaccustomed to that type of contraction, results in a delayed onset of muscle soreness (DOMS). A prolonged exposure to eccentric exercise leads to the disappearance of the signs and symptoms associated with DOMS, which has been referred to as the repeated bout effect (RBE). Although the mechanisms underlying the RBE remain unclear, several mechanisms have been proposed, including the serial sarcomere number addition following exercise induced muscle damage. In the traditional DOMS and RBE protocols, muscle injury has been treated as a global parameter, with muscle force and strain assumed to be uniform throughout the muscle. To assess the effects of muscle-tendon unit strain, fiber strain, torque and injury on serial sarcomere number adaptations, three groups of New Zealand White (NZW) rabbits were subjected to chronic repetitive eccentric exercise bouts of the ankle dorsiflexors for 6 weeks. These eccentric exercise protocols consisted of identical muscle tendon unit (MTU) strain, but other mechanical factors were systematically altered. Following chronic eccentric exercise, serial sarcomere number adaptations were not identical between the three eccentric exercise protocols, and serial sarcomere number adaptations were not uniform across all regions of the muscle. Peak torque and relaxation fiber strain were the best predictors of serial sarcomere number across all three protocols. Therefore, MTU strain does not appear to be the primary cause for sarcomerogenesis, and differential adaptations within the muscle may be explained by the nonuniform architecture of the muscle, resulting in differential local fiber strains.
Flores-Rodríguez, Patricia; Gili, Pablo; Martín-Ríos, María Dolores; Grifol-Clar, Eulalia
2013-03-01
To compare optic disc area measurement between optic nerve head drusen (ONHD) and control subjects using fundus photography, time-domain optical coherence tomography (TD-OCT) and spectral-domain optical coherence tomography (SD-OCT). We also made a comparison between each of the three techniques. We performed our study on 66 eyes (66 patients) with ONHD and 70 healthy control subjects (70 controls) with colour ocular fundus photography at 20º (Zeiss FF 450 IR plus), TD-OCT (Stratus OCT) with the Fast Optic Disc protocol and SD-OCT (Cirrus OCT) with the Optic Disc Cube 200 × 200 protocol for measurement of the optic disc area. The measurements were made by two observers and in each measurement a correction of the image magnification factor was performed. Measurement comparison using the Student's t-test/Mann-Whitney U test, the intraclass correlation coefficient, Pearson/Spearman rank correlation coefficient and the Bland-Altman plot was performed in the statistical analysis. Mean and standard deviation (SD) of the optic disc area in ONHD and in controls was 2.38 (0.54) mm(2) and 2.54 (0.42) mm(2), respectively with fundus photography; 2.01 (0.56) mm(2) and 1.66 (0.37) mm(2), respectively with TD-OCT, and 2.03 (0.49) mm(2) and 1.75 (0.38) mm(2), respectively with SD-OCT. In ONHD and controls, repeatability of optic disc area measurement was excellent with fundus photography and optical coherence tomography (TD-OCT and SD-OCT), but with a low degree of agreement between both techniques. Optic disc area measurement is smaller in ONHD compared to healthy subjects with fundus photography, unlike time-domain and spectral-domain optical coherence tomography in which the reverse is true. Both techniques offer good repeatability, but a low degree of correlation and agreement, which means that optic disc area measurement is not interchangeable or comparable between techniques. Ophthalmic & Physiological Optics © 2013 The College of Optometrists.
Courtney, Rosalba; Cohen, Marc; van Dixhoorn, Jan
2011-01-01
Heart rate variability (HRV) biofeedback is a self-regulation strategy used to improve conditions including asthma, stress, hypertension, and chronic obstructive pulmonary disease. Respiratory muscle function affects hemodynamic influences on respiratory sinus arrhythmia (RSA), and HRV and HRV-biofeedback protocols often include slow abdominal breathing to achieve physiologically optimal patterns of HRV with power spectral distribution concentrated around the 0.1-Hz frequency and large amplitude. It is likely that optimal balanced breathing patterns and ability to entrain heart rhythms to breathing reflect physiological efficiency and resilience and that individuals with dysfunctional breathing patterns may have difficulty voluntarily modulating HRV and RSA. The relationship between breathing movement patterns and HRV, however, has not been investigated. This study examines how individuals' habitual breathing patterns correspond with their ability to optimize HRV and RSA. Breathing pattern was assessed using the Manual Assessment of Respiratory Motion (MARM) and the Hi Lo manual palpation techniques in 83 people with possible dysfunctional breathing before they attempted HRV biofeedback. Mean respiratory rate was also assessed. Subsequently, participants applied a brief 5-minute biofeedback protocol, involving breathing and positive emotional focus, to achieve HRV patterns proposed to reflect physiological "coherence" and entrainment of heart rhythm oscillations to other oscillating body systems. Thoracic-dominant breathing was associated with decreased coherence of HRV (r = -.463, P = .0001). Individuals with paradoxical breathing had the lowest HRV coherence (t(8) = 10.7, P = .001), and the negative relationship between coherence of HRV and extent of thoracic breathing was strongest in this group (r = -.768, P = .03). Dysfunctional breathing patterns are associated with decreased ability to achieve HRV patterns that reflect cardiorespiratory efficiency and autonomic nervous system balance. This suggests that dysfunctional breathing patterns are not only biomechanically inefficient but also reflect decreased physiological resilience. Breathing assessment using simple manual techniques such as the MARM and Hi Lo may be useful in HRV biofeedback to identify if poor responders require more emphasis on correction of dysfunctional breathing.
SMI adaptive antenna arrays for weak interfering signals
NASA Technical Reports Server (NTRS)
Gupta, I. J.
1987-01-01
The performance of adaptive antenna arrays is studied when a sample matrix inversion (SMI) algorithm is used to control array weights. It is shown that conventional SMI adaptive antennas, like other adaptive antennas, are unable to suppress weak interfering signals (below thermal noise) encountered in broadcasting satellite communication systems. To overcome this problem, the SMI algorithm is modified. In the modified algorithm, the covariance matrix is modified such that the effect of thermal noise on the weights of the adaptive array is reduced. Thus, the weights are dictated by relatively weak coherent signals. It is shown that the modified algorithm provides the desired interference protection. The use of defocused feeds as auxiliary elements of an SMI adaptive array is also discussed.
2005-03-01
to obtain a protocol customized to the needs of a specific setting, under control of an automated theorem proving system that can guarantee...new “compositional” method for protocol design and implementation, in which small microprotocols are combined to obtain a protocol customized to the...and Network Centric Enterprise (NCES) visions. This final report documents a wide range of contributions and technology transitions, including: A
Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Abd Razak, Shukor
2014-01-01
Network connectivity and link quality information are the fundamental requirements of wireless sensor network protocols to perform their desired functionality. Most of the existing discovery protocols have only focused on the neighbor discovery problem, while a few number of them provide an integrated neighbor search and link estimation. As these protocols require a careful parameter adjustment before network deployment, they cannot provide scalable and accurate network initialization in large-scale dense wireless sensor networks with random topology. Furthermore, performance of these protocols has not entirely been evaluated yet. In this paper, we perform a comprehensive simulation study on the efficiency of employing adaptive protocols compared to the existing nonadaptive protocols for initializing sensor networks with random topology. In this regard, we propose adaptive network initialization protocols which integrate the initial neighbor discovery with link quality estimation process to initialize large-scale dense wireless sensor networks without requiring any parameter adjustment before network deployment. To the best of our knowledge, this work is the first attempt to provide a detailed simulation study on the performance of integrated neighbor discovery and link quality estimation protocols for initializing sensor networks. This study can help system designers to determine the most appropriate approach for different applications. PMID:24678277
Yan, Wei; Yang, Yanlong; Tan, Yu; Chen, Xun; Li, Yang; Qu, Junle; Ye, Tong
2018-01-01
Stimulated emission depletion microscopy (STED) is one of far-field optical microscopy techniques that can provide sub-diffraction spatial resolution. The spatial resolution of the STED microscopy is determined by the specially engineered beam profile of the depletion beam and its power. However, the beam profile of the depletion beam may be distorted due to aberrations of optical systems and inhomogeneity of specimens’ optical properties, resulting in a compromised spatial resolution. The situation gets deteriorated when thick samples are imaged. In the worst case, the sever distortion of the depletion beam profile may cause complete loss of the super resolution effect no matter how much depletion power is applied to specimens. Previously several adaptive optics approaches have been explored to compensate aberrations of systems and specimens. However, it is hard to correct the complicated high-order optical aberrations of specimens. In this report, we demonstrate that the complicated distorted wavefront from a thick phantom sample can be measured by using the coherent optical adaptive technique (COAT). The full correction can effectively maintain and improve the spatial resolution in imaging thick samples. PMID:29400356
Multiple enface image averaging for enhanced optical coherence tomography angiography imaging.
Uji, Akihito; Balasubramanian, Siva; Lei, Jianqin; Baghdasaryan, Elmira; Al-Sheikh, Mayss; Borrelli, Enrico; Sadda, SriniVas R
2018-05-31
To investigate the effect of multiple enface image averaging on image quality of the optical coherence tomography angiography (OCTA). Twenty-one normal volunteers were enrolled in this study. For each subject, one eye was imaged with 3 × 3 mm scan protocol, and another eye was imaged with the 6 × 6 mm scan protocol centred on the fovea using the ZEISS Angioplex™ spectral-domain OCTA device. Eyes were repeatedly imaged to obtain nine OCTA cube scan sets, and nine superficial capillary plexus (SCP) and deep capillary plexus (DCP) were individually averaged after registration. Eighteen eyes with a 3 × 3 mm scan field and 14 eyes with a 6 × 6 mm scan field were studied. Averaged images showed more continuous vessels and less background noise in both the SCP and the DCP as the number of frames used for averaging increased, with both 3 × 3 and 6 × 6 mm scan protocols. The intensity histogram of the vessels dramatically changed after averaging. Contrast-to-noise ratio (CNR) and subjectively assessed image quality scores also increased as the number of frames used for averaging increased in all image types. However, the additional benefit in quality diminished when averaging more than five frames. Averaging only three frames achieved significant improvement in CNR and the score assigned by certified grades. Use of multiple image averaging in OCTA enface images was found to be both objectively and subjectively effective for enhancing image quality. These findings may of value for developing optimal OCTA imaging protocols for future studies. © 2018 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Quantum magnetism in different AMO systems.
NASA Astrophysics Data System (ADS)
Rey, Ana Maria
One of the most important goals of modern quantum sciences is to learn how to control and entangle many-body systems and use them to make powerful and improved quantum devices, materials and technologies. However, since performing full state tomography does not scale favorably with the number of particles, as the size of quantum systems grow, it becomes extremely challenging to identify, and quantify the buildup of quantum correlations and coherence. In this talk I will report on a protocol that we have developed and experimentally demonstrated in a trapped ion quantum magnet in a Penning trap, which can perform quantum simulations of Ising spin models. In those experiments strong spin-spin interactions can be engineered through optical dipole forces that excite phonons of the crystals. The number of ions can be varied from tens to hundreds with high fidelity control. The protocol uses time reversal of the many-body dynamics, to measure out-of-time-order correlation functions (OTOCs). By measuring a family of OTOCs as a function of a tunable parameter we obtain fine-grained information about the state of the system encoded in the multiple quantum coherence spectrum, extract the quantum state purity, and demonstrate the build-up of up to 8-body correlations. We also use the protocol and comparisons to a full solution of the master equation to investigate the impact of spin-motion entanglement and decoherence in the quantum dynamics. Future applications of this protocol could enable studies of manybody localization, quantum phase transitions, and tests of the holographic duality between quantum and gravitational systems. Supported by NSF-PHY-1521080, JILA-NSF PFC-1125844, ARO and AFOSR-MURI.
Adaptive optics imaging of the retina
Battu, Rajani; Dabir, Supriya; Khanna, Anjani; Kumar, Anupama Kiran; Roy, Abhijit Sinha
2014-01-01
Adaptive optics is a relatively new tool that is available to ophthalmologists for study of cellular level details. In addition to the axial resolution provided by the spectral-domain optical coherence tomography, adaptive optics provides an excellent lateral resolution, enabling visualization of the photoreceptors, blood vessels and details of the optic nerve head. We attempt a mini review of the current role of adaptive optics in retinal imaging. PubMed search was performed with key words Adaptive optics OR Retina OR Retinal imaging. Conference abstracts were searched from the Association for Research in Vision and Ophthalmology (ARVO) and American Academy of Ophthalmology (AAO) meetings. In total, 261 relevant publications and 389 conference abstracts were identified. PMID:24492503
Lachinova, Svetlana L; Vorontsov, Mikhail A
2008-08-01
We analyze the potential efficiency of laser beam projection onto a remote object in atmosphere with incoherent and coherent phase-locked conformal-beam director systems composed of an adaptive array of fiber collimators. Adaptive optics compensation of turbulence-induced phase aberrations in these systems is performed at each fiber collimator. Our analysis is based on a derived expression for the atmospheric-averaged value of the mean square residual phase error as well as direct numerical simulations. Operation of both conformal-beam projection systems is compared for various adaptive system configurations characterized by the number of fiber collimators, the adaptive compensation resolution, and atmospheric turbulence conditions.
Bobik, Krzysztof; Dunlap, John R.; Burch-Smith, Tessa M.
2014-01-01
Since the 1940s transmission electron microscopy (TEM) has been providing biologists with ultra-high resolution images of biological materials. Yet, because of laborious and time-consuming protocols that also demand experience in preparation of artifact-free samples, TEM is not considered a user-friendly technique. Traditional sample preparation for TEM used chemical fixatives to preserve cellular structures. High-pressure freezing is the cryofixation of biological samples under high pressures to produce very fast cooling rates, thereby restricting ice formation, which is detrimental to the integrity of cellular ultrastructure. High-pressure freezing and freeze substitution are currently the methods of choice for producing the highest quality morphology in resin sections for TEM. These methods minimize the artifacts normally associated with conventional processing for TEM of thin sections. After cryofixation the frozen water in the sample is replaced with liquid organic solvent at low temperatures, a process called freeze substitution. Freeze substitution is typically carried out over several days in dedicated, costly equipment. A recent innovation allows the process to be completed in three hours, instead of the usual two days. This is typically followed by several more days of sample preparation that includes infiltration and embedding in epoxy resins before sectioning. Here we present a protocol combining high-pressure freezing and quick freeze substitution that enables plant sample fixation to be accomplished within hours. The protocol can readily be adapted for working with other tissues or organisms. Plant tissues are of special concern because of the presence of aerated spaces and water-filled vacuoles that impede ice-free freezing of water. In addition, the process of chemical fixation is especially long in plants due to cell walls impeding the penetration of the chemicals to deep within the tissues. Plant tissues are therefore particularly challenging, but this protocol is reliable and produces samples of the highest quality. PMID:25350384
NASA Astrophysics Data System (ADS)
Hayes, M.
2014-12-01
The IMBECS Protocol concept employs large cultivation and biorefinery installations, within the five Subtropical Convergence Zones (STCZs), to support the production of commodities such as carbon negative biofuels, seafood, organic fertilizer, polymers and freshwater, as a flexible and cost effective means of Global Warming Mitigation (GWM) with the primary objective being the global scale replacement of fossil fuels (FF). This governance approach is categorically distinct from all other large scale GWM governance concepts. Yet, many of the current marine related GWM technologies are adaptable to this proposals. The IMBECS technology would be managed by an intergovernmentally sanctioned non-profit foundation which would have the following functions/mission: Synthesises relevant treaty language Performs R&D activities and purchases relevant patents Under intergovernmental commission, functions as the primary responsible international actorfor environmental standards, production quotas and operational integrity Licence technology to for-profit actors under strict production/environmental standards Enforce production and environmental standards along with production quotas Provide a high level of transparency to all stakeholders Provide legal defence The IMBECS Protocol is conceptually related to the work found in the following documents/links. This list is not exhaustive: Climate Change Geoengineering The Science and Politics of Global Climate Change: A guide to the debate IPCC Special Report on Renewable Energy and Climate Change Mitigation DoE Roadmap for Algae Biofuels PodEnergy Ocean Agronomy development leaders and progenitor of this proposal. Artificial Upwelling of Deep Seawater Using the Perpetual Salt Fountain for Cultivation of Ocean Desert NASAs' OMEGA study. Cool Planet; Land based version of a carbon negative biofuel concept. Cellana; Leading developer of algae based bioproducts. The State of World Fisheries and Aquaculture Mariculture: A global analysis of production trends since 1950 BECCS /Biochar/ Olivine UNFCCC/IMO/CBD The President's Climate Action Plan The conclusion of this analysis calls for funding of an investigational deployment of the relevant technologies for an open evaluation at the intergovernmental level.
Shaffer, Fred; McCraty, Rollin; Zerr, Christopher L
2014-01-01
Heart rate variability (HRV), the change in the time intervals between adjacent heartbeats, is an emergent property of interdependent regulatory systems that operate on different time scales to adapt to challenges and achieve optimal performance. This article briefly reviews neural regulation of the heart, and its basic anatomy, the cardiac cycle, and the sinoatrial and atrioventricular pacemakers. The cardiovascular regulation center in the medulla integrates sensory information and input from higher brain centers, and afferent cardiovascular system inputs to adjust heart rate and blood pressure via sympathetic and parasympathetic efferent pathways. This article reviews sympathetic and parasympathetic influences on the heart, and examines the interpretation of HRV and the association between reduced HRV, risk of disease and mortality, and the loss of regulatory capacity. This article also discusses the intrinsic cardiac nervous system and the heart-brain connection, through which afferent information can influence activity in the subcortical and frontocortical areas, and motor cortex. It also considers new perspectives on the putative underlying physiological mechanisms and properties of the ultra-low-frequency (ULF), very-low-frequency (VLF), low-frequency (LF), and high-frequency (HF) bands. Additionally, it reviews the most common time and frequency domain measurements as well as standardized data collection protocols. In its final section, this article integrates Porges' polyvagal theory, Thayer and colleagues' neurovisceral integration model, Lehrer et al.'s resonance frequency model, and the Institute of HeartMath's coherence model. The authors conclude that a coherent heart is not a metronome because its rhythms are characterized by both complexity and stability over longer time scales. Future research should expand understanding of how the heart and its intrinsic nervous system influence the brain.
Shaffer, Fred; McCraty, Rollin; Zerr, Christopher L.
2014-01-01
Heart rate variability (HRV), the change in the time intervals between adjacent heartbeats, is an emergent property of interdependent regulatory systems that operate on different time scales to adapt to challenges and achieve optimal performance. This article briefly reviews neural regulation of the heart, and its basic anatomy, the cardiac cycle, and the sinoatrial and atrioventricular pacemakers. The cardiovascular regulation center in the medulla integrates sensory information and input from higher brain centers, and afferent cardiovascular system inputs to adjust heart rate and blood pressure via sympathetic and parasympathetic efferent pathways. This article reviews sympathetic and parasympathetic influences on the heart, and examines the interpretation of HRV and the association between reduced HRV, risk of disease and mortality, and the loss of regulatory capacity. This article also discusses the intrinsic cardiac nervous system and the heart-brain connection, through which afferent information can influence activity in the subcortical and frontocortical areas, and motor cortex. It also considers new perspectives on the putative underlying physiological mechanisms and properties of the ultra-low-frequency (ULF), very-low-frequency (VLF), low-frequency (LF), and high-frequency (HF) bands. Additionally, it reviews the most common time and frequency domain measurements as well as standardized data collection protocols. In its final section, this article integrates Porges' polyvagal theory, Thayer and colleagues' neurovisceral integration model, Lehrer et al.'s resonance frequency model, and the Institute of HeartMath's coherence model. The authors conclude that a coherent heart is not a metronome because its rhythms are characterized by both complexity and stability over longer time scales. Future research should expand understanding of how the heart and its intrinsic nervous system influence the brain. PMID:25324790
Optical coherence tomography angiography-based capillary velocimetry
NASA Astrophysics Data System (ADS)
Wang, Ruikang K.; Zhang, Qinqin; Li, Yuandong; Song, Shaozhen
2017-06-01
Challenge persists in the field of optical coherence tomography (OCT) when it is required to quantify capillary blood flow within tissue beds in vivo. We propose a useful approach to statistically estimate the mean capillary flow velocity using a model-based statistical method of eigendecomposition (ED) analysis of the complex OCT signals obtained with the OCT angiography (OCTA) scanning protocol. ED-based analysis is achieved by the covariance matrix of the ensemble complex OCT signals, upon which the eigenvalues and eigenvectors that represent the subsets of the signal makeup are calculated. From this analysis, the signals due to moving particles can be isolated by employing an adaptive regression filter to remove the eigencomponents that represent static tissue signals. The mean frequency (MF) of moving particles can be estimated by the first lag-one autocorrelation of the corresponding eigenvectors. Three important parameters are introduced, including the blood flow signal power representing the presence of blood flow (i.e., OCTA signals), the MF indicating the mean velocity of blood flow, and the frequency bandwidth describing the temporal flow heterogeneity within a scanned tissue volume. The proposed approach is tested using scattering phantoms, in which microfluidic channels are used to simulate the functional capillary vessels that are perfused with the scattering intralipid solution. The results indicate a linear relationship between the MF and mean flow velocity. In vivo animal experiments are also conducted by imaging mouse brain with distal middle cerebral artery ligation to test the capability of the method to image the changes in capillary flows in response to an ischemic insult, demonstrating the practical usefulness of the proposed method for providing important quantifiable information about capillary tissue beds in the investigations of neurological conditions in vivo.
The Contextual Nature of Scientists' Views of Theories, Experimentation, and Their Coordination
ERIC Educational Resources Information Center
Sandoval, William A.; Redman, Elizabeth H.
2015-01-01
Practicing scientists' views of science recently have become a topic of interest to nature of science researchers. Using an interview protocol developed by Carey and Smith that assumes respondents' views cohere into a single belief system, we asked 15 research chemists to discuss their views of theories and experimentation. Respondents expressed a…
Increased Arctic Deposition of Persistent Compounds as a Result of the Montreal Protocol
NASA Astrophysics Data System (ADS)
Young, C.; Pickard, H. M.; De Silva, A. O.; Spencer, C.; Criscitiello, A. S.; Muir, D.; Sharp, M. J.
2017-12-01
Perfluorocarboxylic acids (PFCAs) are among the diverse groups of compounds characterized as persistent organic pollutants. They are toxic, resistant to environmental degradation, and adversely impact human and environmental health. PFCAs with four or fewer carbons, short-chain PFCAs (scPFCAs), are of particular interest because of their increasing levels in the environment, toxicity to plants, and potential for accumulation in some aquatic ecosystems, making them an emerging environmental concern. A minor source of scPFCAs to the Arctic has been shown to be atmospheric transformation of fluoropolymer precursors, followed by deposition. Additional potential sources of scPFCAs to the Arctic are chlorofluorocarbon (CFC)-replacement compounds. Through analysis of an ice core from the Canadian High Arctic, we show that Montreal Protocol-mandated introduction of CFC-replacement compounds for the heat-transfer industry has led to increasing inputs of these scPFCAs to the remote environment. Flux measurements for scPFCAs as a class of contaminants have only been reported in a couple studies to date. Here, we provide the first multi-decadal temporal record of scPFCA deposition, demonstrating a dramatic increase in deposition resulting from emission of CFC-replacements. These results bring to the forefront a need for a holistic approach to environmental risk assessment that considers impacts of replacement substances and degradation products.
Deep turbulence effects mitigation with coherent combining of 21 laser beams over 7 km.
Weyrauch, Thomas; Vorontsov, Mikhail; Mangano, Joseph; Ovchinnikov, Vladimir; Bricker, David; Polnau, Ernst; Rostov, Andrey
2016-02-15
We demonstrate coherent beam combining and adaptive mitigation of atmospheric turbulence effects over 7 km under strong scintillation conditions using a coherent fiber array laser transmitter operating in a target-in-the-loop setting. The transmitter system is composed of a densely packed array of 21 fiber collimators with integrated capabilities for piston, tip, and tilt control of the outgoing beams wavefront phases. A small cat's-eye retro reflector was used for evaluation of beam combining and turbulence compensation performance at the target plane, and to provide the feedback signal for control of piston and tip/tilt phases of the transmitted beams using the stochastic parallel gradient descent maximization of the power-in-the-bucket metric.
Enhancing Time Synchronization Support in Wireless Sensor Networks
Tavares Bruscato, Leandro; Heimfarth, Tales; Pignaton de Freitas, Edison
2017-01-01
With the emerging Internet of Things (IoT) technology becoming reality, a number of applications are being proposed. Several of these applications are highly dependent on wireless sensor networks (WSN) to acquire data from the surrounding environment. In order to be really useful for most of applications, the acquired data must be coherent in terms of the time in which they are acquired, which implies that the entire sensor network presents a certain level of time synchronization. Moreover, to efficiently exchange and forward data, many communication protocols used in WSN rely also on time synchronization among the sensor nodes. Observing the importance in complying with this need for time synchronization, this work focuses on the second synchronization problem, proposing, implementing and testing a time synchronization service for low-power WSN using low frequency real-time clocks in each node. To implement this service, three algorithms based on different strategies are proposed: one based on an auto-correction approach, the second based on a prediction mechanism, while the third uses an analytical correction mechanism. Their goal is the same, i.e., to make the clocks of the sensor nodes converge as quickly as possible and then to keep them most similar as possible. This goal comes along with the requirement to keep low energy consumption. Differently from other works in the literature, the proposal here is independent of any specific protocol, i.e., it may be adapted to be used in different protocols. Moreover, it explores the minimum number of synchronization messages by means of a smart clock update strategy, allowing the trade-off between the desired level of synchronization and the associated energy consumption. Experimental results, which includes data acquired from simulations and testbed deployments, provide evidence of the success in meeting this goal, as well as providing means to compare these three approaches considering the best synchronization results and their costs in terms of energy consumption. PMID:29261113
Enhancing Time Synchronization Support in Wireless Sensor Networks.
Tavares Bruscato, Leandro; Heimfarth, Tales; Pignaton de Freitas, Edison
2017-12-20
With the emerging Internet of Things (IoT) technology becoming reality, a number of applications are being proposed. Several of these applications are highly dependent on wireless sensor networks (WSN) to acquire data from the surrounding environment. In order to be really useful for most of applications, the acquired data must be coherent in terms of the time in which they are acquired, which implies that the entire sensor network presents a certain level of time synchronization. Moreover, to efficiently exchange and forward data, many communication protocols used in WSN rely also on time synchronization among the sensor nodes. Observing the importance in complying with this need for time synchronization, this work focuses on the second synchronization problem, proposing, implementing and testing a time synchronization service for low-power WSN using low frequency real-time clocks in each node. To implement this service, three algorithms based on different strategies are proposed: one based on an auto-correction approach, the second based on a prediction mechanism, while the third uses an analytical correction mechanism. Their goal is the same, i.e., to make the clocks of the sensor nodes converge as quickly as possible and then to keep them most similar as possible. This goal comes along with the requirement to keep low energy consumption. Differently from other works in the literature, the proposal here is independent of any specific protocol, i.e., it may be adapted to be used in different protocols. Moreover, it explores the minimum number of synchronization messages by means of a smart clock update strategy, allowing the trade-off between the desired level of synchronization and the associated energy consumption. Experimental results, which includes data acquired from simulations and testbed deployments, provide evidence of the success in meeting this goal, as well as providing means to compare these three approaches considering the best synchronization results and their costs in terms of energy consumption.
Implementing the Every Student Succeeds Act: Toward a Coherent, Aligned Assessment System
ERIC Educational Resources Information Center
Brown, Catherine; Boser, Ulrich; Sargrad, Scott; Marchitello, Max
2016-01-01
In December 2015, President Barack Obama signed the Every Student Succeeds Act (ESSA), which replaced No Child Left Behind (NCLB), as the nation's major law governing public schools. ESSA retains the requirement that states test all students in reading and math in grades three through eight and once in high school, as well as the requirement that…
Random laser illumination: an ideal source for biomedical polarization imaging?
NASA Astrophysics Data System (ADS)
Carvalho, Mariana T.; Lotay, Amrit S.; Kenny, Fiona M.; Girkin, John M.; Gomes, Anderson S. L.
2016-03-01
Imaging applications increasingly require light sources with high spectral density (power over spectral bandwidth. This has led in many cases to the replacement of conventional thermal light sources with bright light-emitting diodes (LEDs), lasers and superluminescent diodes. Although lasers and superluminescent diodes appear to be ideal light sources due to their narrow bandwidth and power, however, in the case of full-field imaging, their spatial coherence leads to coherent artefacts, such as speckle, that corrupt the image. LEDs, in contrast, have lower spatial coherence and thus seem the natural choice, but they have low spectral density. Random Lasers are an unconventional type of laser that can be engineered to provide low spatial coherence with high spectral density. These characteristics makes them potential sources for biological imaging applications where specific absorption and reflection are the characteristics required for state of the art imaging. In this work, a Random Laser (RL) is used to demonstrate speckle-free full-field imaging for polarization-dependent imaging in an epi-illumination configuration. We compare LED and RL illumination analysing the resulting images demonstrating that the RL illumination produces an imaging system with higher performance (image quality and spectral density) than that provided by LEDs.
Editing wild points in isolation - Fast agreement for reliable systems (Preliminary version)
NASA Technical Reports Server (NTRS)
Kearns, Phil; Evans, Carol
1989-01-01
Consideration is given to the intuitively appealing notion of discarding sensor values which are strongly suspected of being erroneous in a modified approximate agreement protocol. Approximate agreement with editing imposes a time bound upon the convergence of the protocol - no such bound was possible for the original approximate agreement protocol. This new approach is potentially useful in the construction of asynchronous fault tolerant systems. The main result is that a wild-point replacement technique called t-worst editing can be shown to guarantee convergence of the approximate agreement protocol to a valid agreement value. Results are presented for a four-processor synchronous system in which a single processor may be faulty.
Emergent "Quantum" Theory in Complex Adaptive Systems.
Minic, Djordje; Pajevic, Sinisa
2016-04-30
Motivated by the question of stability, in this letter we argue that an effective quantum-like theory can emerge in complex adaptive systems. In the concrete example of stochastic Lotka-Volterra dynamics, the relevant effective "Planck constant" associated with such emergent "quantum" theory has the dimensions of the square of the unit of time. Such an emergent quantum-like theory has inherently non-classical stability as well as coherent properties that are not, in principle, endangered by thermal fluctuations and therefore might be of crucial importance in complex adaptive systems.
Emergent “Quantum” Theory in Complex Adaptive Systems
Minic, Djordje; Pajevic, Sinisa
2017-01-01
Motivated by the question of stability, in this letter we argue that an effective quantum-like theory can emerge in complex adaptive systems. In the concrete example of stochastic Lotka-Volterra dynamics, the relevant effective “Planck constant” associated with such emergent “quantum” theory has the dimensions of the square of the unit of time. Such an emergent quantum-like theory has inherently non-classical stability as well as coherent properties that are not, in principle, endangered by thermal fluctuations and therefore might be of crucial importance in complex adaptive systems. PMID:28890591
NASA Astrophysics Data System (ADS)
Yamauchi, Toyohiko; Yamada, Hidenao; Matsui, Hisayuki; Yasuhiko, Osamu; Ueda, Yukio
2018-02-01
We developed a compact Mach-Zehnder interferometer module to be used as a replacement of the objective lens in a conventional inverted microscope (Nikon, TS100-F) in order to make them quantitative phase microscopes. The module has a 90-degree-flipped U-shape; the dimensions of the module are 160 mm by 120 mm by 40 mm and the weight is 380 grams. The Mach-Zehnder interferometer equipped with the separate reference and sample arms was implemented in this U-shaped housing and the path-length difference between the two arms was manually adjustable. The sample under test was put on the stage of the microscope and a sample light went through it. Both arms had identical achromatic lenses for image formation and the lateral positions of them were also manually adjustable. Therefore, temporally and spatially low coherent illumination was applicable because the users were able to balance precisely the path length of the two arms and to overlap the two wavefronts. In the experiment, spectrally filtered LED light for illumination (wavelength = 633 nm and bandwidth = 3 nm) was input to the interferometer module via a 50 micrometer core optical fiber. We have successfully captured full-field interference images by a camera put on the trinocular tube of the microscope and constructed quantitative phase images of the cultured cells by means of the quarter-wavelength phase shifting algorithm. The resultant quantitative phase images were speckle-free and halo-free due to spectrally and spatially low coherent illumination.
ERIC Educational Resources Information Center
Schellings, Gonny L. M.; Broekkamp, Hein
2011-01-01
Self-regulated learning has been described as an adaptive process: students adapt their learning strategies for attaining different learning goals. In order to be adaptive, students must have a clear notion of what the task requirements consist of. Both trace data and questionnaire data indicate that students adapt study strategies in limited ways…
Rozenberg, Andrey; Leese, Florian; Weiss, Linda C; Tollrian, Ralph
2016-01-01
Tag-Seq is a high-throughput approach used for discovering SNPs and characterizing gene expression. In comparison to RNA-Seq, Tag-Seq eases data processing and allows detection of rare mRNA species using only one tag per transcript molecule. However, reduced library complexity raises the issue of PCR duplicates, which distort gene expression levels. Here we present a novel Tag-Seq protocol that uses the least biased methods for RNA library preparation combined with a novel approach for joint PCR template and sample labeling. In our protocol, input RNA is fragmented by hydrolysis, and poly(A)-bearing RNAs are selected and directly ligated to mixed DNA-RNA P5 adapters. The P5 adapters contain i5 barcodes composed of sample-specific (moderately) degenerate base regions (mDBRs), which later allow detection of PCR duplicates. The P7 adapter is attached via reverse transcription with individual i7 barcodes added during the amplification step. The resulting libraries can be sequenced on an Illumina sequencer. After sample demultiplexing and PCR duplicate removal with a free software tool we designed, the data are ready for downstream analysis. Our protocol was tested on RNA samples from predator-induced and control Daphnia microcrustaceans.
The Traffic Adaptive Data Dissemination (TrAD) Protocol for both Urban and Highway Scenarios.
Tian, Bin; Hou, Kun Mean; Zhou, Haiying
2016-06-21
The worldwide economic cost of road crashes and injuries is estimated to be US$518 billion per year and the annual congestion cost in France is estimated to be €5.9 billion. Vehicular Ad hoc Networks (VANETs) are one solution to improve transport features such as traffic safety, traffic jam and infotainment on wheels, where a great number of event-driven messages need to be disseminated in a timely way in a region of interest. In comparison with traditional wireless networks, VANETs have to consider the highly dynamic network topology and lossy links due to node mobility. Inter-Vehicle Communication (IVC) protocols are the keystone of VANETs. According to our survey, most of the proposed IVC protocols focus on either highway or urban scenarios, but not on both. Furthermore, too few protocols, considering both scenarios, can achieve high performance. In this paper, an infrastructure-less Traffic Adaptive data Dissemination (TrAD) protocol which takes into account road traffic and network traffic status for both highway and urban scenarios will be presented. TrAD has double broadcast suppression techniques and is designed to adapt efficiently to the irregular road topology. The performance of the TrAD protocol was evaluated quantitatively by means of realistic simulations taking into account different real road maps, traffic routes and vehicular densities. The obtained simulation results show that TrAD is more efficient in terms of packet delivery ratio, number of transmissions and delay in comparison with the performance of three well-known reference protocols. Moreover, TrAD can also tolerate a reasonable degree of GPS drift and still achieve efficient data dissemination.
The Traffic Adaptive Data Dissemination (TrAD) Protocol for both Urban and Highway Scenarios
Tian, Bin; Hou, Kun Mean; Zhou, Haiying
2016-01-01
The worldwide economic cost of road crashes and injuries is estimated to be US$518 billion per year and the annual congestion cost in France is estimated to be €5.9 billion. Vehicular Ad hoc Networks (VANETs) are one solution to improve transport features such as traffic safety, traffic jam and infotainment on wheels, where a great number of event-driven messages need to be disseminated in a timely way in a region of interest. In comparison with traditional wireless networks, VANETs have to consider the highly dynamic network topology and lossy links due to node mobility. Inter-Vehicle Communication (IVC) protocols are the keystone of VANETs. According to our survey, most of the proposed IVC protocols focus on either highway or urban scenarios, but not on both. Furthermore, too few protocols, considering both scenarios, can achieve high performance. In this paper, an infrastructure-less Traffic Adaptive data Dissemination (TrAD) protocol which takes into account road traffic and network traffic status for both highway and urban scenarios will be presented. TrAD has double broadcast suppression techniques and is designed to adapt efficiently to the irregular road topology. The performance of the TrAD protocol was evaluated quantitatively by means of realistic simulations taking into account different real road maps, traffic routes and vehicular densities. The obtained simulation results show that TrAD is more efficient in terms of packet delivery ratio, number of transmissions and delay in comparison with the performance of three well-known reference protocols. Moreover, TrAD can also tolerate a reasonable degree of GPS drift and still achieve efficient data dissemination. PMID:27338393
Toward Imaging of Small Objects with XUV Radiation
NASA Astrophysics Data System (ADS)
Sayrac, Muhammed; Kolomenski, Alexandre A.; Boran, Yakup; Schuessler, Hans
The coherent diffraction imaging (CDI) technique has the potential to capture high resolution images of nano- or micron-sized structures when using XUV radiation obtained by high harmonic radiation (HHG) process. When a small object is exposed to XUV radiation, a diffraction pattern of the object is created. The advances in the coherent HHG enable obtaining photon flux sufficient for XUV imaging. The diffractive imaging technique from coherent table top XUV beams have made possible nanometer-scale resolution imaging by replacing the imaging optics with a computer reconstruction algorithm. In this study, we present our initial work on diffractive imaging using a tabletop XUV source. The initial investigation of imaging of a micron-sized mesh with an optimized HHG source is demonstrated. This work was supported in part by the Robert A. Welch Foundation Grant No. A1546 and the Qatar Foundation under the grant NPRP 8-735-1-154. M. Sayrac acknowledges support from the Ministry of National Education of the Republic of Turkey.
Femtosecond Timekeeping: Slip-Free Clockwork for Optical Timescales
NASA Astrophysics Data System (ADS)
Herman, D.; Droste, S.; Baumann, E.; Roslund, J.; Churin, D.; Cingoz, A.; Deschênes, J.-D.; Khader, I. H.; Swann, W. C.; Nelson, C.; Newbury, N. R.; Coddington, I.
2018-04-01
The generation of true optical time standards will require the conversion of the highly stable optical-frequency output of an optical atomic clock to a high-fidelity time output. We demonstrate a comb-based clockwork that phase-coherently integrates ˜7 ×1020 optical cycles of an input optical frequency to create a coherent time output. We verify the underlying stability of the optical timing system by comparing two comb-based clockworks with a common input optical frequency and show <20 fs total time drift over the 37-day measurement period. Both clockworks also generate traditional timing signals including an optical pulse per second and a 10-MHz rf reference. The optical pulse-per-second time outputs remain synchronized to 240 attoseconds (240 as) at 1000 s. The phase-coherent 10-MHz rf outputs are stable to near a part in 1019 . Fault-free timekeeping from an optical clock to femtosecond level over months is an important step in replacing the current microwave time standard by an optical standard.
The Benefit of Modified Rehabilitation and Minimally Invasive Techniques in Total Hip Replacement
Lilikakis, Anastasios K; Gillespie, Beryl; Villar, Richard N
2008-01-01
INTRODUCTION We wished to assess if an intensive rehabilitation regimen alone, or one combined with modified anaesthetic and surgical techniques, can change the speed of rehabilitation or the length of hospital stay after total hip replacement. PATIENTS AND METHODS We compared 44 patients who had followed a traditional care pathway, with 38 patients who had rehabilitated under a new rehabilitation protocol, with 40 patients who had also received modified, minimally invasive techniques. The speed of rehabilitation was measured in terms of three specific milestones accomplished on the day after surgery. RESULTS We found a statistically significant improvement in the day after surgery each activity was possible. The length of hospital stay was reduced from 6.5 days to 5.4 days to 4.1 days, a difference which was also statistically significant. CONCLUSIONS The data support the view that a new rehabilitation protocol alone can reduce the length of hospital stay and hasten rehabilitation. The combination of modified anaesthetic and minimally invasive surgical techniques with the new rehabilitation regimen can further improve short-term outcome after total hip replacement. PMID:18634739
Quantum Limits of Space-to-Ground Optical Communications
NASA Technical Reports Server (NTRS)
Hemmati, H.; Dolinar, S.
2012-01-01
For a pure loss channel, the ultimate capacity can be achieved with classical coherent states (i.e., ideal laser light): (1) Capacity-achieving receiver (measurement) is yet to be determined. (2) Heterodyne detection approaches the ultimate capacity at high mean photon numbers. (3) Photon-counting approaches the ultimate capacity at low mean photon numbers. A number of current technology limits drive the achievable performance of free-space communication links. Approaching fundamental limits in the bandwidth-limited regime: (1) Heterodyne detection with high-order coherent-state modulation approaches ultimate limits. SOA improvements to laser phase noise, adaptive optics systems for atmospheric transmission would help. (2) High-order intensity modulation and photon-counting can approach heterodyne detection within approximately a factor of 2. This may have advantages over coherent detection in the presence of turbulence. Approaching fundamental limits in the photon-limited regime (1) Low-duty cycle binary coherent-state modulation (OOK, PPM) approaches ultimate limits. SOA improvements to laser extinction ratio, receiver dark noise, jitter, and blocking would help. (2) In some link geometries (near field links) number-state transmission could improve over coherent-state transmission
Kendrick, Daniel E; Allemang, Matthew T; Gosling, Andre F; Nagavalli, Anil; Kim, Ann H; Nishino, Setsu; Parikh, Sahil A; Bezerra, Hiram G; Kashyap, Vikram S
2016-10-01
To examine the hypothesis that alternative flush media could be used for lower extremity optical coherence tomography (OCT) imaging in long lesions that would normally require excessive use of contrast. The OPTical Imaging Measurement of Intravascular Solution Efficacy (OPTIMISE) trial was a single-center, prospective study (ClinicalTrials.gov identifier NCT01743872) that enrolled 23 patients (mean age 68±11 years; 14 men) undergoing endovascular intervention involving the superficial femoral artery. Four flush media (heparinized saline, dextran, carbon dioxide, and contrast) were used in succession in random order for each image pullback. Quality was defined as ≥270° visualization of vessel wall layers from each axial image. Mean proportions (± standard deviation) of image quality for each flush medium were assessed using 1-way analysis of variance and are reported with the 95% confidence intervals (CI). Four OCT catheters failed, leaving 19 patients who completed the OCT imaging protocol; from this cohort, 51 highest quality runs were selected for analysis. Average vessel diameter was 3.99±1.01 mm. OCT imaging allowed 10- to 15-μm resolution of the lumen border, with diminishing quality as vessel diameter increased. Plaque characterization revealed fibrotic lesions. Mean proportions of image quality were dextran 87.2%±12% (95% CI 0.81 to 0.94), heparinized saline 74.3%±24.8% (95% CI 0.66 to 0.93), contrast 70.1%±30.5% (95% CI 0.52 to 0.88), and carbon dioxide 10.0%±10.4% (95% CI 0.00 to 0.26). Dextran, saline, and contrast provided better quality than carbon dioxide (p<0.001). OCT is feasible in peripheral vessels <5 mm in diameter. Dextran or saline flush media can allow lesion characterization, avoiding iodinated contrast. Carbon dioxide is inadequate for peripheral OCT imaging. Axial imaging may aid in enhancing durability of peripheral endovascular interventions. © The Author(s) 2016.
An adaptable chromosome preparation methodology for use in invertebrate research organisms.
Guo, Longhua; Accorsi, Alice; He, Shuonan; Guerrero-Hernández, Carlos; Sivagnanam, Shamilene; McKinney, Sean; Gibson, Matthew; Sánchez Alvarado, Alejandro
2018-02-26
The ability to efficiently visualize and manipulate chromosomes is fundamental to understanding the genome architecture of organisms. Conventional chromosome preparation protocols developed for mammalian cells and those relying on species-specific conditions are not suitable for many invertebrates. Hence, a simple and inexpensive chromosome preparation protocol, adaptable to multiple invertebrate species, is needed. We optimized a chromosome preparation protocol and applied it to several planarian species (phylum Platyhelminthes), the freshwater apple snail Pomacea canaliculata (phylum Mollusca), and the starlet sea anemone Nematostella vectensis (phylum Cnidaria). We demonstrated that both mitotically active adult tissues and embryos can be used as sources of metaphase chromosomes, expanding the potential use of this technique to invertebrates lacking cell lines and/or with limited access to the complete life cycle. Simple hypotonic treatment with deionized water was sufficient for karyotyping; growing cells in culture was not necessary. The obtained karyotypes allowed the identification of differences in ploidy and chromosome architecture among otherwise morphologically indistinguishable organisms, as in the case of a mixed population of planarians collected in the wild. Furthermore, we showed that in all tested organisms representing three different phyla this protocol could be effectively coupled with downstream applications, such as chromosome fluorescent in situ hybridization. Our simple and inexpensive chromosome preparation protocol can be readily adapted to new invertebrate research organisms to accelerate the discovery of novel genomic patterns across the branches of the tree of life.
Comparison of Two Fluid Replacement Protocols During a 20-km Trail Running Race in the Heat.
Lopez, Rebecca M; Casa, Douglas J; Jensen, Katherine A; Stearns, Rebecca L; DeMartini, Julie K; Pagnotta, Kelly D; Roti, Melissa W; Armstrong, Lawrence E; Maresh, Carl M
2016-09-01
Lopez, RM, Casa, DJ, Jensen, K, Stearns, RL, DeMartini, JK, Pagnotta, KD, Roti, MW, Armstrong, LE, and Maresh, CM. Comparison of two fluid replacement protocols during a 20-km trail running race in the heat. J Strength Cond Res 30(9): 2609-2616, 2016-Proper hydration is imperative for athletes striving for peak performance and safety, however, the effectiveness of various fluid replacement strategies in the field setting is unknown. The purpose of this study was to investigate how two hydration protocols affect physiological responses and performance during a 20-km trail running race. A randomized, counter-balanced, crossover design was used in a field setting (mean ± SD: WBGT 28.3 ± 1.9° C). Well-trained male (n = 8) and female (n = 5) runners (39 ± 14 years; 175 ± 9 cm; 67.5 ± 11.1 kg; 13.4 ± 4.6% BF) completed two 20-km trail races (5 × 4-km loop) with different water hydration protocols: (a) ad libitum (AL) consumption and (b) individualized rehydration (IR). Data were analyzed using repeated measures ANOVA. Paired t-tests compared pre-race-post-race measures. Main outcome variables were race time, heart rate (HR), gastrointestinal temperature (TGI), fluid consumed, percent body mass loss (BML), and urine osmolality (Uosm). Race times between groups were similar. There was a significant condition × time interaction (p = 0.048) for HR, but TGI was similar between conditions. Subjects replaced 30 ± 14% of their water losses in AL and 64 ± 16% of their losses in IR (p < 0.001). Ad libitum trial experienced greater BML (-2.6 ± 0.5%) compared with IR (-1.3 ± 0.5%; p < 0.001). Pre-race to post-race Uosm differences existed between AL (-273 ± 146 mOsm) and IR (-145 ± 215 mOsm, p = 0.032). In IR, runners drank twice as much fluid than AL during the 20-km race, leading to > 2% BML in AL. Ad libitum drinking resulted in 1.3% greater BML over the 20-km race, which resulted in no thermoregulatory or performance differences from IR.
Scalable Lunar Surface Networks and Adaptive Orbit Access
NASA Technical Reports Server (NTRS)
Wang, Xudong
2015-01-01
Teranovi Technologies, Inc., has developed innovative network architecture, protocols, and algorithms for both lunar surface and orbit access networks. A key component of the overall architecture is a medium access control (MAC) protocol that includes a novel mechanism of overlaying time division multiple access (TDMA) and carrier sense multiple access with collision avoidance (CSMA/CA), ensuring scalable throughput and quality of service. The new MAC protocol is compatible with legacy Institute of Electrical and Electronics Engineers (IEEE) 802.11 networks. Advanced features include efficiency power management, adaptive channel width adjustment, and error control capability. A hybrid routing protocol combines the advantages of ad hoc on-demand distance vector (AODV) routing and disruption/delay-tolerant network (DTN) routing. Performance is significantly better than AODV or DTN and will be particularly effective for wireless networks with intermittent links, such as lunar and planetary surface networks and orbit access networks.
Reinforcement Learning with Orthonormal Basis Adaptation Based on Activity-Oriented Index Allocation
NASA Astrophysics Data System (ADS)
Satoh, Hideki
An orthonormal basis adaptation method for function approximation was developed and applied to reinforcement learning with multi-dimensional continuous state space. First, a basis used for linear function approximation of a control function is set to an orthonormal basis. Next, basis elements with small activities are replaced with other candidate elements as learning progresses. As this replacement is repeated, the number of basis elements with large activities increases. Example chaos control problems for multiple logistic maps were solved, demonstrating that the method for adapting an orthonormal basis can modify a basis while holding the orthonormality in accordance with changes in the environment to improve the performance of reinforcement learning and to eliminate the adverse effects of redundant noisy states.
Unconventional Cooper pairing results in a pseudogap-like phase in s-wave superconductors
NASA Astrophysics Data System (ADS)
Springer, Daniel; Cheong, Siew Ann
2015-10-01
The impact of disorder on the superconducting (SC) pairing mechanism is the centre of much debate. Some evidence suggests a loss of phase coherence of pairs while others point towards the formation of a competing phase. In our work we show that the two perspectives may be different sides of the same coin. Using an extension of the perturbative renormalization group approach we compare the impact of different disorder-induced interactions on a SC ground state. We find that in the strongly disordered regime an interaction between paired fermions and their respective disordered environment replaces conventional Cooper pairing. For these unconventional Cooper pairs the phase coherence condition, required for the formation of a SC condensate, is not satisfied.
Picometer-resolution dual-comb spectroscopy with a free-running fiber laser.
Zhao, Xin; Hu, Guoqing; Zhao, Bofeng; Li, Cui; Pan, Yingling; Liu, Ya; Yasui, Takeshi; Zheng, Zheng
2016-09-19
Dual-comb spectroscopy holds the promise as real-time, high-resolution spectroscopy tools. However, in its conventional schemes, the stringent requirement on the coherence between two lasers requires sophisticated control systems. By replacing control electronics with an all-optical dual-comb lasing scheme, a simplified dual-comb spectroscopy scheme is demonstrated using one dual-wavelength, passively mode-locked fiber laser. Pulses with a intracavity-dispersion-determined repetition-frequency difference are shown to have good mutual coherence and stability. Capability to resolve the comb teeth and a picometer-wide optical spectral resolution are demonstrated using a simple data acquisition system. Energy-efficient, free-running fiber lasers with a small comb-tooth-spacing could enable low-cost dual-comb systems.
Li, Ming; Cvijetic, Milorad
2015-02-20
We evaluate the performance of the coherent free space optics (FSO) employing quadrature array phase-shift keying (QPSK) modulation over the maritime atmosphere with atmospheric turbulence compensated by use of adaptive optics (AO). We have established a comprehensive FSO channel model for maritime conditions and also made a comprehensive comparison of performance between the maritime and terrestrial atmospheric links. The FSO links are modeled based on the intensity attenuation resulting from scattering and absorption effects, the log-amplitude fluctuations, and the phase distortions induced by turbulence. The obtained results show that the FSO system performance measured by the bit-error-rate (BER) can be significantly improved when the optimization of the AO system is achieved. Also, we find that the higher BER is observed in the maritime FSO channel with atmospheric turbulence, as compared to the terrestrial FSO systems if they experience the same turbulence strength.
Compact MEMS-based adaptive optics: optical coherence tomography for clinical use
NASA Astrophysics Data System (ADS)
Chen, Diana C.; Olivier, Scot S.; Jones, Steven M.; Zawadzki, Robert J.; Evans, Julia W.; Choi, Stacey S.; Werner, John S.
2008-02-01
We describe a compact MEMS-based adaptive optics (AO) optical coherence tomography (OCT) system with improved AO performance and ease of clinical use. A typical AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror that measures and corrects the ocular and system aberrations. Because of limitations on current deformable mirror technologies, the amount of real-time ocular-aberration compensation is restricted and small in previous AO-OCT instruments. In this instrument, we incorporate an optical apparatus to correct the spectacle aberrations of the patients such as myopia, hyperopia and astigmatism. This eliminates the tedious process of using trial lenses in clinical imaging. Different amount of spectacle aberration compensation was achieved by motorized stages and automated with the AO computer for ease of clinical use. In addition, the compact AO-OCT was optimized to have minimum system aberrations to reduce AO registration errors and improve AO performance.
Zhang, Qiuxiang; Lu, Rongwen; Wang, Benquan; Messinger, Jeffrey D.; Curcio, Christine A.; Yao, Xincheng
2015-01-01
Transient intrinsic optical signal (IOS) changes have been observed in retinal photoreceptors, suggesting a unique biomarker for eye disease detection. However, clinical deployment of IOS imaging is challenging due to unclear IOS sources and limited signal-to-noise ratios (SNRs). Here, by developing high spatiotemporal resolution optical coherence tomography (OCT) and applying an adaptive algorithm for IOS processing, we were able to record robust IOSs from single-pass measurements. Transient IOSs, which might reflect an early stage of light phototransduction, are consistently observed in the photoreceptor outer segment almost immediately (<4 ms) after retinal stimulation. Comparative studies of dark- and light-adapted retinas have demonstrated the feasibility of functional OCT mapping of rod and cone photoreceptors, promising a new method for early disease detection and improved treatment of diseases such as age-related macular degeneration (AMD) and other eye diseases that can cause photoreceptor damage. PMID:25901915
Yu, Kai; Shi, Fei; Gao, Enting; Zhu, Weifang; Chen, Haoyu; Chen, Xinjian
2018-01-01
Optic nerve head (ONH) is a crucial region for glaucoma detection and tracking based on spectral domain optical coherence tomography (SD-OCT) images. In this region, the existence of a “hole” structure makes retinal layer segmentation and analysis very challenging. To improve retinal layer segmentation, we propose a 3D method for ONH centered SD-OCT image segmentation, which is based on a modified graph search algorithm with a shared-hole and locally adaptive constraints. With the proposed method, both the optic disc boundary and nine retinal surfaces can be accurately segmented in SD-OCT images. An overall mean unsigned border positioning error of 7.27 ± 5.40 µm was achieved for layer segmentation, and a mean Dice coefficient of 0.925 ± 0.03 was achieved for optic disc region detection. PMID:29541497
Arabaci, Murat; Djordjevic, Ivan B; Saunders, Ross; Marcoccia, Roberto M
2010-02-01
In order to achieve high-speed transmission over optical transport networks (OTNs) and maximize its throughput, we propose using a rate-adaptive polarization-multiplexed coded multilevel modulation with coherent detection based on component non-binary quasi-cyclic (QC) LDPC codes. Compared to prior-art bit-interleaved LDPC-coded modulation (BI-LDPC-CM) scheme, the proposed non-binary LDPC-coded modulation (NB-LDPC-CM) scheme not only reduces latency due to symbol- instead of bit-level processing but also provides either impressive reduction in computational complexity or striking improvements in coding gain depending on the constellation size. As the paper presents, compared to its prior-art binary counterpart, the proposed NB-LDPC-CM scheme addresses the needs of future OTNs, which are achieving the target BER performance and providing maximum possible throughput both over the entire lifetime of the OTN, better.
NASA Astrophysics Data System (ADS)
Zhang, Qiuxiang; Lu, Rongwen; Wang, Benquan; Messinger, Jeffrey D.; Curcio, Christine A.; Yao, Xincheng
2015-04-01
Transient intrinsic optical signal (IOS) changes have been observed in retinal photoreceptors, suggesting a unique biomarker for eye disease detection. However, clinical deployment of IOS imaging is challenging due to unclear IOS sources and limited signal-to-noise ratios (SNRs). Here, by developing high spatiotemporal resolution optical coherence tomography (OCT) and applying an adaptive algorithm for IOS processing, we were able to record robust IOSs from single-pass measurements. Transient IOSs, which might reflect an early stage of light phototransduction, are consistently observed in the photoreceptor outer segment almost immediately (<4 ms) after retinal stimulation. Comparative studies of dark- and light-adapted retinas have demonstrated the feasibility of functional OCT mapping of rod and cone photoreceptors, promising a new method for early disease detection and improved treatment of diseases such as age-related macular degeneration (AMD) and other eye diseases that can cause photoreceptor damage.
Ben-Shachar, Rotem; Huang, Stephen A.; DiStefano, Joseph J.
2012-01-01
Background As in adults, thyroidectomy in pediatric patients with differentiated thyroid cancer is often followed by 131I remnant ablation. A standard protocol is to give normalizing oral thyroxine (T4) or triiodothyronine (T3) after surgery and then withdraw it for 2 to 6 weeks. Thyroid remnants or metastases are treated most effectively when serum thyrotropin (TSH) is high, but prolonged withdrawals should be avoided to minimize hypothyroid morbidity. Methods A published feedback control system model of adult human thyroid hormone regulation was modified for children using pediatric T4 kinetic data. The child model was developed from data for patients ranging from 3 to 9 years old. We simulated a range of T4 and T3 replacement protocols for children, exploring alternative regimens for minimizing the withdrawal period, while maintaining normal or suppressed TSH during replacement. The results are presented with the intent of providing a quantitative basis to guide further studies of pediatric treatment options. Replacement was simulated for up to 3 weeks post-thyroidectomy, followed by various withdrawal periods. T4 vs. T3 replacement, remnant size, dose size, and dose frequency were tested for effects on the time for TSH to reach 25 mU/L (withdrawal period). Results For both T3 and T4 replacement, higher doses were associated with longer withdrawal periods. T3 replacement yielded shorter withdrawal periods than T4 replacement (up to 3.5 days versus 7–10 days). Higher than normal serum T3 concentrations were required to normalize or suppress TSH during T3 monotherapy, but not T4 monotherapy. Larger remnant sizes resulted in longer withdrawal periods if T4 replacement was used, but had little effect for T3 replacement. Conclusions T3 replacement yielded withdrawal periods about half those for T4 replacement. Higher than normal hormone levels under T3 monotherapy can be partially alleviated by more frequent, smaller doses (e.g., twice a day). LT4 may be the preferred option for most children, given the convenience of single daily dosing and familiarity of pediatric endocrinologists with its administration. Remnant effects on withdrawal period highlight the importance of minimizing remnant size. PMID:22578300
[Complex chronic care situations and socio-health coordination].
Morilla Herrera, Juan Carlos; Morales Asencio, José Miguel; Kaknani, Shakira; García Mayor, Silvia
2016-01-01
Patient-centered healthcare is currently one of the most pursued goals in health services. It is necessary to ensure a sufficient level of cooperative and coordinated work between different providers and settings, including family and social and community resources. Clinical integration occurs when the care provided by health professionals and providers is integrated into a single coherent process through different professions using shared guidelines and protocols. Such coordination can be developed at three levels: macro, which involves the integration of one or more of the three basic elements that support health care (the health plan, primary care and specialty care), with the aim of reducing fragmentation of care; meso, where health and social services are coordinated to provide comprehensive care to elderly and chronic patients; and micro, aimed to improve coordination in individual patients and caregivers. The implementation of new roles, such as Advanced Practice Nursing, along with improvements in family physicians' problem-solving capacity in certain processes, or modifying the place of provision of certain services are key to ensure services adapted to the requirements of chronic patients. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.
Ehret, S; Putze, F; Miller-Teynor, H; Kruse, A; Schultz, T
2017-01-01
Playing of old people with or without dementia have not yet been substantially investigated. This study deals with the acceptance and impact of a tablet-based memory game, which was played on a weekly or semiweekly basis by visitors in two daycare units. Within the framework of focus groups the technical system was adapted for elderly users. The video-assisted data at the level of the game and the dynamics were investigated with respect to interaction and communication. The analysis of psychological observation forms and game protocols, which were conducted over a period of 3 months, indicated different effects of the game on psychosocial and cognitive activation. The individual memory cards in particular served as an intensification of communication and a stimulation of episodic memory. Finally, with video analysis during the whole game setting three theoretical relationship patterns of the spheres playing and speech could be depicted. Coherence, separation and incoherence of playing and speech are different forms of interaction in which individual and collaborative competences of people with and without dementia can be visualized. Furthermore, the study provides evidence for the cultural theory of playing by Huizinga.
Coherent population transfer in multi-level Allen-Eberly models
NASA Astrophysics Data System (ADS)
Li, Wei; Cen, Li-Xiang
2018-04-01
We investigate the solvability of multi-level extensions of the Allen-Eberly model and the population transfer yielded by the corresponding dynamical evolution. We demonstrate that, under a matching condition of the frequency, the driven two-level system and its multi-level extensions possess a stationary-state solution in a canonical representation associated with a unitary transformation. As a consequence, we show that the resulting protocol is able to realize complete population transfer in a nonadiabatic manner. Moreover, we explore the imperfect pulsing process with truncation and display that the nonadiabatic effect in the evolution can lead to suppression to the cutoff error of the protocol.
Day-case surgery for total hip and knee replacement: How safe and effective is it?
Lazic, Stefan; Boughton, Oliver; Kellett, Catherine F; Kader, Deiary F; Villet, Loïc; Rivière, Charles
2018-04-01
Multimodal protocols for pain control, blood loss management and thromboprophylaxis have been shown to benefit patients by being more effective and as safe (fewer iatrogenic complications) as conventional protocols.Proper patient selection and education, multimodal protocols and a well-defined clinical pathway are all key for successful day-case arthroplasty.By potentially being more effective, cheaper than and as safe as inpatient arthroplasty, day-case arthroplasty might be beneficial for patients and healthcare systems. Cite this article: EFORT Open Rev 2018;3:130-135. DOI: 10.1302/2058-5241.3.170031.
NASA Astrophysics Data System (ADS)
Zhao, Yijia; Zhang, Yichen; Xu, Bingjie; Yu, Song; Guo, Hong
2018-04-01
The method of improving the performance of continuous-variable quantum key distribution protocols by postselection has been recently proposed and verified. In continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) protocols, the measurement results are obtained from untrusted third party Charlie. There is still not an effective method of improving CV-MDI QKD by the postselection with untrusted measurement. We propose a method to improve the performance of coherent-state CV-MDI QKD protocol by virtual photon subtraction via non-Gaussian postselection. The non-Gaussian postselection of transmitted data is equivalent to an ideal photon subtraction on the two-mode squeezed vacuum state, which is favorable to enhance the performance of CV-MDI QKD. In CV-MDI QKD protocol with non-Gaussian postselection, two users select their own data independently. We demonstrate that the optimal performance of the renovated CV-MDI QKD protocol is obtained with the transmitted data only selected by Alice. By setting appropriate parameters of the virtual photon subtraction, the secret key rate and tolerable excess noise are both improved at long transmission distance. The method provides an effective optimization scheme for the application of CV-MDI QKD protocols.
NASA Astrophysics Data System (ADS)
Zdravković, Nemanja; Cvetkovic, Aleksandra; Milic, Dejan; Djordjevic, Goran T.
2017-09-01
This paper analyses end-to-end packet error rate (PER) of a free-space optical decode-and-forward cooperative network over a gamma-gamma atmospheric turbulence channel in the presence of temporary random link blockage. Closed-form analytical expressions for PER are derived for the cases with and without transmission links being prone to blockage. Two cooperation protocols (denoted as 'selfish' and 'pilot-adaptive') are presented and compared, where the latter accounts for the presence of blockage and adapts transmission power. The influence of scintillation, link distance, average transmitted signal power, network topology and probability of an uplink and/or internode link being blocked are discussed when the destination applies equal gain combining. The results show that link blockage caused by obstacles can degrade system performance, causing an unavoidable PER floor. The implementation of the pilot-adaptive protocol improves performance when compared to the selfish protocol, diminishing internode link blockage and lowering the PER floor, especially for larger networks.
Assisted closed-loop optimization of SSVEP-BCI efficiency
Fernandez-Vargas, Jacobo; Pfaff, Hanns U.; Rodríguez, Francisco B.; Varona, Pablo
2012-01-01
We designed a novel assisted closed-loop optimization protocol to improve the efficiency of brain-computer interfaces (BCI) based on steady state visually evoked potentials (SSVEP). In traditional paradigms, the control over the BCI-performance completely depends on the subjects' ability to learn from the given feedback cues. By contrast, in the proposed protocol both the subject and the machine share information and control over the BCI goal. Generally, the innovative assistance consists in the delivery of online information together with the online adaptation of BCI stimuli properties. In our case, this adaptive optimization process is realized by (1) a closed-loop search for the best set of SSVEP flicker frequencies and (2) feedback of actual SSVEP magnitudes to both the subject and the machine. These closed-loop interactions between subject and machine are evaluated in real-time by continuous measurement of their efficiencies, which are used as online criteria to adapt the BCI control parameters. The proposed protocol aims to compensate for variability in possibly unknown subjects' state and trait dimensions. In a study with N = 18 subjects, we found significant evidence that our protocol outperformed classic SSVEP-BCI control paradigms. Evidence is presented that it takes indeed into account interindividual variabilities: e.g., under the new protocol, baseline resting state EEG measures predict subjects' BCI performances. This paper illustrates the promising potential of assisted closed-loop protocols in BCI systems. Probably their applicability might be expanded to innovative uses, e.g., as possible new diagnostic/therapeutic tools for clinical contexts and as new paradigms for basic research. PMID:23443214
Assisted closed-loop optimization of SSVEP-BCI efficiency.
Fernandez-Vargas, Jacobo; Pfaff, Hanns U; Rodríguez, Francisco B; Varona, Pablo
2013-01-01
We designed a novel assisted closed-loop optimization protocol to improve the efficiency of brain-computer interfaces (BCI) based on steady state visually evoked potentials (SSVEP). In traditional paradigms, the control over the BCI-performance completely depends on the subjects' ability to learn from the given feedback cues. By contrast, in the proposed protocol both the subject and the machine share information and control over the BCI goal. Generally, the innovative assistance consists in the delivery of online information together with the online adaptation of BCI stimuli properties. In our case, this adaptive optimization process is realized by (1) a closed-loop search for the best set of SSVEP flicker frequencies and (2) feedback of actual SSVEP magnitudes to both the subject and the machine. These closed-loop interactions between subject and machine are evaluated in real-time by continuous measurement of their efficiencies, which are used as online criteria to adapt the BCI control parameters. The proposed protocol aims to compensate for variability in possibly unknown subjects' state and trait dimensions. In a study with N = 18 subjects, we found significant evidence that our protocol outperformed classic SSVEP-BCI control paradigms. Evidence is presented that it takes indeed into account interindividual variabilities: e.g., under the new protocol, baseline resting state EEG measures predict subjects' BCI performances. This paper illustrates the promising potential of assisted closed-loop protocols in BCI systems. Probably their applicability might be expanded to innovative uses, e.g., as possible new diagnostic/therapeutic tools for clinical contexts and as new paradigms for basic research.
Soltero, Erica G.; Ledoux, Tracey; Lee, Rebecca E.
2015-01-01
Eating in the Absence of Hunger (EAH) represents a failure to self-regulate intake leading to overconsumption. Existing research on EAH has come from the clinical setting, limiting our understanding of this behavior. The purpose of this study was to describe the adaptation of the clinical EAH paradigm for preschoolers to the classroom setting and evaluate the feasibility and acceptability of measuring EAH in the classroom. The adapted protocol was implemented in childcare centers in Houston, Texas (N=4) and Phoenix, Arizona (N=2). The protocol was feasible, economical, and time efficient, eliminating previously identified barriers to administering the EAH assessment such as limited resources and the time constraint of delivering the assessment to participants individually. Implementation challenges included difficulty in choosing palatable test snacks that were in compliance with childcare center food regulations and the limited control over the meal that was administered prior to the assessment. The adapted protocol will allow for broader use of the EAH assessment and encourage researchers to incorporate the assessment into longitudinal studies in order to further our understanding of the causes and emergence of EAH. PMID:26172567
NASA Astrophysics Data System (ADS)
Sugawa, Yoshihiko; Fukuda, Akihiro; Ohmi, Masato
2015-04-01
We have demonstrated dynamic analysis of the physiological function of eccrine sweat glands underneath skin surface by optical coherence tomography (OCT). In this paper, we propose a method for extraction of the specific eccrine sweat gland by means of the connected component extraction process and the adaptive threshold method, where the en face OCT images are constructed by the swept-source OCT. In the experiment, we demonstrate precise measurement of the volume of the sweat gland in response to the external stimulus.
2005-03-01
conversations over data networks . Many organizations are replacing portions of their traditional phone systems to gain the benefits of cost savings and...relevant to the Coast Guard. It includes the discussion of the public switched telephone network , an overview of IPT, IPT security issues, the...transmitting voice conversations over data networks . Many organizations are replacing portions of their traditional phone systems to gain the benefits of
Analytical approach to cross-layer protocol optimization in wireless sensor networks
NASA Astrophysics Data System (ADS)
Hortos, William S.
2008-04-01
In the distributed operations of route discovery and maintenance, strong interaction occurs across mobile ad hoc network (MANET) protocol layers. Quality of service (QoS) requirements of multimedia service classes must be satisfied by the cross-layer protocol, along with minimization of the distributed power consumption at nodes and along routes to battery-limited energy constraints. In previous work by the author, cross-layer interactions in the MANET protocol are modeled in terms of a set of concatenated design parameters and associated resource levels by multivariate point processes (MVPPs). Determination of the "best" cross-layer design is carried out using the optimal control of martingale representations of the MVPPs. In contrast to the competitive interaction among nodes in a MANET for multimedia services using limited resources, the interaction among the nodes of a wireless sensor network (WSN) is distributed and collaborative, based on the processing of data from a variety of sensors at nodes to satisfy common mission objectives. Sensor data originates at the nodes at the periphery of the WSN, is successively transported to other nodes for aggregation based on information-theoretic measures of correlation and ultimately sent as information to one or more destination (decision) nodes. The "multimedia services" in the MANET model are replaced by multiple types of sensors, e.g., audio, seismic, imaging, thermal, etc., at the nodes; the QoS metrics associated with MANETs become those associated with the quality of fused information flow, i.e., throughput, delay, packet error rate, data correlation, etc. Significantly, the essential analytical approach to MANET cross-layer optimization, now based on the MVPPs for discrete random events occurring in the WSN, can be applied to develop the stochastic characteristics and optimality conditions for cross-layer designs of sensor network protocols. Functional dependencies of WSN performance metrics are described in terms of the concatenated protocol parameters. New source-to-destination routes are sought that optimize cross-layer interdependencies to achieve the "best available" performance in the WSN. The protocol design, modified from a known reactive protocol, adapts the achievable performance to the transient network conditions and resource levels. Control of network behavior is realized through the conditional rates of the MVPPs. Optimal cross-layer protocol parameters are determined by stochastic dynamic programming conditions derived from models of transient packetized sensor data flows. Moreover, the defining conditions for WSN configurations, grouping sensor nodes into clusters and establishing data aggregation at processing nodes within those clusters, lead to computationally tractable solutions to the stochastic differential equations that describe network dynamics. Closed-form solution characteristics provide an alternative to the "directed diffusion" methods for resource-efficient WSN protocols published previously by other researchers. Performance verification of the resulting cross-layer designs is found by embedding the optimality conditions for the protocols in actual WSN scenarios replicated in a wireless network simulation environment. Performance tradeoffs among protocol parameters remain for a sequel to the paper.
Quantum-locked key distribution at nearly the classical capacity rate.
Lupo, Cosmo; Lloyd, Seth
2014-10-17
Quantum data locking is a protocol that allows for a small secret key to (un)lock an exponentially larger amount of information, hence yielding the strongest violation of the classical one-time pad encryption in the quantum setting. This violation mirrors a large gap existing between two security criteria for quantum cryptography quantified by two entropic quantities: the Holevo information and the accessible information. We show that the latter becomes a sensible security criterion if an upper bound on the coherence time of the eavesdropper's quantum memory is known. Under this condition, we introduce a protocol for secret key generation through a memoryless qudit channel. For channels with enough symmetry, such as the d-dimensional erasure and depolarizing channels, this protocol allows secret key generation at an asymptotic rate as high as the classical capacity minus one bit.
Smoking and Nicotine Replacement Treatment Issues Specific to Women.
ERIC Educational Resources Information Center
Pomerleau, Cynthia S.
1996-01-01
This paper examines gender differences in smoking that may lead to differential treatment process and outcome, suggesting ways to incorporate nicotine replacement products into treatment strategies adapted to the special needs of women smokers and discussing withdrawal symptomatology, maintaining abstinence, weight concerns, menstrual cycle…
A Network Coding Based Hybrid ARQ Protocol for Underwater Acoustic Sensor Networks
Wang, Hao; Wang, Shilian; Zhang, Eryang; Zou, Jianbin
2016-01-01
Underwater Acoustic Sensor Networks (UASNs) have attracted increasing interest in recent years due to their extensive commercial and military applications. However, the harsh underwater channel causes many challenges for the design of reliable underwater data transport protocol. In this paper, we propose an energy efficient data transport protocol based on network coding and hybrid automatic repeat request (NCHARQ) to ensure reliability, efficiency and availability in UASNs. Moreover, an adaptive window length estimation algorithm is designed to optimize the throughput and energy consumption tradeoff. The algorithm can adaptively change the code rate and can be insensitive to the environment change. Extensive simulations and analysis show that NCHARQ significantly reduces energy consumption with short end-to-end delay. PMID:27618044
Fully device-independent quantum key distribution.
Vazirani, Umesh; Vidick, Thomas
2014-10-03
Quantum cryptography promises levels of security that are impossible to replicate in a classical world. Can this security be guaranteed even when the quantum devices on which the protocol relies are untrusted? This central question dates back to the early 1990s when the challenge of achieving device-independent quantum key distribution was first formulated. We answer this challenge by rigorously proving the device-independent security of a slight variant of Ekert's original entanglement-based protocol against the most general (coherent) attacks. The resulting protocol is robust: While assuming only that the devices can be modeled by the laws of quantum mechanics and are spatially isolated from each other and from any adversary's laboratory, it achieves a linear key rate and tolerates a constant noise rate in the devices. In particular, the devices may have quantum memory and share arbitrary quantum correlations with the eavesdropper. The proof of security is based on a new quantitative understanding of the monogamous nature of quantum correlations in the context of a multiparty protocol.
Fully Device-Independent Quantum Key Distribution
NASA Astrophysics Data System (ADS)
Vazirani, Umesh; Vidick, Thomas
2014-10-01
Quantum cryptography promises levels of security that are impossible to replicate in a classical world. Can this security be guaranteed even when the quantum devices on which the protocol relies are untrusted? This central question dates back to the early 1990s when the challenge of achieving device-independent quantum key distribution was first formulated. We answer this challenge by rigorously proving the device-independent security of a slight variant of Ekert's original entanglement-based protocol against the most general (coherent) attacks. The resulting protocol is robust: While assuming only that the devices can be modeled by the laws of quantum mechanics and are spatially isolated from each other and from any adversary's laboratory, it achieves a linear key rate and tolerates a constant noise rate in the devices. In particular, the devices may have quantum memory and share arbitrary quantum correlations with the eavesdropper. The proof of security is based on a new quantitative understanding of the monogamous nature of quantum correlations in the context of a multiparty protocol.
Single-Rooted Extraction Sockets: Classification and Treatment Protocol.
El Chaar, Edgar; Oshman, Sarah; Fallah Abed, Pooria
2016-09-01
Clinicians have many treatment techniques from which to choose when extracting a failing tooth and replacing it with an implant-supported restoration and when successful management of an extraction socket during the course of tooth replacement is necessary to achieve predictable and esthetic outcomes. This article presents a straightforward, yet thorough, classification for extraction sockets of single-rooted teeth and provides guidance to clinicians in the selection of appropriate and predictable treatment. The presented classification of extraction sockets for single-rooted teeth focuses on the topography of the extraction socket, while the protocol for treatment of each socket type factors in the shape of the remaining bone, the biotype, and the location of the socket whether it be in the mandible or maxilla. This system is based on the biologic foundations of wound healing and can help guide clinicians to successful treatment outcomes.
Crispr-mediated Gene Targeting of Human Induced Pluripotent Stem Cells.
Byrne, Susan M; Church, George M
2015-01-01
CRISPR/Cas9 nuclease systems can create double-stranded DNA breaks at specific sequences to efficiently and precisely disrupt, excise, mutate, insert, or replace genes. However, human embryonic stem or induced pluripotent stem cells (iPSCs) are more difficult to transfect and less resilient to DNA damage than immortalized tumor cell lines. Here, we describe an optimized protocol for genome engineering of human iPSCs using a simple transient transfection of plasmids and/or single-stranded oligonucleotides. With this protocol, we achieve transfection efficiencies greater than 60%, with gene disruption efficiencies from 1-25% and gene insertion/replacement efficiencies from 0.5-10% without any further selection or enrichment steps. We also describe how to design and assess optimal sgRNA target sites and donor targeting vectors; cloning individual iPSC by single cell FACS sorting, and genotyping successfully edited cells.
Human cardiomyocyte generation from pluripotent stem cells: A state-of-art.
Talkhabi, Mahmood; Aghdami, Nasser; Baharvand, Hossein
2016-01-15
The human heart is considered a non-regenerative organ. Worldwide, cardiovascular diseases continue to be the leading cause of death. Despite advances in cardiac treatment, myocardial repair remains severely limited by the lack of an appropriate source of viable cardiomyocytes (CMs) to replace damaged tissue. Human pluripotent stem cells (hPSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can efficiently be differentiated into functional CMs necessary for cell replacement therapy and other potential applications. The number of protocols that derive CMs from hPSCs has increased exponentially over the past decade following observation of the first human beating CMs. A number of highly efficient, chemical based protocols have been developed to generate human CMs (hCMs) in small-scale and large-scale suspension systems. To reduce the heterogeneity of hPSC-derived CMs, the differentiation protocols were modulated to exclusively generate atrial-, ventricular-, and nodal-like CM subtypes. Recently, remarkable advances have been achieved in hCM generation including chemical-based cardiac differentiation, cardiac subtype specification, large-scale suspension culture differentiation, and development of chemically defined culture conditions. These hCMs could be useful particularly in the context of in vitro disease modeling, pharmaceutical screening and in cellular replacement therapies once the safety issues are overcome. Herein we review recent progress in the in vitro generation of CMs and cardiac subtypes from hPSCs and discuss their potential applications and current limitations. Copyright © 2015 Elsevier Inc. All rights reserved.
Mo, Shelley; Krawitz, Brian; Efstathiadis, Eleni; Geyman, Lawrence; Weitz, Rishard; Chui, Toco Y P; Carroll, Joseph; Dubra, Alfredo; Rosen, Richard B
2016-07-01
To compare the use of optical coherence tomography angiography (OCTA) and adaptive optics scanning light ophthalmoscope fluorescein angiography (AOSLO FA) for characterizing the foveal microvasculature in healthy and vasculopathic eyes. Four healthy controls and 11 vasculopathic patients (4 diabetic retinopathy, 4 retinal vein occlusion, and 3 sickle cell retinopathy) were imaged with OCTA and AOSLO FA. Foveal perfusion maps were semiautomatically skeletonized for quantitative analysis, which included foveal avascular zone (FAZ) metrics (area, perimeter, acircularity index) and vessel density in three concentric annular regions of interest. On each set of OCTA and AOSLO FA images, matching vessel segments were used for lumen diameter measurement. Qualitative image comparisons were performed by visual identification of microaneurysms, vessel loops, leakage, and vessel segments. Adaptive optics scanning light ophthalmoscope FA and OCTA showed no statistically significant differences in FAZ perimeter, acircularity index, and vessel densities. Foveal avascular zone area, however, showed a small but statistically significant difference of 1.8% (P = 0.004). Lumen diameter was significantly larger on OCTA (mean difference 5.7 μm, P < 0.001). Microaneurysms, fine structure of vessel loops, leakage, and some vessel segments were visible on AOSLO FA but not OCTA, while blood vessels obscured by leakage were visible only on OCTA. Optical coherence tomography angiography is comparable to AOSLO FA at imaging the foveal microvasculature except for differences in FAZ area, lumen diameter, and some qualitative features. These results, together with its ease of use, short acquisition time, and avoidance of potentially phototoxic blue light, support OCTA as a tool for monitoring ocular pathology and detecting early disease.
Microseismic Event Location Improvement Using Adaptive Filtering for Noise Attenuation
NASA Astrophysics Data System (ADS)
de Santana, F. L., Sr.; do Nascimento, A. F.; Leandro, W. P. D. N., Sr.; de Carvalho, B. M., Sr.
2017-12-01
In this work we show how adaptive filtering noise suppression improves the effectiveness of the Source Scanning Algorithm (SSA; Kao & Shan, 2004) in microseism location in the context of fracking operations. The SSA discretizes the time and region of interest in a 4D vector and, for each grid point and origin time, a brigthness value (seismogram stacking) is calculated. For a given set of velocity model parameters, when origin time and hypocenter of the seismic event are correct, a maximum value for coherence (or brightness) is achieved. The result is displayed on brightness maps for each origin time. Location methods such as SSA are most effective when the noise present in the seismograms is incoherent, however, the method may present false positives when the noise present in the data is coherent as occurs in fracking operations. To remove from the seismograms, the coherent noise from the pump and engines used in the operation, we use an adaptive filter. As the noise reference, we use the seismogram recorded at the station closest to the machinery employed. Our methodology was tested on semi-synthetic data. The microseismic was represented by Ricker pulses (with central frequency of 30Hz) on synthetics seismograms, and to simulate real seismograms on a surface microseismic monitoring situation, we added real noise recorded in a fracking operation to these synthetics seismograms. The results show that after the filtering of the seismograms, we were able to improve our detection threshold and to achieve a better resolution on the brightness maps of the located events.
ERIC Educational Resources Information Center
Nieuwenhuysen, Paul
1997-01-01
Explores data transfer speeds obtained with various combinations of hardware and software components through a study of access to the Internet from a notebook computer connected to a local area network based on Ethernet and TCP/IP (transmission control protocol/Internet protocol) network protocols. Upgrading is recommended for higher transfer…
Generation and Coherent Control of Pulsed Quantum Frequency Combs.
MacLellan, Benjamin; Roztocki, Piotr; Kues, Michael; Reimer, Christian; Romero Cortés, Luis; Zhang, Yanbing; Sciara, Stefania; Wetzel, Benjamin; Cino, Alfonso; Chu, Sai T; Little, Brent E; Moss, David J; Caspani, Lucia; Azaña, José; Morandotti, Roberto
2018-06-08
We present a method for the generation and coherent manipulation of pulsed quantum frequency combs. Until now, methods of preparing high-dimensional states on-chip in a practical way have remained elusive due to the increasing complexity of the quantum circuitry needed to prepare and process such states. Here, we outline how high-dimensional, frequency-bin entangled, two-photon states can be generated at a stable, high generation rate by using a nested-cavity, actively mode-locked excitation of a nonlinear micro-cavity. This technique is used to produce pulsed quantum frequency combs. Moreover, we present how the quantum states can be coherently manipulated using standard telecommunications components such as programmable filters and electro-optic modulators. In particular, we show in detail how to accomplish state characterization measurements such as density matrix reconstruction, coincidence detection, and single photon spectrum determination. The presented methods form an accessible, reconfigurable, and scalable foundation for complex high-dimensional state preparation and manipulation protocols in the frequency domain.
A Fair Contention Access Scheme for Low-Priority Traffic in Wireless Body Area Networks
Sajeel, Muhammad; Bashir, Faisal; Asfand-e-yar, Muhammad; Tauqir, Muhammad
2017-01-01
Recently, wireless body area networks (WBANs) have attracted significant consideration in ubiquitous healthcare. A number of medium access control (MAC) protocols, primarily derived from the superframe structure of the IEEE 802.15.4, have been proposed in literature. These MAC protocols aim to provide quality of service (QoS) by prioritizing different traffic types in WBANs. A contention access period (CAP)with high contention in priority-based MAC protocols can result in higher number of collisions and retransmissions. During CAP, traffic classes with higher priority are dominant over low-priority traffic; this has led to starvation of low-priority traffic, thus adversely affecting WBAN throughput, delay, and energy consumption. Hence, this paper proposes a traffic-adaptive priority-based superframe structure that is able to reduce contention in the CAP period, and provides a fair chance for low-priority traffic. Simulation results in ns-3 demonstrate that the proposed MAC protocol, called traffic- adaptive priority-based MAC (TAP-MAC), achieves low energy consumption, high throughput, and low latency compared to the IEEE 802.15.4 standard, and the most recent priority-based MAC protocol, called priority-based MAC protocol (PA-MAC). PMID:28832495
Memory management and compiler support for rapid recovery from failures in computer systems
NASA Technical Reports Server (NTRS)
Fuchs, W. K.
1991-01-01
This paper describes recent developments in the use of memory management and compiler technology to support rapid recovery from failures in computer systems. The techniques described include cache coherence protocols for user transparent checkpointing in multiprocessor systems, compiler-based checkpoint placement, compiler-based code modification for multiple instruction retry, and forward recovery in distributed systems utilizing optimistic execution.
Continuous scanning mode for ptychography
Clark, Jesse N.; Huang, Xiaojing; Harder, Ross J.; ...
2014-10-15
We outline how ptychographic imaging can be performed without the need for discrete scan positions. Through an idealized experiment, we demonstrate how a discrete-position scan regime can be replaced with a continuously scanned one with suitable modification of the reconstruction scheme based on coherent modes. Thus, the impact of this is that acquisition times can be reduced, significantly aiding ptychographic imaging with x rays, electrons, or visible light.
Taxation and Education: Using Educational Research to Inform Coherent Policy for the Public Good
ERIC Educational Resources Information Center
Knoeppel, Robert; Pitts, David A.; Lindle, Jane Clark
2013-01-01
In 2006, following a 30-year trend among the US states to remove the property tax from the revenue for public schools, the South Carolina General Assembly enacted Act 388 which replaced the property tax with a one-cent sales tax. The law decreased the budget capacity of school districts thus impacting educational equity and adequacy. This paper…
Solid-State Thyratron Replacement. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, Ian
2017-12-12
Under this SBIR, DTI developed a solid-state switch as an alternative to legacy thyratron equipment. Our Phase II objective was to make a solid-state thyratron replacement that would provide equivalent or better performance, much higher reliability (at least a 20 year lifetime, compared to a thyratron’s two-year lifetime) and would sell for ~3x the cost of a thyratron, or less than $40k. We were successful in building a solid-state switch which could reliably function as a thyratron replacement. The unit was designed to directly replace the thyratrons currently being used at SLAC’s Linac Coherent Light Source (LCLS), and was builtmore » in a tank that was small enough to fit into the existing thyratron cabinet, providing a true form-fit-function replacement path. We tested the switch at the full operating specifications: 48 kV, 6.3 kA, and 1 µs risetime. We also demonstrated a peak-to-peak pulse jitter of 1.5 ns, which is five times shorter than is typical for thyratrons. This lower jitter would improve the performance of the LCLS beam. The predicted reliability is more than 80 years, which is 40 times greater than a thyratron.« less
Iida, Yuto; Muraoka, Yuki; Uji, Akihito; Ooto, Sotaro; Murakami, Tomoaki; Suzuma, Kiyoshi; Tsujikawa, Akitaka; Arichika, Shigeta; Takahashi, Ayako; Miwa, Yuko; Yoshimura, Nagahisa
2017-10-01
To investigate associations between parafoveal microcirculatory status and foveal pathomorphology in eyes with macular edema (ME) secondary to retinal vein occlusion (RVO). Ten consecutive patients (10 eyes) with acute retinal vein occlusion were enrolled, 9 eyes of which received intravitreal ranibizumab (IVR) injections. Foveal morphologic changes were examined via optical coherence tomography (OCT), and parafoveal circulatory status was assessed via adaptive optics scanning laser ophthalmoscopy (AO-SLO). The mean parafoveal aggregated erythrocyte velocity (AEV) measured by adaptive optics scanning laser ophthalmoscopy in eyes with retinal vein occlusion was 0.99 ± 0.43 mm/second at baseline, which was significantly lower than that of age-matched healthy subjects (1.41 ± 0.28 mm/second, P = 0.042). The longitudinal adaptive optics scanning laser ophthalmoscopy examinations of each patient showed that parafoveal AEV was strongly inversely correlated with optical coherence tomography-measured central foveal thickness (CFT) over the entire observation period. Using parafoveal AEV and central foveal thickness measurements obtained at the first and second examinations, we investigated associations between differences in parafoveal AEV and central foveal thickness, which were significantly and highly correlated (r = -0.84, P = 0.002). Using adaptive optics scanning laser ophthalmoscopy in eyes with retinal vein occlusion macular edema, we could quantitatively evaluate the parafoveal AEV. A reduction or an increase in parafoveal AEV may be a clinical marker for the resolution or development/progression of macular edema respectively.
Replacing the CCSDS Telecommand Protocol with the Next Generation Uplink (NGU)
NASA Technical Reports Server (NTRS)
Kazz, Greg J.; Greenberg, Ed; Burleigh, Scott C.
2012-01-01
The current CCSDS Telecommand (TC) Recommendations 1-3 have essentially been in use since the early 1960s. The purpose of this paper is to propose a successor protocol to TC. The current CCSDS recommendations can only accommodate telecommand rates up to approximately 1 mbit/s. However today's spacecraft are storehouses for software including software for Field Programmable Gate Arrays (FPGA) which are rapidly replacing unique hardware systems. Changes to flight software occasionally require uplinks to deliver very large volumes of data. In the opposite direction, high rate downlink missions that use acknowledged CCSDS File Delivery Protocol (CFDP)4 will increase the uplink data rate requirements. It is calculated that a 5 mbits/s downlink could saturate a 4 kbits/s uplink with CFDP downlink responses: negative acknowledgements (NAKs), FINISHs, End-of-File (EOF), Acknowledgements (ACKs). Moreover, it is anticipated that uplink rates of 10 to 20 mbits/s will be required to support manned missions. The current TC recommendations cannot meet these new demands. Specifically, they are very tightly coupled to the Bose-Chaudhuri-Hocquenghem (BCH) code in Ref. 2. This protocol requires that an uncorrectable BCH codeword delimit the TC frame and terminate the randomization process. This method greatly limits telecom performance since only the BCH code can support the protocol. More modern techniques such as the CCSDS Low Density Parity Check (LDPC)5 codes can provide a minimum performance gain of up to 6 times higher command data rates as long as sufficient power is available in the data. This paper will describe the proposed protocol format, trade-offs, and advantages offered, along with a discussion of how reliable communications takes place at higher nominal rates.
Deep reinforcement learning for automated radiation adaptation in lung cancer.
Tseng, Huan-Hsin; Luo, Yi; Cui, Sunan; Chien, Jen-Tzung; Ten Haken, Randall K; Naqa, Issam El
2017-12-01
To investigate deep reinforcement learning (DRL) based on historical treatment plans for developing automated radiation adaptation protocols for nonsmall cell lung cancer (NSCLC) patients that aim to maximize tumor local control at reduced rates of radiation pneumonitis grade 2 (RP2). In a retrospective population of 114 NSCLC patients who received radiotherapy, a three-component neural networks framework was developed for deep reinforcement learning (DRL) of dose fractionation adaptation. Large-scale patient characteristics included clinical, genetic, and imaging radiomics features in addition to tumor and lung dosimetric variables. First, a generative adversarial network (GAN) was employed to learn patient population characteristics necessary for DRL training from a relatively limited sample size. Second, a radiotherapy artificial environment (RAE) was reconstructed by a deep neural network (DNN) utilizing both original and synthetic data (by GAN) to estimate the transition probabilities for adaptation of personalized radiotherapy patients' treatment courses. Third, a deep Q-network (DQN) was applied to the RAE for choosing the optimal dose in a response-adapted treatment setting. This multicomponent reinforcement learning approach was benchmarked against real clinical decisions that were applied in an adaptive dose escalation clinical protocol. In which, 34 patients were treated based on avid PET signal in the tumor and constrained by a 17.2% normal tissue complication probability (NTCP) limit for RP2. The uncomplicated cure probability (P+) was used as a baseline reward function in the DRL. Taking our adaptive dose escalation protocol as a blueprint for the proposed DRL (GAN + RAE + DQN) architecture, we obtained an automated dose adaptation estimate for use at ∼2/3 of the way into the radiotherapy treatment course. By letting the DQN component freely control the estimated adaptive dose per fraction (ranging from 1-5 Gy), the DRL automatically favored dose escalation/de-escalation between 1.5 and 3.8 Gy, a range similar to that used in the clinical protocol. The same DQN yielded two patterns of dose escalation for the 34 test patients, but with different reward variants. First, using the baseline P+ reward function, individual adaptive fraction doses of the DQN had similar tendencies to the clinical data with an RMSE = 0.76 Gy; but adaptations suggested by the DQN were generally lower in magnitude (less aggressive). Second, by adjusting the P+ reward function with higher emphasis on mitigating local failure, better matching of doses between the DQN and the clinical protocol was achieved with an RMSE = 0.5 Gy. Moreover, the decisions selected by the DQN seemed to have better concordance with patients eventual outcomes. In comparison, the traditional temporal difference (TD) algorithm for reinforcement learning yielded an RMSE = 3.3 Gy due to numerical instabilities and lack of sufficient learning. We demonstrated that automated dose adaptation by DRL is a feasible and a promising approach for achieving similar results to those chosen by clinicians. The process may require customization of the reward function if individual cases were to be considered. However, development of this framework into a fully credible autonomous system for clinical decision support would require further validation on larger multi-institutional datasets. © 2017 American Association of Physicists in Medicine.
Stimulated Raman adiabatic control of a nuclear spin in diamond
NASA Astrophysics Data System (ADS)
Coto, Raul; Jacques, Vincent; Hétet, Gabriel; Maze, Jerónimo R.
2017-08-01
Coherent manipulation of nuclear spins is a highly desirable tool for both quantum metrology and quantum computation. However, most of the current techniques to control nuclear spins lack fast speed, impairing their robustness against decoherence. Here, based on stimulated Raman adiabatic passage, and its modification including shortcuts to adiabaticity, we present a fast protocol for the coherent manipulation of nuclear spins. Our proposed Λ scheme is implemented in the microwave domain and its excited-state relaxation can be optically controlled through an external laser excitation. These features allow for the initialization of a nuclear spin starting from a thermal state. Moreover we show how to implement Raman control for performing Ramsey spectroscopy to measure the dynamical and geometric phases acquired by nuclear spins.
Superconducting Qubits as Mechanical Quantum Engines
NASA Astrophysics Data System (ADS)
Sachtleben, Kewin; Mazon, Kahio T.; Rego, Luis G. C.
2017-09-01
We propose the equivalence of superconducting qubits with a pistonlike mechanical quantum engine. The work reports a study on the nature of the nonequilibrium work exchanged with the quantum-nonadiabatic working medium, which is modeled as a multilevel coupled quantum well system subject to an external control parameter. The quantum dynamics is solved for arbitrary control protocols. It is shown that the work output has two components: one that depends instantaneously on the level populations and another that is due to the quantum coherences built in the system. The nonadiabatic coherent dynamics of the quantum engine gives rise to a resistance (friction) force that decreases the work output. We consider the functional equivalence of such a device and a rf-SQUID flux qubit.
Integration of Optical Coherence Tomography Scan Patterns to Augment Clinical Data Suite
NASA Technical Reports Server (NTRS)
Mason, S.; Patel, N.; Van Baalen, M.; Tarver, W.; Otto, C.; Samuels, B.; Koslovsky, M.; Schaefer, C.; Taiym, W.; Wear, M.;
2018-01-01
Vision changes identified in long duration spaceflight astronauts has led Space Medicine at NASA to adopt a more comprehensive clinical monitoring protocol. Optical Coherence Tomography (OCT) was recently implemented at NASA, including on board the International Space Station in 2013. NASA is collaborating with Heidelberg Engineering to increase the fidelity of the current OCT data set by integrating the traditional circumpapillary OCT image with radial and horizontal block images at the optic nerve head. The retinal nerve fiber layer was segmented by two experienced individuals. Intra-rater (N=4 subjects and 70 images) and inter-rater (N=4 subjects and 221 images) agreement was performed. The results of this analysis and the potential benefits will be presented.
Spectral domain optical coherence tomography imaging of retinal diseases in Singapore.
Singh, Mandeep; Chee, Caroline K L
2009-01-01
In this retrospective case series, the authors reviewed cases of patients with macular disorders whose eyes had been imaged using spectral domain optical coherence tomography (SD-OCT) (Cirrus HD-OCT; Carl Zeiss Meditec, Inc., Dublin, CA). SD-OCT images were obtained from patients with a variety of ocular conditions attending a tertiary retinal clinic in Singapore from August 2007 to December 2007, according to standardized protocols. Images of 428 eyes from 301 patients were reviewed. Ocular diagnoses included diabetic macular edema, exudative age-related macular degeneration, central serous chorioretinopathy, cystoid macular edema, retinal vein and artery occlusions, infective chorioretinitis, and others. The authors present four cases of particular interest to illustrate how SD-OCT was useful in complementing the clinician's assessment of macular disease.
Faithful entanglement transference from qubits to continuous variable systems
NASA Astrophysics Data System (ADS)
Blanco, P.; Mundarain, D.
2011-05-01
In this work, we study the transference of entanglement between atomic qubits and the fields of two separate optical cavities. We show that it is possible to transfer all the entanglement of two maximal entangled qubits to the fields of the cavities without post-selection. Initially, the qubit system is in a maximal entangled state and the cavities are in a pure separable state with each cavity in a coherent state. For high excitation levels in the coherent fields, at some characteristic time T, the state of the qubit system becomes separable and at this time all the entanglement is deposited on the mono-modal fields of the cavities. We also consider retrieval of entanglement and an alternative protocol using post-selection.
Composable security proof for continuous-variable quantum key distribution with coherent States.
Leverrier, Anthony
2015-02-20
We give the first composable security proof for continuous-variable quantum key distribution with coherent states against collective attacks. Crucially, in the limit of large blocks the secret key rate converges to the usual value computed from the Holevo bound. Combining our proof with either the de Finetti theorem or the postselection technique then shows the security of the protocol against general attacks, thereby confirming the long-standing conjecture that Gaussian attacks are optimal asymptotically in the composable security framework. We expect that our parameter estimation procedure, which does not rely on any assumption about the quantum state being measured, will find applications elsewhere, for instance, for the reliable quantification of continuous-variable entanglement in finite-size settings.
Shi, Youxing; Tang, Kanglai; Yuan, Chengsong; Tao, Xu; Wang, Huaqing; Chen, Bo; Guo, Yupeng
2015-03-24
Modern shoulder prosthesis has evolved through four generations. And the fourth generation technology has a core three-dimensional design of restoring 3D reconstruction of proximal humeral anatomy. Thus a new shoulder prosthesis is developed on the basis of the technology of 3D prosthesis. Assessment of whether shoulder prosthesis can restore individualized reconstruction of proximal humeral anatomy is based on the adaptability of proximal humeral anatomy. To evaluate the adaptability of proximal humeral anatomy through measuring the parameters of proximal humeral anatomy after shoulder replacement with individualized shoulder prosthesis and compare with normal data. The parameters of proximal humeral anatomy were analyzed and evaluated for a total of 12 cases undergoing shoulder replacement with individualized shoulder prosthesis. The relevant anatomical parameters included neck-shaft angle (NSA), retroversion angle (RA), humeral head height (HH) and humeral head diameter (HD). And the anatomical parameters were compared with the data from normal side. All underwent shoulder replacement with individualized shoulder prosthesis. The postoperative parameters of proximal humeral anatomy were compared with those of normal side. And the difference of NSA was < 3°, RA < 3°, HH < 3 mm and HD < 2 mm. And paired-sample t test was used to study the parameters of proximal humeral anatomy between postoperative and normal side. The normal and postoperative NSA was (140.2 ± 6.8)° and (139.5 ± 6.6)° respectively, RA (34.4 ± 3.3)° and (33.8-3.1)°, HH (15.3 ± 2.1) mm and (14.6+0.9) mm, HW (42.2 ± 2.82) mm and (41.8 ± 2.33) mm respectively. No significant difference existed between two groups (P > 0.05). Individualized shoulder prosthesis has excellent adaptability to shoulder. All core parameters are freely adjustable and specification models may be optimized. With matching tools, individualized shoulder prosthesis improves the accuracy and reliability in shoulder replacement.
Experimental adaptive quantum tomography of two-qubit states
NASA Astrophysics Data System (ADS)
Struchalin, G. I.; Pogorelov, I. A.; Straupe, S. S.; Kravtsov, K. S.; Radchenko, I. V.; Kulik, S. P.
2016-01-01
We report an experimental realization of adaptive Bayesian quantum state tomography for two-qubit states. Our implementation is based on the adaptive experimental design strategy proposed in the work by Huszár and Houlsby [F. Huszár and N. M. T. Houlsby, Phys. Rev. A 85, 052120 (2012)., 10.1103/PhysRevA.85.052120] and provides an optimal measurement approach in terms of the information gain. We address the practical questions which one faces in any experimental application: the influence of technical noise and the behavior of the tomographic algorithm for an easy-to-implement class of factorized measurements. In an experiment with polarization states of entangled photon pairs, we observe a lower instrumental noise floor and superior reconstruction accuracy for nearly pure states of the adaptive protocol compared to a nonadaptive protocol. At the same time, we show that for the mixed states, the restriction to factorized measurements results in no advantage for adaptive measurements, so general measurements have to be used.
Coherent-fields, their responsive colloids, and life's origins.
NASA Astrophysics Data System (ADS)
Mitra-Delmotte, G.; Mitra, A. N.
2015-10-01
In living systems, evolvable sequence-encoded constraints control the incoming energy-matter flows, and are also sustained by their embedded flows/ processes. What's more, in such dynamic-organized liquid-state media, the flows can also produce novel materials/mechanisms. Thus, embedded processes of such media enable its spatiotemporal resilience via turnovers, as well as functional 'takeovers'. Further, the responsiveness of such constrained media to their environment enables adaptations, as they can mediate feedback between the changing environment & their embedded flows/processes. Now, the complexity of the constituent functional materials, make it very likely that they themselves emerged/got selected thanks to the creative properties of such dynamically constrained media. We have asked if such Maxwelldemon- like scenario could not be mimicked using other plausible ingredients to achieve similar ways of dissipative sustenance and coherent functioning. In particular, the potential of organizing coherent fields and their responsive anisotropic colloids to enhance the probability of life's emergence—akin to an adaptive transition—to a new way of evolving, seems promising. Note that pattern-sustenance in liquid state requires presence of the specific source that enabled it (c.f. spontaneously formed patterns). For example, external coherent heterogeneous fields (e.g. magnetic rocks) can act as sources both of 1) aperiodic information, and 2) useful energy, for inducing and sustaining (specific) structures of superparamagnetic mineral colloids (via their Brownianrotation) away-from-equilibrium, to access 3-way coupling between energy-information-matter in liquid-medium. Such dynamic functioning structures seem ideal for stable containment of bottom-up chemical systems; and similar scenario in the nanoscience engineering area can help in design/tests.
Blind adaptive equalization of polarization-switched QPSK modulation.
Millar, David S; Savory, Seb J
2011-04-25
Coherent detection in combination with digital signal processing has recently enabled significant progress in the capacity of optical communications systems. This improvement has enabled detection of optimum constellations for optical signals in four dimensions. In this paper, we propose and investigate an algorithm for the blind adaptive equalization of one such modulation format: polarization-switched quaternary phase shift keying (PS-QPSK). The proposed algorithm, which includes both blind initialization and adaptation of the equalizer, is found to be insensitive to the input polarization state and demonstrates highly robust convergence in the presence of PDL, DGD and polarization rotation.
Analysis of Proximity-1 Space Link Interleaved Time Synchronization (PITS) Protocol
NASA Technical Reports Server (NTRS)
Woo, Simon S.
2011-01-01
To synchronize clocks between spacecraft in proximity, the Proximity-1 Space Link Interleaved Time Synchronization (PITS) Protocol has been proposed. PITS is based on the NTP Interleaved On-Wire Protocol and is capable of being adapted and integrated into CCSDS Proximity-1 Space Link Protocol with minimal modifications. In this work, we will discuss the correctness and liveness of PITS. Further, we analyze and evaluate the performance of time synchronization latency with various channel error rates in different PITS operational modes.
Top 10 Lines of Evidence for Human Evolution.
ERIC Educational Resources Information Center
Nickels, Martin
2001-01-01
Provides 10 lines of evidence that support the theory of human evolution. The evidence relates to hierarchical taxonomic classification, comparative anatomy, comparative embryology and development, comparative biochemistry, adaptive compromises, vestigial structures, biogeography, the fossil sequence, ecological coherence of fossil assemblages,…
Receiver Statistics for Cognitive Radios in Dynamic Spectrum Access Networks
2012-02-28
SNR) are employed by many protocols and processes in direct-sequence ( DS ) spread-spectrum packet radio networks, including soft-decision decoding...adaptive modulation protocols, and power adjustment protocols. For DS spread spectrum, we have introduced and evaluated SNR estimators that employ...obtained during demodulation in a binary CDMA receiver. We investigated several methods to apply the proposed metric to the demodulator’s soft-decision
Pre-flight sensorimotor adaptation protocols for suborbital flight.
Shelhamer, Mark; Beaton, Kara
2012-01-01
Commercial suborbital flights, which include 3-5 minutes of 0 g between hyper-g launch and landing phases, will present suborbital passengers with a challenging sensorimotor experience. Based on the results of neurovestibular research in parabolic and orbital flight, and the anticipated wide range of fitness and experience levels of suborbital passengers, neurovestibular disturbances are likely to be problematic in this environment. Pre-flight adaptation protocols might alleviate some of these issues. Therefore, we describe a set of sensorimotor tests to evaluate passengers before suborbital flight, including assessment of the angular vestibulo-ocular reflex (VOR), ocular skew and disconjugate torsion, subjective visual vertical, and roll vection. Performance on these tests can be examined for correlations with in-flight experience, such as motion sickness, disorientation, and visual disturbances, based on questionnaires and cabin video recordings. Through an understanding of sensorimotor adaptation to parabolic and orbital flight, obtained from many previous studies, we can then suggest appropriate pre-flight adaptation procedures.
Guimarães, Ariane; de Lima Rodrigues, Aline Sueli; Malafaia, Guilherme
2017-10-30
The exploitation and degradation of natural environments exert intense pressure on important ecosystems worldwide. Thus, it is necessary developing or adapting assessment methods to monitor environmental changes and to generate results to be applied to environmental management programs. The Brazilian Veredas (phytophysiognomies typical to the Cerrado biome) are threatened by several human activities; thus, the aim of the present study is to adapt a rapid assessment protocol (RAP) to be applied to Veredas springs, by using the upper course of the Vai-e-Vem stream watershed (Ipameri County, Goiás State, Brazil). Therefore, several springs in the study site were visited and 11 of them were considered Veredas springs. After the RAP was adapted, the instrument was validated and used to environmentally assess the springs in order to demonstrate its applicability. The present study has provided an instrument of option to monitor Veredas springs.
Speckle noise reduction for optical coherence tomography based on adaptive 2D dictionary
NASA Astrophysics Data System (ADS)
Lv, Hongli; Fu, Shujun; Zhang, Caiming; Zhai, Lin
2018-05-01
As a high-resolution biomedical imaging modality, optical coherence tomography (OCT) is widely used in medical sciences. However, OCT images often suffer from speckle noise, which can mask some important image information, and thus reduce the accuracy of clinical diagnosis. Taking full advantage of nonlocal self-similarity and adaptive 2D-dictionary-based sparse representation, in this work, a speckle noise reduction algorithm is proposed for despeckling OCT images. To reduce speckle noise while preserving local image features, similar nonlocal patches are first extracted from the noisy image and put into groups using a gamma- distribution-based block matching method. An adaptive 2D dictionary is then learned for each patch group. Unlike traditional vector-based sparse coding, we express each image patch by the linear combination of a few matrices. This image-to-matrix method can exploit the local correlation between pixels. Since each image patch might belong to several groups, the despeckled OCT image is finally obtained by aggregating all filtered image patches. The experimental results demonstrate the superior performance of the proposed method over other state-of-the-art despeckling methods, in terms of objective metrics and visual inspection.
NASA Technical Reports Server (NTRS)
Beyon, Jeffrey Y.; Koch, Grady J.
2006-01-01
The signal processing aspect of a 2-m wavelength coherent Doppler lidar system under development at NASA Langley Research Center in Virginia is investigated in this paper. The lidar system is named VALIDAR (validation lidar) and its signal processing program estimates and displays various wind parameters in real-time as data acquisition occurs. The goal is to improve the quality of the current estimates such as power, Doppler shift, wind speed, and wind direction, especially in low signal-to-noise-ratio (SNR) regime. A novel Nonlinear Adaptive Doppler Shift Estimation Technique (NADSET) is developed on such behalf and its performance is analyzed using the wind data acquired over a long period of time by VALIDAR. The quality of Doppler shift and power estimations by conventional Fourier-transform-based spectrum estimation methods deteriorates rapidly as SNR decreases. NADSET compensates such deterioration in the quality of wind parameter estimates by adaptively utilizing the statistics of Doppler shift estimate in a strong SNR range and identifying sporadic range bins where good Doppler shift estimates are found. The authenticity of NADSET is established by comparing the trend of wind parameters with and without NADSET applied to the long-period lidar return data.
Distributed Synchronization Control of Multiagent Systems With Unknown Nonlinearities.
Su, Shize; Lin, Zongli; Garcia, Alfredo
2016-01-01
This paper revisits the distributed adaptive control problem for synchronization of multiagent systems where the dynamics of the agents are nonlinear, nonidentical, unknown, and subject to external disturbances. Two communication topologies, represented, respectively, by a fixed strongly-connected directed graph and by a switching connected undirected graph, are considered. Under both of these communication topologies, we use distributed neural networks to approximate the uncertain dynamics. Decentralized adaptive control protocols are then constructed to solve the cooperative tracker problem, the problem of synchronization of all follower agents to a leader agent. In particular, we show that, under the proposed decentralized control protocols, the synchronization errors are ultimately bounded, and their ultimate bounds can be reduced arbitrarily by choosing the control parameter appropriately. Simulation study verifies the effectiveness of our proposed protocols.
NASA Astrophysics Data System (ADS)
Zhou, Chao; Wang, Yihong; Aguirre, Aaron D.; Tsai, Tsung-Han; Cohen, David W.; Connolly, James L.; Fujimoto, James G.
2010-01-01
We evaluate the feasibility of optical coherence tomography (OCT) and optical coherence microscopy (OCM) for imaging of benign and malignant thyroid lesions ex vivo using intrinsic optical contrast. 34 thyroid gland specimens are imaged from 17 patients, covering a spectrum of pathology ranging from normal thyroid to benign disease/neoplasms (multinodular colloid goiter, Hashimoto's thyroiditis, and follicular adenoma) and malignant thyroid tumors (papillary carcinoma and medullary carcinoma). Imaging is performed using an integrated OCT and OCM system, with <4 μm axial resolution (OCT and OCM), and 14 μm (OCT) and <2 μm (OCM) transverse resolution. The system allows seamless switching between low and high magnifications in a way similar to traditional microscopy. Good correspondence is observed between optical images and histological sections. Characteristic features that suggest malignant lesions, such as complex papillary architecture, microfollicules, psammomatous calcifications, or replacement of normal follicular architecture with sheets/nests of tumor cells, can be identified from OCT and OCM images and are clearly differentiable from normal or benign thyroid tissues. With further development of needle-based imaging probes, OCT and OCM could be promising techniques to use for the screening of thyroid nodules and to improve the diagnostic specificity of fine needle aspiration evaluation.
Global Climate Change Adaptation Priorities for Biodiversity and Food Security
Hannah, Lee; Ikegami, Makihiko; Hole, David G.; Seo, Changwan; Butchart, Stuart H. M.; Peterson, A. Townsend; Roehrdanz, Patrick R.
2013-01-01
International policy is placing increasing emphasis on adaptation to climate change, including the allocation of new funds to assist adaptation efforts. Climate change adaptation funding may be most effective where it meets integrated goals, but global geographic priorities based on multiple development and ecological criteria are not well characterized. Here we show that human and natural adaptation needs related to maintaining agricultural productivity and ecosystem integrity intersect in ten major areas globally, providing a coherent set of international priorities for adaptation funding. An additional seven regional areas are identified as worthy of additional study. The priority areas are locations where changes in crop suitability affecting impoverished farmers intersect with changes in ranges of restricted-range species. Agreement among multiple climate models and emissions scenarios suggests that these priorities are robust. Adaptation funding directed to these areas could simultaneously address multiple international policy goals, including poverty reduction, protecting agricultural production and safeguarding ecosystem services. PMID:23991125
Global climate change adaptation priorities for biodiversity and food security.
Hannah, Lee; Ikegami, Makihiko; Hole, David G; Seo, Changwan; Butchart, Stuart H M; Peterson, A Townsend; Roehrdanz, Patrick R
2013-01-01
International policy is placing increasing emphasis on adaptation to climate change, including the allocation of new funds to assist adaptation efforts. Climate change adaptation funding may be most effective where it meets integrated goals, but global geographic priorities based on multiple development and ecological criteria are not well characterized. Here we show that human and natural adaptation needs related to maintaining agricultural productivity and ecosystem integrity intersect in ten major areas globally, providing a coherent set of international priorities for adaptation funding. An additional seven regional areas are identified as worthy of additional study. The priority areas are locations where changes in crop suitability affecting impoverished farmers intersect with changes in ranges of restricted-range species. Agreement among multiple climate models and emissions scenarios suggests that these priorities are robust. Adaptation funding directed to these areas could simultaneously address multiple international policy goals, including poverty reduction, protecting agricultural production and safeguarding ecosystem services.
2007-06-01
foraminifera, gastropods , and scaphopods) has been expressed as [Grossman and Ku, 1986]: 21 60 - 60w = -0.23 * (SST) +4.75 Eqn. (1) Slow growing corals...along the southeastern edge of the platform off John Smith’s Bay at 16m depth. (Figure adapted from World Ocean Circulation Experiment Newsletter...Atlantic Oscillation - Regional Temperatures and Precipitation, Science, 269, 676-679, 1995. Huybers, P., Multi-taper method coherence using adaptive
Pant, Manu
2016-03-01
In tissue culture, high production cost of the products restricts their reach. Though tissue culture is a major strength in floriculture it is marred by pricing issues. Hence, we developed a complete regeneration low cost micropropagation protocol for an economically important floriculture crop, carnation (Dianthus caryophyllus L.). Successful regeneration of carnation from nodal explants on cost-efficient medium indicates that psyllium husk, sugar and RO water can effectively replace the conventional medium comprising agar, sucrose and distilled water. The protocol can contribute to increased carnation production at comparatively reduced cost, and there by encourage wide scale adoption by the common growers.
Zawadzki, Robert J.; Jones, Steven M.; Pilli, Suman; Balderas-Mata, Sandra; Kim, Dae Yu; Olivier, Scot S.; Werner, John S.
2011-01-01
We describe an ultrahigh-resolution (UHR) retinal imaging system that combines adaptive optics Fourier-domain optical coherence tomography (AO-OCT) with an adaptive optics scanning laser ophthalmoscope (AO-SLO) to allow simultaneous data acquisition by the two modalities. The AO-SLO subsystem was integrated into the previously described AO-UHR OCT instrument with minimal changes to the latter. This was done in order to ensure optimal performance and image quality of the AO- UHR OCT. In this design both imaging modalities share most of the optical components including a common AO-subsystem and vertical scanner. One of the benefits of combining Fd-OCT with SLO includes automatic co-registration between two acquisition channels for direct comparison between retinal structures imaged by both modalities (e.g., photoreceptor mosaics or microvasculature maps). Because of differences in the detection scheme of the two systems, this dual imaging modality instrument can provide insight into retinal morphology and potentially function, that could not be accessed easily by a single system. In this paper we describe details of the components and parameters of the combined instrument, including incorporation of a novel membrane magnetic deformable mirror with increased stroke and actuator count used as a single wavefront corrector. We also discuss laser safety calculations for this multimodal system. Finally, retinal images acquired in vivo with this system are presented. PMID:21698028
An Adaptive INS-Aided PLL Tracking Method for GNSS Receivers in Harsh Environments.
Cong, Li; Li, Xin; Jin, Tian; Yue, Song; Xue, Rui
2016-01-23
As the weak link in global navigation satellite system (GNSS) signal processing, the phase-locked loop (PLL) is easily influenced with frequent cycle slips and loss of lock as a result of higher vehicle dynamics and lower signal-to-noise ratios. With inertial navigation system (INS) aid, PLLs' tracking performance can be improved. However, for harsh environments with high dynamics and signal attenuation, the traditional INS-aided PLL with fixed loop parameters has some limitations to improve the tracking adaptability. In this paper, an adaptive INS-aided PLL capable of adjusting its noise bandwidth and coherent integration time has been proposed. Through theoretical analysis, the relation between INS-aided PLL phase tracking error and carrier to noise density ratio (C/N₀), vehicle dynamics, aiding information update time, noise bandwidth, and coherent integration time has been built. The relation formulae are used to choose the optimal integration time and bandwidth for a given application under the minimum tracking error criterion. Software and hardware simulation results verify the correctness of the theoretical analysis, and demonstrate that the adaptive tracking method can effectively improve the PLL tracking ability and integrated GNSS/INS navigation performance. For harsh environments, the tracking sensitivity is increased by 3 to 5 dB, velocity errors are decreased by 36% to 50% and position errors are decreased by 6% to 24% when compared with other INS-aided PLL methods.
Rf system for the NSLS coherent infrared radiation source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broome, W.; Biscardi, R.; Keane, J.
1995-05-01
The existing NSLS X-ray Lithography Source (XLS Phase I) is being considered for a coherent synchrotron radiation source. The existing 211 MHz warm cavity will be replaced with a 5-cell 2856 MHz superconducting RF cavity, driven by a series of 2 kW klystrons. The RF system will provide a total V{sub RF} of 1.5 MV to produce {sigma}{sub L} = 0.3 mm electron bunches at an energy of 150 MeV. Superconducting technology significantly reduces the required space and power needed to achieve the higher voltage. It is the purpose of this paper to describe the superconducting RF system and cavity,more » power requirements, and cavity design parameters such as input coupling, Quality Factor, and Higher Order Modes.« less
Princiotta, M F; Schubert, U; Chen, W; Bennink, J R; Myung, J; Crews, C M; Yewdell, J W
2001-01-16
The proteasome is the primary protease used by cells for degrading proteins and generating peptide ligands for class I molecules of the major histocompatibility complex. Based on the properties of cells adapted to grow in the presence of the proteasome inhibitor 4-hydroxy-5-iodo-3-nitrophenylacetyl-Leu-Leu-leucinal-vinyl sulfone (NLVS), it was proposed that proteasomes can be replaced by alternative proteolytic systems, particularly a large proteolytic complex with a tripeptidyl peptidase II activity. Here we show that NLVS-adapted cells retain sensitivity to a number of highly specific proteasome inhibitors with regard to antigenic peptide generation, accumulation of polyubiquitinated proteins, degradation of p53, and cell viability. In addition, we show that in the same assays (with a single minor exception), NLVS-adapted cells are about as sensitive as nonselected cells to Ala-Ala-Phe-chloromethylketone, a specific inhibitor of tripeptidyl peptidase II activity. Based on these findings, we conclude that proteasomes still have essential proteolytic functions in adapted cells that are not replaced by Ala-Ala-Phe-chloromethylketone-sensitive proteases.
DESIGNING ENVIRONMENTALLY BENIGN SOLVENT SUBSTITUTES
Since the signing of 1987 Montreal Protocol, reducing and eliminating the use of harmful solvents has become an internationally imminent environmental protection mission. Solvent substitution is an effective way to achieve this goal. The Program for Assisting the Replacement of...