Science.gov

Sample records for adaptive collective pitch

  1. Adaptive pitch control for variable speed wind turbines

    DOEpatents

    Johnson, Kathryn E.; Fingersh, Lee Jay

    2012-05-08

    An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.

  2. Adaptive back-stepping pitch angle control for wind turbine based on a new electro-hydraulic pitch system

    NASA Astrophysics Data System (ADS)

    Yin, Xiu-xing; Lin, Yong-gang; Li, Wei; Gu, Ya-jing; Lei, Peng-fei; Liu, Hong-wei

    2015-11-01

    A new electro-hydraulic pitch system is proposed to smooth the output power and drive-train torque fluctuations for wind turbine. This new pitch system employs a servo-valve-controlled hydraulic motor to enhance pitch control performances. This pitch system is represented by a state-space model with parametric uncertainties and nonlinearities. An adaptive back-stepping pitch angle controller is synthesised based on this state-space model to accurately achieve the desired pitch angle control regardless of such uncertainties and nonlinearities. This pitch angle controller includes a back-stepping procedure and an adaption law to deal with such uncertainties and nonlinearities and hence to improve the final pitch control performances. The proposed pitch system and the designed pitch angle controller have been validated for achievable and efficient power and torque regulation performances by comparative experimental results under various operating conditions.

  3. Pitching Speed and Glenohumeral Adaptation in High School Pitchers.

    PubMed

    Keller, Robert A; Marshall, Nathan E; Mehran, Nima; Moutzouros, Vasilios

    2015-08-01

    Glenohumeral internal rotational deficit and increased glenohumeral external rotation are common findings in baseball pitchers. To the authors' knowledge, no study has focused on the adaptation of glenohumeral internal rotational deficit and increased glenohumeral external rotation in relation to pitching speed. This study evaluated changes in range of motion in the throwing shoulder in high school pitchers to determine whether changes in internal and external rotation directly correlate with pitch velocity. The shoulders of 22 high school varsity pitchers were evaluated. Standard goniometric technique was used to measure passive external and internal glenohumeral range of motion in both arms. Measurements were evaluated for statistically significant differences in range of motion. Demographic features, including height, weight, and age, were assessed. Fifteen consecutive in-game pitch speeds were recorded, and the fastest pitch was used for evaluation. Pitch speeds were correlated to the player's glenohumeral internal rotational deficit, increased glenohumeral external rotation, and physical demographics. Average age was 16.9 years. Average external rotation of the throwing arm was significantly greater than that of the nonthrowing arm (143.00° vs 130.32°, P=.005). Average internal rotation of the throwing arm was significantly less than that of the nonthrowing arm (49.50° vs 65.90°, P=.006). Both shoulders had similar total arc of motion (throwing shoulder, 192.54; nonthrowing shoulder, 196.23; P=.822). Average maximum velocity was 77.7 mph (maximum, 88 mph; minimum, 66 mph). Maximum pitch velocity did not correlate with changes in glenohumeral internal rotational deficit (P=.683) or increased glenohumeral external rotation (P=.241). There was also no evidence of correlation between pitch velocity and player age, height, weight, or dominant hand. The stress of pitching creates adaptations to the throwing shoulder, even in young athletes. There appears to be

  4. Pitching Speed and Glenohumeral Adaptation in High School Pitchers.

    PubMed

    Keller, Robert A; Marshall, Nathan E; Mehran, Nima; Moutzouros, Vasilios

    2015-08-01

    Glenohumeral internal rotational deficit and increased glenohumeral external rotation are common findings in baseball pitchers. To the authors' knowledge, no study has focused on the adaptation of glenohumeral internal rotational deficit and increased glenohumeral external rotation in relation to pitching speed. This study evaluated changes in range of motion in the throwing shoulder in high school pitchers to determine whether changes in internal and external rotation directly correlate with pitch velocity. The shoulders of 22 high school varsity pitchers were evaluated. Standard goniometric technique was used to measure passive external and internal glenohumeral range of motion in both arms. Measurements were evaluated for statistically significant differences in range of motion. Demographic features, including height, weight, and age, were assessed. Fifteen consecutive in-game pitch speeds were recorded, and the fastest pitch was used for evaluation. Pitch speeds were correlated to the player's glenohumeral internal rotational deficit, increased glenohumeral external rotation, and physical demographics. Average age was 16.9 years. Average external rotation of the throwing arm was significantly greater than that of the nonthrowing arm (143.00° vs 130.32°, P=.005). Average internal rotation of the throwing arm was significantly less than that of the nonthrowing arm (49.50° vs 65.90°, P=.006). Both shoulders had similar total arc of motion (throwing shoulder, 192.54; nonthrowing shoulder, 196.23; P=.822). Average maximum velocity was 77.7 mph (maximum, 88 mph; minimum, 66 mph). Maximum pitch velocity did not correlate with changes in glenohumeral internal rotational deficit (P=.683) or increased glenohumeral external rotation (P=.241). There was also no evidence of correlation between pitch velocity and player age, height, weight, or dominant hand. The stress of pitching creates adaptations to the throwing shoulder, even in young athletes. There appears to be

  5. Adaptive pitch control for load mitigation of wind turbines

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan; Tang, J.

    2015-04-01

    In this research, model reference adaptive control is examined for the pitch control of wind turbines that may suffer from reduced life owing to extreme loads and fatigue when operated under a high wind speed. Specifically, we aim at making a trade-off between the maximum energy captured and the load induced. The adaptive controller is designed to track the optimal generator speed and at the same time to mitigate component loads under turbulent wind field and other uncertainties. The proposed algorithm is tested on the NREL offshore 5-MW baseline wind turbine, and its performance is compared with that those of the gain scheduled proportional integral (GSPI) control and the disturbance accommodating control (DAC). The results show that the blade root flapwise load can be reduced at a slight expense of optimal power output. The generator speed regulation under adaptive controller is better than DAC.

  6. Pitch Adaptation Patterns in Bimodal Cochlear Implant Users: Over Time and After Experience

    PubMed Central

    Reiss, Lina A.J.; Ito, Rindy A.; Eggleston, Jessica L.; Liao, Selena; Becker, Jillian J.; Lakin, Carrie E.; Warren, Frank M.; McMenomey, Sean O.

    2014-01-01

    Background Pitch plasticity has been observed in Hybrid cochlear implant (CI) users. Does pitch plasticity also occur in bimodal CI users with traditional long-electrode CIs, and is pitch adaptation pattern associated with electrode discrimination or speech recognition performance? Objective Characterize pitch adaptation patterns in long-electrode CI users, correlate these patterns with electrode discrimination and speech perception outcomes, and analyze which subject factors are associated with the different patterns. Methods Electric-to-acoustic pitch matches were obtained in 19 subjects over time from CI activation to at least 12 months after activation, and in a separate group of 18 subjects in a single visit after at least 24 months of CI experience. Audiometric thresholds, electrode discrimination performance, and speech perception scores were also measured. Results Subjects measured over time had pitch adaptation patterns that fit one of the following categories: 1) “Pitch-adapting”, i.e. the mismatch between perceived electrode pitch and the corresponding frequency-to-electrode allocations decreased; 2) “Pitch-dropping”, i.e. the pitches of multiple electrodes dropped and converged to a similar low pitch; 3) “Pitch-unchanging”, i.e. electrode pitches did not change. Subjects measured after CI experience had a parallel set of adaptation patterns: 1) “Matched-pitch”, i.e. the electrode pitch was matched to the frequency allocation; 2) “Low-pitch”, i.e. the pitches of multiple electrodes were all around the lowest frequency allocation; 3) “Nonmatched-pitch”, i.e. the pitch patterns were compressed relative to the frequency allocations and did not fit either the matched-pitch or low-pitch categories. Unlike Hybrid CI users which were mostly in the pitch-adapting/matched-pitch category, the majority of bimodal CI users were in the latter two categories, pitch-dropping/low-pitch or pitch-unchanging/nonmatched-pitch. Subjects with pitch-adapting

  7. Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines.

    PubMed

    Yin, Xiu-xing; Lin, Yong-gang; Li, Wei; Liu, Hong-wei; Gu, Ya-jing

    2015-09-01

    A variable-displacement pump controlled pitch system is proposed to mitigate generator power and flap-wise load fluctuations for wind turbines. The pitch system mainly consists of a variable-displacement hydraulic pump, a fixed-displacement hydraulic motor and a gear set. The hydraulic motor can be accurately regulated by controlling the pump displacement and fluid flows to change the pitch angle through the gear set. The detailed mathematical representation and dynamic characteristics of the proposed pitch system are thoroughly analyzed. An adaptive sliding mode pump displacement controller and a back-stepping stroke piston controller are designed for the proposed pitch system such that the resulting pitch angle tracks its desired value regardless of external disturbances and uncertainties. The effectiveness and control efficiency of the proposed pitch system and controllers have been verified by using realistic dataset of a 750 kW research wind turbine.

  8. Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines.

    PubMed

    Yin, Xiu-xing; Lin, Yong-gang; Li, Wei; Liu, Hong-wei; Gu, Ya-jing

    2015-09-01

    A variable-displacement pump controlled pitch system is proposed to mitigate generator power and flap-wise load fluctuations for wind turbines. The pitch system mainly consists of a variable-displacement hydraulic pump, a fixed-displacement hydraulic motor and a gear set. The hydraulic motor can be accurately regulated by controlling the pump displacement and fluid flows to change the pitch angle through the gear set. The detailed mathematical representation and dynamic characteristics of the proposed pitch system are thoroughly analyzed. An adaptive sliding mode pump displacement controller and a back-stepping stroke piston controller are designed for the proposed pitch system such that the resulting pitch angle tracks its desired value regardless of external disturbances and uncertainties. The effectiveness and control efficiency of the proposed pitch system and controllers have been verified by using realistic dataset of a 750 kW research wind turbine. PMID:26303957

  9. Handling Qualities of Model Reference Adaptive Controllers with Varying Complexity for Pitch-Roll Coupled Failures

    NASA Technical Reports Server (NTRS)

    Schaefer, Jacob; Hanson, Curt; Johnson, Marcus A.; Nguyen, Nhan

    2011-01-01

    Three model reference adaptive controllers (MRAC) with varying levels of complexity were evaluated on a high performance jet aircraft and compared along with a baseline nonlinear dynamic inversion controller. The handling qualities and performance of the controllers were examined during failure conditions that induce coupling between the pitch and roll axes. Results from flight tests showed with a roll to pitch input coupling failure, the handling qualities went from Level 2 with the baseline controller to Level 1 with the most complex MRAC tested. A failure scenario with the left stabilator frozen also showed improvement with the MRAC. Improvement in performance and handling qualities was generally seen as complexity was incrementally added; however, added complexity usually corresponds to increased verification and validation effort required for certification. The tradeoff between complexity and performance is thus important to a controls system designer when implementing an adaptive controller on an aircraft. This paper investigates this relation through flight testing of several controllers of vary complexity.

  10. Embedded pitch adapters: A high-yield interconnection solution for strip sensors

    NASA Astrophysics Data System (ADS)

    Ullán, M.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Hommels, L. B. A.; Fleta, C.; Fernandez-Tejero, J.; Quirion, D.; Bloch, I.; Díez, S.; Gregor, I. M.; Lohwasser, K.; Poley, L.; Tackmann, K.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Mori, R.; Parzefall, U.; Clark, A.; Ferrere, D.; Gonzalez Sevilla, S.; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O'Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Mikestikova, M.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Marti i Garcia, S.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.

    2016-09-01

    A proposal to fabricate large area strip sensors with integrated, or embedded, pitch adapters is presented for the End-cap part of the Inner Tracker in the ATLAS experiment. To implement the embedded pitch adapters, a second metal layer is used in the sensor fabrication, for signal routing to the ASICs. Sensors with different embedded pitch adapters have been fabricated in order to optimize the design and technology. Inter-strip capacitance, noise, pick-up, cross-talk, signal efficiency, and fabrication yield have been taken into account in their design and fabrication. Inter-strip capacitance tests taking into account all channel neighbors reveal the important differences between the various designs considered. These tests have been correlated with noise figures obtained in full assembled modules, showing that the tests performed on the bare sensors are a valid tool to estimate the final noise in the full module. The full modules have been subjected to test beam experiments in order to evaluate the incidence of cross-talk, pick-up, and signal loss. The detailed analysis shows no indication of cross-talk or pick-up as no additional hits can be observed in any channel not being hit by the beam above 170 mV threshold, and the signal in those channels is always below 1% of the signal recorded in the channel being hit, above 100 mV threshold. First results on irradiated mini-sensors with embedded pitch adapters do not show any change in the interstrip capacitance measurements with only the first neighbors connected.

  11. An Ad-Hoc Adaptive Pilot Model for Pitch Axis Gross Acquisition Tasks

    NASA Technical Reports Server (NTRS)

    Hanson, Curtis E.

    2012-01-01

    An ad-hoc algorithm is presented for real-time adaptation of the well-known crossover pilot model and applied to pitch axis gross acquisition tasks in a generic fighter aircraft. Off-line tuning of the crossover model to human pilot data gathered in a fixed-based high fidelity simulation is first accomplished for a series of changes in aircraft dynamics to provide expected values for model parameters. It is shown that in most cases, for this application, the traditional crossover model can be reduced to a gain and a time delay. The ad-hoc adaptive pilot gain algorithm is shown to have desirable convergence properties for most types of changes in aircraft dynamics.

  12. Field testing of feedforward collective pitch control on the CART2 using a nacelle-based Lidar scanner

    SciTech Connect

    Schlipf, David; Fleming, Paul; Haizmann, Florian; Scholbrock, Andrew; Hofsass, Martin; Wright, Alan; Cheng, Po Wen

    2014-01-01

    This work presents the results from a field test of LIDAR assisted collective pitch control using a scanning LIDAR device installed on the nacelle of a mid-scale research turbine. A nonlinear feedforward controller is extended by an adaptive filter to remove all uncorrelated frequencies of the wind speed measurement to avoid unnecessary control action. Positive effects on the rotor speed regulation as well as on tower, blade and shaft loads have been observed in the case that the previous measured correlation and timing between the wind preview and the turbine reaction are accomplish. The feedforward controller had negative impact, when the LIDAR measurement was disturbed by obstacles in front of the turbine. This work proves, that LIDAR is valuable tool for wind turbine control not only in simulations but also under real conditions. Moreover, the paper shows that further understanding of the relationship between the wind measurement and the turbine reaction is crucial to improve LIDAR assisted control of wind turbines.

  13. Adaptive potential of maritime pine (Pinus pinaster) populations to the emerging pitch canker pathogen, Fusarium circinatum.

    PubMed

    Elvira-Recuenco, Margarita; Iturritxa, Eugenia; Majada, Juan; Alia, Ricardo; Raposo, Rosa

    2014-01-01

    There is a concern on how emerging pests and diseases will affect the distribution range and adaptability of their host species, especially due to different conditions derived from climate change and growing globalization. Fusarium circinatum, which causes pitch canker disease in Pinus species, is an exotic pathogen of recent introduction in Spain that threatens its maritime pine (P. pinaster) stands. To predict the impact this disease will have on the species, we examine host resistance traits and their genetic architecture. Resistance phenotyping was done in a clonal provenance/progeny trial, using three-year-old cuttings artificially inoculated with the pathogen and maintained under controlled environmental conditions. A total number of 670 ramets were assessed, distributed in 10 populations, with a total of 47 families, 2 to 5 half-sibs per family, and 3-7 ramets per clone. High genetic variation was found at the three hierarchical levels studied: population, family and clone, being both additive and non-additive effects important. Narrow-sense and broad-sense heritability estimates were relatively high, with respective values of 0.43-0.58 and 0.51-0.8, depending on the resistance traits measured (lesion length, lesion length rate, time to wilting, and survival). These values suggest the species' high capacity of evolutionary response to the F. circinatum pathogen. A population originated in Northern Spain was the most resistant, while another from Morocco was the most susceptible. The total number of plants that did not show lesion development or presented a small lesion (length<30 mm) was 224 out of 670, indicating a high proportion of resistant trees in the offspring within the analyzed populations. We found large differences among populations and considerable genetic variation within populations, which should allow, through natural or artificial selection, the successful adaptation of maritime pine to pitch canker disease. PMID:25500822

  14. Adaptive Potential of Maritime Pine (Pinus pinaster) Populations to the Emerging Pitch Canker Pathogen, Fusarium circinatum

    PubMed Central

    Elvira-Recuenco, Margarita; Iturritxa, Eugenia; Majada, Juan; Alia, Ricardo; Raposo, Rosa

    2014-01-01

    There is a concern on how emerging pests and diseases will affect the distribution range and adaptability of their host species, especially due to different conditions derived from climate change and growing globalization. Fusarium circinatum, which causes pitch canker disease in Pinus species, is an exotic pathogen of recent introduction in Spain that threatens its maritime pine (P. pinaster) stands. To predict the impact this disease will have on the species, we examine host resistance traits and their genetic architecture. Resistance phenotyping was done in a clonal provenance/progeny trial, using three-year-old cuttings artificially inoculated with the pathogen and maintained under controlled environmental conditions. A total number of 670 ramets were assessed, distributed in 10 populations, with a total of 47 families, 2 to 5 half-sibs per family, and 3–7 ramets per clone. High genetic variation was found at the three hierarchical levels studied: population, family and clone, being both additive and non-additive effects important. Narrow-sense and broad-sense heritability estimates were relatively high, with respective values of 0.43–0.58 and 0.51–0.8, depending on the resistance traits measured (lesion length, lesion length rate, time to wilting, and survival). These values suggest the species' high capacity of evolutionary response to the F. circinatum pathogen. A population originated in Northern Spain was the most resistant, while another from Morocco was the most susceptible. The total number of plants that did not show lesion development or presented a small lesion (length<30 mm) was 224 out of 670, indicating a high proportion of resistant trees in the offspring within the analyzed populations. We found large differences among populations and considerable genetic variation within populations, which should allow, through natural or artificial selection, the successful adaptation of maritime pine to pitch canker disease. PMID:25500822

  15. Adaptive potential of maritime pine (Pinus pinaster) populations to the emerging pitch canker pathogen, Fusarium circinatum.

    PubMed

    Elvira-Recuenco, Margarita; Iturritxa, Eugenia; Majada, Juan; Alia, Ricardo; Raposo, Rosa

    2014-01-01

    There is a concern on how emerging pests and diseases will affect the distribution range and adaptability of their host species, especially due to different conditions derived from climate change and growing globalization. Fusarium circinatum, which causes pitch canker disease in Pinus species, is an exotic pathogen of recent introduction in Spain that threatens its maritime pine (P. pinaster) stands. To predict the impact this disease will have on the species, we examine host resistance traits and their genetic architecture. Resistance phenotyping was done in a clonal provenance/progeny trial, using three-year-old cuttings artificially inoculated with the pathogen and maintained under controlled environmental conditions. A total number of 670 ramets were assessed, distributed in 10 populations, with a total of 47 families, 2 to 5 half-sibs per family, and 3-7 ramets per clone. High genetic variation was found at the three hierarchical levels studied: population, family and clone, being both additive and non-additive effects important. Narrow-sense and broad-sense heritability estimates were relatively high, with respective values of 0.43-0.58 and 0.51-0.8, depending on the resistance traits measured (lesion length, lesion length rate, time to wilting, and survival). These values suggest the species' high capacity of evolutionary response to the F. circinatum pathogen. A population originated in Northern Spain was the most resistant, while another from Morocco was the most susceptible. The total number of plants that did not show lesion development or presented a small lesion (length<30 mm) was 224 out of 670, indicating a high proportion of resistant trees in the offspring within the analyzed populations. We found large differences among populations and considerable genetic variation within populations, which should allow, through natural or artificial selection, the successful adaptation of maritime pine to pitch canker disease.

  16. Handling Qualities Evaluations of Low Complexity Model Reference Adaptive Controllers for Reduced Pitch and Roll Damping Scenarios

    NASA Technical Reports Server (NTRS)

    Hanson, Curt; Schaefer, Jacob; Burken, John J.; Johnson, Marcus; Nguyen, Nhan

    2011-01-01

    National Aeronautics and Space Administration (NASA) researchers have conducted a series of flight experiments designed to study the effects of varying levels of adaptive controller complexity on the performance and handling qualities of an aircraft under various simulated failure or damage conditions. A baseline, nonlinear dynamic inversion controller was augmented with three variations of a model reference adaptive control design. The simplest design consisted of a single adaptive parameter in each of the pitch and roll axes computed using a basic gradient-based update law. A second design was built upon the first by increasing the complexity of the update law. The third and most complex design added an additional adaptive parameter to each axis. Flight tests were conducted using NASA s Full-scale Advanced Systems Testbed, a highly modified F-18 aircraft that contains a research flight control system capable of housing advanced flight controls experiments. Each controller was evaluated against a suite of simulated failures and damage ranging from destabilization of the pitch and roll axes to significant coupling between the axes. Two pilots evaluated the three adaptive controllers as well as the non-adaptive baseline controller in a variety of dynamic maneuvers and precision flying tasks designed to uncover potential deficiencies in the handling qualities of the aircraft, and adverse interactions between the pilot and the adaptive controllers. The work was completed as part of the Integrated Resilient Aircraft Control Project under NASA s Aviation Safety Program.

  17. Field testing of feedforward collective pitch control on the CART2 using a nacelle-based Lidar scanner

    DOE PAGES

    Schlipf, David; Fleming, Paul; Haizmann, Florian; Scholbrock, Andrew; Hofsass, Martin; Wright, Alan; Cheng, Po Wen

    2014-01-01

    This work presents the results from a field test of LIDAR assisted collective pitch control using a scanning LIDAR device installed on the nacelle of a mid-scale research turbine. A nonlinear feedforward controller is extended by an adaptive filter to remove all uncorrelated frequencies of the wind speed measurement to avoid unnecessary control action. Positive effects on the rotor speed regulation as well as on tower, blade and shaft loads have been observed in the case that the previous measured correlation and timing between the wind preview and the turbine reaction are accomplish. The feedforward controller had negative impact, whenmore » the LIDAR measurement was disturbed by obstacles in front of the turbine. This work proves, that LIDAR is valuable tool for wind turbine control not only in simulations but also under real conditions. Moreover, the paper shows that further understanding of the relationship between the wind measurement and the turbine reaction is crucial to improve LIDAR assisted control of wind turbines.« less

  18. Adaptive-network models of collective dynamics

    NASA Astrophysics Data System (ADS)

    Zschaler, G.

    2012-09-01

    Complex systems can often be modelled as networks, in which their basic units are represented by abstract nodes and the interactions among them by abstract links. This network of interactions is the key to understanding emergent collective phenomena in such systems. In most cases, it is an adaptive network, which is defined by a feedback loop between the local dynamics of the individual units and the dynamical changes of the network structure itself. This feedback loop gives rise to many novel phenomena. Adaptive networks are a promising concept for the investigation of collective phenomena in different systems. However, they also present a challenge to existing modelling approaches and analytical descriptions due to the tight coupling between local and topological degrees of freedom. In this work, which is essentially my PhD thesis, I present a simple rule-based framework for the investigation of adaptive networks, using which a wide range of collective phenomena can be modelled and analysed from a common perspective. In this framework, a microscopic model is defined by the local interaction rules of small network motifs, which can be implemented in stochastic simulations straightforwardly. Moreover, an approximate emergent-level description in terms of macroscopic variables can be derived from the microscopic rules, which we use to analyse the system's collective and long-term behaviour by applying tools from dynamical systems theory. We discuss three adaptive-network models for different collective phenomena within our common framework. First, we propose a novel approach to collective motion in insect swarms, in which we consider the insects' adaptive interaction network instead of explicitly tracking their positions and velocities. We capture the experimentally observed onset of collective motion qualitatively in terms of a bifurcation in this non-spatial model. We find that three-body interactions are an essential ingredient for collective motion to emerge

  19. Pitch perception.

    PubMed

    Oxenham, Andrew J

    2012-09-26

    Pitch is one of the primary auditory sensations and plays a defining role in music, speech, and auditory scene analysis. Although the main physical correlate of pitch is acoustic periodicity, or repetition rate, there are many interactions that complicate the relationship between the physical stimulus and the perception of pitch. In particular, the effects of other acoustic parameters on pitch judgments, and the complex interactions between perceptual organization and pitch, have uncovered interesting perceptual phenomena that should help to reveal the underlying neural mechanisms. PMID:23015422

  20. Context-specific adaptation of the gain of the oculomotor response to lateral translation using roll and pitch head tilts as contexts

    NASA Technical Reports Server (NTRS)

    Shelhamer, Mark; Peng, Grace C Y.; Ramat, Stefano; Patel, Vivek

    2002-01-01

    Previous studies established that vestibular and oculomotor behaviors can have two adapted states (e.g., gain) simultaneously, and that a context cue (e.g., vertical eye position) can switch between the two states. The present study examined this phenomenon of context-specific adaptation for the oculomotor response to interaural translation (which we term "linear vestibulo-ocular reflex" or LVOR even though it may have extravestibular components). Subjects sat upright on a linear sled and were translated at 0.7 Hz and 0.3 gpeak acceleration while a visual-vestibular mismatch paradigm was used to adaptively increase (x2) or decrease (x0) the gain of the LVOR. In each experimental session, gain increase was asked for in one context, and gain decrease in another context. Testing in darkness with steps and sines before and after adaptation, in each context, assessed the extent to which the context itself could recall the gain state that was imposed in that context during adaptation. Two different contexts were used: head pitch (26 degrees forward and backward) and head roll (26 degrees or 45 degrees, right and left). Head roll tilt worked well as a context cue: with the head rolled to the right the LVOR could be made to have a higher gain than with the head rolled to the left. Head pitch tilt was less effective as a context cue. This suggests that the more closely related a context cue is to the response being adapted, the more effective it is.

  1. Particle Swarm Based Collective Searching Model for Adaptive Environment

    SciTech Connect

    Cui, Xiaohui; Patton, Robert M; Potok, Thomas E; Treadwell, Jim N

    2008-01-01

    This report presents a pilot study of an integration of particle swarm algorithm, social knowledge adaptation and multi-agent approaches for modeling the collective search behavior of self-organized groups in an adaptive environment. The objective of this research is to apply the particle swarm metaphor as a model of social group adaptation for the dynamic environment and to provide insight and understanding of social group knowledge discovering and strategic searching. A new adaptive environment model, which dynamically reacts to the group collective searching behaviors, is proposed in this research. The simulations in the research indicate that effective communication between groups is not the necessary requirement for whole self-organized groups to achieve the efficient collective searching behavior in the adaptive environment.

  2. Particle Swarm Based Collective Searching Model for Adaptive Environment

    SciTech Connect

    Cui, Xiaohui; Patton, Robert M; Potok, Thomas E; Treadwell, Jim N

    2007-01-01

    This report presents a pilot study of an integration of particle swarm algorithm, social knowledge adaptation and multi-agent approaches for modeling the collective search behavior of self-organized groups in an adaptive environment. The objective of this research is to apply the particle swarm metaphor as a model of social group adaptation for the dynamic environment and to provide insight and understanding of social group knowledge discovering and strategic searching. A new adaptive environment model, which dynamically reacts to the group collective searching behaviors, is proposed in this research. The simulations in the research indicate that effective communication between groups is not the necessary requirement for whole self-organized groups to achieve the efficient collective searching behavior in the adaptive environment.

  3. Consonance and pitch.

    PubMed

    McLachlan, Neil; Marco, David; Light, Maria; Wilson, Sarah

    2013-11-01

    To date, no consensus exists in the literature as to theories of consonance and dissonance. Experimental data collected over the last century have raised questions about the dominant theories that are based on frequency relationships between the harmonics of music chords. This study provides experimental evidence that strongly challenges these theories and suggests a new theory of dissonance based on relationships between pitch perception and recognition. Experiment 1 shows that dissonance does not increase with increasing numbers of harmonics in chords as predicted by Helmholtz's (1863/1954) roughness theory, nor does it increase with fewer pitch-matching errors as predicted by Stumpf's (1898) tonal fusion theory. Dissonance was strongly correlated with pitch-matching error for chords, which in turn was reduced by chord familiarity and greater music training. This led to the proposition that long-term memory templates for common chords assist the perception of pitches in chords by providing an estimate of the chord intervals from spectral information. When recognition mechanisms based on these templates fail, the spectral pitch estimate is inconsistent with the period of the waveform, leading to cognitive incongruence and the negative affect of dissonance. The cognitive incongruence theory of dissonance was rigorously tested in Experiment 2, in which nonmusicians were trained to match the pitches of a random selection of 2-pitch chords. After 10 training sessions, they rated the chords they had learned to pitch match as less dissonant than the unlearned chords, irrespective of their tuning, providing strong support for a cognitive mechanism of dissonance.

  4. Linking Individual and Collective Behavior in Adaptive Social Networks.

    PubMed

    Pinheiro, Flávio L; Santos, Francisco C; Pacheco, Jorge M

    2016-03-25

    Adaptive social structures are known to promote the evolution of cooperation. However, up to now the characterization of the collective, population-wide dynamics resulting from the self-organization of individual strategies on a coevolving, adaptive network has remained unfeasible. Here we establish a (reversible) link between individual (micro)behavior and collective (macro)behavior for coevolutionary processes. We demonstrate that an adaptive network transforms a two-person social dilemma locally faced by individuals into a collective dynamics that resembles that associated with an N-person coordination game, whose characterization depends sensitively on the relative time scales between the entangled behavioral and network evolutions. In particular, we show that the faster the relative rate of adaptation of the network, the smaller the critical fraction of cooperators required for cooperation to prevail, thus establishing a direct link between network adaptation and the evolution of cooperation. The framework developed here is general and may be readily applied to other dynamical processes occurring on adaptive networks, notably, the spreading of contagious diseases or the diffusion of innovations.

  5. Linking Individual and Collective Behavior in Adaptive Social Networks

    NASA Astrophysics Data System (ADS)

    Pinheiro, Flávio L.; Santos, Francisco C.; Pacheco, Jorge M.

    2016-03-01

    Adaptive social structures are known to promote the evolution of cooperation. However, up to now the characterization of the collective, population-wide dynamics resulting from the self-organization of individual strategies on a coevolving, adaptive network has remained unfeasible. Here we establish a (reversible) link between individual (micro)behavior and collective (macro)behavior for coevolutionary processes. We demonstrate that an adaptive network transforms a two-person social dilemma locally faced by individuals into a collective dynamics that resembles that associated with an N -person coordination game, whose characterization depends sensitively on the relative time scales between the entangled behavioral and network evolutions. In particular, we show that the faster the relative rate of adaptation of the network, the smaller the critical fraction of cooperators required for cooperation to prevail, thus establishing a direct link between network adaptation and the evolution of cooperation. The framework developed here is general and may be readily applied to other dynamical processes occurring on adaptive networks, notably, the spreading of contagious diseases or the diffusion of innovations.

  6. Adaptive robust control of a class of non-affine variable-speed variable-pitch wind turbines with unmodeled dynamics.

    PubMed

    Bagheri, Pedram; Sun, Qiao

    2016-07-01

    In this paper, a novel synthesis of Nussbaum-type functions, and an adaptive radial-basis function neural network is proposed to design controllers for variable-speed, variable-pitch wind turbines. Dynamic equations of the wind turbine are highly nonlinear, uncertain, and affected by unknown disturbance sources. Furthermore, the dynamic equations are non-affine with respect to the pitch angle, which is a control input. To address these problems, a Nussbaum-type function, along with a dynamic control law are adopted to resolve the non-affine nature of the equations. Moreover, an adaptive radial-basis function neural network is designed to approximate non-parametric uncertainties. Further, the closed-loop system is made robust to unknown disturbance sources, where no prior knowledge of disturbance bound is assumed in advance. Finally, the Lyapunov stability analysis is conducted to show the stability of the entire closed-loop system. In order to verify analytical results, a simulation is presented and the results are compared to both a PI and an existing adaptive controllers.

  7. Adaptive robust control of a class of non-affine variable-speed variable-pitch wind turbines with unmodeled dynamics.

    PubMed

    Bagheri, Pedram; Sun, Qiao

    2016-07-01

    In this paper, a novel synthesis of Nussbaum-type functions, and an adaptive radial-basis function neural network is proposed to design controllers for variable-speed, variable-pitch wind turbines. Dynamic equations of the wind turbine are highly nonlinear, uncertain, and affected by unknown disturbance sources. Furthermore, the dynamic equations are non-affine with respect to the pitch angle, which is a control input. To address these problems, a Nussbaum-type function, along with a dynamic control law are adopted to resolve the non-affine nature of the equations. Moreover, an adaptive radial-basis function neural network is designed to approximate non-parametric uncertainties. Further, the closed-loop system is made robust to unknown disturbance sources, where no prior knowledge of disturbance bound is assumed in advance. Finally, the Lyapunov stability analysis is conducted to show the stability of the entire closed-loop system. In order to verify analytical results, a simulation is presented and the results are compared to both a PI and an existing adaptive controllers. PMID:27157849

  8. Adaptive network models of collective decision making in swarming systems.

    PubMed

    Chen, Li; Huepe, Cristián; Gross, Thilo

    2016-08-01

    We consider a class of adaptive network models where links can only be created or deleted between nodes in different states. These models provide an approximate description of a set of systems where nodes represent agents moving in physical or abstract space, the state of each node represents the agent's heading direction, and links indicate mutual awareness. We show analytically that the adaptive network description captures a phase transition to collective motion in some swarming systems, such as the Vicsek model, and that the properties of this transition are determined by the number of states (discrete heading directions) that can be accessed by each agent.

  9. Adaptive network models of collective decision making in swarming systems

    NASA Astrophysics Data System (ADS)

    Chen, Li; Huepe, Cristián; Gross, Thilo

    2016-08-01

    We consider a class of adaptive network models where links can only be created or deleted between nodes in different states. These models provide an approximate description of a set of systems where nodes represent agents moving in physical or abstract space, the state of each node represents the agent's heading direction, and links indicate mutual awareness. We show analytically that the adaptive network description captures a phase transition to collective motion in some swarming systems, such as the Vicsek model, and that the properties of this transition are determined by the number of states (discrete heading directions) that can be accessed by each agent.

  10. Adaptive network models of collective decision making in swarming systems.

    PubMed

    Chen, Li; Huepe, Cristián; Gross, Thilo

    2016-08-01

    We consider a class of adaptive network models where links can only be created or deleted between nodes in different states. These models provide an approximate description of a set of systems where nodes represent agents moving in physical or abstract space, the state of each node represents the agent's heading direction, and links indicate mutual awareness. We show analytically that the adaptive network description captures a phase transition to collective motion in some swarming systems, such as the Vicsek model, and that the properties of this transition are determined by the number of states (discrete heading directions) that can be accessed by each agent. PMID:27627342

  11. Extending wind turbine operational conditions; a comparison of set point adaptation and LQG individual pitch control for highly turbulent wind

    NASA Astrophysics Data System (ADS)

    Engels, W. P.; Subhani, S.; Zafar, H.; Savenije, F.

    2014-06-01

    Extreme wind conditions can cause excessive loading on the turbine. This not only results in higher design loads, but when these conditions occur in practice, will also result in higher maintenance cost. Although there are already effective methods of dealing with gusts, other extreme conditions should also be examined. More specifically, extreme turbulence conditions (e.g. those specified by design load case 1.3 in IEC61400-1 ed. 3) require special attention as they can lead to design-driving extreme loads on blades, tower and other wind turbine components. This paper examines two methods to deal with extreme loads in a case of extreme turbulent wind. One method is derating the turbine, the other method is an individual pitch control (IPC) algorithm. Derating of the turbine can be achieved in two ways, one is changing the rated torque, the other is changing the rated rotor speed. The effect of these methods on fatigue loads and extreme loads is examined. Non-linear aero-elastic simulations using Phatas, show that reducing the rated rotor speed is far more effective at reducing the loads than reducing torque. Then, the IPC algorithm is proposed. This algorithm is a linear quadratic Gaussian (LQG) controller based on a time invariant model, defined in the fixed reference frame that includes the first tower and blade modes. Because this method takes the dynamics of the system into account more than conventional IPC control, it is expected that these loads dealt with more effectively, when they are particularly relevant. It is expected that in extreme turbulent the blade and tower dynamics are indeed more relevant. The effect of this algorithm on fatigue loads and pitch effort is examined and compared with the fatigue loads and pitch effort of reference IPC. Finally, the methods are compared in non-linear aero-elastic simulations with extreme turbulent wind.

  12. Adaptive network dynamics and evolution of leadership in collective migration

    NASA Astrophysics Data System (ADS)

    Pais, Darren; Leonard, Naomi E.

    2014-01-01

    The evolution of leadership in migratory populations depends not only on costs and benefits of leadership investments but also on the opportunities for individuals to rely on cues from others through social interactions. We derive an analytically tractable adaptive dynamic network model of collective migration with fast timescale migration dynamics and slow timescale adaptive dynamics of individual leadership investment and social interaction. For large populations, our analysis of bifurcations with respect to investment cost explains the observed hysteretic effect associated with recovery of migration in fragmented environments. Further, we show a minimum connectivity threshold above which there is evolutionary branching into leader and follower populations. For small populations, we show how the topology of the underlying social interaction network influences the emergence and location of leaders in the adaptive system. Our model and analysis can be extended to study the dynamics of collective tracking or collective learning more generally. Thus, this work may inform the design of robotic networks where agents use decentralized strategies that balance direct environmental measurements with agent interactions.

  13. Adaptive collective foraging in groups with conflicting nutritional needs.

    PubMed

    Senior, Alistair M; Lihoreau, Mathieu; Charleston, Michael A; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J

    2016-04-01

    Collective foraging, based on positive feedback and quorum responses, is believed to improve the foraging efficiency of animals. Nutritional models suggest that social information transfer increases the ability of foragers with closely aligned nutritional needs to find nutrients and maintain a balanced diet. However, whether or not collective foraging is adaptive in a heterogeneous group composed of individuals with differing nutritional needs is virtually unexplored. Here we develop an evolutionary agent-based model using concepts of nutritional ecology to address this knowledge gap. Our aim was to evaluate how collective foraging, mediated by social retention on foods, can improve nutrient balancing in individuals with different requirements. The model suggests that in groups where inter-individual nutritional needs are unimodally distributed, high levels of collective foraging yield optimal individual fitness by reducing search times that result from moving between nutritionally imbalanced foods. However, where nutritional needs are highly bimodal (e.g. where the requirements of males and females differ) collective foraging is selected against, leading to group fission. In this case, additional mechanisms such as assortative interactions can coevolve to allow collective foraging by subgroups of individuals with aligned requirements. Our findings indicate that collective foraging is an efficient strategy for nutrient regulation in animals inhabiting complex nutritional environments and exhibiting a range of social forms.

  14. Adaptive collective foraging in groups with conflicting nutritional needs

    PubMed Central

    Senior, Alistair M.; Lihoreau, Mathieu; Charleston, Michael A.; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J.

    2016-01-01

    Collective foraging, based on positive feedback and quorum responses, is believed to improve the foraging efficiency of animals. Nutritional models suggest that social information transfer increases the ability of foragers with closely aligned nutritional needs to find nutrients and maintain a balanced diet. However, whether or not collective foraging is adaptive in a heterogeneous group composed of individuals with differing nutritional needs is virtually unexplored. Here we develop an evolutionary agent-based model using concepts of nutritional ecology to address this knowledge gap. Our aim was to evaluate how collective foraging, mediated by social retention on foods, can improve nutrient balancing in individuals with different requirements. The model suggests that in groups where inter-individual nutritional needs are unimodally distributed, high levels of collective foraging yield optimal individual fitness by reducing search times that result from moving between nutritionally imbalanced foods. However, where nutritional needs are highly bimodal (e.g. where the requirements of males and females differ) collective foraging is selected against, leading to group fission. In this case, additional mechanisms such as assortative interactions can coevolve to allow collective foraging by subgroups of individuals with aligned requirements. Our findings indicate that collective foraging is an efficient strategy for nutrient regulation in animals inhabiting complex nutritional environments and exhibiting a range of social forms. PMID:27152206

  15. Adaptive collective foraging in groups with conflicting nutritional needs.

    PubMed

    Senior, Alistair M; Lihoreau, Mathieu; Charleston, Michael A; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J

    2016-04-01

    Collective foraging, based on positive feedback and quorum responses, is believed to improve the foraging efficiency of animals. Nutritional models suggest that social information transfer increases the ability of foragers with closely aligned nutritional needs to find nutrients and maintain a balanced diet. However, whether or not collective foraging is adaptive in a heterogeneous group composed of individuals with differing nutritional needs is virtually unexplored. Here we develop an evolutionary agent-based model using concepts of nutritional ecology to address this knowledge gap. Our aim was to evaluate how collective foraging, mediated by social retention on foods, can improve nutrient balancing in individuals with different requirements. The model suggests that in groups where inter-individual nutritional needs are unimodally distributed, high levels of collective foraging yield optimal individual fitness by reducing search times that result from moving between nutritionally imbalanced foods. However, where nutritional needs are highly bimodal (e.g. where the requirements of males and females differ) collective foraging is selected against, leading to group fission. In this case, additional mechanisms such as assortative interactions can coevolve to allow collective foraging by subgroups of individuals with aligned requirements. Our findings indicate that collective foraging is an efficient strategy for nutrient regulation in animals inhabiting complex nutritional environments and exhibiting a range of social forms. PMID:27152206

  16. Pitch-Learning Algorithm For Speech Encoders

    NASA Technical Reports Server (NTRS)

    Bhaskar, B. R. Udaya

    1988-01-01

    Adaptive algorithm detects and corrects errors in sequence of estimates of pitch period of speech. Algorithm operates in conjunction with techniques used to estimate pitch period. Used in such parametric and hybrid speech coders as linear predictive coders and adaptive predictive coders.

  17. Optimizing Photon Collection from Point Sources with Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Hill, Alexander; Hervas, David; Nash, Joseph; Graham, Martin; Burgers, Alexander; Paudel, Uttam; Steel, Duncan; Kwiat, Paul

    2015-05-01

    Collection of light from point-like sources is typically poor due to the optical aberrations present with very high numerical-aperture optics. In the case of quantum dots, the emitted mode is nonisotropic and may be quite difficult to couple into single- or even few-mode fiber. Wavefront aberrations can be corrected using adaptive optics at the classical level by analyzing the wavefront directly (e.g., with a Shack-Hartmann sensor); however, these techniques are not feasible at the single-photon level. We present a new technique for adaptive optics with single photons using a genetic algorithm to optimize collection from point emitters with a deformable mirror. We first demonstrate our technique for improving coupling from a subwavelength pinhole, which simulates isotropic emission from a point source. We then apply our technique in situto InAs/GaAs quantum dots, obtaining coupling increases of up to 50% even in the presence of an artificial source of drift.

  18. Evolution of collective action in adaptive social structures.

    PubMed

    Moreira, João A; Pacheco, Jorge M; Santos, Francisco C

    2013-01-01

    Many problems in nature can be conveniently framed as a problem of evolution of collective cooperative behaviour, often modelled resorting to the tools of evolutionary game theory in well-mixed populations, combined with an appropriate N-person dilemma. Yet, the well-mixed assumption fails to describe the population dynamics whenever individuals have a say in deciding which groups they will participate. Here we propose a simple model in which dynamical group formation is described as a result of a topological evolution of a social network of interactions. We show analytically how evolutionary dynamics under public goods games in finite adaptive networks can be effectively transformed into a N-Person dilemma involving both coordination and co-existence. Such dynamics would be impossible to foresee from more conventional 2-person interactions as well as from descriptions based on infinite, well-mixed populations. Finally, we show how stochastic effects help rendering cooperation viable, promoting polymorphic configurations in which cooperators prevail.

  19. An examination of slo-pitch pitching trajectories.

    PubMed

    Wu, Tom; Gervais, Pierre

    2008-01-01

    Many slo-pitch coaches and players believe that generating spin on a ball can affect its trajectory. The influence of air resistance on a ball that is thrown at a moderate speed and spin is unclear. The aim of this study was to examine the influence of spin on the ball's trajectory in slo-pitch pitching using both experimental results and ball flight simulations. Fourteen pitchers participated in the study, each of whom threw five backspin and topspin pitches each. Data were collected using standard three-dimensional videography. The horizontal velocity, vertical velocity, angular velocity, release height, and horizontal displacement of the backspin pitches were significantly higher than those of the topspin pitches. The ball flight simulations were developed to examine the influence of the ball spin, and it was concluded that the spin of the ball had a significant effect on the ball's vertical and horizontal displacements. Furthermore, our results suggest that a backspin pitch that reaches the maximum height allowable and lands in the front edge of the strike zone has the steepest slope. The present results add to our understanding of projectile motion and aerodynamics.

  20. 77 FR 323 - Agency Information Collection (Application in Acquiring Specially Adapted Housing or Special Home...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-04

    ... Adaptation Grant) Activity Under OMB Review AGENCY: Veterans Benefits Administration, Department of Veterans... Adapted Housing or Special Home Adaptation Grant, VA Form 26-4555. OMB Control Number: 2900-0132. Type of... special home adaptation grant. VA will use the data collected to determine the veteran's eligibility....

  1. 76 FR 44402 - Proposed Information Collection (Application for Automobile or Other Conveyance and Adaptive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... AFFAIRS Proposed Information Collection (Application for Automobile or Other Conveyance and Adaptive...' eligibility for automobile adaptation equipment or other conveyance allowance. DATES: Written comments and... techniques or the use of other forms of information technology. Title: Application for Automobile or...

  2. Softball Pitching and Injury.

    PubMed

    Lear, Aaron; Patel, Niraj

    2016-01-01

    The windmill softball pitch generates considerable forces about the athlete's shoulder and elbow. The injury pattern of softball pitchers seems to be primarily overuse injury, and they seem not to suffer the same volume of injury that baseball pitchers do. This article will explore softball pitching techniques, kinetics and kinematics of the windmill pitch, epidemiology of softball pitchers, and discuss possible etiologies of softball pitching injuries.

  3. Softball Pitching and Injury.

    PubMed

    Lear, Aaron; Patel, Niraj

    2016-01-01

    The windmill softball pitch generates considerable forces about the athlete's shoulder and elbow. The injury pattern of softball pitchers seems to be primarily overuse injury, and they seem not to suffer the same volume of injury that baseball pitchers do. This article will explore softball pitching techniques, kinetics and kinematics of the windmill pitch, epidemiology of softball pitchers, and discuss possible etiologies of softball pitching injuries. PMID:27618243

  4. Adaptive Control of a Utility-Scale Wind Turbine Operating in Region 3

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Balas, Mark J.; Wright, Alan D.

    2009-01-01

    Adaptive control techniques are well suited to nonlinear applications, such as wind turbines, which are difficult to accurately model and which have effects from poorly known operating environments. The turbulent and unpredictable conditions in which wind turbines operate create many challenges for their operation. In this paper, we design an adaptive collective pitch controller for a high-fidelity simulation of a utility scale, variable-speed horizontal axis wind turbine. The objective of the adaptive pitch controller in Region 3 is to regulate generator speed and reject step disturbances. The control objective is accomplished by collectively pitching the turbine blades. We use an extension of the Direct Model Reference Adaptive Control (DMRAC) approach to track a reference point and to reject persistent disturbances. The turbine simulation models the Controls Advanced Research Turbine (CART) of the National Renewable Energy Laboratory in Golden, Colorado. The CART is a utility-scale wind turbine which has a well-developed and extensively verified simulator. The adaptive collective pitch controller for Region 3 was compared in simulations with a bas celliansesical Proportional Integrator (PI) collective pitch controller. In the simulations, the adaptive pitch controller showed improved speed regulation in Region 3 when compared with the baseline PI pitch controller and it demonstrated robustness to modeling errors.

  5. Memory for pitch in congenital amusia: beyond a fine-grained pitch discrimination problem.

    PubMed

    Williamson, Victoria Jane; Stewart, Lauren

    2010-08-01

    Congenital amusia is a disorder that affects the perception and production of music. While amusia has been associated with deficits in pitch discrimination, several reports suggest that memory deficits also play a role. The present study investigated short-term memory span for pitch-based and verbal information in 14 individuals with amusia and matched controls. Analogous adaptive-tracking procedures were used to generate tone and digit spans using stimuli that exceeded psychophysically measured pitch perception thresholds. Individuals with amusia had significantly smaller tone spans, whereas their digits spans were a similar size to those of controls. An automated operation span task was used to determine working memory capacity. Working memory deficits were seen in only a small subgroup of individuals with amusia. These findings support the existence of a pitch-specific component within short-term memory and suggest that congenital amusia is more than a disorder of fine-grained pitch discrimination.

  6. Adaptive Sampling-Based Information Collection for Wireless Body Area Networks.

    PubMed

    Xu, Xiaobin; Zhao, Fang; Wang, Wendong; Tian, Hui

    2016-08-31

    To collect important health information, WBAN applications typically sense data at a high frequency. However, limited by the quality of wireless link, the uploading of sensed data has an upper frequency. To reduce upload frequency, most of the existing WBAN data collection approaches collect data with a tolerable error. These approaches can guarantee precision of the collected data, but they are not able to ensure that the upload frequency is within the upper frequency. Some traditional sampling based approaches can control upload frequency directly, however, they usually have a high loss of information. Since the core task of WBAN applications is to collect health information, this paper aims to collect optimized information under the limitation of upload frequency. The importance of sensed data is defined according to information theory for the first time. Information-aware adaptive sampling is proposed to collect uniformly distributed data. Then we propose Adaptive Sampling-based Information Collection (ASIC) which consists of two algorithms. An adaptive sampling probability algorithm is proposed to compute sampling probabilities of different sensed values. A multiple uniform sampling algorithm provides uniform samplings for values in different intervals. Experiments based on a real dataset show that the proposed approach has higher performance in terms of data coverage and information quantity. The parameter analysis shows the optimized parameter settings and the discussion shows the underlying reason of high performance in the proposed approach.

  7. Adaptive Sampling-Based Information Collection for Wireless Body Area Networks

    PubMed Central

    Xu, Xiaobin; Zhao, Fang; Wang, Wendong; Tian, Hui

    2016-01-01

    To collect important health information, WBAN applications typically sense data at a high frequency. However, limited by the quality of wireless link, the uploading of sensed data has an upper frequency. To reduce upload frequency, most of the existing WBAN data collection approaches collect data with a tolerable error. These approaches can guarantee precision of the collected data, but they are not able to ensure that the upload frequency is within the upper frequency. Some traditional sampling based approaches can control upload frequency directly, however, they usually have a high loss of information. Since the core task of WBAN applications is to collect health information, this paper aims to collect optimized information under the limitation of upload frequency. The importance of sensed data is defined according to information theory for the first time. Information-aware adaptive sampling is proposed to collect uniformly distributed data. Then we propose Adaptive Sampling-based Information Collection (ASIC) which consists of two algorithms. An adaptive sampling probability algorithm is proposed to compute sampling probabilities of different sensed values. A multiple uniform sampling algorithm provides uniform samplings for values in different intervals. Experiments based on a real dataset show that the proposed approach has higher performance in terms of data coverage and information quantity. The parameter analysis shows the optimized parameter settings and the discussion shows the underlying reason of high performance in the proposed approach. PMID:27589758

  8. Adaptive Sampling-Based Information Collection for Wireless Body Area Networks.

    PubMed

    Xu, Xiaobin; Zhao, Fang; Wang, Wendong; Tian, Hui

    2016-01-01

    To collect important health information, WBAN applications typically sense data at a high frequency. However, limited by the quality of wireless link, the uploading of sensed data has an upper frequency. To reduce upload frequency, most of the existing WBAN data collection approaches collect data with a tolerable error. These approaches can guarantee precision of the collected data, but they are not able to ensure that the upload frequency is within the upper frequency. Some traditional sampling based approaches can control upload frequency directly, however, they usually have a high loss of information. Since the core task of WBAN applications is to collect health information, this paper aims to collect optimized information under the limitation of upload frequency. The importance of sensed data is defined according to information theory for the first time. Information-aware adaptive sampling is proposed to collect uniformly distributed data. Then we propose Adaptive Sampling-based Information Collection (ASIC) which consists of two algorithms. An adaptive sampling probability algorithm is proposed to compute sampling probabilities of different sensed values. A multiple uniform sampling algorithm provides uniform samplings for values in different intervals. Experiments based on a real dataset show that the proposed approach has higher performance in terms of data coverage and information quantity. The parameter analysis shows the optimized parameter settings and the discussion shows the underlying reason of high performance in the proposed approach. PMID:27589758

  9. High coking value pitch

    SciTech Connect

    Miller, Douglas J.; Chang, Ching-Feng; Lewis, Irwin C.; Lewis, Richard T.

    2014-06-10

    A high coking value pitch prepared from coal tar distillate and has a low softening point and a high carbon value while containing substantially no quinoline insolubles is disclosed. The pitch can be used as an impregnant or binder for producing carbon and graphite articles.

  10. The mechanics of pitching.

    PubMed

    Braatz, J H; Gogia, P P

    1987-01-01

    The mechanical aspects of delivering a baseball pitch are presented. To organize the sequence of events involved in pitching, the kinematics are.explained by the phases the pitcher passes through during the delivery. There are four categories of delivering a pitch. Each type of delivery has its own peculiar trunk actions and results in a definite and distinct axis of motion about which the moment arm rotates to provide torque to the pitched ball. Understanding the factors involved in formation of the moment arm and its relationship to the method of delivery enhances the therapist's ability to deal effectively with the total player when treating injuries from pitching or throwing a ball. J Orthop Sports Phys Ther 1987;9(2):56-69.

  11. A Phase-Adaptive Garbage Collector Using Dynamic Heap Partitioning and Opportunistic Collection

    NASA Astrophysics Data System (ADS)

    Roh, Yangwoo; Kim, Jaesub; Park, Kyu Ho

    Applications usually have their own phases in heap memory usage. The traditional garbage collector fails to match various application phases because the same heuristic on the object behavior is used throughout the entire execution. This paper introduces a phase-adaptive garbage collector which reorganizes the heap layout and adjusts the invocation time of the garbage collection according to the phases. The proposed collector identifies phases by detecting the application methods strongly related to the phase boundaries. The experimental results show that the proposed phase-adaptive collector successfully recognizes application phases and improves the garbage collection time by as much as 41%.

  12. Collective Signal Processing in Cluster Chemotaxis: Roles of Adaptation, Amplification, and Co-attraction in Collective Guidance.

    PubMed

    Camley, Brian A; Zimmermann, Juliane; Levine, Herbert; Rappel, Wouter-Jan

    2016-07-01

    Single eukaryotic cells commonly sense and follow chemical gradients, performing chemotaxis. Recent experiments and theories, however, show that even when single cells do not chemotax, clusters of cells may, if their interactions are regulated by the chemoattractant. We study this general mechanism of "collective guidance" computationally with models that integrate stochastic dynamics for individual cells with biochemical reactions within the cells, and diffusion of chemical signals between the cells. We show that if clusters of cells use the well-known local excitation, global inhibition (LEGI) mechanism to sense chemoattractant gradients, the speed of the cell cluster becomes non-monotonic in the cluster's size-clusters either larger or smaller than an optimal size will have lower speed. We argue that the cell cluster speed is a crucial readout of how the cluster processes chemotactic signals; both amplification and adaptation will alter the behavior of cluster speed as a function of size. We also show that, contrary to the assumptions of earlier theories, collective guidance does not require persistent cell-cell contacts and strong short range adhesion. If cell-cell adhesion is absent, and the cluster cohesion is instead provided by a co-attraction mechanism, e.g. chemotaxis toward a secreted molecule, collective guidance may still function. However, new behaviors, such as cluster rotation, may also appear in this case. Co-attraction and adaptation allow for collective guidance that is robust to varying chemoattractant concentrations while not requiring strong cell-cell adhesion. PMID:27367541

  13. Collective Signal Processing in Cluster Chemotaxis: Roles of Adaptation, Amplification, and Co-attraction in Collective Guidance

    PubMed Central

    Camley, Brian A.; Zimmermann, Juliane; Levine, Herbert; Rappel, Wouter-Jan

    2016-01-01

    Single eukaryotic cells commonly sense and follow chemical gradients, performing chemotaxis. Recent experiments and theories, however, show that even when single cells do not chemotax, clusters of cells may, if their interactions are regulated by the chemoattractant. We study this general mechanism of “collective guidance” computationally with models that integrate stochastic dynamics for individual cells with biochemical reactions within the cells, and diffusion of chemical signals between the cells. We show that if clusters of cells use the well-known local excitation, global inhibition (LEGI) mechanism to sense chemoattractant gradients, the speed of the cell cluster becomes non-monotonic in the cluster’s size—clusters either larger or smaller than an optimal size will have lower speed. We argue that the cell cluster speed is a crucial readout of how the cluster processes chemotactic signals; both amplification and adaptation will alter the behavior of cluster speed as a function of size. We also show that, contrary to the assumptions of earlier theories, collective guidance does not require persistent cell-cell contacts and strong short range adhesion. If cell-cell adhesion is absent, and the cluster cohesion is instead provided by a co-attraction mechanism, e.g. chemotaxis toward a secreted molecule, collective guidance may still function. However, new behaviors, such as cluster rotation, may also appear in this case. Co-attraction and adaptation allow for collective guidance that is robust to varying chemoattractant concentrations while not requiring strong cell-cell adhesion. PMID:27367541

  14. Collective Signal Processing in Cluster Chemotaxis: Roles of Adaptation, Amplification, and Co-attraction in Collective Guidance.

    PubMed

    Camley, Brian A; Zimmermann, Juliane; Levine, Herbert; Rappel, Wouter-Jan

    2016-07-01

    Single eukaryotic cells commonly sense and follow chemical gradients, performing chemotaxis. Recent experiments and theories, however, show that even when single cells do not chemotax, clusters of cells may, if their interactions are regulated by the chemoattractant. We study this general mechanism of "collective guidance" computationally with models that integrate stochastic dynamics for individual cells with biochemical reactions within the cells, and diffusion of chemical signals between the cells. We show that if clusters of cells use the well-known local excitation, global inhibition (LEGI) mechanism to sense chemoattractant gradients, the speed of the cell cluster becomes non-monotonic in the cluster's size-clusters either larger or smaller than an optimal size will have lower speed. We argue that the cell cluster speed is a crucial readout of how the cluster processes chemotactic signals; both amplification and adaptation will alter the behavior of cluster speed as a function of size. We also show that, contrary to the assumptions of earlier theories, collective guidance does not require persistent cell-cell contacts and strong short range adhesion. If cell-cell adhesion is absent, and the cluster cohesion is instead provided by a co-attraction mechanism, e.g. chemotaxis toward a secreted molecule, collective guidance may still function. However, new behaviors, such as cluster rotation, may also appear in this case. Co-attraction and adaptation allow for collective guidance that is robust to varying chemoattractant concentrations while not requiring strong cell-cell adhesion.

  15. Vision contingent auditory pitch aftereffects.

    PubMed

    Teramoto, Wataru; Kobayashi, Maori; Hidaka, Souta; Sugita, Yoichi

    2013-08-01

    Visual motion aftereffects can occur contingent on arbitrary sounds. Two circles, placed side by side, were alternately presented, and the onsets were accompanied by tone bursts of high and low frequencies, respectively. After a few minutes of exposure to the visual apparent motion with the tones, a circle blinking at a fixed location was perceived as a lateral motion in the same direction as the previously exposed apparent motion (Teramoto et al. in PLoS One 5:e12255, 2010). In the present study, we attempted to reverse this contingency (pitch aftereffects contingent on visual information). Results showed that after prolonged exposure to the audio-visual stimuli, the apparent visual motion systematically affected the perceived pitch of the auditory stimuli. When the leftward apparent visual motion was paired with the high-low-frequency sequence during the adaptation phase, a test tone sequence was more frequently perceived as a high-low-pitch sequence when the leftward apparent visual motion was presented and vice versa. Furthermore, the effect was specific for the exposed visual field and did not transfer to the other side, thus ruling out an explanation in terms of simple response bias. These results suggest that new audiovisual associations can be established within a short time, and visual information processing and auditory processing can mutually influence each other. PMID:23727883

  16. Wrist kinematics during pitching. A preliminary report.

    PubMed

    Pappas, A M; Morgan, W J; Schulz, L A; Diana, R

    1995-01-01

    A computerized hand and wrist motion analysis system was modified to capture data at a rate of up to 1000 Hz. Using this system, wrist flexion and extension data were collected on five right-handed professional pitchers (75 pitches). A wrist position versus time graph was generated for each pitch. The pitch data produced a reproducible analysis of motion for the majority of the pitches regardless of pitcher. Based on the graphic display of data points, four phases of wrist motion during a pitch were identified. The first phase is the cocking phase, or the motion of the wrist as it moves into maximum extension. This is then followed by the most explosive phase, the acceleration phase, which represents ball propulsion. At ball release, the wrist progresses through flexion and there is a consistent decrease in wrist velocity, known as the deceleration phase. Finally, there is the recovery phase, or the return of the wrist toward neutral. Average values for wrist range of motion, length of phase, and angular velocity (degrees per second) were calculated for each phase of the pitch. This study represents a major step toward quantifying motion of the wrist during a pitch. The ability to quantify this motion may prove valuable in the assessment of throwing athletes after injury and rehabilitation.

  17. Octave Bias in Pitch Perception: The Influence of Pitch Height on Pitch Class Identification.

    PubMed

    Prpic, Valter; Murgia, Mauro; De Tommaso, Matteo; Boschetti, Giulia; Galmonte, Alessandra; Agostini, Tiziano

    2016-09-01

    Pitch height and pitch class are different, but strictly related, percepts of music tones. To investigate the influence of pitch height in a pitch class identification task, we systematically analyzed the errors-in terms of direction and amount-committed by a group of musicians. The aim of our study was to verify the existence of constant errors in the identification of pitch classes across consecutive octaves. Stimuli were single piano tones from the C major scale executed in two consecutive octaves. Participants showed different response patterns in the two octaves. The direction of errors revealed a constant tendency to underestimate pitch classes in the lowest octave and to overestimate pitch classes in the highest octave. Thus, pitch height showed to influence pitch class identification. We called this bias "pitch class polarization", since the same pitch class was judged to be respectively lower and higher, depending on relatively low or high pitch height. PMID:27251169

  18. Adaptation of Collective Moral Disengagement Scale into Turkish Culture for Adolescents

    ERIC Educational Resources Information Center

    Çapan, Bahtiyar Eraslan; Bakioglu, Fuad

    2016-01-01

    In this study, reliability and validity are assessed for a Turkish culture adaptation of the Collective Moral Disengagement Scale for Adolescents. The study was carried out in two stages. In the first stage, translation, exploratory factor analysis, internal consistency coefficients, and test-retest method were performed; in the second stage,…

  19. 76 FR 61779 - Agency Information Collection (Application for Automobile or Other Conveyance and Adaptive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-05

    ... AFFAIRS Agency Information Collection (Application for Automobile or Other Conveyance and Adaptive... refer to ``OMB Control No. 2900-0067.'' SUPPLEMENTARY INFORMATION: Title: Application for Automobile or..., servicepersons and their survivors complete VA Form 21-4502 to apply for automobile or other conveyance...

  20. Direct Adaptive Control of Utility-Scale Wind Turbine for Speed Regulation

    SciTech Connect

    Frost, S. A.; Balas, M. J.; Wright, A. D.

    2009-01-01

    The accurate modeling of wind turbines is an extremely challenging problem due to the tremendous complexity of the machines and the turbulent and unpredictable conditions in which they operate. Adaptive control techniques are well suited to nonlinear applications, such as wind turbines, which are difficult to accurately model and which have effects from poorly known operating environments. In this paper, we extended the direct model reference adaptive control (DMRAC) approach to track a reference point and to reject persistent disturbances. This approach was then used to design an adaptive collective pitch controller for a high-fidelity simulation of a variable-speed horizontal axis wind turbine. The objective of the adaptive pitch controller was to regulate generator speed in Region 3 and to reject step disturbances. The control objective was accomplished by collectively pitching the turbine blades. The turbine simulation models the controls advanced research turbine (CART) of the National Renewable Energy Laboratory in Golden, Colorado. The CART is a utility-scale wind turbine that has a well-developed and extensively verified simulator. This novel application of adaptive control was compared in simulations with a classical proportional integrator (PI) collective pitch controller. In the simulations, the adaptive pitch controller showed improved speed regulation in Region 3 when compared with the PI pitch controller.

  1. Propeller pitch change mechanism

    SciTech Connect

    Hora, P.

    1992-10-13

    This patent describes an aircraft propulsion system. It comprises: a first turbine carrying a first set of propeller blades; a second turbine carrying a second set of propeller blades; a gear system carried by the first turbine for changing pitch of the first set of propeller blades, which includes a pair of ring gears, both coaxial with the first turbine; a first set of planet gears which engage both ring gears and which induce pitch change when the planet gears rotate; a sun gear which drives the planet gears; a second set of planet gears which are carried by a planet gear carrier affixed to the second turbine and which drive the sun gear in order to change pitch by causing relative motion between the sung ear and the first turbine; and means for preventing a change in speed of the planet gear carrier from causing a change in pitch.

  2. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  3. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers.

    PubMed

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C; Markley, John L

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-(13)C, U-(15)N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D (1)H-(15)N and (1)H-(13)C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of (1)H, (13)C, and (15)N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use. PMID:24091140

  4. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers

    NASA Astrophysics Data System (ADS)

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C.; Markley, John L.

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-13C, U-15N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D 1H-15N and 1H-13C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of 1H, 13C, and 15N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use.

  5. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers.

    PubMed

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C; Markley, John L

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-(13)C, U-(15)N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D (1)H-(15)N and (1)H-(13)C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of (1)H, (13)C, and (15)N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use.

  6. Low melting mesophase pitches

    SciTech Connect

    Diefendorf, R.J.; Chen, S.H.

    1984-04-17

    A low melting point, low molecular weight, heptane insoluble, 1,2,4-trichlorobenzene soluble mesophase pitch useful in carbon fiber spinning as such or as a plasticizer in a carbon fiber spinning composition is obtained by heating chrysene, triphenylene or paraterphenyl as well as mixtures thereof and hydrocarbon fractions containing the same, dissolving the resulting heat treated material with 1,2,4-trichlorobenzene, and separating the insolubles, and then contacting the 1,2,4-trichlorobenzene soluble fraction with a sufficient amount of heptane to precipitate the low melting point, low molecular weight mesophase pitch.

  7. 76 FR 63354 - Proposed Information Collection (Application in Acquiring Specially Adapted Housing or Special...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... Home Adaptation Grant) Activity: Comment Request AGENCY: Veterans Benefits Administration, Department... determine a veteran's eligibility for specially adapted housing or special home adaptation grant. DATES.... Title: Application in Acquiring Specially Adapted Housing or Special Home Adaptation Grant, VA Form...

  8. Pitch features of environmental sounds

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Kang, Jian

    2016-07-01

    A number of soundscape studies have suggested the need for suitable parameters for soundscape measurement, in addition to the conventional acoustic parameters. This paper explores the applicability of pitch features that are often used in music analysis and their algorithms to environmental sounds. Based on the existing alternative pitch algorithms for simulating the perception of the auditory system and simplified algorithms for practical applications in the areas of music and speech, the applicable algorithms have been determined, considering common types of sound in everyday soundscapes. Considering a number of pitch parameters, including pitch value, pitch strength, and percentage of audible pitches over time, different pitch characteristics of various environmental sounds have been shown. Among the four sound categories, i.e. water, wind, birdsongs, and urban sounds, generally speaking, both water and wind sounds have low pitch values and pitch strengths; birdsongs have high pitch values and pitch strengths; and urban sounds have low pitch values and a relatively wide range of pitch strengths.

  9. FACTORS AFFECTING PITCH DISCRIMINATION.

    ERIC Educational Resources Information Center

    BERGAN, JOHN R.

    EFFECTS OF TONAL MEMORY OF TWO KINDS OF FACTORS WERE STUDIED. THE FACTORS WERE (1) THE CHARACTERISTICS OF STIMULI PRESENTED TO THE SUBJECT IN A PITCH IDENTIFICATION TASK, AND (2) THOSE EFFECTING THE RESPONSE THAT THE SUBJECT MAKES IN SUCH A TASK. FIVE HYPOTHESES WERE ADVANCED FOR STUDY. THE UNDERLYING ASSUMPTION WAS THAT THERE ARE IMPORTANT…

  10. Vocal Pitch Shift in Congenital Amusia (Pitch Deafness)

    ERIC Educational Resources Information Center

    Hutchins, Sean; Peretz, Isabelle

    2013-01-01

    We tested whether congenital amusics, who exhibit pitch perception deficits, nevertheless adjust the pitch of their voice in response to a sudden pitch shift applied to vocal feedback. Nine amusics and matched controls imitated their own previously-recorded speech or singing, while the online feedback they received was shifted mid-utterance by 25…

  11. Pitch based foam with particulate

    DOEpatents

    Klett, James W.

    2001-01-01

    A thermally conductive, pitch based foam composite having a particulate content. The particulate alters the mechanical characteristics of the foam without severely degrading the foam thermal conductivity. The composite is formed by mixing the particulate with pitch prior to foaming.

  12. The neurocognitive components of pitch processing: insights from absolute pitch.

    PubMed

    Wilson, Sarah J; Lusher, Dean; Wan, Catherine Y; Dudgeon, Paul; Reutens, David C

    2009-03-01

    The natural variability of pitch naming ability in the population (known as absolute pitch or AP) provides an ideal method for investigating individual differences in pitch processing and auditory knowledge formation and representation. We have demonstrated the involvement of different cognitive processes in AP ability that reflects varying skill expertise in the presence of similar early age of onset of music tuition. These processes were related to different regions of brain activity, including those involved in pitch working memory (right prefrontal cortex) and the long-term representation of pitch (superior temporal gyrus). They reflected expertise through the use of context dependent pitch cues and the level of automaticity of pitch naming. They impart functional significance to structural asymmetry differences in the planum temporale of musicians and establish a neurobiological basis for an AP template. More generally, they indicate variability of knowledge representation in the presence of environmental fostering of early cognitive development that translates to differences in cognitive ability. PMID:18663250

  13. Modified Adaptive Control for Region 3 Operation in the Presence of Wind Turbine Structural Modes

    NASA Technical Reports Server (NTRS)

    Frost, Susan Alane; Balas, Mark J.; Wright, Alan D.

    2010-01-01

    Many challenges exist for the operation of wind turbines in an efficient manner that is reliable and avoids component fatigue and failure. Turbines operate in highly turbulent environments resulting in aerodynamic loads that can easily excite turbine structural modes, possibly causing component fatigue and failure. Wind turbine manufacturers are highly motivated to reduce component fatigue and failure that can lead to loss of revenue due to turbine down time and maintenance costs. The trend in wind turbine design is toward larger, more flexible turbines that are ideally suited to adaptive control methods due to the complexity and expense required to create accurate models of their dynamic characteristics. In this paper, we design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed horizontal axis wind turbine operating in Region 3. The objective of the adaptive pitch controller is to regulate generator speed, accommodate wind gusts, and reduce the excitation of structural modes in the wind turbine. The control objective is accomplished by collectively pitching the turbine blades. The adaptive collective pitch controller for Region 3 was compared in simulations with a baseline classical Proportional Integrator (PI) collective pitch controller. The adaptive controller will demonstrate the ability to regulate generator speed in Region 3, while accommodating gusts, and reducing the excitation of certain structural modes in the wind turbine.

  14. Optical Communication System for Remote Monitoring and Adaptive Control of Distributed Ground Sensors Exhibiting Collective Intelligence

    SciTech Connect

    Cameron, S.M.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1998-11-01

    Comprehensive management of the battle-space has created new requirements in information management, communication, and interoperability as they effect surveillance and situational awareness. The objective of this proposal is to expand intelligent controls theory to produce a uniquely powerful implementation of distributed ground-based measurement incorporating both local collective behavior, and interoperative global optimization for sensor fusion and mission oversight. By using a layered hierarchal control architecture to orchestrate adaptive reconfiguration of autonomous robotic agents, we can improve overall robustness and functionality in dynamic tactical environments without information bottlenecks. In this concept, each sensor is equipped with a miniaturized optical reflectance modulator which is interactively monitored as a remote transponder using a covert laser communication protocol from a remote mothership or operative. Robot data-sharing at the ground level can be leveraged with global evaluation criteria, including terrain overlays and remote imaging data. Information sharing and distributed intelli- gence opens up a new class of remote-sensing applications in which small single-function autono- mous observers at the local level can collectively optimize and measure large scale ground-level signals. AS the need for coverage and the number of agents grows to improve spatial resolution, cooperative behavior orchestrated by a global situational awareness umbrella will be an essential ingredient to offset increasing bandwidth requirements within the net. A system of the type described in this proposal will be capable of sensitively detecting, tracking, and mapping spatial distributions of measurement signatures which are non-stationary or obscured by clutter and inter- fering obstacles by virtue of adaptive reconfiguration. This methodology could be used, for example, to field an adaptive ground-penetrating radar for detection of underground structures in

  15. Augmented Adaptive Control of a Wind Turbine in the Presence of Structural Modes

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Balas, Mark J.; Wright, Alan D.

    2010-01-01

    Wind turbines operate in highly turbulent environments resulting in aerodynamic loads that can easily excite turbine structural modes, potentially causing component fatigue and failure. Two key technology drivers for turbine manufacturers are increasing turbine up time and reducing maintenance costs. Since the trend in wind turbine design is towards larger, more flexible turbines with lower frequency structural modes, manufacturers will want to develop methods to operate in the presence of these modes. Accurate models of the dynamic characteristics of new wind turbines are often not available due to the complexity and expense of the modeling task, making wind turbines ideally suited to adaptive control. In this paper, we develop theory for adaptive control with rejection of disturbances in the presence of modes that inhibit the controller. We use this method to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine operating in Region 3. The objective of the adaptive pitch controller is to regulate generator speed, accommodate wind gusts, and reduce the interference of certain structural modes in feedback. The control objective is accomplished by collectively pitching the turbine blades. The adaptive pitch controller for Region 3 is compared in simulations with a baseline classical Proportional Integrator (PI) collective pitch controller.

  16. Optical adapters to improve the collection efficiency of the Multi-Anode Photo-Multipliers detectors

    NASA Astrophysics Data System (ADS)

    Gambicorti, L.; Mazzinghi, P.; Pace, E.

    2006-11-01

    Aim of this work is to describe the optical system developed, with ray-tracing simulations, to improve the collection efficiency of Multi-Anode Photo-Multipliers (MAPMTs) detectors from Hamamatsu corp., used in nuclear, cosmic-rays and neutrino physics experiments. These optical collectors have imaging and filtering capability. Such characteristics allow to improve the collection efficiency of detectors, focusing all photons inside the sensitive area, and also to improve the signal-to-noise ratio by limiting the wave lengths band to the region of interest. These filtering properties allow to avoid background photons from nearby spectral regions and they are studied to minimize the wavelength shifting in comparison with the increasing of the incident angle. The spectrum of transmissivity have been realized with high transparency in wavelength range of interest and with a sharp cutoff outside. In this work, the application on different typologies of PMT have been studied. Particularly, the collection efficiency of the 64-channel PMT was improved from 45% to 75% using our optical adapters. On an electrostatic-focusing PMT, with an efficiency of 74%, the application of our innovative solutions have enhanced this efficiency exceeding 90%, including the band pass filter and keeping the mass below 25 g. First prototypes have been fabricated.

  17. Blade pitch varying mechanism

    SciTech Connect

    Butler, L.

    1988-04-19

    A gas turbine engine is described comprising: (a) a stationary member; (b) first and second rotating structures coaxially disposed about the stationary member; (c) an annular gas flowpath coaxial with the first and second rotating structures; (d) first and second rotor blades attached to the first and second rotating structures; (e) forward and aft rows of variable pitch propulsor blades coupled to and disposed radially outwardly of the first and second rotating structures respectively; (f) a first gear coaxially coupled to one of the propulsor blades whereby angular displacement of the first gear about a radius of the rotating structure varies the pitch of the propulsor blade with respect to the rotating structure; (g) a second gear rotatably coupled to the first gear; (h) a third gear rigidly coupled to the second gear; (i) a fourth gear rigidly coupled to the rotating structure and rotatably coupled to the thrid gear, (j) means for eccentrically revolving the second gear and the third gear with respect to the first gear and the fourth gear, respectively, whereby the first gear is angularly displaced with respect to the fourth gear.

  18. Spiral model of pitch

    NASA Astrophysics Data System (ADS)

    Miller, James D.

    2003-10-01

    A spiral model of pitch interrelates tone chroma, tone height, equal temperament scales, and a cochlear map. Donkin suggested in 1870 that the pitch of tones could be well represented by an equiangular spiral. More recently, the cylindrical helix has been popular for representing tone chroma and tone height. Here it is shown that tone chroma, tone height, and cochlear position can be conveniently related to tone frequency via a planar spiral. For this ``equal-temperament spiral,'' (ET Spiral) tone chroma is conceived as a circular array with semitones at 30° intervals. The frequency of sound on the cent scale (re 16.351 Hz) is represented by the radius of the spiral defined by r=(1200/2π)θr, where θr is in radians. By these definitions, one revolution represents one octave, 1200 cents, 30° represents a semitone, the radius relates θ to cents in accordance with equal temperament (ET) tuning, and the arclength of the spiral matches the mapping of sound frequency to the basilar membrane. Thus, the ET Spiral gives tone chroma as θ, tone height as the cent scale, and the cochlear map as the arclength. The possible implications and directions for further work are discussed.

  19. Lower extremity muscle activation during baseball pitching.

    PubMed

    Campbell, Brian M; Stodden, David F; Nixon, Megan K

    2010-04-01

    The purpose of this study was to investigate muscle activation levels of select lower extremity muscles during the pitching motion. Bilateral surface electromyography data on 5 lower extremity muscles (biceps femoris, rectus femoris, gluteus maximus, vastus medialis, and gastrocnemius) were collected on 11 highly skilled baseball pitchers and compared with individual maximal voluntary isometric contraction (MVIC) data. The pitching motion was divided into 4 distinct phases: phase 1, initiation of pitching motion to maximum stride leg knee height; phase 2, maximum stride leg knee height to stride foot contact (SFC); phase 3, SFC to ball release; and phase 4, ball release to 0.5 seconds after ball release (follow-through). Results indicated that trail leg musculature elicited moderate to high activity levels during phases 2 and 3 (38-172% of MVIC). Muscle activity levels of the stride leg were moderate to high during phases 2-4 (23-170% of MVIC). These data indicate a high demand for lower extremity strength and endurance. Specifically, coaches should incorporate unilateral and bilateral lower extremity exercises for strength improvement or maintenance and to facilitate dynamic stabilization of the lower extremities during the pitching motion.

  20. Familial Aggregation of Absolute Pitch

    PubMed Central

    Baharloo, Siamak; Service, Susan K.; Risch, Neil; Gitschier, Jane; Freimer, Nelson B.

    2000-01-01

    Absolute pitch (AP) is a behavioral trait that is defined as the ability to identify the pitch of tones in the absence of a reference pitch. AP is an ideal phenotype for investigation of gene and environment interactions in the development of complex human behaviors. Individuals who score exceptionally well on formalized auditory tests of pitch perception are designated as “AP-1.” As described in this report, auditory testing of siblings of AP-1 probands and of a control sample indicates that AP-1 aggregates in families. The implications of this finding for the mapping of loci for AP-1 predisposition are discussed. PMID:10924408

  1. Molecular adaptations allow dynein to generate large collective forces inside cells.

    PubMed

    Rai, Arpan K; Rai, Ashim; Ramaiya, Avin J; Jha, Rupam; Mallik, Roop

    2013-01-17

    Many cellular processes require large forces that are generated collectively by multiple cytoskeletal motor proteins. Understanding how motors generate force as a team is therefore fundamentally important but is poorly understood. Here, we demonstrate optical trapping at single-molecule resolution inside cells to quantify force generation by motor teams driving single phagosomes. In remarkable paradox, strong kinesins fail to work collectively, whereas weak and detachment-prone dyneins team up to generate large forces that tune linearly in strength and persistence with dynein number. Based on experimental evidence, we propose that leading dyneins in a load-carrying team take short steps, whereas trailing dyneins take larger steps. Dyneins in such a team bunch close together and therefore share load better to overcome low/intermediate loads. Up against higher load, dyneins "catch bond" tenaciously to the microtubule, but kinesins detach rapidly. Dynein therefore appears uniquely adapted to work in large teams, which may explain how this motor executes bewilderingly diverse cellular processes.

  2. Thresholds for Shifting Visually Perceived Eye Level Due to Incremental Pitches

    NASA Technical Reports Server (NTRS)

    Scott, Donald M.; Welch, Robert; Cohen, M. M.; Hill, Cyndi

    2001-01-01

    Visually perceived eye level (VPEL) was judged by subjects as they viewed a luminous grid pattern that was pitched by 2 or 5 deg increments between -20 deg and +20 deg. Subjects were dark adapted for 20 min and indicated--VPEL by directing the beam of a laser pointer to the rear wall of a 1.25 m cubic pitch box that rotated about a horizontal axis midpoint on the rear wall. Data were analyzed by ANOVA and the Tukey HSD procedure. Results showed a 10.0 deg threshold for pitches P(sub i) above the reference pitch P(sub 0), and a -10.3 deg threshold for pitches P(sub i) below-the reference-pitch P(sub 0). Threshold data for pitches P(sub i) < P(sub 0) suggest an asymmetric threshold for VPEL below and above physical eye level.

  3. Does Fatigue Alter Pitching Mechanics?

    PubMed Central

    Chalmers, Peter Nissen; Erickson, Brandon J.; Sgroi, Terrance; Vignona, Peter; Lesniak, Matthew; Bush-Joseph, Charles A.; Verma, Nikhil N.; Romeo, Anthony A.

    2016-01-01

    Objectives: Background: Injuries of the adolescent shoulder and elbow are common in baseball pitchers. Fatigue has been demonstrated to be a risk factor for injury. Purpose: To determine if shoulder and elbow kinematics, pitching velocity, accuracy, and pain change during a simulated full baseball game in adolescent pitchers. Methods: Methods: Adolescent pitchers between the ages of 13-16 were recruited to throw a 90 pitch simulated game. Shoulder range of motion was assessed before and after the game. Velocity and accuracy were measured for every pitch and every 15th pitch was videotaped from two orthogonal views in high definition at 240 Hz. Quantitative and qualitative mechanics were measured from these videos. Perceived fatigue and pain were assessed after each inning using the visual analog scale. Data was statistically analyzed using a repeated-measures analysis of variance. Results: Results: Twenty-eight elite adolescent pitchers were included. These pitchers, on average, were 14.6±0.9 years old (mean ± standard deviation), had been pitching for 6.3±1.7 years, and threw 94±58 pitches per week. Our experimental model functioned as expected in that pitchers became progressively more fatigued and painful and pitched with a lower velocity as pitch number increased (p<0.001, 0.001, and <0.001 respectively). Knee flexion at ball release progressively increased with pitch number (p=0.008). Hip and shoulder separation significantly decreased as pitch number increased, from 90%±40% at pitch 15 to 40%±50% at pitch 90 (p0.271 in all cases, 91% power for elbow flexion at ball release). External rotation and total range of motion in the pitching shoulder significantly increased post-pitching (p=0.007 and 0.047 respectively). Conclusion: Conclusion: As pitchers progress through a simulated game they throw lower velocity pitches and become fatigued and painful. Core and leg musculature becomes fatigued before upper extremity kinematics change. Based upon these

  4. Fast pitch softball injuries.

    PubMed

    Meyers, M C; Brown, B R; Bloom, J A

    2001-01-01

    The popularity of fast pitch softball in the US and throughout the world is well documented. Along with this popularity, there has been a concomitant increase in the number of injuries. Nearly 52% of cases qualify as major disabling injuries requiring 3 weeks or more of treatment and 2% require surgery. Interestingly, 75% of injuries occur during away games and approximately 31% of traumas occur during nonpositional and conditioning drills. Injuries range from contusions and tendinitis to ligamentous disorders and fractures. Although head and neck traumas account for 4 to 12% of cases, upper extremity traumas account for 23 to 47% of all injuries and up to 19% of cases involve the knee. Approximately 34 to 42% of injuries occur when the athlete collides with another individual or object. Other factors involved include the quality of playing surface, athlete's age and experience level, and the excessive physical demands associated with the sport. Nearly 24% of injuries involve base running and are due to poor judgement, sliding technique, current stationary base design, unorthodox joint and extremity position during ground impact and catching of cleats. The increasing prevalence of overtraining syndrome among athletes has been attributed to an unclear definition of an optimal training zone, poor communication between player and coach, and the limited ability of bone and connective tissue to quickly respond to match the demands of the sport. This has led routinely to arm, shoulder and lumbar instability, chronic nonsteroidal anti-inflammatory drug (NSAID) use and time loss injuries in 45% of pitching staff during a single season. Specific attention to a safer playing environment, coaching and player education, and sport-specific training and conditioning would reduce the risk, rate and severity of fast pitch traumas. Padding of walls, backstops, rails and dugout areas, as well as minimising use of indoor facilities, is suggested to decrease the number of collision

  5. Fast pitch softball injuries.

    PubMed

    Meyers, M C; Brown, B R; Bloom, J A

    2001-01-01

    The popularity of fast pitch softball in the US and throughout the world is well documented. Along with this popularity, there has been a concomitant increase in the number of injuries. Nearly 52% of cases qualify as major disabling injuries requiring 3 weeks or more of treatment and 2% require surgery. Interestingly, 75% of injuries occur during away games and approximately 31% of traumas occur during nonpositional and conditioning drills. Injuries range from contusions and tendinitis to ligamentous disorders and fractures. Although head and neck traumas account for 4 to 12% of cases, upper extremity traumas account for 23 to 47% of all injuries and up to 19% of cases involve the knee. Approximately 34 to 42% of injuries occur when the athlete collides with another individual or object. Other factors involved include the quality of playing surface, athlete's age and experience level, and the excessive physical demands associated with the sport. Nearly 24% of injuries involve base running and are due to poor judgement, sliding technique, current stationary base design, unorthodox joint and extremity position during ground impact and catching of cleats. The increasing prevalence of overtraining syndrome among athletes has been attributed to an unclear definition of an optimal training zone, poor communication between player and coach, and the limited ability of bone and connective tissue to quickly respond to match the demands of the sport. This has led routinely to arm, shoulder and lumbar instability, chronic nonsteroidal anti-inflammatory drug (NSAID) use and time loss injuries in 45% of pitching staff during a single season. Specific attention to a safer playing environment, coaching and player education, and sport-specific training and conditioning would reduce the risk, rate and severity of fast pitch traumas. Padding of walls, backstops, rails and dugout areas, as well as minimising use of indoor facilities, is suggested to decrease the number of collision

  6. Macaque Monkeys Discriminate Pitch Relationships

    ERIC Educational Resources Information Center

    Brosch, Michael; Selezneva, Elena; Bucks, Cornelia; Scheich, Henning

    2004-01-01

    This study demonstrates that non-human primates can categorize the direction of the pitch change of tones in a sequence. Two "Macaca fascicularis" were trained in a positive-reinforcement behavioral paradigm in which they listened to sequences of a variable number of different acoustic items. The training of discriminating pitch direction was…

  7. Using pitch accenting to improve Japanese text-to-speech understanding.

    PubMed

    Yu, Wenwei; Yokoi, Hiroshi; Kakazu, Yukinori; Tamura, Toshiyo

    2004-01-01

    In order to develop an assistive technology that can increase computer accessibility for visually impaired people, we investigated the effect of pitch accenting on Japanese text-to-speech understanding. The effect was confirmed when a training procedure was introduced. Besides, we proposed an individual-adaptive pitching accenting method to explore the optimal pitch accents for individual users. The exploration process of one subject in a verification experiment was analyzed. PMID:17271320

  8. Propeller pitch change actuation system

    SciTech Connect

    Kusiak, E.H.

    1988-06-28

    An apparatus is described for adjusting the pitch of a variable pitch propeller blade characterized by: an actuator for setting the pitch of the propeller blade the actuator having; a rotatable screw for setting propeller pitch, a nut mounted for longitudinal motion along the screw as the screw is rotated, means for connecting the nut to the propeller blade to adjust the pitch of the propeller blade as the screw rotates, and a rotatable means mounted within the nut for locking the nut against longitudinal motion if the rotatable means is not rotating with the longitudinal motion of the nut and for allowing the nut to move longitudinally if the rotatable means is rotating with the longitudinal motion of the nut.

  9. Adapting federated cyberinfrastructure for shared data collection facilities in structural biology

    PubMed Central

    Stokes-Rees, Ian; Levesque, Ian; Murphy, Frank V.; Yang, Wei; Deacon, Ashley; Sliz, Piotr

    2012-01-01

    Early stage experimental data in structural biology is generally unmaintained and inaccessible to the public. It is increasingly believed that this data, which forms the basis for each macromolecular structure discovered by this field, must be archived and, in due course, published. Furthermore, the widespread use of shared scientific facilities such as synchrotron beamlines complicates the issue of data storage, access and movement, as does the increase of remote users. This work describes a prototype system that adapts existing federated cyberinfra­structure technology and techniques to significantly improve the operational environment for users and administrators of synchrotron data collection facilities used in structural biology. This is achieved through software from the Virtual Data Toolkit and Globus, bringing together federated users and facilities from the Stanford Synchrotron Radiation Lightsource, the Advanced Photon Source, the Open Science Grid, the SBGrid Consortium and Harvard Medical School. The performance and experience with the prototype provide a model for data management at shared scientific facilities. PMID:22514186

  10. Dichotomy and perceptual distortions in absolute pitch ability.

    PubMed

    Athos, E Alexandra; Levinson, Barbara; Kistler, Amy; Zemansky, Jason; Bostrom, Alan; Freimer, Nelson; Gitschier, Jane

    2007-09-11

    Absolute pitch (AP) is the rare ability to identify the pitch of a tone without the aid of a reference tone. Understanding both the nature and genesis of AP can provide insights into neuroplasticity in the auditory system. We explored factors that may influence the accuracy of pitch perception in AP subjects both during the development of the trait and in later age. We used a Web-based survey and a pitch-labeling test to collect perceptual data from 2,213 individuals, 981 (44%) of whom proved to have extraordinary pitch-naming ability. The bimodal distribution in pitch-naming ability signifies AP as a distinct perceptual trait, with possible implications for its genetic basis. The wealth of these data has allowed us to uncover unsuspected note-naming irregularities suggestive of a "perceptual magnet" centered at the note "A." In addition, we document a gradual decline in pitch-naming accuracy with age, characterized by a perceptual shift in the "sharp" direction. These findings speak both to the process of acquisition of AP and to its stability.

  11. Dichotomy and perceptual distortions in absolute pitch ability

    PubMed Central

    Athos, E. Alexandra; Levinson, Barbara; Kistler, Amy; Zemansky, Jason; Bostrom, Alan; Freimer, Nelson; Gitschier, Jane

    2007-01-01

    Absolute pitch (AP) is the rare ability to identify the pitch of a tone without the aid of a reference tone. Understanding both the nature and genesis of AP can provide insights into neuroplasticity in the auditory system. We explored factors that may influence the accuracy of pitch perception in AP subjects both during the development of the trait and in later age. We used a Web-based survey and a pitch-labeling test to collect perceptual data from 2,213 individuals, 981 (44%) of whom proved to have extraordinary pitch-naming ability. The bimodal distribution in pitch-naming ability signifies AP as a distinct perceptual trait, with possible implications for its genetic basis. The wealth of these data has allowed us to uncover unsuspected note-naming irregularities suggestive of a “perceptual magnet” centered at the note “A.” In addition, we document a gradual decline in pitch-naming accuracy with age, characterized by a perceptual shift in the “sharp” direction. These findings speak both to the process of acquisition of AP and to its stability. PMID:17724340

  12. Silicon modeling of pitch perception.

    PubMed Central

    Lazzaro, J; Mead, C

    1989-01-01

    We have designed and tested an integrated circuit that models human pitch perception. The chip receives as input a time-varying voltage corresponding to sound pressure at the ear and produces as output a map of perceived pitch. The chip is a physiological model; subcircuits on the chip correspond to known and proposed structures in the auditory system. Chip output approximates human performance in response to a variety of classical pitch-perception stimuli. The 125,000-transistor chip computes all outputs in real time by using analog continuous-time processing. PMID:2594787

  13. Beethoven's Last Piano Sonata and Those Who Follow Crocodiles: Cross-Domain Mappings of Auditory Pitch in a Musical Context

    ERIC Educational Resources Information Center

    Eitan, Zohar; Timmers, Renee

    2010-01-01

    Though auditory pitch is customarily mapped in Western cultures onto spatial verticality (high-low), both anthropological reports and cognitive studies suggest that pitch may be mapped onto a wide variety of other domains. We collected a total number of 35 pitch mappings and investigated in four experiments how these mappings are used and…

  14. STS-134: Rendezvous Pitch Maneuver

    NASA Video Gallery

    On May 18, 2011, space shuttle Endeavour performed the Rendezvous Pitch Maneuver, or "backflip." With Commander Mark Kelly at the helm, Endeavour rotated 360 degrees backward to enable Internationa...

  15. STS-135: Rendezvous Pitch Maneuver

    NASA Video Gallery

    On July 10, 2011, space shuttle Atlantis performed the nine-minute Rendezvous Pitch Maneuver, or “backflip.” With Commander Chris Ferguson at the helm, Atlantis rotated 360 degrees backward to ...

  16. STS-133: Rendezvous Pitch Maneuver

    NASA Video Gallery

    At 1:15 p.m. EST Saturday, space shuttle Discovery began the nine-minute Rendezvous Pitch Maneuver, or "backflip." With Commander Steve Lindsey at the helm, Discovery rotated 360 degrees backward t...

  17. Impaired memory for pitch in congenital amusia.

    PubMed

    Gosselin, Nathalie; Jolicoeur, Pierre; Peretz, Isabelle

    2009-07-01

    We examined memory for pitch in congenital amusia in two tasks. In one task, we varied the pitch distance between the target and comparison tone from 4 to 9 semitones and inserted either a silence or 6 interpolated tones between the tones to be compared. In a second task, we manipulated the number of pitches to be retained in sequences of length 1, 3, or 5. Amusics' sensitivity to pitch distance was exacerbated by the presence of interpolated tones, and amusics' performance was more strongly affected by the number of pitches to maintain in memory than controls. A pitch perception deficit could not account for the pitch memory deficit of amusics. PMID:19673791

  18. A collection of Australian Drosophila datasets on climate adaptation and species distributions

    PubMed Central

    Hangartner, Sandra B.; Hoffmann, Ary A.; Smith, Ailie; Griffin, Philippa C.

    2015-01-01

    The Australian Drosophila Ecology and Evolution Resource (ADEER) collates Australian datasets on drosophilid flies, which are aimed at investigating questions around climate adaptation, species distribution limits and population genetics. Australian drosophilid species are diverse in climatic tolerance, geographic distribution and behaviour. Many species are restricted to the tropics, a few are temperate specialists, and some have broad distributions across climatic regions. Whereas some species show adaptability to climate changes through genetic and plastic changes, other species have limited adaptive capacity. This knowledge has been used to identify traits and genetic polymorphisms involved in climate change adaptation and build predictive models of responses to climate change. ADEER brings together 103 datasets from 39 studies published between 1982–2013 in a single online resource. All datasets can be downloaded freely in full, along with maps and other visualisations. These historical datasets are preserved for future studies, which will be especially useful for assessing climate-related changes over time. PMID:26601886

  19. A collection of Australian Drosophila datasets on climate adaptation and species distributions.

    PubMed

    Hangartner, Sandra B; Hoffmann, Ary A; Smith, Ailie; Griffin, Philippa C

    2015-01-01

    The Australian Drosophila Ecology and Evolution Resource (ADEER) collates Australian datasets on drosophilid flies, which are aimed at investigating questions around climate adaptation, species distribution limits and population genetics. Australian drosophilid species are diverse in climatic tolerance, geographic distribution and behaviour. Many species are restricted to the tropics, a few are temperate specialists, and some have broad distributions across climatic regions. Whereas some species show adaptability to climate changes through genetic and plastic changes, other species have limited adaptive capacity. This knowledge has been used to identify traits and genetic polymorphisms involved in climate change adaptation and build predictive models of responses to climate change. ADEER brings together 103 datasets from 39 studies published between 1982-2013 in a single online resource. All datasets can be downloaded freely in full, along with maps and other visualisations. These historical datasets are preserved for future studies, which will be especially useful for assessing climate-related changes over time. PMID:26601886

  20. A collection of Australian Drosophila datasets on climate adaptation and species distributions.

    PubMed

    Hangartner, Sandra B; Hoffmann, Ary A; Smith, Ailie; Griffin, Philippa C

    2015-11-24

    The Australian Drosophila Ecology and Evolution Resource (ADEER) collates Australian datasets on drosophilid flies, which are aimed at investigating questions around climate adaptation, species distribution limits and population genetics. Australian drosophilid species are diverse in climatic tolerance, geographic distribution and behaviour. Many species are restricted to the tropics, a few are temperate specialists, and some have broad distributions across climatic regions. Whereas some species show adaptability to climate changes through genetic and plastic changes, other species have limited adaptive capacity. This knowledge has been used to identify traits and genetic polymorphisms involved in climate change adaptation and build predictive models of responses to climate change. ADEER brings together 103 datasets from 39 studies published between 1982-2013 in a single online resource. All datasets can be downloaded freely in full, along with maps and other visualisations. These historical datasets are preserved for future studies, which will be especially useful for assessing climate-related changes over time.

  1. Adaptive Control Using Residual Mode Filters Applied to Wind Turbines

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Balas, Mark J.

    2011-01-01

    Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a model reference direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will augment the adaptive controller using a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. We apply these theoretical results to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine that has minimum phase zeros.

  2. Ball Speed and Release Consistency Predict Pitching Success in Major League Baseball.

    PubMed

    Whiteside, David; Martini, Douglas N; Zernicke, Ronald F; Goulet, Grant C

    2016-07-01

    Whiteside, D, Martini, DN, Zernicke, RF, and Goulet, GC. Ball speed and release consistency predict pitching success in Major League Baseball. J Strength Cond Res XX(X): 000-000, 2015-This study aimed to quantify how ball flight kinematics (i.e., ball speed and movement), release location, and variations therein relate to pitching success in Major League Baseball (MLB). One hundred ninety starting MLB pitchers met the inclusion criteria for this study. Ball trajectory information was collected for 76,000 pitches and inserted into a forward stepwise multiple regression model, which examined how (a) pitch selection, (b) ball speed, (c) ball movement (horizontal and lateral), (d) release location (horizontal and lateral), (e) variation in pitch speed, (f) variation in ball movement, and (g) variation in release location related to pitching success (as measured by fielding independent pitching-FIP). Pitch speed, release location variability, variation in pitch speed, and horizontal release location were significant predictors of FIP and, collectively, accounted for 24% of the variance in FIP. These findings suggest that (a) maximizing ball speed, (b) refining a consistent spatial release location, and (c) using varied pitch speeds should be primary foci for the pitching coach. However, between-pitcher variations underline how training interventions should be administered at the individual level, with consideration given to the pitcher's injury history. Finally, despite offering significant predictors of success, these three factors explained only 22% of the variance in FIP and should not be considered the only, or preeminent, indicators of a pitcher's effectiveness. Evidently, traditional pitching metrics only partly account for a pitcher's effectiveness, and future research is necessary to uncover the remaining contributors to success.

  3. Ball Speed and Release Consistency Predict Pitching Success in Major League Baseball.

    PubMed

    Whiteside, David; Martini, Douglas N; Zernicke, Ronald F; Goulet, Grant C

    2016-07-01

    Whiteside, D, Martini, DN, Zernicke, RF, and Goulet, GC. Ball speed and release consistency predict pitching success in Major League Baseball. J Strength Cond Res XX(X): 000-000, 2015-This study aimed to quantify how ball flight kinematics (i.e., ball speed and movement), release location, and variations therein relate to pitching success in Major League Baseball (MLB). One hundred ninety starting MLB pitchers met the inclusion criteria for this study. Ball trajectory information was collected for 76,000 pitches and inserted into a forward stepwise multiple regression model, which examined how (a) pitch selection, (b) ball speed, (c) ball movement (horizontal and lateral), (d) release location (horizontal and lateral), (e) variation in pitch speed, (f) variation in ball movement, and (g) variation in release location related to pitching success (as measured by fielding independent pitching-FIP). Pitch speed, release location variability, variation in pitch speed, and horizontal release location were significant predictors of FIP and, collectively, accounted for 24% of the variance in FIP. These findings suggest that (a) maximizing ball speed, (b) refining a consistent spatial release location, and (c) using varied pitch speeds should be primary foci for the pitching coach. However, between-pitcher variations underline how training interventions should be administered at the individual level, with consideration given to the pitcher's injury history. Finally, despite offering significant predictors of success, these three factors explained only 22% of the variance in FIP and should not be considered the only, or preeminent, indicators of a pitcher's effectiveness. Evidently, traditional pitching metrics only partly account for a pitcher's effectiveness, and future research is necessary to uncover the remaining contributors to success. PMID:26677832

  4. Psychometric function of jittered rate pitch discrimination.

    PubMed

    Bahmer, Andreas; Baumann, Uwe

    2014-07-01

    The impact of jitter on rate pitch discrimination (JRPD) is still a matter of debate. Previous studies have used adaptive procedures to assess pitch discrimination abilities of jittered rate pulses (Dobie and Dillier, 1985; Chen et al., 2005) or have used jitter detection thresholds (Fearn, 2001). Previous studies were conducted in a relatively small number of subjects using either a single-electrode cochlear implant (Dobie and Dillier, 1985, n = 2) or the Nucleus multi-channel devices (Fearn, 2001, n = 3; Chen et al., 2005, n = 5). The successful application of an adaptive procedure requires a monotone psychometric function to achieve asymptotic results. The underlying psychometric function of rate jitter has not been investigated so far. In order to close this knowledge gap, the present study determines psychometric functions by measuring of JRPD with a fixed stimulus paradigm. A rather large range of temporal, Gaussian distributed jitter standard deviation 0, 1, 2, 3, 4 ms was applied to electrical pulse patterns. Since the shape of the underlying probability density function (PDF) may also effect JRPD, a uniform PDF was alternatively applied. 7 CI users (8 ears, high-level performers with open-speech perception, MED-EL Pulsar/Sonata devices, Innsbruck, Austria) served as subjects for the experiment. JRPD was assessed with a two-stage forced choice procedure. Gross results showed decreasing JRPD with increasing amounts of jitter independent of the applied jitter distribution. In conclusion, pulse rate jitter affects JRPD and therefore should be considered in current coding strategies. PMID:24821551

  5. Adaptation-induced collective dynamics of a single-cell protozoan

    NASA Astrophysics Data System (ADS)

    Ogata, Maiko; Hondou, Tsuyoshi; Hayakawa, Yoshinori; Hayashi, Yoshikatsu; Sugawara, Ken

    2008-01-01

    We investigate the behavior of a single-cell protozoan in a narrow tubular ring. This environment forces them to swim under a one-dimensional periodic boundary condition. Above a critical density, single-cell protozoa aggregate spontaneously without external stimulation. The high-density zone of swimming cells exhibits a characteristic collective dynamics including translation and boundary fluctuation. We analyzed the velocity distribution and turn rate of swimming cells and found that the regulation of the turing rate leads to a stable aggregation and that acceleration of velocity triggers instability of aggregation. These two opposing effects may help to explain the spontaneous dynamics of collective behavior. We also propose a stochastic model for the mechanism underlying the collective behavior of swimming cells.

  6. Method of casting pitch based foam

    DOEpatents

    Klett, James W.

    2002-01-01

    A process for producing molded pitch based foam is disclosed which minimizes cracking. The process includes forming a viscous pitch foam in a container, and then transferring the viscous pitch foam from the container into a mold. The viscous pitch foam in the mold is hardened to provide a carbon foam having a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts.

  7. Drag operated rotor pitch adjustment system for gyroplanes

    SciTech Connect

    Breuner, G.

    1988-02-23

    This patent describes collective pitch control means for use on a rotor assembly of a gyroplane rotary wing aircraft, consisting of: a hub rotatable about a first axis of rotation for supporting rotor blades, blade mount means associated with each blade for supporting the blade on the hub, each blade mount means including means for changing the pitch of the associated blade including pinion means supported on the hub and rotatable with respect to the hub and means responsive to the rotation of the pinion means for changing the pitch of the blade in one direction when the pinion means is rotated in a first direction and for changing the pitch of the blade in the opposite direction when the pinion means is rotated in a second direction. First and second pinion engaging means support independent rotation about the first axis of rotation and each being in light frictional contact with the hub to induce rotation therewith. The first pinion engaging means engages and rotates all the pinion means in the first direction when rotating slower than the hub. The second pinion engaging means engages and rotates all the pinion means in the second direction when rotating slower than the hub, and drag means selectively engages the first and second pinion engaging means to slow the selected pinion engaging means relative to a rotating hub whereby operation of the drag means while the hub and associated blades and blade mount means are rotating will produce a simultaneous change in the pitch of all blades.

  8. Spirality: Spiral arm pitch angle measurement

    NASA Astrophysics Data System (ADS)

    Shields, Douglas W.; Boe, Benjamin; Pfountz, Casey; Davis, Benjamin L.; Hartley, Matthew; Pour Imani, Hamed; Slade, Zac; Kennefick, Daniel; Kennefick, Julia

    2015-12-01

    Spirality measures spiral arm pitch angles by fitting galaxy images to spiral templates of known pitch. Written in MATLAB, the code package also includes GenSpiral, which produces FITS images of synthetic spirals, and SpiralArmCount, which uses a one-dimensional Fast Fourier Transform to count the spiral arms of a galaxy after its pitch is determined.

  9. Pitch perception prior to cortical maturation

    NASA Astrophysics Data System (ADS)

    Lau, Bonnie K.

    Pitch perception plays an important role in many complex auditory tasks including speech perception, music perception, and sound source segregation. Because of the protracted and extensive development of the human auditory cortex, pitch perception might be expected to mature, at least over the first few months of life. This dissertation investigates complex pitch perception in 3-month-olds, 7-month-olds and adults -- time points when the organization of the auditory pathway is distinctly different. Using an observer-based psychophysical procedure, a series of four studies were conducted to determine whether infants (1) discriminate the pitch of harmonic complex tones, (2) discriminate the pitch of unresolved harmonics, (3) discriminate the pitch of missing fundamental melodies, and (4) have comparable sensitivity to pitch and spectral changes as adult listeners. The stimuli used in these studies were harmonic complex tones, with energy missing at the fundamental frequency. Infants at both three and seven months of age discriminated the pitch of missing fundamental complexes composed of resolved and unresolved harmonics as well as missing fundamental melodies, demonstrating perception of complex pitch by three months of age. More surprisingly, infants in both age groups had lower pitch and spectral discrimination thresholds than adult listeners. Furthermore, no differences in performance on any of the tasks presented were observed between infants at three and seven months of age. These results suggest that subcortical processing is not only sufficient to support pitch perception prior to cortical maturation, but provides adult-like sensitivity to pitch by three months.

  10. Cross-Cultural Perspectives on Pitch Memory

    ERIC Educational Resources Information Center

    Trehub, Sandra E.; Schellenberg, E. Glenn; Nakata, Takayuki

    2008-01-01

    We examined effects of age and culture on children's memory for the pitch level of familiar music. Canadian 9- and 10-year-olds distinguished the original pitch level of familiar television theme songs from foils that were pitch-shifted by one semitone, whereas 5- to 8-year-olds failed to do so (Experiment 1). In contrast, Japanese 5- and…

  11. Toward Collective Impact for Climate Resilience: Maximizing Climate Change Education for Preparedness, Adaptation, and Mitigation

    NASA Astrophysics Data System (ADS)

    Ledley, T. S.; Niepold, F., III; McCaffrey, M.

    2014-12-01

    Increasing the capacity of society to make informed climate decisions based on scientific evidence is imperative. While a wide range of education programs and communication efforts to improve understanding and facilitate responsible effective decision-making have been developed in recent years, these efforts have been largely disconnected. The interdisciplinary and trans-disciplinary nature of the problems and potential responses to climate change requires a broad range of expertise and a strategy that overcomes the inherent limitations of isolated programs and efforts. To extend the reach and impact of climate change education and engagement efforts, it is necessary to have a coordination that results in greater collective impact. The Collective Impact model, as described by Kania & Kramer (2011), requires five elements: 1) a common agenda; 2) shared measurement systems; 3) mutually reinforcing activities; 4) continuous communication; and 5) a well-funded backbone support organization. The CLEAN Network has facilitated a series of discussions at six professional meetings from late 2012 through spring 2014 to begin to develop and define the elements of collective impact on climate change education and engagement. These discussions have focused on getting input from the community on a common agenda and what a backbone support organization could do to help extend their reach and impact and enable a longer-term sustainability. These discussions will continue at future meetings, with the focus shifting to developing a common agenda and shared metrics. In this presentation we will summarize the outcomes of these discussions thus far, especially with respect to what activities a backbone support organization might provide to help increase the collective impact of climate change education effort and invite others to join the development of public-private partnership to improve the nations climate literacy. The cumulative input into this evolving discussion on collective

  12. The Role of Collective Action in Enhancing Communities’ Adaptive Capacity to Environmental Risk: An Exploration of Two Case Studies from Asia

    PubMed Central

    Ireland, Philip; Thomalla, Frank

    2011-01-01

    Background In this paper we examine the role of collective action in assisting rural communities to cope with and adapt to environmental risks in Nepalgunj, Nepal and Krabi Province, Thailand. Drawing upon two case studies, we explore the role of collective action in building adaptive capacity, paying particular attention to the role of social networks. Methods Data for this paper was gathered using a range of different methods across the two different studies. In Nepal semi-structured interviews were conducted with a range of stakeholders in addition to participant observation and secondary data collection. In Thailand the researchers utilised a vulnerability assessment, participatory multi-stakeholder assessment, a detailed case study and an online dialogue. Findings We make three key observations: firstly, collective action plays a significant role in enhancing adaptive capacity and hence should be more strongly considered in the development of climate change adaptation strategies; secondly, social networks are a particularly important component of collective action for the building of adaptive capacity; and thirdly, the mandate, capacity, and structure of local government agencies can influence the effectiveness of collective action, both positively and negatively. Conclusions We argue that there is an urgent need for further consideration of the different forms of collective action within community-based disaster risk management and climate change adaptation. PMID:22045442

  13. Structural Load Analysis of a Wind Turbine under Pitch Actuator and Controller Faults

    NASA Astrophysics Data System (ADS)

    Etemaddar, Mahmoud; Gao, Zhen; Moan, Torgeir

    2014-12-01

    In this paper, we investigate the characteristics of a wind turbine under blade pitch angle and shaft speed sensor faults as well as pitch actuator faults. A land-based NREL 5MW variable speed pitch reg- ulated wind turbine is considered as a reference. The conventional collective blade pitch angle controller strategy with independent pitch actuators control is used for load reduction. The wind turbine class is IEC-BII. The main purpose is to investigate the severity of end effects on structural loads and responses and consequently identify the high-risk components according to the type and amplitude of fault using a servo-aero-elastic simulation code, HAWC2. Both transient and steady state effects of faults are studied. Such information is useful for wind turbine fault detection and identification as well as system reliability analysis. Results show the effects of faults on wind turbine power output and responses. Pitch sensor faults mainly affects the vibration of shaft main bearing, while generator power and aerodynamic thrust are not changed significantly, due to independent pitch actuator control of three blades. Shaft speed sensor faults can seriously affect the generator power and aerodynamic thrust. Pitch actuator faults can result in fully pitching of the blade, and consequently rotor stops due to negative aerodynamic torque.

  14. Toward a quantitative account of pitch distribution in spontaneous narrative: Method and validation

    PubMed Central

    Matteson, Samuel E.; Streit Olness, Gloria; Caplow, Nancy J.

    2013-01-01

    Pitch is well-known both to animate human discourse and to convey meaning in communication. The study of the statistical population distributions of pitch in discourse will undoubtedly benefit from methodological improvements. The current investigation examines a method that parameterizes pitch in discourse as musical pitch interval H measured in units of cents and that disaggregates the sequence of peak word-pitches using tools employed in time-series analysis and digital signal processing. The investigators test the proposed methodology by its application to distributions in pitch interval of the peak word-pitch (collectively called the discourse gamut) that occur in simulated and actual spontaneous emotive narratives obtained from 17 middle-aged African-American adults. The analysis, in rigorous tests, not only faithfully reproduced simulated distributions imbedded in realistic time series that drift and include pitch breaks, but the protocol also reveals that the empirical distributions exhibit a common hidden structure when normalized to a slowly varying mode (called the gamut root) of their respective probability density functions. Quantitative differences between narratives reveal the speakers' relative propensity for the use of pitch levels corresponding to elevated degrees of a discourse gamut (the “e-la”) superimposed upon a continuum that conforms systematically to an asymmetric Laplace distribution. PMID:23654400

  15. Domain adaptation of image classification based on collective target nearest-neighbor representation

    NASA Astrophysics Data System (ADS)

    Tang, Song; Ye, Mao; Liu, Qihe; Li, Fan

    2016-05-01

    In many practical applications, we frequently face the awkward problem in which an image classifier trained in a scenario is difficult to use in a new scenario. Traditionally, the probability inference-based methods are used to solve this problem. From the point of image representation, we propose an approach for domain adaption of image classification. First, all source samples are supposed to form the dictionary. Then, we encode the target sample by combining this dictionary and the local geometric information. Based on this new representation, called target nearest-neighbor representation, image classification can obtain good performance in the target domain. Our core contribution is that the nearest-neighbor information of the target sample is technically exploited to form more robust representation. Experimental results confirm the effectiveness of our method.

  16. Perceived pitch of complex FM-AM tones--pitch determination process of vibrato sounds.

    PubMed

    Iwamiya, S; Miyakura, T; Satoh, N; Hayashi, Y

    1994-09-01

    Pitch-matching experiments were conducted to clarify the pitch determination process of complex FM-AM tones which consist of components whose frequency and amplitude are simultaneously modulated. The pitch is higher when FM and AM of each component are in phase than when they are out of phase. The pitch shift induced by the phase difference between FM and AM of each component becomes larger as its relative power increases. These experimental results suggest that the pitch of complex FM-AM tones is determined as follows: A complex FM-AM tone is resolved into each FM-AM component by the auditory filter bank. The spectral pitch of each FM-AM component is determined by a loudness-weighted pitch averaging processes. The central pattern recognizer determines the pitch of complex FM-AM tones by integration of virtual pitches derived from the spectral pitches. PMID:7872986

  17. Genetic Diversity and Population Structure in a Legacy Collection of Spring Barley Landraces Adapted to a Wide Range of Climates

    PubMed Central

    Walther, Alexander; Özkan, Hakan; Graner, Andreas; Kilian, Benjamin

    2014-01-01

    Global environmental change and increasing human population emphasize the urgent need for higher yielding and better adapted crop plants. One strategy to achieve this aim is to exploit the wealth of so called landraces of crop species, representing diverse traditional domesticated populations of locally adapted genotypes. In this study, we investigated a comprehensive set of 1485 spring barley landraces (Lrc1485) adapted to a wide range of climates, which were selected from one of the largest genebanks worldwide. The landraces originated from 5° to 62.5° N and 16° to 71° E. The whole collection was genotyped using 42 SSR markers to assess the genetic diversity and population structure. With an average allelic richness of 5.74 and 372 alleles, Lrc1485 harbours considerably more genetic diversity than the most polymorphic current GWAS panel for barley. Ten major clusters defined most of the population structure based on geographical origin, row type of the ear and caryopsis type – and were assigned to specific climate zones. The legacy core reference set Lrc648 established in this study will provide a long-lasting resource and a very valuable tool for the scientific community. Lrc648 is best suited for multi-environmental field testing to identify candidate genes underlying quantitative traits but also for allele mining approaches. PMID:25541702

  18. Genetic diversity and population structure in a legacy collection of spring barley landraces adapted to a wide range of climates.

    PubMed

    Pasam, Raj K; Sharma, Rajiv; Walther, Alexander; Özkan, Hakan; Graner, Andreas; Kilian, Benjamin

    2014-01-01

    Global environmental change and increasing human population emphasize the urgent need for higher yielding and better adapted crop plants. One strategy to achieve this aim is to exploit the wealth of so called landraces of crop species, representing diverse traditional domesticated populations of locally adapted genotypes. In this study, we investigated a comprehensive set of 1485 spring barley landraces (Lrc1485) adapted to a wide range of climates, which were selected from one of the largest genebanks worldwide. The landraces originated from 5° to 62.5° N and 16° to 71° E. The whole collection was genotyped using 42 SSR markers to assess the genetic diversity and population structure. With an average allelic richness of 5.74 and 372 alleles, Lrc1485 harbours considerably more genetic diversity than the most polymorphic current GWAS panel for barley. Ten major clusters defined most of the population structure based on geographical origin, row type of the ear and caryopsis type - and were assigned to specific climate zones. The legacy core reference set Lrc648 established in this study will provide a long-lasting resource and a very valuable tool for the scientific community. Lrc648 is best suited for multi-environmental field testing to identify candidate genes underlying quantitative traits but also for allele mining approaches. PMID:25541702

  19. Yaw sensory rearrangement alters pitch vestibulo-ocular reflex responses

    NASA Technical Reports Server (NTRS)

    Petropoulos, A. E.; Wall, C. 3rd; Oman, C. M.

    1997-01-01

    Ten male subjects underwent two types of adaptation paradigm designed either to enhance or to attenuate the gain of the canal-ocular reflex (COR), before undergoing otolith-ocular reflex (OOR) testing with constant velocity, earth horizontal axis and pitch rotation. The adaptation paradigm paired a 0.2 Hz sinusoidal rotation about an earth vertical axis with a 0.2 Hz optokinetic stimulus that was deliberately mismatched in peak velocity or phase and was designed to produce short-term changes in the COR. Preadaptation and postadaptation OOR tests occurred at a constant velocity of 60 degrees/sec in the dark and produced a modulation component of the slow phase velocity with a frequency of 0.16 Hz due to otolithic stimulation by the sinusoidally changing gravity vector. Of the seven subjects who showed enhancement of the COR gain, six also showed enhancement of the OOR modulation component. Of the seven subjects who showed attenuation of the COR gain, five also showed attenuation of the OOR modulation component. The probability that these two cross-axis adaptation effects would occur by chance is less than 0.02. This suggests that visual-vestibular conditioning of the yaw axis COR also induced changes in the pitch axis OOR. We thus postulate that the central nervous system pathways that process horizontal canal yaw stimuli have elements in common with those processing otolithic stimuli about the pitch axis.

  20. Rehabilitation of the pitching shoulder.

    PubMed

    Pappas, A M; Zawacki, R M; McCarthy, C F

    1985-01-01

    Shoulder pain is a common complaint among baseball pitchers. Frequently, the nature of shoulder pathology can be traced to lack of flexibility and muscular imbalance. This paper describes: the normal biomechanics of a properly functioning shoulder during a baseball pitch, pathomechanics of shoulder problems, flexibility requirements of the throwing shoulder, and the muscular balance necessary for an effective throwing shoulder. Appropriate examination procedures are described along with remedial exercises which ensure normal glenohumeral motion and integrated muscle action.

  1. Carbon fibers from SRC pitch

    DOEpatents

    Greskovich, Eugene J.; Givens, Edwin N.

    1981-01-01

    This invention relates to an improved method of manufacturing carbon fibers from a coal derived pitch. The improvement resides in the use of a solvent refined coal which has been hydrotreated and subjected to solvent extraction whereby the hetero atom content in the resulting product is less than 4.0% by weight and the softening point is between about 100.degree.-250.degree. F.

  2. Pitch strength of normal and dysphonic voices

    PubMed Central

    Shrivastav, Rahul; Eddins, David A.; Anand, Supraja

    2012-01-01

    Two sounds with the same pitch may vary from each other based on saliency of their pitch sensation. This perceptual attribute is called “pitch strength.” The study of voice pitch strength may be important in quantifying of normal and pathological qualities. The present study investigated how pitch strength varies across normal and dysphonic voices. A set of voices (vowel /a/) selected from the Kay Elemetrics Disordered Voice Database served as the stimuli. These stimuli demonstrated a wide range of voice quality. Ten listeners judged the pitch strength of these stimuli in an anchored magnitude estimation task. On a given trial, listeners heard three different stimuli. The first stimulus represented very low pitch strength (wide-band noise), the second stimulus consisted of the target voice and the third stimulus represented very high pitch strength (pure tone). Listeners estimated pitch strength of the target voice by positioning a continuous slider labeled with values between 0 and 1, reflecting the two anchor stimuli. Results revealed that listeners can judge pitch strength reliably in dysphonic voices. Moderate to high correlations with perceptual judgments of voice quality suggest that pitch strength may contribute to voice quality judgments. PMID:22423721

  3. Disorders of pitch production in tone deafness.

    PubMed

    Bella, Simone Dalla; Berkowska, Magdalena; Sowiński, Jakub

    2011-01-01

    Singing is as natural as speaking for the majority of people. Yet some individuals (i.e., 10-15%) are poor singers, typically performing or imitating pitches and melodies inaccurately. This condition, commonly referred to as "tone deafness," has been observed both in the presence and absence of deficient pitch perception. In this article we review the existing literature concerning normal singing, poor-pitch singing, and, briefly, the sources of this condition. Considering that pitch plays a prominent role in the structure of both music and speech we also focus on the possibility that speech production (or imitation) is similarly impaired in poor-pitch singers. Preliminary evidence from our laboratory suggests that pitch imitation may be selectively inaccurate in the music domain without being affected in speech. This finding points to separability of mechanisms subserving pitch production in music and language.

  4. Disorders of Pitch Production in Tone Deafness

    PubMed Central

    Bella, Simone Dalla; Berkowska, Magdalena; Sowiński, Jakub

    2011-01-01

    Singing is as natural as speaking for the majority of people. Yet some individuals (i.e., 10–15%) are poor singers, typically performing or imitating pitches and melodies inaccurately. This condition, commonly referred to as “tone deafness,” has been observed both in the presence and absence of deficient pitch perception. In this article we review the existing literature concerning normal singing, poor-pitch singing, and, briefly, the sources of this condition. Considering that pitch plays a prominent role in the structure of both music and speech we also focus on the possibility that speech production (or imitation) is similarly impaired in poor-pitch singers. Preliminary evidence from our laboratory suggests that pitch imitation may be selectively inaccurate in the music domain without being affected in speech. This finding points to separability of mechanisms subserving pitch production in music and language. PMID:21811479

  5. Aerodynamic control with passively pitching wings

    NASA Astrophysics Data System (ADS)

    Gravish, Nick; Wood, Robert

    Flapping wings may pitch passively under aerodynamic and inertial loads. Such passive pitching is observed in flapping wing insect and robot flight. The effect of passive wing pitch on the control dynamics of flapping wing flight are unexplored. Here we demonstrate in simulation and experiment the critical role wing pitching plays in yaw control of a flapping wing robot. We study yaw torque generation by a flapping wing allowed to passively rotate in the pitch axis through a rotational spring. Yaw torque is generated through alternating fast and slow upstroke and and downstroke. Yaw torque sensitively depends on both the rotational spring force law and spring stiffness, and at a critical spring stiffness a bifurcation in the yaw torque control relationship occurs. Simulation and experiment reveal the dynamics of this bifurcation and demonstrate that anomalous yaw torque from passively pitching wings is the result of aerodynamic and inertial coupling between the pitching and stroke-plane dynamics.

  6. Adaptation of Mesenteric Collecting Lymphatic Pump Function Following Acute Alcohol Intoxication

    PubMed Central

    Souza-Smith, Flavia M.; Kurtz, Kristine M.; Molina, Patricia E.; Breslin, Jerome W.

    2010-01-01

    Objective Acute alcohol intoxication increases intestinal lymph flow by unknown mechanisms, potentially impacting mucosal immunity. We tested the hypothesis that enhanced intrinsic pump function of mesenteric lymphatics contributes to increased intestinal lymph flow during alcohol intoxication. Methods Acute alcohol intoxication was produced by intragastric administration of 30% alcohol to concious, unrestrained rats through surgically-implanted catheters. Time-matched controls received either no bolus, vehicle, or isocaloric dextrose. Thirty minutes after alcohol administration, rats were anesthetized and mesenteric collecting lymphatics were isolated and cannulated to study intrinsic pumping parameters. In separate experiments, mesenteric lymphatics were isolated to examine direct effects of alcohol on intrinsic pump activity. Results Lymphatics isolated from alcohol-intoxicated animals displayed slgnificantly decreased contraction frequency (CF) than the dextrose group, elevated stroke volume index (SVI) versus all other groups, and decreased myogenic responsiveness compared to sham. Elevating pressure from 2 to 4 cm H2O increased the volume flow index 2.4-fold in the alcohol group versus 1.4-fold for shams. Isolated lymphatics exposed to 20 mM alcohol had reduced myogenic tone, without changes in CF or SVI. Conclusions Alcohol intoxication enhances intrinsic pumping by mesenteric collecting lymphatics. Alcohol directly decreases lymphatic myogenic tone, but effects on phasic contractions occur by an unidentified mechanism. PMID:21040117

  7. Tone-language speakers show hemispheric specialization and differential cortical processing of contour and interval cues for pitch.

    PubMed

    Bidelman, G M; Chung, W-L

    2015-10-01

    Electrophysiological studies demonstrate that the neural coding of pitch is modulated by language experience and the linguistic relevance of the auditory input; both rightward and leftward asymmetries have been observed in the hemispheric specialization for pitch. In music, pitch is encoded using two primary features: contour (patterns of rises and falls) and interval (frequency separation between tones) cues. Recent evoked potential studies demonstrate that these "global" (contour) and "local" (interval) aspects of pitch are processed automatically (but bilaterally) in trained musicians. Here, we examined whether alternate forms of pitch expertise, namely, tone-language experience (i.e., Chinese), influence the early detection of contour and intervallic deviations within ongoing pitch sequences. Neuroelectric mismatch negativity (MMN) potentials were recorded in Chinese speakers and English-speaking nonmusicians in response to continuous pitch sequences with occasional global or local deviations in the ongoing melodic stream. This paradigm allowed us to explore potential cross-language differences in the hemispheric weighting for contour and interval processing of pitch. Chinese speakers showed differential pitch encoding between hemispheres not observed in English listeners; Chinese MMNs revealed a rightward bias for contour processing but a leftward hemispheric laterality for interval processing. In contrast, no asymmetries were observed in the English group. Collectively, our findings suggest tone-language experience sensitizes auditory brain mechanisms for the detection of subtle global/local pitch changes in the ongoing auditory stream and exaggerates functional asymmetries in pitch processing between cerebral hemispheres.

  8. Nozzle designs with pitch precursor ablatives

    NASA Technical Reports Server (NTRS)

    Blevins, H. R.; Bedard, R. J.

    1976-01-01

    Recent developments in carbon phenolic ablatives for solid rocket motor nozzles have yielded a pitch precursor carbon fiber offering significant raw material availability and cost saving advantages as compared to conventional rayon precursor material. This paper discusses the results of an experimental program conducted to assess the thermal performance and characterize the thermal properties of pitch precursor carbon phenolic ablatives. The end result of this program is the complete thermal characterization of pitch fabric, pitch mat, hybrid pitch/rayon fabric and pitch mat molding compound. With these properties determined an analytic capability now exists for predicting the thermal performance of these materials in rocket nozzle liner applications. Further planned efforts to verify material performance and analytical prediction procedures through actual rocket motor firings are also discussed.

  9. The role of timbre in pitch matching abilities and pitch discrimination abilities with complex tones

    NASA Astrophysics Data System (ADS)

    Moore, Robert E.; Watts, Christopher R.; Zhang, Fawen

    2001-05-01

    Control of fundamental frequency (F0) is important for singing in-tune and is an important factor related to the perception of a talented singing voice. One purpose of the present study was to investigate the relationship between pitch-matching skills, which is one method of testing F0 control, and pitch discrimination skills. It was observed that there was a relationship between pitch matching abilities and pitch discrimination abilities. Those subjects that were accurate pitch matchers were also accurate pitch discriminators (and vice versa). Further, timbre differences appeared to play a role in pitch discrimination accuracy. A second part of the study investigated the effect of timbre on speech discrimination. To study this, all but the first five harmonics of complex tones with different timbre were removed for the pitch discrimination task, thus making the tones more similar in timbre. Under this condition no difference was found between the pitch discrimination abilities of those who were accurate pitch matchers and those who were inaccurate pitch matchers. The results suggest that accurate F0 control is at least partially dependent on pitch discrimination abilities, and timbre appears to play an important role in differences in pitch discrimination ability.

  10. Pitch discrimination and pitch matching abilities of adults who sing inaccurately.

    PubMed

    Bradshaw, Elizabeth; McHenry, Monica A

    2005-09-01

    Past research regarding singing ability has provided evidence that both supports and refutes a relationship between pitch discrimination ability and pitch production ability. Researchers have suggested that these skills improve with age. Despite this suggestion, most investigators studying singing ability have included only children as participants. Additionally, although many researchers have studied accurate singers, few have directly studied persons who do not sing accurately. We designed this study to examine the relationship between pitch discrimination ability and pitch production ability in inaccurate adult singers. Fifteen adults, aged 18 to 40 years, that met specific criteria qualified as inaccurate singers. Each participated in two tasks, a pitch discrimination task and a pitch production task. We used the Multi-Dimensional Voice Profile-Advanced (Kay Elemetrics Corporation, Lincoln Park, NJ) to determine the frequency of each participant's vocal productions during the pitch production task. We also used a Pearson product moment correlation to analyze the relationship between pitch discrimination and pitch production accuracy within a semitone of the target frequency. No meaningful relationship was found, and results were not statistically significant. However, the inaccurate singers in this study could be classified into two separate categories, those who discriminated pitches accurately, but produced pitches inaccurately, and those who discriminated pitches inaccurately and produced pitches inaccurately. These findings may be of great importance to music educators and impact the focus of instruction when teaching an inaccurate singer to sing more accurately.

  11. Local Cochlear Correlations of Perceived Pitch

    NASA Astrophysics Data System (ADS)

    Martignoli, Stefan; Stoop, Ruedi

    2010-07-01

    Pitch is one of the most salient attributes of the human perception of sound, but is still not well understood. This difficulty originates in the entwined nature of the phenomenon, in which a physical stimulus as well as a psychophysiological signal receiver are involved. In an electronic realization of a biophysically detailed nonlinear model of the cochlea, we find local cochlear correlates of the perceived pitch that explain all essential pitch-shifting phenomena from physical grounds.

  12. The rising fastball: baseball's impossible pitch.

    PubMed

    McBeath, M K

    1990-01-01

    Batters in professional baseball are confronted with pitches that appear to curve, dip, wobble, or rise. The rising fastball is a pitch where the ball appears to hop up as much as a third of a meter with a sudden increase in speed. Physics experiments confirm that many reported trajectories are possible, but not the rising fastball. The present paper shows how the apparent rise may be explained as a perceptual illusion due to the hitter underestimating original speed of the pitch.

  13. Comparison of Two Independent Lidar-Based Pitch Control Designs

    SciTech Connect

    Dunne, F.; Schlipf, D.; Pao, L. Y.; Wright, A. D.; Jonkman, B.; Kelley, N.; Simley, E.

    2012-01-01

    Two different lidar-based feedforward controllers have previously been designed for the NREL 5 MW wind turbine model under separate studies. One uses a finite-impulse-response design, with 5 seconds of preview, and three rotating lidar measurements. The other uses a static-gain design, with the preview time defined by the pitch actuator dynamics, a simulation of a real nacelle-based scanning lidar system, and a lowpass filter defined by the lidar configuration. These controllers are now directly compared under the same lidar configuration, in terms of fatigue load reduction, rotor speed regulation, and power capture. The various differences in design choices are discussed and compared. We also compare frequency plots of individual pitch feedforward and collective pitch feedforward load reductions, and we see that individual pitch feedforward is effective mainly at the once-per-revolution and twice-per-revolution frequencies. We also explain how to determine the required preview time by breaking it down into separate parts, and we then compare it to the expected preview time available.

  14. Comparison of Two Independent LIDAR-Based Pitch Control Designs

    SciTech Connect

    Dunne, F.; Schlipf, D.; Pao, L. Y.

    2012-08-01

    Two different lidar-based feedforward controllers have previously been designed for the NREL 5 MW wind turbine model under separate studies. Feedforward controller A uses a finite-impulse-response design, with 5 seconds of preview, and three rotating lidar measurements. Feedforward controller B uses a static-gain design, with the preview time defined by the pitch actuator dynamics, a simulation of a real nacelle-based scanning lidar system, and a lowpass filter defined by the lidar configuration. These controllers are now directly compared under the same lidar configuration, in terms of fatigue load reduction, rotor speed regulation, and power capture. The various differences in design choices are discussed and compared. We also compare frequency plots of individual pitch feedforward and collective pitch feedforward load reductions, and we see that individual pitch feedforward is effective mainly at the once-per-revolution and twice-per-revolution frequencies. We also explain how to determine the required preview time by breaking it down into separate parts, and we then compare it to the expected preview time available.

  15. Voice responses to changes in pitch of voice or tone auditory feedback

    NASA Astrophysics Data System (ADS)

    Sivasankar, Mahalakshmi; Bauer, Jay J.; Babu, Tara; Larson, Charles R.

    2005-02-01

    The present study was undertaken to examine if a subject's voice F0 responded not only to perturbations in pitch of voice feedback but also to changes in pitch of a side tone presented congruent with voice feedback. Small magnitude brief duration perturbations in pitch of voice or tone auditory feedback were randomly introduced during sustained vowel phonations. Results demonstrated a higher rate and larger magnitude of voice F0 responses to changes in pitch of the voice compared with a triangular-shaped tone (experiment 1) or a pure tone (experiment 2). However, response latencies did not differ across voice or tone conditions. Data suggest that subjects responded to the change in F0 rather than harmonic frequencies of auditory feedback because voice F0 response prevalence, magnitude, or latency did not statistically differ across triangular-shaped tone or pure-tone feedback. Results indicate the audio-vocal system is sensitive to the change in pitch of a variety of sounds, which may represent a flexible system capable of adapting to changes in the subject's voice. However, lower prevalence and smaller responses to tone pitch-shifted signals suggest that the audio-vocal system may resist changes to the pitch of other environmental sounds when voice feedback is present. .

  16. Voice responses to changes in pitch of voice or tone auditory feedback.

    PubMed

    Sivasankar, Mahalakshmi; Bauer, Jay J; Babu, Tara; Larson, Charles R

    2005-02-01

    The present study was undertaken to examine if a subject's voice F0 responded not only to perturbations in pitch of voice feedback but also to changes in pitch of a side tone presented congruent with voice feedback. Small magnitude brief duration perturbations in pitch of voice or tone auditory feedback were randomly introduced during sustained vowel phonations. Results demonstrated a higher rate and larger magnitude of voice F0 responses to changes in pitch of the voice compared with a triangular-shaped tone (experiment 1) or a pure tone (experiment 2). However, response latencies did not differ across voice or tone conditions. Data suggest that subjects responded to the change in F0 rather than harmonic frequencies of auditory feedback because voice F0 response prevalence, magnitude, or latency did not statistically differ across triangular-shaped tone or pure-tone feedback. Results indicate the audio-vocal system is sensitive to the change in pitch of a variety of sounds, which may represent a flexible system capable of adapting to changes in the subject's voice. However, lower prevalence and smaller responses to tone pitch-shifted signals suggest that the audio-vocal system may resist changes to the pitch of other environmental sounds when voice feedback is present.

  17. Cortical pitch response components index stimulus onset/offset and dynamic features of pitch contours

    PubMed Central

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Ananthakrishnan, Saradha; Vijayaraghavan, Venkatakrishnan

    2014-01-01

    Voice pitch is an important information-bearing component of language that is subject to experience dependent plasticity at both early cortical and subcortical stages of processing. We’ve already demonstrated that pitch onset component (Na) of the cortical pitch response (CPR) is sensitive to flat pitch and its salience. In regards to dynamic pitch, we do not yet know whether the multiple pitch-related transient components of the CPR reflect specific temporal attributes of such stimuli. Here we examine the sensitivity of the multiple transient components of CPR to changes in pitch acceleration associated with the Mandarin high rising lexical tone. CPR responses from Chinese listeners were elicited by three citation forms varying in pitch acceleration and duration. Results showed that the pitch onset component (Na) was invariant to changes in acceleration. In contrast, Na-Pb and Pb-Nb showed a systematic increase in the interpeak latency and decrease in amplitude with increase in pitch acceleration that followed the time course of pitch change across the three stimuli. A strong correlation with pitch acceleration was observed for these two components only – a putative index of pitch-relevant neural activity associated with the more rapidly-changing portions of the pitch contour. Pc-Nc marks unambiguously the stimulus offset. We therefore propose that in the early stages of cortical sensory processing, a series of neural markers flag different temporal attributes of a dynamic pitch contour: onset of temporal regularity (Na); changes in temporal regularity between onset and offset (Na-Pb, Pb-Nb); and offset of temporal regularity (Pc-Nc). At the temporal electrode sites, the stimulus with the most gradual change in pitch acceleration evoked a rightward asymmetry. Yet within the left hemisphere, stimuli with more gradual change were indistinguishable. These findings highlight the emergence of early hemispheric preferences and their functional roles as related to

  18. Hemispheric lateralization for early auditory processing of lexical tones: dependence on pitch level and pitch contour.

    PubMed

    Wang, Xiao-Dong; Wang, Ming; Chen, Lin

    2013-09-01

    In Mandarin Chinese, a tonal language, pitch level and pitch contour are two dimensions of lexical tones according to their acoustic features (i.e., pitch patterns). A change in pitch level features a step change whereas that in pitch contour features a continuous variation in voice pitch. Currently, relatively little is known about the hemispheric lateralization for the processing of each dimension. To address this issue, we made whole-head electrical recordings of mismatch negativity in native Chinese speakers in response to the contrast of Chinese lexical tones in each dimension. We found that pre-attentive auditory processing of pitch level was obviously lateralized to the right hemisphere whereas there is a tendency for that of pitch contour to be lateralized to the left. We also found that the brain responded faster to pitch level than to pitch contour at a pre-attentive stage. These results indicate that the hemispheric lateralization for early auditory processing of lexical tones depends on the pitch level and pitch contour, and suggest an underlying inter-hemispheric interactive mechanism for the processing.

  19. Parasites pitched against nature: Pitch Lake water protects guppies (Poecilia reticulata) from microbial and gyrodactylid infections.

    PubMed

    Schelkle, Bettina; Mohammed, Ryan S; Coogan, Michael P; McMullan, Mark; Gillingham, Emma L; VAN Oosterhout, Cock; Cable, Joanne

    2012-11-01

    SUMMARY The enemy release hypothesis proposes that in parasite depleted habitats, populations will experience relaxed selection and become more susceptible (or less tolerant) to pathogenic infections. Here, we focus on a population of guppies (Poecilia reticulata) that are found in an extreme environment (the Pitch Lake, Trinidad) and examine whether this habitat represents a refuge from parasites. We investigated the efficacy of pitch in preventing microbial infections in Pitch Lake guppies, by exposing them to dechlorinated water, and reducing gyrodactylid infections on non-Pitch Lake guppies by transferring them to Pitch Lake water. We show that (i) natural prevalence of ectoparasites in the Pitch Lake is low compared to reference populations, (ii) Pitch Lake guppies transferred into aquarium water develop microbial infections, and (iii) experimentally infected guppies are cured of their gyrodactylid infections both by natural Pitch Lake water and by dechlorinated water containing solid pitch. These results indicate a role for Pitch Lake water in the defence of guppies from their parasites and suggest that Pitch Lake guppies might have undergone enemy release in this extreme environment. The Pitch Lake provides an ideal ecosystem for studies on immune gene evolution in the absence of parasites and long-term evolutionary implications of hydrocarbon pollution for vertebrates.

  20. Adaptation to alkalosis induces cell cycle delay and apoptosis in cortical collecting duct cells: role of Aquaporin-2.

    PubMed

    Rivarola, Valeria; Flamenco, Pilar; Melamud, Luciana; Galizia, Luciano; Ford, Paula; Capurro, Claudia

    2010-08-01

    Collecting ducts (CD) not only constitute the final site for regulating urine concentration by increasing apical membrane Aquaporin-2 (AQP2) expression, but are also essential for the control of acid-base status. The aim of this work was to examine, in renal cells, the effects of chronic alkalosis on cell growth/death as well as to define whether AQP2 expression plays any role during this adaptation. Two CD cell lines were used: WT- (not expressing AQPs) and AQP2-RCCD(1) (expressing apical AQP2). Our results showed that AQP2 expression per se accelerates cell proliferation by an increase in cell cycle progression. Chronic alkalosis induced, in both cells lines, a time-dependent reduction in cell growth. Even more, cell cycle movement, assessed by 5-bromodeoxyuridine pulse-chase and propidium iodide analyses, revealed a G2/M phase cell accumulation associated with longer S- and G2/M-transit times. This G2/M arrest is paralleled with changes consistent with apoptosis. All these effects appeared 24 h before and were always more pronounced in cells expressing AQP2. Moreover, in AQP2-expressing cells, part of the observed alkalosis cell growth decrease is explained by AQP2 protein down-regulation. We conclude that in CD cells alkalosis causes a reduction in cell growth by cell cycle delay that triggers apoptosis as an adaptive reaction to this environment stress. Since cell volume changes are prerequisite for the initiation of cell proliferation or apoptosis, we propose that AQP2 expression facilitates cell swelling or shrinkage leading to the activation of channels necessary to the control of these processes. PMID:20432437

  1. Beethoven's last piano sonata and those who follow crocodiles: cross-domain mappings of auditory pitch in a musical context.

    PubMed

    Eitan, Zohar; Timmers, Renee

    2010-03-01

    Though auditory pitch is customarily mapped in Western cultures onto spatial verticality (high-low), both anthropological reports and cognitive studies suggest that pitch may be mapped onto a wide variety of other domains. We collected a total number of 35 pitch mappings and investigated in four experiments how these mappings are used and structured. In particular, we inquired (1) how Western subjects apply Western and non-Western metaphors to "high" and "low" pitches, (2) whether mappings applied in an abstract conceptual task are similarly applied by listeners to actual music, (3) how mappings of spatial height relate to these pitch mappings, and (4) how mappings of "high" and "low" pitch associate with other dimensions, in particular quantity, size, intensity and valence. The results show strong agreement among Western participants in applying familiar and unfamiliar metaphors for pitch, in both an abstract, conceptual task (Exp. 1) and in a music listening task (Exp. 2), indicating that diverse cross-domain mappings for pitch exist latently besides the common verticality metaphor. Furthermore, limited overlap between mappings of spatial height and pitch height was found, suggesting that, the ubiquity of the verticality metaphor in Western usage notwithstanding, cross-domain pitch mappings are largely independent of that metaphor, and seem to be based upon other underlying dimensions. Part of the discrepancy between spatial height and pitch height is that, for pitch, "up" is not necessarily "more," nor is it necessarily "good." High pitch is only "more" for height, intensity and brightness. It is "less" for mass, size and quantity. We discuss implications of these findings for music and speech prosody, and their relevance to notions of embodied cognition and of cross-domain magnitude representation. PMID:20036356

  2. Video Game Programmers Learn to "Pitch"

    ERIC Educational Resources Information Center

    Nikirk, Martin

    2007-01-01

    New video and computer game ideas reach the stage of production by a company when they are "pitched" by game developers to game publishers. Learning how to "pitch" technology products has great educational value for technology education students. In this article, the author shares his experience with helping his students master the art of the…

  3. Pitch evaluation of high-precision gratings

    NASA Astrophysics Data System (ADS)

    Lu, Yancong; Zhou, Changhe; Wei, Chunlong; Jia, Wei; Xiang, Xiansong; Li, Yanyang; Yu, Junjie; Li, Shubin; Wang, Jin; Liu, Kun; Wei, Shengbin

    2014-11-01

    Optical encoders and laser interferometers are two primary solutions in nanometer metrology. As the precision of encoders depends on the uniformity of grating pitches, it is essential to evaluate pitches accurately. We use a CCD image sensor to acquire grating image for evaluating the pitches with high precision. Digital image correlation technique is applied to filter out the noises. We propose three methods for determining the pitches of grating with peak positions of correlation coefficients. Numerical simulation indicated the average of pitch deviations from the true pitch and the pitch variations are less than 0.02 pixel and 0.1 pixel for these three methods when the ideal grating image is added with salt and pepper noise, speckle noise, and Gaussian noise. Experimental results demonstrated that our method can measure the pitch of the grating accurately, for example, our home-made grating with 20μm period has 475nm peak-to-valley uniformity with 40nm standard deviation during 35mm range. Another measurement illustrated that our home-made grating has 40nm peak-to-valley uniformity with 10nm standard deviation. This work verified that our lab can fabricate high-accuracy gratings which should be interesting for practical application in optical encoders.

  4. Surface Electromyography of the Forearm Musculature During the Windmill Softball Pitch

    PubMed Central

    Remaley, D. Trey; Fincham, Bryce; McCullough, Bryan; Davis, Kirk; Nofsinger, Charles; Armstrong, Charles; Stausmire, Julie M.

    2015-01-01

    Background: Previous studies investigating the windmill softball pitch have focused primarily on shoulder musculature and function, collecting limited data on elbow and forearm musculature. Little information is available in the literature regarding the forearm. This study documents forearm muscle electromyographic (EMG) activity that has not been previously published. Purpose: Elbow and upper extremity overuse injuries are on the rise in fast-pitch softball pitchers. This study attempts to describe forearm muscle activity in softball pitchers during the windmill softball pitch. Overuse injuries can be prevented if a better understanding of mechanics is defined. Study Design: Descriptive laboratory study. Methods: Surface EMG and high-speed videography was used to study forearm muscle activation patterns during the windmill softball pitch on 10 female collegiate-level pitchers. Maximum voluntary isometric contraction of each muscle was used as a normalizing value. Each subject was tested during a single laboratory session per pitcher. Data included peak muscle activation, average muscle activation, and time to peak activation for 6 pitch types: fastball, changeup, riseball, curveball, screwball, and dropball. Results: During the first 4 phases, muscle activity (seen as signal strength on the EMG recordings) was limited and static in nature. The greatest activation occurred in phases 5 and 6, with increased signal strength, evidence of stretch-shortening cycle, and different muscle characteristics with each pitch style. These 2 phases of the windmill pitch are where the arm is placed in the 6 o’clock position and then at release of the ball. The flexor carpi ulnaris signal strength was significantly greater than the other forearm flexors. Timing of phases 1 through 5 was successively shorter for each pitch. There was a secondary pattern of activation in the flexor carpi ulnaris in phase 4 for all pitches except the fastball and riseball. Conclusion: During the 6

  5. Imperfect pitch: Gabor's uncertainty principle and the pitch of extremely brief sounds.

    PubMed

    Hsieh, I-Hui; Saberi, Kourosh

    2016-02-01

    How brief must a sound be before its pitch is no longer perceived? The uncertainty tradeoff between temporal and spectral resolution (Gabor's principle) limits the minimum duration required for accurate pitch identification or discrimination. Prior studies have reported that pitch can be extracted from sinusoidal pulses as brief as half a cycle. This finding has been used in a number of classic papers to develop models of pitch encoding. We have found that phase randomization, which eliminates timbre confounds, degrades this ability to chance, raising serious concerns over the foundation on which classic pitch models have been built. The current study investigated whether subthreshold pitch cues may still exist in partial-cycle pulses revealed through statistical integration in a time series containing multiple pulses. To this end, we measured frequency-discrimination thresholds in a two-interval forced-choice task for trains of partial-cycle random-phase tone pulses. We found that residual pitch cues exist in these pulses but discriminating them requires an order of magnitude (ten times) larger frequency difference than that reported previously, necessitating a re-evaluation of pitch models built on earlier findings. We also found that as pulse duration is decreased to less than two cycles its pitch becomes biased toward higher frequencies, consistent with predictions of an auto-correlation model of pitch extraction. PMID:26022837

  6. Imperfect pitch: Gabor's uncertainty principle and the pitch of extremely brief sounds.

    PubMed

    Hsieh, I-Hui; Saberi, Kourosh

    2016-02-01

    How brief must a sound be before its pitch is no longer perceived? The uncertainty tradeoff between temporal and spectral resolution (Gabor's principle) limits the minimum duration required for accurate pitch identification or discrimination. Prior studies have reported that pitch can be extracted from sinusoidal pulses as brief as half a cycle. This finding has been used in a number of classic papers to develop models of pitch encoding. We have found that phase randomization, which eliminates timbre confounds, degrades this ability to chance, raising serious concerns over the foundation on which classic pitch models have been built. The current study investigated whether subthreshold pitch cues may still exist in partial-cycle pulses revealed through statistical integration in a time series containing multiple pulses. To this end, we measured frequency-discrimination thresholds in a two-interval forced-choice task for trains of partial-cycle random-phase tone pulses. We found that residual pitch cues exist in these pulses but discriminating them requires an order of magnitude (ten times) larger frequency difference than that reported previously, necessitating a re-evaluation of pitch models built on earlier findings. We also found that as pulse duration is decreased to less than two cycles its pitch becomes biased toward higher frequencies, consistent with predictions of an auto-correlation model of pitch extraction.

  7. Forced pitch motion of wind turbines

    NASA Astrophysics Data System (ADS)

    Leble, V.; Barakos, G.

    2016-09-01

    The possibility of a wind turbine entering vortex ring state during pitching oscillations is explored in this paper. The aerodynamic performance of the rotor was computed using the Helicopter Multi-Block flow solver. This code solves the Navier-Stokes equations in integral form using the arbitrary Lagrangian-Eulerian formulation for time-dependent domains with moving boundaries. A 10-MW wind turbine was put to perform yawing and pitching oscillations suggesting the partial vortex ring state during pitching motion. The results also show the strong effect of the frequency and amplitude of oscillations on the wind turbine performance.

  8. The rising fastball: baseball's impossible pitch.

    PubMed

    McBeath, M K

    1990-01-01

    Batters in professional baseball are confronted with pitches that appear to curve, dip, wobble, or rise. The rising fastball is a pitch where the ball appears to hop up as much as a third of a meter with a sudden increase in speed. Physics experiments confirm that many reported trajectories are possible, but not the rising fastball. The present paper shows how the apparent rise may be explained as a perceptual illusion due to the hitter underestimating original speed of the pitch. PMID:2096372

  9. Reading with fixed and variable character pitch.

    PubMed

    Arditi, A; Knoblauch, K; Grunwald, I

    1990-10-01

    We compared the effects of fixed and variable (proportional) spacing on reading speeds and found variable pitch to yield better performance at medium and large character sizes and fixed pitch to be superior for character sizes approaching the acuity limit. The data indicate at least two crowding effects at the smallest sizes: one that interferes with individual character identification and one that interferes with word identification. A control experiment using rapid serial visual presentation suggests that it is the greater horizontal compression and consequently reduced eye-movement requirements of variable pitch that are responsible for its superiority at medium and large character sizes.

  10. Slow-pitch softball injuries.

    PubMed

    Wheeler, B R

    1984-01-01

    A prospective investigation of slow-pitch softball injuries incurred in Hawaii was undertaken to study the nature of these injuries and analyze their causes. The injured players were involved in league softball with referees. There were 83 athletes and 93 injuries. A retrospective review of all Army softball-related admissions was also done. Thirty-five athletes or 42% were injured while sliding, 29 "foot first" and the remainder "hand first". Twenty-five of 27 ankle injuries caused by sliding included 20 fractures, 3 sprains, and 2 complete closed posterior dislocations. Analysis of these injuries suggests that the injury occurs when the individual uses the base to rapidly decelerate and avoid overrunning the base. Eighty-four percent of the athletes were injured from three mechanisms; 42% from sliding, 25% from "jamming" injuries, and 17% from falls. The only preventable group of injuries appears to be the sliding injuries. Recessing the bases, using "quick release" rather than anchored bases, teaching safer sliding techniques, or eliminating the slide are suggested as means of preventing these injuries.

  11. Exploring the Relevance of the Personal and Social Responsibility Model in Adapted Physical Activity: A Collective Case Study

    ERIC Educational Resources Information Center

    Wright, Paul M.; White, Katherine; Gaebler-Spira, Deborah

    2004-01-01

    The purpose of this study was to examine the application of the Personal and Social Responsibility Model (PSRM) in an adapted physical activity program. Although the PSRM was developed for use with underserved youth, scholars in the field of adapted physical activity have noted its potential relevance for children with disabilities. Using a…

  12. Experience-dependent enhancement of pitch-specific responses in the auditory cortex is limited to acceleration rates in normal voice range.

    PubMed

    Krishnan, A; Gandour, J T; Suresh, C H

    2015-09-10

    The aim of this study is to determine how pitch acceleration rates within and outside the normal pitch range may influence latency and amplitude of cortical pitch-specific responses (CPR) as a function of language experience (Chinese, English). Responses were elicited from a set of four pitch stimuli chosen to represent a range of acceleration rates (two each inside and outside the normal voice range) imposed on the high rising Mandarin Tone 2. Pitch-relevant neural activity, as reflected in the latency and amplitude of scalp-recorded CPR components, varied depending on language-experience and pitch acceleration of dynamic, time-varying pitch contours. Peak latencies of CPR components were shorter in the Chinese than the English group across stimuli. Chinese participants showed greater amplitude than English for CPR components at both frontocentral and temporal electrode sites in response to pitch contours with acceleration rates inside the normal voice pitch range as compared to pitch contours with acceleration rates that exceed the normal range. As indexed by CPR amplitude at the temporal sites, a rightward asymmetry was observed for the Chinese group only. Only over the right temporal site was amplitude greater in the Chinese group relative to the English. These findings may suggest that the neural mechanism(s) underlying processing of pitch in the right auditory cortex reflect experience-dependent modulation of sensitivity to acceleration in just those rising pitch contours that fall within the bounds of one's native language. More broadly, enhancement of native pitch stimuli and stronger rightward asymmetry of CPR components in the Chinese group is consistent with the notion that long-term experience shapes adaptive, distributed hierarchical pitch processing in the auditory cortex, and reflects an interaction with higher order, extrasensory processes beyond the sensory memory trace.

  13. Experience-dependent enhancement of pitch-specific responses in the auditory cortex is limited to acceleration rates in normal voice range

    PubMed Central

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Suresh, Chandan H.

    2015-01-01

    The aim of this study is to determine how pitch acceleration rates within and outside the normal pitch range may influence latency and amplitude of cortical pitch-specific responses (CPR) as a function of language experience (Chinese, English). Responses were elicited from a set of four pitch stimuli chosen to represent a range of acceleration rates (two each inside and outside the normal voice range) imposed on the high rising Mandarin Tone 2. Pitch-relevant neural activity, as reflected in the latency and amplitude of scalp-recorded CPR components, varied depending on language-experience and pitch acceleration of dynamic, time-varying pitch contours. Peak latencies of CPR components were shorter in the Chinese than the English group across stimuli. Chinese participants showed greater amplitude than English for CPR components at both frontocentral and temporal electrode sites in response to pitch contours with acceleration rates inside the normal voice pitch range as compared to pitch contours with acceleration rates that exceed the normal range. As indexed by CPR amplitude at the temporal sites, a rightward asymmetry was observed for the Chinese group only. Only over the right temporal site was amplitude greater in the Chinese group relative to the English. These findings may suggest that the neural mechanism(s) underlying processing of pitch in the right auditory cortex reflect experience-dependent modulation of sensitivity to acceleration in just those rising pitch contours that fall within the bounds of one’s native language. More broadly, enhancement of native pitch stimuli and stronger rightward asymmetry of CPR components in the Chinese group is consistent with the notion that long-term experience shapes adaptive, distributed hierarchical pitch processing in the auditory cortex, and reflects an interaction with higher-order, extrasensory processes beyond the sensory memory trace. PMID:26166727

  14. Two highly accurate methods for pitch calibration

    NASA Astrophysics Data System (ADS)

    Kniel, K.; Härtig, F.; Osawa, S.; Sato, O.

    2009-11-01

    Among profiles, helix and tooth thickness pitch is one of the most important parameters of an involute gear measurement evaluation. In principle, coordinate measuring machines (CMM) and CNC-controlled gear measuring machines as a variant of a CMM are suited for these kinds of gear measurements. Now the Japan National Institute of Advanced Industrial Science and Technology (NMIJ/AIST) and the German national metrology institute the Physikalisch-Technische Bundesanstalt (PTB) have each developed independently highly accurate pitch calibration methods applicable to CMM or gear measuring machines. Both calibration methods are based on the so-called closure technique which allows the separation of the systematic errors of the measurement device and the errors of the gear. For the verification of both calibration methods, NMIJ/AIST and PTB performed measurements on a specially designed pitch artifact. The comparison of the results shows that both methods can be used for highly accurate calibrations of pitch standards.

  15. Method for extruding pitch based foam

    SciTech Connect

    Klett, James W.

    2002-01-01

    A method and apparatus for extruding pitch based foam is disclosed. The method includes the steps of: forming a viscous pitch foam; passing the precursor through an extrusion tube; and subjecting the precursor in said extrusion tube to a temperature gradient which varies along the length of the extrusion tube to form an extruded carbon foam. The apparatus includes an extrusion tube having a passageway communicatively connected to a chamber in which a viscous pitch foam formed in the chamber paring through the extrusion tube, and a heating mechanism in thermal communication with the tube for heating the viscous pitch foam along the length of the tube in accordance with a predetermined temperature gradient.

  16. Human spatial orientation in the pitch dimension

    NASA Technical Reports Server (NTRS)

    Cohen, M. M.; Larson, C. A.

    1974-01-01

    Two experiments were conducted. In Experiment I, each of eight Ss attempted to place himself at 13 different goal orientations between prone and supine. Deviations of achieved body pitch angles from goal orientations were determined. In Experiment II, each of eight Ss attempted to align a visual target with his morphological horizon while he was placed at each of the 13 goal orientations. Changes in settings of the target were examined. Results indicate that Ss underestimate body pitch when they are tilted less than 60 deg backward or forward from the vertical, overestimate body pitch when they are nearly prone, and accurately estimate body pitch when they are nearly supine. In contrast, Ss set the visual target maximally above the morphological horizon when they are tilted 30 deg forward from the vertical. The findings are discussed in terms of common and different physiological mechanism that may underlie judgments of these types.

  17. SOLARMAX/Electron Pitch Angle Anisotropy Distributions

    NASA Technical Reports Server (NTRS)

    McKenzie, David L.; Anderson, Phillip C.

    2002-01-01

    This final research report summarizes the scientific work performed by The Aerospace Corporation on SOLARMAX/Electron Pitch Angle Anisotropy Distributions. The period of performance was from June 1, 2000 to December 31, 2001.

  18. Effects of culture on musical pitch perception.

    PubMed

    Wong, Patrick C M; Ciocca, Valter; Chan, Alice H D; Ha, Louisa Y Y; Tan, Li-Hai; Peretz, Isabelle

    2012-01-01

    The strong association between music and speech has been supported by recent research focusing on musicians' superior abilities in second language learning and neural encoding of foreign speech sounds. However, evidence for a double association--the influence of linguistic background on music pitch processing and disorders--remains elusive. Because languages differ in their usage of elements (e.g., pitch) that are also essential for music, a unique opportunity for examining such language-to-music associations comes from a cross-cultural (linguistic) comparison of congenital amusia, a neurogenetic disorder affecting the music (pitch and rhythm) processing of about 5% of the Western population. In the present study, two populations (Hong Kong and Canada) were compared. One spoke a tone language in which differences in voice pitch correspond to differences in word meaning (in Hong Kong Cantonese, /si/ means 'teacher' and 'to try' when spoken in a high and mid pitch pattern, respectively). Using the On-line Identification Test of Congenital Amusia, we found Cantonese speakers as a group tend to show enhanced pitch perception ability compared to speakers of Canadian French and English (non-tone languages). This enhanced ability occurs in the absence of differences in rhythmic perception and persists even after relevant factors such as musical background and age were controlled. Following a common definition of amusia (5% of the population), we found Hong Kong pitch amusics also show enhanced pitch abilities relative to their Canadian counterparts. These findings not only provide critical evidence for a double association of music and speech, but also argue for the reconceptualization of communicative disorders within a cultural framework. Along with recent studies documenting cultural differences in visual perception, our auditory evidence challenges the common assumption of universality of basic mental processes and speaks to the domain generality of culture

  19. Perceptual pitch deficits coexist with pitch production difficulties in music but not Mandarin speech.

    PubMed

    Yang, Wu-Xia; Feng, Jie; Huang, Wan-Ting; Zhang, Cheng-Xiang; Nan, Yun

    2013-01-01

    Congenital amusia is a musical disorder that mainly affects pitch perception. Among Mandarin speakers, some amusics also have difficulties in processing lexical tones (tone agnosics). To examine to what extent these perceptual deficits may be related to pitch production impairments in music and Mandarin speech, eight amusics, eight tone agnosics, and 12 age- and IQ-matched normal native Mandarin speakers were asked to imitate music note sequences and Mandarin words of comparable lengths. The results indicated that both the amusics and tone agnosics underperformed the controls on musical pitch production. However, tone agnosics performed no worse than the amusics, suggesting that lexical tone perception deficits may not aggravate musical pitch production difficulties. Moreover, these three groups were all able to imitate lexical tones with perfect intelligibility. Taken together, the current study shows that perceptual musical pitch and lexical tone deficits might coexist with musical pitch production difficulties. But at the same time these perceptual pitch deficits might not affect lexical tone production or the intelligibility of the speech words that were produced. The perception-production relationship for pitch among individuals with perceptual pitch deficits may be, therefore, domain-dependent.

  20. Perceptual pitch deficits coexist with pitch production difficulties in music but not Mandarin speech.

    PubMed

    Yang, Wu-Xia; Feng, Jie; Huang, Wan-Ting; Zhang, Cheng-Xiang; Nan, Yun

    2013-01-01

    Congenital amusia is a musical disorder that mainly affects pitch perception. Among Mandarin speakers, some amusics also have difficulties in processing lexical tones (tone agnosics). To examine to what extent these perceptual deficits may be related to pitch production impairments in music and Mandarin speech, eight amusics, eight tone agnosics, and 12 age- and IQ-matched normal native Mandarin speakers were asked to imitate music note sequences and Mandarin words of comparable lengths. The results indicated that both the amusics and tone agnosics underperformed the controls on musical pitch production. However, tone agnosics performed no worse than the amusics, suggesting that lexical tone perception deficits may not aggravate musical pitch production difficulties. Moreover, these three groups were all able to imitate lexical tones with perfect intelligibility. Taken together, the current study shows that perceptual musical pitch and lexical tone deficits might coexist with musical pitch production difficulties. But at the same time these perceptual pitch deficits might not affect lexical tone production or the intelligibility of the speech words that were produced. The perception-production relationship for pitch among individuals with perceptual pitch deficits may be, therefore, domain-dependent. PMID:24474944

  1. Perceptual pitch deficits coexist with pitch production difficulties in music but not Mandarin speech

    PubMed Central

    Yang, Wu-xia; Feng, Jie; Huang, Wan-ting; Zhang, Cheng-xiang; Nan, Yun

    2014-01-01

    Congenital amusia is a musical disorder that mainly affects pitch perception. Among Mandarin speakers, some amusics also have difficulties in processing lexical tones (tone agnosics). To examine to what extent these perceptual deficits may be related to pitch production impairments in music and Mandarin speech, eight amusics, eight tone agnosics, and 12 age- and IQ-matched normal native Mandarin speakers were asked to imitate music note sequences and Mandarin words of comparable lengths. The results indicated that both the amusics and tone agnosics underperformed the controls on musical pitch production. However, tone agnosics performed no worse than the amusics, suggesting that lexical tone perception deficits may not aggravate musical pitch production difficulties. Moreover, these three groups were all able to imitate lexical tones with perfect intelligibility. Taken together, the current study shows that perceptual musical pitch and lexical tone deficits might coexist with musical pitch production difficulties. But at the same time these perceptual pitch deficits might not affect lexical tone production or the intelligibility of the speech words that were produced. The perception-production relationship for pitch among individuals with perceptual pitch deficits may be, therefore, domain-dependent. PMID:24474944

  2. Do Zwicker Tones Evoke a Musical Pitch?

    PubMed

    Gockel, Hedwig E; Carlyon, Robert P

    2016-01-01

    It has been argued that musical pitch, i.e. pitch in its strictest sense, requires phase locking at the level of the auditory nerve. The aim of the present study was to assess whether a musical pitch can be heard in the absence of peripheral phase locking, using Zwicker tones (ZTs). A ZT is a faint, decaying tonal percept that arises after listening to a band-stop (notched) broadband noise. The pitch is within the frequency range of the notch. Several findings indicate that ZTs are unlikely to be produced mechanically at the level of the cochlea and, therefore, there is unlikely to be phase locking to ZTs in the auditory periphery. In stage I of the experiment, musically trained subjects adjusted the frequency, level, and decay time of an exponentially decaying sinusoid so that it sounded similar to the ZT they perceived following a broadband noise, for various notch positions. In stage II, subjects adjusted the frequency of a sinusoid so that its pitch was a specified musical interval below that of either a preceding ZT or a preceding sinusoid (as determined in stage I). Subjects selected appropriate frequency ratios for ZTs, although the standard deviations of the adjustments were larger for the ZTs than for the equally salient sinusoids by a factor of 1.1-2.2. The results suggest that a musical pitch may exist in the absence of peripheral phase locking. PMID:27080683

  3. Biomechanical study of the pitching elbow.

    PubMed

    Hang, Y S; Lippert, F G; Spolek, G A; Frankel, V H; Harrington, R M

    1979-01-01

    Medial-tension injuries of the pitching elbow are well recognized. One contributing factor is the extreme valgus which has been noted to occur during the acceleration phase of throwing. It is hypothesized that breaking pitches generate higher medial loading because of the pronation and supination required to impart spin to the ball. The pitching motion is a complex action of all body segments to produce maximum linear and angular acceleration of the ball. The purpose of this study was to correlate elbow loading with pitching style. We measured the forearm segment for axial and tangential (varus-valgus plane) acceleration using accelerometers attached to the forearm and hand. Muscle activity was measured by EMG. Forearm rotation was assessed by stroboscopic photography. Despite different delivery styles when throwing breaking pitches, each pitcher demonstrated patterns of muscle activity and acceleration which were similar. Deceleration forces were lower than acceleration forces. Pronation and supination were documented and contribute to the direction of ball spin. Accelerometers can be used to evaluate pitching mechanics. We suggest that the main factors causing an elbow injury are the amount of throwing and the force with which the ball is thrown.

  4. Familiarity and preference for pitch probability profiles.

    PubMed

    Cui, Anja-Xiaoxing; Collett, Meghan J; Troje, Niko F; Cuddy, Lola L

    2015-05-01

    We investigated familiarity and preference judgments of participants toward a novel musical system. We exposed participants to tone sequences generated from a novel pitch probability profile. Afterward, we either asked participants to identify more familiar or we asked participants to identify preferred tone sequences in a two-alternative forced-choice task. The task paired a tone sequence generated from the pitch probability profile they had been exposed to and a tone sequence generated from another pitch probability profile at three levels of distinctiveness. We found that participants identified tone sequences as more familiar if they were generated from the same pitch probability profile which they had been exposed to. However, participants did not prefer these tone sequences. We interpret this relationship between familiarity and preference to be consistent with an inverted U-shaped relationship between knowledge and affect. The fact that participants identified tone sequences as even more familiar if they were generated from the more distinctive (caricatured) version of the pitch probability profile which they had been exposed to suggests that the statistical learning of the pitch probability profile is involved in gaining of musical knowledge. PMID:25838257

  5. Prosodic Adaptations to Pitch Perturbation in Running Speech

    ERIC Educational Resources Information Center

    Patel, Rupal; Niziolek, Caroline; Reilly, Kevin; Guenther, Frank H.

    2011-01-01

    Purpose: A feedback perturbation paradigm was used to investigate whether prosodic cues are controlled independently or in an integrated fashion during sentence production. Method: Twenty-one healthy speakers of American English were asked to produce sentences with emphatic stress while receiving real-time auditory feedback of their productions.…

  6. Production of coking-plant electrode pitches by extractive separation

    SciTech Connect

    Mochalov, V.V.; Pistrova, P.D.; Zaidis, E.G.

    1983-01-01

    A simplified method has been developed for the extractive separation of coal tar or pitch, to make various pitches with specified properties. The yield of coal tar or pitch of any given quality depends on how rich the feedstock is in fractions soluble in toluene or insoluble in quinoline. The extractive treatment of medium pitch produces a special pitch, the composition and properties of which can be varied by using different amounts of different solvents. 5 tables.

  7. Coordination pattern of baseball pitching among young pitchers of various ages and velocity levels.

    PubMed

    Chen, Hsiu-Hui; Liu, Chiang; Yang, Wen-Wen

    2016-09-01

    This study compared the whole-body movement coordination of pitching among 72 baseball players of various ages and velocity levels. Participants were classified as senior, junior, and little according to their age, with each group comprising 24 players. The velocity levels of the high-velocity (the top eight) and low-velocity (the lowest eight) groups were classified according to their pitching velocity. During pitching, the coordinates of 15 markers attached to the major joints of the whole-body movement system were collected for analysis. Sixteen kinematic parameters were calculated to compare the groups and velocity levels. Principal component analysis (PCA) was conducted to quantify the coordination pattern of pitching movement. The results were as follows: (1) five position and two velocity parameters significantly differed among the age groups, and two position and one velocity parameters significantly differed between the high- and low-velocity groups. (2) The coordination patterns of pitching movement could be described using three components, of which the eigenvalues and contents varied according to age and velocity level. In conclusion, the senior and junior players showed greater elbow angular velocity, whereas the little players exhibited a wider shoulder angle only at the beginning of pitching. The players with high velocity exhibited higher trunk and shoulder rotation velocity. The variations among groups found using PCA and kinematics parameter analyses were consistent.

  8. Coordination pattern of baseball pitching among young pitchers of various ages and velocity levels.

    PubMed

    Chen, Hsiu-Hui; Liu, Chiang; Yang, Wen-Wen

    2016-09-01

    This study compared the whole-body movement coordination of pitching among 72 baseball players of various ages and velocity levels. Participants were classified as senior, junior, and little according to their age, with each group comprising 24 players. The velocity levels of the high-velocity (the top eight) and low-velocity (the lowest eight) groups were classified according to their pitching velocity. During pitching, the coordinates of 15 markers attached to the major joints of the whole-body movement system were collected for analysis. Sixteen kinematic parameters were calculated to compare the groups and velocity levels. Principal component analysis (PCA) was conducted to quantify the coordination pattern of pitching movement. The results were as follows: (1) five position and two velocity parameters significantly differed among the age groups, and two position and one velocity parameters significantly differed between the high- and low-velocity groups. (2) The coordination patterns of pitching movement could be described using three components, of which the eigenvalues and contents varied according to age and velocity level. In conclusion, the senior and junior players showed greater elbow angular velocity, whereas the little players exhibited a wider shoulder angle only at the beginning of pitching. The players with high velocity exhibited higher trunk and shoulder rotation velocity. The variations among groups found using PCA and kinematics parameter analyses were consistent. PMID:26757065

  9. A Neuronal Network Model for Pitch Selectivity and Representation

    PubMed Central

    Huang, Chengcheng; Rinzel, John

    2016-01-01

    Pitch is a perceptual correlate of periodicity. Sounds with distinct spectra can elicit the same pitch. Despite the importance of pitch perception, understanding the cellular mechanism of pitch perception is still a major challenge and a mechanistic model of pitch is lacking. A multi-stage neuronal network model is developed for pitch frequency estimation using biophysically-based, high-resolution coincidence detector neurons. The neuronal units respond only to highly coincident input among convergent auditory nerve fibers across frequency channels. Their selectivity for only very fast rising slopes of convergent input enables these slope-detectors to distinguish the most prominent coincidences in multi-peaked input time courses. Pitch can then be estimated from the first-order interspike intervals of the slope-detectors. The regular firing pattern of the slope-detector neurons are similar for sounds sharing the same pitch despite the distinct timbres. The decoded pitch strengths also correlate well with the salience of pitch perception as reported by human listeners. Therefore, our model can serve as a neural representation for pitch. Our model performs successfully in estimating the pitch of missing fundamental complexes and reproducing the pitch variation with respect to the frequency shift of inharmonic complexes. It also accounts for the phase sensitivity of pitch perception in the cases of Schroeder phase, alternating phase and random phase relationships. Moreover, our model can also be applied to stochastic sound stimuli, iterated-ripple-noise, and account for their multiple pitch perceptions. PMID:27378900

  10. A Neuronal Network Model for Pitch Selectivity and Representation.

    PubMed

    Huang, Chengcheng; Rinzel, John

    2016-01-01

    Pitch is a perceptual correlate of periodicity. Sounds with distinct spectra can elicit the same pitch. Despite the importance of pitch perception, understanding the cellular mechanism of pitch perception is still a major challenge and a mechanistic model of pitch is lacking. A multi-stage neuronal network model is developed for pitch frequency estimation using biophysically-based, high-resolution coincidence detector neurons. The neuronal units respond only to highly coincident input among convergent auditory nerve fibers across frequency channels. Their selectivity for only very fast rising slopes of convergent input enables these slope-detectors to distinguish the most prominent coincidences in multi-peaked input time courses. Pitch can then be estimated from the first-order interspike intervals of the slope-detectors. The regular firing pattern of the slope-detector neurons are similar for sounds sharing the same pitch despite the distinct timbres. The decoded pitch strengths also correlate well with the salience of pitch perception as reported by human listeners. Therefore, our model can serve as a neural representation for pitch. Our model performs successfully in estimating the pitch of missing fundamental complexes and reproducing the pitch variation with respect to the frequency shift of inharmonic complexes. It also accounts for the phase sensitivity of pitch perception in the cases of Schroeder phase, alternating phase and random phase relationships. Moreover, our model can also be applied to stochastic sound stimuli, iterated-ripple-noise, and account for their multiple pitch perceptions. PMID:27378900

  11. Muscle activation patterns of the upper and lower extremity during the windmill softball pitch.

    PubMed

    Oliver, Gretchen D; Plummer, Hillary A; Keeley, David W

    2011-06-01

    Fast-pitch softball has become an increasingly popular sport for female athletes. There has been little research examining the windmill softball pitch in the literature. The purpose of this study was to describe the muscle activation patterns of 3 upper extremity muscles (biceps, triceps, and rhomboids [scapular stabilizers]) and 2 lower extremity muscles (gluteus maximus and medius) during the 5 phases of the windmill softball pitch. Data describing muscle activation were collected on 7 postpubescent softball pitchers (age 17.7 ± 2.6 years; height 169 ± 5.4 cm; mass 69.1 ± 5.4 kg). Surface electromyographic data were collected using a Myopac Jr 10-channel amplifier (RUN Technologies Scientific Systems, Laguna Hills, CA, USA) synchronized with The MotionMonitor™ motion capture system (Innovative Sports Training Inc, Chicago IL, USA) and presented as a percent of maximum voluntary isometric contraction. Gluteus maximus activity reached (196.3% maximum voluntary isometric contraction [MVIC]), whereas gluteus medius activity was consistent during the single leg support of phase 3 (101.2% MVIC). Biceps brachii activity was greatest during phase 4 of the pitching motion. Triceps brachii activation was consistently >150% MVIC throughout the entire pitching motion, whereas the scapular stabilizers were most active during phase 2 (170.1% MVIC). The results of this study indicate the extent to which muscles are activated during the windmill softball pitch, and this knowledge can lead to the development of proper preventative and rehabilitative muscle strengthening programs. In addition, clinicians will be able to incorporate strengthening exercises that mimic the timing of maximal muscle activation most used during the windmill pitching phases.

  12. The thickness of musical pitch: psychophysical evidence for linguistic relativity.

    PubMed

    Dolscheid, Sarah; Shayan, Shakila; Majid, Asifa; Casasanto, Daniel

    2013-05-01

    Do people who speak different languages think differently, even when they are not using language? To find out, we used nonlinguistic psychophysical tasks to compare mental representations of musical pitch in native speakers of Dutch and Farsi. Dutch speakers describe pitches as high (hoog) or low (laag), whereas Farsi speakers describe pitches as thin (nazok) or thick (koloft). Differences in language were reflected in differences in performance on two pitch-reproduction tasks, even though the tasks used simple, nonlinguistic stimuli and responses. To test whether experience using language influences mental representations of pitch, we trained native Dutch speakers to describe pitch in terms of thickness, as Farsi speakers do. After the training, Dutch speakers' performance on a nonlinguistic psychophysical task resembled the performance of native Farsi speakers. People who use different linguistic space-pitch metaphors also think about pitch differently. Language can play a causal role in shaping nonlinguistic representations of musical pitch.

  13. Pitch ranking, electrode discrimination, and physiological spread-of-excitation using Cochlear's dual-electrode mode.

    PubMed

    Goehring, Jenny L; Neff, Donna L; Baudhuin, Jacquelyn L; Hughes, Michelle L

    2014-08-01

    This study compared pitch ranking, electrode discrimination, and electrically evoked compound action potential (ECAP) spatial excitation patterns for adjacent physical electrodes (PEs) and the corresponding dual electrodes (DEs) for newer-generation Cochlear devices (Cochlear Ltd., Macquarie, New South Wales, Australia). The first goal was to determine whether pitch ranking and electrode discrimination yield similar outcomes for PEs and DEs. The second goal was to determine if the amount of spatial separation among ECAP excitation patterns (separation index, Σ) between adjacent PEs and the PE-DE pairs can predict performance on the psychophysical tasks. Using non-adaptive procedures, 13 subjects completed pitch ranking and electrode discrimination for adjacent PEs and the corresponding PE-DE pairs (DE versus each flanking PE) from the basal, middle, and apical electrode regions. Analysis of d' scores indicated that pitch-ranking and electrode-discrimination scores were not significantly different, but rather produced similar levels of performance. As expected, accuracy was significantly better for the PE-PE comparison than either PE-DE comparison. Correlations of the psychophysical versus ECAP Σ measures were positive; however, not all test/region correlations were significant across the array. Thus, the ECAP separation index is not sensitive enough to predict performance on behavioral tasks of pitch ranking or electrode discrimination for adjacent PEs or corresponding DEs.

  14. Pitch ranking, electrode discrimination, and physiological spread-of-excitation using Cochlear's dual-electrode mode

    PubMed Central

    Goehring, Jenny L.; Neff, Donna L.; Baudhuin, Jacquelyn L.; Hughes, Michelle L.

    2014-01-01

    This study compared pitch ranking, electrode discrimination, and electrically evoked compound action potential (ECAP) spatial excitation patterns for adjacent physical electrodes (PEs) and the corresponding dual electrodes (DEs) for newer-generation Cochlear devices (Cochlear Ltd., Macquarie, New South Wales, Australia). The first goal was to determine whether pitch ranking and electrode discrimination yield similar outcomes for PEs and DEs. The second goal was to determine if the amount of spatial separation among ECAP excitation patterns (separation index, Σ) between adjacent PEs and the PE-DE pairs can predict performance on the psychophysical tasks. Using non-adaptive procedures, 13 subjects completed pitch ranking and electrode discrimination for adjacent PEs and the corresponding PE-DE pairs (DE versus each flanking PE) from the basal, middle, and apical electrode regions. Analysis of d′ scores indicated that pitch-ranking and electrode-discrimination scores were not significantly different, but rather produced similar levels of performance. As expected, accuracy was significantly better for the PE-PE comparison than either PE-DE comparison. Correlations of the psychophysical versus ECAP Σ measures were positive; however, not all test/region correlations were significant across the array. Thus, the ECAP separation index is not sensitive enough to predict performance on behavioral tasks of pitch ranking or electrode discrimination for adjacent PEs or corresponding DEs. PMID:25096106

  15. Thread gauge for measuring thread pitch diameters

    DOEpatents

    Brewster, A.L.

    1985-11-19

    A thread gauge which attaches to a vernier caliper to measure the thread pitch diameter of both externally threaded and internally threaded parts is disclosed. A pair of anvils are externally threaded with threads having the same pitch as those of the threaded part. Each anvil is mounted on a stem having a ball on which the anvil can rotate to properly mate with the parts to which the anvils are applied. The stems are detachably secured to the caliper blades by attachment collars having keyhole openings for receiving the stems and caliper blades. A set screw is used to secure each collar on its caliper blade. 2 figs.

  16. High performance pitch-based carbon fiber

    SciTech Connect

    Tadokoro, Hiroyuki; Tsuji, Nobuyuki; Shibata, Hirotaka; Furuyama, Masatoshi

    1996-12-31

    The high performance pitch-based carbon fiber with smaller diameter, six micro in developed by Nippon Graphite Fiber Corporation. This fiber possesses high tensile modulus, high tensile strength, excellent yarn handle ability, low thermal expansion coefficient, and high thermal conductivity which make it an ideal material for space applications such as artificial satellites. Performance of this fiber as a reinforcement of composites was sufficient. With these characteristics, this pitch-based carbon fiber is expected to find wide variety of possible applications in space structures, industrial field, sporting goods and civil infrastructures.

  17. Small pixel pitch MCT IR-modules

    NASA Astrophysics Data System (ADS)

    Lutz, H.; Breiter, R.; Eich, D.; Figgemeier, H.; Fries, P.; Rutzinger, S.; Wendler, J.

    2016-05-01

    It is only some years ago, since VGA format detectors in 15μm pitch, manufactured with AIM's MCT n-on-p LPE standard technology, have been introduced to replace TV/4 format detector arrays as a system upgrade. In recent years a rapid increase in the demand for higher resolution, while preserving high thermal resolution, compactness and low power budget is observed. To satisfy these needs AIM has realized first prototypes of MWIR XGA format (1024x768) detector arrays in 10μm pitch. They fit in the same compact dewar as 640x512, 15μm pitch detector arrays. Therefore, they are best suited for system upgrade purposes to benefit from higher spatial resolution and keep cost on system level low. By combining pitch size reduction with recent development progress in the fields of miniature cryocoolers, short dewars and high operating temperatures the way ahead to ultra-compact high performance MWIR-modules is prepared. For cost reduction MBE grown MCT on commercially available GaAs substrates is introduced at AIM. Recently, 640x512, 15μm pitch FPAs, grown with MBE have successfully passed long-term high temperature storage tests as a crucial step towards serial production readiness level for use in future products. Pitch size reduction is not limited to arrays sensitive in the MWIR, but is of great interest for high performance LWIR or 3rd Gen solutions. Some applications such as rotorcraft pilotage require superior spatial resolution in a compact design to master severe weather conditions or degraded visual environment such as brown-out. For these applications AIM is developing both LWIR as well as dual band detector arrays in HD-format (1280x720) with 12μm pitch. This paper will present latest results in the development of detector arrays with small pitch sizes of 10μm and 12μm at AIM, together with their usage to realize compact cooled IR-modules.

  18. Thread gauge for measuring thread pitch diameters

    DOEpatents

    Brewster, Albert L.

    1985-01-01

    A thread gauge which attaches to a vernier caliper to measure the thread pitch diameter of both externally threaded and internally threaded parts. A pair of anvils are externally threaded with threads having the same pitch as those of the threaded part. Each anvil is mounted on a stem having a ball on which the anvil can rotate to properly mate with the parts to which the anvils are applied. The stems are detachably secured to the caliper blades by attachment collars having keyhole openings for receiving the stems and caliper blades. A set screw is used to secure each collar on its caliper blade.

  19. Absolute pitch in Costa Rica: Distribution of pitch identification ability and implications for its genetic basis.

    PubMed

    Chavarria-Soley, Gabriela

    2016-08-01

    Absolute pitch is the unusual ability to recognize a pitch without an external reference. The current view is that both environmental and genetic factors are involved in the acquisition of the trait. In the present study, 127 adult musicians were subjected to a musical tone identification test. Subjects were university music students and volunteers who responded to a newspaper article. The test consisted of the identification of 40 piano and 40 pure tones. Subjects were classified in three categories according to their pitch naming ability: absolute pitch (AP), high accuracy of tone identification (HA), and non-absolute pitch (non-AP). Both the percentage of correct responses and the mean absolute deviation showed a statistically significant variation between categories. A very clear pattern of higher accuracy for white than for black key notes was observed for the HA and the non-AP groups. Meanwhile, the AP group had an almost perfect pitch naming accuracy for both kinds of tones. Each category presented a very different pattern of deviation around the correct response. The age at the beginning of musical training did not differ between categories. The distribution of pitch identification ability in this study suggests a complex inheritance of the trait. PMID:27586721

  20. The effects of stride technique and pitch location on slo-pitch batting.

    PubMed

    Wu, Tom; Gervais, Pierre; Baudin, Pierre; Bouffard, Marcel

    2011-11-01

    In slo-pitch softball, the ball is delivered in an arc trajectory with a moderate velocity; hence, batters have time to adjust their stride technique based on the pitched ball location. The purpose of this study was to examine the influence of stride technique and pitched ball location on the mechanics of slo-pitch batting. A two-way ANOVA of two locations of pitch (inside and outside) x three strides (open, parallel, and closed) repeated measure study was conducted in this study. The results showed that the stride technique and pitched ball location did not have a consistent impact on the participants across different batting conditions, so the study recommends slo-pitch batters to explore different stride techniques when striking the ball. Further, to better understand the generalizability of the findings, the results indicated that participants were quite homogeneous as a group. Hence, coaches and educators may apply the findings from this study to other players with similar skill level. PMID:22303786

  1. The effects of stride technique and pitch location on slo-pitch batting.

    PubMed

    Wu, Tom; Gervais, Pierre; Baudin, Pierre; Bouffard, Marcel

    2011-11-01

    In slo-pitch softball, the ball is delivered in an arc trajectory with a moderate velocity; hence, batters have time to adjust their stride technique based on the pitched ball location. The purpose of this study was to examine the influence of stride technique and pitched ball location on the mechanics of slo-pitch batting. A two-way ANOVA of two locations of pitch (inside and outside) x three strides (open, parallel, and closed) repeated measure study was conducted in this study. The results showed that the stride technique and pitched ball location did not have a consistent impact on the participants across different batting conditions, so the study recommends slo-pitch batters to explore different stride techniques when striking the ball. Further, to better understand the generalizability of the findings, the results indicated that participants were quite homogeneous as a group. Hence, coaches and educators may apply the findings from this study to other players with similar skill level.

  2. Perceptual fusion of polyphonic pitch in cochlear implant users.

    PubMed

    Donnelly, Patrick J; Guo, Benjamin Z; Limb, Charles J

    2009-11-01

    In music, multiple pitches often occur simultaneously, an essential feature of harmony. In the present study, the authors assessed the ability of cochlear implant (CI) users to perceive polyphonic pitch. Acoustically presented stimuli consisted of one, two, or three superposed tones with different fundamental frequencies (f(0)). The normal hearing control group obtained significantly higher mean scores than the CI group. CI users performed near chance levels in recognizing two- and three-pitch stimuli, and demonstrated perceptual fusion of multiple pitches as single-pitch units. These results suggest that limitations in polyphonic pitch perception may significantly impair music perception in CI users.

  3. Investigating the effects of stimulus duration and context on pitch perception by cochlear implant users

    PubMed Central

    Stohl, Joshua S.; Throckmorton, Chandra S.; Collins, Leslie M.

    2009-01-01

    Cochlear implant sound processing strategies that use time-varying pulse rates to transmit fine structure information are one proposed method for improving the spectral representation of a sound with the eventual goal of improving speech recognition in noisy conditions, speech recognition in tonal languages, and music identification and appreciation. However, many of the perceptual phenomena associated with time-varying rates are not well understood. In this study, the effects of stimulus duration on both the place and rate-pitch percepts were investigated via psychophysical experiments. Four Nucleus CI24 cochlear implant users participated in these experiments, which included a short-duration pitch ranking task and three adaptive pulse rate discrimination tasks. When duration was fixed from trial-to-trial and rate was varied adaptively, results suggested that both the place-pitch and rate-pitch percepts may be independent of duration for durations above 10 and 20 ms, respectively. When duration was varied and pulse rates were fixed, performance was highly variable within and across subjects. Implications for multi-rate sound processing strategies are discussed. PMID:19603888

  4. Pitch-catch only ultrasonic fluid densitometer

    SciTech Connect

    Greenwood, M.S.; Harris, R.V.

    1999-03-23

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  5. Expectations for Melodic Contours Transcend Pitch

    PubMed Central

    Graves, Jackson E.; Micheyl, Christophe; Oxenham, Andrew J.

    2015-01-01

    The question of what makes a good melody has interested composers, music theorists, and psychologists alike. Many of the observed principles of good “melodic continuation” involve melodic contour – the pattern of rising and falling pitch within a sequence. Previous work has shown that contour perception can extend beyond pitch to other auditory dimensions, such as brightness and loudness. Here, we show with two experiments that the generalization of contour perception to non-traditional dimensions also extends to melodic expectations. In the first experiment, subjective ratings for three-tone sequences that vary in brightness or loudness conformed to the same general contour-based expectations as pitch sequences. In the second experiment, we modified the sequence of melody presentation such that melodies with the same beginning were blocked together. This change produced substantively different results, but the patterns of ratings remained similar across the three auditory dimensions. Taken together, these results suggest that 1) certain well-known principles of melodic expectation (such as the expectation for a reversal following a skip) are dependent on long-term context, and 2) these expectations are not unique to the dimension of pitch and may instead reflect more general principles of perceptual organization. PMID:25365571

  6. Prelinguistic Pitch Patterns Expressing "Communication" and "Apprehension"

    ERIC Educational Resources Information Center

    Papaeliou, Christina F.; Trevarthen, Colwyn

    2006-01-01

    This study examined whether pitch patterns of prelinguistic vocalizations could discriminate between social vocalizations, uttered apparently with the intention to communicate, and "private" speech, related to solitary activities as an expression of "thinking". Four healthy ten month old English-speaking infants (2 boys and 2 girls) were…

  7. LDEF yaw and pitch angle estimates

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Gebauer, Linda

    1992-01-01

    Quantification of the LDEF yaw and pitch misorientations is crucial to the knowledge of atomic oxygen exposure of samples placed on LDEF. Video camera documentation of the LDEF spacecraft prior to grapple attachment, atomic oxygen shadows on experiment trays and longerons, and a pinhole atomic oxygen camera placed on LDEF provided sources of documentation of the yaw and pitch misorientation. Based on uncertainty-weighted averaging of data, the LDEF yaw offset was found to be 8.1 plus or minus 0.6 degrees, allowing higher atomic oxygen exposure of row 12 than initially anticipated. The LDEF pitch angle offset was found to be 0.8 plus or minus 0.4 degrees, such that the space end was tipped forward toward the direction of travel. The resulting consequences of the yaw and pitch misorientation of LDEF on the atomic oxygen fluence is a factor of 2.16 increase for samples located on row 12, and a factor of 1.18 increase for samples located on the space end compared to that which would be expected for perfect orientation.

  8. Pitch-catch only ultrasonic fluid densitometer

    DOEpatents

    Greenwood, Margaret S.; Harris, Robert V.

    1999-01-01

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

  9. Global and local pitch perception in children with developmental dyslexia.

    PubMed

    Ziegler, Johannes C; Pech-Georgel, Catherine; George, Florence; Foxton, Jessica M

    2012-03-01

    This study investigated global versus local pitch pattern perception in children with dyslexia aged between 8 and 11 years. Children listened to two consecutive 4-tone pitch sequences while performing a same/different task. On the different trials, sequences either preserved the contour (local condition) or they violated the contour (global condition). Compared to normally developing children, dyslexics showed robust pitch perception deficits in the local but not the global condition. This finding was replicated in a simple pitch direction task, which minimizes sequencing and short term memory. Results are consistent with a left-hemisphere deficit in dyslexia because local pitch changes are supposedly processed by the left hemisphere, whereas global pitch changes are processed by the right hemisphere. The present data suggest a link between impaired pitch processing and abnormal phonological development in children with dyslexia, which makes pitch pattern processing a potent tool for early diagnosis and remediation of dyslexia. PMID:22204845

  10. Three-dimensional flow structure along simultaneously pitching and rotating wings: effect of pitch rate

    NASA Astrophysics Data System (ADS)

    Bross, M.; Rockwell, D.

    2015-04-01

    The flow structure along a simultaneously pitching and rotating wing is investigated using quantitative flow visualization. Imaging is performed for a range of pitch rates, with emphasis on the three-dimensional structure during start-up and relaxation. Surfaces of transparent iso- Q and helicity are employed to interpret the flow physics. The onset and development of the components of the vortex system, i.e., the leading-edge, tip, and trailing-edge vortices, are strongly influenced by the value of pitch rate relative to the rotation rate. Comparisons at the same angle of attack indicate that the formation of vortical structures is delayed with increasing pitch rate. However, comparisons at the same rotation angle for different values of pitch rate reveal similar flow structures, thereby indicating predominance of rotation effects. Extreme values of pitch rate can lead to radically different sequences of development of the components of the three-dimensional vortex system. Nevertheless, consistently positive vorticity flux is maintained through these components and the coherence of the vortex system is maintained.

  11. Output Power Control of Wind Turbine Generator by Pitch Angle Control using Minimum Variance Control

    NASA Astrophysics Data System (ADS)

    Senjyu, Tomonobu; Sakamoto, Ryosei; Urasaki, Naomitsu; Higa, Hiroki; Uezato, Katsumi; Funabashi, Toshihisa

    In recent years, there have been problems such as exhaustion of fossil fuels, e. g., coal and oil, and environmental pollution resulting from consumption. Effective utilization of renewable energies such as wind energy is expected instead of the fossil fuel. Wind energy is not constant and windmill output is proportional to the cube of wind speed, which cause the generated power of wind turbine generators (WTGs) to fluctuate. In order to reduce fluctuating components, there is a method to control pitch angle of blades of the windmill. In this paper, output power leveling of wind turbine generator by pitch angle control using an adaptive control is proposed. A self-tuning regulator is used in adaptive control. The control input is determined by the minimum variance control. It is possible to compensate control input to alleviate generating power fluctuation with using proposed controller. The simulation results with using actual detailed model for wind power system show effectiveness of the proposed controller.

  12. Memory for Melody: Infants Use a Relative Pitch Code

    ERIC Educational Resources Information Center

    Plantinga, Judy; Trainor, Laurel J.

    2005-01-01

    Pitch perception is fundamental to melody in music and prosody in speech. Unlike many animals, the vast majority of human adults store melodic information primarily in terms of relative not absolute pitch, and readily recognize a melody whether rendered in a high or a low pitch range. We show that at 6 months infants are also primarily relative…

  13. Absolute Pitch in Infant Auditory Learning: Evidence for Developmental Reorganization.

    ERIC Educational Resources Information Center

    Saffran, Jenny R.; Griepentrog, Gregory J.

    2001-01-01

    Two experiments examined 8-month-olds' use of absolute and relative pitch cues in a tone-sequence statistical learning task. Results suggest that, given unsegmented stimuli that do not conform to rules of musical composition, infants are more likely to track patterns of absolute pitches than of relative pitches. A third experiment found that adult…

  14. Spatial Representation of Pitch Height: The SMARC Effect

    ERIC Educational Resources Information Center

    Rusconi, Elena; Kwan, Bonnie; Giordano, Bruno L.; Umilta, Carlo; Butterworth, Brian

    2006-01-01

    Through the preferential pairing of response positions to pitch, here we show that the internal representation of pitch height is spatial in nature and affects performance, especially in musically trained participants, when response alternatives are either vertically or horizontally aligned. The finding that our cognitive system maps pitch height…

  15. On Older Listeners' Ability to Perceive Dynamic Pitch

    ERIC Educational Resources Information Center

    Shen, Jing; Wright, Richard; Souza, Pamela E.

    2016-01-01

    Purpose: Natural speech comes with variation in pitch, which serves as an important cue for speech recognition. The present study investigated older listeners' dynamic pitch perception with a focus on interindividual variability. In particular, we asked whether some of the older listeners' inability to perceive dynamic pitch stems from the higher…

  16. Passive cyclic pitch control for horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Bottrell, G. W.

    1981-01-01

    A flexible rotor concept, called the balanced pitch rotor, is described. The system provides passive adjustment of cyclic pitch in response to unbalanced pitching moments across the rotor disk. Various applications are described and performance predictions are made for wind shear and cross wind operating conditions. Comparisons with the teetered hub are made and significant cost savings are predicted.

  17. 14 CFR 25.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller speed and pitch controls. 25.1149... Accessories § 25.1149 Propeller speed and pitch controls. (a) There must be a separate propeller speed and pitch control for each propeller. (b) The controls must be grouped and arranged to allow— (1)...

  18. 14 CFR 23.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller speed and pitch limits. 23.33... Propeller speed and pitch limits. (a) General. The propeller speed and pitch must be limited to values that will assure safe operation under normal operating conditions. (b) Propellers not controllable in...

  19. 14 CFR 25.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller speed and pitch limits. 25.33... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.33 Propeller speed and pitch limits. (a) The propeller speed and pitch must be limited to values that will ensure— (1) Safe...

  20. 14 CFR 25.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller speed and pitch limits. 25.33... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.33 Propeller speed and pitch limits. (a) The propeller speed and pitch must be limited to values that will ensure— (1) Safe...

  1. 14 CFR 25.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller speed and pitch limits. 25.33... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.33 Propeller speed and pitch limits. (a) The propeller speed and pitch must be limited to values that will ensure— (1) Safe...

  2. 14 CFR 25.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller speed and pitch controls. 25.1149... Accessories § 25.1149 Propeller speed and pitch controls. (a) There must be a separate propeller speed and pitch control for each propeller. (b) The controls must be grouped and arranged to allow— (1)...

  3. 14 CFR 23.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller speed and pitch limits. 23.33... Propeller speed and pitch limits. (a) General. The propeller speed and pitch must be limited to values that will assure safe operation under normal operating conditions. (b) Propellers not controllable in...

  4. 14 CFR 25.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller speed and pitch limits. 25.33... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.33 Propeller speed and pitch limits. (a) The propeller speed and pitch must be limited to values that will ensure- (1) Safe...

  5. 14 CFR 25.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller speed and pitch controls. 25.1149... Accessories § 25.1149 Propeller speed and pitch controls. (a) There must be a separate propeller speed and pitch control for each propeller. (b) The controls must be grouped and arranged to allow— (1)...

  6. 14 CFR 25.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller speed and pitch controls. 25.1149... Accessories § 25.1149 Propeller speed and pitch controls. (a) There must be a separate propeller speed and pitch control for each propeller. (b) The controls must be grouped and arranged to allow— (1)...

  7. 14 CFR 23.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller speed and pitch limits. 23.33... Propeller speed and pitch limits. (a) General. The propeller speed and pitch must be limited to values that will assure safe operation under normal operating conditions. (b) Propellers not controllable in...

  8. 14 CFR 25.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller speed and pitch controls. 25.1149... Accessories § 25.1149 Propeller speed and pitch controls. (a) There must be a separate propeller speed and pitch control for each propeller. (b) The controls must be grouped and arranged to allow— (1)...

  9. 14 CFR 25.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller speed and pitch limits. 25.33... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.33 Propeller speed and pitch limits. (a) The propeller speed and pitch must be limited to values that will ensure— (1) Safe...

  10. 14 CFR 23.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller speed and pitch limits. 23.33... Propeller speed and pitch limits. (a) General. The propeller speed and pitch must be limited to values that will assure safe operation under normal operating conditions. (b) Propellers not controllable in...

  11. 14 CFR 23.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller speed and pitch limits. 23.33... Propeller speed and pitch limits. (a) General. The propeller speed and pitch must be limited to values that will assure safe operation under normal operating conditions. (b) Propellers not controllable in...

  12. Pitch attitude stabilization system utilizing engine pressure ratio feedback signals

    NASA Technical Reports Server (NTRS)

    Kelley, W. W. (Inventor)

    1981-01-01

    The changes in the engine pressure ratio signals which result from thrust changes are used to generate a pitch stabilization signal. The signal is combined with other pitch control signals to automatically counteract pitching moments resulting from the changes in engine thrust.

  13. Dynamic characteristics of peripheral jet ACV. II - Pitching motion

    NASA Astrophysics Data System (ADS)

    Mori, T.; Maeda, H.

    The dynamic pitching characteristics of peripheral jet ACV (Air Cushion Vehicle) which have a stability curtain are investigated analytically and experimentally. The measured values of moment, lift and cushion pressure are compared with numerical results noting applicability to the pitching motion. The response of ACV to the sinusoidal pitching oscillation of the ground is also studied.

  14. Sensitivity of the cortical pitch onset response to height, time-variance, and directionality of dynamic pitch.

    PubMed

    Bidelman, Gavin M

    2015-08-31

    Event-related brain potentials (ERPs) demonstrate that human auditory cortical responses are sensitive to changes in static pitch as indexed by the pitch onset response (POR), a negativity generated at the initiation of acoustic periodicity. Yet, it is still unclear if this brain signature is sensitive to dynamic, time-varying properties of pitch more characteristic of those found in naturalistic speech and music. Neuroelectric PORs were recorded in response to contrastive pitch patterns differing in their pitch height, time-variance, and directionality (i.e., rise vs. fall). Broadband noise followed by contiguous iterated rippled noise (producing salient pitch sweeps) was used to temporally separate neural activity coding the onset of acoustic energy from the onset of time-varying pitch. Analysis of PORs revealed distinct modulations in response latency that distinguished static from time-varying pitch contours (steady-statepitch height (highpitch sweeps (rise=fall). Our findings suggest that the POR signature provides a useful neural index of auditory cortical pitch processing for some, but not all pitch-evoking stimuli. PMID:26200250

  15. Attending to pitch information inhibits processing of pitch information: the curious case of amusia.

    PubMed

    Zendel, Benjamin Rich; Lagrois, Marie-Élaine; Robitaille, Nicolas; Peretz, Isabelle

    2015-03-01

    In normal listeners, the tonal rules of music guide musical expectancy. In a minority of individuals, known as amusics, the processing of tonality is disordered, which results in severe musical deficits. It has been shown that the tonal rules of music are neurally encoded, but not consciously available in amusics. Previous neurophysiological studies have not explicitly controlled the level of attention in tasks where participants ignored the tonal structure of the stimuli. Here, we test whether access to tonal knowledge can be demonstrated in congenital amusia when attention is controlled. Electric brain responses were recorded while asking participants to detect an individually adjusted near-threshold click in a melody. In half the melodies, a note was inserted that violated the tonal rules of music. In a second task, participants were presented with the same melodies but were required to detect the tonal deviation. Both tasks required sustained attention, thus conscious access to the rules of tonality was manipulated. In the click-detection task, the pitch deviants evoked an early right anterior negativity (ERAN) in both groups. In the pitch-detection task, the pitch deviants evoked an ERAN and P600 in controls but not in amusics. These results indicate that pitch regularities are represented in the cortex of amusics, but are not consciously available. Moreover, performing a pitch-judgment task eliminated the ERAN in amusics, suggesting that attending to pitch information interferes with perception of pitch. We propose that an impaired top-down frontotemporal projection is responsible for this disorder. PMID:25740512

  16. Visual gaze behavior of near-expert and expert fast pitch softball umpires calling a pitch.

    PubMed

    Millslagle, Duane G; Smith, Melissa S; Hines, Bridget B

    2013-05-01

    The purpose of this study was to examine the difference in visual gaze behavior between near expert (NE) and expert (E) umpires in a simulated pitch-hit situation in fast pitch softball. An Applied Science Laboratory mobile eye tracker was worn by 4 NE and 4 E fast pitch umpires and recorded their visual gaze behavior while following pitches (internal view). A digital camera located behind the pitcher recorded the external view of the pitcher, hitter, catcher, and umpire actions for each pitch. The internal and external video clips of 10 representative pitches--5 balls and 5 strikes--were synchronized and displayed in a split screen and were then coded for statistical analyses using Quiet eye solution software. Analysis of variance and multivariate analysis of variance statistical analyses of the umpires' gaze behavior during onset, duration, offset, and frequency (fixation/pursuit tracking, saccades, and blinks) were conducted between and within the 5 stages (pitcher's preparation, delivery and release, ball in flight, and umpire call) by umpire's skill level. Significant differences (p < 0.05) observed for combined gaze behavior frequency, type of gaze by phase, quiet eye duration and onset, and ball duration tracking indicated that E umpires' visual control was more stable and economical than NE umpires. Quiet eye significant results indicated that E umpires had an earlier onset (mean = 50.0 ± 13.9% vs. 56 ± 9.5%) and longer duration (mean = 15.1 ± 11.3% vs. 9.3 ± 6.5%) of the pitcher's release area than NE umpires. These findings suggest that gaze behavior of expert fast pitch umpires was more economical, fixated earlier and for a longer period of time on the area where the ball would be released, and was able to track the ball earlier and for a longer period of time. PMID:22836605

  17. Visual gaze behavior of near-expert and expert fast pitch softball umpires calling a pitch.

    PubMed

    Millslagle, Duane G; Smith, Melissa S; Hines, Bridget B

    2013-05-01

    The purpose of this study was to examine the difference in visual gaze behavior between near expert (NE) and expert (E) umpires in a simulated pitch-hit situation in fast pitch softball. An Applied Science Laboratory mobile eye tracker was worn by 4 NE and 4 E fast pitch umpires and recorded their visual gaze behavior while following pitches (internal view). A digital camera located behind the pitcher recorded the external view of the pitcher, hitter, catcher, and umpire actions for each pitch. The internal and external video clips of 10 representative pitches--5 balls and 5 strikes--were synchronized and displayed in a split screen and were then coded for statistical analyses using Quiet eye solution software. Analysis of variance and multivariate analysis of variance statistical analyses of the umpires' gaze behavior during onset, duration, offset, and frequency (fixation/pursuit tracking, saccades, and blinks) were conducted between and within the 5 stages (pitcher's preparation, delivery and release, ball in flight, and umpire call) by umpire's skill level. Significant differences (p < 0.05) observed for combined gaze behavior frequency, type of gaze by phase, quiet eye duration and onset, and ball duration tracking indicated that E umpires' visual control was more stable and economical than NE umpires. Quiet eye significant results indicated that E umpires had an earlier onset (mean = 50.0 ± 13.9% vs. 56 ± 9.5%) and longer duration (mean = 15.1 ± 11.3% vs. 9.3 ± 6.5%) of the pitcher's release area than NE umpires. These findings suggest that gaze behavior of expert fast pitch umpires was more economical, fixated earlier and for a longer period of time on the area where the ball would be released, and was able to track the ball earlier and for a longer period of time.

  18. Biomechanics of the elbow during baseball pitching.

    PubMed

    Werner, S L; Fleisig, G S; Dillman, C J; Andrews, J R

    1993-06-01

    By understanding pitching biomechanics, therapists can develop better preventive and rehabilitative programs for pitchers. The purpose of this study was to quantify and explain the joint motions, loads, and muscle activity that occur at the elbow during baseball pitching. Seven healthy, adult pitchers were examined with synchronized high-speed video digitization and surface electromyography. Elbow extension before ball release corresponded with a decrease in biceps activity and an increase in triceps activity. A varus torque of 120 Nm, acting to resist valgus stress, occurred near the time of maximum shoulder external rotation. Previous cadaveric research showed that the ulnar collateral ligament by itself cannot withstand a valgus load of this magnitude. Triceps, wrist flexorpronator, and anconeus activity during peak valgus stress suggests that these muscles may act as dynamic stabilizers to assist the ulnar collateral ligament in preventing valgus extension overload. PMID:8343786

  19. Biomechanics of the elbow during baseball pitching.

    PubMed

    Werner, S L; Fleisig, G S; Dillman, C J; Andrews, J R

    1993-06-01

    By understanding pitching biomechanics, therapists can develop better preventive and rehabilitative programs for pitchers. The purpose of this study was to quantify and explain the joint motions, loads, and muscle activity that occur at the elbow during baseball pitching. Seven healthy, adult pitchers were examined with synchronized high-speed video digitization and surface electromyography. Elbow extension before ball release corresponded with a decrease in biceps activity and an increase in triceps activity. A varus torque of 120 Nm, acting to resist valgus stress, occurred near the time of maximum shoulder external rotation. Previous cadaveric research showed that the ulnar collateral ligament by itself cannot withstand a valgus load of this magnitude. Triceps, wrist flexorpronator, and anconeus activity during peak valgus stress suggests that these muscles may act as dynamic stabilizers to assist the ulnar collateral ligament in preventing valgus extension overload.

  20. Pitch-Up Problem: A Criterion and Method of Evaluation

    NASA Technical Reports Server (NTRS)

    Sadoff, Melvin

    1959-01-01

    A method has been described for predicting the probable relative severity of pitch-up of a new airplane design prior to initial flight tests. An illustrative example has been presented which demonstrated the use of this procedure for evaluating the pitch-up behavior of a large, relatively flexible airplane. It has also been shown that for airplanes for which a mild pitch-up tendency is predicted, the wing and tail loads likely to be encountered in pitch-up maneuvers would not assume critical values, even for pilots unfamiliar with pitch-up.

  1. Pitch-based carbon foam and composites

    DOEpatents

    Klett, James W.

    2003-12-02

    A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.

  2. Pitch-based carbon foam and composites

    DOEpatents

    Klett, James W.

    2002-01-01

    A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.

  3. Pitch-based carbon foam and composites

    DOEpatents

    Klett, James W.

    2003-12-16

    A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.

  4. Pitch-based carbon foam and composites

    DOEpatents

    Klett, James W.

    2001-01-01

    A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.

  5. An autonomous adaptive low-power instrument platform (AAL-PIP) for remote high-latitude geospace data collection

    NASA Astrophysics Data System (ADS)

    Clauer, C. R.; Kim, H.; Deshpande, K.; Xu, Z.; Weimer, D.; Musko, S.; Crowley, G.; Fish, C.; Nealy, R.; Humphreys, T. E.; Bhatti, J. A.; Ridley, A. J.

    2014-10-01

    We present the development considerations and design for ground-based instrumentation that is being deployed on the East Antarctic Plateau along a 40° magnetic meridian chain to investigate interhemispheric magnetically conjugate geomagnetic coupling and other space-weather-related phenomena. The stations are magnetically conjugate to geomagnetic stations along the west coast of Greenland. The autonomous adaptive low-power instrument platforms being deployed in the Antarctic are designed to operate unattended in remote locations for at least 5 years. They utilize solar power and AGM storage batteries for power, two-way Iridium satellite communication for data acquisition and program/operation modification, support fluxgate and induction magnetometers as well as a dual-frequency GPS receiver and a high-frequency (HF) radio experiment. Size and weight considerations are considered to enable deployment by a small team using small aircraft. Considerable experience has been gained in the development and deployment of remote polar instrumentation that is reflected in the present generation of instrumentation discussed here. We conclude with the lessons learned from our experience in the design, deployment and operation of remote polar instrumentation.

  6. Autonomous Adaptive Low-Power Instrument Platform (AAL-PIP) for remote high latitude geospace data collection

    NASA Astrophysics Data System (ADS)

    Clauer, C. R.; Kim, H.; Deshpande, K.; Xu, Z.; Weimer, D.; Musko, S.; Crowley, G.; Fish, C.; Nealy, R.; Humphreys, T. E.; Bhatti, J. A.; Ridley, A. J.

    2014-06-01

    We present the development considerations and design for ground based instrumentation that is being deployed on the East Antarctic Plateau along a 40° magnetic meridian chain to investigate interhemispheric magnetically conjugate geomagnetic coupling and other space weather related phenomena. The stations are magnetically conjugate to geomagnetic stations along the west coast of Greenland. The autonomous adaptive low-power instrument platforms being deployed in the Antarctic are designed to operate unattended in remote locations for at least 5 years. They utilize solar power and AGM storage batteries for power, two-way Iridium satellite communication for data acquisition and program/operation modification, support fluxgate and induction magnetometers as well as dual-frequency gps receiver and an HF radio experiment. Size and weight considerations are considered to enable deployment by a small team using small aircraft. Considerable experience has been gained in the development and deployment of remote polar instrumentation that is reflected in the present generation of instrumentation discussed here. We conclude with the lessons learned from our experience in the design, deployment and operation of remote polar instrumentation.

  7. Pitch center of stringed instrument vibrato tones.

    PubMed

    Brown, J C; Vaughn, K V

    1996-09-01

    The determination of the pitch center of frequency modulated sounds has been the focus of a number of previous studies. The sources have usually been pure tones or synthetic complex sounds with a well-defined spectral composition. These synthetic sounds differ in temporal and spectral properties from the sounds produced by musical instruments; and it is these acoustic sounds which performers are trained to produce and to perceive in order to make intonation choices. Thus samples chosen for this study consist of approximately 1 s of acoustic sounds produced by a virtuoso violist playing the notes D4, C5#, A5, and G6 with and without vibrato. The sounds without vibrato were then resampled to give frequencies from -15 to +21 cents with respect to the mean of the sound with vibrato. Two-interval two-alternative forced choice (212AFC) experiments were carried out comparing the sounds with vibrato to those without vibrato using two sets of musically experienced listeners as subjects. A control set consisting of the comparison of pitch levels of the unmodulated sounds was carried out simultaneously. Results are consistent with the finding that the pitch perceived is that of the mean. The difference limen inferred from the control set was 2.8 cents for the first group and 2.5 cents for the second group with an upper bound on the error of 1 cent.

  8. Pitch center of stringed instrument vibrato tones.

    PubMed

    Brown, J C; Vaughn, K V

    1996-09-01

    The determination of the pitch center of frequency modulated sounds has been the focus of a number of previous studies. The sources have usually been pure tones or synthetic complex sounds with a well-defined spectral composition. These synthetic sounds differ in temporal and spectral properties from the sounds produced by musical instruments; and it is these acoustic sounds which performers are trained to produce and to perceive in order to make intonation choices. Thus samples chosen for this study consist of approximately 1 s of acoustic sounds produced by a virtuoso violist playing the notes D4, C5#, A5, and G6 with and without vibrato. The sounds without vibrato were then resampled to give frequencies from -15 to +21 cents with respect to the mean of the sound with vibrato. Two-interval two-alternative forced choice (212AFC) experiments were carried out comparing the sounds with vibrato to those without vibrato using two sets of musically experienced listeners as subjects. A control set consisting of the comparison of pitch levels of the unmodulated sounds was carried out simultaneously. Results are consistent with the finding that the pitch perceived is that of the mean. The difference limen inferred from the control set was 2.8 cents for the first group and 2.5 cents for the second group with an upper bound on the error of 1 cent. PMID:8817899

  9. A fundamental residue pitch perception bias for tone language speakers

    NASA Astrophysics Data System (ADS)

    Petitti, Elizabeth

    A complex tone composed of only higher-order harmonics typically elicits a pitch percept equivalent to the tone's missing fundamental frequency (f0). When judging the direction of residue pitch change between two such tones, however, listeners may have completely opposite perceptual experiences depending on whether they are biased to perceive changes based on the overall spectrum or the missing f0 (harmonic spacing). Individual differences in residue pitch change judgments are reliable and have been associated with musical experience and functional neuroanatomy. Tone languages put greater pitch processing demands on their speakers than non-tone languages, and we investigated whether these lifelong differences in linguistic pitch processing affect listeners' bias for residue pitch. We asked native tone language speakers and native English speakers to perform a pitch judgment task for two tones with missing fundamental frequencies. Given tone pairs with ambiguous pitch changes, listeners were asked to judge the direction of pitch change, where the direction of their response indicated whether they attended to the overall spectrum (exhibiting a spectral bias) or the missing f0 (exhibiting a fundamental bias). We found that tone language speakers are significantly more likely to perceive pitch changes based on the missing f0 than English speakers. These results suggest that tone-language speakers' privileged experience with linguistic pitch fundamentally tunes their basic auditory processing.

  10. Absolute pitch in infant auditory learning: evidence for developmental reorganization.

    PubMed

    Saffran, J R; Griepentrog, G J

    2001-01-01

    To what extent do infants represent the absolute pitches of complex auditory stimuli? Two experiments with 8-month-old infants examined the use of absolute and relative pitch cues in a tone-sequence statistical learning task. The results suggest that, given unsegmented stimuli that do not conform to the rules of musical composition, infants are more likely to track patterns of absolute pitches than of relative pitches. A 3rd experiment tested adults with or without musical training on the same statistical learning tasks used in the infant experiments. Unlike the infants, adult listeners relied primarily on relative pitch cues. These results suggest a shift from an initial focus on absolute pitch to the eventual dominance of relative pitch, which, it is argued, is more useful for both music and speech processing.

  11. Pitch-angle scattering in magnetostatic turbulence. II. Analytical considerations and pitch-angle isotropization

    NASA Astrophysics Data System (ADS)

    Tautz, R. C.

    2013-10-01

    Aims: The process of pitch-angle isotropization is important for many applications ranging from diffusive shock acceleration to large-scale cosmic-ray transport. Here, the basic analytical description is revisited on the basis of recent simulation results. Methods: Both an analytical and a numerical investigation were undertaken of the Fokker-Planck equation for pitch-angle scattering. Additional test-particle simulations obtained with the help of a Monte-Carlo code were used to verify the conclusions. Results: It is shown that the usual definition of the pitch-angle Fokker-Planck coefficient via the mean-square displacement is flawed. The reason can be traced back to the assumption of homogeneity in time which does not hold for pitch-angle scattering. Conclusions: Calculating the mean free path via the Fokker-Planck coefficient has often proven to give an accurate description. For numerical purposes, accordingly, it is the definition that has to be exchanged in favor of the pitch-angle correlation function.

  12. Evaluation of fluidic thrust vectoring nozzle via thrust pitching angle and thrust pitching moment

    NASA Astrophysics Data System (ADS)

    Li, L.; Hirota, M.; Ouchi, K.; Saito, T.

    2016-03-01

    Shock vector control (SVC) in a converging-diverging nozzle with a rectangular cross-section is discussed as a fluidic thrust vectoring (FTV) method. The interaction between the primary nozzle flow and the secondary jet is examined using experiments and numerical simulations. The relationships between FTV parameters [nozzle pressure ratio (NPR) and secondary jet pressure ratio (SPR)] and FTV performance (thrust pitching angle and thrust pitching moment) are investigated. The experiments are conducted with an NPR of up to 10 and an SPR of up to 2.7. Numerical simulations of the nozzle flow are performed using a Navier-Stokes solver with input parameters set to match the experimental conditions. The thrust pitching angle and moment computed from the force-moment balance are used to evaluate FTV performance. The experiment and numerical results indicate that the FTV parameters (NPR and SPR) directly affect FTV performance. Conventionally, FTV performance evaluated by the common method using thrust pitching angle is highly dependent on the location of evaluation. Hence, in this study, we show that the thrust pitching moment, a parameter which is independent of the location, is the appropriate figure of merit to evaluate the performance of FTV systems.

  13. Cortical pitch response components show differential sensitivity to native and nonnative pitch contours

    PubMed Central

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Suresh, Chandan H.

    2015-01-01

    The aim of this study is to evaluate how nonspeech pitch contours of varying shape influence latency and amplitude of cortical pitch-specific response (CPR) components differentially as a function of language experience. Stimuli included time-varying, high rising Mandarin Tone 2 (T2) and linear rising ramp (Linear), and steady-state (Flat). Both the latency and magnitude of CPR components were differentially modulated by (i) the overall trajectory of pitch contours (time-varying vs. steady-state), (ii) their pitch acceleration rates (changing vs. constant), and (iii) their linguistic status (lexical vs. non-lexical). T2 elicited larger amplitude than Linear in both language groups, but size of the effect was larger in Chinese than English. The magnitude of CPR components elicited by T2 were larger for Chinese than English at the right temporal electrode site. Using the CPR, we provide evidence in support of experience-dependent modulation of dynamic pitch contours at an early stage of sensory processing. PMID:25306506

  14. Training of Working Memory Impacts Neural Processing of Vocal Pitch Regulation

    PubMed Central

    Li, Weifeng; Guo, Zhiqiang; Jones, Jeffery A.; Huang, Xiyan; Chen, Xi; Liu, Peng; Chen, Shaozhen; Liu, Hanjun

    2015-01-01

    Working memory training can improve the performance of tasks that were not trained. Whether auditory-motor integration for voice control can benefit from working memory training, however, remains unclear. The present event-related potential (ERP) study examined the impact of working memory training on the auditory-motor processing of vocal pitch. Trained participants underwent adaptive working memory training using a digit span backwards paradigm, while control participants did not receive any training. Before and after training, both trained and control participants were exposed to frequency-altered auditory feedback while producing vocalizations. After training, trained participants exhibited significantly decreased N1 amplitudes and increased P2 amplitudes in response to pitch errors in voice auditory feedback. In addition, there was a significant positive correlation between the degree of improvement in working memory capacity and the post-pre difference in P2 amplitudes. Training-related changes in the vocal compensation, however, were not observed. There was no systematic change in either vocal or cortical responses for control participants. These findings provide evidence that working memory training impacts the cortical processing of feedback errors in vocal pitch regulation. This enhanced cortical processing may be the result of increased neural efficiency in the detection of pitch errors between the intended and actual feedback. PMID:26553373

  15. Pilot usage of decoupled flight path and pitch controls

    NASA Technical Reports Server (NTRS)

    Berkhout, J.; Osgood, R.; Berry, D.

    1985-01-01

    Data from decoupled flight maneuvers have been collected and analyzed for four AFTI-F-16 pilots operating this aircraft's highly augmented fly-by-wire control system, in order to obtain spectral density, cross spectra, and Bode amplitude data, as well as coherences and phase angles for the two longitudinal axis control functions of each of 50 20-sec epochs. The analysis of each epoch yielded five distinct plotted parameters for the left hand twist grip and right hand sidestick controller output time series. These two control devices allow the left hand to generate vertical translation, direct lift, or pitch-pointing commands that are decoupled from those of the right hand. Attention is given to the control patterns obtained for decoupled normal flight, air-to-air gun engagement decoupled maneuvering, and decoupled air-to-surface bombing run maneuvering.

  16. In vivo collection of follicular fluid and granulosa cells from individual follicles of different diameters in cattle by an adapted ovum pick-up system

    PubMed Central

    2013-01-01

    Background Most studies on granulosa cell (GC) function in cattle have been performed using GC and follicular fluid (FF) samples collected from slaughterhouse ovaries. Using this approach, the follicular developmental stage and functional status are unknown and indirectly inferred, limiting data interpretation. Ultrasound-guided follicle aspiration has previously been used to recover GC or FF samples, but this was mostly carried out in large follicles or pools of small follicles, without recording the efficiency of recovery. The present study was aimed at adapting and evaluating an ovum pick-up (OPU) system for the in vivo recovery of FF and GC from individual follicles of different diameters. Methods In the first trial, the losses of fluid inside the tubing system were calculated using a conventional or an adapted-OPU system. Blood plasma volumes equivalent to the amount of FF in follicles of different diameters were aspirated using a conventional OPU Teflon circuit. The OPU system was then adapted by connecting 0.25 mL straws to the circuit. A second trial evaluated the efficiency of FF recovery in vivo. Follicles ranging from 4.0 to 16.8 mm in diameter were aspirated individually using the conventional or adapted-OPU systems. A third trial assessed the in vivo recovery of GC and the subsequent amount of RNA obtained from the follicles of different diameters from Holstein and Gir cattle. Results In Trial I, the plasma recovery efficiency was similar (P > 0.05) for the volumes expected for 12 and 10 mm follicles, but decreased (P < 0.05) for smaller follicles (45.7+/−4.0%, 12.4+/−4.3% and 0.0+/−0.0% for 8, 6, and 4 mm follicles, respectively). Using the adaptation, the losses intrinsic to the aspiration system were similar for all follicle diameters. In Trial II, the expected and recovered volumes of FF were correlated (r = 0.89) and the efficiency of recovery was similar among follicles <12 mm, while larger follicles had a progressive increase

  17. Analytical study on mesocarbon microbeads derived from coal tar pitch

    SciTech Connect

    Zhang, Y.; Murata, S.; Nomura, M.

    1999-07-01

    Pitches have been recognized as excellent precursors for carbon materials and their properties are considered to be influential on the properties and function of carbon material. For this reason, their detailed characterization is being required. Successful pitch characterization must satisfy the following points: (1) very complicated pitches can be clearly distinguished; (2) the performance of the final carbon product can be predicted by characterizing the precursor pitch at its molecular level; and (3) a satisfactory explanation can be provided for chemical and physical behavior of pitches for a given utilization process based on their structural differences. Successful pitch characterization is quite difficult to be attained because pitches are very complex mixtures containing several hundred compounds with different functionalities. Thus, the methods for their characterization are limited to the measurements of average structural parameters, such as softening point (SP), H/C atomic ratio, quinoline- and toluene-insoluble (QI and TI) fractions, aromaticity, carbon yield, etc.. Although these parameters can give a fairly good evaluation about pitch quality, they can not always explain why pitches with similar characteristics on traditional characterization techniques display a significantly different behavior. This fact provides a challenging subject in the field of pitch characterization. At the same time, there is a possibility that in a given case satisfactory important factors remain undetected due to the limitation of analytical techniques, thus leading to serious problems in the pitch utilization. Therefore, it seems to be essential to know, for a given utilization of pitches, which of the pitch properties normally measured is important and how this affects the behavior of pitch. Another serious difficulty in pitch characterization is the fact that pitches are normally not completely soluble in solvents. There is no single analytical technique which can

  18. A Structural Theory of Pitch1,2,3

    PubMed Central

    Laudanski, Jonathan; Zheng, Yi

    2014-01-01

    Abstract Musical notes can be ordered from low to high along a perceptual dimension called “pitch”. A characteristic property of these sounds is their periodic waveform, and periodicity generally correlates with pitch. Thus, pitch is often described as the perceptual correlate of the periodicity of the sound’s waveform. However, the existence and salience of pitch also depends in a complex way on other factors, in particular harmonic content. For example, periodic sounds made of high-order harmonics tend to have a weaker pitch than those made of low-order harmonics. Here we examine the theoretical proposition that pitch is the perceptual correlate of the regularity structure of the vibration pattern of the basilar membrane, across place and time—a generalization of the traditional view on pitch. While this proposition also attributes pitch to periodic sounds, we show that it predicts differences between resolved and unresolved harmonic complexes and a complex domain of existence of pitch, in agreement with psychophysical experiments. We also present a possible neural mechanism for pitch estimation based on coincidence detection, which does not require long delays, in contrast with standard temporal models of pitch. PMID:26464959

  19. Design of the small pixel pitch ROIC

    NASA Astrophysics Data System (ADS)

    Liang, Qinghua; Jiang, Dazhao; Chen, Honglei; Zhai, Yongcheng; Gao, Lei; Ding, Ruijun

    2014-11-01

    Since the technology trend of the third generation IRFPA towards resolution enhancing has steadily progressed,the pixel pitch of IRFPA has been greatly reduced.A 640×512 readout integrated circuit(ROIC) of IRFPA with 15μm pixel pitch is presented in this paper.The 15μm pixel pitch ROIC design will face many challenges.As we all known,the integrating capacitor is a key performance parameter when considering pixel area,charge capacity and dynamic range,so we adopt the effective method of 2 by 2 pixels sharing an integrating capacitor to solve this problem.The input unit cell architecture will contain two paralleled sample and hold parts,which not only allow the FPA to be operated in full frame snapshot mode but also save relatively unit circuit area.Different applications need more matching input unit circuits. Because the dimension of 2×2 pixels is 30μm×30μm, an input stage based on direct injection (DI) which has medium injection ratio and small layout area is proved to be suitable for middle wave (MW) while BDI with three-transistor cascode amplifier for long wave(LW). By adopting the 0.35μm 2P4M mixed signal process, the circuit architecture can make the effective charge capacity of 7.8Me- per pixel with 2.2V output range for MW and 7.3 Me- per pixel with 2.6V output range for LW. According to the simulation results, this circuit works well under 5V power supply and achieves less than 0.1% nonlinearity.

  20. How to pitch a brilliant idea.

    PubMed

    Elsbach, Kimberly D

    2003-09-01

    Coming up with creative ideas is easy; selling them to strangers is hard. Entrepreneurs, sales executives, and marketing managers often go to great lengths to demonstrate how their new concepts are practical and profitable--only to be rejected by corporate decision makers who don't seem to understand the value of the ideas. Why does this happen? Having studied Hollywood executives who assess screenplay pitches, the author says the person on the receiving end--the "catcher"--tends to gauge the pitcher's creativity as well as the proposal itself. An impression of the pitcher's ability to come up with workable ideas can quickly and permanently overshadow the catcher's feelings about an idea's worth. To determine whether these observations apply to business settings beyond Hollywood, the author attended product design, marketing, and venture-capital pitch sessions and conducted interviews with executives responsible for judging new ideas. The results in those environments were similar to her observations in Hollywood, she says. Catchers subconsciously categorize successful pitchers as showrunners (smooth and professional), artists (quirky and unpolished), or neophytes (inexperienced and naive). The research also reveals that catchers tend to respond well when they believe they are participating in an idea's development. As Oscar-winning writer, director, and producer Oliver Stone puts it, screen-writers pitching an idea should "pull back and project what he needs onto your idea in order to make the story whole for him." To become a successful pitcher, portray yourself as one of the three creative types and engage your catchers in the creative process. By finding ways to give your catchers a chance to shine, you sell yourself as a likable collaborator. PMID:12964399

  1. Computationally Inexpensive Approach for Pitch Control of Offshore Wind Turbine on Barge Floating Platform

    PubMed Central

    Zuo, Shan; Song, Y. D.; Wang, Lei; Song, Qing-wang

    2013-01-01

    Offshore floating wind turbine (OFWT) has gained increasing attention during the past decade because of the offshore high-quality wind power and complex load environment. The control system is a tradeoff between power tracking and fatigue load reduction in the above-rated wind speed area. In allusion to the external disturbances and uncertain system parameters of OFWT due to the proximity to load centers and strong wave coupling, this paper proposes a computationally inexpensive robust adaptive control approach with memory-based compensation for blade pitch control. The method is tested and compared with a baseline controller and a conventional individual blade pitch controller with the “NREL offshore 5 MW baseline wind turbine” being mounted on a barge platform run on FAST and Matlab/Simulink, operating in the above-rated condition. It is shown that the advanced control approach is not only robust to complex wind and wave disturbances but adaptive to varying and uncertain system parameters as well. The simulation results demonstrate that the proposed method performs better in reducing power fluctuations, fatigue loads and platform vibration as compared to the conventional individual blade pitch control. PMID:24453834

  2. Computationally inexpensive approach for pitch control of offshore wind turbine on barge floating platform.

    PubMed

    Zuo, Shan; Song, Y D; Wang, Lei; Song, Qing-wang

    2013-01-01

    Offshore floating wind turbine (OFWT) has gained increasing attention during the past decade because of the offshore high-quality wind power and complex load environment. The control system is a tradeoff between power tracking and fatigue load reduction in the above-rated wind speed area. In allusion to the external disturbances and uncertain system parameters of OFWT due to the proximity to load centers and strong wave coupling, this paper proposes a computationally inexpensive robust adaptive control approach with memory-based compensation for blade pitch control. The method is tested and compared with a baseline controller and a conventional individual blade pitch controller with the "NREL offshore 5 MW baseline wind turbine" being mounted on a barge platform run on FAST and Matlab/Simulink, operating in the above-rated condition. It is shown that the advanced control approach is not only robust to complex wind and wave disturbances but adaptive to varying and uncertain system parameters as well. The simulation results demonstrate that the proposed method performs better in reducing power fluctuations, fatigue loads and platform vibration as compared to the conventional individual blade pitch control. PMID:24453834

  3. Computationally inexpensive approach for pitch control of offshore wind turbine on barge floating platform.

    PubMed

    Zuo, Shan; Song, Y D; Wang, Lei; Song, Qing-wang

    2013-01-01

    Offshore floating wind turbine (OFWT) has gained increasing attention during the past decade because of the offshore high-quality wind power and complex load environment. The control system is a tradeoff between power tracking and fatigue load reduction in the above-rated wind speed area. In allusion to the external disturbances and uncertain system parameters of OFWT due to the proximity to load centers and strong wave coupling, this paper proposes a computationally inexpensive robust adaptive control approach with memory-based compensation for blade pitch control. The method is tested and compared with a baseline controller and a conventional individual blade pitch controller with the "NREL offshore 5 MW baseline wind turbine" being mounted on a barge platform run on FAST and Matlab/Simulink, operating in the above-rated condition. It is shown that the advanced control approach is not only robust to complex wind and wave disturbances but adaptive to varying and uncertain system parameters as well. The simulation results demonstrate that the proposed method performs better in reducing power fluctuations, fatigue loads and platform vibration as compared to the conventional individual blade pitch control.

  4. Higher harmonic rotor blade pitch control

    NASA Technical Reports Server (NTRS)

    Ewans, J. R.

    1976-01-01

    Tests of a model 'Reverse Velocity Rotor' system at high advance ratios and with twice-per-revolution cyclic pitch control were made under joint Navy-NASA sponsorship in the NASA, Ames 12 ft. pressure tunnel. The results showed significant gains in rotor performance at all advance ratios by using twice-per-revolution control. Detailed design studies have been made of alternative methods of providing higher harmonic motion including four types of mechanical systems and an electro-hydraulic system. The relative advantages and disadvantages are evaluated on the basis of stiffness, weight, volume, reliability and maintainability.

  5. Development of a Passively Varying Pitch Propeller

    NASA Astrophysics Data System (ADS)

    Heinzen, Stearns Beamon

    Small general aviation aircraft and unmanned aerial systems are often equipped with sophisticated navigation, control, and other avionics, but retain propulsion systems consisting of retrofitted radio control and ultralight equipment. Consequently, new high performance airframes often rely on relatively primitive propulsive technology. This trend is beginning to shift with recent advances in small turboprop engines, fuel injected reciprocating engines, and improved electric technologies. Although these systems are technologically advanced, they are often paired with standard fixed pitch propellers. To fully realize the potential of these aircraft and the new generation of engines, small propellers which can efficiently transmit power over wide flight envelopes and a variety of power settings must be developed. This work demonstrates a propeller which passively adjusts to incoming airflow at a low penalty to aircraft weight and complexity. This allows the propeller to operate in an efficient configuration over a wide flight envelope, and can prevent blade stall in low-velocity / highly-loaded thrust cases and over-speeding at high flight speeds. The propeller incorporates blades which pivot freely on a radial axis and are aerodynamically tailored to attain and maintain a pitch angle yielding favorable local blade angles of attack, matched to changing inflow conditions. This blade angle is achieved through the use of reflexed airfoils designed for a positive pitching moment, comparable to those used on many tailless flying wings. By setting the axis of rotation at a point forward of the blade aerodynamic center, the blades will naturally adjust to a predetermined positive lift 'trim' condition. Then, as inflow conditions change, the blade angle will automatically pivot to maintain the same angle with respect to incoming air. Computational, wind tunnel, and flight test results indicate that the extent of efficient propeller operation can be increased dramatically as

  6. Left-hemisphere activation is associated with enhanced vocal pitch error detection in musicians with absolute pitch

    PubMed Central

    Behroozmand, Roozbeh; Ibrahim, Nadine; Korzyukov, Oleg; Robin, Donald A.; Larson, Charles R.

    2014-01-01

    The ability to process auditory feedback for vocal pitch control is crucial during speaking and singing. Previous studies have suggested that musicians with absolute pitch (AP) develop specialized left-hemisphere mechanisms for pitch processing. The present study adopted an auditory feedback pitch perturbation paradigm combined with ERP recordings to test the hypothesis whether the neural mechanisms of the left-hemisphere enhance vocal pitch error detection and control in AP musicians compared with relative pitch (RP) musicians and non-musicians (NM). Results showed a stronger N1 response to pitch-shifted voice feedback in the right-hemisphere for both AP and RP musicians compared with the NM group. However, the left-hemisphere P2 component activation was greater in AP and RP musicians compared with NMs and also for the AP compared with RP musicians. The NM group was slower in generating compensatory vocal reactions to feedback pitch perturbation compared with musicians, and they failed to re-adjust their vocal pitch after the feedback perturbation was removed. These findings suggest that in the earlier stages of cortical neural processing, the right hemisphere is more active in musicians for detecting pitch changes in voice feedback. In the later stages, the left-hemisphere is more active during the processing of auditory feedback for vocal motor control and seems to involve specialized mechanisms that facilitate pitch processing in the AP compared with RP musicians. These findings indicate that the left hemisphere mechanisms of AP ability are associated with improved auditory feedback pitch processing during vocal pitch control in tasks such as speaking or singing. PMID:24355545

  7. Aerodynamic pitching damping of vehicle-inspired bluff bodies

    NASA Astrophysics Data System (ADS)

    Tsubokura, Makoto; Cheng, Seeyuan; Nakashima, Takuji; Nouzawa, Takahide; Okada, Yoshihiro

    2010-11-01

    Aerodynamic damping mechanism of road vehicles subjected to pitching oscillation was investigated by using large-eddy simulation technique. The study was based on two kinds of simplified vehicle models, which represent real sedan-type vehicles with different pitching stability in the on-road test. The simplified vehicle modes were developed so as to reproduce the characteristic flow structures above the trunk deck of the real vehicles measured in a wind-tunnel at the static case without oscillation. The forced sinusoidal pitching oscillation was imposed on the models and their pitching damping factors were evaluated through the phase-averaged pitching moment. Then flow structures in the wake of the models were extracted and its contribution to the damping mechanism was discussed. It was found that slight difference of the front and rear pillars' shape drastically affects the flow structures in the wake of the models, which enhance or restrain the vehicles' pitching instability.

  8. Fun facts about pitch and the pitfalls of ignorance

    NASA Astrophysics Data System (ADS)

    Gillman, Birgit E.; Tinker, Flemming

    1999-11-01

    The various properties of polishing pitches have different advantages and are selected according to the type of work intended. It is important to check pitch properties before a pitch lap is poured; to ensure that the final polishing lap properties will be as desired. A simple penetrometer test is utilized as a quality control tool for measuring the hardness (viscosity) of various types of pitch as received from the manufacturer. Only a small sample, 20 grams, is needed for this test. Another simple method for determining pitch quality is the measurement of the softening point. A description of this method and typical results will be described. Lastly, the 'tackiness' of pitch and its importance will be discussed.

  9. Timbre-independent extraction of pitch in newborn infants

    PubMed Central

    HÁDEN, GÁBOR P.; STEFANICS, GÁBOR; VESTERGAARD, MARTIN D.; DENHAM, SUSAN L.; SZILLER, ISTVÁN; WINKLER, ISTVÁN

    2010-01-01

    The ability to separate pitch from other spectral sound features, such as timbre, is an important prerequisite of veridical auditory perception underlying speech acquisition and music cognition. The current study investigated whether or not newborn infants generalize pitch across different timbres. Perceived resonator size is an aspect of timbre that informs the listener about the size of the sound source, a cue that may be important already at birth. Therefore, detection of infrequent pitch changes was tested by recording event-related brain potentials in healthy newborn infants to frequent standard and infrequent pitch-deviant sounds while the perceived resonator size of all sounds was randomly varied. The elicitation ofanearly negative andalater positive discriminative responsebydeviant sounds demonstrated that the neonate auditory system represents pitch separately from timbre, thus showing advanced pitch processing capabilities. PMID:19055501

  10. Effect of pitching history on the flow topology for freely pitching wings

    NASA Astrophysics Data System (ADS)

    Krishna, Swathi; Mulleners, Karen

    2014-11-01

    Insect flapping flight represents an interesting aerodynamic problem because of the characteristic unsteadiness and the low Reynolds number of the airflow. The time dependent wing kinematics play a prominent role in the generation and evolution of the leading edge vortex (LEV). The changes in unsteady flow attributes due to differences in the time dependent wing kinematics pose an interesting case for study. Variations in the temporal evolution of the wing's angle of attack lead to changes in the size, position and strength of the LEV. Time-resolved planar particle image velocimetry was conducted on a freely pitching wing to gain insight into how the pitching history affects the vortex dynamics. To quantify the observed trends, a topological analysis of the instantaneous flow around the pitching wing is conducted. The isolated singular points (nodes, saddles, and foci) of a instantaneous vector field are analysed. Based on the type and distribution of the critical points, a better understanding of the emergence and spatio-temporal development of the prominent vortical structures is obtained. Additionally, proper orthogonal decomposition is carried out to study the influence of temporal changes in pitch on the dynamic behaviour of the vortical structures.

  11. Pitch-Responsive Cortical Regions in Congenital Amusia.

    PubMed

    Norman-Haignere, Sam V; Albouy, Philippe; Caclin, Anne; McDermott, Josh H; Kanwisher, Nancy G; Tillmann, Barbara

    2016-03-01

    Congenital amusia is a lifelong deficit in music perception thought to reflect an underlying impairment in the perception and memory of pitch. The neural basis of amusic impairments is actively debated. Some prior studies have suggested that amusia stems from impaired connectivity between auditory and frontal cortex. However, it remains possible that impairments in pitch coding within auditory cortex also contribute to the disorder, in part because prior studies have not measured responses from the cortical regions most implicated in pitch perception in normal individuals. We addressed this question by measuring fMRI responses in 11 subjects with amusia and 11 age- and education-matched controls to a stimulus contrast that reliably identifies pitch-responsive regions in normal individuals: harmonic tones versus frequency-matched noise. Our findings demonstrate that amusic individuals with a substantial pitch perception deficit exhibit clusters of pitch-responsive voxels that are comparable in extent, selectivity, and anatomical location to those of control participants. We discuss possible explanations for why amusics might be impaired at perceiving pitch relations despite exhibiting normal fMRI responses to pitch in their auditory cortex: (1) individual neurons within the pitch-responsive region might exhibit abnormal tuning or temporal coding not detectable with fMRI, (2) anatomical tracts that link pitch-responsive regions to other brain areas (e.g., frontal cortex) might be altered, and (3) cortical regions outside of pitch-responsive cortex might be abnormal. The ability to identify pitch-responsive regions in individual amusic subjects will make it possible to ask more precise questions about their role in amusia in future work. PMID:26961952

  12. Pitch Discrimination: An Independent Factor in Cochlear Implant Performance Outcomes

    PubMed Central

    Kenway, Bruno; Tam, Yu Chuen; Vanat, Zebunnisa; Harris, Frances; Gray, Roger; Birchall, John; Carlyon, Robert; Axon, Patrick

    2015-01-01

    Objective: To assess differences in pitch-ranking ability across a range of speech understanding performance levels and as a function of electrode position. Study Design: An observational study of a cross-section of cochlear implantees. Setting: Tertiary referral center for cochlear implantation. Patients: A total of 22 patients were recruited. All three manufacturers’ devices were included (MED-EL, Innsbruck, Austria, n = 10; Advanced Bionics, California, USA, n = 8; and Cochlear, Sydney, Australia, n = 4) and all patients were long-term users (more than 18 months). Twelve of these were poor performers (scores on BKB sentence lists <60%) and 10 were excellent performers (BKB >90%). Intervention: After measurement of threshold and comfort levels, and loudness balancing across the array, all patients underwent thorough pitch-ranking assessments at 80% of comfort levels. Main Outcome Measure: Ability to discriminate pitch across the electrode array, measured by consistency in discrimination of adjacent pairs of electrodes, as well as an assessment of the pitch order across the array using the midpoint comparison task. Results: Within the poor performing group there was wide variability in ability to pitch rank, from no errors, to a complete inability to reliably and consistently differentiate pitch change across the electrode array. Good performers were overall significantly more accurate at pitch ranking (p = 0.026). Consistent pitch ranking was found to be a significant independent predictor of BKB score, even after adjusting for age. Users of the MED-EL implant experienced significantly more pitch confusions at the apex than at more basal parts of the electrode array. Conclusions: Many cochlear implant users struggle to discriminate pitch effectively. Accurate pitch ranking appears to be an independent predictor of overall outcome. Future work will concentrate on manipulating maps based upon pitch discrimination findings in an attempt to improve

  13. Nanofiber Anisotropic Conductive Films (ACF) for Ultra-Fine-Pitch Chip-on-Glass (COG) Interconnections

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hoon; Kim, Tae-Wan; Suk, Kyung-Lim; Paik, Kyung-Wook

    2015-11-01

    Nanofiber anisotropic conductive films (ACF) were invented, by adapting nanofiber technology to ACF materials, to overcome the limitations of ultra-fine-pitch interconnection packaging, i.e. shorts and open circuits as a result of the narrow space between bumps and electrodes. For nanofiber ACF, poly(vinylidene fluoride) (PVDF) and poly(butylene succinate) (PBS) polymers were used as nanofiber polymer materials. For PVDF and PBS nanofiber ACF, conductive particles of diameter 3.5 μm were incorporated into nanofibers by electrospinning. In ultra-fine-pitch chip-on-glass assembly, insulation was significantly improved by using nanofiber ACF, because nanofibers inside the ACF suppressed the mobility of conductive particles, preventing them from flowing out during the bonding process. Capture of conductive particles was increased from 31% (conventional ACF) to 65%, and stable electrical properties and reliability were achieved by use of nanofiber ACF.

  14. Consonantal perturbations of pitch in Halkomelem Salish

    NASA Astrophysics Data System (ADS)

    Brown, Jason; Thompson, James J.

    2005-04-01

    It has long been noted that consonants have an effect on the pitch of a following vowel: voiceless stops tend to raise F0, while voiced stops lower it. It has also been suggested that the duration of such perturbations is shorter in tone languages than in non-tone languages [Hombert, Studies in African Linguistics (1977)]. This study compares the effects that consonants have on F0 in two closely related Salish languages: Island Halkomelem, a non-tone language, and Upriver Halkomelem, a language that has reportedly undergone some limited tonogenesis but offers no clear prosodic clues regarding tonality. The effects of the voiceless and ejective stop series were observed, and measurements of F0 were taken at the onset of voicing for the vowel, then at 20 msec. intervals up to 100 msec. Preliminary results indicate that i) Island Halkomelem shows a greater magnitude of difference in F0 at vowel onset between the voiceless and ejective stops than Upriver Halkomelem, and ii) Island Halkomelem shows greater durations of consonantal perturbations of F0 than does Upriver Halkomelem. This suggests that Upriver Halkomelem may have become more sensitive to pitch than the Island dialect, supporting the interpretation of this language as tonal. [Work supported by Phillips Fund.

  15. Language experience enhances early cortical pitch-dependent responses

    PubMed Central

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Ananthakrishnan, Saradha; Vijayaraghavan, Venkatakrishnan

    2014-01-01

    Pitch processing at cortical and subcortical stages of processing is shaped by language experience. We recently demonstrated that specific components of the cortical pitch response (CPR) index the more rapidly-changing portions of the high rising Tone 2 of Mandarin Chinese, in addition to marking pitch onset and sound offset. In this study, we examine how language experience (Mandarin vs. English) shapes the processing of different temporal attributes of pitch reflected in the CPR components using stimuli representative of within-category variants of Tone 2. Results showed that the magnitude of CPR components (Na-Pb and Pb-Nb) and the correlation between these two components and pitch acceleration were stronger for the Chinese listeners compared to English listeners for stimuli that fell within the range of Tone 2 citation forms. Discriminant function analysis revealed that the Na-Pb component was more than twice as important as Pb-Nb in grouping listeners by language affiliation. In addition, a stronger stimulus-dependent, rightward asymmetry was observed for the Chinese group at the temporal, but not frontal, electrode sites. This finding may reflect selective recruitment of experience-dependent, pitch-specific mechanisms in right auditory cortex to extract more complex, time-varying pitch patterns. Taken together, these findings suggest that long-term language experience shapes early sensory level processing of pitch in the auditory cortex, and that the sensitivity of the CPR may vary depending on the relative linguistic importance of specific temporal attributes of dynamic pitch. PMID:25506127

  16. Clinically Paired Electrodes Are Often Not Perceived as Pitch Matched.

    PubMed

    Aronoff, Justin M; Padilla, Monica; Stelmach, Julia; Landsberger, David M

    2016-01-01

    For bilateral cochlear implant (CI) patients, electrodes that receive the same frequency allocation often stimulate locations in the left and right ear that do not yield the same perceived pitch, resulting in a pitch mismatch. This pitch mismatch may be related to degraded binaural abilities. Pitch mismatches have been found for some bilateral CI users and the goal of this study was to determine whether pitch mismatches are prevalent in bilateral CI patients, including those with extensive experience with bilateral CIs. To investigate this possibility, pitch matching was conducted with 16 bilateral CI patients. For 14 of the 16 participants, there was a significant difference between those electrodes in the left and right ear that yielded the same pitch and those that received the same frequency allocation in the participant's clinical map. The results suggest that pitch mismatches are prevalent with bilateral CI users. The results also indicated that pitch mismatches persist even with extended bilateral CI experience. Such mismatches may reduce the benefits patients receive from bilateral CIs. PMID:27641682

  17. Clinically Paired Electrodes Are Often Not Perceived as Pitch Matched

    PubMed Central

    Padilla, Monica; Stelmach, Julia; Landsberger, David M.

    2016-01-01

    For bilateral cochlear implant (CI) patients, electrodes that receive the same frequency allocation often stimulate locations in the left and right ear that do not yield the same perceived pitch, resulting in a pitch mismatch. This pitch mismatch may be related to degraded binaural abilities. Pitch mismatches have been found for some bilateral CI users and the goal of this study was to determine whether pitch mismatches are prevalent in bilateral CI patients, including those with extensive experience with bilateral CIs. To investigate this possibility, pitch matching was conducted with 16 bilateral CI patients. For 14 of the 16 participants, there was a significant difference between those electrodes in the left and right ear that yielded the same pitch and those that received the same frequency allocation in the participant’s clinical map. The results suggest that pitch mismatches are prevalent with bilateral CI users. The results also indicated that pitch mismatches persist even with extended bilateral CI experience. Such mismatches may reduce the benefits patients receive from bilateral CIs. PMID:27641682

  18. Rate discrimination, gap detection and ranking of temporal pitch in cochlear implant users.

    PubMed

    Cosentino, Stefano; Carlyon, Robert P; Deeks, John M; Parkinson, Wendy; Bierer, Julie A

    2016-08-01

    Cochlear implant (CI) users have poor temporal pitch perception, as revealed by two key outcomes of rate discrimination tests: (i) rate discrimination thresholds (RDTs) are typically larger than the corresponding frequency difference limen for pure tones in normal hearing listeners, and (ii) above a few hundred pulses per second (i.e. the "upper limit" of pitch), CI users cannot discriminate further increases in pulse rate. Both RDTs at low rates and the upper limit of pitch vary across listeners and across electrodes in a given listener. Here, we compare across-electrode and across-subject variation in these two measures with the variation in performance on another temporal processing task, gap detection, in order to explore the limitations of temporal processing in CI users. RDTs were obtained for 4-5 electrodes in each of 10 Advanced Bionics CI users using two interleaved adaptive tracks, corresponding to standard rates of 100 and 400 pps. Gap detection was measured using the adaptive procedure and stimuli described by Bierer et al. (JARO 16:273-284, 2015), and for the same electrodes and listeners as for the rate discrimination measures. Pitch ranking was also performed using a mid-point comparison technique. There was a marginal across-electrode correlation between gap detection and rate discrimination at 400 pps, but neither measure correlated with rate discrimination at 100 pps. Similarly, there was a highly significant across-subject correlation between gap detection and rate discrimination at 400, but not 100 pps, and these two correlations differed significantly from each other. Estimates of low-rate sensitivity and of the upper limit of pitch, obtained from the pitch ranking experiment, correlated well with rate discrimination for the 100- and 400-pps standards, respectively. The results are consistent with the upper limit of rate discrimination sharing a common basis with gap detection. There was no evidence that this limitation also applied to rate

  19. The influence of music-elicited emotions and relative pitch on absolute pitch memory for familiar melodies.

    PubMed

    Jakubowski, Kelly; Müllensiefen, Daniel

    2013-01-01

    Levitin's findings that nonmusicians could produce from memory the absolute pitches of self-selected pop songs have been widely cited in the music psychology literature. These findings suggest that latent absolute pitch (AP) memory may be a more widespread trait within the population than traditional AP labelling ability. However, it has been left unclear what factors may facilitate absolute pitch retention for familiar pieces of music. The aim of the present paper was to investigate factors that may contribute to latent AP memory using Levitin's sung production paradigm for AP memory and comparing results to the outcomes of a pitch labelling task, a relative pitch memory test, measures of music-induced emotions, and various measures of participants' musical backgrounds. Our results suggest that relative pitch memory and the quality and degree of music-elicited emotions impact on latent AP memory. PMID:23758506

  20. The influence of music-elicited emotions and relative pitch on absolute pitch memory for familiar melodies.

    PubMed

    Jakubowski, Kelly; Müllensiefen, Daniel

    2013-01-01

    Levitin's findings that nonmusicians could produce from memory the absolute pitches of self-selected pop songs have been widely cited in the music psychology literature. These findings suggest that latent absolute pitch (AP) memory may be a more widespread trait within the population than traditional AP labelling ability. However, it has been left unclear what factors may facilitate absolute pitch retention for familiar pieces of music. The aim of the present paper was to investigate factors that may contribute to latent AP memory using Levitin's sung production paradigm for AP memory and comparing results to the outcomes of a pitch labelling task, a relative pitch memory test, measures of music-induced emotions, and various measures of participants' musical backgrounds. Our results suggest that relative pitch memory and the quality and degree of music-elicited emotions impact on latent AP memory.

  1. Valgus extension overload in the pitching elbow.

    PubMed

    Wilson, F D; Andrews, J R; Blackburn, T A; McCluskey, G

    1983-01-01

    Five baseball pitchers, three college and two professional, with an average age of 24 years, exhibited pain between the acceleration phase and follow-through phase of the pitching motion. This caused the players to be unable to continue at the level of competition necessary to play. A significant osteophyte on the posteromedial aspect of the olecranon process was identified in all pitchers. This caused impingement with the articular wall of the olecranon fossa and often created an area of chondromalacia. The more commonly identified posterior osteophyte was present in all cases. However, if just this posterior osteophyte is removed, the described lesion will be missed, with resultant persistent disability. Surgical excision of the posteromedial osteophyte through a relatively atraumatic posterolateral approach allowed early return of function without morbidity. With an average follow up of 1 year, all of the pitchers returned for one full season at maximum effectiveness.

  2. The relationship between tinnitus pitch and the audiogram.

    PubMed

    Pan, Tao; Tyler, Richard S; Ji, Haihong; Coelho, Claudia; Gehringer, Anne K; Gogel, Stephanie A

    2009-05-01

    We studied the relationship between tinnitus pitch and the audiogram in 195 patients. Patients with tone-like tinnitus reported a higher pitch (mean = 5385 Hz) compared to those with a noise-like quality (mean = 3266 Hz). Those with a flat audiogram were more likely to report: a noise-like tinnitus, a unilateral tinnitus, and have a pitch < 2000 Hz. The average duration of bilateral tinnitus (12 years) was longer than that of unilateral tinnitus (5 years). Older subjects reported a less severe tinnitus handicap questionnaire score. Patients with a notched audiogram often reported a pitch pitch >or=8000 Hz. We failed to find a relationship between the pitch and the edge of a high frequency hearing loss. Some individuals did exhibit a pitch at the low frequency edge of a hearing loss, but we could find no similar characteristics among these subjects. It is possible that a relationship between pitch and audiogram is present only in certain subgroups. PMID:19842803

  3. Cortical Basis for Dichotic Pitch Perception in Developmental Dyslexia

    ERIC Educational Resources Information Center

    Partanen, Marita; Fitzpatrick, Kevin; Madler, Burkhard; Edgell, Dorothy; Bjornson, Bruce; Giaschi, Deborah E.

    2012-01-01

    The current study examined auditory processing deficits in dyslexia using a dichotic pitch stimulus and functional MRI. Cortical activation by the dichotic pitch task occurred in bilateral Heschl's gyri, right planum temporale, and right superior temporal sulcus. Adolescents with dyslexia, relative to age-matched controls, illustrated greater…

  4. Global and Local Pitch Perception in Children with Developmental Dyslexia

    ERIC Educational Resources Information Center

    Ziegler, Johannes C.; Pech-Georgel, Catherine; George, Florence; Foxton, Jessica M.

    2012-01-01

    This study investigated global versus local pitch pattern perception in children with dyslexia aged between 8 and 11 years. Children listened to two consecutive 4-tone pitch sequences while performing a same/different task. On the different trials, sequences either preserved the contour (local condition) or they violated the contour (global…

  5. Wing-pitching mechanism of hovering Ruby-throated hummingbirds.

    PubMed

    Song, Jialei; Luo, Haoxiang; Hedrick, Tyson L

    2015-01-19

    In hovering flight, hummingbirds reverse the angle of attack of their wings through pitch reversal in order to generate aerodynamic lift during both downstroke and upstroke. In addition, the wings may pitch during translation to further enhance lift production. It is not yet clear whether these pitching motions are caused by the wing inertia or actuated through the musculoskeletal system. Here we perform a computational analysis of the pitching dynamics by incorporating the realistic wing kinematics to determine the inertial effects. The aerodynamic effect is also included using the pressure data from a previous three-dimensional computational fluid dynamics simulation of a hovering hummingbird. The results show that like many insects, pitch reversal of the hummingbird is, to a large degree, caused by the wing inertia. However, actuation power input at the root is needed in the beginning of pronation to initiate a fast pitch reversal and also in mid-downstroke to enable a nose-up pitching motion for lift enhancement. The muscles on the wing may not necessarily be activated for pitching of the distal section. Finally, power analysis of the flapping motion shows that there is no requirement for substantial elastic energy storage or energy absorption at the shoulder joint.

  6. Marked Initial Pitch in Questions Signals Marked Communicative Function.

    PubMed

    Sicoli, Mark A; Stivers, Tanya; Enfield, N J; Levinson, Stephen C

    2015-06-01

    In conversation, the initial pitch of an utterance can provide an early phonetic cue of the communicative function, the speech act, or the social action being implemented. We conducted quantitative acoustic measurements and statistical analyses of pitch in over 10,000 utterances, including 2512 questions, their responses, and about 5000 other utterances by 180 total speakers from a corpus of 70 natural conversations in 10 languages. We measured pitch at first prominence in a speaker's utterance and discriminated utterances by language, speaker, gender, question form, and what social action is achieved by the speaker's turn. Through applying multivariate logistic regression we found that initial pitch that significantly deviated from the speaker's median pitch level was predictive of the social action of the question. In questions designed to solicit agreement with an evaluation rather than information, pitch was divergent from a speaker's median predictably in the top 10% of a speakers range. This latter finding reveals a kind of iconicity in the relationship between prosody and social action in which a marked pitch correlates with a marked social action. Thus, we argue that speakers rely on pitch to provide an early signal for recipients that the question is not to be interpreted through its literal semantics but rather through an inference. PMID:26677643

  7. Wing-pitching mechanism of hovering Ruby-throated hummingbirds.

    PubMed

    Song, Jialei; Luo, Haoxiang; Hedrick, Tyson L

    2015-01-01

    In hovering flight, hummingbirds reverse the angle of attack of their wings through pitch reversal in order to generate aerodynamic lift during both downstroke and upstroke. In addition, the wings may pitch during translation to further enhance lift production. It is not yet clear whether these pitching motions are caused by the wing inertia or actuated through the musculoskeletal system. Here we perform a computational analysis of the pitching dynamics by incorporating the realistic wing kinematics to determine the inertial effects. The aerodynamic effect is also included using the pressure data from a previous three-dimensional computational fluid dynamics simulation of a hovering hummingbird. The results show that like many insects, pitch reversal of the hummingbird is, to a large degree, caused by the wing inertia. However, actuation power input at the root is needed in the beginning of pronation to initiate a fast pitch reversal and also in mid-downstroke to enable a nose-up pitching motion for lift enhancement. The muscles on the wing may not necessarily be activated for pitching of the distal section. Finally, power analysis of the flapping motion shows that there is no requirement for substantial elastic energy storage or energy absorption at the shoulder joint. PMID:25599381

  8. Editorial Commentary: Does Fatigue Alter Pitching Mechanics in Adolescent Males?

    PubMed

    Matzkin, Elizabeth

    2016-05-01

    Over the course of 90 pitches to simulate an adolescent male pitching in a baseball game, there is an increase in fatigue and pain, a decrease in velocity, and some changes indicative of lower extremity fatigue without any change in upper extremity kinematics.

  9. 14 CFR 23.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller speed and pitch controls. 23.1149... Powerplant Controls and Accessories § 23.1149 Propeller speed and pitch controls. (a) If there are propeller... propeller; and (2) Simultaneous control of all propellers. (b) The controls must allow ready...

  10. 14 CFR 35.21 - Variable and reversible pitch propellers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Variable and reversible pitch propellers... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Design and Construction § 35.21 Variable and reversible pitch propellers. (a) No single failure or malfunction in the propeller system will result...

  11. 14 CFR 35.21 - Variable and reversible pitch propellers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Variable and reversible pitch propellers... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Design and Construction § 35.21 Variable and reversible pitch propellers. (a) No single failure or malfunction in the propeller system will result...

  12. 14 CFR 35.21 - Variable and reversible pitch propellers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Variable and reversible pitch propellers... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Design and Construction § 35.21 Variable and reversible pitch propellers. (a) No single failure or malfunction in the propeller system will result...

  13. 14 CFR 35.21 - Variable and reversible pitch propellers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Variable and reversible pitch propellers... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Design and Construction § 35.21 Variable and reversible pitch propellers. (a) No single failure or malfunction in the propeller system will result...

  14. 14 CFR 23.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller speed and pitch controls. 23.1149... Powerplant Controls and Accessories § 23.1149 Propeller speed and pitch controls. (a) If there are propeller... propeller; and (2) Simultaneous control of all propellers. (b) The controls must allow ready...

  15. 14 CFR 23.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller speed and pitch controls. 23.1149... Powerplant Controls and Accessories § 23.1149 Propeller speed and pitch controls. (a) If there are propeller... propeller; and (2) Simultaneous control of all propellers. (b) The controls must allow ready...

  16. 14 CFR 35.21 - Variable and reversible pitch propellers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Variable and reversible pitch propellers... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Design and Construction § 35.21 Variable and reversible pitch propellers. (a) No single failure or malfunction in the propeller system will result...

  17. 14 CFR 23.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller speed and pitch controls. 23.1149... Powerplant Controls and Accessories § 23.1149 Propeller speed and pitch controls. (a) If there are propeller... propeller; and (2) Simultaneous control of all propellers. (b) The controls must allow ready...

  18. 14 CFR 23.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller speed and pitch controls. 23.1149... Powerplant Controls and Accessories § 23.1149 Propeller speed and pitch controls. (a) If there are propeller... propeller; and (2) Simultaneous control of all propellers. (b) The controls must allow ready...

  19. Microstructure and properties of pitch-based carbon composites

    PubMed

    Blanco; Santamaria; Bermejo; Bonhomme; Menendez

    1999-11-01

    Pitches prepared in the laboratory by thermal treatment and air-blowing of a commercial coal-tar pitch were used as matrix precursors of carbon composites using granular petroleum coke, foundry coke, amorphous graphite and anthracite. Pitches were characterized by standard procedures (elemental analysis, softening point, solubility tests and carbon yield) and light microscopy (mesophase content). Pitch pyrolysis behaviour was monitored by thermogravimetric analysis and from the optical texture of cokes. Pitch wettability to the different carbons, at different temperatures, was also studied. Experimental conditions selected for the preparation of composites were based on pitch composition and properties. The main microstructural features of composites were determined by light microscopy and scanning electron microscopy. Composite properties were described in terms of their density, porosity and compressive strength, and related to composite microstructure and the characteristics of the precursors. Thermal treatment and air-blowing of pitch improved carbon composite structure and properties. The lowest porosities and best mechanical properties were observed in those composites obtained with the thermally treated pitches combined with foundry coke and anthracite. PMID:10540274

  20. Pitch Perception, Working Memory, and Second-Language Phonological Production

    ERIC Educational Resources Information Center

    Posedel, James; Emery, Lisa; Souza, Benjamin; Fountain, Catherine

    2012-01-01

    Previous research has suggested that training on a musical instrument is associated with improvements in working memory and musical pitch perception ability. Good working memory and musical pitch perception ability, in turn, have been linked to certain aspects of language production. The current study examines whether working memory and/or pitch…

  1. Editorial Commentary: Does Fatigue Alter Pitching Mechanics in Adolescent Males?

    PubMed

    Matzkin, Elizabeth

    2016-05-01

    Over the course of 90 pitches to simulate an adolescent male pitching in a baseball game, there is an increase in fatigue and pain, a decrease in velocity, and some changes indicative of lower extremity fatigue without any change in upper extremity kinematics. PMID:27151449

  2. Pitch-Perfect: How Do Flies Control Their Pitch Angle During Aerial Stumbles?

    NASA Astrophysics Data System (ADS)

    Whitehead, Samuel; Canale, Luca; Beatus, Tsevi; Cohen, Itai

    2014-11-01

    The successful flight of flapping-wing insects is contingent upon a complex and beautiful relationship between sensory input, neural response, and muscular actuation. In particular, the inherent instabilities of flapping-wing flight require insects like D. melanogaster to constantly sense, process, and adjust for in-flight stumbles. Here we present an analysis of the mechanisms for pitch control in D. melanogaster. By gluing small ferromagnetic pins to the backs of the flies and applying an external magnetic field, we induce torques along the flies' pitch axis during free flight. Using an automated hull reconstruction technique developed in the lab, we analyze these torque events and the flies' subsequent recoveries in order to characterize the flies' response to external perturbations. Ultimately, we aim to develop a reduced-order controller model that will capture the salient aspects of the flies' recovery mechanism.

  3. Mammalian pitch sensation shaped by the cochlear fluid

    NASA Astrophysics Data System (ADS)

    Gomez, Florian; Stoop, Ruedi

    2014-07-01

    The perceived pitch of a complex harmonic sound changes if the partial tones of the sound are frequency shifted by a fixed amount. Simple mathematical rules are expected to govern perceived pitch, but these rules are violated in psychoacoustic experiments. Cognitive cortical processes are commonly held responsible for this discrepancy. Here, we demonstrate that this need not be the case. We show that human pitch perception can be reproduced with a biophysically motivated mesoscopic model of the cochlea, by fully recovering published psychoacoustical pitch-shift data and related physiological measurements from the cat cochlear nucleus. Our study suggests that perceived pitch can be attributed to combination tones in the presence of a cochlear fluid.

  4. Recent trends in binder pitches for reduction anodes

    NASA Astrophysics Data System (ADS)

    Turner, Nigel R.

    1993-11-01

    The properties of coal tar pitches have changed more in the last eight years than in the previous 40. Over the same period of time, the understanding of the influence of these properties on anodes has increased greatly. The definition of a good-quality pitch for the manufacture of anodes for the primary aluminum industry has changed radically. Pitches that would have been rejected 15 years ago are now preferred and are in high demand. Changes have been led in equal proportion by the pitch producers and by the primary aluminum industry. The increased pace of change will continue as the quest for higher performance is unending. Further advances will be achieved through closer cooperation between producer and user to define and redefine pitch quality in terms of what is the best compromise between what the customer wants and what the producer can practicably manufacture.

  5. Pitch and Timbre Interfere When Both Are Parametrically Varied

    PubMed Central

    Caruso, Valeria C.; Balaban, Evan

    2014-01-01

    Pitch and timbre perception are both based on the frequency content of sound, but previous perceptual experiments have disagreed about whether these two dimensions are processed independently from each other. We tested the interaction of pitch and timbre variations using sequential comparisons of sound pairs. Listeners judged whether two sequential sounds were identical along the dimension of either pitch or timbre, while the perceptual distances along both dimensions were parametrically manipulated. Pitch and timbre variations perceptually interfered with each other and the degree of interference was modulated by the magnitude of changes along the un-attended dimension. These results show that pitch and timbre are not orthogonal to each other when both are assessed with parametrically controlled variations. PMID:24466328

  6. Perception of Words and Pitch Patterns in Song and Speech

    PubMed Central

    Merrill, Julia; Sammler, Daniela; Bangert, Marc; Goldhahn, Dirk; Lohmann, Gabriele; Turner, Robert; Friederici, Angela D.

    2012-01-01

    This functional magnetic resonance imaging study examines shared and distinct cortical areas involved in the auditory perception of song and speech at the level of their underlying constituents: words and pitch patterns. Univariate and multivariate analyses were performed to isolate the neural correlates of the word- and pitch-based discrimination between song and speech, corrected for rhythmic differences in both. Therefore, six conditions, arranged in a subtractive hierarchy were created: sung sentences including words, pitch and rhythm; hummed speech prosody and song melody containing only pitch patterns and rhythm; and as a control the pure musical or speech rhythm. Systematic contrasts between these balanced conditions following their hierarchical organization showed a great overlap between song and speech at all levels in the bilateral temporal lobe, but suggested a differential role of the inferior frontal gyrus (IFG) and intraparietal sulcus (IPS) in processing song and speech. While the left IFG coded for spoken words and showed predominance over the right IFG in prosodic pitch processing, an opposite lateralization was found for pitch in song. The IPS showed sensitivity to discrete pitch relations in song as opposed to the gliding pitch in speech. Finally, the superior temporal gyrus and premotor cortex coded for general differences between words and pitch patterns, irrespective of whether they were sung or spoken. Thus, song and speech share many features which are reflected in a fundamental similarity of brain areas involved in their perception. However, fine-grained acoustic differences on word and pitch level are reflected in the IPS and the lateralized activity of the IFG. PMID:22457659

  7. Nomogram for determination of the primary and secondary. cap alpha. /sub 1/-fraction in pitch

    SciTech Connect

    Shuvalov, V.I.; Mochalov, V.V.

    1983-01-01

    The relationship between the quinoline - insoluble alpha (1) fraction in coal pitch and mechanical properties of the pitch is studied. A nomogram is developed which allows classification of pitches. (KAW)

  8. Pitch ranking, electrode discrimination, and physiological spread of excitation using current steering in cochlear implants

    PubMed Central

    Goehring, Jenny L.; Neff, Donna L.; Baudhuin, Jacquelyn L.; Hughes, Michelle L.

    2014-01-01

    The first objective of this study was to determine whether adaptive pitch-ranking and electrode-discrimination tasks with cochlear-implant (CI) recipients produce similar results for perceiving intermediate “virtual-channel” pitch percepts using current steering. Previous studies have not examined both behavioral tasks in the same subjects with current steering. A second objective was to determine whether a physiological metric of spatial separation using the electrically evoked compound action potential spread-of-excitation (ECAP SOE) function could predict performance in the behavioral tasks. The metric was the separation index (Σ), defined as the difference in normalized amplitudes between two adjacent ECAP SOE functions, summed across all masker electrodes. Eleven CII or 90 K Advanced Bionics (Valencia, CA) recipients were tested using pairs of electrodes from the basal, middle, and apical portions of the electrode array. The behavioral results, expressed as d′, showed no significant differences across tasks. There was also no significant effect of electrode region for either task. ECAP Σ was not significantly correlated with pitch ranking or electrode discrimination for any of the electrode regions. Therefore, the ECAP separation index is not sensitive enough to predict perceptual resolution of virtual channels. PMID:25480063

  9. Adaptive management

    USGS Publications Warehouse

    Allen, Craig R.; Garmestani, Ahjond S.

    2015-01-01

    Adaptive management is an approach to natural resource management that emphasizes learning through management where knowledge is incomplete, and when, despite inherent uncertainty, managers and policymakers must act. Unlike a traditional trial and error approach, adaptive management has explicit structure, including a careful elucidation of goals, identification of alternative management objectives and hypotheses of causation, and procedures for the collection of data followed by evaluation and reiteration. The process is iterative, and serves to reduce uncertainty, build knowledge and improve management over time in a goal-oriented and structured process.

  10. A vision framework for the localization of soccer players and ball on the pitch using Handycams

    NASA Astrophysics Data System (ADS)

    Vilas, Tiago; Rodrigues, J. M. F.; Cardoso, P. J. S.; Silva, Bruno

    2015-03-01

    The current performance requirements in soccer make imperative the use of new technologies for game observation and analysis, such that detailed information about the teams' actions is provided. This paper summarizes a framework to collect the soccer players and ball positions using one or more Full HD Handycams, placed no more than 20cm apart in the stands, as well as how this framework connects to the FootData project. The system was based on four main modules: the detection and delimitation of the soccer pitch, the ball and the players detection and assignment to their teams, the tracking of players and ball and finally the computation of their localization (in meters) in the pitch.

  11. Modeling source-filter interaction in belting and high-pitched operatic male singing.

    PubMed

    Titze, Ingo R; Worley, Albert S

    2009-09-01

    Nonlinear source-filter theory is applied to explain some acoustic differences between two contrasting male singing productions at high pitches: operatic style versus jazz belt or theater belt. Several stylized vocal tract shapes (caricatures) are discussed that form the bases of these styles. It is hypothesized that operatic singing uses vowels that are modified toward an inverted megaphone mouth shape for transitioning into the high-pitch range. This allows all the harmonics except the fundamental to be "lifted" over the first formant. Belting, on the other hand, uses vowels that are consistently modified toward the megaphone (trumpet-like) mouth shape. Both the fundamental and the second harmonic are then kept below the first formant. The vocal tract shapes provide collective reinforcement to multiple harmonics in the form of inertive supraglottal reactance and compliant subglottal reactance. Examples of lip openings from four well-known artists are used to infer vocal tract area functions and the corresponding reactances.

  12. Modeling source-filter interaction in belting and high-pitched operatic male singing.

    PubMed

    Titze, Ingo R; Worley, Albert S

    2009-09-01

    Nonlinear source-filter theory is applied to explain some acoustic differences between two contrasting male singing productions at high pitches: operatic style versus jazz belt or theater belt. Several stylized vocal tract shapes (caricatures) are discussed that form the bases of these styles. It is hypothesized that operatic singing uses vowels that are modified toward an inverted megaphone mouth shape for transitioning into the high-pitch range. This allows all the harmonics except the fundamental to be "lifted" over the first formant. Belting, on the other hand, uses vowels that are consistently modified toward the megaphone (trumpet-like) mouth shape. Both the fundamental and the second harmonic are then kept below the first formant. The vocal tract shapes provide collective reinforcement to multiple harmonics in the form of inertive supraglottal reactance and compliant subglottal reactance. Examples of lip openings from four well-known artists are used to infer vocal tract area functions and the corresponding reactances. PMID:19739766

  13. Pitch range variation in English tonal contrasts: continuous or categorical?

    PubMed

    Dilley, Laura C

    2010-01-01

    The importance of pitch range variation for intonational meaning and theory is well known; however, whether pitch range is a phonetic dimension which is treated categorically in English remains unclear. To test this possibility, three intonation continua varying in pitch range were constructed which had endpoints with contrastive representations under autosegmental-metrical (AM) theory: H* vs. L+H*, H* with 'peak delay' vs. L*+H, and %H L* vs. L*. The prediction derived from AM theory was that the reproduction of continuous pitch range variation should show a discrete pattern reflecting a change in the phonological representation of tonal sequences and in the number of tonal targets across each continuum. Participants' reproductions of each stimulus set showed continuous variation in pitch range, suggesting that pitch range is a gradient phonetic dimension in English conveying semantic contrast, similar to the formant space for vowels. Moreover, the gradience observed in productions across all parts of the pitch range suggests that contours within each series had the same number of tonal targets. The results support a version of AM theory in which rises and falls are usually comprised of two tonal targets, with strictly monotonic f(0) interpolation between them. PMID:20798570

  14. The pitch-heave dynamics of transportation vehicles

    NASA Technical Reports Server (NTRS)

    Sweet, L. M.; Richardson, H. H.

    1975-01-01

    The analysis and design of suspensions for vehicles of finite length using pitch-heave models is presented. Dynamic models for the finite length vehicle include the spatial distribution of the guideway input disturbance over the vehicle length, as well as both pitch and heave degrees-of-freedom. Analytical results relate the vehicle front and rear accelerations to the pitch and heave natural frequencies, which are functions of vehicle suspension geometry and mass distribution. The effects of vehicle asymmetry and suspension contact area are evaluated. Design guidelines are presented for the modification of vehicle and suspension parameters to meet alternative ride quality criteria.

  15. Biomechanics of baseball pitching. A preliminary report.

    PubMed

    Pappas, A M; Zawacki, R M; Sullivan, T J

    1985-01-01

    Fifteen professional major league pitchers were filmed with high speed cinematography. One hundred forty-seven pitches were analyzed using an electromagnetic digitizer and a microcomputer. Three phases of throwing were studied: cocking, acceleration, and follow-through. The cocking phase is the period of time between the initiation of the windup and the moment at which the shoulder is in maximum external rotation. This phase occurs in approximately 1500 ms, and the shoulder is brought into an extreme position of external rotation. The acceleration phase and the initial stages of the follow-through phase produce extraordinary demands on the shoulder and elbow. The acceleration phase begins with the throwing shoulder in the position of maximum external rotation and terminates with ball release. This phase occurs in approximately 50 ms, and peak angular velocities averaging 6,180 deg/sec for shoulder internal rotation and 4,595 deg/sec for elbow extension were measured. The follow-through phase begins at ball release and continues until the motion of throwing has ceased. This phase occurs in approximately 350 ms.

  16. Loudness and pitch of Kunqu opera.

    PubMed

    Dong, Li; Sundberg, Johan; Kong, Jiangping

    2014-01-01

    Equivalent sound level (Leq), sound pressure level (SPL), and fundamental frequency (F0) are analyzed in each of five Kunqu Opera roles, Young girl and Young woman, Young man, Old man, and Colorful face. Their pitch ranges are similar to those of some western opera singers (alto, alto, tenor, baritone, and baritone, respectively). Differences among tasks, conditions (stage speech, singing, and reading lyrics), singers, and roles are examined. For all singers, Leq of stage speech and singing were considerably higher than that of conversational speech. Interrole differences of Leq among tasks and singers were larger than the intrarole differences. For most roles, time domain variation of SPL differed between roles both in singing and stage speech. In singing, as compared with stage speech, SPL distribution was more concentrated and variation of SPL with time was smaller. With regard to gender and age, male roles had higher mean Leq and lower average F0, MF0, as compared with female roles. Female singers showed a wider F0 distribution for singing than for stage speech, whereas the opposite was true for male singers. The Leq of stage speech was higher than in singing for young personages. Younger female personages showed higher Leq, whereas older male personages had higher Leq. The roles performed with higher Leq tended to be sung at a lower MF0.

  17. Alternative Strategies for the Problem Learner: Student Support Team Strategies Manual. A Handbook collected and Adapted by the Georgia Learning Resources Network.

    ERIC Educational Resources Information Center

    Georgia Learning Resources System/Child Serve, Columbus.

    The manual presents the framework of the Student Support Team (SST), an approach involving two or more professionals who develop alternative instructional strategies for students in lieu of special education placement. General considerations are offered for classroom management, curriculum adaptations, and adaptations for the visually and hearing…

  18. Learning Pitch with STDP: A Computational Model of Place and Temporal Pitch Perception Using Spiking Neural Networks

    PubMed Central

    Erfanian Saeedi, Nafise; Blamey, Peter J.; Burkitt, Anthony N.; Grayden, David B.

    2016-01-01

    Pitch perception is important for understanding speech prosody, music perception, recognizing tones in tonal languages, and perceiving speech in noisy environments. The two principal pitch perception theories consider the place of maximum neural excitation along the auditory nerve and the temporal pattern of the auditory neurons’ action potentials (spikes) as pitch cues. This paper describes a biophysical mechanism by which fine-structure temporal information can be extracted from the spikes generated at the auditory periphery. Deriving meaningful pitch-related information from spike times requires neural structures specialized in capturing synchronous or correlated activity from amongst neural events. The emergence of such pitch-processing neural mechanisms is described through a computational model of auditory processing. Simulation results show that a correlation-based, unsupervised, spike-based form of Hebbian learning can explain the development of neural structures required for recognizing the pitch of simple and complex tones, with or without the fundamental frequency. The temporal code is robust to variations in the spectral shape of the signal and thus can explain the phenomenon of pitch constancy. PMID:27049657

  19. Learning Pitch with STDP: A Computational Model of Place and Temporal Pitch Perception Using Spiking Neural Networks.

    PubMed

    Erfanian Saeedi, Nafise; Blamey, Peter J; Burkitt, Anthony N; Grayden, David B

    2016-04-01

    Pitch perception is important for understanding speech prosody, music perception, recognizing tones in tonal languages, and perceiving speech in noisy environments. The two principal pitch perception theories consider the place of maximum neural excitation along the auditory nerve and the temporal pattern of the auditory neurons' action potentials (spikes) as pitch cues. This paper describes a biophysical mechanism by which fine-structure temporal information can be extracted from the spikes generated at the auditory periphery. Deriving meaningful pitch-related information from spike times requires neural structures specialized in capturing synchronous or correlated activity from amongst neural events. The emergence of such pitch-processing neural mechanisms is described through a computational model of auditory processing. Simulation results show that a correlation-based, unsupervised, spike-based form of Hebbian learning can explain the development of neural structures required for recognizing the pitch of simple and complex tones, with or without the fundamental frequency. The temporal code is robust to variations in the spectral shape of the signal and thus can explain the phenomenon of pitch constancy. PMID:27049657

  20. Role of Pitch Angle Anisotropy in Ring Current Electrodynamics

    NASA Astrophysics Data System (ADS)

    Wan, Y.; Sazykin, S.; Fok, M. H.; Buzulukova, N.; Wolf, R.

    2009-12-01

    We quantitatively investigate the degree to which the basic characteristics of the injection of a storm-time ring current depend on the pitch-angle distribution. The investigation centers on a comparison of two simulations of the August 12, 2000 storm: one based on the Rice Convection Model (RCM), which assumes an isotropic pitch angle distribution, and the other on the Comprehensive Ring Current Model (CRCM), which calculates the pitch angle distribution in detail. Results from the two runs are compared with regard to the main-phase increase in the energy in ring current particles, the strength and distribution of the region-2 currents, and the strength and pattern of the prompt-penetration electric field. We also compare the recovery phase characteristics predicted by the CRCM, which carefully calculates the changes in pitch-angle distribution as charge exchange proceeds, and the RCM, which uses a much simpler way of estimating charge-exchange loss.

  1. Analysis of rotor vibratory loads using higher harmonic pitch control

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Bliss, Donald B.; Boschitsch, Alexander H.; Wachspress, Daniel A.

    1992-01-01

    Experimental studies of isolated rotors in forward flight have indicated that higher harmonic pitch control can reduce rotor noise. These tests also show that such pitch inputs can generate substantial vibratory loads. The modification is summarized of the RotorCRAFT (Computation of Rotor Aerodynamics in Forward flighT) analysis of isolated rotors to study the vibratory loading generated by high frequency pitch inputs. The original RotorCRAFT code was developed for use in the computation of such loading, and uses a highly refined rotor wake model to facilitate this task. The extended version of RotorCRAFT incorporates a variety of new features including: arbitrary periodic root pitch control; computation of blade stresses and hub loads; improved modeling of near wake unsteady effects; and preliminary implementation of a coupled prediction of rotor airloads and noise. Correlation studies are carried out with existing blade stress and vibratory hub load data to assess the performance of the extended code.

  2. Human vertical eye movement responses to earth horizontal pitch

    NASA Technical Reports Server (NTRS)

    Wall, C. 3rd; Petropoulos, A. E.

    1993-01-01

    The vertical eye movements in humans produced in response to head-over-heels constant velocity pitch rotation about a horizontal axis resemble those from other species. At 60 degrees/s these are persistent and tend to have non-reversing slow components that are compensatory to the direction of rotation. In most, but not all subjects, the slow component velocity was well characterized by a rapid build-up followed by an exponential decay to a non-zero baseline. Super-imposed was a cyclic or modulation component whose frequency corresponded to the time for one revolution and whose maximum amplitude occurred during a specific head orientation. All response components (exponential decay, baseline and modulation) were larger during pitch backward compared to pitch forward runs. Decay time constants were shorter during the backward runs, thus, unlike left to right yaw axis rotation, pitch responses display significant asymmetries between paired forward and backward runs.

  3. The effect of inharmonic partials on pitch of piano tones

    NASA Astrophysics Data System (ADS)

    Anderson, Brian E.; Strong, William J.

    2005-05-01

    Piano tones have partials whose frequencies are sharp relative to harmonic values. A listening test was conducted to determine the effect of inharmonicity on pitch for piano tones in the lowest three octaves of a piano. Nine real tones from the lowest three octaves of a piano were analyzed to obtain frequencies, relative amplitudes, and decay rates of their partials. Synthetic inharmonic tones were produced from these results. Synthetic harmonic tones, each with a twelfth of a semitone increase in the fundamental, were also produced. A jury of 21 listeners matched the pitch of each synthetic inharmonic tone to one of the synthetic harmonic tones. The effect of the inharmonicity on pitch was determined from an average of the listeners' results. For the nine synthetic piano tones studied, pitch increase ranged from approximately two and a half semitones at low fundamental frequencies to an eighth of a semitone at higher fundamental frequencies. .

  4. Investors prefer entrepreneurial ventures pitched by attractive men

    PubMed Central

    Brooks, Alison Wood; Huang, Laura; Kearney, Sarah Wood; Murray, Fiona E.

    2014-01-01

    Entrepreneurship is a central path to job creation, economic growth, and prosperity. In the earliest stages of start-up business creation, the matching of entrepreneurial ventures to investors is critically important. The entrepreneur’s business proposition and previous experience are regarded as the main criteria for investment decisions. Our research, however, documents other critical criteria that investors use to make these decisions: the gender and physical attractiveness of the entrepreneurs themselves. Across a field setting (three entrepreneurial pitch competitions in the United States) and two experiments, we identify a profound and consistent gender gap in entrepreneur persuasiveness. Investors prefer pitches presented by male entrepreneurs compared with pitches made by female entrepreneurs, even when the content of the pitch is the same. This effect is moderated by male physical attractiveness: attractive males were particularly persuasive, whereas physical attractiveness did not matter among female entrepreneurs. PMID:24616491

  5. Investors prefer entrepreneurial ventures pitched by attractive men.

    PubMed

    Brooks, Alison Wood; Huang, Laura; Kearney, Sarah Wood; Murray, Fiona E

    2014-03-25

    Entrepreneurship is a central path to job creation, economic growth, and prosperity. In the earliest stages of start-up business creation, the matching of entrepreneurial ventures to investors is critically important. The entrepreneur's business proposition and previous experience are regarded as the main criteria for investment decisions. Our research, however, documents other critical criteria that investors use to make these decisions: the gender and physical attractiveness of the entrepreneurs themselves. Across a field setting (three entrepreneurial pitch competitions in the United States) and two experiments, we identify a profound and consistent gender gap in entrepreneur persuasiveness. Investors prefer pitches presented by male entrepreneurs compared with pitches made by female entrepreneurs, even when the content of the pitch is the same. This effect is moderated by male physical attractiveness: attractive males were particularly persuasive, whereas physical attractiveness did not matter among female entrepreneurs. PMID:24616491

  6. The Role of Pitch and Timbre in Voice Gender Categorization

    PubMed Central

    Pernet, Cyril R.; Belin, Pascal

    2012-01-01

    Voice gender perception can be thought of as a mixture of low-level perceptual feature extraction and higher-level cognitive processes. Although it seems apparent that voice gender perception would rely on low-level pitch analysis, many lines of research suggest that this is not the case. Indeed, voice gender perception has been shown to rely on timbre perception and to be categorical, i.e., to depend on accessing a gender model or representation. Here, we used a unique combination of acoustic stimulus manipulation and mathematical modeling of human categorization performances to determine the relative contribution of pitch and timbre to this process. Contrary to the idea that voice gender perception relies on timber only, we demonstrate that voice gender categorization can be performed using pitch only but more importantly that pitch is used only when timber information is ambiguous (i.e., for more androgynous voices). PMID:22347205

  7. Development in children's interpretation of pitch cues to emotions.

    PubMed

    Quam, Carolyn; Swingley, Daniel

    2012-01-01

    Young infants respond to positive and negative speech prosody (A. Fernald, 1993), yet 4-year-olds rely on lexical information when it conflicts with paralinguistic cues to approval or disapproval (M. Friend, 2003). This article explores this surprising phenomenon, testing one hundred eighteen 2- to 5-year-olds' use of isolated pitch cues to emotions in interactive tasks. Only 4- to 5-year-olds consistently interpreted exaggerated, stereotypically happy or sad pitch contours as evidence that a puppet had succeeded or failed to find his toy (Experiment 1) or was happy or sad (Experiments 2, 3). Two- and 3-year-olds exploited facial and body-language cues in the same task. The authors discuss the implications of this late-developing use of pitch cues to emotions, relating them to other functions of pitch. PMID:22181680

  8. Nonlinear Dynamics of the Perceived Pitch of Complex Sounds

    NASA Astrophysics Data System (ADS)

    Cartwright, Julyan H. E.; González, Diego L.; Piro, Oreste

    1999-06-01

    We apply results from nonlinear dynamics to an old problem in acoustical physics: the mechanism of the perception of the pitch of sounds, especially the sounds known as complex tones that are important for music and speech intelligibility.

  9. Fixed pitch rotor performance of large horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.; Corrigan, R. D.

    1982-01-01

    Experimental fixed pitch wind turbine performance data is presented for both the DOE/NASA Mod-0 and the Danish Gedser wind turbines. Furthermore, a method for calculating the output power from large fixed pitch wind turbines is presented. Modifications to classical blade element momentum theory are given that improve correlation with measured data. Improvement is particularly evident in high winds (low tip speed ratios) where aerodynamic stall occurs as the blade experiences high angles of attack.

  10. Fixed pitch rotor performance of large horizontal axis wind turbines

    NASA Astrophysics Data System (ADS)

    Viterna, L. A.; Corrigan, R. D.

    Experimental fixed pitch wind turbine performance data is presented for both the DOE/NASA Mod-0 and the Danish Gedser wind turbines. Furthermore, a method for calculating the output power from large fixed pitch wind turbines is presented. Modifications to classical blade element momentum theory are given that improve correlation with measured data. Improvement is particularly evident in high winds (low tip speed ratios) where aerodynamic stall occurs as the blade experiences high angles of attack.

  11. Production of graphene oxide from pitch-based carbon fiber

    NASA Astrophysics Data System (ADS)

    Lee, Miyeon; Lee, Jihoon; Park, Sung Young; Min, Byunggak; Kim, Bongsoo; in, Insik

    2015-07-01

    Pitch-based graphene oxide (p-GO) whose compositional/structural features are comparable to those of graphene oxide (GO) was firstly produced by chemical exfoliation of pitch-based carbon fiber rather than natural graphite. Incorporation of p-GO as nanofillers into poly(methyl methacrylate) (PMMA) as a matrix polymer resulted in excellent mechanical reinforcement. p-GO/PMMA nanocomposite (1 wt.-% p-GO) demonstrated 800% higher modulus of toughness of neat PMMA.

  12. Enhanced brainstem encoding predicts musicians’ perceptual advantages with pitch

    PubMed Central

    Bidelman, Gavin M.; Krishnan, Ananthanarayan; Gandour, Jackson T.

    2010-01-01

    Important to Western tonal music is the relationship between pitches both within and between musical chords; melody and harmony are generated by combining pitches selected from the fixed hierarchical scales of music. It is of critical importance that musicians have the ability to detect and discriminate minute deviations in pitch in order to remain in tune with other members of their ensemble. Event-related potentials indicate that cortical mechanisms responsible for detecting mistuning and violations in pitch are more sensitive and accurate in musicians as compared to non-musicians. The aim of the present study was to address whether this superiority is also present at a subcortical stage of pitch processing. Brainstem frequency-following responses (FFRs) were recorded from musicians and non-musicians in response to tuned (i.e., major and minor) and detuned (±4% difference in frequency) chordal arpeggios differing only in the pitch of their third. Results showed that musicians had faster neural synchronization and stronger brainstem encoding for defining characteristics of musical sequences regardless of whether they were in or out of tune. In contrast, non-musicians had relatively strong representation for major/minor chords but showed diminished responses for detuned chords. The close correspondence between the magnitude of brainstem responses and performance on two behavioral pitch discrimination tasks supports the idea that musicians’ enhanced detection of chordal mistuning may be rooted at pre-attentive, sensory stages of processing. Findings suggest that perceptually salient aspects of musical pitch are not only represented at subcortical levels but that these representations are also enhanced by musical experience. PMID:21198980

  13. Production of graphene oxide from pitch-based carbon fiber

    PubMed Central

    Lee, Miyeon; Lee, Jihoon; Park, Sung Young; Min, Byunggak; Kim, Bongsoo; In, Insik

    2015-01-01

    Pitch-based graphene oxide (p-GO) whose compositional/structural features are comparable to those of graphene oxide (GO) was firstly produced by chemical exfoliation of pitch-based carbon fiber rather than natural graphite. Incorporation of p-GO as nanofillers into poly(methyl methacrylate) (PMMA) as a matrix polymer resulted in excellent mechanical reinforcement. p-GO/PMMA nanocomposite (1 wt.-% p-GO) demonstrated 800% higher modulus of toughness of neat PMMA. PMID:26156067

  14. 2DFFT: Measuring Galactic Spiral Arm Pitch Angle

    NASA Astrophysics Data System (ADS)

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S.; Puerari, Ivânio

    2016-08-01

    2DFFT utilizes two-dimensional fast Fourier transformations of images of spiral galaxies to isolate and measure the pitch angles of their spiral arms; this provides a quantitative way to measure this morphological feature and allows comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. 2DFFT requires fourn.c from Numerical Recipes in C (Press et al. 1989).

  15. When pitch Accents Encode Speaker Commitment: Evidence from French Intonation.

    PubMed

    Michelas, Amandine; Portes, Cristel; Champagne-Lavau, Maud

    2016-06-01

    Recent studies on a variety of languages have shown that a speaker's commitment to the propositional content of his or her utterance can be encoded, among other strategies, by pitch accent types. Since prior research mainly relied on lexical-stress languages, our understanding of how speakers of a non-lexical-stress language encode speaker commitment is limited. This paper explores the contribution of the last pitch accent of an intonation phrase to convey speaker commitment in French, a language that has stress at the phrasal level as well as a restricted set of pitch accents. In a production experiment, participants had to produce sentences in two pragmatic contexts: unbiased questions (the speaker had no particular belief with respect to the expected answer) and negatively biased questions (the speaker believed the proposition to be false). Results revealed that negatively biased questions consistently exhibited an additional unaccented F0 peak in the preaccentual syllable (an H+!H* pitch accent) while unbiased questions were often realized with a rising pattern across the accented syllable (an H* pitch accent). These results provide evidence that pitch accent types in French can signal the speaker's belief about the certainty of the proposition expressed in French. It also has implications for the phonological model of French intonation. PMID:27363256

  16. Manufacture of threads with variable pitch by using noncircular gears

    NASA Astrophysics Data System (ADS)

    Slătineanu, L.; Dodun, O.; Coteață, M.; Coman, I.; Nagîț, G.; Beșliu, I.

    2016-08-01

    There are mechanical equipments in which shafts threaded with variable pitch are included. Such a shaft could be met in the case of worm specific to the double enveloping worm gearing. Over the years, the researchers investigated some possibilities to geometrically define and manufacture the shaft zones characterized by a variable pitch. One of the methods able to facilitate the manufacture of threads with variable pitch is based on the use of noncircular gears in the threading kinematic chain for threading by cutting. In order to design the noncircular gears, the mathematical law of pitch variation has to be known. An analysis of pitch variation based on geometrical considerations was developed in the case of a double enveloping globoid worm. Subsequently, on the bases of a proper situation, a numerical model was determined. In this way, an approximately law of pitch variation was determined and it could be taken into consideration when designing the noncircular gears included in the kinematic chain of the cutting machine tool.

  17. Relative saliency of pitch versus phonetic cues in infancy

    NASA Astrophysics Data System (ADS)

    Cardillo, Gina; Kuhl, Patricia; Sundara, Megha

    2005-09-01

    Infants in their first year are highly sensitive to different acoustic components of speech, including phonetic detail and pitch information. The present investigation examined whether relative sensitivity to these two dimensions changes during this period, as the infant acquires language-specific phonetic categories. If pitch and phonetic discrimination are hierarchical, then the relative salience of pitch and phonetic change may become reversed between 8 and 12 months of age. Thirty-two- and 47-week-old infants were tested using an auditory preference paradigm in which they first heard a recording of a person singing a 4-note song (i.e., ``go-bi-la-tu'') and were then presented with both the familiar and an unfamiliar, modified version of that song. Modifications were either a novel pitch order (keeping syllables constant) or a novel syllable order (keeping melody constant). Compared to the younger group, older infants were predicted to show greater relative sensitivity to syllable order than pitch order, in accordance with an increased tendency to attend to linguistically relevant information (phonetic patterns) as opposed to cues that are initially more salient (pitch patterns). Preliminary data show trends toward the predicted interaction, with preference patterns commensurate with previously reported data. [Work supported by the McDonnell Foundation and NIH.

  18. Speech synthesis with pitch modification using harmonic plus noise model

    NASA Astrophysics Data System (ADS)

    Lehana, Parveen K.; Pandey, Prem C.

    2003-10-01

    In harmonic plus noise model (HNM) based speech synthesis, the input signal is modeled as two parts: the harmonic part using amplitudes and phases of the harmonics of the fundamental and the noise part using an all-pole filter excited by random white Gaussian noise. This method requires relatively less number of parameters and computations, provides good quality output, and permits pitch and time scaling without explicit estimation of vocal tract parameters. Pitch scaling to synthesize the speech with interpolated original amplitudes and phases at the multiples of the scaled pitch frequency results in an unnatural quality. Our investigation for obtaining natural quality output showed that the frequency scale of the amplitudes and phases of the harmonics of the original signal needed to be modified by a speaker dependent warping function. The function was obtained by studying the relationship between pitch frequency and formant frequencies for the three cardinal vowels naturally occurring with different pitches in a passage with intonation. Listening tests showed that good quality speech was obtained by linear frequency scaling of the amplitude and phase spectra, by the same factor as the pitch-scaling.

  19. Neural Networks Involved in Voluntary and Involuntary Vocal Pitch Regulation in Experienced Singers

    ERIC Educational Resources Information Center

    Zarate, Jean Mary; Wood, Sean; Zatorre, Robert J.

    2010-01-01

    In an fMRI experiment, we tested experienced singers with singing tasks to investigate neural correlates of voluntary and involuntary vocal pitch regulation. We shifted the pitch of auditory feedback (plus or minus 25 or 200 cents), and singers either: (1) ignored the shift and maintained their vocal pitch or (2) changed their vocal pitch to…

  20. Spirality: A Noval Way to Measure Spiral Arm Pitch Angle

    NASA Astrophysics Data System (ADS)

    Shields, Douglas W.; Boe, Benjamin; Henderson, Casey L.; Hartley, Matthew; Davis, Benjamin L.; Pour Imani, Hamed; Kennefick, Daniel; Kennefick, Julia D.

    2015-01-01

    We present the MATLAB code Spirality, a novel method for measuring spiral arm pitch angles by fitting galaxy images to spiral templates of known pitch. For a given pitch angle template, the mean pixel value is found along each of typically 1000 spiral axes. The fitting function, which shows a local maximum at the best-fit pitch angle, is the variance of these means. Error bars are found by varying the inner radius of the measurement annulus and finding the standard deviation of the best-fit pitches. Computation time is typically on the order of 2 minutes per galaxy, assuming at least 8 GB of working memory. We tested the code using 128 synthetic spiral images of known pitch. These spirals varied in the number of spiral arms, pitch angle, degree of logarithmicity, radius, SNR, inclination angle, bar length, and bulge radius. A correct result is defined as a result that matches the true pitch within the error bars, with error bars no greater than ±7°. For the non-logarithmic spiral sample, the correct answer is similarly defined, with the mean pitch as function of radius in place of the true pitch. For all synthetic spirals, correct results were obtained so long as SNR > 0.25, the bar length was no more than 60% of the spiral's diameter (when the bar was included in the measurement), the input center of the spiral was no more than 6% of the spiral radius away from the true center, and the inclination angle was no more than 30°. The synthetic spirals were not deprojected prior to measurement. The code produced the correct result for all barred spirals when the measurement annulus was placed outside the bar. Additionally, we compared the code's results against 2DFFT results for 203 visually selected spiral galaxies in GOODS North and South. Among the entire sample, Spirality's error bars overlapped 2DFFT's error bars 64% of the time. For those galaxies in which Source code is available by email request from the primary author.

  1. Lumbopelvic control and pitching performance of professional baseball pitchers.

    PubMed

    Chaudhari, Ajit M W; McKenzie, Christopher S; Borchers, James R; Best, Thomas M

    2011-08-01

    This study assessed the correlation between lumbopelvic control during a single-leg balancing task and in-game pitching performance in Minor-League baseball pitchers. Seventy-five healthy professional baseball pitchers performed a standing lumbopelvic control test during the last week of spring training for the 2008 and 2009 seasons while wearing a custom-designed testing apparatus, the "Level Belt." With the Level Belt secured to the waist, subjects attempted to transition from a 2-leg to a single-leg pitching stance and balance while maintaining a stable pelvic position. Subjects were graded on the maximum sagittal pelvic tilt from a neutral position during the motion. Pitching performance, number of innings pitched (IP), and injuries were compared for all subjects who pitched at least 50 innings during a season. The median Level Belt score for the study group was 7°. Two-sample t-tests with equal variances were used to determine if pitchers with a Level Belt score <7° or ≥7° were more likely to perform differently during the baseball season, and chi-square analysis was used to compare injuries between groups. Subjects scoring <7° on the Level Belt test had significantly fewer walks plus hits per inning than subjects scoring ≥7° (walks plus hits per inning pitched, 1.352 ± 0.251 vs. 1.584 ± 0.360, p = 0.013) and significantly more IP during the season (IP, 78.89 ± 38.67 vs. 53.38 ± 42.47, p = 0.043). There was no significant difference in the number of pitchers injured between groups. These data suggest that lumbopelvic control influences overall performance for baseball pitchers and that a simple test of lumbopelvic control can potentially identify individuals who have a better chance of pitching success.

  2. Songbirds use spectral shape, not pitch, for sound pattern recognition.

    PubMed

    Bregman, Micah R; Patel, Aniruddh D; Gentner, Timothy Q

    2016-02-01

    Humans easily recognize "transposed" musical melodies shifted up or down in log frequency. Surprisingly, songbirds seem to lack this capacity, although they can learn to recognize human melodies and use complex acoustic sequences for communication. Decades of research have led to the widespread belief that songbirds, unlike humans, are strongly biased to use absolute pitch (AP) in melody recognition. This work relies almost exclusively on acoustically simple stimuli that may belie sensitivities to more complex spectral features. Here, we investigate melody recognition in a species of songbird, the European Starling (Sturnus vulgaris), using tone sequences that vary in both pitch and timbre. We find that small manipulations altering either pitch or timbre independently can drive melody recognition to chance, suggesting that both percepts are poor descriptors of the perceptual cues used by birds for this task. Instead we show that melody recognition can generalize even in the absence of pitch, as long as the spectral shapes of the constituent tones are preserved. These results challenge conventional views regarding the use of pitch cues in nonhuman auditory sequence recognition. PMID:26811447

  3. Dynamic pitching effect on a laminar separation bubble

    NASA Astrophysics Data System (ADS)

    Nati, A.; de Kat, R.; Scarano, F.; van Oudheusden, B. W.

    2015-09-01

    The unsteady effect of a periodic pitching motion on the characteristic of a laminar separation bubble on the suction side of a SD7003 aerofoil is investigated by means of time-resolved planar and tomographic particle image velocimetry. The measurements provide information on the separation, transition and vortex roll-up onset as well as the spanwise distribution of vortical structures, for both the dynamic pitching between 4° and 8° and corresponding cases at a static pitch angle. During pitching, a clear hysteresis behaviour is observed for the vortex roll-up position and shedding frequency, showing a strongly delayed recovery of the shear layer with respect to the steady aerofoil case. The development of the shear layer transition exhibits initially 2D Kelvin-Helmholtz rollers that are interrupted, forming Λ-shaped rollers, which eventually evolve into 3D arch-shaped hairpin structures. The 3D analysis of undulated rollers allowed the determination of the rollers streamwise spatial separation for both static and pitching aerofoil cases.

  4. Songbirds use spectral shape, not pitch, for sound pattern recognition

    PubMed Central

    Bregman, Micah R.; Patel, Aniruddh D.; Gentner, Timothy Q.

    2016-01-01

    Humans easily recognize “transposed” musical melodies shifted up or down in log frequency. Surprisingly, songbirds seem to lack this capacity, although they can learn to recognize human melodies and use complex acoustic sequences for communication. Decades of research have led to the widespread belief that songbirds, unlike humans, are strongly biased to use absolute pitch (AP) in melody recognition. This work relies almost exclusively on acoustically simple stimuli that may belie sensitivities to more complex spectral features. Here, we investigate melody recognition in a species of songbird, the European Starling (Sturnus vulgaris), using tone sequences that vary in both pitch and timbre. We find that small manipulations altering either pitch or timbre independently can drive melody recognition to chance, suggesting that both percepts are poor descriptors of the perceptual cues used by birds for this task. Instead we show that melody recognition can generalize even in the absence of pitch, as long as the spectral shapes of the constituent tones are preserved. These results challenge conventional views regarding the use of pitch cues in nonhuman auditory sequence recognition. PMID:26811447

  5. Effect of Configuration Pitching Motion on Twin Tail Buffet Response

    NASA Technical Reports Server (NTRS)

    Sheta, Essam F.; Kandil, Osama A.

    1998-01-01

    The effect of dynamic pitch-up motion of delta wing on twin-tail buffet response is investigated. The computational model consists of a delta wing-twin tail configuration. The computations are carried out on a dynamic multi-block grid structure. This multidisciplinary problem is solved using three sets of equations which consists of the unsteady Navier-Stokes equations, the aeroelastic equations, and the grid displacement equations. The configuration is pitched-up from zero up to 60 deg. angle of attack, and the freestream Mach number and Reynolds number are 0.3 and 1.25 million, respectively. With the twin tail fixed as rigid surfaces and with no-forced pitch-up motion, the problem is solved for the initial flow conditions. Next, the problem is solved for the twin-tail response for uncoupled bending and torsional vibrations due to the unsteady loads on the twin tail and due to the forced pitch-up motion. The dynamic pitch-up problem is also solved for the flow response with the twin tail kept rigid. The configuration is investigated for inboard position of the twin tail which corresponds to a separation distance between the twin tail of 33% wing chord. The computed results are compared with the available experimental data.

  6. Influence of pelvis rotation styles on baseball pitching mechanics.

    PubMed

    Wight, Jeff; Richards, James; Hall, Susan

    2004-01-01

    Efficient, sequential timing is essential for upper level pitching. Interestingly, pitchers vary considerably in timing related elements of pitching style including pelvis rotation, arm cocking, stride leg behaviour, and pitch delivery time. The purpose of this study was to determine whether relationships exist among these elements by examining the overall style of pitchers exhibiting different pelvis rotation patterns. Pitching styles were defined by pelvis orientation at the instant of stride foot contact. Pitchers demonstrating a pelvis orientation greater than 30 degrees were designated as 'early rotators', while pitchers demonstrating a pelvis orientation less than 30 degrees were designated as 'late rotators'. Kinematic and temporal differences were associated with the two styles. During the arm cocking phase, early rotators showed significantly greater shoulder external rotation at the instant of stride foot contact, earlier occurrence of maximum pelvis rotation angular velocity, and shorter time taken to complete the phase. However, by the instant of maximum shoulder external rotation, early and late rotators appeared remarkably similar as no significant difference occurred in pelvis and arm orientations. Therefore, it appears that early and late rotators used different methods to achieve similar results, including throwing velocity. Significant differences in throwing arm kinetics were also found for 10 of the 11 measures in the study. As the pelvis assumed a more open position at stride foot contact, maximum kinetic values were found to both decrease in magnitude and occur at an earlier time within the pitch.

  7. Songbirds use spectral shape, not pitch, for sound pattern recognition.

    PubMed

    Bregman, Micah R; Patel, Aniruddh D; Gentner, Timothy Q

    2016-02-01

    Humans easily recognize "transposed" musical melodies shifted up or down in log frequency. Surprisingly, songbirds seem to lack this capacity, although they can learn to recognize human melodies and use complex acoustic sequences for communication. Decades of research have led to the widespread belief that songbirds, unlike humans, are strongly biased to use absolute pitch (AP) in melody recognition. This work relies almost exclusively on acoustically simple stimuli that may belie sensitivities to more complex spectral features. Here, we investigate melody recognition in a species of songbird, the European Starling (Sturnus vulgaris), using tone sequences that vary in both pitch and timbre. We find that small manipulations altering either pitch or timbre independently can drive melody recognition to chance, suggesting that both percepts are poor descriptors of the perceptual cues used by birds for this task. Instead we show that melody recognition can generalize even in the absence of pitch, as long as the spectral shapes of the constituent tones are preserved. These results challenge conventional views regarding the use of pitch cues in nonhuman auditory sequence recognition.

  8. Should We Limit Innings Pitched Following Ulnar Collateral Ligament Reconstruction in Major League Baseball Pitchers?

    PubMed Central

    Erickson, Brandon J.; Cvetanovich, Gregory; Bach, Bernard R.; Bush-Joseph, Charles A.; Verma, Nikhil N.; Romeo, Anthony A.

    2016-01-01

    Objectives: Background: Ulnar collateral ligament reconstruction (UCLR) has become a common procedure amongst major league baseball (MLB) pitchers. It is unclear if a limit on innings pitched following UCLR should be instituted to prevent revision UCLR. Purpose: To determine whether the number of innings pitched or number of pitches thrown in the first full season following UCLR, as well as the pitcher’s overall MLB career, correlated with need for a revision UCLR Hypothesis: Number of innings pitched and number of pitches thrown following UCLR will not affect whether a pitcher undergoes a revision UCLR. Methods: Methods: All MLB pitchers between 1974-2015 who pitched at least one full season following UCLR were included. Pitch counts and innings pitched for the first full season following UCLR as well as total pitch count and total innings pitched following UCLR were recorded. Pitch counts and innings pitched were compared amongst players who required revision UCLR and those who did not. Results: Results: Overall, 154 pitchers were included. Of these, 135 pitchers did not require revision UCLR while 19 underwent revision UCLR. No significant difference existed between pitchers who underwent revision UCLR and those who did not in: number of innings pitched in the season following UCLR (p=0.9016), number of pitches thrown in the season following UCLR (p=0.7337), number of innings pitched in the pitcher’s career following UCLR (p=0.6945), and number of pitches thrown in the pitcher’s career following UCLR (p=0.4789). Furthermore, no difference existed in revision rate between pitchers who pitched more or less than 180 innings in the first full season following UCLR (p=0.6678). Conclusion: Conclusion: The number of innings pitched and number of pitches thrown in the first full season as well as over a player’s career following UCLR does not appear to increase a player’s risk of revision UCLR.

  9. Clarifying the Empirical Connection of New Entrants' E-Learning Systems Use to Their Job Adaptation and Their Use Patterns under the Collective-Individual Training Environment

    ERIC Educational Resources Information Center

    Chen, Hsiu-Ju

    2012-01-01

    In recent years, with the development of e-learning, it is feasible for enterprises to adopt information systems to enhance organizations' human capital and knowledge renewal for competition. e-Learning systems designed for new entrants training aim to facilitate new entrants' job adaptation; however, the empirical link between their system use…

  10. Multidisciplinary approach in a water salinity study of the southern San Pitch drainage, Sanpete County, Utah

    NASA Astrophysics Data System (ADS)

    Hardwick, C.

    2015-12-01

    Geologic mapping and geophysical techniques corroborate surface water surveys to identify regions in the subsurface that likely influence San Pitch River salinity in central Utah. Geologic mapping reveals that two members of the Arapien Shale are likely present in the subsurface beneath the areas where saline springs are found. Previous studies specified halite deposits in one member, and indicated the other member is known to contain halite in the general region. A total of 49 unique Transient Electromagnetic Method (TEM) stations were measured in the study area using a ground loop layout. Modeling of TEM data reveals one very shallow conductive body (1 to 10 ohm.m) between desilting basins and the San Pitch River that we interpret to be saline groundwater. A larger, deeper, and more continuous conductive body, observed in the northeast part of the study area, is interpreted as a geologic feature, most likely Arapien Shale. We measured or estimated discharge (flow) at 53 unique locations within streams and from seeps and springs, and estimated water quality (field parameters) at 172 different sites within the flow regime, measuring some sites multiple times during different seasons. Our results show that a 1.6 mile reach of the San Pitch River between the Highway 89 bridge and the confluence with Twelvemile Creek is a major source of salt loading; salt load increases from mostly less than 50 g/s above the bridge to nearly 300 g/s above the confluence. An addition of 80 to 90 g/s salt load from Twelvemile Creek, which carries salt from a 10-acre saline marsh, combines to bring the overall salt load carried by the San Pitch River at a point of irrigation use 3 miles downstream to between approximately 400 g/s in the spring to approximately 650 g/s in autumn. Our combined geologic, geophysical, and hydrologic assessment indicates that the source of salinity in the San Pitch River and Twelvemile Creek is dissolution of salt from the Arapien Shale and its erosional

  11. Perceptual decision making for baseball pitch recognition: using P300 latency and amplitude to index attentional processing.

    PubMed

    Radlo, S J; Janelle, C M; Barba, D A; Frehlich, S G

    2001-03-01

    This study was designed to examine the perceptual and attentional processes associated with the effects of administering a cost-benefit precuing paradigm to intermediate and advance-level baseball batters. Psychophysiological and performance data obtained from 10 advanced and 10 intermediate-level players were compared. A total of 400 pitches (200 fastballs, 200 curveballs) was randomly presented via a large projection screen, and participants pressed one of two buttons to indicate the type of pitch thrown. Verbal precues were given for 300 of the pitches. Of those, 75% were valid, and 25% were invalid. Electroencephalographic data collected from the P location was used to assess the latency and amplitude of P300. Analysis of variance (Skill Level x Precue x Pitch) for P300 and reaction time (RT) indicated that intermediate batters produced shorter P300 latencies, larger P300 amplitudes, longer RTs, and less correct responses than the advanced batters; the effects were more pronounced for the curveballs. These results suggest that intermediate batters are less efficient in their perceptual decision-making processes due to greater limitations in attentional capacity when compared with advanced batters.

  12. Effects of prolonged weightlessness on self-motion perception and eye movements evoked by roll and pitch

    NASA Technical Reports Server (NTRS)

    Reschke, Millard F.; Parker, Donald E.

    1987-01-01

    Seven astronauts reported translational self-motion during roll simulation 1-3 h after landing following 5-7 d of orbital flight. Two reported strong translational self-motion perception when they performed pitch head motions during entry and while the orbiter was stationary on the runway. One of two astronauts from whom adequate data were collected exhibited a 132-deg shift in the phase angle between roll stimulation and horizontal eye position 2 h after landing. Neither of two from whom adequate data were collected exhibited increased horizontal eye movement amplitude or disturbance of voluntary pitch or roll body motion immediately postflight. These results are generally consistent with an otolith tilt-translation reinterpretation model and are being applied to the development of apparatus and procedures intended to preadapt astronauts to the sensory rearrangement of weightlessness.

  13. An advanced pitch change mechanism incorporating a hybrid traction drive

    NASA Technical Reports Server (NTRS)

    Steinetz, B. M.; Sargisson, D. F.; White, G.; Loewenthal, S. H.

    1984-01-01

    A design of a propeller pitch control mechanism is described that meets the demanding requirements of a high-power, advanced turboprop. In this application, blade twisting moment torque can be comparable to that of the main reduction gearbox output: precise pitch control, reliability and compactness are all at a premium. A key element in the design is a compact, high-ratio hybrid traction drive which offers low torque ripple and high torsional stiffness. The traction drive couples a high speed electric motor/alternator unit to a ball screw that actuates the blade control links. The technical merits of this arrangement and the performance characteristics of the traction drive are discussed. Comparisons are made to the more conventional pitch control mechanisms.

  14. Visual field influence on manual roll and pitch stabilization

    NASA Technical Reports Server (NTRS)

    Huang, J.-K.; Young, L. R.

    1988-01-01

    Human control performance in nulling perceived tilt angles was investigated for combinations of pseudo-random vestibular disturbances and different waveforms of low frequency wide visual field motions. For both roll and pitch axes, subjects tilted the trainer in which they were seated in the direction of field rotation. This visual bias was much stronger for pitch backwards with upward field rotation. Frequency response analysis showed the dominance of visual cues at low frequencies (below 0.06 Hz) and the reliance on vestibular information in the high frequency range for both axes. Models suggest that operator balancing responses at high frequencies are mainly processed by the semicircular canals rather than the otolith organs. The results also suggest that the subject tends to rely less on the otolith organs for pitch perception than for roll.

  15. Method and apparatus for controlling windmill blade pitch

    SciTech Connect

    Chertok, A.; Donahue, J.; Widnall, W.

    1984-01-17

    In order to control the turbine speed of a windmill employed for power generation, the pitch of the turbine blades is based on a dual-deadband control strategy. If the current turbine speed is determined to be outside of a relatively wide deadband, action is taken to correct the speed by changing blade pitch accordingly. If the current speed is not outside of the relatively wide deadband, then the average of the turbine speed over a recent interval is compared with a relatively narrow deadband within the wider deadband. Action is then taken to change the blade pitch if the average speed is outside the narrow deadband. In this way, wide excursions of turbine speed are corrected promptly, but the frequency of control actions is minimized by requiring only the average speed to be kept within tight limits.

  16. Valproate reopens critical-period learning of absolute pitch

    PubMed Central

    Gervain, Judit; Vines, Bradley W.; Chen, Lawrence M.; Seo, Rubo J.; Hensch, Takao K.; Werker, Janet F.; Young, Allan H.

    2013-01-01

    Absolute pitch, the ability to identify or produce the pitch of a sound without a reference point, has a critical period, i.e., it can only be acquired early in life. However, research has shown that histone-deacetylase inhibitors (HDAC inhibitors) enable adult mice to establish perceptual preferences that are otherwise impossible to acquire after youth. In humans, we found that adult men who took valproate (VPA) (a HDAC inhibitor) learned to identify pitch significantly better than those taking placebo—evidence that VPA facilitated critical-period learning in the adult human brain. Importantly, this result was not due to a general change in cognitive function, but rather a specific effect on a sensory task associated with a critical-period. PMID:24348349

  17. Unsteady transition measurements on a pitching three-dimensional wing

    NASA Technical Reports Server (NTRS)

    Lorber, Peter F.; Carta, Franklin O.

    1992-01-01

    Boundary layer transition measurements were made during an experimental study of the aerodynamics of a rectangular wing undergoing unsteady pitching motions. The wing was tested at chordwise Mach numbers between 0.2 and 0.6, at sweep angles of 0, 15, and 30 deg, and for steady state, sinusoidal, and constant pitch rate motions. The model was scaled to represent a full size helicopter rotor blade, with chord Reynolds numbers between 2 and 6 x 10(exp 6). Sixteen surface hot-film gages were located along three spanwise stations: 0.08, 0.27, and 0.70 chords from the wing tip. Qualitative heat transfer information was obtained to identify the unsteady motion of the point of transition to turbulence. In combination with simultaneous measurements of the unsteady surface pressure distributions, the results illustrate the effects of compressibility, sweep, pitch rate, and proximity to the wing tip on the transition and relaminarization locations.

  18. Electrically tuned photoluminescence in large pitch cholesteric liquid crystal

    SciTech Connect

    Middha, Manju Kumar, Rishi Raina, K. K.

    2014-04-24

    Cholesteric liquid crystals are known as 1-D photonic band gap materials due to their periodic helical supramolecular structure and larger birefringence. Depending upon the helical twisted pitch length, they give the characteristic contrast due to selective Bragg reflections when viewed through the polarizing optical microscope and hence affect the electro-optic properties. So the optimization of chiral dopant concentration in nematic liquid crystal leads to control the transmission of polarized light through the microscope. Hence transmission based polarizing optical microscope is used for the characterization of helical pitch length in the optical texture. The unwinding of helical pitch was observed with the application of electric field which affects the intensity of photoluminescence.

  19. Vortex scale of unsteady separation on a pitching airfoil.

    PubMed

    Fuchiwaki, Masaki; Tanaka, Kazuhiro

    2002-10-01

    The streaklines of unsteady separation on two kinds of pitching airfoils, the NACA65-0910 and a blunt trailing edge airfoil, were studied by dye flow visualization and by the Schlieren method. The latter visualized the discrete vortices shed from the leading edge. The results of these visualization studies allow a comparison between the dynamic behavior of the streakline of unsteady separation and that of the discrete vortices shed from the leading edge. The influence of the airfoil configuration on the flow characteristics was also examined. Furthermore, the scale of a discrete vortex forming the recirculation region was investigated. The non-dimensional pitching rate was k = 0.377, the angle of attack alpha(m) = 16 degrees and the pitching amplitude was fixed to A = +/-6 degrees for Re = 4.0 x 10(3) in this experiment.

  20. Linguistic status of timbre influences pitch encoding in the brainstem

    PubMed Central

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Ananthakrishnan, Saradha; Bidelman, Gavin M.; Smalt, Christopher J.

    2011-01-01

    The aim of this experiment is to assess the effects of the linguistic status of timbre on pitch processing in the brainstem. Brainstem frequency-following responses were evoked by the Mandarin high rising lexical tone superimposed on a native vowel quality ([i]), nonnative vowel quality ([œ]), and iterated rippled noise (non-speech). Results revealed that voice fundamental frequency magnitudes were larger when concomitant with a native vowel quality as compared to either nonnative vowel quality or non-speech timbre. Such experience-dependent effects suggest that subcortical sensory encoding of pitch interacts with timbre in the human brainstem. As a consequence, responses of the perceptual system can be differentially shaped to pitch patterns in relation to the linguistic status of their concomitant timbre. PMID:21934635

  1. Unsteady flow past an airfoil pitched at constant rate

    NASA Technical Reports Server (NTRS)

    Lourenco, L.; Vandommelen, L.; Shib, C.; Krothapalli, A.

    1992-01-01

    The unsteady flow past a NACA 0012 airfoil that is undertaking a constant-rate pitching up motion is investigated experimentally by the PIDV technique in a water towing tank. The Reynolds number is 5000, based upon the airfoil's chord and the free-stream velocity. The airfoil is pitching impulsively from 0 to 30 deg. with a dimensionless pitch rate alpha of 0.131. Instantaneous velocity and associated vorticity data have been acquired over the entire flow field. The primary vortex dominates the flow behavior after it separates from the leading edge of the airfoil. Complete stall emerges after this vortex detaches from the airfoil and triggers the shedding of a counter-rotating vortex near the trailing edge. A parallel computational study using the discrete vortex, random walk approximation has also been conducted. In general, the computational results agree very well with the experiment.

  2. Absolute memory for musical pitch: evidence from the production of learned melodies.

    PubMed

    Levitin, D J

    1994-10-01

    Evidence for the absolute nature of long-term auditory memory is provided by analyzing the production of familiar melodies. Additionally, a two-component theory of absolute pitch is presented, in which this rare ability is conceived as consisting of a more common ability, pitch memory, and a separate, less common ability, pitch labeling. Forty-six subjects sang two different popular songs, and their productions were compared with the actual pitches used in recordings of those songs. Forty percent of the subjects sang the correct pitch on at least one trial; 12% of the subjects hit the correct pitch on both trials, and 44% came within two semitones of the correct pitch on both trials. The results show a convergence with previous studies on the stability of auditory imagery and latent absolute pitch ability; the results further suggest that individuals might possess representations of pitch that are more stable and accurate than previously recognized. PMID:7984397

  3. Why do pitched horizontal lines have such a small effect on visually perceived eye level?

    NASA Technical Reports Server (NTRS)

    Post, R. B.; Welch, R. B.; Clark, V. D.

    2000-01-01

    In two experiments, visually perceived eye level (VPEL) was measured while subjects viewed two-dimensional displays that were either upright or pitched 20 degrees top-toward or 20 degrees top-away from them. In Experiment 1, it was demonstrated that binocular exposure to a pair of pitched vertical lines or to a pitched random dot pattern caused a substantial upward VPEL shift for the top-toward pitched array and a similarly large downward shift for the top-away array. On the other hand, the same pitches of a pair of horizontal lines (viewed binocularly or monocularly) produced much smaller VPEL shifts. Because the perceived pitch of the pitched horizontal line display was nearly the same as the perceived pitch of the pitched vertical line and dot array, the relatively small influence of pitched horizontal lines on VPEL cannot be attributed simply to an underestimation of their pitch. In Experiment 2, the effects of pitched vertical lines, dots, and horizontal lines on VPEL were again measured, together with their effects on resting gaze direction (in the vertical dimension). As in Experiment 1, vertical lines and dots caused much larger VPEL shifts than did horizontal lines. The effects of the displays on resting gaze direction were highly similar to their effects on VPEL. These results are consistent with the hypothesis that VPEL shifts caused by pitched visual arrays are due to the direct influence of these arrays on the oculomotor system and are not mediated by perceived pitch.

  4. Abnormal pitch perception produced by cochlear implant stimulation.

    PubMed

    Zeng, Fan-Gang; Tang, Qing; Lu, Thomas

    2014-01-01

    Contemporary cochlear implants with multiple electrode stimulation can produce good speech perception but poor music perception. Hindered by the lack of a gold standard to quantify electric pitch, relatively little is known about the nature and extent of the electric pitch abnormalities and their impact on cochlear implant performance. Here we overcame this obstacle by comparing acoustic and electric pitch perception in 3 unilateral cochlear-implant subjects who had functionally usable acoustic hearing throughout the audiometric frequency range in the non-implant ear. First, to establish a baseline, we measured and found slightly impaired pure tone frequency discrimination and nearly perfect melody recognition in all 3 subjects' acoustic ear. Second, using pure tones in the acoustic ear to match electric pitch induced by an intra-cochlear electrode, we found that the frequency-electrode function was not only 1-2 octaves lower, but also 2 times more compressed in frequency range than the normal cochlear frequency-place function. Third, we derived frequency difference limens in electric pitch and found that the equivalent electric frequency discrimination was 24 times worse than normal-hearing controls. These 3 abnormalities are likely a result of a combination of broad electric field, distant intra-cochlear electrode placement, and non-uniform spiral ganglion cell distribution and survival, all of which are inherent to the electrode-nerve interface in contemporary cochlear implants. Previous studies emphasized on the "mean" shape of the frequency-electrode function, but the present study indicates that the large "variance" of this function, reflecting poor electric pitch discriminability, is the main factor limiting contemporary cochlear implant performance. PMID:24551131

  5. Yaw and pitch visual-vestibular interaction in weightlessness

    NASA Technical Reports Server (NTRS)

    Clement, G.; Wood, S. J.; Reschke, M. F.; Berthoz, A.; Igarashi, M.

    1999-01-01

    Both yaw and pitch visual-vestibular interactions at two separate frequencies of chair rotation (0.2 and 0.8 Hz) in combination with a single velocity of optokinetic stimulus (36 degrees/s) were used to investigate the effects of sustained weightlessness on neural strategies adopted by astronaut subjects to cope with the stimulus rearrangement of spaceflight. Pitch and yaw oscillation in darkness at 0.2 and 0.8 Hz without optokinetic stimulation, and constant velocity linear optokinetic stimulation at 18, 36, and 54 degrees/s presented relative to the head with the subject stationary, were used as controls for the visual-vestibular interactions. The results following 8 days of space flight showed no significant changes in: (1) either the horizontal and vertical vestibulo-ocular reflex (VOR) gain, phase, or bias; (2) the yaw visual-vestibular response (VVR); or (3) the horizontal or vertical optokinetic (OKN) slow phase velocity (SPV). However, significant changes were observed: (1) when during pitch VVR at 0.2 Hz late inflight, the contribution of the optokinetic input to the combined oculomotor response was smaller than during the stationary OKN SPV measurements, followed by an increased contribution during the immediate postflight testing; and (2) when during pitch VVR at 0.8 Hz, the component of the combined oculomotor response due to the underlying vertical VOR was more efficiently suppressed early inflight and less suppressed immediately postflight compared with preflight observations. The larger OKN response during pitch VVR at 0.2 Hz and the better suppression of VOR during pitch VVR at 0.8 Hz postflight are presumably due to the increased role of vision early inflight and immediately after spaceflight, as previously observed in various studies. These results suggest that the subjects adopted a neural strategy to structure their spatial orientation in weightlessness by reweighting visual, otolith, and perhaps tactile/somatic signals.

  6. Changes in baseball batters' brain activity with increased pitch choice.

    PubMed

    Ryu, Kwangmin; Kim, Jingu; Ali, Asif; Kim, Woojong; Radlo, Steven J

    2015-09-01

    In baseball, one factor necessary for batters to decide whether to swing or not depends on what type of pitch is thrown. Oftentimes batters will look for their pitch (i.e., waiting for a fastball). In general, when a pitcher has many types of pitches in his arsenal, batters will have greater difficulty deciding upon the pitch thrown. Little research has been investigated the psychophysiology of a batters decision-making processes. Therefore, the primary purpose of this study was to determine how brain activation changes according to an increase in the number of alternatives (NA) available. A total of 15 male college baseball players participated in this study. The stimuli used in this experiment were video clips of a right-handed pitcher throwing fastball, curve, and slider pitches. The task was to press a button after selecting the fastball as the target stimulus from two pitch choices (fastball and curve), and then from three possibilities (fastball, curve, and slider). Functional and anatomic image scanning magnetic resonance imaging (MRI) runs took 4 and 5[Formula: see text]min, respectively. According to our analysis, the right precentral gyrus, left medial frontal gyrus, and right fusiform gyrus were activated when the NA was one. The supplementary motor areas (SMA) and primary motor cortex were activated when there were two alternatives to choose from and the inferior orbitofrontal gyrus was specifically activated with three alternatives. Contrary to our expectations, the NA was not a critical factor influencing the activation of related decision making areas when the NA was compared against one another. These findings highlight that specific brain areas related to decision making were activated as the NA increased.

  7. Abnormal pitch perception produced by cochlear implant stimulation.

    PubMed

    Zeng, Fan-Gang; Tang, Qing; Lu, Thomas

    2014-01-01

    Contemporary cochlear implants with multiple electrode stimulation can produce good speech perception but poor music perception. Hindered by the lack of a gold standard to quantify electric pitch, relatively little is known about the nature and extent of the electric pitch abnormalities and their impact on cochlear implant performance. Here we overcame this obstacle by comparing acoustic and electric pitch perception in 3 unilateral cochlear-implant subjects who had functionally usable acoustic hearing throughout the audiometric frequency range in the non-implant ear. First, to establish a baseline, we measured and found slightly impaired pure tone frequency discrimination and nearly perfect melody recognition in all 3 subjects' acoustic ear. Second, using pure tones in the acoustic ear to match electric pitch induced by an intra-cochlear electrode, we found that the frequency-electrode function was not only 1-2 octaves lower, but also 2 times more compressed in frequency range than the normal cochlear frequency-place function. Third, we derived frequency difference limens in electric pitch and found that the equivalent electric frequency discrimination was 24 times worse than normal-hearing controls. These 3 abnormalities are likely a result of a combination of broad electric field, distant intra-cochlear electrode placement, and non-uniform spiral ganglion cell distribution and survival, all of which are inherent to the electrode-nerve interface in contemporary cochlear implants. Previous studies emphasized on the "mean" shape of the frequency-electrode function, but the present study indicates that the large "variance" of this function, reflecting poor electric pitch discriminability, is the main factor limiting contemporary cochlear implant performance.

  8. Boosting pitch encoding with audiovisual interactions in congenital amusia.

    PubMed

    Albouy, Philippe; Lévêque, Yohana; Hyde, Krista L; Bouchet, Patrick; Tillmann, Barbara; Caclin, Anne

    2015-01-01

    The combination of information across senses can enhance perception, as revealed for example by decreased reaction times or improved stimulus detection. Interestingly, these facilitatory effects have been shown to be maximal when responses to unisensory modalities are weak. The present study investigated whether audiovisual facilitation can be observed in congenital amusia, a music-specific disorder primarily ascribed to impairments of pitch processing. Amusic individuals and their matched controls performed two tasks. In Task 1, they were required to detect auditory, visual, or audiovisual stimuli as rapidly as possible. In Task 2, they were required to detect as accurately and as rapidly as possible a pitch change within an otherwise monotonic 5-tone sequence that was presented either only auditorily (A condition), or simultaneously with a temporally congruent, but otherwise uninformative visual stimulus (AV condition). Results of Task 1 showed that amusics exhibit typical auditory and visual detection, and typical audiovisual integration capacities: both amusics and controls exhibited shorter response times for audiovisual stimuli than for either auditory stimuli or visual stimuli. Results of Task 2 revealed that both groups benefited from simultaneous uninformative visual stimuli to detect pitch changes: accuracy was higher and response times shorter in the AV condition than in the A condition. The audiovisual improvements of response times were observed for different pitch interval sizes depending on the group. These results suggest that both typical listeners and amusic individuals can benefit from multisensory integration to improve their pitch processing abilities and that this benefit varies as a function of task difficulty. These findings constitute the first step towards the perspective to exploit multisensory paradigms to reduce pitch-related deficits in congenital amusia, notably by suggesting that audiovisual paradigms are effective in an appropriate

  9. Changes in baseball batters' brain activity with increased pitch choice.

    PubMed

    Ryu, Kwangmin; Kim, Jingu; Ali, Asif; Kim, Woojong; Radlo, Steven J

    2015-09-01

    In baseball, one factor necessary for batters to decide whether to swing or not depends on what type of pitch is thrown. Oftentimes batters will look for their pitch (i.e., waiting for a fastball). In general, when a pitcher has many types of pitches in his arsenal, batters will have greater difficulty deciding upon the pitch thrown. Little research has been investigated the psychophysiology of a batters decision-making processes. Therefore, the primary purpose of this study was to determine how brain activation changes according to an increase in the number of alternatives (NA) available. A total of 15 male college baseball players participated in this study. The stimuli used in this experiment were video clips of a right-handed pitcher throwing fastball, curve, and slider pitches. The task was to press a button after selecting the fastball as the target stimulus from two pitch choices (fastball and curve), and then from three possibilities (fastball, curve, and slider). Functional and anatomic image scanning magnetic resonance imaging (MRI) runs took 4 and 5[Formula: see text]min, respectively. According to our analysis, the right precentral gyrus, left medial frontal gyrus, and right fusiform gyrus were activated when the NA was one. The supplementary motor areas (SMA) and primary motor cortex were activated when there were two alternatives to choose from and the inferior orbitofrontal gyrus was specifically activated with three alternatives. Contrary to our expectations, the NA was not a critical factor influencing the activation of related decision making areas when the NA was compared against one another. These findings highlight that specific brain areas related to decision making were activated as the NA increased. PMID:26227537

  10. Pitch contour stylization using an optimal piecewise polynomial approximation

    PubMed Central

    Ghosh, Prasanta Kumar; Narayanan, Shrikanth S.

    2014-01-01

    We propose a dynamic programming (DP) based piecewise polynomial approximation of discrete data such that the L2 norm of the approximation error is minimized. We apply this technique for the stylization of speech pitch contour. Objective evaluation verifies that the DP based technique indeed yields minimum mean square error (MSE) compared to other approximation methods. Subjective evaluation reveals that the quality of the synthesized speech using stylized pitch contour obtained by the DP method is almost identical to that of the original speech. PMID:24453471

  11. Dynamically Tuned Blade Pitch Links for Vibration Reduction

    NASA Technical Reports Server (NTRS)

    Milgram, Judah; Chopra, Inderjit; Kottapalli, Sesi

    1994-01-01

    A passive vibration reduction device in which the conventional main rotor blade pitch link is replaced by a spring/damper element is investigated using a comprehensive rotorcraft analysis code. A case study is conducted for a modern articulated helicopter main rotor. Correlation of vibratory pitch link loads with wind tunnel test data is satisfactory for lower harmonics. Inclusion of unsteady aerodynamics had little effect on the correlation. In the absence of pushrod damping, reduction in pushrod stiffness from the baseline value had an adverse effect on vibratory hub loads in forward flight. However, pushrod damping in combination with reduced pushrod stiffness resulted in modest improvements in fixed and rotating system hub loads.

  12. An advanced pitch change mechanism incorporating a hybrid traction drive

    NASA Technical Reports Server (NTRS)

    Steinetz, B. M.; Loewenthal, S. H.; Sargisson, D. F.; White, G.

    1984-01-01

    A design of a propeller pitch control mechanism is described that meets the demanding requirements of a high-power, advanced turboprop. In this application, blade twisting moment torque can be comparable to that of the main reduction gearbox output: precise pitch control, reliability and compactness are all at a premium. A key element in the design is a compact, high-ratio hybrid traction drive which offers low torque ripple and high torsional stiffness. The traction drive couples a high speed electric motor/alternator unit to a ball screw that actuates the blade control links. The technical merits of this arrangement and the performance characteristics of the traction drive are discussed.

  13. Pitch and roll hydrodynamics of a pericell hovercraft

    NASA Astrophysics Data System (ADS)

    Moran, David D.

    1986-12-01

    Pitch and roll responses of hovercraft have been extremely difficult to predict due to the complexity of hydrodynamic analyses on one hand and the difficulties of appropriate cushion scale modeling on the other. The paper presents comparisons of pitch and roll stiffness coefficients for overwater and overland operations. Data are presented from model-scale and full-scale trials and analytic-numerical modeling. The effects of model-scale on the cushion dynamics relative to rotational responses are presented and the important characteristics of overwater and overland responses are discussed.

  14. Pitch and roll hydrodynamics of a pericell hovercraft

    NASA Astrophysics Data System (ADS)

    Moran, D. D.

    Pitch and roll responses of hovercraft have been extremely difficult to predict due to the complexity of hydrodynamic analyses on one hand and the difficulties of appropriate cushion scale modeling on the other. The paper presents comparisons of pitch and roll stiffness coefficients for overwater and overland operations. Data are presented from model-scale and full-scale trials and analytic-numerical modeling. The effects of model-scale on the cushion dynamics relative to rotational responses are presented and the important characteristics of overwater and overland responses are discussed.

  15. Losses of ring current ions by strong pitch angle scattering

    NASA Astrophysics Data System (ADS)

    Walt, M.; Voss, H. D.

    High angular resolution measurements of 155 keV ions in the ring current during the magnetic storm of August 6, 1998 show filled loss cones indicating that very rapid pitch angle scattering is taking place above the satellite location. The measurements were made with the SEPS detector on the Polar satellite during its passages through the ring current regions, usually at magnetic latitudes near ±45° and at magnetic local times of about 04:00 and 16:00 hrs. The observed strong pitch angle scattering implies a trapping lifetime of less than an hour and may explain the early rapid recovery of Dst during magnetic storms.

  16. Unique pitch evolution in the smectic-C+alpha phase.

    PubMed

    Liu, Z Q; McCoy, B K; Wang, S T; Pindak, R; Caliebe, W; Barois, P; Fernandes, P; Nguyen, H T; Hsu, C S; Wang, Shun; Huang, C C

    2007-08-17

    Employing resonant x-ray diffraction, we observed unique pitch evolutions in the smectic-C*(alpha) phase in mixtures of two antiferroelectric liquid crystals. Our results show that the pitch in this phase continuously evolves across 4 layers, contradicting a theoretical model that predicts that the smectic-C*(FI2) phase intervenes in the smectic-C*(alpha) phase. The phase sequences we found can be explained by another model that includes one type of long-range interaction among smectic layers.

  17. Unique Pitch Evolution in the Smectic -C-alpha* Phase

    SciTech Connect

    Liu,Z.; McCoy, B.; Wang, S.; Pindak, R.; Caliebe, W.; Barois, P.; Fernandes, P.; Nguyen, H.; Hsu, C.; Wang, .

    2007-01-01

    Employing resonant x-ray diffraction, we observed unique pitch evolutions in the smectic-C{alpha}* phase in mixtures of two antiferroelectric liquid crystals. Our results show that the pitch in this phase continuously evolves across 4 layers, contradicting a theoretical model that predicts that the smectic-C{sub FI2}* phase intervenes in the smectic-C{alpha}* phase. The phase sequences we found can be explained by another model that includes one type of long-range interaction among smectic layers.

  18. Ratier Metal Propeller with Pitch Variable in Flight

    NASA Technical Reports Server (NTRS)

    Leglise, Pierre

    1930-01-01

    One of the serious sources of difficulties in variable pitch propellers is the turning moment or torque due to the centrifugal force which tends to bring the mean plane of the blades into the plane of rotation. This moment, which is found elsewhere only in propellers with removable blades, is so great that the aerodynamic forces, as regards their effect on the torsion, become entirely negligible in comparison with it. This report presents the Ratier Company's solution to changing the pitch of airplane propellers.

  19. A study on the effect of heat treatment temperature on mesophase development in coal tar pitch

    NASA Astrophysics Data System (ADS)

    Soni, Neha; Shah, Raviraj K.; Shrivastava, Rakesh; Datar, Manoj

    2013-06-01

    In the present study, a zero quinoline insoluble (QI) isotropic coal tar pitch was taken for the preparation of mesophase pitch. The pitch was heated in inert atmosphere at different heat treatment temperatures keeping same heating rate and soaking time to study the formation, growth and coalescence of mesophase spheres in the pitch. Such pitches were characterized for insoluble content (QI & TI), mesophase content, sulphur content, weight loss in inert atmosphere, softening point, coking value (CVC), C/H ratio etc. Results show that the insoluble content (QI & TI) and mesophase content of pitch increase with increase of heat treatment temperature.

  20. Vehicle Engine Classification Using Spectral Tone-Pitch Vibration Indexing and Neural Network*

    PubMed Central

    Wei, Jie; Vongsy, Karmon; Mendoza-Schrock, Olga; Liu, Chi-Him

    2015-01-01

    As a non-invasive and remote sensor, the Laser Doppler Vibrometer (LDV) has found a broad spectrum of applications in various areas such as civil engineering, biomedical engineering, and even security and restoration within art museums. LDV is an ideal sensor to detect threats earlier and provide better protection to society, which is of utmost importance to military and law enforcement institutions. However, the use of LDV in situational surveillance, in particular vehicle classification, is still in its infancy due to the lack of systematic investigations on its behavioral properties. In this work, as a result of the pilot project initiated by Air Force Research Laboratory, the innate features of LDV data from many vehicles are examined, beginning with an investigation of feature differences compared to human speech signals. A spectral tone-pitch vibration indexing scheme is developed to capture the engine’s periodic vibrations and the associated fundamental frequencies over the vehicles’ surface. A two-layer feed-forward neural network with 20 intermediate neurons is employed to classify vehicles’ engines based on their spectral tone-pitch indices. The classification results using the proposed approach over the complete LDV dataset collected by the project are exceedingly encouraging; consistently higher than 96% accuracies are attained for all four types of engines collected from this project. PMID:26788417

  1. The responsibility of standard methods of evaluating electrode pitch quality and the relationship between pitch quality indices

    SciTech Connect

    Gaisarov, M.G.; Mochalov, V.V.; Mal'tseva, L.D.

    1982-01-01

    An investigation was made into the reproducibility of the determination of the chemical and physical properties of coal pitch. Both the intralaboratory and interlaboratory reproducibility were of interest. Seventeen identical samples were sent to six different laboratories. The samples were evaluated for fifteen indices including softening point, volatile matter, ash content, density, and composition by elements. It was found that the interlaboratory error of reproducibility was 1.7 to 3.8 times greater than the intralaboratory error of reproducibility. Also studied were correlations between the pitch quality indices. It was concluded that there were significant correlations between some of the indices. Mathematical models for these relationships were determined.

  2. Adaptive Controller Effects on Pilot Behavior

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Gregory, Irene M.; Hempley, Lucas E.

    2014-01-01

    Adaptive control provides robustness and resilience for highly uncertain, and potentially unpredictable, flight dynamics characteristic. Some of the recent flight experiences of pilot-in-the-loop with an adaptive controller have exhibited unpredicted interactions. In retrospect, this is not surprising once it is realized that there are now two adaptive controllers interacting, the software adaptive control system and the pilot. An experiment was conducted to categorize these interactions on the pilot with an adaptive controller during control surface failures. One of the objectives of this experiment was to determine how the adaptation time of the controller affects pilots. The pitch and roll errors, and stick input increased for increasing adaptation time and during the segment when the adaptive controller was adapting. Not surprisingly, altitude, cross track and angle deviations, and vertical velocity also increase during the failure and then slowly return to pre-failure levels. Subjects may change their behavior even as an adaptive controller is adapting with additional stick inputs. Therefore, the adaptive controller should adapt as fast as possible to minimize flight track errors. This will minimize undesirable interactions between the pilot and the adaptive controller and maintain maneuvering precision.

  3. 18. LOOKING SOUTH AT STEEPLY PITCHED, GABLED ROOF. THE UPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. LOOKING SOUTH AT STEEPLY PITCHED, GABLED ROOF. THE UPPER DORMERS PROVIDE LIGHT IN THE LOBBY AND THE LOWER DORMERS OPEN INTO SOME OF THE ORIGINAL GUEST ROOMS IN THE INN. (TAKEN FROM CHERRY- PICKER) - Old Faithful Inn, 900' northeast of Snowlodge & 1050' west of Old Faithful Lodge, Lake, Teton County, WY

  4. Phonological Processing in Adults with Deficits in Musical Pitch Recognition

    ERIC Educational Resources Information Center

    Jones, Jennifer L.; Lucker, Jay; Zalewski, Christopher; Brewer, Carmen; Drayna, Dennis

    2009-01-01

    We identified individuals with deficits in musical pitch recognition by screening a large random population using the Distorted Tunes Test (DTT), and enrolled individuals who had DTT scores in the lowest 10th percentile, classified as tune deaf. We examined phonological processing abilities in 35 tune deaf and 34 normal control individuals. Eight…

  5. Pitch Perception in Children with Autistic Spectrum Disorders

    ERIC Educational Resources Information Center

    Altgassen, Mareike; Kliegel, Matthias; Williams, Tim I.

    2005-01-01

    This study investigated the accuracy of musical pitch detection in children with autistic spectrum disorders as compared with typically developing children. Seventeen children on the autistic spectrum (M[subscript age]=9.34, SD[subscript age]=1.12) and 13 typically developing, chronological age-matched children (M[subscript age]=9.13, SD[subscript…

  6. The Relationship between Pitch and Space in Congenital Amusia

    ERIC Educational Resources Information Center

    Williamson, Victoria J.; Cocchini, Gianna; Stewart, Lauren

    2011-01-01

    Congenital amusia manifests as a lifelong difficulty in making sense of musical sound. The extent to which this disorder is accompanied by deficits in visuo-spatial processing is an important question, bearing on the issue of whether pitch processing draws on supramodal spatial representations. The present study assessed different aspects of…

  7. Pitch-angle scattering of cometary ions: Computer simulations

    SciTech Connect

    Gary, S.P.; Winske, D. ); Miller, R.H. )

    1991-06-01

    Pitch-angle evolution of newborn cometary ion is studied by means of one-dimensional electromagnetic hybrid computer simulations of homogeneous plasmas. Newborn ions are injected into the simulations at a constant rate, with a velocity relative to the solar wind which makes an angle {alpha} with respect to the ambient magnetic field. The simulations are done with relatively weak ion injection rates commensurate with those in the distant environment of comet Halley. In response to the linear temporal growth of the fluctuating magnetic field energy, the injected ions pitch-angle scatter toward isotropy in both the quasi-parallel (0{degree} {le} {alpha} {approx} {le} 60{degree}) and quasi-perpendicular(60{degree} < {alpha} {le} 90{degree}) regimes. For the injection of cometary oxygen ions the simulations show pitch angle scattering rates that are essentially independent of the solar wind ion/cometary ion relative speed, and increase as the square root of the injection rate. Furthermore, the oxygen ion pitch angle scattering rate at perpendicular injection is approximately twice that in the quasi-parallel regime, in qualitative agreement with observations at comet Halley.

  8. Singing Video Games May Help Improve Pitch-Matching Accuracy

    ERIC Educational Resources Information Center

    Paney, Andrew S.

    2015-01-01

    The purpose of this study was to investigate the effect of singing video games on the pitch-matching skills of undergraduate students. Popular games like "Rock Band" and "Karaoke Revolutions" rate players' singing based on the correctness of the frequency of their sung response. Players are motivated to improve their…

  9. Shoulder muscle firing patterns during the windmill softball pitch.

    PubMed

    Maffet, M W; Jobe, F W; Pink, M M; Brault, J; Mathiyakom, W

    1997-01-01

    The purpose of this study was to describe the activity of eight shoulder muscles during the windmill fast-pitch softball throw. Ten collegiate female pitchers were analyzed with intramuscular electromyography, high-speed cinematography, and motion analysis. The supraspinatus muscle fired maximally during arm elevation from the 6 to 3 o'clock position phase, centralizing the humeral head within the glenoid. The posterior deltoid and teres minor muscles acted maximally from the 3 to 12 o'clock position phase to continue arm elevation and externally rotate the humerus. The pectoralis major muscle accelerated the arm from the 12 o'clock position to ball release phase. The serratus anterior muscle characteristically acted to position the scapula for optimal glenohumeral congruency, and the subscapularis muscle functioned as an internal rotator and to protect the anterior capsule. Although the windmill softball pitch is overtly different from the baseball pitch, several surprising similarities were revealed. The serratus anterior and pectoralis major muscles work in synchrony and seem to have similar functions in both pitches. Although the infraspinatus and teres minor muscles are both posterior cuff muscles, they are characteristically uncoupled during the 6 to 3 o'clock position phase, with the infraspinatus muscle acting more independently below 90 degrees. Subscapularis muscle activity seems important in dynamic anterior glenohumeral stabilization and as an internal rotator in both the baseball and softball throws.

  10. Pitch jnd and the tritone paradox: The linguistic nexus

    NASA Astrophysics Data System (ADS)

    Safari, Kourosh

    2002-11-01

    Previous research has shown a connection between absolute pitch (the ability to name a specific pitch in the absence of any reference) and native competence in a tone language (Deutsch, 1990). In tone languages, tone is one of the features which determines the lexical meaning of a word. This study investigates the relationship between native competence in a tone language and the just noticeable difference of pitch. Furthermore, the tritone paradox studies have shown that subjects hear two tritones (with bell-shaped spectral envelopes) as either ascending or descending depending on their linguistic backgrounds (Deutsch, 1987). It is hypothesized that the native speakers of tone languages have a higher JND for pitch, and hear the two tones of the tritone paradox as ascending, whereas, native speakers of nontone languages hear them as descending. This study will indicate the importance of early musical training for the development of acute tone sensitivity. It will also underline the importance of language and culture in the way it shapes our musical understanding. The significance of this study will be in the areas of music education and pedagogy.

  11. Symmetric interactions and interference between pitch and timbre

    PubMed Central

    Allen, Emily J.; Oxenham, Andrew J.

    2014-01-01

    Variations in the spectral shape of harmonic tone complexes are perceived as timbre changes and can lead to poorer fundamental frequency (F0) or pitch discrimination. Less is known about the effects of F0 variations on spectral shape discrimination. The aims of the study were to determine whether the interactions between pitch and timbre are symmetric, and to test whether musical training affects listeners' ability to ignore variations in irrelevant perceptual dimensions. Difference limens (DLs) for F0 were measured with and without random, concurrent, variations in spectral centroid, and vice versa. Additionally, sensitivity was measured as the target parameter and the interfering parameter varied by the same amount, in terms of individual DLs. Results showed significant and similar interference between pitch (F0) and timbre (spectral centroid) dimensions, with upward spectral motion often confused for upward F0 motion, and vice versa. Musicians had better F0DLs than non-musicians on average, but similar spectral centroid DLs. Both groups showed similar interference effects, in terms of decreased sensitivity, in both dimensions. Results reveal symmetry in the interference effects between pitch and timbre, once differences in sensitivity between dimensions and subjects are controlled. Musical training does not reliably help to overcome these effects. PMID:24606275

  12. Children's Identification of Questions from Rising Terminal Pitch

    ERIC Educational Resources Information Center

    Saindon, Mathieu R.; Trehub, Sandra E.; Schellenberg, E. Glenn; van Lieshout, Pascal

    2016-01-01

    Young children are slow to master conventional intonation patterns in their "yes/no" questions, which may stem from imperfect understanding of the links between terminal pitch contours and pragmatic intentions. In Experiment 1, five to ten-year-old children and adults were required to judge utterances as questions or statements on the…

  13. Pitch and Loudness Tinnitus in Individuals with Presbycusis

    PubMed Central

    Seimetz, Bruna Macangnin; Teixeira, Adriane Ribeiro; Rosito, Leticia Petersen Schmidt; Flores, Leticia Sousa; Pappen, Carlos Henrique; Dall'igna, Celso

    2016-01-01

    Introduction Tinnitus is a symptom that is often associated with presbycusis. Objective This study aims to analyze the existence of association among hearing thresholds, pitch, and loudness of tinnitus in individuals with presbycusis, considering the gender variable. Methods Cross-sectional, descriptive, and prospective study, whose sample consisted of individuals with tinnitus and diagnosis of presbycusis. For the evaluation, we performed anamnesis along with otoscopy, pure tone audiometry, and acuphenometry to analyze the psychoacoustic characteristics of tinnitus individuals. Results The sample consisted of 49 subjects, with a mean age of 69.57 ± 6.53 years, who presented unilateral and bilateral tinnitus, therefore, a sample of 80 ears. In analyzing the results, as for acuphenometry, the loudness of tinnitus was more present at 0dB and the pitch was 6HKz and 8HKz. Regarding the analysis of the association between the frequency of greater hearing threshold and tinnitus pitch, no statistical significance (p = 0.862) was found. As for the association between the intensity of greater hearing threshold and tinnitus loudness, no statistical significance (p = 0.115) was found. Conclusion There is no significant association between the hearing loss of patients with presbycusis and the pitch and loudness of tinnitus. PMID:27746834

  14. Development in Children's Interpretation of Pitch Cues to Emotions

    ERIC Educational Resources Information Center

    Quam, Carolyn; Swingley, Daniel

    2012-01-01

    Young infants respond to positive and negative speech prosody (A. Fernald, 1993), yet 4-year-olds rely on lexical information when it conflicts with paralinguistic cues to approval or disapproval (M. Friend, 2003). This article explores this surprising phenomenon, testing one hundred eighteen 2- to 5-year-olds' use of isolated pitch cues to…

  15. On the acoustic radiation of a pitching airfoil

    NASA Astrophysics Data System (ADS)

    Manela, A.

    2013-07-01

    We examine the acoustic far field of a thin elastic airfoil, immersed in low-Mach non-uniform stream flow, and actuated by small-amplitude sinusoidal pitching motion. The near-field fluid-structure interaction problem is analyzed using potential thin-airfoil theory, combined with a discrete vortex model to describe the evolution of airfoil trailing edge wake. The leading order dipole-sound signature of the system is investigated using Powell-Howe acoustic analogy. Compared with a pitching rigid airfoil, the results demonstrate a two-fold effect of structure elasticity on airfoil acoustic field: at actuation frequencies close to the system least stable eigenfrequency, elasticity amplifies airfoil motion amplitude and associated sound levels; however, at frequencies distant from this eigenfrequency, structure elasticity acts to absorb system kinetic energy and reduce acoustic radiation. In the latter case, and with increasing pitching frequency ωp, a rigid-airfoil setup becomes significantly noisier than an elastic airfoil, owing to an ω _p^{5/2} increase of its direct motion noise component. Unlike rigid airfoil signature, it is shown that wake sound contribution to elastic airfoil radiation is significant for all ωp. Remarkably, this contribution contains, in addition to the fundamental pitching frequency, its odd multiple harmonics, which result from nonlinear interactions between the airfoil and the wake. The results suggest that structure elasticity may serve as a viable means for design of flapping flight noise control methodologies.

  16. Perceptual hysteresis in the judgment of auditory pitch shift.

    PubMed

    Chambers, Claire; Pressnitzer, Daniel

    2014-07-01

    Perceptual hysteresis can be defined as the enduring influence of the recent past on current perception. Here, hysteresis was investigated in a basic auditory task: pitch comparisons between successive tones. On each trial, listeners were presented with pairs of tones and asked to report the direction of subjective pitch shift, as either "up" or "down." All tones were complexes known as Shepard tones (Shepard, 1964), which comprise several frequency components at octave multiples of a base frequency. The results showed that perceptual judgments were determined both by stimulus-related factors (the interval ratio between the base frequencies within a pair) and by recent context (the intervals in the two previous trials). When tones were presented in ordered sequences, for which the frequency interval between tones was varied in a progressive manner, strong hysteresis was found. In particular, ambiguous stimuli that led to equal probabilities of "up" and "down" responses within a randomized context were almost fully determined within an ordered context. Moreover, hysteresis did not act on the direction of the reported pitch shift, but rather on the perceptual representation of each tone. Thus, hysteresis could be observed within sequences in which listeners varied between "up" and "down" responses, enabling us to largely rule out confounds related to response bias. The strength of the perceptual hysteresis observed suggests that the ongoing context may have a substantial influence on fundamental aspects of auditory perception, such as how we perceive the changes in pitch between successive sounds.

  17. Electromyographic activity of strap and cricothyroid muscles in pitch change.

    PubMed

    Roubeau, B; Chevrie-Muller, C; Lacau Saint Guily, J

    1997-05-01

    The EMG activity of the cricothyroid muscle (CT) and the three extrinsic laryngeal muscles (thyohyoid, TH; sternothyroid, ST, and sternohyoid, SH) were recorded throughout the voice range of one female and one male subject, both untrained singers. The voice range was examined using rising and falling glissandos (production of a sustained sound with progressive and continuous variation of fundamental frequency). Muscle activity was observed at various pitches during the glissandos. The strap muscle activity during the production of glissandos appears to be synergistic. At the lowest frequency, the CT is inactive but strap muscles (TH, ST, SH) are active. As frequency increases, strap muscle activity decreases while the CT controls frequency in the middle of the range. At higher frequencies the strap muscles once again become active. This activity might depend on the vocal vibratory mechanism involved. The role of the strap muscles at high pitches is a widely debated point but it seems that in some way they control the phenomena relevant to the rising pitch. The phasic-type strap muscle activity contrasts with the tonic-type activity of the CT. The CT closely controls the frequency, while the straps are not directly linked to the pitch but rather to the evolution of the frequency of voice production (speaking voice, singing voice, held notes, glissandos, trillo, vibrato, etc.). PMID:9199535

  18. Determination of Location of Pitch within a Musical Vibrato.

    ERIC Educational Resources Information Center

    Brown, Steven F.

    1991-01-01

    Examines aspects of pitch discrimination among listeners. Presents musical tones containing modulated frequencies to 30 musician and nonmusician participants. Uses a tone matching task to determine the discrimination of subjects. Matches a generated tone to a simultaneous tone performed with vibrato. Finds a significant difference among musicians…

  19. Perceptual Grouping Affects Pitch Judgments across Time and Frequency

    ERIC Educational Resources Information Center

    Borchert, Elizabeth M. O.; Micheyl, Christophe; Oxenham, Andrew J.

    2011-01-01

    Pitch, the perceptual correlate of fundamental frequency (F0), plays an important role in speech, music, and animal vocalizations. Changes in F0 over time help define musical melodies and speech prosody, while comparisons of simultaneous F0 are important for musical harmony, and for segregating competing sound sources. This study compared…

  20. Process for tertiary oil recovery using tall oil pitch

    DOEpatents

    Radke, C.J.

    1983-07-25

    A process and compositions for enhancing the recovery of acid crudes are disclosed. The process involves injecting caustic solutions into the reservoir to maintain a pH of 11 to 13. The fluid contains an effective amount of multivalent cation for inhibiting alkaline silica dissolution with the reservoir. A tall oil pitch soap is added as a polymeric mobility control agent. (DMC)

  1. Native and Nonnative Processing of Japanese Pitch Accent

    ERIC Educational Resources Information Center

    Wu, Xianghua; Tu, Jung-Yueh; Wang, Yue

    2012-01-01

    The theoretical framework of this study is based on the prevalent debate of whether prosodic processing is influenced by higher level linguistic-specific circuits or reflects lower level encoding of physical properties. Using the dichotic listening technique, the study investigates the hemispheric processing of Japanese pitch accent by native…

  2. Tonal priming is resistant to changes in pitch height.

    PubMed

    Prince, Jon B; Vuvan, Dominique T; Schmuckler, Mark A; Scott-Clark, Thomas T

    2015-08-01

    Research on tonal priming has consistently shown that tonally expected events are processed more efficiently and has confirmed that the locus of the effect is cognitive rather than sensory. However, it is also important to investigate the role of pitch height, because models of tonal priming collapse across octaves, yet it is possible that pitch height may modulate the effectiveness of tonal priming. We systematically tested this issue by varying the pitch heights of a related (tonic) or a less-related (subdominant) target chord following a tonal context. Musically untrained participants (N = 30) made speeded consonant/dissonant judgments of the final chord of an eight-chord sequence. The effects of tonal priming emerged in accuracy and reaction time measures for all octaves, except for a ceiling effect on accuracy in the matching (original pitch height) condition. In a second experiment, we increased the shift to two octaves and compressed the chords to eliminate overlap between the target and context chords; again, tonal priming emerged. These findings have implications for the behavioral study of tonal priming and support the assumption of octave equivalence in computational models.

  3. An electromyographic analysis of the elbow in pitching.

    PubMed

    Sisto, D J; Jobe, F W; Moynes, D R; Antonelli, D J

    1987-01-01

    Elbow injuries are common in baseball pitchers. Curve balls are thought to increase this risk, particularly if the athlete begins throwing this pitch at an early age. The purpose of this paper is to identify forearm muscle firing patterns during the pitching cycle in an effort to understand this etiology. Dynamic EMG was performed on eight collegiate pitchers to evaluate extensor digitorum communis, brachioradialis, flexor carpi radialis, flexor digitorum superficialis, extensor carpi radialis longus, extensor carpi radialis brevis, pronator teres, and supinator. Each subject threw a fast ball and curve ball, which were filmed at 450 frames per second and synchronized with the EMG. These signals were converted from analog to digital records. Results showed low to moderate activity in all muscles during all phases of the pitch. The function is probably positioning to accept the transfer of energy from the larger trunk and girdle structures. The most notable difference between the fast ball and curve ball is a slight increase in the extensor carpi radialis longus and extensor carpi radialis brevis activity during late cocking, acceleration, and follow-through of the curve ball as compared to the fast ball. This difference, however, is not significant. In addition, there was no significant difference between the fast ball and the curve ball in the flexor-pronator group in any phase. We cannot substantiate that medial elbow problems are a result of an increase in the use of flexor muscles during the curve ball pitch.

  4. Shoulder muscle firing patterns during the windmill softball pitch.

    PubMed

    Maffet, M W; Jobe, F W; Pink, M M; Brault, J; Mathiyakom, W

    1997-01-01

    The purpose of this study was to describe the activity of eight shoulder muscles during the windmill fast-pitch softball throw. Ten collegiate female pitchers were analyzed with intramuscular electromyography, high-speed cinematography, and motion analysis. The supraspinatus muscle fired maximally during arm elevation from the 6 to 3 o'clock position phase, centralizing the humeral head within the glenoid. The posterior deltoid and teres minor muscles acted maximally from the 3 to 12 o'clock position phase to continue arm elevation and externally rotate the humerus. The pectoralis major muscle accelerated the arm from the 12 o'clock position to ball release phase. The serratus anterior muscle characteristically acted to position the scapula for optimal glenohumeral congruency, and the subscapularis muscle functioned as an internal rotator and to protect the anterior capsule. Although the windmill softball pitch is overtly different from the baseball pitch, several surprising similarities were revealed. The serratus anterior and pectoralis major muscles work in synchrony and seem to have similar functions in both pitches. Although the infraspinatus and teres minor muscles are both posterior cuff muscles, they are characteristically uncoupled during the 6 to 3 o'clock position phase, with the infraspinatus muscle acting more independently below 90 degrees. Subscapularis muscle activity seems important in dynamic anterior glenohumeral stabilization and as an internal rotator in both the baseball and softball throws. PMID:9167819

  5. Bat Dynamics of Female Fast Pitch Softball Batters.

    ERIC Educational Resources Information Center

    Messier, Stephen P.; Owen, Marjorie G.

    1984-01-01

    Female fast pitch softball batters served in an examination of the dynamic characteristics of the bat during the swing through the use of three-dimensional cinematographic analysis techniques. These results were compared with those from previous studies of baseball batting. Findings are listed. (Author/DF)

  6. Aerodynamic Control of a Pitching Airfoil by Distributed Bleed Actuation

    NASA Astrophysics Data System (ADS)

    Kearney, John; Glezer, Ari

    2013-11-01

    The aerodynamic forces and moments on a dynamically pitching 2-D airfoil model are controlled in wind tunnel experiments using distributed active bleed. Bleed flow on the suction surface downstream of the leading edge is driven by pressure differences across the airfoil and is regulated by low-power louver actuators. The bleed interacts with cross flows to effect time-dependent variations of the vorticity flux and thereby alters the local flow attachment, resulting in significant changes in pre- and post-stall lift and pitching moment (over 50% increase in baseline post-stall lift). The flow field over the airfoil is measured using high-speed (2000 fps) PIV, resolving the dynamics and characteristic time-scales of production and advection of vorticity concentrations that are associated with transient variations in the aerodynamic forces and moments. In particular, it is shown that the actuation improves the lift hysteresis and pitch stability during the oscillatory pitching by altering the evolution of the dynamic stall vortex and the ensuing flow attachment during the downstroke. Supported by the Rotorcraft Center (VLRCOE) at Georgia Tech.

  7. Absolute Pitch: Effects of Timbre on Note-Naming Ability

    PubMed Central

    Vanzella, Patrícia; Schellenberg, E. Glenn

    2010-01-01

    Background Absolute pitch (AP) is the ability to identify or produce isolated musical tones. It is evident primarily among individuals who started music lessons in early childhood. Because AP requires memory for specific pitches as well as learned associations with verbal labels (i.e., note names), it represents a unique opportunity to study interactions in memory between linguistic and nonlinguistic information. One untested hypothesis is that the pitch of voices may be difficult for AP possessors to identify. A musician's first instrument may also affect performance and extend the sensitive period for acquiring accurate AP. Methods/Principal Findings A large sample of AP possessors was recruited on-line. Participants were required to identity test tones presented in four different timbres: piano, pure tone, natural (sung) voice, and synthesized voice. Note-naming accuracy was better for non-vocal (piano and pure tones) than for vocal (natural and synthesized voices) test tones. This difference could not be attributed solely to vibrato (pitch variation), which was more pronounced in the natural voice than in the synthesized voice. Although starting music lessons by age 7 was associated with enhanced note-naming accuracy, equivalent abilities were evident among listeners who started music lessons on piano at a later age. Conclusions/Significance Because the human voice is inextricably linked to language and meaning, it may be processed automatically by voice-specific mechanisms that interfere with note naming among AP possessors. Lessons on piano or other fixed-pitch instruments appear to enhance AP abilities and to extend the sensitive period for exposure to music in order to develop accurate AP. PMID:21085598

  8. Biomimetic propulsion under random heaving conditions, using active pitch control

    NASA Astrophysics Data System (ADS)

    Politis, Gerasimos; Politis, Konstantinos

    2014-05-01

    Marine mammals travel long distances by utilizing and transforming wave energy to thrust through proper control of their caudal fin. On the other hand, manmade ships traveling in a wavy sea store large amounts of wave energy in the form of kinetic energy for heaving, pitching, rolling and other ship motions. A natural way to extract this energy and transform it to useful propulsive thrust is by using a biomimetic wing. The aim of this paper is to show how an actively pitched biomimetic wing could achieve this goal when it performs a random heaving motion. More specifically, we consider a biomimetic wing traveling with a given translational velocity in an infinitely extended fluid and performing a random heaving motion with a given energy spectrum which corresponds to a given sea state. A formula is invented by which the instantaneous pitch angle of the wing is determined using the heaving data of the current and past time steps. Simulations are then performed for a biomimetic wing at different heave energy spectra, using an indirect Source-Doublet 3-D-BEM, together with a time stepping algorithm capable to track the random motion of the wing. A nonlinear pressure type Kutta condition is applied at the trailing edge of the wing. With a mollifier-based filtering technique, the 3-D unsteady rollup pattern created by the random motion of the wing is calculated without any simplifying assumptions regarding its geometry. Calculated unsteady forces, moments and useful power, show that the proposed active pitch control always results in thrust producing motions, with significant propulsive power production and considerable beneficial stabilizing action to ship motions. Calculation of the power required to set the pitch angle prove it to be a very small percentage of the useful power and thus making the practical application of the device very tractable.

  9. A spherical model analyzing shoulder motion in overhand and sidearm pitching.

    PubMed

    Yoshikawa, G I

    1993-07-01

    An accurate measurement of shoulder movement in pitching is indispensable in clarifying the causes of shoulder problems stemming from baseball pitching and in preventing these disorders. In this investigation, three-dimensional imaging and electromyography were performed during pitching. Two different pitching methods (overhand throwing and sidearm throwing) of 35 amateur pitchers were analyzed with a high-speed video imaging system. In 25 subjects shoulder rotation during pitching was measured with a compact camera attached to the shoulder. In 21 subjects, the electromyographic activity of the biceps and triceps muscles during pitching was examined. Image analysis showed little difference in shoulder movement between the two pitching methods for each subject, while individual subjects had specific shoulder movements. Electromyography demonstrated the role of the triceps muscle during pitching. The clinical ramifications of these analyses may be very useful. PMID:22971735

  10. A spherical model analyzing shoulder motion in overhand and sidearm pitching.

    PubMed

    Yoshikawa, G I

    1993-07-01

    An accurate measurement of shoulder movement in pitching is indispensable in clarifying the causes of shoulder problems stemming from baseball pitching and in preventing these disorders. In this investigation, three-dimensional imaging and electromyography were performed during pitching. Two different pitching methods (overhand throwing and sidearm throwing) of 35 amateur pitchers were analyzed with a high-speed video imaging system. In 25 subjects shoulder rotation during pitching was measured with a compact camera attached to the shoulder. In 21 subjects, the electromyographic activity of the biceps and triceps muscles during pitching was examined. Image analysis showed little difference in shoulder movement between the two pitching methods for each subject, while individual subjects had specific shoulder movements. Electromyography demonstrated the role of the triceps muscle during pitching. The clinical ramifications of these analyses may be very useful.

  11. The sound of size: crossmodal binding in pitch-size synesthesia: a combined TMS, EEG and psychophysics study.

    PubMed

    Bien, Nina; ten Oever, Sanne; Goebel, Rainer; Sack, Alexander T

    2012-01-01

    Crossmodal binding usually relies on bottom-up stimulus characteristics such as spatial and temporal correspondence. However, in case of ambiguity the brain has to decide whether to combine or segregate sensory inputs. We hypothesise that widespread, subtle forms of synesthesia provide crossmodal mapping patterns which underlie and influence multisensory perception. Our aim was to investigate if such a mechanism plays a role in the case of pitch-size stimulus combinations. Using a combination of psychophysics and ERPs, we could show that despite violations of spatial correspondence, the brain specifically integrates certain stimulus combinations which are congruent with respect to our hypothesis of pitch-size synesthesia, thereby impairing performance on an auditory spatial localisation task (Ventriloquist effect). Subsequently, we perturbed this process by functionally disrupting a brain area known for its role in multisensory processes, the right intraparietal sulcus, and observed how the Ventriloquist effect was abolished, thereby increasing behavioural performance. Correlating behavioural, TMS and ERP results, we could retrace the origin of the synesthestic pitch-size mappings to a right intraparietal involvement around 250 ms. The results of this combined psychophysics, TMS and ERP study provide evidence for shifting the current viewpoint on synesthesia more towards synesthesia being at the extremity of a spectrum of normal, adaptive perceptual processes, entailing close interplay between the different sensory systems. Our results support this spectrum view of synesthesia by demonstrating that its neural basis crucially depends on normal multisensory processes.

  12. Toward Adaptability: Where to from Here?

    ERIC Educational Resources Information Center

    Parsons, Seth A.; Vaughn, Margaret

    2016-01-01

    In this article, the collection of articles in this issue are synthesized to discuss conceptualizations of adaptive teaching as a means to foster spaces for adaptive teaching in today's complex educational system. Themes that exist across this collection of articles include adaptive teachers as constructivists, adaptive teachers as knowledgeable…

  13. The vertical horopter is not adaptable, but it may be adaptive

    PubMed Central

    Cooper, Emily A.; Burge, Johannes; Banks, Martin S.

    2013-01-01

    Depth estimates from disparity are most precise when the visual input stimulates corresponding retinal points or points close to them. Corresponding points have uncrossed disparities in the upper visual field and crossed disparities in the lower visual field. Due to these disparities, the vertical part of the horopter—the positions in space that stimulate corresponding points—is pitched top-back. Many have suggested that this pitch is advantageous for discriminating depth in the natural environment, particularly relative to the ground. We asked whether the vertical horopter is adaptive (suited for perception of the ground) and adaptable (changeable by experience). Experiment 1 measured the disparities between corresponding points in 28 observers. We confirmed that the horopter is pitched. However, it is also typically convex making it ill-suited for depth perception relative to the ground. Experiment 2 tracked locations of corresponding points while observers wore lenses for 7 days that distorted binocular disparities. We observed no change in the horopter, suggesting that it is not adaptable. We also showed that the horopter is not adaptive for long viewing distances because at such distances uncrossed disparities between corresponding points cannot be stimulated. The vertical horopter seems to be adaptive for perceiving convex, slanted surfaces at short distances. PMID:21447644

  14. Do Musicians with Perfect Pitch Have More Autism Traits than Musicians without Perfect Pitch? An Empirical Study

    PubMed Central

    Dohn, Anders; Garza-Villarreal, Eduardo A.; Heaton, Pamela; Vuust, Peter

    2012-01-01

    Perfect pitch, also known as absolute pitch (AP), refers to the rare ability to identify or produce a musical tone correctly without the benefit of an external reference. AP is often considered to reflect musical giftedness, but it has also been associated with certain disabilities due to increased prevalence of AP in individuals with sensory and developmental disorders. Here, we determine whether individual autistic traits are present in people with AP. We quantified subclinical levels of autism traits using the Autism-Spectrum Quotient (AQ) in three matched groups of subjects: 16 musicians with AP (APs), 18 musicians without AP (non-APs), and 16 non-musicians. In addition, we measured AP ability by a pitch identification test with sine wave tones and piano tones. We found a significantly higher degree of autism traits in APs than in non-APs and non-musicians, and autism scores were significantly correlated with pitch identification scores (r = .46, p = .003). However, our results showed that APs did not differ from non-APs on diagnostically crucial social and communicative domain scores and their total AQ scores were well below clinical thresholds for autism. Group differences emerged on the imagination and attention switching subscales of the AQ. Thus, whilst these findings do link AP with autism, they also show that AP ability is most strongly associated with personality traits that vary widely within the normal population. PMID:22666425

  15. Do musicians with perfect pitch have more autism traits than musicians without perfect pitch? An empirical study.

    PubMed

    Dohn, Anders; Garza-Villarreal, Eduardo A; Heaton, Pamela; Vuust, Peter

    2012-01-01

    Perfect pitch, also known as absolute pitch (AP), refers to the rare ability to identify or produce a musical tone correctly without the benefit of an external reference. AP is often considered to reflect musical giftedness, but it has also been associated with certain disabilities due to increased prevalence of AP in individuals with sensory and developmental disorders. Here, we determine whether individual autistic traits are present in people with AP. We quantified subclinical levels of autism traits using the Autism-Spectrum Quotient (AQ) in three matched groups of subjects: 16 musicians with AP (APs), 18 musicians without AP (non-APs), and 16 non-musicians. In addition, we measured AP ability by a pitch identification test with sine wave tones and piano tones. We found a significantly higher degree of autism traits in APs than in non-APs and non-musicians, and autism scores were significantly correlated with pitch identification scores (r = .46, p = .003). However, our results showed that APs did not differ from non-APs on diagnostically crucial social and communicative domain scores and their total AQ scores were well below clinical thresholds for autism. Group differences emerged on the imagination and attention switching subscales of the AQ. Thus, whilst these findings do link AP with autism, they also show that AP ability is most strongly associated with personality traits that vary widely within the normal population.

  16. Two Studies of Pitch in String Instrument Vibrato: Perception and Pitch Matching Responses of University and High School String Players

    ERIC Educational Resources Information Center

    Geringer, John M.; MacLeod, Rebecca B.; Ellis, Julia C.

    2014-01-01

    We investigated pitch perception of string vibrato tones among string players in two separate studies. In both studies we used tones of acoustic instruments (violin and cello) as stimuli. In the first, we asked 192 high school and university string players to listen to a series of tonal pairs: one tone of each pair was performed with vibrato and…

  17. Variability of a "force signature" during windmill softball pitching and relationship between discrete force variables and pitch velocity.

    PubMed

    Nimphius, Sophia; McGuigan, Michael R; Suchomel, Timothy J; Newton, Robert U

    2016-06-01

    This study assessed reliability of discrete ground reaction force (GRF) variables over multiple pitching trials, investigated the relationships between discrete GRF variables and pitch velocity (PV) and assessed the variability of the "force signature" or continuous force-time curve during the pitching motion of windmill softball pitchers. Intraclass correlation coefficient (ICC) for all discrete variables was high (0.86-0.99) while the coefficient of variance (CV) was low (1.4-5.2%). Two discrete variables were significantly correlated to PV; second vertical peak force (r(5)=0.81, p=0.03) and time between peak forces (r(5)=-0.79; p=0.03). High ICCs and low CVs support the reliability of discrete GRF and PV variables over multiple trials and significant correlations indicate there is a relationship between the ability to produce force and the timing of this force production with PV. The mean of all pitchers' curve-average standard deviation of their continuous force-time curves demonstrated low variability (CV=4.4%) indicating a repeatable and identifiable "force signature" pattern during this motion. As such, the continuous force-time curve in addition to discrete GRF variables should be examined in future research as a potential method to monitor or explain changes in pitching performance.

  18. Repetition suppression in auditory-motor regions to pitch and temporal structure in music.

    PubMed

    Brown, Rachel M; Chen, Joyce L; Hollinger, Avrum; Penhune, Virginia B; Palmer, Caroline; Zatorre, Robert J

    2013-02-01

    Music performance requires control of two sequential structures: the ordering of pitches and the temporal intervals between successive pitches. Whether pitch and temporal structures are processed as separate or integrated features remains unclear. A repetition suppression paradigm compared neural and behavioral correlates of mapping pitch sequences and temporal sequences to motor movements in music performance. Fourteen pianists listened to and performed novel melodies on an MR-compatible piano keyboard during fMRI scanning. The pitch or temporal patterns in the melodies either changed or repeated (remained the same) across consecutive trials. We expected decreased neural response to the patterns (pitch or temporal) that repeated across trials relative to patterns that changed. Pitch and temporal accuracy were high, and pitch accuracy improved when either pitch or temporal sequences repeated over trials. Repetition of either pitch or temporal sequences was associated with linear BOLD decrease in frontal-parietal brain regions including dorsal and ventral premotor cortex, pre-SMA, and superior parietal cortex. Pitch sequence repetition (in contrast to temporal sequence repetition) was associated with linear BOLD decrease in the intraparietal sulcus (IPS) while pianists listened to melodies they were about to perform. Decreased BOLD response in IPS also predicted increase in pitch accuracy only when pitch sequences repeated. Thus, behavioral performance and neural response in sensorimotor mapping networks were sensitive to both pitch and temporal structure, suggesting that pitch and temporal structure are largely integrated in auditory-motor transformations. IPS may be involved in transforming pitch sequences into spatial coordinates for accurate piano performance. PMID:23163413

  19. Repetition suppression in auditory-motor regions to pitch and temporal structure in music.

    PubMed

    Brown, Rachel M; Chen, Joyce L; Hollinger, Avrum; Penhune, Virginia B; Palmer, Caroline; Zatorre, Robert J

    2013-02-01

    Music performance requires control of two sequential structures: the ordering of pitches and the temporal intervals between successive pitches. Whether pitch and temporal structures are processed as separate or integrated features remains unclear. A repetition suppression paradigm compared neural and behavioral correlates of mapping pitch sequences and temporal sequences to motor movements in music performance. Fourteen pianists listened to and performed novel melodies on an MR-compatible piano keyboard during fMRI scanning. The pitch or temporal patterns in the melodies either changed or repeated (remained the same) across consecutive trials. We expected decreased neural response to the patterns (pitch or temporal) that repeated across trials relative to patterns that changed. Pitch and temporal accuracy were high, and pitch accuracy improved when either pitch or temporal sequences repeated over trials. Repetition of either pitch or temporal sequences was associated with linear BOLD decrease in frontal-parietal brain regions including dorsal and ventral premotor cortex, pre-SMA, and superior parietal cortex. Pitch sequence repetition (in contrast to temporal sequence repetition) was associated with linear BOLD decrease in the intraparietal sulcus (IPS) while pianists listened to melodies they were about to perform. Decreased BOLD response in IPS also predicted increase in pitch accuracy only when pitch sequences repeated. Thus, behavioral performance and neural response in sensorimotor mapping networks were sensitive to both pitch and temporal structure, suggesting that pitch and temporal structure are largely integrated in auditory-motor transformations. IPS may be involved in transforming pitch sequences into spatial coordinates for accurate piano performance.

  20. RBF neural network based PI pitch controller for a class of 5-MW wind turbines using particle swarm optimization algorithm.

    PubMed

    Poultangari, Iman; Shahnazi, Reza; Sheikhan, Mansour

    2012-09-01

    In order to control the pitch angle of blades in wind turbines, commonly the proportional and integral (PI) controller due to its simplicity and industrial usability is employed. The neural networks and evolutionary algorithms are tools that provide a suitable ground to determine the optimal PI gains. In this paper, a radial basis function (RBF) neural network based PI controller is proposed for collective pitch control (CPC) of a 5-MW wind turbine. In order to provide an optimal dataset to train the RBF neural network, particle swarm optimization (PSO) evolutionary algorithm is used. The proposed method does not need the complexities, nonlinearities and uncertainties of the system under control. The simulation results show that the proposed controller has satisfactory performance. PMID:22738782

  1. RBF neural network based PI pitch controller for a class of 5-MW wind turbines using particle swarm optimization algorithm.

    PubMed

    Poultangari, Iman; Shahnazi, Reza; Sheikhan, Mansour

    2012-09-01

    In order to control the pitch angle of blades in wind turbines, commonly the proportional and integral (PI) controller due to its simplicity and industrial usability is employed. The neural networks and evolutionary algorithms are tools that provide a suitable ground to determine the optimal PI gains. In this paper, a radial basis function (RBF) neural network based PI controller is proposed for collective pitch control (CPC) of a 5-MW wind turbine. In order to provide an optimal dataset to train the RBF neural network, particle swarm optimization (PSO) evolutionary algorithm is used. The proposed method does not need the complexities, nonlinearities and uncertainties of the system under control. The simulation results show that the proposed controller has satisfactory performance.

  2. Effects of Tone-Quality Conditions on Perception and Performance of Pitch among Selected Wind Instrumentalists.

    ERIC Educational Resources Information Center

    Worthy, Michael D.

    2000-01-01

    Evaluates the effects of changes in tone quality on the perception of pitch and determines the extent to which the same tone-quality conditions affect the performance of pitch of 64 high school and university wind instrumentalists. Indicates that tone-quality conditions affected the perception and performance of pitch. (CMK)

  3. Stimulus-Dependent Flexibility in Non-Human Auditory Pitch Processing

    ERIC Educational Resources Information Center

    Bregman, Micah R.; Patel, Aniruddh D.; Gentner, Timothy Q.

    2012-01-01

    Songbirds and humans share many parallels in vocal learning and auditory sequence processing. However, the two groups differ notably in their abilities to recognize acoustic sequences shifted in absolute pitch (pitch height). Whereas humans maintain accurate recognition of words or melodies over large pitch height changes, songbirds are…

  4. Processes of recovering fatty acids and sterols from tall oil pitch

    SciTech Connect

    Hughes, R. E.

    1985-06-18

    An improved process of enhancing the recovery of fatty acids from tall oil pitch is disclosed. The process includes a hydrolysis step for increasing the free fatty acid available for recovery from tall oil pitch during the distillation process. The hydrolysis step also enables the recovery of sterols where the tall oil pitch is of the type which is rich in sterol esters.

  5. Changing the Tune: The Structure of the Input Affects Infants' Use of Absolute and Relative Pitch

    ERIC Educational Resources Information Center

    Saffran, Jenny R.; Reeck, Karelyn; Niebuhr, Aimee; Wilson, Diana

    2005-01-01

    Sequences of notes contain several different types of pitch cues, including both absolute and relative pitch information. What factors determine which of these cues are used when learning about tone sequences? Previous research suggests that infants tend to preferentially process absolute pitch patterns in continuous tone sequences, while other…

  6. 29 CFR 1910.1002 - Coal tar pitch volatiles; interpretation of term.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 6 2013-07-01 2013-07-01 false Coal tar pitch volatiles; interpretation of term. 1910.1002... Hazardous Substances § 1910.1002 Coal tar pitch volatiles; interpretation of term. As used in § 1910.1000 (Table Z-1), coal tar pitch volatiles include the fused polycyclic hydrocarbons which volatilize from...

  7. 29 CFR 1910.1002 - Coal tar pitch volatiles; interpretation of term.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 6 2011-07-01 2011-07-01 false Coal tar pitch volatiles; interpretation of term. 1910.1002... Hazardous Substances § 1910.1002 Coal tar pitch volatiles; interpretation of term. As used in § 1910.1000 (Table Z-1), coal tar pitch volatiles include the fused polycyclic hydrocarbons which volatilize from...

  8. 29 CFR 1910.1002 - Coal tar pitch volatiles; interpretation of term.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 6 2012-07-01 2012-07-01 false Coal tar pitch volatiles; interpretation of term. 1910.1002... Hazardous Substances § 1910.1002 Coal tar pitch volatiles; interpretation of term. As used in § 1910.1000 (Table Z-1), coal tar pitch volatiles include the fused polycyclic hydrocarbons which volatilize from...

  9. 29 CFR 1910.1002 - Coal tar pitch volatiles; interpretation of term.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 6 2010-07-01 2010-07-01 false Coal tar pitch volatiles; interpretation of term. 1910.1002... Hazardous Substances § 1910.1002 Coal tar pitch volatiles; interpretation of term. As used in § 1910.1000 (Table Z-1), coal tar pitch volatiles include the fused polycyclic hydrocarbons which volatilize from...

  10. 29 CFR 1910.1002 - Coal tar pitch volatiles; interpretation of term.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 6 2014-07-01 2013-07-01 true Coal tar pitch volatiles; interpretation of term. 1910.1002... Hazardous Substances § 1910.1002 Coal tar pitch volatiles; interpretation of term. As used in § 1910.1000 (Table Z-1), coal tar pitch volatiles include the fused polycyclic hydrocarbons which volatilize from...

  11. EEMD based pitch evaluation method for accurate grating measurement by AFM

    NASA Astrophysics Data System (ADS)

    Li, Changsheng; Yang, Shuming; Wang, Chenying; Jiang, Zhuangde

    2016-09-01

    The pitch measurement and AFM calibration precision are significantly influenced by the grating pitch evaluation method. This paper presents the ensemble empirical mode decomposition (EEMD) based pitch evaluation method to relieve the accuracy deterioration caused by high and low frequency components of scanning profile during pitch evaluation. The simulation analysis shows that the application of EEMD can improve the pitch accuracy of the FFT-FT algorithm. The pitch error is small when the iteration number of the FFT-FT algorithms was 8. The AFM measurement of the 500 nm-pitch one-dimensional grating shows that the EEMD based pitch evaluation method could improve the pitch precision, especially the grating line position precision, and greatly expand the applicability of the gravity center algorithm when particles and impression marks were distributed on the sample surface. The measurement indicates that the nonlinearity was stable, and the nonlinearity of x axis and forward scanning was much smaller than their counterpart. Finally, a detailed pitch measurement uncertainty evaluation model suitable for commercial AFMs was demonstrated and a pitch uncertainty in the sub-nanometer range was achieved. The pitch uncertainty was reduced about 10% by EEMD.

  12. 14 CFR 25.1155 - Reverse thrust and propeller pitch settings below the flight regime.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Reverse thrust and propeller pitch settings... Powerplant Controls and Accessories § 25.1155 Reverse thrust and propeller pitch settings below the flight regime. Each control for reverse thrust and for propeller pitch settings below the flight regime...

  13. 14 CFR 25.1155 - Reverse thrust and propeller pitch settings below the flight regime.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Reverse thrust and propeller pitch settings... Powerplant Controls and Accessories § 25.1155 Reverse thrust and propeller pitch settings below the flight regime. Each control for reverse thrust and for propeller pitch settings below the flight regime...

  14. 14 CFR 25.1155 - Reverse thrust and propeller pitch settings below the flight regime.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Reverse thrust and propeller pitch settings... Powerplant Controls and Accessories § 25.1155 Reverse thrust and propeller pitch settings below the flight regime. Each control for reverse thrust and for propeller pitch settings below the flight regime...

  15. 14 CFR 25.1155 - Reverse thrust and propeller pitch settings below the flight regime.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Reverse thrust and propeller pitch settings... Powerplant Controls and Accessories § 25.1155 Reverse thrust and propeller pitch settings below the flight regime. Each control for reverse thrust and for propeller pitch settings below the flight regime...

  16. 14 CFR 25.1155 - Reverse thrust and propeller pitch settings below the flight regime.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Reverse thrust and propeller pitch settings... Powerplant Controls and Accessories § 25.1155 Reverse thrust and propeller pitch settings below the flight regime. Each control for reverse thrust and for propeller pitch settings below the flight regime...

  17. Pitch Discrimination and Melodic Memory in Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Stanutz, Sandy; Wapnick, Joel; Burack, Jacob A.

    2014-01-01

    Background: Pitch perception is enhanced among persons with autism. We extended this finding to memory for pitch and melody among school-aged children. Objective: The purpose of this study was to investigate pitch memory in musically untrained children with autism spectrum disorders, aged 7-13 years, and to compare it to that of age- and…

  18. Pitch and Time, Tonality and Meter: How Do Musical Dimensions Combine?

    ERIC Educational Resources Information Center

    Prince, Jon B.; Thompson, William F.; Schmuckler, Mark A.

    2009-01-01

    The authors examined how the structural attributes of tonality and meter influence musical pitch-time relations. Listeners heard a musical context followed by probe events that varied in pitch class and temporal position. Tonal and metric hierarchies contributed additively to the goodness-of-fit of probes, with pitch class exerting a stronger…

  19. The Effect of Pitch and Rhythm Difficulty on Vocal Sight-Reading Performance

    ERIC Educational Resources Information Center

    Henry, Michele L.

    2011-01-01

    Singing music at sight is a complex skill, requiring the singer to perform pitch and rhythm simultaneously. Previous research has identified difficulty levels for pitch and rhythm skills individually but not in combination. In this study, the author sought to determine the relationship between pitch and rhythm tasks occurring concurrently. High…

  20. Characterization of coal- and petroleum-derived binder pitches and the interaction of pitch/coke mixtures in pre-baked carbon anodes

    NASA Astrophysics Data System (ADS)

    Suriyapraphadilok, Uthaiporn

    Carbon anodes are manufactured from calcined petroleum coke (i.e. sponge coke) and recycled anode butts as fillers, and coal tar pitch (SCTP) as the binder. During the manufacturing of carbon anodes, coal tar pitch is mixed with calcined petroleum coke. The mix of binder, filler and some additives is heated to about 50°C above the softening point of the pitch, typically 160°C. This temperature is sufficient to enable the pitch to wet the coke particles. The mix is then either extruded, vibrated, or pressed to form a green anode. The binding between coke and pitch is very important to the anode properties. There are different binder pitches used in this work, which were standard coal tar pitch (SCTP-2), petroleum pitch (PP-1), gasification pitch (GP-115), coal-extract pitch (WVU-5), and co-coking pitches (HTCCP and OXCCP). Petroleum pitch is a residue produced from heat-treatment and distillation of petroleum fractions. Production of coal-extract pitch involves a prehydrogenation of coal followed by extraction using a dipolar solvent. Gasification pitches are distilled by-product tars produced from the coal gasification process. Co-coking pitch was developed in this work and was obtained from the liquid distillate of co-coking process of coal and heavy petroleum residue. Understanding of composition and structures of pitches from different sources and processes would lead to greater understanding of the binding properties of pitch in carbon anodes and was one of the main focuses in this study. Characterization of pitches by using different techniques including gas chromatography/mass spectrometry (GC/MS), high performance liquid chromatography (HPLC), matrix-assisted laser desorption ionization/mass spectrometry (MALDI/MS), 1H and 13C solution-state nuclear magnetic resonance (NMR), and 13C solid-state NMR yield important chemistry and structural information. The binding, or in other words the interactions in the pitch/coke mixture, is another interest in this

  1. Shoulder kinematics during pitching: comparing the slide step and traditional stretch deliveries.

    PubMed

    Keeley, David W; Oliver, Gretchen D; Dougherty, Christopher P

    2012-10-01

    Although studies have investigated the traditional stretch delivery, there is little biomechanical data describing the slide step delivery in baseball pitchers. Thus, the purpose of this study was to compare shoulder kinematics across the traditional stretch and slide step deliveries. To collect kinematic data from thirty-seven high school baseball pitchers, electromagnetic sensors recording at 140 Hz were affixed to various body segments. The average of those data from the three fastest pitches passing through the strike-zone were analyzed for each delivery. At the instances of front foot contact and ball release, no differences were observed between the two deliveries. At the instant of maximum shoulder external rotation, differences were observed between the two deliveries with regard to plane of elevation (t(72)=4.19, p<.001), elevation (t(72)=-3.38, p<.001), and axial rotation (t(72)=2.49, p=.015). The mechanical differences observed between the two delivery styles may have the potential to impact both performance and injury. Also, based on these results there may be a tradeoff between injury risk and performance. Thus, further study is warranted in an effort to identify the interrelationships between injury risk, performance, and pitching kinematics when throwing from the stretch position.

  2. Modeling source-filter interaction in belting and high-pitched operatic male singing

    PubMed Central

    Titze, Ingo R.; Worley, Albert S.

    2009-01-01

    Nonlinear source-filter theory is applied to explain some acoustic differences between two contrasting male singing productions at high pitches: operatic style versus jazz belt or theater belt. Several stylized vocal tract shapes (caricatures) are discussed that form the bases of these styles. It is hypothesized that operatic singing uses vowels that are modified toward an inverted megaphone mouth shape for transitioning into the high-pitch range. This allows all the harmonics except the fundamental to be “lifted” over the first formant. Belting, on the other hand, uses vowels that are consistently modified toward the megaphone (trumpet-like) mouth shape. Both the fundamental and the second harmonic are then kept below the first formant. The vocal tract shapes provide collective reinforcement to multiple harmonics in the form of inertive supraglottal reactance and compliant subglottal reactance. Examples of lip openings from four well-known artists are used to infer vocal tract area functions and the corresponding reactances. PMID:19739766

  3. Shoulder kinematics during pitching: comparing the slide step and traditional stretch deliveries.

    PubMed

    Keeley, David W; Oliver, Gretchen D; Dougherty, Christopher P

    2012-10-01

    Although studies have investigated the traditional stretch delivery, there is little biomechanical data describing the slide step delivery in baseball pitchers. Thus, the purpose of this study was to compare shoulder kinematics across the traditional stretch and slide step deliveries. To collect kinematic data from thirty-seven high school baseball pitchers, electromagnetic sensors recording at 140 Hz were affixed to various body segments. The average of those data from the three fastest pitches passing through the strike-zone were analyzed for each delivery. At the instances of front foot contact and ball release, no differences were observed between the two deliveries. At the instant of maximum shoulder external rotation, differences were observed between the two deliveries with regard to plane of elevation (t(72)=4.19, p<.001), elevation (t(72)=-3.38, p<.001), and axial rotation (t(72)=2.49, p=.015). The mechanical differences observed between the two delivery styles may have the potential to impact both performance and injury. Also, based on these results there may be a tradeoff between injury risk and performance. Thus, further study is warranted in an effort to identify the interrelationships between injury risk, performance, and pitching kinematics when throwing from the stretch position. PMID:22487194

  4. 77 FR 35396 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... collection project: ``Adapting Best Practices for Medicaid Readmissions.'' In accordance with the Paperwork... at doris.lefkowitz@AHRO.hhs.gov . SUPPLEMENTARY INFORMATION: Proposed Project Adapting Best...

  5. Genomic expression catalogue of a global collection of BCG vaccine strains show evidence for highly diverged metabolic and cell-wall adaptations.

    PubMed

    Abdallah, Abdallah M; Hill-Cawthorne, Grant A; Otto, Thomas D; Coll, Francesc; Guerra-Assunção, José Afonso; Gao, Ge; Naeem, Raeece; Ansari, Hifzur; Malas, Tareq B; Adroub, Sabir A; Verboom, Theo; Ummels, Roy; Zhang, Huoming; Panigrahi, Aswini Kumar; McNerney, Ruth; Brosch, Roland; Clark, Taane G; Behr, Marcel A; Bitter, Wilbert; Pain, Arnab

    2015-10-21

    Although Bacillus Calmette-Guérin (BCG) vaccines against tuberculosis have been available for more than 90 years, their effectiveness has been hindered by variable protective efficacy and a lack of lasting memory responses. One factor contributing to this variability may be the diversity of the BCG strains that are used around the world, in part from genomic changes accumulated during vaccine production and their resulting differences in gene expression. We have compared the genomes and transcriptomes of a global collection of fourteen of the most widely used BCG strains at single base-pair resolution. We have also used quantitative proteomics to identify key differences in expression of proteins across five representative BCG strains of the four tandem duplication (DU) groups. We provide a comprehensive map of single nucleotide polymorphisms (SNPs), copy number variation and insertions and deletions (indels) across fourteen BCG strains. Genome-wide SNP characterization allowed the construction of a new and robust phylogenic genealogy of BCG strains. Transcriptional and proteomic profiling revealed a metabolic remodeling in BCG strains that may be reflected by altered immunogenicity and possibly vaccine efficacy. Together, these integrated-omic data represent the most comprehensive catalogue of genetic variation across a global collection of BCG strains.

  6. Genomic expression catalogue of a global collection of BCG vaccine strains show evidence for highly diverged metabolic and cell-wall adaptations

    PubMed Central

    Abdallah, Abdallah M.; Hill-Cawthorne, Grant A.; Otto, Thomas D.; Coll, Francesc; Guerra-Assunção, José Afonso; Gao, Ge; Naeem, Raeece; Ansari, Hifzur; Malas, Tareq B.; Adroub, Sabir A.; Verboom, Theo; Ummels, Roy; Zhang, Huoming; Panigrahi, Aswini Kumar; McNerney, Ruth; Brosch, Roland; Clark, Taane G.; Behr, Marcel A.; Bitter, Wilbert; Pain, Arnab

    2015-01-01

    Although Bacillus Calmette-Guérin (BCG) vaccines against tuberculosis have been available for more than 90 years, their effectiveness has been hindered by variable protective efficacy and a lack of lasting memory responses. One factor contributing to this variability may be the diversity of the BCG strains that are used around the world, in part from genomic changes accumulated during vaccine production and their resulting differences in gene expression. We have compared the genomes and transcriptomes of a global collection of fourteen of the most widely used BCG strains at single base-pair resolution. We have also used quantitative proteomics to identify key differences in expression of proteins across five representative BCG strains of the four tandem duplication (DU) groups. We provide a comprehensive map of single nucleotide polymorphisms (SNPs), copy number variation and insertions and deletions (indels) across fourteen BCG strains. Genome-wide SNP characterization allowed the construction of a new and robust phylogenic genealogy of BCG strains. Transcriptional and proteomic profiling revealed a metabolic remodeling in BCG strains that may be reflected by altered immunogenicity and possibly vaccine efficacy. Together, these integrated-omic data represent the most comprehensive catalogue of genetic variation across a global collection of BCG strains. PMID:26487098

  7. Genomic expression catalogue of a global collection of BCG vaccine strains show evidence for highly diverged metabolic and cell-wall adaptations.

    PubMed

    Abdallah, Abdallah M; Hill-Cawthorne, Grant A; Otto, Thomas D; Coll, Francesc; Guerra-Assunção, José Afonso; Gao, Ge; Naeem, Raeece; Ansari, Hifzur; Malas, Tareq B; Adroub, Sabir A; Verboom, Theo; Ummels, Roy; Zhang, Huoming; Panigrahi, Aswini Kumar; McNerney, Ruth; Brosch, Roland; Clark, Taane G; Behr, Marcel A; Bitter, Wilbert; Pain, Arnab

    2015-01-01

    Although Bacillus Calmette-Guérin (BCG) vaccines against tuberculosis have been available for more than 90 years, their effectiveness has been hindered by variable protective efficacy and a lack of lasting memory responses. One factor contributing to this variability may be the diversity of the BCG strains that are used around the world, in part from genomic changes accumulated during vaccine production and their resulting differences in gene expression. We have compared the genomes and transcriptomes of a global collection of fourteen of the most widely used BCG strains at single base-pair resolution. We have also used quantitative proteomics to identify key differences in expression of proteins across five representative BCG strains of the four tandem duplication (DU) groups. We provide a comprehensive map of single nucleotide polymorphisms (SNPs), copy number variation and insertions and deletions (indels) across fourteen BCG strains. Genome-wide SNP characterization allowed the construction of a new and robust phylogenic genealogy of BCG strains. Transcriptional and proteomic profiling revealed a metabolic remodeling in BCG strains that may be reflected by altered immunogenicity and possibly vaccine efficacy. Together, these integrated-omic data represent the most comprehensive catalogue of genetic variation across a global collection of BCG strains. PMID:26487098

  8. Congenital amusia: a disorder of fine-grained pitch discrimination.

    PubMed

    Peretz, Isabelle; Ayotte, Julie; Zatorre, Robert J; Mehler, Jacques; Ahad, Pierre; Penhune, Virginia B; Jutras, Benoît

    2002-01-17

    We report the first documented case of congenital amusia. This disorder refers to a musical disability that cannot be explained by prior brain lesion, hearing loss, cognitive deficits, socioaffective disturbance, or lack of environmental stimulation. This musical impairment is diagnosed in a middle-aged woman, hereafter referred to as Monica, who lacks most basic musical abilities, including melodic discrimination and recognition, despite normal audiometry and above-average intellectual, memory, and language skills. The results of psychophysical tests show that Monica has severe difficulties with detecting pitch changes. The data suggest that music-processing difficulties may result from problems in fine-grained discrimination of pitch, much in the same way as many language-processing difficulties arise from deficiencies in auditory temporal resolution.

  9. Active and passive stabilization of body pitch in insect flight

    PubMed Central

    Ristroph, Leif; Ristroph, Gunnar; Morozova, Svetlana; Bergou, Attila J.; Chang, Song; Guckenheimer, John; Wang, Z. Jane; Cohen, Itai

    2013-01-01

    Flying insects have evolved sophisticated sensory–motor systems, and here we argue that such systems are used to keep upright against intrinsic flight instabilities. We describe a theory that predicts the instability growth rate in body pitch from flapping-wing aerodynamics and reveals two ways of achieving balanced flight: active control with sufficiently rapid reactions and passive stabilization with high body drag. By glueing magnets to fruit flies and perturbing their flight using magnetic impulses, we show that these insects employ active control that is indeed fast relative to the instability. Moreover, we find that fruit flies with their control sensors disabled can keep upright if high-drag fibres are also attached to their bodies, an observation consistent with our prediction for the passive stability condition. Finally, we extend this framework to unify the control strategies used by hovering animals and also furnish criteria for achieving pitch stability in flapping-wing robots. PMID:23697713

  10. Neurological and developmental approaches to poor pitch perception and production

    PubMed Central

    Loui, Psyche; Demorest, Steven M.; Pfordresher, Peter Q.; Iyer, Janani

    2014-01-01

    Whereas much of research in music and neuroscience is aimed at understanding the mechanisms by which the human brain facilitates music, emerging interest in the neuromusic community aims to translate basic music research into clinical and educational applications. In the present workshop, we explore the problems of poor pitch perception and production from both neurological and developmental/educational perspectives. We begin by reviewing previous and novel findings on the neural regulation of pitch perception and production. We then discuss issues in measuring singing accuracy consistently between the laboratory and educational settings. We review the Seattle Singing Accuracy Protocol—a new assessment tool that we hope can be adopted by cognitive psychologists as well as music educators—and we conclude with some suggestions that the present interdisciplinary approach might offer for future research. PMID:25773643

  11. Pitch-based pattern splitting for 1D layout

    NASA Astrophysics Data System (ADS)

    Nakayama, Ryo; Ishii, Hiroyuki; Mikami, Koji; Tsujita, Koichiro; Yaegashi, Hidetami; Oyama, Kenichi; Smayling, Michael C.; Axelrad, Valery

    2015-07-01

    The pattern splitting algorithm for 1D Gridded-Design-Rules layout (1D layout) for sub-10 nm node logic devices is shown. It is performed with integer linear programming (ILP) based on the conflict graph created from a grid map for each designated pitch. The relation between the number of times for patterning and the minimum pitch is shown systematically with a sample pattern of contact layer for each node. From the result, the number of times for patterning for 1D layout is fewer than that for conventional 2D layout. Moreover, an experimental result including SMO and total integrated process with hole repair technique is presented with the sample pattern of contact layer whose pattern density is relatively high among critical layers (fin, gate, local interconnect, contact, and metal).

  12. Active and passive stabilization of body pitch in insect flight.

    PubMed

    Ristroph, Leif; Ristroph, Gunnar; Morozova, Svetlana; Bergou, Attila J; Chang, Song; Guckenheimer, John; Wang, Z Jane; Cohen, Itai

    2013-08-01

    Flying insects have evolved sophisticated sensory-motor systems, and here we argue that such systems are used to keep upright against intrinsic flight instabilities. We describe a theory that predicts the instability growth rate in body pitch from flapping-wing aerodynamics and reveals two ways of achieving balanced flight: active control with sufficiently rapid reactions and passive stabilization with high body drag. By glueing magnets to fruit flies and perturbing their flight using magnetic impulses, we show that these insects employ active control that is indeed fast relative to the instability. Moreover, we find that fruit flies with their control sensors disabled can keep upright if high-drag fibres are also attached to their bodies, an observation consistent with our prediction for the passive stability condition. Finally, we extend this framework to unify the control strategies used by hovering animals and also furnish criteria for achieving pitch stability in flapping-wing robots.

  13. Dynamic stall on a pitching and surging airfoil

    NASA Astrophysics Data System (ADS)

    Dunne, Reeve; McKeon, Beverley J.

    2015-08-01

    Vertical axis wind turbine blades undergo dynamic stall due to the large angle of attack variation they experience during a turbine rotation. The flow over a single blade was modeled using a sinusoidally pitching and surging airfoil in a non-rotating frame with a constant freestream flow at a mean chord Reynolds number of . Two-dimensional, time-resolved velocity fields were acquired using particle image velocimetry. Vorticity contours were used to visualize shear layer and vortex activity. A low-order model of dynamic stall was developed using dynamic mode decomposition, from which primary and secondary dynamic separation modes were identified. The interaction between these two modes was able to capture the physics of dynamic stall and as such can be extended to other turbine configurations and problems in unsteady aerodynamics. Results from the linear pitch/surge frame are extrapolated to the rotating VAWT frame to investigate the behavior of identified flow structures.

  14. Photolithography reaches 6 nm half-pitch using EUV light

    NASA Astrophysics Data System (ADS)

    Fan, Daniel; Ekinci, Yasin

    2016-03-01

    EUV interference lithography records the interference pattern of two diffracted, coherent light beams, where the pattern resolution is half the diffraction grating resolution. The fabrication of diffraction grating masks by e-beam lithography is restricted by the electron proximity effect and pattern transfer limitations into diffraction efficient materials. By patterning HSQ lines at a relaxed pitch to avoid the electron proximity effect, depositing conformal iridium via atomic layer deposition, followed by ion milling the top and bottom iridium and HSQ removal, we fabricated iridium diffraction gratings at double the line spacing of the original HSQ lines. 6 nm half-pitch patterns were achieved using these masks marking a new record resolution in photolithography.

  15. Ring Current Ion Losses by Pitch Angle Scattering

    NASA Astrophysics Data System (ADS)

    Walt, M.; Voss, H. D.

    2001-12-01

    The Source/Loss Cone Energetic Particle Spectrometer (SEPS) on the Polar Satellite observes ions above 155 keV with an angular resolution of about 1.5 degrees. When the axis of SEPS is pointing within 10 degrees of the magnetic field direction, the detector measures particles in both the downward and upward loss cones. Measurements of the loss cone fluxes during the magnetic storms of August 6, 1998, August 27, 1998, September 25, 1998, October 19, 1998, and November 13, 1998 often show large fluxes of ring current ions moving downward inside the loss cone. At times these fluxes are comparable to the trapped ion population, indicating that strong pitch angle scattering is taking place at least locally. Although Polar encounters the ring current region at only two magnetic local times during any given storm, the frequent observation of precipitation suggests that pitch angle scattering is an important loss mechanism for ring current ions.

  16. Active and passive stabilization of body pitch in insect flight.

    PubMed

    Ristroph, Leif; Ristroph, Gunnar; Morozova, Svetlana; Bergou, Attila J; Chang, Song; Guckenheimer, John; Wang, Z Jane; Cohen, Itai

    2013-08-01

    Flying insects have evolved sophisticated sensory-motor systems, and here we argue that such systems are used to keep upright against intrinsic flight instabilities. We describe a theory that predicts the instability growth rate in body pitch from flapping-wing aerodynamics and reveals two ways of achieving balanced flight: active control with sufficiently rapid reactions and passive stabilization with high body drag. By glueing magnets to fruit flies and perturbing their flight using magnetic impulses, we show that these insects employ active control that is indeed fast relative to the instability. Moreover, we find that fruit flies with their control sensors disabled can keep upright if high-drag fibres are also attached to their bodies, an observation consistent with our prediction for the passive stability condition. Finally, we extend this framework to unify the control strategies used by hovering animals and also furnish criteria for achieving pitch stability in flapping-wing robots. PMID:23697713

  17. An electromyographic analysis of the upper extremity in pitching.

    PubMed

    Digiovine, N M; Jobe, F W; Pink, M; Perry, J

    1992-01-01

    The upper extremity is vulnerable to injury during the baseball pitch because of the repetitious nature of the action, the extremes in range of motion, and the high angular velocities and torques generated at the shoulder and elbow. Hence this study was designed to describe the muscle-firing patterns through fine-wire electromyography in 29 muscle bellies in the upper extremities of skilled pitchers during the fastball pitch. The results demonstrated that the muscles functioned with precise timing for joint stabilization to prevent injury, joint activation to transfer forces to the ball, and joint deceleration to dissipate forces after ball release. The synchrony of reciprocal and sequential muscle contraction necessary to accomplish these functions was clearly evident. This study provides a better understanding of the coordinated sequence of muscle activity during the throwing motion; this understanding is crucial to the development of exercise protocols and surgical procedures used for treatment and prevention of shoulder and elbow injuries in the throwing athlete.

  18. Children's identification of questions from rising terminal pitch.

    PubMed

    Saindon, Mathieu R; Trehub, Sandra E; Schellenberg, E Glenn; VAN Lieshout, Pascal

    2016-09-01

    Young children are slow to master conventional intonation patterns in their yes/no questions, which may stem from imperfect understanding of the links between terminal pitch contours and pragmatic intentions. In Experiment 1, five- to ten-year-old children and adults were required to judge utterances as questions or statements on the basis of intonation alone. Children eight years of age or younger performed above chance levels but less accurately than adult listeners. To ascertain whether the verbal content of utterances interfered with young children's attention to the relevant acoustic cues, low-pass filtered versions of the same utterances were presented to children and adults in Experiment 2. Low-pass filtering reduced performance comparably for all age groups, perhaps because such filtering reduced the salience of critical pitch cues. Young children's difficulty in differentiating declarative questions from statements is not attributable to basic perceptual difficulties but rather to absent or unstable intonation categories. PMID:26374079

  19. Pitch-angle scattering of energetic particles with adiabatic focusing

    SciTech Connect

    Tautz, R. C.; Shalchi, A.; Dosch, A. E-mail: andreasm4@yahoo.com

    2014-10-20

    Understanding turbulent transport of charged particles in magnetized plasmas often requires a model for the description of random variations in the particle's pitch angle. The Fokker-Planck coefficient of pitch-angle scattering, which is used to describe scattering parallel to the mean magnetic field, is therefore of central importance. Whereas quasi-linear theory assumes a homogeneous mean magnetic field, such a condition is often not fulfilled, especially for high-energy particles. Here, a new derivation of the quasi-linear approach is given that is based on the unperturbed orbit found for an adiabatically focused mean magnetic field. The results show that, depending on the ratio of the focusing length and the particle's Larmor radius, the Fokker-Planck coefficient is significantly modified but agrees with the classical expression in the limit of a homogeneous mean magnetic field.

  20. An airfoil pitch apparatus-modeling and control design

    NASA Astrophysics Data System (ADS)

    Andrews, Daniel R.

    1989-03-01

    The study of dynamic stall of rapidly pitching airfoils is being conducted at NASA Ames Research Center. Understanding this physical phenomenon will aid in improving the maneuverability of fighter aircraft as well as civilian aircraft. A wind tunnel device which can linearly pitch and control an airfoil with rapid dynamic response is needed for such tests. To develop a mechanism capable of high accelerations, an accurate model and control system is created. The model contains mathematical representations of the mechanical system, including mass, spring, and damping characteristics for each structural element, as well as coulomb friction and servovalve saturation. Electrical components, both digital and analog, linear and nonlinear, are simulated. The implementation of such a high-performance system requires detailed control design as well as state-of-the-art components. This paper describes the system model, states the system requirements, and presents results of its theoretical performance which maximizes the structural and hydraulic aspects of this system.

  1. New SOFRADIR 10μm pixel pitch infrared products

    NASA Astrophysics Data System (ADS)

    Lefoul, X.; Pere-Laperne, N.; Augey, T.; Rubaldo, L.; Aufranc, Sébastien; Decaens, G.; Ricard, N.; Mazaleyrat, E.; Billon-Lanfrey, D.; Gravrand, Olivier; Bisotto, Sylvette

    2014-10-01

    Recent advances in miniaturization of IR imaging technology have led to a growing market for mini thermal-imaging sensors. In that respect, Sofradir development on smaller pixel pitch has made much more compact products available to the users. When this competitive advantage is mixed with smaller coolers, made possible by HOT technology, we achieved valuable reductions in the size, weight and power of the overall package. At the same time, we are moving towards a global offer based on digital interfaces that provides our customers simplifications at the IR system design process while freeing up more space. This paper discusses recent developments on hot and small pixel pitch technologies as well as efforts made on compact packaging solution developed by SOFRADIR in collaboration with CEA-LETI.

  2. Neural Mechanisms Underlying Musical Pitch Perception and Clinical Applications Including Developmental Dyslexia.

    PubMed

    Yuskaitis, Christopher J; Parviz, Mahsa; Loui, Psyche; Wan, Catherine Y; Pearl, Phillip L

    2015-08-01

    Music production and perception invoke a complex set of cognitive functions that rely on the integration of sensorimotor, cognitive, and emotional pathways. Pitch is a fundamental perceptual attribute of sound and a building block for both music and speech. Although the cerebral processing of pitch is not completely understood, recent advances in imaging and electrophysiology have provided insight into the functional and anatomical pathways of pitch processing. This review examines the current understanding of pitch processing and behavioral and neural variations that give rise to difficulties in pitch processing, and potential applications of music education for language processing disorders such as dyslexia. PMID:26092314

  3. Pitch angle scattering of energetic particles by oblique whistler waves

    NASA Technical Reports Server (NTRS)

    Inan, U. S.; Bell, T. F.

    1991-01-01

    First order cyclotron or Landau resonant pitch angle scattering of electrons by oblique whistler waves propagating at large angles to the ambient field are found to be at least as large as that due to parallel propagating waves. Commonly observed precipitation of more than 40 keV electrons in association with ducted whistlers may thus be accompanied by substantial fluxes of lower energy (10 eV-40 keV) electrons precipitated by the nonducted components.

  4. Design principles for Bernal spirals and helices with tunable pitch

    NASA Astrophysics Data System (ADS)

    Fejer, Szilard N.; Chakrabarti, Dwaipayan; Kusumaatmaja, Halim; Wales, David J.

    2014-07-01

    Using the framework of potential energy landscape theory, we describe two in silico designs for self-assembling helical colloidal superstructures based upon dipolar dumbbells and Janus-type building blocks, respectively. Helical superstructures with controllable pitch length are obtained using external magnetic field driven assembly of asymmetric dumbbells involving screened electrostatic as well as magnetic dipolar interactions. The pitch of the helix is tuned by modulating the Debye screening length over an experimentally accessible range. The second design is based on building blocks composed of rigidly linked spheres with short-range anisotropic interactions, which are predicted to self-assemble into Bernal spirals. These spirals are quite flexible, and longer helices undergo rearrangements via cooperative, hinge-like moves, in agreement with experiment.Using the framework of potential energy landscape theory, we describe two in silico designs for self-assembling helical colloidal superstructures based upon dipolar dumbbells and Janus-type building blocks, respectively. Helical superstructures with controllable pitch length are obtained using external magnetic field driven assembly of asymmetric dumbbells involving screened electrostatic as well as magnetic dipolar interactions. The pitch of the helix is tuned by modulating the Debye screening length over an experimentally accessible range. The second design is based on building blocks composed of rigidly linked spheres with short-range anisotropic interactions, which are predicted to self-assemble into Bernal spirals. These spirals are quite flexible, and longer helices undergo rearrangements via cooperative, hinge-like moves, in agreement with experiment. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00324a

  5. Lateralization of tonal and intonational pitch processing: an MEG study.

    PubMed

    Fournier, R; Gussenhoven, C; Jensen, O; Hagoort, P

    2010-04-30

    An MEG experiment was carried out in order to compare the processing of lexical-tonal and intonational contrasts, based on the tonal dialect of Roermond (the Netherlands). A set of words with identical phoneme sequences but distinct pitch contours, which represented different lexical meanings or discourse meanings (statement vs. question), were presented to native speakers as well as to a control group of speakers of Standard Dutch, a non-tone language. The stimuli were arranged in a mismatch paradigm, under three experimental conditions: in the first condition (lexical), the pitch contour differences between standard and deviant stimuli reflected differences between lexical meanings; in the second condition (intonational), the stimuli differed in their discourse meaning; in the third condition (combined), they differed both in their lexical and discourse meaning. In all three conditions, native as well as non-native responses showed a clear MMNm (magnetic mismatch negativity) in a time window from 150 to 250 ms after the divergence point of standard and deviant pitch contours. In the lexical condition, a stronger response was found over the left temporal cortex of native as well as non-native speakers. In the intonational condition, the same activation pattern was observed in the control group, but not in the group of native speakers, who showed a right-hemisphere dominance instead. Finally, in the combined (lexical and intonational) condition, brain reactions appeared to represent the summation of the patterns found in the other two conditions. In sum, the lateralization of pitch processing is condition-dependent in the native group only, which suggests that language experience determines how processes should be distributed over both temporal cortices, according to the functions available in the grammar. PMID:20197065

  6. Effects of yaw and pitch motion on model attitude measurements

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Tripp, John S.; Finley, Tom D.

    1995-01-01

    This report presents a theoretical analysis of the dynamic effects of angular motion in yaw and pitch on model attitude measurements in which inertial sensors were used during wind tunnel tests. A technique is developed to reduce the error caused by these effects. The analysis shows that a 20-to-1 reduction in model attitude measurement error caused by angular motion is possible with this technique.

  7. Pitch enhancement facilitates word learning across visual contexts

    PubMed Central

    Filippi, Piera; Gingras, Bruno; Fitch, W. Tecumseh

    2014-01-01

    This study investigates word-learning using a new experimental paradigm that integrates three processes: (a) extracting a word out of a continuous sound sequence, (b) inferring its referential meanings in context, (c) mapping the segmented word onto its broader intended referent, such as other objects of the same semantic category, and to novel utterances. Previous work has examined the role of statistical learning and/or of prosody in each of these processes separately. Here, we combine these strands of investigation into a single experimental approach, in which participants viewed a photograph belonging to one of three semantic categories while hearing a complex, five-word utterance containing a target word. Six between-subjects conditions were tested with 20 adult participants each. In condition 1, the only cue to word-meaning mapping was the co-occurrence of word and referents. This statistical cue was present in all conditions. In condition 2, the target word was sounded at a higher pitch. In condition 3, random words were sounded at a higher pitch, creating an inconsistent cue. In condition 4, the duration of the target word was lengthened. In conditions 5 and 6, an extraneous acoustic cue and a visual cue were associated with the target word, respectively. Performance in this word-learning task was significantly higher than that observed with simple co-occurrence only when pitch prominence consistently marked the target word. We discuss implications for the pragmatic value of pitch marking as well as the relevance of our findings to language acquisition and language evolution. PMID:25566144

  8. Musical experience shapes human brainstem encoding of linguistic pitch patterns.

    PubMed

    Wong, Patrick C M; Skoe, Erika; Russo, Nicole M; Dees, Tasha; Kraus, Nina

    2007-04-01

    Music and speech are very cognitively demanding auditory phenomena generally attributed to cortical rather than subcortical circuitry. We examined brainstem encoding of linguistic pitch and found that musicians show more robust and faithful encoding compared with nonmusicians. These results not only implicate a common subcortical manifestation for two presumed cortical functions, but also a possible reciprocity of corticofugal speech and music tuning, providing neurophysiological explanations for musicians' higher language-learning ability.

  9. Adolescent baseball pitching technique: lower extremity biomechanical analysis.

    PubMed

    Milewski, Matthew D; Õunpuu, Sylvia; Solomito, Matthew; Westwell, Melany; Nissen, Carl W

    2012-11-01

    Documentation of the lower extremity motion patterns of adolescent pitchers is an important part of understanding the pitching motion and the implication of lower extremity technique on upper extremity loads, injury and performance. The purpose of this study was to take the initial step in this process by documenting the biomechanics of the lower extremities during the pitching cycle in adolescent pitchers and to compare these findings with the published data for older pitchers. Three-dimensional motion analysis using a comprehensive lower extremity model was used to evaluate the fast ball pitch technique in adolescent pitchers. Thirty-two pitchers with a mean age of 12.4 years (range 10.5-14.7 years) and at least 2 years of experience were included in this study. The pitchers showed a mean of 49 ± 12° of knee flexion of the lead leg at foot contact. They tended to maintain this position through ball release, and then extended their knee during the follow through phase (ball release to maximal internal glenohumeral rotation). The lead leg hip rapidly progressed into adduction and flexion during the arm cocking phase with a range of motion of 40 ± 10° adduction and 30 ± 13° flexion. The lead hip mean peak adduction velocity was 434 ± 83°/s and flexion velocity was 456 ± 156°/s. Simultaneously, the trailing leg hip rapidly extended approaching to a mean peak extension of -8 ± 5° at 39% of the pitch cycle, which is close to passive range of motion constraints. Peak hip abduction of the trailing leg at foot contact was -31 ± 12°, which also approached passive range of motion constraints. Differences and similarities were also noted between the adolescent lower extremity kinematics and adult pitchers; however, a more comprehensive analysis using similar methods is needed for a complete comparison. PMID:22660979

  10. Process for tertiary oil recovery using tall oil pitch

    DOEpatents

    Radke, Clayton J.

    1985-01-01

    Compositions and process employing same for enhancing the recovery of residual acid crudes, particularly heavy crudes, by injecting a composition comprising caustic in an amount sufficient to maintain a pH of at least about 11, preferably at least about 13, and a small but effective amount of a multivalent cation for inhibiting alkaline silica dissolution with the reservoir. Preferably a tall oil pitch soap is included and particularly for the heavy crudes a polymeric mobility control agent.

  11. Adolescent baseball pitching technique: lower extremity biomechanical analysis.

    PubMed

    Milewski, Matthew D; Õunpuu, Sylvia; Solomito, Matthew; Westwell, Melany; Nissen, Carl W

    2012-11-01

    Documentation of the lower extremity motion patterns of adolescent pitchers is an important part of understanding the pitching motion and the implication of lower extremity technique on upper extremity loads, injury and performance. The purpose of this study was to take the initial step in this process by documenting the biomechanics of the lower extremities during the pitching cycle in adolescent pitchers and to compare these findings with the published data for older pitchers. Three-dimensional motion analysis using a comprehensive lower extremity model was used to evaluate the fast ball pitch technique in adolescent pitchers. Thirty-two pitchers with a mean age of 12.4 years (range 10.5-14.7 years) and at least 2 years of experience were included in this study. The pitchers showed a mean of 49 ± 12° of knee flexion of the lead leg at foot contact. They tended to maintain this position through ball release, and then extended their knee during the follow through phase (ball release to maximal internal glenohumeral rotation). The lead leg hip rapidly progressed into adduction and flexion during the arm cocking phase with a range of motion of 40 ± 10° adduction and 30 ± 13° flexion. The lead hip mean peak adduction velocity was 434 ± 83°/s and flexion velocity was 456 ± 156°/s. Simultaneously, the trailing leg hip rapidly extended approaching to a mean peak extension of -8 ± 5° at 39% of the pitch cycle, which is close to passive range of motion constraints. Peak hip abduction of the trailing leg at foot contact was -31 ± 12°, which also approached passive range of motion constraints. Differences and similarities were also noted between the adolescent lower extremity kinematics and adult pitchers; however, a more comprehensive analysis using similar methods is needed for a complete comparison.

  12. Aircraft Pitch Control with Fixed Order LQ Compensators

    NASA Technical Reports Server (NTRS)

    Green, James; Ashokkumar, Cr.; Homaifar, A.

    1997-01-01

    This paper considers a given set of fixed order compensators for aircraft pitch control problem. By augmenting compensator variables to the original state equations of the aircraft, a new dynamic model is considered to seek a LQ controller. While the fixed order compensators can achieve a set of desired poles in a specified region, LQ formulation provides the inherent robustness properties. The time response for ride quality is significantly improved with a set of dynamic compensators.

  13. Dynamical features of the wake behind a pitching foil.

    PubMed

    Deng, Jian; Sun, Liping; Shao, Xueming

    2015-12-01

    As an extension of the previous study on the three-dimensional transition of the wake behind a pitching foil [Deng and Caulfield, Phys. Rev. E 91, 043017 (2015)], this investigation draws a comprehensive map on the pitching frequency-amplitude phase space. First, by fixing the Reynolds number at Re=1700 and varying the pitching frequency and amplitude, we identify three key dynamical features of the wake: first, the transition from Bénard-von Kármán (BvK) vortex streets to reverse BvK vortex streets, and second, the symmetry breaking of this reverse BvK wake leading to a deflected wake, and a further transition from two-dimensional (2D) wakes to three-dimensional (3D) wakes. The transition boundary between the 2D and 3D wakes lies top right of the wake deflection boundary, implying a correlation between the wake deflection and the 2D to 3D wake transition, confirming that this transition occurs after the wake deflection. This paper supports the previous extensive numerical studies under two-dimensional assumption at low Reynolds number, since it is indeed two dimensional except for the cases at very high pitching frequencies or large amplitudes. Furthermore, by three-dimensional direct numerical simulations (DNSs), we confirm the previous statement about the physical realizability of the short wavelength mode at β=30 (or λ(z)=0.21) for Re=1500. By comparing the three-dimensional vortical structures by DNSs with that from the reconstruction of Floquet modes, we find a good consistency between them, both exhibiting clear streamwise structures in the wake. PMID:26764810

  14. Self-consistent pitch angle diffusion of newborn ions

    SciTech Connect

    Yoon, P.H.; Ziebell, L.F.; Wu, C.S. )

    1991-04-01

    It is well known from the study of ion pickup process by the solar wind that hydromagnetic turbulence can cause the newborn ions to undergo rapid pitch angle diffusion or scattering, thus forming a partial or complete velocity shell distribution. In most of the recent discussions based on quasi-linear theory it is assumed that the spectral wave energy density associated with the hydromagnetic turbulence is constant in time, implying a saturated turbulence level. In contrast, in this work the effect of self-consistently generated waves on the ion dynamics is discussed on the basis of a simple theoretical model, and it is shown both analytically and numerically that the self-consistent diffusion process leads to a time-asymptotic partial shell distribution which extends approximately from the initial pitch angle cos{sup {minus}1}{mu}{sub 0} to {approximately}{pi}/2 in pitch angle space. Particularly, the role of resonant versus nonresonant diffusion processes is discussed in detail. In addition, the effect of continuous ion source term is also incorporated in the numerical analysis since in cometary environment the ions are continuously created.

  15. Pitch-based short carbon fiber. Final report

    SciTech Connect

    Lin, S.S.

    1991-12-01

    Short carbon fiber manufactured from coal tar pitch by Osaka Gas Co. is examined by chemical composition analysis, X-ray powder diffraction, optical microscope, and electron spectroscopic techniques. The present analytical results are compared with the data obtainable from other sources. Owing to the low cost of the short fiber, it is recommended that the fiber could be used for a wide variety of reinforcement applications such as, cement/concrete mixtures, polymer composites, and high temperature materials. Processing includes the mechanical separation of mesophase microbeads of three to 30 micron diameters from crude coal tar during three heat treatment stages. The mesophases obtained are then subjected to solvent extraction, hydrogenation, and polymerization to yield isotropic and anisotropic pitches suitable for melt spinning. The short fiber is fabricated from isotropic pitch by the rotary gas jet method, and the process yields a higher quality fiber as compared to other melt spinning methods. The most important feature is that this process is highly cost effective.

  16. Pitching Emotions: The Interpersonal Effects of Emotions in Professional Baseball

    PubMed Central

    Cheshin, Arik; Heerdink, Marc W.; Kossakowski, Jolanda J.; Van Kleef, Gerben A.

    2016-01-01

    Sports games are inherently emotional situations, but surprisingly little is known about the social consequences of these emotions. We examined the interpersonal effects of emotional expressions in professional baseball. Specifically, we investigated whether pitchers’ facial displays influence how pitches are assessed and responded to. Using footage from the Major League Baseball World Series finals, we isolated incidents where the pitcher’s face was visible before a pitch. A pre-study indicated that participants consistently perceived anger, happiness, and worry in pitchers’ facial displays. An independent sample then predicted pitch characteristics and batter responses based on the same perceived emotional displays. Participants expected pitchers perceived as happy to throw more accurate balls, pitchers perceived as angry to throw faster and more difficult balls, and pitchers perceived as worried to throw slower and less accurate balls. Batters were expected to approach (swing) when faced with a pitcher perceived as happy and to avoid (no swing) when faced with a pitcher perceived as worried. Whereas previous research focused on using emotional expressions as information regarding past and current situations, our work suggests that people also use perceived emotional expressions to predict future behavior. Our results attest to the impact perceived emotional expressions can have on professional sports. PMID:26909062

  17. Perceptual Grouping Affects Pitch Judgments Across Time and Frequency

    PubMed Central

    Borchert, Elizabeth M. O.; Micheyl, Christophe; Oxenham, Andrew J.

    2010-01-01

    Pitch, the perceptual correlate of fundamental frequency (F0), plays an important role in speech, music and animal vocalizations. Changes in F0 over time help define musical melodies and speech prosody, while comparisons of simultaneous F0 are important for musical harmony, and for segregating competing sound sources. This study compared listeners’ ability to detect differences in F0 between pairs of sequential or simultaneous tones that were filtered into separate, non-overlapping spectral regions. The timbre differences induced by filtering led to poor F0 discrimination in the sequential, but not the simultaneous, conditions. Temporal overlap of the two tones was not sufficient to produce good performance; instead performance appeared to depend on the two tones being integrated into the same perceptual object. The results confirm the difficulty of comparing the pitches of sequential sounds with different timbres and suggest that, for simultaneous sounds, pitch differences may be detected through a decrease in perceptual fusion rather than an explicit coding and comparison of the underlying F0s. PMID:21077719

  18. Pitching effects of buoyancy during four competitive swimming strokes.

    PubMed

    Cohen, Raymond C Z; Cleary, Paul W; Harrison, Simon M; Mason, Bruce R; Pease, David L

    2014-10-01

    The purpose of this study was to determine the pitching effects of buoyancy during all competitive swimming strokes--freestyle, backstroke, butterfly, and breaststroke. Laser body scans of national-level athletes and synchronized multiangle swimming footage were used in a novel markerless motion capture process to produce three-dimensional biomechanical models of the swimming athletes. The deforming surface meshes were then used to calculate swimmer center-of-mass (CoM) positions, center-of-buoyancy (CoB) positions, pitch buoyancy torques, and sagittal plane moments of inertia (MoI) throughout each stroke cycle. In all cases the mean buoyancy torque tended to raise the legs and lower the head; however, during part of the butterfly stroke the instantaneous buoyancy torque had the opposite effect. The swimming strokes that use opposing arm and leg strokes (freestyle and backstroke) had smaller variations in CoM positions, CoB positions, and buoyancy torques. Strokes with synchronized left-right arm and leg movement (butterfly and breaststroke) had larger variations in buoyancy torques, which impacts the swimmer's ability to maintain a horizontal body pitch for these strokes. The methodology outlined in this paper enables the rotational effects of buoyancy to be better understood by swimmers, allowing better control of streamlined horizontal body positioning during swimming to improve performance. PMID:24979812

  19. Tone clarity in mixed pitch/phonation type tones

    NASA Astrophysics Data System (ADS)

    Andruski, Jean E.

    2001-05-01

    Lexical tone identity is often determined by a complex of acoustic cues. In Green Mong, a Hmong-Mien language of Southeast Asia, a small subset of tones is characterized by phonation type in addition to pitch height, pitch contour, and duration, which characterize the remaining tones of the language. In tones that incorporate multiple cues to tonal identity, what makes a tone clear, or easy to recognize? This study examines acoustic and perceptual data to address this question. Six native speakers of Green Mong were asked to produce 132 phonological CV words in sentence context, using a conversational speaking style. Seventeen native speakers of the language were then asked to categorize three tones which have similar falling contours, but are differentiated by phonation type (breathy, creaky, and modal). Tokens that were correctly identified by 100% of the listeners were compared with tokens that were relatively poorly identified. Data indicate that the breathy- and creaky-voiced tones are less susceptible to identification errors than the modal-voiced tone. However, the clearest tokens of the three tones are also differentiated by details of pitch contour shape, and by duration. Similarities and differences between acoustic cue values for the best and worst tokens will be discussed.

  20. Which Direction Is up for a High Pitch?

    PubMed

    Carnevale, Michael J; Harris, Laurence R

    2016-01-01

    Low- and high-pitched sounds are perceptually associated with low and high visuospatial elevations, respectively. The spatial properties of this association are not well understood. Here we report two experiments that investigated whether low and high tones can be used as spatial cues to upright for self-orientation and identified the spatial frame(s) of reference used in perceptually binding auditory pitch to visuospatial 'up' and 'down'. In experiment 1, participants' perceptual upright (PU) was measured while lying on their right side with and without high- and low-pitched sounds played through speakers above their left ear and below their right ear. The sounds were ineffective in moving the perceived upright from a direction intermediate between the body and gravity towards the direction indicated by the sounds. In experiment 2, we measured the biasing effects of ascending and descending tones played through headphones on ambiguous vertical or horizontal visual motion created by combining gratings drifting in opposite directions while participants either sat upright or laid on their right side. Ascending and descending tones biased the interpretation of ambiguous motion along both the gravitational vertical and the long-axis of the body with the strongest effect along the body axis. The combination of these two effects showed that axis of maximum effect of sound corresponded approximately to the direction of the perceptual upright, compatible with the idea that 'high' and 'low' sounds are defined along this axis. PMID:27311293

  1. Trunk axial rotation in baseball pitching and batting.

    PubMed

    Fleisig, Glenn S; Hsu, Wellington K; Fortenbaugh, Dave; Cordover, Andrew; Press, Joel M

    2013-11-01

    The purpose of this study was to quantify trunk axial rotation and angular acceleration in pitching and batting of elite baseball players. Healthy professional baseball pitchers (n = 40) and batters (n = 40) were studied. Reflective markers attached to each athlete were tracked at 240 Hz with an eight-camera automated digitizing system. Trunk axial rotation was computed as the angle between the pelvis and the upper trunk in the transverse plane. Trunk angular acceleration was the second derivative of axial rotation. Maximum trunk axial rotation (55 +/- 6 degrees) and angular acceleration (11,600 +/- 3,100 degrees/s2) in pitching occurred before ball release, approximately at the instant the front foot landed. Maximum trunk axial rotation (46 +/- 9 degrees) and angular acceleration (7,200 +/- 2,800 degrees/s2) in batting occurred in the follow-through after ball contact. Thus, the most demanding instant for the trunk and spine was near front foot contact for pitching and after ball contact for batting. PMID:24466645

  2. Trunk axial rotation in baseball pitching and batting.

    PubMed

    Fleisig, Glenn S; Hsu, Wellington K; Fortenbaugh, Dave; Cordover, Andrew; Press, Joel M

    2013-11-01

    The purpose of this study was to quantify trunk axial rotation and angular acceleration in pitching and batting of elite baseball players. Healthy professional baseball pitchers (n = 40) and batters (n = 40) were studied. Reflective markers attached to each athlete were tracked at 240 Hz with an eight-camera automated digitizing system. Trunk axial rotation was computed as the angle between the pelvis and the upper trunk in the transverse plane. Trunk angular acceleration was the second derivative of axial rotation. Maximum trunk axial rotation (55 +/- 6 degrees) and angular acceleration (11,600 +/- 3,100 degrees/s2) in pitching occurred before ball release, approximately at the instant the front foot landed. Maximum trunk axial rotation (46 +/- 9 degrees) and angular acceleration (7,200 +/- 2,800 degrees/s2) in batting occurred in the follow-through after ball contact. Thus, the most demanding instant for the trunk and spine was near front foot contact for pitching and after ball contact for batting.

  3. Perceptual grouping affects pitch judgments across time and frequency.

    PubMed

    Borchert, Elizabeth M O; Micheyl, Christophe; Oxenham, Andrew J

    2011-02-01

    Pitch, the perceptual correlate of fundamental frequency (F0), plays an important role in speech, music, and animal vocalizations. Changes in F0 over time help define musical melodies and speech prosody, while comparisons of simultaneous F0 are important for musical harmony, and for segregating competing sound sources. This study compared listeners' ability to detect differences in F0 between pairs of sequential or simultaneous tones that were filtered into separate, nonoverlapping spectral regions. The timbre differences induced by filtering led to poor F0 discrimination in the sequential, but not the simultaneous, conditions. Temporal overlap of the two tones was not sufficient to produce good performance; instead performance appeared to depend on the two tones being integrated into the same perceptual object. The results confirm the difficulty of comparing the pitches of sequential sounds with different timbres and suggest that, for simultaneous sounds, pitch differences may be detected through a decrease in perceptual fusion rather than an explicit coding and comparison of the underlying F0s.

  4. A unique asymmetrical stroop effect in absolute pitch possessors.

    PubMed

    Akiva-Kabiri, Lilach; Henik, Avishai

    2012-01-01

    The Stroop task has been employed to study automaticity or failures of selective attention for many years. The effect is known to be asymmetrical, with words affecting color naming but not vice versa. In the current work two auditory-visual Stroop-like tasks were devised in order to study the automaticity of pitch processing in both absolute pitch (AP) possessors and musically trained controls without AP (nAP). In the tone naming task, participants were asked to name the auditory tone while ignoring a visual note name. In the note naming task, participants were asked to read a note name while ignoring the auditory tone. The nAP group showed a significant congruency effect only in the tone naming task, whereas AP possessors showed the reverse pattern, with a significant congruency effect only in the note reading task. Thus, AP possessors were unable to ignore the auditory tone when asked to read the note, but were unaffected by the verbal note name when asked to label the auditory tone. The results suggest that pitch identification in participants endowed with AP ability is automatic and impossible to suppress.

  5. Pitching Emotions: The Interpersonal Effects of Emotions in Professional Baseball.

    PubMed

    Cheshin, Arik; Heerdink, Marc W; Kossakowski, Jolanda J; Van Kleef, Gerben A

    2016-01-01

    Sports games are inherently emotional situations, but surprisingly little is known about the social consequences of these emotions. We examined the interpersonal effects of emotional expressions in professional baseball. Specifically, we investigated whether pitchers' facial displays influence how pitches are assessed and responded to. Using footage from the Major League Baseball World Series finals, we isolated incidents where the pitcher's face was visible before a pitch. A pre-study indicated that participants consistently perceived anger, happiness, and worry in pitchers' facial displays. An independent sample then predicted pitch characteristics and batter responses based on the same perceived emotional displays. Participants expected pitchers perceived as happy to throw more accurate balls, pitchers perceived as angry to throw faster and more difficult balls, and pitchers perceived as worried to throw slower and less accurate balls. Batters were expected to approach (swing) when faced with a pitcher perceived as happy and to avoid (no swing) when faced with a pitcher perceived as worried. Whereas previous research focused on using emotional expressions as information regarding past and current situations, our work suggests that people also use perceived emotional expressions to predict future behavior. Our results attest to the impact perceived emotional expressions can have on professional sports.

  6. Pitching Emotions: The Interpersonal Effects of Emotions in Professional Baseball.

    PubMed

    Cheshin, Arik; Heerdink, Marc W; Kossakowski, Jolanda J; Van Kleef, Gerben A

    2016-01-01

    Sports games are inherently emotional situations, but surprisingly little is known about the social consequences of these emotions. We examined the interpersonal effects of emotional expressions in professional baseball. Specifically, we investigated whether pitchers' facial displays influence how pitches are assessed and responded to. Using footage from the Major League Baseball World Series finals, we isolated incidents where the pitcher's face was visible before a pitch. A pre-study indicated that participants consistently perceived anger, happiness, and worry in pitchers' facial displays. An independent sample then predicted pitch characteristics and batter responses based on the same perceived emotional displays. Participants expected pitchers perceived as happy to throw more accurate balls, pitchers perceived as angry to throw faster and more difficult balls, and pitchers perceived as worried to throw slower and less accurate balls. Batters were expected to approach (swing) when faced with a pitcher perceived as happy and to avoid (no swing) when faced with a pitcher perceived as worried. Whereas previous research focused on using emotional expressions as information regarding past and current situations, our work suggests that people also use perceived emotional expressions to predict future behavior. Our results attest to the impact perceived emotional expressions can have on professional sports. PMID:26909062

  7. Neural correlates of consonance, dissonance, and the hierarchy of musical pitch in the human brainstem.

    PubMed

    Bidelman, Gavin M; Krishnan, Ananthanarayan

    2009-10-21

    Consonant and dissonant pitch relationships in music provide the foundation of melody and harmony, the building blocks of Western tonal music. We hypothesized that phase-locked neural activity within the brainstem may preserve information relevant to these important perceptual attributes of music. To this end, we measured brainstem frequency-following responses (FFRs) from nonmusicians in response to the dichotic presentation of nine musical intervals that varied in their degree of consonance and dissonance. Neural pitch salience was computed for each response using temporally based autocorrelation and harmonic pitch sieve analyses. Brainstem responses to consonant intervals were more robust and yielded stronger pitch salience than those to dissonant intervals. In addition, the ordering of neural pitch salience across musical intervals followed the hierarchical arrangement of pitch stipulated by Western music theory. Finally, pitch salience derived from neural data showed high correspondence with behavioral consonance judgments (r = 0.81). These results suggest that brainstem neural mechanisms mediating pitch processing show preferential encoding of consonant musical relationships and, furthermore, preserve the hierarchical pitch relationships found in music, even for individuals without formal musical training. We infer that the basic pitch relationships governing music may be rooted in low-level sensory processing and that an encoding scheme that favors consonant pitch relationships may be one reason why such intervals are preferred behaviorally.

  8. Fine-grained pitch processing of music and speech in congenital amusia.

    PubMed

    Tillmann, Barbara; Rusconi, Elena; Traube, Caroline; Butterworth, Brian; Umiltà, Carlo; Peretz, Isabelle

    2011-12-01

    Congenital amusia is a lifelong disorder of music processing that has been ascribed to impaired pitch perception and memory. The present study tested a large group of amusics (n=17) and provided evidence that their pitch deficit affects pitch processing in speech to a lesser extent: Fine-grained pitch discrimination was better in spoken syllables than in acoustically matched tones. Unlike amusics, control participants performed fine-grained pitch discrimination better for musical material than for verbal material. These findings suggest that pitch extraction can be influenced by the nature of the material (music vs speech), and that amusics' pitch deficit is not restricted to musical material, but extends to segmented speech events.

  9. Musical intervals and relative pitch: Frequency resolution, not interval resolution, is special

    PubMed Central

    McDermott, Josh H.; Keebler, Michael V.; Micheyl, Christophe; Oxenham, Andrew J.

    2010-01-01

    Pitch intervals are central to most musical systems, which utilize pitch at the expense of other acoustic dimensions. It seemed plausible that pitch might uniquely permit precise perception of the interval separating two sounds, as this could help explain its importance in music. To explore this notion, a simple discrimination task was used to measure the precision of interval perception for the auditory dimensions of pitch, brightness, and loudness. Interval thresholds were then expressed in units of just-noticeable differences for each dimension, to enable comparison across dimensions. Contrary to expectation, when expressed in these common units, interval acuity was actually worse for pitch than for loudness or brightness. This likely indicates that the perceptual dimension of pitch is unusual not for interval perception per se, but rather for the basic frequency resolution it supports. The ubiquity of pitch in music may be due in part to this fine-grained basic resolution. PMID:20968366

  10. "It was a thought pitch": personal, situational, and target influences on hit-by-pitch events across time.

    PubMed

    Timmerman, Thomas A

    2007-05-01

    This study tested the possibility that hit-by-pitch events in Major League Baseball could be explained by theories of aggression. Consistent with the general aggression model, personal and situational characteristics interacted to predict these events. Pitchers were more likely to hit batters in situations that allowed them to restore justice and protect valued social identities. Higher order interactions revealed that the likelihood of being hit by a pitch in these situations depended on the background of the pitcher and the race of the batter. Consistent with the culture of honor theory, pitchers from the southern United States were more likely to hit batters in these situations, but primarily if the batter was White.

  11. TH-C-18A-12: Evaluation of the Impact of Body Size and Tube Output Limits in the Optimization of Fast Scanning with High-Pitch Dual Source CT

    SciTech Connect

    Ramirez Giraldo, J; Mileto, A.; Hurwitz, L.; Marin, D.

    2014-06-15

    Purpose: To evaluate the impact of body size and tube power limits in the optimization of fast scanning with high-pitch dual source CT (DSCT). Methods: A previously validated MERCURY phantom, made of polyethylene, with circular cross-section of diameters 16, 23, 30 and 37cm, and connected through tapered sections, was scanned using a second generation DSCT system. The DSCT operates with two independently controlled x-ray tube generators offering up to 200 kW power reserve (100 kW per tube). The entire length of the phantom (42cm) was scanned with two protocols using: A)Standard single-source CT (SSCT) protocol with pitch of 0.8, and B) DSCT protocol with high-pitch values ranging from 1.6 to 3.2 (0.2 steps). All scans used 120 kVp with 150 quality reference mAs using automatic exposure control. Scanner radiation output (CTDIvol) and effective mAs values were extracted retrospectively from DICOM files for each slice. Image noise was recorded. All variables were assessed relative to phantom diameter. Results: With standard-pitch SSCT, the scanner radiation output (and tube-current) were progressively adapted with increasing size, from 6 mGy (120 mAs) up to 15 mGy (270 mAs) from the thinnest (16cm) to the thickest diameter (37 cm), respectively. By comparison, using high-pitch (3.2), the scanner output was bounded at about 8 mGy (140 mAs), independent of phantom diameter. Although relative to standard-pitch, the high-pitch led to lower radiation output for the same scan, the image noise was higher, particularly for larger diameters. To match the radiation output adaptation of standard-pitch, a high-pitch mode of 1.6 was needed, with the advantage of scanning twice as fast. Conclusion: To maximize the benefits of fast scanning with high-pitch DSCT, the body size and tube power limits of the system need to be considered such that a good balance between speed of acquisition and image quality are warranted. JCRG is an employee of Siemens Medical Solutions USA Inc.

  12. Tilt and Translation Motion Perception during Pitch Tilt with Visual Surround Translation

    NASA Technical Reports Server (NTRS)

    O'Sullivan, Brita M.; Harm, Deborah L.; Reschke, Millard F.; Wood, Scott J.

    2006-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive an accurate representation of spatial orientation. Previous studies suggest that multisensory integration is critical for discriminating linear accelerations arising from tilt and translation head motion. Visual input is especially important at low frequencies where canal input is declining. The NASA Tilt Translation Device (TTD) was designed to recreate postflight orientation disturbances by exposing subjects to matching tilt self motion with conflicting visual surround translation. Previous studies have demonstrated that brief exposures to pitch tilt with foreaft visual surround translation produced changes in compensatory vertical eye movement responses, postural equilibrium, and motion sickness symptoms. Adaptation appeared greatest with visual scene motion leading (versus lagging) the tilt motion, and the adaptation time constant appeared to be approximately 30 min. The purpose of this study was to compare motion perception when the visual surround translation was inphase versus outofphase with pitch tilt. The inphase stimulus presented visual surround motion one would experience if the linear acceleration was due to foreaft self translation within a stationary surround, while the outofphase stimulus had the visual scene motion leading the tilt by 90 deg as previously used. The tilt stimuli in these conditions were asymmetrical, ranging from an upright orientation to 10 deg pitch back. Another objective of the study was to compare motion perception with the inphase stimulus when the tilts were asymmetrical relative to upright (0 to 10 deg back) versus symmetrical (10 deg forward to 10 deg back). Twelve subjects (6M, 6F, 22-55 yrs) were tested during 3 sessions separated by at least one week. During each of the three sessions (out-of-phase asymmetrical, in-phase asymmetrical, inphase symmetrical), subjects were exposed to visual surround translation

  13. Biomechanical Comparison of the Interval Throwing Progression and Baseball Pitching

    PubMed Central

    Slenker, Nicholas; Limpisvasti, Orr; Mohr, Karen; ElAttrache, Neal S.

    2014-01-01

    Objectives: The interval throwing progression is a hallmark of the rehabilitation program designed for baseball pitchers or position players returning from shoulder or elbow injury. It typically begins with flat-ground throws at a short distance and progressively increases to 180 feet or more. For pitchers, this phase is then followed by throwing off the mound, progressing from partial-effort to full-effort pitches. Theoretically, the progression of throwing phases allows an injured athlete to gradually recover his flexibility, arm strength, and mechanics while moving from less stressful activities to more stressful activities. While this throwing program has been a part of baseball rehabilitation and conditioning for decades, little is known about the biomechanical stresses generated during flat-ground throwing or variable effort pitching off the mound. Methods: Twenty-nine healthy, college baseball pitchers were analyzed using a quantitative motion analysis system. The participants threw from flat ground at distances of 60-ft, 90-ft, 120-ft, and 180-ft, being instructed to throw “hard, on a horizontal line”. The pitchers then threw fastballs from a mound at 3 different efforts: 60% effort, 80% effort, and full-effort. Biomechanical parameters of position, velocity, and kinetic values were recorded. Mean values were calculated for humeral internal rotation torque (HIRT) and elbow valgus load (EVL) for each throw type. This data was then used to compare shoulder and elbow stresses between the various throws. The differences among mean values were analyzed with a repeated-measures analysis of variance (ANOVA). Post hoc paired t tests were performed when the ANOVA revealed a significant difference. Results: Statistically significant differences exist across all mound intensities (60%, 80%, and 100% effort) for nHIRT (p=0.03) and nEVL (p=0.04), as both parameters increased with percentage throwing effort. No statistically significant differences were found across

  14. Disturbance observer based pitch control of wind turbines for disturbance rejection

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan; Chen, Xu; Tang, Jiong

    2016-04-01

    In this research, a disturbance observer based (DOB) control scheme is illustrated to reject the unknown low frequency disturbances to wind turbines. Specifically, we aim at maintaining the constant output power but achieving better generator speed regulation when the wind turbine is operated at time-varying and turbulent wind field. The disturbance observer combined with a filter is designed to asymptotically reject the persistent unknown time-varying disturbances. The proposed algorithm is tested in both linearized and nonlinear NREL offshore 5-MW baseline wind turbine. The application of this DOB pitch controller achieves improved power and speed regulation in Region 3 compared with a baseline gain scheduling PID collective controller both in linearized and nonlinear plant.

  15. Efficient passive pitching motion caused by elastic deformation in flexible flapping wing MAVs

    NASA Astrophysics Data System (ADS)

    Nguyen, Trong; Truong, Tien; Yeo, Khoon Seng; Lim, Tee Tai

    2015-11-01

    Computational and experimental models which mimic Hawkmoth wings were constructed to investigate the effects of wing flexibility. The wing actuation mechanism is minimal with only one degree of freedom in sweeping motion with neither active pitching nor elevation. Despite the simplicity of the imparted motion, the wing models in both computations and experiments delivered convincing deformation features such as wing twisting and camber which closely resembles the ones observed in real Hawkmoth wings. The generated aerodynamic forces are remarkable both in magnitude and efficiency. The study hence reveals that a complicated actuation mechanism might not be required to produce the sophisticated and efficient motion of insect wings, which in fact could be the result of collective elastic deformation thanks to their highly optimized structure mainly comprised of well-organized veins and membranes.

  16. Modern methods for investigating the stability of a pitching floating platform wind turbine

    NASA Astrophysics Data System (ADS)

    Lennie, Matthew; Marten, David; Pechlivanoglou, George; Navid Nayeri, Christian; Paschereit, Christian Oliver

    2016-09-01

    The QBlade implementation of the Lifting Line Free Vortex Wake method(LLFVW) was tested in conditions analogous to floating platform motion. Comparisons against two independent test cases, using a variety of simulation methods show excellent agreement in thrust forces, rotor power, blade forces and rotor plane induction. Along with the many verifications already undertaken in literature, it seems that the code performs solidly even in these challenging cases. Further to this, the key steps are presented from a new formulation of the instantaneous aerodynamic thrust damping of a wind turbine rotor. A test case with harmonic platform motion and collective pitch is used to demonstrate how combining such tools can lead to better understanding of aeroelastic stability.

  17. Experimental Investigation of the Unsteady Flow Structures of Two Interacting Pitching Wings

    NASA Astrophysics Data System (ADS)

    Kurt, Melike; Moored, Keith

    2015-11-01

    Birds, insects and fish propel themselves with unsteady motions of their wings and fins. Many of these animals are also found to fly or swim in three-dimensional flocks and schools. Numerous studies have explored the three-dimensional steady flow interactions and the two-dimensional unsteady flow interactions in collectives. Yet, the characterization of the three-dimensional unsteady interactions remains relatively unexplored. This study aims to characterize the flow structures and interactions between two sinusoidally pitching finite-span wings. The arrangement of the wings varies from a tandem to a bi-plane configuration. The vortex structures for these various arrangements are quantified by using particle image velocimetry. The vortex-wing interactions are also characterized as the synchrony between the wings is modified.

  18. Adaptive State Predictor Based Human Operator Modeling on Longitudinal and Lateral Control

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Gregory, Irene M.; Hempley, Lucas E.

    2015-01-01

    Control-theoretic modeling of the human operator dynamic behavior in manual control tasks has a long and rich history. In the last two decades, there has been a renewed interest in modeling the human operator. There has also been significant work on techniques used to identify the pilot model of a given structure. The purpose of this research is to attempt to go beyond pilot identification based on collected experimental data and to develop a predictor of pilot behavior. An experiment was conducted to categorize these interactions of the pilot with an adaptive controller compensating during control surface failures. A general linear in-parameter model structure is used to represent a pilot. Three different estimation methods are explored. A gradient descent estimator (GDE), a least squares estimator with exponential forgetting (LSEEF), and a least squares estimator with bounded gain forgetting (LSEBGF) used the experiment data to predict pilot stick input. Previous results have found that the GDE and LSEEF methods are fairly accurate in predicting longitudinal stick input from commanded pitch. This paper discusses the accuracy of each of the three methods - GDE, LSEEF, and LSEBGF - to predict both pilot longitudinal and lateral stick input from the flight director's commanded pitch and bank attitudes.

  19. The relationship between age and baseball pitching kinematics in professional baseball pitchers.

    PubMed

    Dun, Shouchen; Fleisig, Glenn S; Loftice, Jeremy; Kingsley, David; Andrews, James R

    2007-01-01

    Joint range of motion and physical capacities have been shown to change with age in both throwing athletes and non-athletes. The age of professional baseball pitchers could span from late teens to mid-40s. However, the effects of age on the pitching kinematics among professional baseball pitchers are still unknown. In this study, 67 healthy professional baseball pitchers were tested using a 3D motion analysis system. Their mean age was 23.7+/-3.3 years (range 18.8-34.4). The 12 pitchers more than one standard deviation older than the mean (i.e., older than 27.0 years) were categorized into the older group, and the 10 pitchers more than one standard deviation younger than the mean (i.e., younger than 20.4 years) were defined as the younger group. In all, 18 kinematic variables (14 position and 4 velocity) were calculated, and Student's t-tests were used to compare the variables between the two groups. Six position variables were found to be significantly different between the two groups. At the instant of lead foot contact, the older group had a shorter stride, a more closed pelvis orientation, and a more closed upper trunk orientation. The older group also produced less shoulder external rotation during the arm cocking phase, more lead knee flexion at ball release, and less forward trunk tilt at ball release. Ball velocity and body segment velocity variables showed no significant differences between the two groups. Thus, differences in specific pitching kinematic variables among professional baseball pitchers of different age groups were not associated with significant differences in ball velocities between groups. The current results suggest that both biological changes and technique adaptations occur during the career of a professional baseball pitcher.

  20. Occipital Cortical Thickness Predicts Performance on Pitch and Musical Tasks in Blind Individuals

    PubMed Central

    Zatorre, Robert J.

    2012-01-01

    The behavioral and neurofunctional consequences of blindness often include performance enhancements and recruitment of occipital regions for nonvisual tasks. How the neuroanatomical changes resulting from this sensory loss relate to these functional changes is, however, less clear. Previous studies using cortical thickness (CT) measures have shown thicker occipital cortex in early-blind (EB) individuals compared with sighted controls. We hypothesized that this finding reflects the crossmodal plasticity often observed in blind individuals and thus could reflect behavioral adaptations. To address this issue, CT measures in blind (early and late) and sighted subjects were obtained along with several auditory behavioral measures in an attempt to relate behavioral and neuroanatomical changes. Group contrasts confirmed previous results in showing thicker occipital cortex in the EB. Regression analyses between CT measures across the whole brain of all blind individuals with the behavioral scores from 2 tasks in which EB subjects were superior (pitch and melody discrimination) showed that CT of occipital areas was directly related to behavioral enhancements. These findings constitute a compelling demonstration that anatomical changes in occipital areas are directly related to heightened behavioral abilities in the blind and hence support the idea that these anatomical features reflect adaptive compensatory plasticity. PMID:22095215

  1. Differential Recognition of Pitch Patterns in Discrete and Gliding Stimuli in Congenital Amusia: Evidence from Mandarin Speakers

    ERIC Educational Resources Information Center

    Liu, Fang; Xu, Yi; Patel, Aniruddh D.; Francart, Tom; Jiang, Cunmei

    2012-01-01

    This study examined whether "melodic contour deafness" (insensitivity to the direction of pitch movement) in congenital amusia is associated with specific types of pitch patterns (discrete versus gliding pitches) or stimulus types (speech syllables versus complex tones). Thresholds for identification of pitch direction were obtained using discrete…

  2. Adapted waveform analysis: a tool for audio, image, and video enhancement

    NASA Astrophysics Data System (ADS)

    Coifman, Ronald R.; Woog, Lionel J.

    1997-02-01

    Adapted wave form analysis, refers to a collection of FFT like adapted transform algorithms. Given a signal these methods provide special matched collections of templates (orthonormal bases) enabling an efficient extraction of structural components. As a result various operations such as denoising, undesirable background suppression, sharpening and enhancement can be achieved efficiently. Perhaps the closest well known example of such coding method is provided by musical notation, where each segment of music is represented by a musical score made up of notes (templates) characterized by their duration, pitch, location and amplitude, our method corresponds to transcribing the music in as few notes as possible. Since noise and static are difficult to describe efficiently we obtain as a byproduct a denoised version of the sound. This transcription in a score can be developed into a mathematical musical orchestration as described below. The extension to images and video is straightforward we describe the image by collections of oscillatory patterns (paint brush strokes) of various sizes, locations, and amplitudes using a variety of orthogonal bases.

  3. Where music meets space: Children's sensitivity to pitch intervals is related to their mental spatial transformation skills.

    PubMed

    Möhring, Wenke; Ramsook, Kizzann Ashana; Hirsh-Pasek, Kathryn; Golinkoff, Roberta M; Newcombe, Nora S

    2016-06-01

    Relations have been found among various continuous dimensions, including space and musical pitch. To probe the nature and development of space-pitch mappings, we tested 5- to 7-year-olds and adults (N=69), who heard pitch intervals and were asked to choose the corresponding spatial representation. Results showed that children and adults both mapped pitches continuously onto space, although effects were stronger in older than younger children. Additionally, children's spatial and numerical skills were tested, showing a relation between children's spatial and pitch-matching skills, and between their spatial and numerical skills. However, pitch and number were not related, suggesting spatial underpinnings for pitch and number.

  4. Aerodynamic Response of a Pitching Airfoil with Pulsed Circulation Control for Vertical Axis Wind Turbine Applications

    NASA Astrophysics Data System (ADS)

    Panther, Chad C.

    Vertical Axis Wind Turbines (VAWTs) have experienced a renewed interest in development for urban, remote, and offshore applications. Past research has shown that VAWTs cannot compete with Horizontals Axis Wind Turbines (HAWTs) in terms of energy capture efficiency. VAWT performance is plagued by dynamic stall (DS) effects at low tip-speed ratios (lambda), where each blade pitches beyond static stall multiple times per revolution. Furthermore, for lambda<2, blades operate outside of stall during over 70% of rotation. However, VAWTs offer many advantages such as omnidirectional operation, ground proximity of generator, lower sound emission, and non-cantilevered blades with longer life. Thus, mitigating dynamic stall and improving VAWT blade aerodynamics for competitive power efficiency has been a popular research topic in recent years and the directive of this study. Past research at WVU focused on the addition of circulation control (CC) technology to improve VAWT aerodynamics and expand the operational envelope. A novel blade design was generated from the augmentation of a NACA0018 airfoil to include CC capabilities. Static wind tunnel data was collected for a range of steady jet momentum coefficients (0.01≤ Cmu≤0.10) for analytical vortex model performance projections. Control strategies were developed to optimize CC jet conditions throughout rotation, resulting in improved power output for 2≤lambda≤5. However, the pumping power required to produce steady CC jets reduced net power gains of the augmented turbine by approximately 15%. The goal of this work was to investigate pulsed CC jet actuation to match steady jet performance with reduced mass flow requirements. To date, no experimental studies have been completed to analyze pulsed CC performance on a pitching airfoil. The research described herein details the first study on the impact of steady and pulsed jet CC on pitching VAWT blade aerodynamics. Both numerical and experimental studies were

  5. Normal-Hearing Listeners' and Cochlear Implant Users' Perception of Pitch Cues in Emotional Speech.

    PubMed

    Gilbers, Steven; Fuller, Christina; Gilbers, Dicky; Broersma, Mirjam; Goudbeek, Martijn; Free, Rolien; Başkent, Deniz

    2015-10-01

    In cochlear implants (CIs), acoustic speech cues, especially for pitch, are delivered in a degraded form. This study's aim is to assess whether due to degraded pitch cues, normal-hearing listeners and CI users employ different perceptual strategies to recognize vocal emotions, and, if so, how these differ. Voice actors were recorded pronouncing a nonce word in four different emotions: anger, sadness, joy, and relief. These recordings' pitch cues were phonetically analyzed. The recordings were used to test 20 normal-hearing listeners' and 20 CI users' emotion recognition. In congruence with previous studies, high-arousal emotions had a higher mean pitch, wider pitch range, and more dominant pitches than low-arousal emotions. Regarding pitch, speakers did not differentiate emotions based on valence but on arousal. Normal-hearing listeners outperformed CI users in emotion recognition, even when presented with CI simulated stimuli. However, only normal-hearing listeners recognized one particular actor's emotions worse than the other actors'. The groups behaved differently when presented with similar input, showing that they had to employ differing strategies. Considering the respective speaker's deviating pronunciation, it appears that for normal-hearing listeners, mean pitch is a more salient cue than pitch range, whereas CI users are biased toward pitch range cues.

  6. Normal-Hearing Listeners’ and Cochlear Implant Users’ Perception of Pitch Cues in Emotional Speech

    PubMed Central

    Fuller, Christina; Gilbers, Dicky; Broersma, Mirjam; Goudbeek, Martijn; Free, Rolien; Başkent, Deniz

    2015-01-01

    In cochlear implants (CIs), acoustic speech cues, especially for pitch, are delivered in a degraded form. This study’s aim is to assess whether due to degraded pitch cues, normal-hearing listeners and CI users employ different perceptual strategies to recognize vocal emotions, and, if so, how these differ. Voice actors were recorded pronouncing a nonce word in four different emotions: anger, sadness, joy, and relief. These recordings’ pitch cues were phonetically analyzed. The recordings were used to test 20 normal-hearing listeners’ and 20 CI users’ emotion recognition. In congruence with previous studies, high-arousal emotions had a higher mean pitch, wider pitch range, and more dominant pitches than low-arousal emotions. Regarding pitch, speakers did not differentiate emotions based on valence but on arousal. Normal-hearing listeners outperformed CI users in emotion recognition, even when presented with CI simulated stimuli. However, only normal-hearing listeners recognized one particular actor’s emotions worse than the other actors’. The groups behaved differently when presented with similar input, showing that they had to employ differing strategies. Considering the respective speaker’s deviating pronunciation, it appears that for normal-hearing listeners, mean pitch is a more salient cue than pitch range, whereas CI users are biased toward pitch range cues.

  7. Normal-Hearing Listeners’ and Cochlear Implant Users’ Perception of Pitch Cues in Emotional Speech

    PubMed Central

    Fuller, Christina; Gilbers, Dicky; Broersma, Mirjam; Goudbeek, Martijn; Free, Rolien; Başkent, Deniz

    2015-01-01

    In cochlear implants (CIs), acoustic speech cues, especially for pitch, are delivered in a degraded form. This study’s aim is to assess whether due to degraded pitch cues, normal-hearing listeners and CI users employ different perceptual strategies to recognize vocal emotions, and, if so, how these differ. Voice actors were recorded pronouncing a nonce word in four different emotions: anger, sadness, joy, and relief. These recordings’ pitch cues were phonetically analyzed. The recordings were used to test 20 normal-hearing listeners’ and 20 CI users’ emotion recognition. In congruence with previous studies, high-arousal emotions had a higher mean pitch, wider pitch range, and more dominant pitches than low-arousal emotions. Regarding pitch, speakers did not differentiate emotions based on valence but on arousal. Normal-hearing listeners outperformed CI users in emotion recognition, even when presented with CI simulated stimuli. However, only normal-hearing listeners recognized one particular actor’s emotions worse than the other actors’. The groups behaved differently when presented with similar input, showing that they had to employ differing strategies. Considering the respective speaker’s deviating pronunciation, it appears that for normal-hearing listeners, mean pitch is a more salient cue than pitch range, whereas CI users are biased toward pitch range cues. PMID:27648210

  8. Pitch Processing in Children with Williams Syndrome: Relationships between Music and Prosody Skills.

    PubMed

    Martínez-Castilla, Pastora; Sotillo, María

    2014-05-15

    Williams syndrome (WS), a genetic neurodevelopmental disorder, has been taken as evidence that music and language constitute separate modules. This research focused on the linguistic component of prosody and aimed to assess whether relationships exist between the pitch processing mechanisms for music and prosody in WS. Children with WS and typically developing individuals were presented with a musical pitch and two prosody discrimination tasks. In the musical pitch discrimination task, participants were required to distinguish whether two musical tones were the same or different. The prosody discrimination tasks evaluated participants' skills for discriminating pairs of prosodic contours based on pitch or pitch, loudness and length, jointly. In WS, musical pitch discrimination was significantly correlated with performance on the prosody task assessing the discrimination of prosodic contours based on pitch only. Furthermore, musical pitch discrimination skills predicted performance on the prosody task based on pitch, and this relationship was not better explained by chronological age, vocabulary or auditory memory. These results suggest that children with WS process pitch in music and prosody through shared mechanisms. We discuss the implications of these results for theories of cognitive modularity. The implications of these results for intervention programs for individuals with WS are also discussed.

  9. Pitch Processing in Children with Williams Syndrome: Relationships between Music and Prosody Skills

    PubMed Central

    Martínez-Castilla, Pastora; Sotillo, María

    2014-01-01

    Williams syndrome (WS), a genetic neurodevelopmental disorder, has been taken as evidence that music and language constitute separate modules. This research focused on the linguistic component of prosody and aimed to assess whether relationships exist between the pitch processing mechanisms for music and prosody in WS. Children with WS and typically developing individuals were presented with a musical pitch and two prosody discrimination tasks. In the musical pitch discrimination task, participants were required to distinguish whether two musical tones were the same or different. The prosody discrimination tasks evaluated participants’ skills for discriminating pairs of prosodic contours based on pitch or pitch, loudness and length, jointly. In WS, musical pitch discrimination was significantly correlated with performance on the prosody task assessing the discrimination of prosodic contours based on pitch only. Furthermore, musical pitch discrimination skills predicted performance on the prosody task based on pitch, and this relationship was not better explained by chronological age, vocabulary or auditory memory. These results suggest that children with WS process pitch in music and prosody through shared mechanisms. We discuss the implications of these results for theories of cognitive modularity. The implications of these results for intervention programs for individuals with WS are also discussed. PMID:24961767

  10. Normal-Hearing Listeners' and Cochlear Implant Users' Perception of Pitch Cues in Emotional Speech.

    PubMed

    Gilbers, Steven; Fuller, Christina; Gilbers, Dicky; Broersma, Mirjam; Goudbeek, Martijn; Free, Rolien; Başkent, Deniz

    2015-10-01

    In cochlear implants (CIs), acoustic speech cues, especially for pitch, are delivered in a degraded form. This study's aim is to assess whether due to degraded pitch cues, normal-hearing listeners and CI users employ different perceptual strategies to recognize vocal emotions, and, if so, how these differ. Voice actors were recorded pronouncing a nonce word in four different emotions: anger, sadness, joy, and relief. These recordings' pitch cues were phonetically analyzed. The recordings were used to test 20 normal-hearing listeners' and 20 CI users' emotion recognition. In congruence with previous studies, high-arousal emotions had a higher mean pitch, wider pitch range, and more dominant pitches than low-arousal emotions. Regarding pitch, speakers did not differentiate emotions based on valence but on arousal. Normal-hearing listeners outperformed CI users in emotion recognition, even when presented with CI simulated stimuli. However, only normal-hearing listeners recognized one particular actor's emotions worse than the other actors'. The groups behaved differently when presented with similar input, showing that they had to employ differing strategies. Considering the respective speaker's deviating pronunciation, it appears that for normal-hearing listeners, mean pitch is a more salient cue than pitch range, whereas CI users are biased toward pitch range cues. PMID:27648210

  11. Influence of musical training on pitch processing: event-related brain potential studies of adults and children.

    PubMed

    Moreno, Sylvain; Besson, Mireille

    2005-12-01

    The aim of this experiment was to determine whether eight weeks of musical training based on pitch processing could help eight-year-old children detect pitch changes in language. Results show that a relatively short exposure (eight weeks) to pitch processing in music exerts some influence on pitch processing in language. Therefore, these results are in line with the hypothesis that common processes may underlie pitch processing in language and in music. PMID:16597755

  12. Interlaboratory comparison of traceable atomic force microscope pitch measurements

    NASA Astrophysics Data System (ADS)

    Dixson, Ronald; Chernoff, Donald A.; Wang, Shihua; Vorburger, Theodore V.; Tan, Siew Leng; Orji, Ndubuisi G.; Fu, Joseph

    2010-06-01

    The National Institute of Standards and Technology (NIST), Advanced Surface Microscopy (ASM), and the National Metrology Centre (NMC) of the Agency for Science, Technology, and Research (A*STAR) in Singapore have completed a three-way interlaboratory comparison of traceable pitch measurements using atomic force microscopy (AFM). The specimen being used for this comparison is provided by ASM and consists of SiO2 lines having a 70 nm pitch patterned on a silicon substrate. NIST has a multifaceted program in atomic force microscope (AFM) dimensional metrology. One component of this effort is a custom in-house metrology AFM, called the calibrated AFM (C-AFM). The NIST C-AFM has displacement metrology for all three axes traceable to the 633 nm wavelength of the iodine-stabilized He-Ne laser - a recommended wavelength for realization of the SI (Système International d'Unités, or International System of Units) meter. NIST used the C-AFM to participate in this comparison. ASM used a commercially available AFM with an open-loop scanner, calibrated by a 144 nm pitch transfer standard. In a prior collaboration with Physikalisch-Technische Bundesanstalt (PTB), the German national metrology institute, ASM's transfer standard was calibrated using PTB's traceable optical diffractometry instrument. Thus, ASM's measurements are also traceable to the SI meter. NMC/A*STAR used a large scanning range metrological atomic force microscope (LRM-AFM). The LRM-AFM integrates an AFM scanning head into a nano-stage equipped with three built-in He-Ne laser interferometers so that its measurement related to the motion on all three axes is directly traceable to the SI meter. The measurements for this interlaboratory comparison have been completed and the results are in agreement within their expanded uncertainties and at the level of a few parts in 104.

  13. Modeling Electron Pitch-Angle Scattering Rates by EMIC Waves

    NASA Astrophysics Data System (ADS)

    Usanova, Maria; Shprits, Yuri; Drozdov, Alexander

    2016-07-01

    The response of electron fluxes to different geomagnetic activity is determined by competing electron acceleration and loss processes. Interaction with EMIC waves is believed to be an important loss mechanism for the radiation belt electrons, which can undergo cyclotron resonance with EMIC waves and consequent pitch-angle scattering into the atmosphere. The recent study by Usanova et al. [2014] reported the first definitive proof of EMIC waves scattering electrons into the atmosphere. These new results are particularly interesting and significant as EMIC is the only wave mode that can scatter ultra-relativistic electrons much faster and more efficient than other wave modes (e.g., chorus and hiss) and therefore, is supposed to be a dominant internal loss mechanism for ˜>2 MeV energy electrons. In this talk we will focus on numerical modeling of EMIC-related electron losses. We compute bounce-averaged pitch-angle diffusion coefficients of electrons due to EMIC waves using a quasi-linear approach and use these coefficients as further input to the Versatile Electron Radiation Belt (VERB) diffusion code to simulate the evolution of electron phase space density during selected events. We will present a comparison of the simulation results and observed pitch angle distributions on the Van Allen Probes during selected events. We will also address the following questions: Where and under which conditions signatures of EMIC-related electron loss are typically observed? What are the EMIC wave and background plasma parameters required for this interaction? Can we reproduce observed losses of radiation belt electrons using numerical modeling?

  14. Describing baseball pitch movement with right-hand rules.

    PubMed

    Bahill, A Terry; Baldwin, David G

    2007-07-01

    The right-hand rules show the direction of the spin-induced deflection of baseball pitches: thus, they explain the movement of the fastball, curveball, slider and screwball. The direction of deflection is described by a pair of right-hand rules commonly used in science and engineering. Our new model for the magnitude of the lateral spin-induced deflection of the ball considers the orientation of the axis of rotation of the ball relative to the direction in which the ball is moving. This paper also describes how models based on somatic metaphors might provide variability in a pitcher's repertoire.

  15. Graded pitch electromagnetic pump for thin strip metal casting systems

    DOEpatents

    Kuznetsov, Stephen B.

    1986-01-01

    A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel.

  16. Graded pitch electromagnetic pump for thin strip metal casting systems

    DOEpatents

    Kuznetsov, S.B.

    1986-04-01

    A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel. 4 figs.

  17. The role of tonal onglides in German nuclear pitch accents.

    PubMed

    Ritter, Simon; Grice, Martine

    2015-03-01

    A perception experiment with native German listeners provided evidence for the relevance of the tonal onglide in nuclear accents--the pitch movement leading towards the target on the accented syllable. Listeners were able to distinguish between two pragmatic meanings of a short phrase (given/non-contrastive and new/contrastive) using the tonal onglide as the sole acoustic cue. On the basis of these findings, we argue that the onglide merits a phonological status in an intonation model of German and should not be regarded as merely phonetic detail. PMID:25935940

  18. Electrodeposition of Indium Bumps for Ultrafine Pitch Interconnection

    NASA Astrophysics Data System (ADS)

    Tian, Yingtao; Liu, Changqing; Hutt, David; Stevens, Bob

    2014-02-01

    Electroplating is a promising method to produce ultrafine pitch indium bumps for assembly of pixel detectors in imaging applications. In this work, the process of indium bumping through electrodeposition was demonstrated and the influences of various current waveforms on the bump morphology, microstructure and height uniformity were investigated. Electron microscopy was used to study the microstructure of electroplated indium bumps and a Zygo white light interferometer was utilised to evaluate the height uniformity. The results indicated that the bump uniformities on wafer, pattern and feature scales were improved by using unipolar pulse and bipolar pulse reverse current waveforms.

  19. Adaptive Management

    EPA Science Inventory

    Adaptive management is an approach to natural resource management that emphasizes learning through management where knowledge is incomplete, and when, despite inherent uncertainty, managers and policymakers must act. Unlike a traditional trial and error approach, adaptive managem...

  20. Influence of head orientation on visually induced pitch and roll sensation

    NASA Technical Reports Server (NTRS)

    Young, L. R.; Oman, C. M.; Dichgans, J. M.

    1975-01-01

    Observers viewing rotating scenes in their periphery frequently experience self-motion in the opposite direction. A full field flight simulator projection system was used to investigate the sensations resulting from pitch, roll, and yaw stimuli at various head orientations. Steady yaw rate (circularvection) and development of a constant roll tilt angle, for the head erect and constant velocity yaw and roll stimuli, confirmed previous reports. Pitch stimuli also were found to produce a sensation of tilting to a steady pitch angle, which was much stronger for pitch forward than backward. Pitch and roll effects were strongly dependent on head position, increasing for the head rolled 90 deg to the side or inverted, and decreasing for the head pitched 25 deg forward. These results support a hypothesis that visually induced tilt is limited by conflict with otolith information.