Science.gov

Sample records for adaptive control problem

  1. Applying statistical process control to the adaptive rate control problem

    NASA Astrophysics Data System (ADS)

    Manohar, Nelson R.; Willebeek-LeMair, Marc H.; Prakash, Atul

    1997-12-01

    Due to the heterogeneity and shared resource nature of today's computer network environments, the end-to-end delivery of multimedia requires adaptive mechanisms to be effective. We present a framework for the adaptive streaming of heterogeneous media. We introduce the application of online statistical process control (SPC) to the problem of dynamic rate control. In SPC, the goal is to establish (and preserve) a state of statistical quality control (i.e., controlled variability around a target mean) over a process. We consider the end-to-end streaming of multimedia content over the internet as the process to be controlled. First, at each client, we measure process performance and apply statistical quality control (SQC) with respect to application-level requirements. Then, we guide an adaptive rate control (ARC) problem at the server based on the statistical significance of trends and departures on these measurements. We show this scheme facilitates handling of heterogeneous media. Last, because SPC is designed to monitor long-term process performance, we show that our online SPC scheme could be used to adapt to various degrees of long-term (network) variability (i.e., statistically significant process shifts as opposed to short-term random fluctuations). We develop several examples and analyze its statistical behavior and guarantees.

  2. The reduced order model problem in distributed parameter systems adaptive identification and control. [adaptive control of flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, C. R., Jr.; Lawrence, D. A.

    1981-01-01

    The reduced order model problem in distributed parameter systems adaptive identification and control is investigated. A comprehensive examination of real-time centralized adaptive control options for flexible spacecraft is provided.

  3. The reduced order model problem in distributed parameter systems adaptive identification and control

    NASA Technical Reports Server (NTRS)

    Johnson, C. R., Jr.

    1980-01-01

    The research concerning the reduced order model problem in distributed parameter systems is reported. The adaptive control strategy was chosen for investigation in the annular momentum control device. It is noted, that if there is no observation spill over, and no model errors, an indirect adaptive control strategy can be globally stable. Recent publications concerning adaptive control are included.

  4. Fuzzy Adaptive Control for Intelligent Autonomous Space Exploration Problems

    NASA Technical Reports Server (NTRS)

    Esogbue, Augustine O.

    1998-01-01

    The principal objective of the research reported here is the re-design, analysis and optimization of our newly developed neural network fuzzy adaptive controller model for complex processes capable of learning fuzzy control rules using process data and improving its control through on-line adaption. The learned improvement is according to a performance objective function that provides evaluative feedback; this performance objective is broadly defined to meet long-range goals over time. Although fuzzy control had proven effective for complex, nonlinear, imprecisely-defined processes for which standard models and controls are either inefficient, impractical or cannot be derived, the state of the art prior to our work showed that procedures for deriving fuzzy control, however, were mostly ad hoc heuristics. The learning ability of neural networks was exploited to systematically derive fuzzy control and permit on-line adaption and in the process optimize control. The operation of neural networks integrates very naturally with fuzzy logic. The neural networks which were designed and tested using simulation software and simulated data, followed by realistic industrial data were reconfigured for application on several platforms as well as for the employment of improved algorithms. The statistical procedures of the learning process were investigated and evaluated with standard statistical procedures (such as ANOVA, graphical analysis of residuals, etc.). The computational advantage of dynamic programming-like methods of optimal control was used to permit on-line fuzzy adaptive control. Tests for the consistency, completeness and interaction of the control rules were applied. Comparisons to other methods and controllers were made so as to identify the major advantages of the resulting controller model. Several specific modifications and extensions were made to the original controller. Additional modifications and explorations have been proposed for further study. Some of

  5. Optimal Control Problem of Feeding Adaptations of Daphnia and Neural Network Simulation

    NASA Astrophysics Data System (ADS)

    Kmet', Tibor; Kmet'ov, Mria

    2010-09-01

    A neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints and open final time. The optimal control problem is transcribed into nonlinear programming problem, which is implemented with adaptive critic neural network [9] and recurrent neural network for solving nonlinear proprojection equations [10]. The proposed simulation methods is illustrated by the optimal control problem of feeding adaptation of filter feeders of Daphnia. Results show that adaptive critic based systematic approach and neural network solving of nonlinear equations hold promise for obtaining the optimal control with control and state constraints and open final time.

  6. A Multiple Objective Test Assembly Approach for Exposure Control Problems in Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Veldkamp, Bernard P.; Verschoor, Angela J.; Eggen, Theo J. H. M.

    2010-01-01

    Overexposure and underexposure of items in the bank are serious problems in operational computerized adaptive testing (CAT) systems. These exposure problems might result in item compromise, or point at a waste of investments. The exposure control problem can be viewed as a test assembly problem with multiple objectives. Information in the test has…

  7. Discrete-time entropy formulation of optimal and adaptive control problems

    NASA Technical Reports Server (NTRS)

    Tsai, Yweting A.; Casiello, Francisco A.; Loparo, Kenneth A.

    1992-01-01

    The discrete-time version of the entropy formulation of optimal control of problems developed by G. N. Saridis (1988) is discussed. Given a dynamical system, the uncertainty in the selection of the control is characterized by the probability distribution (density) function which maximizes the total entropy. The equivalence between the optimal control problem and the optimal entropy problem is established, and the total entropy is decomposed into a term associated with the certainty equivalent control law, the entropy of estimation, and the so-called equivocation of the active transmission of information from the controller to the estimator. This provides a useful framework for studying the certainty equivalent and adaptive control laws.

  8. Error bounds of adaptive dynamic programming algorithms for solving undiscounted optimal control problems.

    PubMed

    Liu, Derong; Li, Hongliang; Wang, Ding

    2015-06-01

    In this paper, we establish error bounds of adaptive dynamic programming algorithms for solving undiscounted infinite-horizon optimal control problems of discrete-time deterministic nonlinear systems. We consider approximation errors in the update equations of both value function and control policy. We utilize a new assumption instead of the contraction assumption in discounted optimal control problems. We establish the error bounds for approximate value iteration based on a new error condition. Furthermore, we also establish the error bounds for approximate policy iteration and approximate optimistic policy iteration algorithms. It is shown that the iterative approximate value function can converge to a finite neighborhood of the optimal value function under some conditions. To implement the developed algorithms, critic and action neural networks are used to approximate the value function and control policy, respectively. Finally, a simulation example is given to demonstrate the effectiveness of the developed algorithms.

  9. Distributed adaptive fuzzy iterative learning control of coordination problems for higher order multi-agent systems

    NASA Astrophysics Data System (ADS)

    Li, Jinsha; Li, Junmin

    2016-07-01

    In this paper, the adaptive fuzzy iterative learning control scheme is proposed for coordination problems of Mth order (M ≥ 2) distributed multi-agent systems. Every follower agent has a higher order integrator with unknown nonlinear dynamics and input disturbance. The dynamics of the leader are a higher order nonlinear systems and only available to a portion of the follower agents. With distributed initial state learning, the unified distributed protocols combined time-domain and iteration-domain adaptive laws guarantee that the follower agents track the leader uniformly on [0, T]. Then, the proposed algorithm extends to achieve the formation control. A numerical example and a multiple robotic system are provided to demonstrate the performance of the proposed approach.

  10. [Abnormal behavior and adaptation problems in dogs and cats and their pharmacologic control].

    PubMed

    Jöchle, W

    1998-11-01

    Small animal practitioners are increasingly confronted with patients showing adaptation related problems (ARP) which are expressed as disturbed or abnormal behavior (DAB). As a result, practitioners are asked increasingly to euthanize animals which seemingly cannot be socialized. In healthy dogs and cats, three main causes for DAB can be detected: refusal of obedience because of the drive for dominance; anxiety and frustration; and geriatric DAB. Increasingly, disease conditions not readily diagnosed can cause DAB, especially hypothyroidism. Influencing and contributing factors to DAB are breed, sex, experiences as a puppy, behavior of owners, changes in the pet's environment. ARPs may also cause disturbances in the condition of skin and fur, e.g. atopic dermatitis, pruritus sine materia, lick granuloma, and of the intestinal organs (vomiting, irritated bowel syndrome) and may result in an immune deficiency. Therapeutic approaches include behavioral therapy, surgical or hormonal castration with progestins or antiandrogens, substitution with thyroxin in cases with hypothyroidism, and/or the use of psychopharmaca, most prominently of modern antidepressiva like amitriptyline; buspirone; clomipramine and fluoxetine, but also of selegiline, a mono-aminoxydase inhibitor. These compounds, among other effects, are elevating prolactin levels. This seems to allow to formulate a working hypothesis: in the canine species, prolactin is obviously a hormone enabling socialization; hence all drugs which safely cause an increase in prolactin production might be suitable to manage or control ARPs and DAB in the dog, but also in the cat. Higher levels of prolactin than those required for socialization, as seen in nursing bitches or some clinically overt cases of pseudopregnancy, may cause maternal aggression and can be controlled with prolactin inhibitors, if needed.

  11. The reduced order model problem in distributed parameter systems adaptive identification and control. [large space structures

    NASA Technical Reports Server (NTRS)

    Johnson, C. R., Jr.; Lawrence, D.

    1981-01-01

    The basic assumption that a large space structure can be decoupled preceding the application of reduced order active control was considered and alternative solutions to the control of such structures (in contrast to the strict modal control) were investigated. The transfer function matrix from the actuators to the sensors was deemed to be a reasonable candidate. More refined models from multivariable systems theory were studied and recent results in the multivariable control field were compared with respect to theoretical deficiencies and likely problems in application to large space structures.

  12. Decentralized adaptive control

    NASA Technical Reports Server (NTRS)

    Oh, B. J.; Jamshidi, M.; Seraji, H.

    1988-01-01

    A decentralized adaptive control is proposed to stabilize and track the nonlinear, interconnected subsystems with unknown parameters. The adaptation of the controller gain is derived by using model reference adaptive control theory based on Lyapunov's direct method. The adaptive gains consist of sigma, proportional, and integral combination of the measured and reference values of the corresponding subsystem. The proposed control is applied to the joint control of a two-link robot manipulator, and the performance in computer simulation corresponds with what is expected in theoretical development.

  13. Adaptive sampling for noisy problems

    SciTech Connect

    Cantu-Paz, E

    2004-03-26

    The usual approach to deal with noise present in many real-world optimization problems is to take an arbitrary number of samples of the objective function and use the sample average as an estimate of the true objective value. The number of samples is typically chosen arbitrarily and remains constant for the entire optimization process. This paper studies an adaptive sampling technique that varies the number of samples based on the uncertainty of deciding between two individuals. Experiments demonstrate the effect of adaptive sampling on the final solution quality reached by a genetic algorithm and the computational cost required to find the solution. The results suggest that the adaptive technique can effectively eliminate the need to set the sample size a priori, but in many cases it requires high computational costs.

  14. Adaptive Force Control in Compliant Motion

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1994-01-01

    This paper addresses the problem of controlling a manipulator in compliant motion while in contact with an environment having an unknown stiffness. Two classes of solutions are discussed: adaptive admittance control and adaptive compliance control. In both admittance and compliance control schemes, compensator adaptation is used to ensure a stable and uniform system performance.

  15. An adaptive recurrent neural-network controller using a stabilization matrix and predictive inputs to solve a tracking problem under disturbances.

    PubMed

    Fairbank, Michael; Li, Shuhui; Fu, Xingang; Alonso, Eduardo; Wunsch, Donald

    2014-01-01

    We present a recurrent neural-network (RNN) controller designed to solve the tracking problem for control systems. We demonstrate that a major difficulty in training any RNN is the problem of exploding gradients, and we propose a solution to this in the case of tracking problems, by introducing a stabilization matrix and by using carefully constrained context units. This solution allows us to achieve consistently lower training errors, and hence allows us to more easily introduce adaptive capabilities. The resulting RNN is one that has been trained off-line to be rapidly adaptive to changing plant conditions and changing tracking targets. The case study we use is a renewable-energy generator application; that of producing an efficient controller for a three-phase grid-connected converter. The controller we produce can cope with the random variation of system parameters and fluctuating grid voltages. It produces tracking control with almost instantaneous response to changing reference states, and virtually zero oscillation. This compares very favorably to the classical proportional integrator (PI) controllers, which we show produce a much slower response and settling time. In addition, the RNN we propose exhibits better learning stability and convergence properties, and can exhibit faster adaptation, than has been achieved with adaptive critic designs.

  16. Robust Optimal Adaptive Control Method with Large Adaptive Gain

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2009-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.

  17. Adaptive sequential controller

    DOEpatents

    El-Sharkawi, Mohamed A.; Xing, Jian; Butler, Nicholas G.; Rodriguez, Alonso

    1994-01-01

    An adaptive sequential controller (50/50') for controlling a circuit breaker (52) or other switching device to substantially eliminate transients on a distribution line caused by closing and opening the circuit breaker. The device adaptively compensates for changes in the response time of the circuit breaker due to aging and environmental effects. A potential transformer (70) provides a reference signal corresponding to the zero crossing of the voltage waveform, and a phase shift comparator circuit (96) compares the reference signal to the time at which any transient was produced when the circuit breaker closed, producing a signal indicative of the adaptive adjustment that should be made. Similarly, in controlling the opening of the circuit breaker, a current transformer (88) provides a reference signal that is compared against the time at which any transient is detected when the circuit breaker last opened. An adaptive adjustment circuit (102) produces a compensation time that is appropriately modified to account for changes in the circuit breaker response, including the effect of ambient conditions and aging. When next opened or closed, the circuit breaker is activated at an appropriately compensated time, so that it closes when the voltage crosses zero and opens when the current crosses zero, minimizing any transients on the distribution line. Phase angle can be used to control the opening of the circuit breaker relative to the reference signal provided by the potential transformer.

  18. Adaptive Cruise Control (ACC)

    NASA Astrophysics Data System (ADS)

    Reif, Konrad

    Die adaptive Fahrgeschwindigkeitsregelung (ACC, Adaptive Cruise Control) ist eine Weiterentwicklung der konventionellen Fahrgeschwindigkeitsregelung, die eine konstante Fahrgeschwindigkeit einstellt. ACC überwacht mittels eines Radarsensors den Bereich vor dem Fahrzeug und passt die Geschwindigkeit den Gegebenheiten an. ACC reagiert auf langsamer vorausfahrende oder einscherende Fahrzeuge mit einer Reduzierung der Geschwindigkeit, sodass der vorgeschriebene Mindestabstand zum vorausfahrenden Fahrzeug nicht unterschritten wird. Hierzu greift ACC in Antrieb und Bremse ein. Sobald das vorausfahrende Fahrzeug beschleunigt oder die Spur verlässt, regelt ACC die Geschwindigkeit wieder auf die vorgegebene Sollgeschwindigkeit ein (Bild 1). ACC steht somit für eine Geschwindigkeitsregelung, die sich dem vorausfahrenden Verkehr anpasst.

  19. Adaptive control for accelerators

    DOEpatents

    Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  20. Genetic algorithms in adaptive fuzzy control

    NASA Technical Reports Server (NTRS)

    Karr, C. Lucas; Harper, Tony R.

    1992-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust fuzzy membership functions in response to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific computer-simulated chemical system is used to demonstrate the ideas presented.

  1. Adaptive nonlinear flight control

    NASA Astrophysics Data System (ADS)

    Rysdyk, Rolf Theoduor

    1998-08-01

    Research under supervision of Dr. Calise and Dr. Prasad at the Georgia Institute of Technology, School of Aerospace Engineering. has demonstrated the applicability of an adaptive controller architecture. The architecture successfully combines model inversion control with adaptive neural network (NN) compensation to cancel the inversion error. The tiltrotor aircraft provides a specifically interesting control design challenge. The tiltrotor aircraft is capable of converting from stable responsive fixed wing flight to unstable sluggish hover in helicopter configuration. It is desirable to provide the pilot with consistency in handling qualities through a conversion from fixed wing flight to hover. The linear model inversion architecture was adapted by providing frequency separation in the command filter and the error-dynamics, while not exiting the actuator modes. This design of the architecture provides for a model following setup with guaranteed performance. This in turn allowed for convenient implementation of guaranteed handling qualities. A rigorous proof of boundedness is presented making use of compact sets and the LaSalle-Yoshizawa theorem. The analysis allows for the addition of the e-modification which guarantees boundedness of the NN weights in the absence of persistent excitation. The controller is demonstrated on the Generic Tiltrotor Simulator of Bell-Textron and NASA Ames R.C. The model inversion implementation is robustified with respect to unmodeled input dynamics, by adding dynamic nonlinear damping. A proof of boundedness of signals in the system is included. The effectiveness of the robustification is also demonstrated on the XV-15 tiltrotor. The SHL Perceptron NN provides a more powerful application, based on the universal approximation property of this type of NN. The SHL NN based architecture is also robustified with the dynamic nonlinear damping. A proof of boundedness extends the SHL NN augmentation with robustness to unmodeled actuator

  2. Coping with School Adaptation Problems

    ERIC Educational Resources Information Center

    Cowen, Emory L.

    1971-01-01

    Strategems to cope with maladaptation have been limited in effectiveness. Presented are some key problems they present as well as guidelines for a conceptually preferable set of strategems emphasizing principles which should serve to cut down materially on school maladjustment and restore children to effective school function. (Author/BY)

  3. Adaptive Strategies in the Iterated Exchange Problem

    NASA Astrophysics Data System (ADS)

    Baraov, Arthur

    2011-03-01

    We argue for clear separation of the exchange problem from the exchange paradox to avoid confusion about the subject matter of these two distinct problems. The exchange problem in its current format belongs to the domain of optimal decision making—it doesn't make any sense as a game of competition. But it takes just a tiny modification in the statement of the problem to breathe new life into it and make it a practicable and meaningful game of competition. In this paper, we offer an explanation for paradoxical priors and discuss adaptive strategies for both the house and the player in the restated exchange problem.

  4. Scalable Adaptive Multilevel Solvers for Multiphysics Problems

    SciTech Connect

    Xu, Jinchao

    2014-12-01

    In this project, we investigated adaptive, parallel, and multilevel methods for numerical modeling of various real-world applications, including Magnetohydrodynamics (MHD), complex fluids, Electromagnetism, Navier-Stokes equations, and reservoir simulation. First, we have designed improved mathematical models and numerical discretizaitons for viscoelastic fluids and MHD. Second, we have derived new a posteriori error estimators and extended the applicability of adaptivity to various problems. Third, we have developed multilevel solvers for solving scalar partial differential equations (PDEs) as well as coupled systems of PDEs, especially on unstructured grids. Moreover, we have integrated the study between adaptive method and multilevel methods, and made significant efforts and advances in adaptive multilevel methods of the multi-physics problems.

  5. Simple adaptive tracking control for mobile robots

    NASA Astrophysics Data System (ADS)

    Bobtsov, Alexey; Faronov, Maxim; Kolyubin, Sergey; Pyrkin, Anton

    2014-12-01

    The problem of simple adaptive and robust control is studied for the case of parametric and dynamic dimension uncertainties: only the maximum possible relative degree of the plant model is known. The control approach "consecutive compensator" is investigated. To illustrate the efficiency of proposed approach an example with the mobile robot motion control using computer vision system is considered.

  6. Adaptive control of robotic manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1987-01-01

    The author presents a novel approach to adaptive control of manipulators to achieve trajectory tracking by the joint angles. The central concept in this approach is the utilization of the manipulator inverse as a feedforward controller. The desired trajectory is applied as an input to the feedforward controller which behaves as the inverse of the manipulator at any operating point; the controller output is used as the driving torque for the manipulator. The controller gains are then updated by an adaptation algorithm derived from MRAC (model reference adaptive control) theory to cope with variations in the manipulator inverse due to changes of the operating point. An adaptive feedback controller and an auxiliary signal are also used to enhance closed-loop stability and to achieve faster adaptation. The proposed control scheme is computationally fast and does not require a priori knowledge of the complex dynamic model or the parameter values of the manipulator or the payload.

  7. An adaptive grid with directional control

    NASA Technical Reports Server (NTRS)

    Brackbill, J. U.

    1993-01-01

    An adaptive grid generator for adaptive node movement is here derived by combining a variational formulation of Winslow's (1981) variable-diffusion method with a directional control functional. By applying harmonic-function theory, it becomes possible to define conditions under which there exist unique solutions of the resulting elliptic equations. The results obtained for the grid generator's application to the complex problem posed by the fluid instability-driven magnetic field reconnection demonstrate one-tenth the computational cost of either a Eulerian grid or an adaptive grid without directional control.

  8. Adaptive Control Strategies for Flexible Robotic Arm

    NASA Technical Reports Server (NTRS)

    Bialasiewicz, Jan T.

    1996-01-01

    The control problem of a flexible robotic arm has been investigated. The control strategies that have been developed have a wide application in approaching the general control problem of flexible space structures. The following control strategies have been developed and evaluated: neural self-tuning control algorithm, neural-network-based fuzzy logic control algorithm, and adaptive pole assignment algorithm. All of the above algorithms have been tested through computer simulation. In addition, the hardware implementation of a computer control system that controls the tip position of a flexible arm clamped on a rigid hub mounted directly on the vertical shaft of a dc motor, has been developed. An adaptive pole assignment algorithm has been applied to suppress vibrations of the described physical model of flexible robotic arm and has been successfully tested using this testbed.

  9. An Optimal Control Modification to Model-Reference Adaptive Control for Fast Adaptation

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Krishnakumar, Kalmanje; Boskovic, Jovan

    2008-01-01

    This paper presents a method that can achieve fast adaptation for a class of model-reference adaptive control. It is well-known that standard model-reference adaptive control exhibits high-gain control behaviors when a large adaptive gain is used to achieve fast adaptation in order to reduce tracking error rapidly. High gain control creates high-frequency oscillations that can excite unmodeled dynamics and can lead to instability. The fast adaptation approach is based on the minimization of the squares of the tracking error, which is formulated as an optimal control problem. The necessary condition of optimality is used to derive an adaptive law using the gradient method. This adaptive law is shown to result in uniform boundedness of the tracking error by means of the Lyapunov s direct method. Furthermore, this adaptive law allows a large adaptive gain to be used without causing undesired high-gain control effects. The method is shown to be more robust than standard model-reference adaptive control. Simulations demonstrate the effectiveness of the proposed method.

  10. Aircraft adaptive learning control

    NASA Technical Reports Server (NTRS)

    Lee, P. S. T.; Vanlandingham, H. F.

    1979-01-01

    The optimal control theory of stochastic linear systems is discussed in terms of the advantages of distributed-control systems, and the control of randomly-sampled systems. An optimal solution to longitudinal control is derived and applied to the F-8 DFBW aircraft. A randomly-sampled linear process model with additive process and noise is developed.

  11. Multigrid solution strategies for adaptive meshing problems

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    1995-01-01

    This paper discusses the issues which arise when combining multigrid strategies with adaptive meshing techniques for solving steady-state problems on unstructured meshes. A basic strategy is described, and demonstrated by solving several inviscid and viscous flow cases. Potential inefficiencies in this basic strategy are exposed, and various alternate approaches are discussed, some of which are demonstrated with an example. Although each particular approach exhibits certain advantages, all methods have particular drawbacks, and the formulation of a completely optimal strategy is considered to be an open problem.

  12. Adaptive Control Of Remote Manipulator

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1989-01-01

    Robotic control system causes remote manipulator to follow closely reference trajectory in Cartesian reference frame in work space, without resort to computationally intensive mathematical model of robot dynamics and without knowledge of robot and load parameters. System, derived from linear multivariable theory, uses relatively simple feedforward and feedback controllers with model-reference adaptive control.

  13. Nonlinear and adaptive control

    NASA Technical Reports Server (NTRS)

    Athans, Michael

    1989-01-01

    The primary thrust of the research was to conduct fundamental research in the theories and methodologies for designing complex high-performance multivariable feedback control systems; and to conduct feasibiltiy studies in application areas of interest to NASA sponsors that point out advantages and shortcomings of available control system design methodologies.

  14. Adaptive, predictive controller for optimal process control

    SciTech Connect

    Brown, S.K.; Baum, C.C.; Bowling, P.S.; Buescher, K.L.; Hanagandi, V.M.; Hinde, R.F. Jr.; Jones, R.D.; Parkinson, W.J.

    1995-12-01

    One can derive a model for use in a Model Predictive Controller (MPC) from first principles or from experimental data. Until recently, both methods failed for all but the simplest processes. First principles are almost always incomplete and fitting to experimental data fails for dimensions greater than one as well as for non-linear cases. Several authors have suggested the use of a neural network to fit the experimental data to a multi-dimensional and/or non-linear model. Most networks, however, use simple sigmoid functions and backpropagation for fitting. Training of these networks generally requires large amounts of data and, consequently, very long training times. In 1993 we reported on the tuning and optimization of a negative ion source using a special neural network[2]. One of the properties of this network (CNLSnet), a modified radial basis function network, is that it is able to fit data with few basis functions. Another is that its training is linear resulting in guaranteed convergence and rapid training. We found the training to be rapid enough to support real-time control. This work has been extended to incorporate this network into an MPC using the model built by the network for predictive control. This controller has shown some remarkable capabilities in such non-linear applications as continuous stirred exothermic tank reactors and high-purity fractional distillation columns[3]. The controller is able not only to build an appropriate model from operating data but also to thin the network continuously so that the model adapts to changing plant conditions. The controller is discussed as well as its possible use in various of the difficult control problems that face this community.

  15. Hybrid Adaptive Flight Control with Model Inversion Adaptation

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2011-01-01

    This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.

  16. Adaptive control system for gas producing wells

    SciTech Connect

    Fedor, Pashchenko; Sergey, Gulyaev; Alexander, Pashchenko

    2015-03-10

    Optimal adaptive automatic control system for gas producing wells cluster is proposed intended for solving the problem of stabilization of the output gas pressure in the cluster at conditions of changing gas flow rate and changing parameters of the wells themselves, providing the maximum high resource of hardware elements of automation.

  17. Criticality of Adaptive Control Dynamics

    NASA Astrophysics Data System (ADS)

    Patzelt, Felix; Pawelzik, Klaus

    2011-12-01

    We show, that stabilization of a dynamical system can annihilate observable information about its structure. This mechanism induces critical points as attractors in locally adaptive control. It also reveals, that previously reported criticality in simple controllers is caused by adaptation and not by other controller details. We apply these results to a real-system example: human balancing behavior. A model of predictive adaptive closed-loop control subject to some realistic constraints is introduced and shown to reproduce experimental observations in unprecedented detail. Our results suggests, that observed error distributions in between the Lévy and Gaussian regimes may reflect a nearly optimal compromise between the elimination of random local trends and rare large errors.

  18. Adaptive Control For Flexible Structures

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Ih, Che-Hang Charles; Wang, Shyh Jong

    1988-01-01

    Paper discusses ways to cope with measurement noise in adaptive control system for large, flexible structure in outer space. System generates control signals for torque and thrust actuators to turn all or parts of structure to desired orientations while suppressing torsional and other vibrations. Main result of paper is general theory for introduction of filters to suppress measurement noise while preserving stability.

  19. Multiple model adaptive control with mixing

    NASA Astrophysics Data System (ADS)

    Kuipers, Matthew

    Despite the remarkable theoretical accomplishments and successful applications of adaptive control, the field is not sufficiently mature to solve challenging control problems requiring strict performance and safety guarantees. Towards addressing these issues, a novel deterministic multiple-model adaptive control approach called adaptive mixing control is proposed. In this approach, adaptation comes from a high-level system called the supervisor that mixes into feedback a number of candidate controllers, each finely-tuned to a subset of the parameter space. The mixing signal, the supervisor's output, is generated by estimating the unknown parameters and, at every instant of time, calculating the contribution level of each candidate controller based on certainty equivalence. The proposed architecture provides two characteristics relevant to solving stringent, performance-driven applications. First, the full-suite of linear time invariant control tools is available. A disadvantage of conventional adaptive control is its restriction to utilizing only those control laws whose solutions can be feasibly computed in real-time, such as model reference and pole-placement type controllers. Because its candidate controllers are computed off line, the proposed approach suffers no such restriction. Second, the supervisor's output is smooth and does not necessarily depend on explicit a priori knowledge of the disturbance model. These characteristics can lead to improved performance by avoiding the unnecessary switching and chattering behaviors associated with some other multiple adaptive control approaches. The stability and robustness properties of the adaptive scheme are analyzed. It is shown that the mean-square regulation error is of the order of the modeling error. And when the parameter estimate converges to its true value, which is guaranteed if a persistence of excitation condition is satisfied, the adaptive closed-loop system converges exponentially fast to a closed

  20. Adaptive control with aerospace applications

    NASA Astrophysics Data System (ADS)

    Gadient, Ross

    Robust and adaptive control techniques have a rich history of theoretical development with successful application. Despite the accomplishments made, attempts to combine the best elements of each approach into robust adaptive systems has proven challenging, particularly in the area of application to real world aerospace systems. In this research, we investigate design methods for general classes of systems that may be applied to representative aerospace dynamics. By combining robust baseline control design with augmentation designs, our work aims to leverage the advantages of each approach. This research contributes the development of robust model-based control design for two classes of dynamics: 2nd order cascaded systems, and a more general MIMO framework. We present a theoretically justified method for state limiting via augmentation of a robust baseline control design. Through the development of adaptive augmentation designs, we are able to retain system performance in the presence of uncertainties. We include an extension that combines robust baseline design with both state limiting and adaptive augmentations. In addition we develop an adaptive augmentation design approach for a class of dynamic input uncertainties. We present formal stability proofs and analyses for all proposed designs in the research. Throughout the work, we present real world aerospace applications using relevant flight dynamics and flight test results. We derive robust baseline control designs with application to both piloted and unpiloted aerospace system. Using our developed methods, we add a flight envelope protecting state limiting augmentation for piloted aircraft applications and demonstrate the efficacy of our approach via both simulation and flight test. We illustrate our adaptive augmentation designs via application to relevant fixed-wing aircraft dynamics. Both a piloted example combining the state limiting and adaptive augmentation approaches, and an unpiloted example with

  1. Adaptive control of Space Station with control moment gyros

    NASA Technical Reports Server (NTRS)

    Bishop, Robert H.; Paynter, Scott J.; Sunkel, John W.

    1992-01-01

    An adaptive approach to Space Station attitude control is investigated. The main components of the controller are the parameter identification scheme, the control gain calculation, and the control law. The control law is a full-state feedback space station baseline control law. The control gain calculation is based on linear-quadratic regulator theory with eigenvalues placement in a vertical strip. The parameter identification scheme is a recursive extended Kalman filter that estimates the inertias and also provides an estimate of the unmodeled disturbances due to the aerodynamic torques and to the nonlinear effects. An analysis of the inertia estimation problem suggests that it is possible to estimate Space Station inertias accurately during nominal control moment gyro operations. The closed-loop adaptive control law is shown to be capable of stabilizing the Space Station after large inertia changes. Results are presented for the pitch axis.

  2. Feed Forward Neural Network and Optimal Control Problem with Control and State Constraints

    SciTech Connect

    Kmet', Tibor; Kmet'ova, Maria

    2009-09-09

    A feed forward neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints. The paper extends adaptive critic neural network architecture proposed by [5] to the optimal control problems with control and state constraints. The optimal control problem is transcribed into a nonlinear programming problem which is implemented with adaptive critic neural network. The proposed simulation method is illustrated by the optimal control problem of nitrogen transformation cycle model. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.

  3. Modeling and adaptive control of acoustic noise

    NASA Astrophysics Data System (ADS)

    Venugopal, Ravinder

    Active noise control is a problem that receives significant attention in many areas including aerospace and manufacturing. The advent of inexpensive high performance processors has made it possible to implement real-time control algorithms to effect active noise control. Both fixed-gain and adaptive methods may be used to design controllers for this problem. For fixed-gain methods, it is necessary to obtain a mathematical model of the system to design controllers. In addition, models help us gain phenomenological insights into the dynamics of the system. Models are also necessary to perform numerical simulations. However, models are often inadequate for the purpose of controller design because they involve parameters that are difficult to determine and also because there are always unmodeled effects. This fact motivates the use of adaptive algorithms for control since adaptive methods usually require significantly less model information than fixed-gain methods. The first part of this dissertation deals with derivation of a state space model of a one-dimensional acoustic duct. Two types of actuation, namely, a side-mounted speaker (interior control) and an end-mounted speaker (boundary control) are considered. The techniques used to derive the model of the acoustic duct are extended to the problem of fluid surface wave control. A state space model of small amplitude surfaces waves of a fluid in a rectangular container is derived and two types of control methods, namely, surface pressure control and map actuator based control are proposed and analyzed. The second part of this dissertation deals with the development of an adaptive disturbance rejection algorithm that is applied to the problem of active noise control. ARMARKOV models which have the same structure as predictor models are used for system representation. The algorithm requires knowledge of only one path of the system, from control to performance, and does not require a measurement of the disturbance nor

  4. Model reference adaptive control of robots

    NASA Technical Reports Server (NTRS)

    Steinvorth, Rodrigo

    1991-01-01

    This project presents the results of controlling two types of robots using new Command Generator Tracker (CGT) based Direct Model Reference Adaptive Control (MRAC) algorithms. Two mathematical models were used to represent a single-link, flexible joint arm and a Unimation PUMA 560 arm; and these were then controlled in simulation using different MRAC algorithms. Special attention was given to the performance of the algorithms in the presence of sudden changes in the robot load. Previously used CGT based MRAC algorithms had several problems. The original algorithm that was developed guaranteed asymptotic stability only for almost strictly positive real (ASPR) plants. This condition is very restrictive, since most systems do not satisfy this assumption. Further developments to the algorithm led to an expansion of the number of plants that could be controlled, however, a steady state error was introduced in the response. These problems led to the introduction of some modifications to the algorithms so that they would be able to control a wider class of plants and at the same time would asymptotically track the reference model. This project presents the development of two algorithms that achieve the desired results and simulates the control of the two robots mentioned before. The results of the simulations are satisfactory and show that the problems stated above have been corrected in the new algorithms. In addition, the responses obtained show that the adaptively controlled processes are resistant to sudden changes in the load.

  5. Adaptable state based control system

    NASA Technical Reports Server (NTRS)

    Rasmussen, Robert D. (Inventor); Dvorak, Daniel L. (Inventor); Gostelow, Kim P. (Inventor); Starbird, Thomas W. (Inventor); Gat, Erann (Inventor); Chien, Steve Ankuo (Inventor); Keller, Robert M. (Inventor)

    2004-01-01

    An autonomous controller, comprised of a state knowledge manager, a control executor, hardware proxies and a statistical estimator collaborates with a goal elaborator, with which it shares common models of the behavior of the system and the controller. The elaborator uses the common models to generate from temporally indeterminate sets of goals, executable goals to be executed by the controller. The controller may be updated to operate in a different system or environment than that for which it was originally designed by the replacement of shared statistical models and by the instantiation of a new set of state variable objects derived from a state variable class. The adaptation of the controller does not require substantial modification of the goal elaborator for its application to the new system or environment.

  6. Higher-order conservative interpolation between control-volume meshes: Application to advection and multiphase flow problems with dynamic mesh adaptivity

    NASA Astrophysics Data System (ADS)

    Adam, A.; Pavlidis, D.; Percival, J. R.; Salinas, P.; Xie, Z.; Fang, F.; Pain, C. C.; Muggeridge, A. H.; Jackson, M. D.

    2016-09-01

    A general, higher-order, conservative and bounded interpolation for the dynamic and adaptive meshing of control-volume fields dual to continuous and discontinuous finite element representations is presented. Existing techniques such as node-wise interpolation are not conservative and do not readily generalise to discontinuous fields, whilst conservative methods such as Grandy interpolation are often too diffusive. The new method uses control-volume Galerkin projection to interpolate between control-volume fields. Bounded solutions are ensured by using a post-interpolation diffusive correction. Example applications of the method to interface capturing during advection and also to the modelling of multiphase porous media flow are presented to demonstrate the generality and robustness of the approach.

  7. Method For Model-Reference Adaptive Control

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1990-01-01

    Relatively simple method of model-reference adaptive control (MRAC) developed from two prior classes of MRAC techniques: signal-synthesis method and parameter-adaption method. Incorporated into unified theory, which yields more general adaptation scheme.

  8. Adaptive controller for hyperthermia robot

    SciTech Connect

    Kress, R.L.

    1997-03-01

    This paper describes the development of an adaptive computer control routine for a robotically, deployed focused, ultrasonic hyperthermia cancer treatment system. The control algorithm developed herein uses physiological models of a tumor and the surrounding healthy tissue regions and transient temperature data to estimate the treatment region`s blood perfusion. This estimate is used to vary the specific power profile of a scanned, focused ultrasonic transducer to achieve a temperature distribution as close as possible to an optimal temperature distribution. The controller is evaluated using simulations of diseased tissue and using limited experiments on a scanned, focused ultrasonic treatment system that employs a 5-Degree-of-Freedom (D.O.F.) robot to scan the treatment transducers over a simulated patient. Results of the simulations and experiments indicate that the adaptive control routine improves the temperature distribution over standard classical control algorithms if good (although not exact) knowledge of the treated region is available. Although developed with a scanned, focused ultrasonic robotic treatment system in mind, the control algorithm is applicable to any system with the capability to vary specific power as a function of volume and having an unknown distributed energy sink proportional to temperature elevation (e.g., other robotically deployed hyperthermia treatment methods using different heating modalities).

  9. Avoid programmable controller problems

    SciTech Connect

    DeVries, E.A.

    1983-06-01

    This article illustrates good hardware installation practices and careful software documentation to help minimize PC problems and aid troubleshooting. Presents a typical ladder diagram, a binary logic diagram, a typical computer generated cross-reference list, an assignment list, and a cross-reference sheet.

  10. Adaptive control strategies for flexible robotic arm

    NASA Technical Reports Server (NTRS)

    Bialasiewicz, Jan T.

    1993-01-01

    The motivation of this research came about when a neural network direct adaptive control scheme was applied to control the tip position of a flexible robotic arm. Satisfactory control performance was not attainable due to the inherent non-minimum phase characteristics of the flexible robotic arm tip. Most of the existing neural network control algorithms are based on the direct method and exhibit very high sensitivity if not unstable closed-loop behavior. Therefore a neural self-tuning control (NSTC) algorithm is developed and applied to this problem and showed promising results. Simulation results of the NSTC scheme and the conventional self-tuning (STR) control scheme are used to examine performance factors such as control tracking mean square error, estimation mean square error, transient response, and steady state response.

  11. Effects of incomplete adaptation and disturbance in adaptive control.

    NASA Technical Reports Server (NTRS)

    Lindorff, D. P.

    1972-01-01

    In this paper consideration is given to the effects of disturbance and incomplete parameter adaptation on the performance of adaptive control systems in which Liapunov theory is used in deriving the control law. A design equation for the bounded error is derived. It is further shown that parameters in the adaptive controller may not converge in the presence of disturbance unless the input signal has a rich enough frequency constant. Design examples are presented.

  12. Keck adaptive optics: control subsystem

    SciTech Connect

    Brase, J.M.; An, J.; Avicola, K.

    1996-03-08

    Adaptive optics on the Keck 10 meter telescope will provide an unprecedented level of capability in high resolution ground based astronomical imaging. The system is designed to provide near diffraction limited imaging performance with Strehl {gt} 0.3 n median Keck seeing of r0 = 25 cm, T =10 msec at 500 nm wavelength. The system will be equipped with a 20 watt sodium laser guide star to provide nearly full sky coverage. The wavefront control subsystem is responsible for wavefront sensing and the control of the tip-tilt and deformable mirrors which actively correct atmospheric turbulence. The spatial sampling interval for the wavefront sensor and deformable mirror is de=0.56 m which gives us 349 actuators and 244 subapertures. This paper summarizes the wavefront control system and discusses particular issues in designing a wavefront controller for the Keck telescope.

  13. Adaptive Controller Effects on Pilot Behavior

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Gregory, Irene M.; Hempley, Lucas E.

    2014-01-01

    Adaptive control provides robustness and resilience for highly uncertain, and potentially unpredictable, flight dynamics characteristic. Some of the recent flight experiences of pilot-in-the-loop with an adaptive controller have exhibited unpredicted interactions. In retrospect, this is not surprising once it is realized that there are now two adaptive controllers interacting, the software adaptive control system and the pilot. An experiment was conducted to categorize these interactions on the pilot with an adaptive controller during control surface failures. One of the objectives of this experiment was to determine how the adaptation time of the controller affects pilots. The pitch and roll errors, and stick input increased for increasing adaptation time and during the segment when the adaptive controller was adapting. Not surprisingly, altitude, cross track and angle deviations, and vertical velocity also increase during the failure and then slowly return to pre-failure levels. Subjects may change their behavior even as an adaptive controller is adapting with additional stick inputs. Therefore, the adaptive controller should adapt as fast as possible to minimize flight track errors. This will minimize undesirable interactions between the pilot and the adaptive controller and maintain maneuvering precision.

  14. Adaptive Process Control with Fuzzy Logic and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Karr, C. L.

    1993-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.

  15. Adaptive hybrid position/force control of robotic manipulators

    NASA Technical Reports Server (NTRS)

    Pourboghrat, F.

    1987-01-01

    The problem of position and force control for the compliant motion of the manipulators is considered. The external force and the position of the end-effector are related by a second order impedance function. The force control problem is then translated into a position control problem. For that, an adaptive controller is designed to achieve the compliant motion. The design uses the Liapunov's direct method to derive the adaptation law. The stability of the process is guaranteed from the Liapunov's stability theory. The controller does not require the knowledge of the system parameters for the implementation, and hence is easy for applications.

  16. Adaptive robust controller based on integral sliding mode concept

    NASA Astrophysics Data System (ADS)

    Taleb, M.; Plestan, F.

    2016-09-01

    This paper proposes, for a class of uncertain nonlinear systems, an adaptive controller based on adaptive second-order sliding mode control and integral sliding mode control concepts. The adaptation strategy solves the problem of gain tuning and has the advantage of chattering reduction. Moreover, limited information about perturbation and uncertainties has to be known. The control is composed of two parts: an adaptive one whose objective is to reject the perturbation and system uncertainties, whereas the second one is chosen such as the nominal part of the system is stabilised in zero. To illustrate the effectiveness of the proposed approach, an application on an academic example is shown with simulation results.

  17. Adaptive Force Control For Compliant Motion Of A Robot

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1995-01-01

    Two adaptive control schemes offer robust solutions to problem of stable control of forces of contact between robotic manipulator and objects in its environment. They are called "adaptive admittance control" and "adaptive compliance control." Both schemes involve use of force-and torque sensors that indicate contact forces. These schemes performed well when tested in computational simulations in which they were used to control seven-degree-of-freedom robot arm in executing contact tasks. Choice between admittance or compliance control is dictated by requirements of the application at hand.

  18. Adaptive process control using fuzzy logic and genetic algorithms

    NASA Technical Reports Server (NTRS)

    Karr, C. L.

    1993-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.

  19. Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems

    NASA Astrophysics Data System (ADS)

    Williams, Rube B.

    2004-02-01

    Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.

  20. Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems

    SciTech Connect

    Williams, Rube B.

    2004-02-04

    Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.

  1. Genetic Adaptive Control for PZT Actuators

    NASA Technical Reports Server (NTRS)

    Kim, Jeongwook; Stover, Shelley K.; Madisetti, Vijay K.

    1995-01-01

    A piezoelectric transducer (PZT) is capable of providing linear motion if controlled correctly and could provide a replacement for traditional heavy and large servo systems using motors. This paper focuses on a genetic model reference adaptive control technique (GMRAC) for a PZT which is moving a mirror where the goal is to keep the mirror velocity constant. Genetic Algorithms (GAs) are an integral part of the GMRAC technique acting as the search engine for an optimal PID controller. Two methods are suggested to control the actuator in this research. The first one is to change the PID parameters and the other is to add an additional reference input in the system. The simulation results of these two methods are compared. Simulated Annealing (SA) is also used to solve the problem. Simulation results of GAs and SA are compared after simulation. GAs show the best result according to the simulation results. The entire model is designed using the Mathworks' Simulink tool.

  2. Adaptive control: Stability, convergence, and robustness

    NASA Technical Reports Server (NTRS)

    Sastry, Shankar; Bodson, Marc

    1989-01-01

    The deterministic theory of adaptive control (AC) is presented in an introduction for graduate students and practicing engineers. Chapters are devoted to basic AC approaches, notation and fundamental theorems, the identification problem, model-reference AC, parameter convergence using averaging techniques, and AC robustness. Consideration is given to the use of prior information, the global stability of indirect AC schemes, multivariable AC, linearizing AC for a class of nonlinear systems, AC of linearizable minimum-phase systems, and MIMO systems decouplable by static state feedback.

  3. Intelligent Engine Systems: Adaptive Control

    NASA Technical Reports Server (NTRS)

    Gibson, Nathan

    2008-01-01

    We have studied the application of the baseline Model Predictive Control (MPC) algorithm to the control of main fuel flow rate (WF36), variable bleed valve (AE24) and variable stator vane (STP25) control of a simulated high-bypass turbofan engine. Using reference trajectories for thrust and turbine inlet temperature (T41) generated by a simulated new engine, we have examined MPC for tracking these two reference outputs while controlling a deteriorated engine. We have examined the results of MPC control for six different transients: two idle-to-takeoff transients at sea level static (SLS) conditions, one takeoff-to-idle transient at SLS, a Bode power command and reverse Bode power command at 20,000 ft/Mach 0.5, and a reverse Bode transient at 35,000 ft/Mach 0.84. For all cases, our primary focus was on the computational effort required by MPC for varying MPC update rates, control horizons, and prediction horizons. We have also considered the effects of these MPC parameters on the performance of the control, with special emphasis on the thrust tracking error, the peak T41, and the sizes of violations of the constraints on the problem, primarily the booster stall margin limit, which for most cases is the lone constraint that is violated with any frequency.

  4. An adaptive control scheme for coordinated multimanipulator systems

    SciTech Connect

    Jonghann Jean; Lichen Fu . Dept. of Electrical Engineering)

    1993-04-01

    The problem of adaptive coordinated control of multiple robot arms transporting an object is addressed. A stable adaptive control scheme for both trajectory tracking and internal force control is presented. Detailed analyses on tracking properties of the object position, velocity and the internal forces exerted on the object are given. It is shown that this control scheme can achieve satisfactory tracking performance without using the measurement of contact forces and their derivatives. It can be shown that this scheme can be realized by decentralized implementation to reduce the computational burden. Moreover, some efficient adaptive control strategies can be incorporated to reduce the computational complexity.

  5. Dual-arm manipulators with adaptive control

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun (Inventor)

    1991-01-01

    The described and improved multi-arm invention of this application presents three strategies for adaptive control of cooperative multi-arm robots which coordinate control over a common load. In the position-position control strategy, the adaptive controllers ensure that the end-effector positions of both arms track desired trajectories in Cartesian space despite unknown time-varying interaction forces exerted through a load. In the position-hybrid control strategy, the adaptive controller of one arm controls end-effector motions in the free directions and applied forces in the constraint directions; while the adaptive controller of the other arm ensures that the end-effector tracks desired position trajectories. In the hybrid-hybrid control strategy, the adaptive controllers ensure that both end-effectors track reference position trajectories while simultaneously applying desired forces on the load. In all three control strategies, the cross-coupling effects between the arms are treated as disturbances which are compensated for by the adaptive controllers while following desired commands in a common frame of reference. The adaptive controllers do not require the complex mathematical model of the arm dynamics or any knowledge of the arm dynamic parameters or the load parameters such as mass and stiffness. Circuits in the adaptive feedback and feedforward controllers are varied by novel adaptation laws.

  6. Simple method for model reference adaptive control

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1989-01-01

    A simple method is presented for combined signal synthesis and parameter adaptation within the framework of model reference adaptive control theory. The results are obtained using a simple derivation based on an improved Liapunov function.

  7. Statistical Physics for Adaptive Distributed Control

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.

    2005-01-01

    A viewgraph presentation on statistical physics for distributed adaptive control is shown. The topics include: 1) The Golden Rule; 2) Advantages; 3) Roadmap; 4) What is Distributed Control? 5) Review of Information Theory; 6) Iterative Distributed Control; 7) Minimizing L(q) Via Gradient Descent; and 8) Adaptive Distributed Control.

  8. Flight Test Approach to Adaptive Control Research

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration s Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The validation of adaptive controls has the potential to enhance safety in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  9. Robust adaptive control for Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Kahveci, Nazli E.

    The objective of meeting higher endurance requirements remains a challenging task for any type and size of Unmanned Aerial Vehicles (UAVs). According to recent research studies significant energy savings can be realized through utilization of thermal currents. The navigation strategies followed across thermal regions, however, are based on rather intuitive assessments of remote pilots and lack any systematic path planning approaches. Various methods to enhance the autonomy of UAVs in soaring applications are investigated while seeking guarantees for flight performance improvements. The dynamics of the aircraft, small UAVs in particular, are affected by the environmental conditions, whereas unmodeled dynamics possibly become significant during aggressive flight maneuvers. Besides, the demanded control inputs might have a magnitude range beyond the limits dictated by the control surface actuators. The consequences of ignoring these issues can be catastrophic. Supporting this claim NASA Dryden Flight Research Center reports considerable performance degradation and even loss of stability in autonomous soaring flight tests with the subsequent risk of an aircraft crash. The existing control schemes are concluded to suffer from limited performance. Considering the aircraft dynamics and the thermal characteristics we define a vehicle-specific trajectory optimization problem to achieve increased cross-country speed and extended range of flight. In an environment with geographically dispersed set of thermals of possibly limited lifespan, we identify the similarities to the Vehicle Routing Problem (VRP) and provide both exact and approximate guidance algorithms for the navigation of automated UAVs. An additional stochastic approach is used to quantify the performance losses due to incorrect thermal data while dealing with random gust disturbances and onboard sensor measurement inaccuracies. One of the main contributions of this research is a novel adaptive control design with

  10. Tetrahedral and Hexahedral Mesh Adaptation for CFD Problems

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Strawn, Roger C.; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    This paper presents two unstructured mesh adaptation schemes for problems in computational fluid dynamics. The procedures allow localized grid refinement and coarsening to efficiently capture aerodynamic flow features of interest. The first procedure is for purely tetrahedral grids; unfortunately, repeated anisotropic adaptation may significantly deteriorate the quality of the mesh. Hexahedral elements, on the other hand, can be subdivided anisotropically without mesh quality problems. Furthermore, hexahedral meshes yield more accurate solutions than their tetrahedral counterparts for the same number of edges. Both the tetrahedral and hexahedral mesh adaptation procedures use edge-based data structures that facilitate efficient subdivision by allowing individual edges to be marked for refinement or coarsening. However, for hexahedral adaptation, pyramids, prisms, and tetrahedra are used as buffer elements between refined and unrefined regions to eliminate hanging vertices. Computational results indicate that the hexahedral adaptation procedure is a viable alternative to adaptive tetrahedral schemes.

  11. An adaptive pseudospectral method for discontinuous problems

    NASA Technical Reports Server (NTRS)

    Augenbaum, Jeffrey M.

    1988-01-01

    The accuracy of adaptively chosen, mapped polynomial approximations is studied for functions with steep gradients or discontinuities. It is shown that, for steep gradient functions, one can obtain spectral accuracy in the original coordinate system by using polynomial approximations in a transformed coordinate system with substantially fewer collocation points than are necessary using polynomial expansion directly in the original, physical, coordinate system. It is also shown that one can avoid the usual Gibbs oscillation associated with steep gradient solutions of hyperbolic pde's by approximation in suitably chosen coordinate systems. Continuous, high gradient solutions are computed with spectral accuracy (as measured in the physical coordinate system). Discontinuous solutions associated with nonlinear hyperbolic equations can be accurately computed by using an artificial viscosity chosen to smooth out the solution in the mapped, computational domain. Thus, shocks can be effectively resolved on a scale that is subgrid to the resolution available with collocation only in the physical domain. Examples with Fourier and Chebyshev collocation are given.

  12. Research in digital adaptive flight controllers

    NASA Technical Reports Server (NTRS)

    Kaufman, H.

    1976-01-01

    A design study of adaptive control logic suitable for implementation in modern airborne digital flight computers was conducted. Both explicit controllers which directly utilize parameter identification and implicit controllers which do not require identification were considered. Extensive analytical and simulation efforts resulted in the recommendation of two explicit digital adaptive flight controllers. Interface weighted least squares estimation procedures with control logic were developed using either optimal regulator theory or with control logic based upon single stage performance indices.

  13. Adaptive Flight Control Design with Optimal Control Modification on an F-18 Aircraft Model

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Nguyen, Nhan T.; Griffin, Brian J.

    2010-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to as the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly; however, a large adaptive gain can lead to high-frequency oscillations which can adversely affect the robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient robustness. A damping term (v) is added in the modification to increase damping as needed. Simulations were conducted on a damaged F-18 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) with both the standard baseline dynamic inversion controller and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model.

  14. An adaptive Cartesian control scheme for manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1987-01-01

    A adaptive control scheme for direct control of manipulator end-effectors to achieve trajectory tracking in Cartesian space is developed. The control structure is obtained from linear multivariable theory and is composed of simple feedforward and feedback controllers and an auxiliary input. The direct adaptation laws are derived from model reference adaptive control theory and are not based on parameter estimation of the robot model. The utilization of feedforward control and the inclusion of auxiliary input are novel features of the present scheme and result in improved dynamic performance over existing adaptive control schemes. The adaptive controller does not require the complex mathematical model of the robot dynamics or any knowledge of the robot parameters or the payload, and is computationally fast for online implementation with high sampling rates.

  15. Adaptive control: Myths and realities

    NASA Technical Reports Server (NTRS)

    Athans, M.; Valavani, L.

    1984-01-01

    It was found that all currently existing globally stable adaptive algorithms have three basic properties in common: positive realness of the error equation, square-integrability of the parameter adjustment law and, need for sufficient excitation for asymptotic parameter convergence. Of the three, the first property is of primary importance since it satisfies a sufficient condition for stabillity of the overall system, which is a baseline design objective. The second property has been instrumental in the proof of asymptotic error convergence to zero, while the third addresses the issue of parameter convergence. Positive-real error dynamics can be generated only if the relative degree (excess of poles over zeroes) of the process to be controlled is known exactly; this, in turn, implies perfect modeling. This and other assumptions, such as absence of nonminimum phase plant zeros on which the mathematical arguments are based, do not necessarily reflect properties of real systems. As a result, it is natural to inquire what happens to the designs under less than ideal assumptions. The issues arising from violation of the exact modeling assumption which is extremely restrictive in practice and impacts the most important system property, stability, are discussed.

  16. Adaptive Controller Adaptation Time and Available Control Authority Effects on Piloting

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna; Gregory, Irene

    2013-01-01

    Adaptive control is considered for highly uncertain, and potentially unpredictable, flight dynamics characteristic of adverse conditions. This experiment looked at how adaptive controller adaptation time to recover nominal aircraft dynamics affects pilots and how pilots want information about available control authority transmitted. Results indicate that an adaptive controller that takes three seconds to adapt helped pilots when looking at lateral and longitudinal errors. The controllability ratings improved with the adaptive controller, again the most for the three seconds adaptation time while workload decreased with the adaptive controller. The effects of the displays showing the percentage amount of available safe flight envelope used in the maneuver were dominated by the adaptation time. With the displays, the altitude error increased, controllability slightly decreased, and mental demand increased. Therefore, the displays did require some of the subjects resources but these negatives may be outweighed by pilots having more situation awareness of their aircraft.

  17. Kalman filter based control for Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Petit, Cyril; Quiros-Pacheco, Fernando; Conan, Jean-Marc; Kulcsár, Caroline; Raynaud, Henri-François; Fusco, Thierry

    2004-12-01

    Classical Adaptive Optics suffer from a limitation of the corrected Field Of View. This drawback has lead to the development of MultiConjugated Adaptive Optics. While the first MCAO experimental set-ups are presently under construction, little attention has been paid to the control loop. This is however a key element in the optimization process especially for MCAO systems. Different approaches have been proposed in recent articles for astronomical applications : simple integrator, Optimized Modal Gain Integrator and Kalman filtering. We study here Kalman filtering which seems a very promising solution. Following the work of Brice Leroux, we focus on a frequential characterization of kalman filters, computing a transfer matrix. The result brings much information about their behaviour and allows comparisons with classical controllers. It also appears that straightforward improvements of the system models can lead to static aberrations and vibrations filtering. Simulation results are proposed and analysed thanks to our frequential characterization. Related problems such as model errors, aliasing effect reduction or experimental implementation and testing of Kalman filter control loop on a simplified MCAO experimental set-up could be then discussed.

  18. Adaptive control of dual-arm robots

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1987-01-01

    Three strategies for adaptive control of cooperative dual-arm robots are described. In the position-position control strategy, the adaptive controllers ensure that the end-effector positions of both arms track desired trajectories in Cartesian space despite unknown time-varying interaction forces exerted through the load. In the position-hybrid control strategy, the adaptive controller of one arm controls end-effector motions in the free directions and applied forces in the constraint directions, while the adaptive controller of the other arm ensures that the end-effector tracks desired position trajectories. In the hybrid-hybrid control strategy, the adaptive controllers ensure that both end-effectors track reference position trajectories while simultaneously applying desired forces on the load. In all three control strategies, the cross-coupling effects between the arms are treated as disturbances which are rejected by the adaptive controllers while following desired commands in a common frame of reference. The adaptive controllers do not require the complex mathematical model of the arm dynamics or any knowledge of the arm dynamic parameters or the load parameters such as mass and stiffness. The controllers have simple structures and are computationally fast for on-line implementation with high sampling rates.

  19. Effects of incomplete adaption and disturbance in adaptive control

    NASA Technical Reports Server (NTRS)

    Lindorff, D. P.

    1972-01-01

    This investigation focused attention on the fact that the synthesis of adaptive control systems has often been discussed in the framework of idealizations which may represent over simplifications. A condition for boundedness of the tracking error has been derived for the case in which incomplete adaption and disturbance are present. When using Parks' design it is shown that instability of the adaptive gains can result due to the presence of disturbance. The theory has been applied to a nontrivial example in order to illustrate the concepts involved.

  20. [Altitude adaptation. Biological problems in the context of the environment].

    PubMed

    Eckes, L

    1976-01-01

    The following part of the description of adaptation to high altitude describes the geographical specifities of the relevant regions of the world. There are several factors which require an adaptive answer, such as hypoxia, temperature, terrain, nutrition etc. The terms of genetically determined and of individual adaptation are discussed, with special consideration of a duration of settlement in the main altitude regions of about ten thousand years, as well as the principles of adaptation in general, including the phenomenon of maladaptation. The problem of adaptation of animals to high altitude is reviewed in short especially in regard to mammals. The differential fertility proves to be most important in the survival of a species in high altitude as well as the individual adaptability, is the fitness which makes high altitude tolerable to newcomers.

  1. Coefficient adaptive triangulation for strongly anisotropic problems

    SciTech Connect

    D`Azevedo, E.F.; Romine, C.H.; Donato, J.M.

    1996-01-01

    Second order elliptic partial differential equations arise in many important applications, including flow through porous media, heat conduction, the distribution of electrical or magnetic potential. The prototype is the Laplace problem, which in discrete form produces a coefficient matrix that is relatively easy to solve in a regular domain. However, the presence of anisotropy produces a matrix whose condition number is increased, making the resulting linear system more difficult to solve. In this work, we take the anisotropy into account in the discretization by mapping each anisotropic region into a ``stretched`` coordinate space in which the anisotropy is removed. The region is then uniformly triangulated, and the resulting triangulation mapped back to the original space. The effect is to generate long slender triangles that are oriented in the direction of ``preferred flow.`` Slender triangles are generally regarded as numerically undesirable since they tend to cause poor conditioning; however, our triangulation has the effect of producing effective isotropy, thus improving the condition number of the resulting coefficient matrix.

  2. Internal models in sensorimotor integration: perspectives from adaptive control theory.

    PubMed

    Tin, Chung; Poon, Chi-Sang

    2005-09-01

    Internal models and adaptive controls are empirical and mathematical paradigms that have evolved separately to describe learning control processes in brain systems and engineering systems, respectively. This paper presents a comprehensive appraisal of the correlation between these paradigms with a view to forging a unified theoretical framework that may benefit both disciplines. It is suggested that the classic equilibrium-point theory of impedance control of arm movement is analogous to continuous gain-scheduling or high-gain adaptive control within or across movement trials, respectively, and that the recently proposed inverse internal model is akin to adaptive sliding control originally for robotic manipulator applications. Modular internal models' architecture for multiple motor tasks is a form of multi-model adaptive control. Stochastic methods, such as generalized predictive control, reinforcement learning, Bayesian learning and Hebbian feedback covariance learning, are reviewed and their possible relevance to motor control is discussed. Possible applicability of a Luenberger observer and an extended Kalman filter to state estimation problems-such as sensorimotor prediction or the resolution of vestibular sensory ambiguity-is also discussed. The important role played by vestibular system identification in postural control suggests an indirect adaptive control scheme whereby system states or parameters are explicitly estimated prior to the implementation of control. This interdisciplinary framework should facilitate the experimental elucidation of the mechanisms of internal models in sensorimotor systems and the reverse engineering of such neural mechanisms into novel brain-inspired adaptive control paradigms in future.

  3. Dynamic optimization and adaptive controller design

    NASA Astrophysics Data System (ADS)

    Inamdar, S. R.

    2010-10-01

    In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.

  4. Adaptive control and orbit determination for elliptical rendezvous

    NASA Astrophysics Data System (ADS)

    Xu, Lijia; Hu, Yong; Jiang, Tiantian

    2016-10-01

    In this paper, we study the control and orbit determination problems for elliptical rendezvous. Autonomous rendezvous is achieved by the proposed adaptive control based on the measurements of relative position and velocity between the chaser and target spacecraft. Moreover, the target orbital elements can be estimated during the rendezvous process. Finally, the effectiveness of the method is illustrated by simulations.

  5. Missile guidance law design using adaptive cerebellar model articulation controller.

    PubMed

    Lin, Chih-Min; Peng, Ya-Fu

    2005-05-01

    An adaptive cerebellar model articulation controller (CMAC) is proposed for command to line-of-sight (CLOS) missile guidance law design. In this design, the three-dimensional (3-D) CLOS guidance problem is formulated as a tracking problem of a time-varying nonlinear system. The adaptive CMAC control system is comprised of a CMAC and a compensation controller. The CMAC control is used to imitate a feedback linearization control law and the compensation controller is utilized to compensate the difference between the feedback linearization control law and the CMAC control. The online adaptive law is derived based on the Lyapunov stability theorem to learn the weights of receptive-field basis functions in CMAC control. In addition, in order to relax the requirement of approximation error bound, an estimation law is derived to estimate the error bound. Then the adaptive CMAC control system is designed to achieve satisfactory tracking performance. Simulation results for different engagement scenarios illustrate the validity of the proposed adaptive CMAC-based guidance law.

  6. Adaptive control applied to Space Station attitude control system

    NASA Technical Reports Server (NTRS)

    Lam, Quang M.; Chipman, Richard; Hu, Tsay-Hsin G.; Holmes, Eric B.; Sunkel, John

    1992-01-01

    This paper presents an adaptive control approach to enhance the performance of current attitude control system used by the Space Station Freedom. The proposed control law was developed based on the direct adaptive control or model reference adaptive control scheme. Performance comparisons, subject to inertia variation, of the adaptive controller and the fixed-gain linear quadratic regulator currently implemented for the Space Station are conducted. Both the fixed-gain and the adaptive gain controllers are able to maintain the Station stability for inertia variations of up to 35 percent. However, when a 50 percent inertia variation is applied to the Station, only the adaptive controller is able to maintain the Station attitude.

  7. Predictor-Based Model Reference Adaptive Control

    NASA Technical Reports Server (NTRS)

    Lavretsky, Eugene; Gadient, Ross; Gregory, Irene M.

    2009-01-01

    This paper is devoted to robust, Predictor-based Model Reference Adaptive Control (PMRAC) design. The proposed adaptive system is compared with the now-classical Model Reference Adaptive Control (MRAC) architecture. Simulation examples are presented. Numerical evidence indicates that the proposed PMRAC tracking architecture has better than MRAC transient characteristics. In this paper, we presented a state-predictor based direct adaptive tracking design methodology for multi-input dynamical systems, with partially known dynamics. Efficiency of the design was demonstrated using short period dynamics of an aircraft. Formal proof of the reported PMRAC benefits constitute future research and will be reported elsewhere.

  8. Adaptive muffler based on controlled flow valves.

    PubMed

    Šteblaj, Peter; Čudina, Mirko; Lipar, Primož; Prezelj, Jurij

    2015-06-01

    An adaptive muffler with a flexible internal structure is considered. Flexibility is achieved using controlled flow valves. The proposed adaptive muffler is able to adapt to changes in engine operating conditions. It consists of a Helmholtz resonator, expansion chamber, and quarter wavelength resonator. Different combinations of the control valves' states at different operating conditions define the main working principle. To control the valve's position, an active noise control approach was used. With the proposed muffler, the transmission loss can be increased by more than 10 dB in the selected frequency range. PMID:26093462

  9. Flight Approach to Adaptive Control Research

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The testbed served as a full-scale vehicle to test and validate adaptive flight control research addressing technical challenges involved with reducing risk to enable safe flight in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  10. Adaptive Impedance Control Of Redundant Manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun; Colbaugh, Richard D.; Glass, Kristin L.

    1994-01-01

    Improved method of controlling mechanical impedance of end effector of redundant robotic manipulator based on adaptive-control theory. Consists of two subsystems: adaptive impedance controller generating force-control inputs in Cartesian space of end effector to provide desired end-effector-impedance characteristics, and subsystem implementing algorithm that maps force-control inputs into torques applied to joints of manipulator. Accurate control of end effector and effective utilization of redundancy achieved simultaneously by use of method. Potential use to improve performance of such typical impedance-control tasks as deburring edges and accommodating transitions between unconstrained and constrained motions of end effectors.

  11. Adaptive spacecraft attitude control utilizing eigenaxis rotations

    NASA Technical Reports Server (NTRS)

    Cochran, J. E., Jr.; Colburn, B. K.; Speakman, N. O.

    1975-01-01

    Conventional and adaptive attitude control of spacecraft which use control moment gyros (CMG's) as torque sources are discussed. Control laws predicated on the assumption of a linear system are used since the spacecraft equations of motion are formulated in an 'eigenaxis system' so that they are essentially linear during 'slow' maneuvers even if large angles are involved. The overall control schemes are 'optimal' in several senses. Eigenaxis rotations and a weighted pseudo-inverse CMG steering law are used and, in the adaptive case, a Model Reference Adaptive System (MRAS) controller based on Liapunov's Second Method is adopted. To substantiate the theory, digital simulation results obtained using physical parameters of a Large Space Telescope type spacecraft are presented. These results indicate that an adaptive control law is often desirable.

  12. Robust control of a bimorph mirror for adaptive optics systems.

    PubMed

    Baudouin, Lucie; Prieur, Christophe; Guignard, Fabien; Arzelier, Denis

    2008-07-10

    We apply robust control techniques to an adaptive optics system including a dynamic model of the deformable mirror. The dynamic model of the mirror is a modification of the usual plate equation. We propose also a state-space approach to model the turbulent phase. A continuous time control of our model is suggested, taking into account the frequential behavior of the turbulent phase. An H(infinity) controller is designed in an infinite-dimensional setting. Because of the multivariable nature of the control problem involved in adaptive optics systems, a significant improvement is obtained with respect to traditional single input-single output methods.

  13. Chaotic satellite attitude control by adaptive approach

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Wang, Jing; Zuo, Min; Liu, Zaiwen; Du, Junping

    2014-06-01

    In this article, chaos control of satellite attitude motion is considered. Adaptive control based on dynamic compensation is utilised to suppress the chaotic behaviour. Control approaches with three control inputs and with only one control input are proposed. Since the adaptive control employed is based on dynamic compensation, faithful model of the system is of no necessity. Sinusoidal disturbance and parameter uncertainties are considered to evaluate the robustness of the closed-loop system. Both of the approaches are confirmed by theoretical and numerical results.

  14. Adaptive Flight Control Research at NASA

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.

    2008-01-01

    A broad overview of current adaptive flight control research efforts at NASA is presented, as well as some more detailed discussion of selected specific approaches. The stated objective of the Integrated Resilient Aircraft Control Project, one of NASA s Aviation Safety programs, is to advance the state-of-the-art of adaptive controls as a design option to provide enhanced stability and maneuverability margins for safe landing in the presence of adverse conditions such as actuator or sensor failures. Under this project, a number of adaptive control approaches are being pursued, including neural networks and multiple models. Validation of all the adaptive control approaches will use not only traditional methods such as simulation, wind tunnel testing and manned flight tests, but will be augmented with recently developed capabilities in unmanned flight testing.

  15. Stability and Performance Metrics for Adaptive Flight Control

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vahram; Krishnakumar, Kalmanje; Nguyen, Nhan; VanEykeren, Luarens

    2009-01-01

    This paper addresses the problem of verifying adaptive control techniques for enabling safe flight in the presence of adverse conditions. Since the adaptive systems are non-linear by design, the existing control verification metrics are not applicable to adaptive controllers. Moreover, these systems are in general highly uncertain. Hence, the system's characteristics cannot be evaluated by relying on the available dynamical models. This necessitates the development of control verification metrics based on the system's input-output information. For this point of view, a set of metrics is introduced that compares the uncertain aircraft's input-output behavior under the action of an adaptive controller to that of a closed-loop linear reference model to be followed by the aircraft. This reference model is constructed for each specific maneuver using the exact aerodynamic and mass properties of the aircraft to meet the stability and performance requirements commonly accepted in flight control. The proposed metrics are unified in the sense that they are model independent and not restricted to any specific adaptive control methods. As an example, we present simulation results for a wing damaged generic transport aircraft with several existing adaptive controllers.

  16. Decentralized digital adaptive control of robot motion

    NASA Technical Reports Server (NTRS)

    Tarokh, M.

    1990-01-01

    A decentralized model reference adaptive scheme is developed for digital control of robot manipulators. The adaptation laws are derived using hyperstability theory, which guarantees asymptotic trajectory tracking despite gross robot parameter variations. The control scheme has a decentralized structure in the sense that each local controller receives only its joint angle measurement to produce its joint torque. The independent joint controllers have simple structures and can be programmed using a very simple and computationally fast algorithm. As a result, the scheme is suitable for real-time motion control.

  17. On fractional Model Reference Adaptive Control.

    PubMed

    Shi, Bao; Yuan, Jian; Dong, Chao

    2014-01-01

    This paper extends the conventional Model Reference Adaptive Control systems to fractional ones based on the theory of fractional calculus. A control law and an incommensurate fractional adaptation law are designed for the fractional plant and the fractional reference model. The stability and tracking convergence are analyzed using the frequency distributed fractional integrator model and Lyapunov theory. Moreover, numerical simulations of both linear and nonlinear systems are performed to exhibit the viability and effectiveness of the proposed methodology. PMID:24574897

  18. Identifying Reading Problems with Computer-Adaptive Assessments

    ERIC Educational Resources Information Center

    Merrell, C.; Tymms, P.

    2007-01-01

    This paper describes the development of an adaptive assessment called Interactive Computerised Assessment System (InCAS) that is aimed at children of a wide age and ability range to identify specific reading problems. Rasch measurement has been used to create the equal interval scales that form each part of the assessment. The rationale for the…

  19. Adaptive Control for Microgravity Vibration Isolation System

    NASA Technical Reports Server (NTRS)

    Yang, Bong-Jun; Calise, Anthony J.; Craig, James I.; Whorton, Mark S.

    2005-01-01

    Most active vibration isolation systems that try to a provide quiescent acceleration environment for space science experiments have utilized linear design methods. In this paper, we address adaptive control augmentation of an existing classical controller that employs a high-gain acceleration feedback together with a low-gain position feedback to center the isolated platform. The control design feature includes parametric and dynamic uncertainties because the hardware of the isolation system is built as a payload-level isolator, and the acceleration Sensor exhibits a significant bias. A neural network is incorporated to adaptively compensate for the system uncertainties, and a high-pass filter is introduced to mitigate the effect of the measurement bias. Simulations show that the adaptive control improves the performance of the existing acceleration controller and keep the level of the isolated platform deviation to that of the existing control system.

  20. Adaptive change in corporate control practices.

    PubMed

    Alexander, J A

    1991-03-01

    Multidivisional organizations are not concerned with what structure to adopt but with how they should exercise control within the divisional form to achieve economic efficiencies. Using an information-processing framework, I examined control arrangements between the headquarters and operating divisions of such organizations and how managers adapted control practices to accommodate increasing environmental uncertainty. Also considered were the moderating effects of contextual attributes on such adaptive behavior. Analyses of panel data from 97 multihospital systems suggested that organizations generally practice selective decentralization under conditions of increasing uncertainty but that organizational age, dispersion, and initial control arrangements significantly moderate the direction and magnitude of such changes.

  1. Adaptive control system for large annular momentum control device

    NASA Technical Reports Server (NTRS)

    Montgomery, R. C.; Johnson, C. R., Jr.

    1981-01-01

    A dual momentum vector control concept, consisting of two counterrotating rings (each designated as an annular momentum control device), was studied for pointing and slewing control of large spacecraft. In a disturbance free space environment, the concept provides for three axis pointing and slewing capabilities while requiring no expendables. The approach utilizes two large diameter counterrotating rings or wheels suspended magnetically in many race supports distributed around the antenna structure. When the magnets are energized, attracting the two wheels, the resulting gyroscopic torque produces a rate along the appropriate axis. Roll control is provided by alternating the radiative rotational velocity of the two wheels. Wheels with diameters of 500 to 800 m and with sufficient momentum storage capability require rims only a few centimeters thick. The wheels are extremely flexible; therefore, it is necessary to account for the distributed nature of the rings in the design of the bearing controllers. Also, ring behavior is unpredictably sensitive to ring temperature, spin rate, manufacturing imperfections, and other variables. An adaptive control system designed to handle these problems is described.

  2. Adaptive Inner-Loop Rover Control

    NASA Technical Reports Server (NTRS)

    Kulkarni, Nilesh; Ippolito, Corey; Krishnakumar, Kalmanje; Al-Ali, Khalid M.

    2006-01-01

    Adaptive control technology is developed for the inner-loop speed and steering control of the MAX Rover. MAX, a CMU developed rover, is a compact low-cost 4-wheel drive, 4-wheel steer (double Ackerman), high-clearance agile durable chassis, outfitted with sensors and electronics that make it ideally suited for supporting research relevant to intelligent teleoperation and as a low-cost autonomous robotic test bed and appliance. The design consists of a feedback linearization based controller with a proportional - integral (PI) feedback that is augmented by an online adaptive neural network. The adaptation law has guaranteed stability properties for safe operation. The control design is retrofit in nature so that it fits inside the outer-loop path planning algorithms. Successful hardware implementation of the controller is illustrated for several scenarios consisting of actuator failures and modeling errors in the nominal design.

  3. Synthetic consciousness: the distributed adaptive control perspective.

    PubMed

    Verschure, Paul F M J

    2016-08-19

    Understanding the nature of consciousness is one of the grand outstanding scientific challenges. The fundamental methodological problem is how phenomenal first person experience can be accounted for in a third person verifiable form, while the conceptual challenge is to both define its function and physical realization. The distributed adaptive control theory of consciousness (DACtoc) proposes answers to these three challenges. The methodological challenge is answered relative to the hard problem and DACtoc proposes that it can be addressed using a convergent synthetic methodology using the analysis of synthetic biologically grounded agents, or quale parsing. DACtoc hypothesizes that consciousness in both its primary and secondary forms serves the ability to deal with the hidden states of the world and emerged during the Cambrian period, affording stable multi-agent environments to emerge. The process of consciousness is an autonomous virtualization memory, which serializes and unifies the parallel and subconscious simulations of the hidden states of the world that are largely due to other agents and the self with the objective to extract norms. These norms are in turn projected as value onto the parallel simulation and control systems that are driving action. This functional hypothesis is mapped onto the brainstem, midbrain and the thalamo-cortical and cortico-cortical systems and analysed with respect to our understanding of deficits of consciousness. Subsequently, some of the implications and predictions of DACtoc are outlined, in particular, the prediction that normative bootstrapping of conscious agents is predicated on an intentionality prior. In the view advanced here, human consciousness constitutes the ultimate evolutionary transition by allowing agents to become autonomous with respect to their evolutionary priors leading to a post-biological Anthropocene.This article is part of the themed issue 'The major synthetic evolutionary transitions'. PMID

  4. Adaptive hp-FEM with dynamical meshes for transient heat and moisture transfer problems

    NASA Astrophysics Data System (ADS)

    Solin, Pavel; Dubcova, Lenka; Kruis, Jaroslav

    2010-04-01

    We are concerned with the time-dependent multiphysics problem of heat and moisture transfer in the context of civil engineering applications. The problem is challenging due to its multiscale nature (temperature usually propagates orders of magnitude faster than moisture), different characters of the two fields (moisture exhibits boundary layers which are not present in the temperature field), extremely long integration times (30 years or more), and lack of viable error control mechanisms. In order to solve the problem efficiently, we employ a novel multimesh adaptive higher-order finite element method (hp-FEM) based on dynamical meshes and adaptive time step control. We investigate the possibility to approximate the temperature and humidity fields on individual dynamical meshes equipped with mutually independent adaptivity mechanisms. Numerical examples related to a realistic nuclear reactor vessel simulation are presented.

  5. Language control in bilinguals: The adaptive control hypothesis

    PubMed Central

    Abutalebi, Jubin

    2013-01-01

    Speech comprehension and production are governed by control processes. We explore their nature and dynamics in bilingual speakers with a focus on speech production. Prior research indicates that individuals increase cognitive control in order to achieve a desired goal. In the adaptive control hypothesis we propose a stronger hypothesis: Language control processes themselves adapt to the recurrent demands placed on them by the interactional context. Adapting a control process means changing a parameter or parameters about the way it works (its neural capacity or efficiency) or the way it works in concert, or in cascade, with other control processes (e.g., its connectedness). We distinguish eight control processes (goal maintenance, conflict monitoring, interference suppression, salient cue detection, selective response inhibition, task disengagement, task engagement, opportunistic planning). We consider the demands on these processes imposed by three interactional contexts (single language, dual language, and dense code-switching). We predict adaptive changes in the neural regions and circuits associated with specific control processes. A dual-language context, for example, is predicted to lead to the adaptation of a circuit mediating a cascade of control processes that circumvents a control dilemma. Effective test of the adaptive control hypothesis requires behavioural and neuroimaging work that assesses language control in a range of tasks within the same individual. PMID:25077013

  6. Adaptive control with an expert system based supervisory level. Thesis

    NASA Technical Reports Server (NTRS)

    Sullivan, Gerald A.

    1991-01-01

    Adaptive control is presently one of the methods available which may be used to control plants with poorly modelled dynamics or time varying dynamics. Although many variations of adaptive controllers exist, a common characteristic of all adaptive control schemes, is that input/output measurements from the plant are used to adjust a control law in an on-line fashion. Ideally the adjustment mechanism of the adaptive controller is able to learn enough about the dynamics of the plant from input/output measurements to effectively control the plant. In practice, problems such as measurement noise, controller saturation, and incorrect model order, to name a few, may prevent proper adjustment of the controller and poor performance or instability result. In this work we set out to avoid the inadequacies of procedurally implemented safety nets, by introducing a two level control scheme in which an expert system based 'supervisor' at the upper level provides all the safety net functions for an adaptive controller at the lower level. The expert system is based on a shell called IPEX, (Interactive Process EXpert), that we developed specifically for the diagnosis and treatment of dynamic systems. Some of the more important functions that the IPEX system provides are: (1) temporal reasoning; (2) planning of diagnostic activities; and (3) interactive diagnosis. Also, because knowledge and control logic are separate, the incorporation of new diagnostic and treatment knowledge is relatively simple. We note that the flexibility available in the system to express diagnostic and treatment knowledge, allows much greater functionality than could ever be reasonably expected from procedural implementations of safety nets. The remainder of this chapter is divided into three sections. In section 1.1 we give a detailed review of the literature in the area of supervisory systems for adaptive controllers. In particular, we describe the evolution of safety nets from simple ad hoc techniques, up

  7. Adaptive output feedback control of flexible systems

    NASA Astrophysics Data System (ADS)

    Yang, Bong-Jun

    Neural network-based adaptive output feedback approaches that augment a linear control design are described in this thesis, and emphasis is placed on their real-time implementation with flexible systems. Two different control architectures that are robust to parametric uncertainties and unmodelled dynamics are presented. The unmodelled effects can consist of minimum phase internal dynamics of the system together with external disturbance process. Within this context, adaptive compensation for external disturbances is addressed. In the first approach, internal model-following control, adaptive elements are designed using feedback inversion. The effect of an actuator limit is treated using control hedging, and the effect of other actuation nonlinearities, such as dead zone and backlash, is mitigated by a disturbance observer-based control design. The effectiveness of the approach is illustrated through simulation and experimental testing with a three-disk torsional system, which is subjected to control voltage limit and stiction. While the internal model-following control is limited to minimum phase systems, the second approach, external model-following control, does not involve feedback linearization and can be applied to non-minimum phase systems. The unstable zero dynamics are assumed to have been modelled in the design of the existing linear controller. The laboratory tests for this method include a three-disk torsional pendulum, an inverted pendulum, and a flexible-base robot manipulator. The external model-following control architecture is further extended in three ways. The first extension is an approach for control of multivariable nonlinear systems. The second extension is a decentralized adaptive control approach for large-scale interconnected systems. The third extension is to make use of an adaptive observer to augment a linear observer-based controller. In this extension, augmenting terms for the adaptive observer can be used to achieve adaptation in

  8. Adaptive Modal Identification for Flutter Suppression Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Drew, Michael; Swei, Sean S.

    2016-01-01

    In this paper, we will develop an adaptive modal identification method for identifying the frequencies and damping of a flutter mode based on model-reference adaptive control (MRAC) and least-squares methods. The least-squares parameter estimation will achieve parameter convergence in the presence of persistent excitation whereas the MRAC parameter estimation does not guarantee parameter convergence. Two adaptive flutter suppression control approaches are developed: one based on MRAC and the other based on the least-squares method. The MRAC flutter suppression control is designed as an integral part of the parameter estimation where the feedback signal is used to estimate the modal information. On the other hand, the separation principle of control and estimation is applied to the least-squares method. The least-squares modal identification is used to perform parameter estimation.

  9. L1 adaptive output-feedback control architectures

    NASA Astrophysics Data System (ADS)

    Kharisov, Evgeny

    This research focuses on development of L 1 adaptive output-feedback control. The objective is to extend the L1 adaptive control framework to a wider class of systems, as well as obtain architectures that afford more straightforward tuning. We start by considering an existing L1 adaptive output-feedback controller for non-strictly positive real systems based on piecewise constant adaptation law. It is shown that L 1 adaptive control architectures achieve decoupling of adaptation from control, which leads to bounded away from zero time-delay and gain margins in the presence of arbitrarily fast adaptation. Computed performance bounds provide quantifiable performance guarantees both for system output and control signal in transient and steady state. A noticeable feature of the L1 adaptive controller is that its output behavior can be made close to the behavior of a linear time-invariant system. In particular, proper design of the lowpass filter can achieve output response, which almost scales for different step reference commands. This property is relevant to applications with human operator in the loop (for example: control augmentation systems of piloted aircraft), since predictability of the system response is necessary for adequate performance of the operator. Next we present applications of the L1 adaptive output-feedback controller in two different fields of engineering: feedback control of human anesthesia, and ascent control of a NASA crew launch vehicle (CLV). The purpose of the feedback controller for anesthesia is to ensure that the patient's level of sedation during surgery follows a prespecified profile. The L1 controller is enabled by anesthesiologist after he/she achieves sufficient patient sedation level by introducing sedatives manually. This problem formulation requires safe switching mechanism, which avoids controller initialization transients. For this purpose, we used an L1 adaptive controller with special output predictor initialization routine

  10. Convergence of adaptive BEM for some mixed boundary value problem.

    PubMed

    Aurada, M; Ferraz-Leite, S; Goldenits, P; Karkulik, M; Mayr, M; Praetorius, D

    2012-04-01

    For a boundary integral formulation of the 2D Laplace equation with mixed boundary conditions, we consider an adaptive Galerkin BEM based on an [Formula: see text]-type error estimator. We include the resolution of the Dirichlet, Neumann, and volume data into the adaptive algorithm. In particular, an implementation of the developed algorithm has only to deal with discrete integral operators. We prove that the proposed adaptive scheme leads to a sequence of discrete solutions, for which the corresponding error estimators tend to zero. Under a saturation assumption for the non-perturbed problem which is observed empirically, the sequence of discrete solutions thus converges to the exact solution in the energy norm.

  11. Anisotropic norm-oriented mesh adaptation for a Poisson problem

    NASA Astrophysics Data System (ADS)

    Brèthes, Gautier; Dervieux, Alain

    2016-10-01

    We present a novel formulation for the mesh adaptation of the approximation of a Partial Differential Equation (PDE). The discussion is restricted to a Poisson problem. The proposed norm-oriented formulation extends the goal-oriented formulation since it is equation-based and uses an adjoint. At the same time, the norm-oriented formulation somewhat supersedes the goal-oriented one since it is basically a solution-convergent method. Indeed, goal-oriented methods rely on the reduction of the error in evaluating a chosen scalar output with the consequence that, as mesh size is increased (more degrees of freedom), only this output is proven to tend to its continuous analog while the solution field itself may not converge. A remarkable quality of goal-oriented metric-based adaptation is the mathematical formulation of the mesh adaptation problem under the form of the optimization, in the well-identified set of metrics, of a well-defined functional. In the new proposed formulation, we amplify this advantage. We search, in the same well-identified set of metrics, the minimum of a norm of the approximation error. The norm is prescribed by the user and the method allows addressing the case of multi-objective adaptation like, for example in aerodynamics, adaptating the mesh for drag, lift and moment in one shot. In this work, we consider the basic linear finite-element approximation and restrict our study to L2 norm in order to enjoy second-order convergence. Numerical examples for the Poisson problem are computed.

  12. Adaptive Importance Sampling for Control and Inference

    NASA Astrophysics Data System (ADS)

    Kappen, H. J.; Ruiz, H. C.

    2016-03-01

    Path integral (PI) control problems are a restricted class of non-linear control problems that can be solved formally as a Feynman-Kac PI and can be estimated using Monte Carlo sampling. In this contribution we review PI control theory in the finite horizon case. We subsequently focus on the problem how to compute and represent control solutions. We review the most commonly used methods in robotics and control. Within the PI theory, the question of how to compute becomes the question of importance sampling. Efficient importance samplers are state feedback controllers and the use of these requires an efficient representation. Learning and representing effective state-feedback controllers for non-linear stochastic control problems is a very challenging, and largely unsolved, problem. We show how to learn and represent such controllers using ideas from the cross entropy method. We derive a gradient descent method that allows to learn feed-back controllers using an arbitrary parametrisation. We refer to this method as the path integral cross entropy method or PICE. We illustrate this method for some simple examples. The PI control methods can be used to estimate the posterior distribution in latent state models. In neuroscience these problems arise when estimating connectivity from neural recording data using EM. We demonstrate the PI control method as an accurate alternative to particle filtering.

  13. Culturally adapted mental healthcare: evidence, problems and recommendations

    PubMed Central

    Dinos, Sokratis

    2015-01-01

    Evidence suggests disparities in the prevalence of mental health problems and access to mental healthcare for a number of minority groups. The main response from mental health services falls into two related categories: (a) cultural adaptations of existing evidence-based interventions (EBIs) and/or (b) cultural competence of mental health professionals. This editorial looks at the evidence on culturally adapted EBIs and argues that although such interventions can be effective, they also carry the risk of alienating members of the groups they are aimed at. Recommendations focus on identifying issues that pertain to being from a racial minority and/or possessing other stigmatised identities that can have an impact on mental health problems, which may be overlooked by mental health services by assuming an overarching predominant cultural identity. PMID:26755945

  14. Adaptive neural control of aeroelastic response

    NASA Astrophysics Data System (ADS)

    Lichtenwalner, Peter F.; Little, Gerald R.; Scott, Robert C.

    1996-05-01

    The Adaptive Neural Control of Aeroelastic Response (ANCAR) program is a joint research and development effort conducted by McDonnell Douglas Aerospace (MDA) and the National Aeronautics and Space Administration, Langley Research Center (NASA LaRC) under a Memorandum of Agreement (MOA). The purpose of the MOA is to cooperatively develop the smart structure technologies necessary for alleviating undesirable vibration and aeroelastic response associated with highly flexible structures. Adaptive control can reduce aeroelastic response associated with buffet and atmospheric turbulence, it can increase flutter margins, and it may be able to reduce response associated with nonlinear phenomenon like limit cycle oscillations. By reducing vibration levels and loads, aircraft structures can have lower acquisition cost, reduced maintenance, and extended lifetimes. Phase I of the ANCAR program involved development and demonstration of a neural network-based semi-adaptive flutter suppression system which used a neural network for scheduling control laws as a function of Mach number and dynamic pressure. This controller was tested along with a robust fixed-gain control law in NASA's Transonic Dynamics Tunnel (TDT) utilizing the Benchmark Active Controls Testing (BACT) wing. During Phase II, a fully adaptive on-line learning neural network control system has been developed for flutter suppression which will be tested in 1996. This paper presents the results of Phase I testing as well as the development progress of Phase II.

  15. An adaptive pseudo-spectral method for reaction diffusion problems

    NASA Technical Reports Server (NTRS)

    Bayliss, A.; Matkowsky, B. J.; Gottlieb, D.; Minkoff, M.

    1989-01-01

    The spectral interpolation error was considered for both the Chebyshev pseudo-spectral and Galerkin approximations. A family of functionals I sub r (u), with the property that the maximum norm of the error is bounded by I sub r (u)/J sub r, where r is an integer and J is the degree of the polynomial approximation, was developed. These functionals are used in the adaptive procedure whereby the problem is dynamically transformed to minimize I sub r (u). The number of collocation points is then chosen to maintain a prescribed error bound. The method is illustrated by various examples from combustion problems in one and two dimensions.

  16. An adaptive pseudo-spectral method for reaction diffusion problems

    NASA Technical Reports Server (NTRS)

    Bayliss, A.; Gottlieb, D.; Matkowsky, B. J.; Minkoff, M.

    1987-01-01

    The spectral interpolation error was considered for both the Chebyshev pseudo-spectral and Galerkin approximations. A family of functionals I sub r (u), with the property that the maximum norm of the error is bounded by I sub r (u)/J sub r, where r is an integer and J is the degree of the polynomial approximation, was developed. These functionals are used in the adaptive procedure whereby the problem is dynamically transformed to minimize I sub r (u). The number of collocation points is then chosen to maintain a prescribed error bound. The method is illustrated by various examples from combustion problems in one and two dimensions.

  17. Adaptive mating strategies and the problem of mate retention.

    PubMed

    Husárová, Barbara

    2005-09-01

    "Adaptations" are evolved solutions to the problems posed by survival and reproduction. The evolutionary psychologists believe that as well as the physical adaptations so the adaptations in human mind evolved, called "strategies". The "mating strategies" are adaptive solutions to successful mating. The mating strategies, designed to preserve access to a mate by preventing encroachment of intrasexual rivals and by preventing a mate from defecting from the mateship for a prospective better partner, are called "mate guarding strategies". The previous research found that humans do use a wide variety of behavioural tactics of mate guarding, ranging from vigilance to violence. Our research group explores the type and the intensity of behavioural tactics of mate guarding used in several contexts. Presently, the link between the woman's fertility status across her menstrual cycle and the man's mate guarding is examined. Discussing the preliminary results, a more intensive man's mate guarding of his partner around the ovulation when her fertility peaks may be assumed. These outcomes could be explained as an adaptive prevention to shift in woman's preferences to increase her extra-pair sexual attempts and following to a possible genetic cuckoldry at that most fertile time.

  18. Adaptive Identification and Control of Flow-Induced Cavity Oscillations

    NASA Technical Reports Server (NTRS)

    Kegerise, M. A.; Cattafesta, L. N.; Ha, C.

    2002-01-01

    Progress towards an adaptive self-tuning regulator (STR) for the cavity tone problem is discussed in this paper. Adaptive system identification algorithms were applied to an experimental cavity-flow tested as a prerequisite to control. In addition, a simple digital controller and a piezoelectric bimorph actuator were used to demonstrate multiple tone suppression. The control tests at Mach numbers of 0.275, 0.40, and 0.60 indicated approx. = 7dB tone reductions at multiple frequencies. Several different adaptive system identification algorithms were applied at a single freestream Mach number of 0.275. Adaptive finite-impulse response (FIR) filters of orders up to N = 100 were found to be unsuitable for modeling the cavity flow dynamics. Adaptive infinite-impulse response (IIR) filters of comparable order better captured the system dynamics. Two recursive algorithms, the least-mean square (LMS) and the recursive-least square (RLS), were utilized to update the adaptive filter coefficients. Given the sample-time requirements imposed by the cavity flow dynamics, the computational simplicity of the least mean squares (LMS) algorithm is advantageous for real-time control.

  19. A roadmap for climate change adaptation in Sweden's forests: addressing wicked problems using adaptive management

    NASA Astrophysics Data System (ADS)

    Rist, L.; Felton, A.; Samuelsson, L.; Marald, E.; Karlsson, B.; Johansson, U.; Rosvall, O.

    2013-12-01

    Climate change is expected to have significant direct and indirect effects on forest ecosystems. Forests will have to adapt not only to changes in mean climate variables but also to increased climatic variability and altered disturbance regimes. Rates of change will likely exceed many forests capabilities to naturally adapt and many of today's trees will be exposed to the climates of 2090. In Sweden the effects are already being seen and more severe impacts are expected in the future. Exacerbating the challenge posed by climate change, a large proportion of Sweden's forests are, as a consequence of dominant production goals, greatly simplified and thus potentially more vulnerable to the uncertainties and risks associated with climate change. This simplification also confers reduced adaptive capacity to respond to potential impacts. Furthermore, many adaptation measures themselves carry uncertainties and risks. Future changes and effects are thus uncertain, yet forest managers, policymakers, scientists and other stakeholders must act. Strategies that build social and ecological resilience in the face of multiple interacting unknowns and surprises are needed. Adaptive management aims to collect and integrate knowledge about how a managed system is likely to respond to alternative management schemes and changing environmental conditions within a continuous decision process. There have been suggestions that adaptive management is not well suited to the large complex uncertainties associated with climate change and associated adaptation measures. However, more recently it has been suggested that adaptive management can handle such wicked problems, given adequate resources and a suitable breakdown of the targeted uncertainties. Here we test this hypothesis by evaluating how an adaptive management process could be used to manage the uncertainties and risks associated with securing resilient, biodiverse and productive forests in Sweden in the face of climate change. We

  20. Robust, Practical Adaptive Control for Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Orr, Jeb. S.; VanZwieten, Tannen S.

    2012-01-01

    A modern mechanization of a classical adaptive control concept is presented with an application to launch vehicle attitude control systems. Due to a rigorous flight certification environment, many adaptive control concepts are infeasible when applied to high-risk aerospace systems; methods of stability analysis are either intractable for high complexity models or cannot be reconciled in light of classical requirements. Furthermore, many adaptive techniques appearing in the literature are not suitable for application to conditionally stable systems with complex flexible-body dynamics, as is often the case with launch vehicles. The present technique is a multiplicative forward loop gain adaptive law similar to that used for the NASA X-15 flight research vehicle. In digital implementation with several novel features, it is well-suited to application on aerodynamically unstable launch vehicles with thrust vector control via augmentation of the baseline attitude/attitude-rate feedback control scheme. The approach is compatible with standard design features of autopilots for launch vehicles, including phase stabilization of lateral bending and slosh via linear filters. In addition, the method of assessing flight control stability via classical gain and phase margins is not affected under reasonable assumptions. The algorithm s ability to recover from certain unstable operating regimes can in fact be understood in terms of frequency-domain criteria. Finally, simulation results are presented that confirm the ability of the algorithm to improve performance and robustness in realistic failure scenarios.

  1. Bayesian nonparametric adaptive control using Gaussian processes.

    PubMed

    Chowdhary, Girish; Kingravi, Hassan A; How, Jonathan P; Vela, Patricio A

    2015-03-01

    Most current model reference adaptive control (MRAC) methods rely on parametric adaptive elements, in which the number of parameters of the adaptive element are fixed a priori, often through expert judgment. An example of such an adaptive element is radial basis function networks (RBFNs), with RBF centers preallocated based on the expected operating domain. If the system operates outside of the expected operating domain, this adaptive element can become noneffective in capturing and canceling the uncertainty, thus rendering the adaptive controller only semiglobal in nature. This paper investigates a Gaussian process-based Bayesian MRAC architecture (GP-MRAC), which leverages the power and flexibility of GP Bayesian nonparametric models of uncertainty. The GP-MRAC does not require the centers to be preallocated, can inherently handle measurement noise, and enables MRAC to handle a broader set of uncertainties, including those that are defined as distributions over functions. We use stochastic stability arguments to show that GP-MRAC guarantees good closed-loop performance with no prior domain knowledge of the uncertainty. Online implementable GP inference methods are compared in numerical simulations against RBFN-MRAC with preallocated centers and are shown to provide better tracking and improved long-term learning.

  2. An adaptable Boolean net trainable to control a computing robot

    SciTech Connect

    Lauria, F. E.; Prevete, R.; Milo, M.; Visco, S.

    1999-03-22

    We discuss a method to implement in a Boolean neural network a Hebbian rule so to obtain an adaptable universal control system. We start by presenting both the Boolean neural net and the Hebbian rule we have considered. Then we discuss, first, the problems arising when the latter is naively implemented in a Boolean neural net, second, the method consenting us to overcome them and the ensuing adaptable Boolean neural net paradigm. Next, we present the adaptable Boolean neural net as an intelligent control system, actually controlling a writing robot, and discuss how to train it in the execution of the elementary arithmetic operations on operands represented by numerals with an arbitrary number of digits.

  3. Adaptive control design for hysteretic smart systems

    NASA Astrophysics Data System (ADS)

    McMahan, Jerry A.; Smith, Ralph C.

    2011-04-01

    Ferroelectric and ferromagnetic actuators are being considered for a range of industrial, aerospace, aeronautic and biomedical applications due to their unique transduction capabilities. However, they also exhibit hysteretic and nonlinear behavior that must be accommodated in models and control designs. If uncompensated, these effects can yield reduced system performance and, in the worst case, can produce unpredictable behavior of the control system. In this paper, we address the development of adaptive control designs for hysteretic systems. We review an MRAC-like adaptive control algorithm used to track a reference trajectory while computing online estimates for certain model parameters. This method is incorporated in a composite control algorithm to improve the tracking capabilities of the system. Issues arising in the implementation of these algorithms are addressed, and a numerical example is presented, comparing the results of each method.

  4. Adaptive control of a robotic manipulator

    NASA Technical Reports Server (NTRS)

    Lewis, R. A.

    1977-01-01

    A control hierarchy for a robotic manipulator is described. The hierarchy includes perception and robot/environment interaction, the latter consisting of planning, path control, and terminal guidance loops. Environment-sensitive features include the provision of control governed by proximity, tactile, and visual sensors as well as the usual kinematic sensors. The manipulator is considered as part of an overall robot system. 'Adaptive control' in the present context refers to both the hierarchical nature of the control system and to its environment-responsive nature.

  5. Evolving Systems and Adaptive Key Component Control

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Balas, Mark J.

    2009-01-01

    We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. An introduction to Evolving Systems and exploration of the essential topics of the control and stability properties of Evolving Systems is provided. This chapter defines a framework for Evolving Systems, develops theory and control solutions for fundamental characteristics of Evolving Systems, and provides illustrative examples of Evolving Systems and their control with adaptive key component controllers.

  6. Adaptive control of sulfur recovery units

    SciTech Connect

    Cunningham, D.B. )

    1994-08-01

    In a recent trial, adaptive control reduce the standard deviation of the tail gas ratio by 38%--increasing sulfur recovery efficiency by an estimated 0.3%. By using the controller on other control loops in the process, further increases are expected. Improved process control is a cost effective way to meet existing emissions limits. Future legislation will reduce the permissible emissions level, so it is imperative that existing sulfur recovery equipment by operated at peak efficiency. Peak efficiency can only be achieved with good trim air control, since it determines recovery efficiency. But process time delays and changes in the incoming gas stream make good control difficult to achieve. An adaptive controller is well suited to trim air control, since it can easily handle time delay sand adapt to changing process conditions. The improved efficiency is a considerable economic benefit to gas processing plants, since: (1) capital and operating expenses needed to improve recovery efficiency are avoided; (2) increased production is possible, since sulfur license limits are easier to meet; and (3) catalyst bed life is extended. Results of the test are discussed.

  7. Study on rule-based adaptive fuzzy excitation control technology

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Wang, Hong-jun; Liu, Lu-yuan; Yue, You-jun

    2008-10-01

    Power system is a kind of typical non-linear system, it is hard to achieve excellent control performance with conventional PID controller under different operating conditions. Fuzzy parameter adaptive PID exciting controller is very efficient to overcome the influence of tiny disturbances, but the performance of the control system will be worsened when operating conditions of the system change greatly or larger disturbances occur. To solve this problem, this article presents a rule adaptive fuzzy control scheme for synchronous generator exciting system. In this scheme the control rule adaptation is implemented by regulating the value of parameter di under the given proportional divisors K1, K2 and K3 of fuzzy sets Ai and Bi. This rule adaptive mechanism is constituted by two groups of original rules about the self-generation and self-correction of the control rule. Using two groups of rules, the control rule activated by status 1 and 2 in figure 2 system can be regulated automatically and simultaneously at the time instant k. The results from both theoretical analysis and simulation show that the presented scheme is effective and feasible and possesses good performance.

  8. Adaptive control of Space Station during nominal operations with CMGs. [Control Moment Gyroscopes

    NASA Technical Reports Server (NTRS)

    Bishop, R. H.; Paynter, S. J.; Sunkel, J. W.

    1991-01-01

    An adaptive control approach is investigated for the Space Station. The main components of the adaptive controller are the parameter identification scheme, the control gain calculation, and the control law. The control law is the Space Station baseline control law. The control gain calculation is based on linear quadratic regulator theory with eigenvalue placement in a vertical strip. The parameter identification scheme is a real-time recursive extended Kalman filter which estimates the inertias and also provides an estimate of the unmodeled disturbances due to the aerodynamic torques and to the nonlinear effects. An analysis of the inertia estimation problem suggests that it is possible to compute accurate estimates of the Space Station inertias during nominal CMG (control moment gyro) operations. The closed-loop adaptive control law is shown to be capable of stabilizing the Space Station after large inertia changes. Results are presented for the pitch axis.

  9. Bounded Linear Stability Margin Analysis of Nonlinear Hybrid Adaptive Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Boskovic, Jovan D.

    2008-01-01

    This paper presents a bounded linear stability analysis for a hybrid adaptive control that blends both direct and indirect adaptive control. Stability and convergence of nonlinear adaptive control are analyzed using an approximate linear equivalent system. A stability margin analysis shows that a large adaptive gain can lead to a reduced phase margin. This method can enable metrics-driven adaptive control whereby the adaptive gain is adjusted to meet stability margin requirements.

  10. Predictive Control of Speededness in Adaptive Testing

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    2009-01-01

    An adaptive testing method is presented that controls the speededness of a test using predictions of the test takers' response times on the candidate items in the pool. Two different types of predictions are investigated: posterior predictions given the actual response times on the items already administered and posterior predictions that use the…

  11. Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems.

    PubMed

    Zhang, Yanjun; Tao, Gang; Chen, Mou

    2016-09-01

    This paper presents a new study on the adaptive neural network-based control of a class of noncanonical nonlinear systems with large parametric uncertainties. Unlike commonly studied canonical form nonlinear systems whose neural network approximation system models have explicit relative degree structures, which can directly be used to derive parameterized controllers for adaptation, noncanonical form nonlinear systems usually do not have explicit relative degrees, and thus their approximation system models are also in noncanonical forms. It is well-known that the adaptive control of noncanonical form nonlinear systems involves the parameterization of system dynamics. As demonstrated in this paper, it is also the case for noncanonical neural network approximation system models. Effective control of such systems is an open research problem, especially in the presence of uncertain parameters. This paper shows that it is necessary to reparameterize such neural network system models for adaptive control design, and that such reparameterization can be realized using a relative degree formulation, a concept yet to be studied for general neural network system models. This paper then derives the parameterized controllers that guarantee closed-loop stability and asymptotic output tracking for noncanonical form neural network system models. An illustrative example is presented with the simulation results to demonstrate the control design procedure, and to verify the effectiveness of such a new design method.

  12. Robust Adaptive Control In Hilbert Space

    NASA Technical Reports Server (NTRS)

    Wen, John Ting-Yung; Balas, Mark J.

    1990-01-01

    Paper discusses generalization of scheme for adaptive control of finite-dimensional system to infinite-dimensional Hilbert space. Approach involves generalization of command-generator tracker (CGT) theory. Does not require reference model to be same order as that of plant, and knowledge of order of plant not needed. Suitable for application to high-order systems, main emphasis on adjustment of low-order feedback-gain matrix. Analysis particularly relevant to control of large, flexible structures.

  13. Robust adaptive control of HVDC systems

    SciTech Connect

    Reeve, J.; Sultan, M. )

    1994-07-01

    The transient performance of an HVDC power system is highly dependent on the parameters of the current/voltage regulators of the converter controls. In order to better accommodate changes in system structure or dc operating conditions, this paper introduces a new adaptive control strategy. The advantages of automatic tuning for continuous fine tuning are combined with predetermined gain scheduling in order to achieve robustness for large disturbances. Examples are provided for a digitally simulated back-to-back dc system.

  14. Adaptive anisotropic meshing for steady convection-dominated problems

    SciTech Connect

    Nguyen, Hoa; Gunzburger, Max; Ju, Lili; Burkardt, John

    2009-01-01

    Obtaining accurate solutions for convection–diffusion equations is challenging due to the presence of layers when convection dominates the diffusion. To solve this problem, we design an adaptive meshing algorithm which optimizes the alignment of anisotropic meshes with the numerical solution. Three main ingredients are used. First, the streamline upwind Petrov–Galerkin method is used to produce a stabilized solution. Second, an adapted metric tensor is computed from the approximate solution. Third, optimized anisotropic meshes are generated from the computed metric tensor by an anisotropic centroidal Voronoi tessellation algorithm. Our algorithm is tested on a variety of two-dimensional examples and the results shows that the algorithm is robust in detecting layers and efficient in avoiding non-physical oscillations in the numerical approximation.

  15. Adaptive Variable Bias Magnetic Bearing Control

    NASA Technical Reports Server (NTRS)

    Johnson, Dexter; Brown, Gerald V.; Inman, Daniel J.

    1998-01-01

    Most magnetic bearing control schemes use a bias current with a superimposed control current to linearize the relationship between the control current and the force it delivers. With the existence of the bias current, even in no load conditions, there is always some power consumption. In aerospace applications, power consumption becomes an important concern. In response to this concern, an alternative magnetic bearing control method, called Adaptive Variable Bias Control (AVBC), has been developed and its performance examined. The AVBC operates primarily as a proportional-derivative controller with a relatively slow, bias current dependent, time-varying gain. The AVBC is shown to reduce electrical power loss, be nominally stable, and provide control performance similar to conventional bias control. Analytical, computer simulation, and experimental results are presented in this paper.

  16. Adapted Fuzzy Controller for Astronomical Telescope Tracking

    NASA Astrophysics Data System (ADS)

    Attia, Abdel-Fattah

    2004-04-01

    This paper presents a novel application of fuzzy logic (FL) controller driven by an adaptive fuzzy set (AFS) for position tracking of the telescope driven by electric motor. Also, the proposed FL controller, driven by AFS, is compared with a classical FL control, driven by a static fuzzy set (SFS). Both FL controllers algorithm use the position error and its rate of change as an input vector. The mathematical model of the telescope driven by electric motor is highly nonlinear differential equations. Therefore the use of the artificial intelligent controller, such as FL is much better than the conventional controller, to cover a wide range of operating conditions. So, the output of FL control is utilized to force the electric drives, of the telescope, to satisfy a perfect matching of the predefined desired position of the telescope arms. Both of FL controllers, using AFS and SFS, are simulated and tested when the system is subjected to a step change in reference value. In addition, these simulation results are compared with the conventional Proportional-Derivative (PD) controller, driven by fixed gain. The proposed FL, using an adaptive fuzzy set, improve the dynamic response of the overall system by improving the damping coefficient and decreasing the rise time and settling time compared with other two controllers.

  17. Adaptive support vector regression for UAV flight control.

    PubMed

    Shin, Jongho; Jin Kim, H; Kim, Youdan

    2011-01-01

    This paper explores an application of support vector regression for adaptive control of an unmanned aerial vehicle (UAV). Unlike neural networks, support vector regression (SVR) generates global solutions, because SVR basically solves quadratic programming (QP) problems. With this advantage, the input-output feedback-linearized inverse dynamic model and the compensation term for the inversion error are identified off-line, which we call I-SVR (inversion SVR) and C-SVR (compensation SVR), respectively. In order to compensate for the inversion error and the unexpected uncertainty, an online adaptation algorithm for the C-SVR is proposed. Then, the stability of the overall error dynamics is analyzed by the uniformly ultimately bounded property in the nonlinear system theory. In order to validate the effectiveness of the proposed adaptive controller, numerical simulations are performed on the UAV model.

  18. Solving Fluid Flow Problems on Moving and Adaptive Overlapping Grids

    SciTech Connect

    Henshaw, W

    2005-07-28

    Solution of fluid dynamics problems on overlapping grids will be discussed. An overlapping grid consists of a set of structured component grids that cover a domain and overlap where they meet. Overlapping grids provide an effective approach for developing efficient and accurate approximations for complex, possibly moving geometry. Topics to be addressed include the reactive Euler equations, the incompressible Navier-Stokes equations and elliptic equations solved with a multigrid algorithm. Recent developments coupling moving grids and adaptive mesh refinement and preliminary parallel results will also be presented.

  19. Variable Neural Adaptive Robust Control: A Switched System Approach

    SciTech Connect

    Lian, Jianming; Hu, Jianghai; Zak, Stanislaw H.

    2015-05-01

    Variable neural adaptive robust control strategies are proposed for the output tracking control of a class of multi-input multi-output uncertain systems. The controllers incorporate a variable-structure radial basis function (RBF) network as the self-organizing approximator for unknown system dynamics. The variable-structure RBF network solves the problem of structure determination associated with fixed-structure RBF networks. It can determine the network structure on-line dynamically by adding or removing radial basis functions according to the tracking performance. The structure variation is taken into account in the stability analysis of the closed-loop system using a switched system approach with the aid of the piecewise quadratic Lyapunov function. The performance of the proposed variable neural adaptive robust controllers is illustrated with simulations.

  20. Adaptable and adaptive materials for light flux control

    NASA Astrophysics Data System (ADS)

    Sixou, Pierre; Magnaldo, A.; Nourry, J.; Laye, C.

    1996-04-01

    The purpose of this paper is to describe and examine properties of light flux control materials. Indeed, intelligent light flux control is necessary not only to improve everyday visual convenience but also in an economical point of view in order to reduce global home energetic cost. Several types of materials are good potential candidates for such functions: (1) The most well-known investigations concern inorganic materials such as tungsten or molybdenum oxides in which an electrochrom layer darkens when enriched in ions, and looses its color when impoverished. Unfortunately, at the moment, there is no convenient way to realize correct ions suppliers. Moreover, other drawbacks arise, such as poor reversibility, reactive interferences or a sensitivity of the material to its environment. These systems only need a low voltage level to work. But, their dynamic response, which is correlated to the component surface, is quite long. (2) At the present time, another attractive issue seems promising. More and more studies concern micro-composite liquid crystal films. For first, we shall remind their principles as well as their way of preparation. After having talked about their main advantages as intelligent materials, we shall discuss their control, their light flux adaptability, or their memory capabilities.

  1. Parallel computations and control of adaptive structures

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Alvin, Kenneth F.; Belvin, W. Keith; Chong, K. P. (Editor); Liu, S. C. (Editor); Li, J. C. (Editor)

    1991-01-01

    The equations of motion for structures with adaptive elements for vibration control are presented for parallel computations to be used as a software package for real-time control of flexible space structures. A brief introduction of the state-of-the-art parallel computational capability is also presented. Time marching strategies are developed for an effective use of massive parallel mapping, partitioning, and the necessary arithmetic operations. An example is offered for the simulation of control-structure interaction on a parallel computer and the impact of the approach presented for applications in other disciplines than aerospace industry is assessed.

  2. New hybrid adaptive neuro-fuzzy algorithms for manipulator control with uncertainties- comparative study.

    PubMed

    Alavandar, Srinivasan; Nigam, M J

    2009-10-01

    Control of an industrial robot includes nonlinearities, uncertainties and external perturbations that should be considered in the design of control laws. In this paper, some new hybrid adaptive neuro-fuzzy control algorithms (ANFIS) have been proposed for manipulator control with uncertainties. These hybrid controllers consist of adaptive neuro-fuzzy controllers and conventional controllers. The outputs of these controllers are applied to produce the final actuation signal based on current position and velocity errors. Numerical simulation using the dynamic model of six DOF puma robot arm with uncertainties shows the effectiveness of the approach in trajectory tracking problems. Performance indices of RMS error, maximum error are used for comparison. It is observed that the hybrid adaptive neuro-fuzzy controllers perform better than only conventional/adaptive controllers and in particular hybrid controller structure consisting of adaptive neuro-fuzzy controller and critically damped inverse dynamics controller.

  3. F-8C adaptive flight control laws

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Harvey, C. A.; Stein, G.; Carlson, D. N.; Hendrick, R. C.

    1977-01-01

    Three candidate digital adaptive control laws were designed for NASA's F-8C digital flyby wire aircraft. Each design used the same control laws but adjusted the gains with a different adaptative algorithm. The three adaptive concepts were: high-gain limit cycle, Liapunov-stable model tracking, and maximum likelihood estimation. Sensors were restricted to conventional inertial instruments (rate gyros and accelerometers) without use of air-data measurements. Performance, growth potential, and computer requirements were used as criteria for selecting the most promising of these candidates for further refinement. The maximum likelihood concept was selected primarily because it offers the greatest potential for identifying several aircraft parameters and hence for improved control performance in future aircraft application. In terms of identification and gain adjustment accuracy, the MLE design is slightly superior to the other two, but this has no significant effects on the control performance achievable with the F-8C aircraft. The maximum likelihood design is recommended for flight test, and several refinements to that design are proposed.

  4. A Strategy for Controlling Item Exposure in Multidimensional Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Lee, Yi-Hsuan; Ip, Edward H.; Fuh, Cheng-Der

    2008-01-01

    Although computerized adaptive tests have enjoyed tremendous growth, solutions for important problems remain unavailable. One problem is the control of item exposure rate. Because adaptive algorithms are designed to select optimal items, they choose items with high discriminating power. Thus, these items are selected more often than others,…

  5. Neuro adaptive control for aerospace and distributed systems

    NASA Astrophysics Data System (ADS)

    Das, Abhijit

    Nonlinear and adaptive control is generally considered one of the most effective techniques for stabilizing complex nonlinear systems, where linear control techniques may fail completely. Thousands of research papers are published on either theory or applications of nonlinear and adaptive control. But often one obvious question arises how to implement these techniques in real life model? The best answer that one can think of is to develop simple nonlinear control laws which are easy to implement. Moreover for controlling multi-agent systems, it is often required to distribute the control laws based on limited information available among the agents. This research provides some of these issues in the following way. a) Autopilot design for Aerospace systems: this research developes adaptive backstepping and dynamic inversion methods with internal dynamics stabilization for the quadrotor. Quadrotor helicopter models usually show two main characteristics. First, strong coupling among the system states and second, under-actuation where many states are to be controlled with few control inputs. Due to these unique characteristics, the design of stabilizing control inputs is always challenging for quadrotor models. To confront these problems, first, a dynamic inversion technique with zero dynamics stabilization loop is introduced to a practical quadrotor model, second, an adaptive-backstepping technique is developed to a lagrangian quadrotor model. The stabilizing control laws for both of these techniques are developed using on Lyapunov based method; and b) Coordination of multi-agent systems: coordination among multiple agents is generally done based on balanced or bi-directed communication graph models. If the agents are nonlinear and passive then for a balanced graph model synchronization is possible. But, for other than balanced and bi-directed graph models, it is difficult to synchronize nonlinear systems. Moreover, the performance of synchronization is normally

  6. Highly accurate adaptive finite element schemes for nonlinear hyperbolic problems

    NASA Astrophysics Data System (ADS)

    Oden, J. T.

    1992-08-01

    This document is a final report of research activities supported under General Contract DAAL03-89-K-0120 between the Army Research Office and the University of Texas at Austin from July 1, 1989 through June 30, 1992. The project supported several Ph.D. students over the contract period, two of which are scheduled to complete dissertations during the 1992-93 academic year. Research results produced during the course of this effort led to 6 journal articles, 5 research reports, 4 conference papers and presentations, 1 book chapter, and two dissertations (nearing completion). It is felt that several significant advances were made during the course of this project that should have an impact on the field of numerical analysis of wave phenomena. These include the development of high-order, adaptive, hp-finite element methods for elastodynamic calculations and high-order schemes for linear and nonlinear hyperbolic systems. Also, a theory of multi-stage Taylor-Galerkin schemes was developed and implemented in the analysis of several wave propagation problems, and was configured within a general hp-adaptive strategy for these types of problems. Further details on research results and on areas requiring additional study are given in the Appendix.

  7. An adaptive inverse iteration algorithm using interpolating multiwavelets for structural eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Wang, Youming; Chen, Xuefeng; He, Zhengjia

    2011-02-01

    Structural eigenvalues have been broadly applied in modal analysis, damage detection, vibration control, etc. In this paper, the interpolating multiwavelets are custom designed based on stable completion method to solve structural eigenvalue problems. The operator-orthogonality of interpolating multiwavelets gives rise to highly sparse multilevel stiffness and mass matrices of structural eigenvalue problems and permits the incremental computation of the eigenvalue solution in an efficient manner. An adaptive inverse iteration algorithm using the interpolating multiwavelets is presented to solve structural eigenvalue problems. Numerical examples validate the accuracy and efficiency of the proposed algorithm.

  8. Adaptive control based on retrospective cost optimization

    NASA Technical Reports Server (NTRS)

    Santillo, Mario A. (Inventor); Bernstein, Dennis S. (Inventor)

    2012-01-01

    A discrete-time adaptive control law for stabilization, command following, and disturbance rejection that is effective for systems that are unstable, MIMO, and/or nonminimum phase. The adaptive control algorithm includes guidelines concerning the modeling information needed for implementation. This information includes the relative degree, the first nonzero Markov parameter, and the nonminimum-phase zeros. Except when the plant has nonminimum-phase zeros whose absolute value is less than the plant's spectral radius, the required zero information can be approximated by a sufficient number of Markov parameters. No additional information about the poles or zeros need be known. Numerical examples are presented to illustrate the algorithm's effectiveness in handling systems with errors in the required modeling data, unknown latency, sensor noise, and saturation.

  9. Adaptive Control with Reference Model Modification

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vahram; Krishnakumar, Kalmanje

    2012-01-01

    This paper presents a modification of the conventional model reference adaptive control (MRAC) architecture in order to improve transient performance of the input and output signals of uncertain systems. A simple modification of the reference model is proposed by feeding back the tracking error signal. It is shown that the proposed approach guarantees tracking of the given reference command and the reference control signal (one that would be designed if the system were known) not only asymptotically but also in transient. Moreover, it prevents generation of high frequency oscillations, which are unavoidable in conventional MRAC systems for large adaptation rates. The provided design guideline makes it possible to track a reference commands of any magnitude from any initial position without re-tuning. The benefits of the method are demonstrated with a simulation example

  10. Block adaptive rate controlled image data compression

    NASA Technical Reports Server (NTRS)

    Rice, R. F.; Hilbert, E.; Lee, J.-J.; Schlutsmeyer, A.

    1979-01-01

    A block adaptive rate controlled (BARC) image data compression algorithm is described. It is noted that in the algorithm's principal rate controlled mode, image lines can be coded at selected rates by combining practical universal noiseless coding techniques with block adaptive adjustments in linear quantization. Compression of any source data at chosen rates of 3.0 bits/sample and above can be expected to yield visual image quality with imperceptible degradation. Exact reconstruction will be obtained if the one-dimensional difference entropy is below the selected compression rate. It is noted that the compressor can also be operated as a floating rate noiseless coder by simply not altering the input data quantization. Here, the universal noiseless coder ensures that the code rate is always close to the entropy. Application of BARC image data compression to the Galileo orbiter mission of Jupiter is considered.

  11. Durham adaptive optics real-time controller.

    PubMed

    Basden, Alastair; Geng, Deli; Myers, Richard; Younger, Eddy

    2010-11-10

    The Durham adaptive optics (AO) real-time controller was initially a proof of concept design for a generic AO control system. It has since been developed into a modern and powerful central-processing-unit-based real-time control system, capable of using hardware acceleration (including field programmable gate arrays and graphical processing units), based primarily around commercial off-the-shelf hardware. It is powerful enough to be used as the real-time controller for all currently planned 8 m class telescope AO systems. Here we give details of this controller and the concepts behind it, and report on performance, including latency and jitter, which is less than 10 μs for small AO systems.

  12. An adaptive robust controller for time delay maglev transportation systems

    NASA Astrophysics Data System (ADS)

    Milani, Reza Hamidi; Zarabadipour, Hassan; Shahnazi, Reza

    2012-12-01

    For engineering systems, uncertainties and time delays are two important issues that must be considered in control design. Uncertainties are often encountered in various dynamical systems due to modeling errors, measurement noises, linearization and approximations. Time delays have always been among the most difficult problems encountered in process control. In practical applications of feedback control, time delay arises frequently and can severely degrade closed-loop system performance and in some cases, drives the system to instability. Therefore, stability analysis and controller synthesis for uncertain nonlinear time-delay systems are important both in theory and in practice and many analytical techniques have been developed using delay-dependent Lyapunov function. In the past decade the magnetic and levitation (maglev) transportation system as a new system with high functionality has been the focus of numerous studies. However, maglev transportation systems are highly nonlinear and thus designing controller for those are challenging. The main topic of this paper is to design an adaptive robust controller for maglev transportation systems with time-delay, parametric uncertainties and external disturbances. In this paper, an adaptive robust control (ARC) is designed for this purpose. It should be noted that the adaptive gain is derived from Lyapunov-Krasovskii synthesis method, therefore asymptotic stability is guaranteed.

  13. On the Use of Adaptive Wavelet-based Methods for Ocean Modeling and Data Assimilation Problems

    NASA Astrophysics Data System (ADS)

    Vasilyev, Oleg V.; Yousuff Hussaini, M.; Souopgui, Innocent

    2014-05-01

    Latest advancements in parallel wavelet-based numerical methodologies for the solution of partial differential equations, combined with the unique properties of wavelet analysis to unambiguously identify and isolate localized dynamically dominant flow structures, make it feasible to start developing integrated approaches for ocean modeling and data assimilation problems that take advantage of temporally and spatially varying meshes. In this talk the Parallel Adaptive Wavelet Collocation Method with spatially and temporarily varying thresholding is presented and the feasibility/potential advantages of its use for ocean modeling are discussed. The second half of the talk focuses on the recently developed Simultaneous Space-time Adaptive approach that addresses one of the main challenges of variational data assimilation, namely the requirement to have a forward solution available when solving the adjoint problem. The issue is addressed by concurrently solving forward and adjoint problems in the entire space-time domain on a near optimal adaptive computational mesh that automatically adapts to spatio-temporal structures of the solution. The compressed space-time form of the solution eliminates the need to save or recompute forward solution for every time slice, as it is typically done in traditional time marching variational data assimilation approaches. The simultaneous spacio-temporal discretization of both the forward and the adjoint problems makes it possible to solve both of them concurrently on the same space-time adaptive computational mesh reducing the amount of saved data to the strict minimum for a given a priori controlled accuracy of the solution. The simultaneous space-time adaptive approach of variational data assimilation is demonstrated for the advection diffusion problem in 1D-t and 2D-t dimensions.

  14. Adaptive boundary control of a flexible manipulator with input saturation

    NASA Astrophysics Data System (ADS)

    Liu, Zhijie; Liu, Jinkun; He, Wei

    2016-06-01

    In this study, we consider the anti-windup design as one of the approaches for the boundary control problem of a flexible manipulator in the presence of system parametric uncertainties, external disturbances and bounded inputs. The dynamics of the system are represented by partial differential equations (PDEs). Using the singular perturbation approach, the PDE model is divided into two simpler subsystems. With the Lyapunov's direct method, an adaptive boundary control scheme is developed to regulate the angular position and suppress the elastic vibration simultaneously and the adaptive laws are designed to compensate for the system parametric uncertainties and the disturbances. The proposed control scheme allows the application of smooth hyperbolic functions, which satisfy physical conditions and input restrictions, be easily realised. Numerical simulations demonstrate the effectiveness of the proposed scheme.

  15. An integrated architecture of adaptive neural network control for dynamic systems

    SciTech Connect

    Ke, Liu; Tokar, R.; Mcvey, B.

    1994-07-01

    In this study, an integrated neural network control architecture for nonlinear dynamic systems is presented. Most of the recent emphasis in the neural network control field has no error feedback as the control input which rises the adaptation problem. The integrated architecture in this paper combines feed forward control and error feedback adaptive control using neural networks. The paper reveals the different internal functionality of these two kinds of neural network controllers for certain input styles, e.g., state feedback and error feedback. Feed forward neural network controllers with state feedback establish fixed control mappings which can not adapt when model uncertainties present. With error feedbacks, neural network controllers learn the slopes or the gains respecting to the error feedbacks, which are error driven adaptive control systems. The results demonstrate that the two kinds of control scheme can be combined to realize their individual advantages. Testing with disturbances added to the plant shows good tracking and adaptation.

  16. Parallel adaptive mesh refinement techniques for plasticity problems

    NASA Technical Reports Server (NTRS)

    Barry, W. J.; Jones, M. T.; Plassmann, P. E.

    1997-01-01

    The accurate modeling of the nonlinear properties of materials can be computationally expensive. Parallel computing offers an attractive way for solving such problems; however, the efficient use of these systems requires the vertical integration of a number of very different software components, we explore the solution of two- and three-dimensional, small-strain plasticity problems. We consider a finite-element formulation of the problem with adaptive refinement of an unstructured mesh to accurately model plastic transition zones. We present a framework for the parallel implementation of such complex algorithms. This framework, using libraries from the SUMAA3d project, allows a user to build a parallel finite-element application without writing any parallel code. To demonstrate the effectiveness of this approach on widely varying parallel architectures, we present experimental results from an IBM SP parallel computer and an ATM-connected network of Sun UltraSparc workstations. The results detail the parallel performance of the computational phases of the application during the process while the material is incrementally loaded.

  17. Multi-Level Adaptive Techniques (MLAT) for singular-perturbation problems

    NASA Technical Reports Server (NTRS)

    Brandt, A.

    1978-01-01

    The multilevel (multigrid) adaptive technique, a general strategy of solving continuous problems by cycling between coarser and finer levels of discretization is described. It provides very fast general solvers, together with adaptive, nearly optimal discretization schemes. In the process, boundary layers are automatically either resolved or skipped, depending on a control function which expresses the computational goal. The global error decreases exponentially as a function of the overall computational work, in a uniform rate independent of the magnitude of the singular-perturbation terms. The key is high-order uniformly stable difference equations, and uniformly smoothing relaxation schemes.

  18. Neural Control Adaptation to Motor Noise Manipulation.

    PubMed

    Hasson, Christopher J; Gelina, Olga; Woo, Garrett

    2016-01-01

    Antagonistic muscular co-activation can compensate for movement variability induced by motor noise at the expense of increased energetic costs. Greater antagonistic co-activation is commonly observed in older adults, which could be an adaptation to increased motor noise. The present study tested this hypothesis by manipulating motor noise in 12 young subjects while they practiced a goal-directed task using a myoelectric virtual arm, which was controlled by their biceps and triceps muscle activity. Motor noise was increased by increasing the coefficient of variation (CV) of the myoelectric signals. As hypothesized, subjects adapted by increasing antagonistic co-activation, and this was associated with reduced noise-induced performance decrements. A second hypothesis was that a virtual decrease in motor noise, achieved by smoothing the myoelectric signals, would have the opposite effect: co-activation would decrease and motor performance would improve. However, the results showed that a decrease in noise made performance worse instead of better, with no change in co-activation. Overall, these findings suggest that the nervous system adapts to virtual increases in motor noise by increasing antagonistic co-activation, and this preserves motor performance. Reducing noise may have failed to benefit performance due to characteristics of the filtering process itself, e.g., delays are introduced and muscle activity bursts are attenuated. The observed adaptations to increased noise may explain in part why older adults and many patient populations have greater antagonistic co-activation, which could represent an adaptation to increased motor noise, along with a desire for increased joint stability. PMID:26973487

  19. Neural Control Adaptation to Motor Noise Manipulation

    PubMed Central

    Hasson, Christopher J.; Gelina, Olga; Woo, Garrett

    2016-01-01

    Antagonistic muscular co-activation can compensate for movement variability induced by motor noise at the expense of increased energetic costs. Greater antagonistic co-activation is commonly observed in older adults, which could be an adaptation to increased motor noise. The present study tested this hypothesis by manipulating motor noise in 12 young subjects while they practiced a goal-directed task using a myoelectric virtual arm, which was controlled by their biceps and triceps muscle activity. Motor noise was increased by increasing the coefficient of variation (CV) of the myoelectric signals. As hypothesized, subjects adapted by increasing antagonistic co-activation, and this was associated with reduced noise-induced performance decrements. A second hypothesis was that a virtual decrease in motor noise, achieved by smoothing the myoelectric signals, would have the opposite effect: co-activation would decrease and motor performance would improve. However, the results showed that a decrease in noise made performance worse instead of better, with no change in co-activation. Overall, these findings suggest that the nervous system adapts to virtual increases in motor noise by increasing antagonistic co-activation, and this preserves motor performance. Reducing noise may have failed to benefit performance due to characteristics of the filtering process itself, e.g., delays are introduced and muscle activity bursts are attenuated. The observed adaptations to increased noise may explain in part why older adults and many patient populations have greater antagonistic co-activation, which could represent an adaptation to increased motor noise, along with a desire for increased joint stability. PMID:26973487

  20. Lagrange duality theory for convex control problems

    NASA Technical Reports Server (NTRS)

    Hager, W. W.; Mitter, S. K.

    1976-01-01

    The Lagrange dual to a control problem is studied. The principal result based on the Hahn-Banach theorem proves that the dual problem has an optimal solution if there exists an interior point for the constraint set. A complementary slackness condition holds, if the primal problem has an optimal solution. A necessary and sufficient condition for the optimality of solutions to the primal and the dual problem is also presented.

  1. Road map to adaptive optimal control. [jet engine control

    NASA Technical Reports Server (NTRS)

    Boyer, R.

    1980-01-01

    A building block control structure leading toward adaptive, optimal control for jet engines is developed. This approach simplifies the addition of new features and allows for easier checkout of the control by providing a baseline system for comparison. Also, it is possible to eliminate certain features that do not have payoff by being selective in the addition of new building blocks to be added to the baseline system. The minimum risk approach specifically addresses the need for active identification of the plant to be controlled in real time and real time optimization of the control for the identified plant.

  2. An approach to the multi-axis problem in manual control. [optimal pilot model

    NASA Technical Reports Server (NTRS)

    Harrington, W. W.

    1977-01-01

    The multiaxis control problem is addressed within the context of the optimal pilot model. The problem is developed to provide efficient adaptation of the optimal pilot model to complex aircraft systems and real world, multiaxis tasks. This is accomplished by establishing separability of the longitudinal and lateral control problems subject to the constraints of multiaxis attention and control allocation. Control solution adaptation to the constrained single axis attention allocations is provided by an optimal control frequency response algorithm. An algorithm is developed to solve the multiaxis control problem. The algorithm is then applied to an attitude hold task for a bare airframe fighter aircraft case with interesting multiaxis properties.

  3. Adaptive control of robotic manipulators with structural flexibility

    NASA Astrophysics Data System (ADS)

    Wu, Sijun

    The control problem of mechanically flexible systems was an important issue for the past decade due mainly to the growing needs for fast, precise manipulators in industry and space applications. In this thesis, stable, high precision, and high-bandwidth closed-loop tip position control of a one-link flexible robot was investigated. Two adaptive control methods are developed and studied. A non-dimensionalized dynamic model for the flexible robot arm is developed. Payload mass and moment of inertia are also considered in the modeling. It can be shown that with a set of strain gauge measurements, the payload mass and moment of inertia could be estimated. This provides a convenient tool to detect the variations of the payload, which is crucial for precision control. The lattice filter used in the tip position control of a flexible arm proves to be a good parameter identifier in the on-line identification of the robot due to its high convergence rate and noise rejection capability. Although the lattice filter is usualy designed for auto-regressive or moving-average processes, its applications are extended to include auto-regressive and moving-average processes. The proposed model reference adaptive inverse controller is in the form of a series type of model reference system. It differs from other model reference controller in that the forward controller is the identified systems inverse. Moreover, an additional control signal is applied which comes from a signal synthesis block to compensate the output tracking and parameter identification errors. Compared with other control techniques such as stable factorization and linear quadratic Gaussian, the predictive adaptive controller could provide faster control with reasonably low input energy level.

  4. Adaptive nonlinear control of missiles using neural networks

    NASA Astrophysics Data System (ADS)

    McFarland, Michael Bryan

    Research has shown that neural networks can be used to improve upon approximate dynamic inversion for control of uncertain nonlinear systems. In one architecture, the neural network adaptively cancels inversion errors through on-line learning. Such learning is accomplished by a simple weight update rule derived from Lyapunov theory, thus assuring stability of the closed-loop system. In this research, previous results using linear-in-parameters neural networks were reformulated in the context of a more general class of composite nonlinear systems, and the control scheme was shown to possess important similarities and major differences with established methods of adaptive control. The neural-adaptive nonlinear control methodology in question has been used to design an autopilot for an anti-air missile with enhanced agile maneuvering capability, and simulation results indicate that this approach is a feasible one. There are, however, certain difficulties associated with choosing the proper network architecture which make it difficult to achieve the rapid learning required in this application. Accordingly, this technique has been further extended to incorporate the important class of feedforward neural networks with a single hidden layer. These neural networks feature well-known approximation capabilities and provide an effective, although nonlinear, parameterization of the adaptive control problem. Numerical results from a six-degree-of-freedom nonlinear agile anti-air missile simulation demonstrate the effectiveness of the autopilot design based on multilayer networks. Previous work in this area has implicitly assumed precise knowledge of the plant order, and made no allowances for unmodeled dynamics. This thesis describes an approach to the problem of controlling a class of nonlinear systems in the face of both unknown nonlinearities and unmodeled dynamics. The proposed methodology is similar to robust adaptive control techniques derived for control of linear

  5. A Methodology for Investigating Adaptive Postural Control

    NASA Technical Reports Server (NTRS)

    McDonald, P. V.; Riccio, G. E.

    1999-01-01

    Our research on postural control and human-environment interactions provides an appropriate scientific foundation for understanding the skill of mass handling by astronauts in weightless conditions (e.g., extravehicular activity or EVA). We conducted an investigation of such skills in NASA's principal mass-handling simulator, the Precision Air-Bearing Floor, at the Johnson Space Center. We have studied skilled movement-body within a multidisciplinary context that draws on concepts and methods from biological and behavioral sciences (e.g., psychology, kinesiology and neurophysiology) as well as bioengineering. Our multidisciplinary research has led to the development of measures, for manual interactions between individuals and the substantial environment, that plausibly are observable by human sensory systems. We consider these methods to be the most important general contribution of our EVA investigation. We describe our perspective as control theoretic because it draws more on fundamental concepts about control systems in engineering than it does on working constructs from the subdisciplines of biomechanics and motor control in the bio-behavioral sciences. At the same time, we have attempted to identify the theoretical underpinnings of control-systems engineering that are most relevant to control by human beings. We believe that these underpinnings are implicit in the assumptions that cut across diverse methods in control-systems engineering, especially the various methods associated with "nonlinear control", "fuzzy control," and "adaptive control" in engineering. Our methods are based on these theoretical foundations rather than on the mathematical formalisms that are associated with particular methods in control-systems engineering. The most important aspects of the human-environment interaction in our investigation of mass handling are the functional consequences that body configuration and stability have for the pick up of information or the achievement of

  6. Robust observer-based adaptive fuzzy sliding mode controller

    NASA Astrophysics Data System (ADS)

    Oveisi, Atta; Nestorović, Tamara

    2016-08-01

    In this paper, a new observer-based adaptive fuzzy integral sliding mode controller is proposed based on the Lyapunov stability theorem. The plant is subjected to a square-integrable disturbance and is assumed to have mismatch uncertainties both in state- and input-matrices. Based on the classical sliding mode controller, the equivalent control effort is obtained to satisfy the sufficient requirement of sliding mode controller and then the control law is modified to guarantee the reachability of the system trajectory to the sliding manifold. In order to relax the norm-bounded constrains on the control law and solve the chattering problem of sliding mode controller, a fuzzy logic inference mechanism is combined with the controller. An adaptive law is then introduced to tune the parameters of the fuzzy system on-line. Finally, for evaluating the controller and the robust performance of the closed-loop system, the proposed regulator is implemented on a real-time mechanical vibrating system.

  7. Biohybrid Control of General Linear Systems Using the Adaptive Filter Model of Cerebellum

    PubMed Central

    Wilson, Emma D.; Assaf, Tareq; Pearson, Martin J.; Rossiter, Jonathan M.; Dean, Paul; Anderson, Sean R.; Porrill, John

    2015-01-01

    The adaptive filter model of the cerebellar microcircuit has been successfully applied to biological motor control problems, such as the vestibulo-ocular reflex (VOR), and to sensory processing problems, such as the adaptive cancelation of reafferent noise. It has also been successfully applied to problems in robotics, such as adaptive camera stabilization and sensor noise cancelation. In previous applications to inverse control problems, the algorithm was applied to the velocity control of a plant dominated by viscous and elastic elements. Naive application of the adaptive filter model to the displacement (as opposed to velocity) control of this plant results in unstable learning and control. To be more generally useful in engineering problems, it is essential to remove this restriction to enable the stable control of plants of any order. We address this problem here by developing a biohybrid model reference adaptive control (MRAC) scheme, which stabilizes the control algorithm for strictly proper plants. We evaluate the performance of this novel cerebellar-inspired algorithm with MRAC scheme in the experimental control of a dielectric electroactive polymer, a class of artificial muscle. The results show that the augmented cerebellar algorithm is able to accurately control the displacement response of the artificial muscle. The proposed solution not only greatly extends the practical applicability of the cerebellar-inspired algorithm, but may also shed light on cerebellar involvement in a wider range of biological control tasks. PMID:26257638

  8. Adaptive Accommodation Control Method for Complex Assembly

    NASA Astrophysics Data System (ADS)

    Kang, Sungchul; Kim, Munsang; Park, Shinsuk

    Robotic systems have been used to automate assembly tasks in manufacturing and in teleoperation. Conventional robotic systems, however, have been ineffective in controlling contact force in multiple contact states of complex assemblythat involves interactions between complex-shaped parts. Unlike robots, humans excel at complex assembly tasks by utilizing their intrinsic impedance, forces and torque sensation, and tactile contact clues. By examining the human behavior in assembling complex parts, this study proposes a novel geometry-independent control method for robotic assembly using adaptive accommodation (or damping) algorithm. Two important conditions for complex assembly, target approachability and bounded contact force, can be met by the proposed control scheme. It generates target approachable motion that leads the object to move closer to a desired target position, while contact force is kept under a predetermined value. Experimental results from complex assembly tests have confirmed the feasibility and applicability of the proposed method.

  9. A Robot Manipulator with Adaptive Fuzzy Controller in Obstacle Avoidance

    NASA Astrophysics Data System (ADS)

    Sreekumar, Muthuswamy

    2016-07-01

    Building robots and machines to act within a fuzzy environment is a problem featuring complexity and ambiguity. In order to avoid obstacles, or move away from it, the robot has to perform functions such as obstacle identification, finding the location of the obstacle, its velocity, direction of movement, size, shape, and so on. This paper presents about the design, and implementation of an adaptive fuzzy controller designed for a 3 degree of freedom spherical coordinate robotic manipulator interfaced with a microcontroller and an ultrasonic sensor. Distance between the obstacle and the sensor and its time rate are considered as inputs to the controller and how the manipulator to take diversion from its planned trajectory, in order to avoid collision with the obstacle, is treated as output from the controller. The obstacles are identified as stationary or moving objects and accordingly adaptive self tuning is accomplished with three set of linguistic rules. The prototype of the manipulator has been fabricated and tested for collision avoidance by placing stationary and moving obstacles in its planned trajectory. The performance of the adaptive control algorithm is analyzed in MATLAB by generating 3D fuzzy control surfaces.

  10. Controlling cluster synchronization by adapting the topology.

    PubMed

    Lehnert, Judith; Hövel, Philipp; Selivanov, Anton; Fradkov, Alexander; Schöll, Eckehard

    2014-10-01

    We suggest an adaptive control scheme for the control of in-phase and cluster synchronization in delay-coupled networks. Based on the speed-gradient method, our scheme adapts the topology of a network such that the target state is realized. It is robust towards different initial conditions as well as changes in the coupling parameters. The emerging topology is characterized by a delicate interplay of excitatory and inhibitory links leading to the stabilization of the desired cluster state. As a crucial parameter determining this interplay we identify the delay time. Furthermore, we show how to construct networks such that they exhibit not only a given cluster state but also with a given oscillation frequency. We apply our method to coupled Stuart-Landau oscillators, a paradigmatic normal form that naturally arises in an expansion of systems close to a Hopf bifurcation. The successful and robust control of this generic model opens up possible applications in a wide range of systems in physics, chemistry, technology, and life science.

  11. Robust adaptive backstepping control for reentry reusable launch vehicles

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Wu, Zhong; Du, Yijiang

    2016-09-01

    During the reentry process of reusable launch vehicles (RLVs), the large range of flight envelope will not only result in high nonlinearities, strong coupling and fast time-varying characteristics of the attitude dynamics, but also result in great uncertainties in the atmospheric density, aerodynamic coefficients and environmental disturbances, etc. In order to attenuate the effects of these problems on the control performance of the reentry process, a robust adaptive backstepping control (RABC) strategy is proposed for RLV in this paper. This strategy consists of two-loop controllers designed via backstepping method. Both the outer and the inner loop adopt a robust adaptive controller, which can deal with the disturbances and uncertainties by the variable-structure term with the estimation of their bounds. The outer loop can track the desired attitude by the design of virtual control-the desired angular velocity, while the inner one can track the desired angular velocity by the design of control torque. Theoretical analysis indicates that the closed-loop system under the proposed control strategy is globally asymptotically stable. Even if the boundaries of the disturbances and uncertainties are unknown, the attitude can track the desired value accurately. Simulation results of a certain RLV demonstrate the effectiveness of the control strategy.

  12. Adaptive suboptimal second-order sliding mode control for microgrids

    NASA Astrophysics Data System (ADS)

    Incremona, Gian Paolo; Cucuzzella, Michele; Ferrara, Antonella

    2016-09-01

    This paper deals with the design of adaptive suboptimal second-order sliding mode (ASSOSM) control laws for grid-connected microgrids. Due to the presence of the inverter, of unpredicted load changes, of switching among different renewable energy sources, and of electrical parameters variations, the microgrid model is usually affected by uncertain terms which are bounded, but with unknown upper bounds. To theoretically frame the control problem, the class of second-order systems in Brunovsky canonical form, characterised by the presence of matched uncertain terms with unknown bounds, is first considered. Four adaptive strategies are designed, analysed and compared to select the most effective ones to be applied to the microgrid case study. In the first two strategies, the control amplitude is continuously adjusted, so as to arrive at dominating the effect of the uncertainty on the controlled system. When a suitable control amplitude is attained, the origin of the state space of the auxiliary system becomes attractive. In the other two strategies, a suitable blend between two components, one mainly working during the reaching phase, the other being the predominant one in a vicinity of the sliding manifold, is generated, so as to reduce the control amplitude in steady state. The microgrid system in a grid-connected operation mode, controlled via the selected ASSOSM control strategies, exhibits appreciable stability properties, as proved theoretically and shown in simulation.

  13. Adaptive method with intercessory feedback control for an intelligent agent

    DOEpatents

    Goldsmith, Steven Y.

    2004-06-22

    An adaptive architecture method with feedback control for an intelligent agent provides for adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. An adaptive architecture method with feedback control for multiple intelligent agents provides for coordinating and adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. Re-programming of the adaptive architecture is through a nexus which coordinates reflexive and deliberator components.

  14. Adaptive Control Using Residual Mode Filters Applied to Wind Turbines

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Balas, Mark J.

    2011-01-01

    Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a model reference direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will augment the adaptive controller using a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. We apply these theoretical results to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine that has minimum phase zeros.

  15. Adaptive Input Reconstruction with Application to Model Refinement, State Estimation, and Adaptive Control

    NASA Astrophysics Data System (ADS)

    D'Amato, Anthony M.

    Input reconstruction is the process of using the output of a system to estimate its input. In some cases, input reconstruction can be accomplished by determining the output of the inverse of a model of the system whose input is the output of the original system. Inversion, however, requires an exact and fully known analytical model, and is limited by instabilities arising from nonminimum-phase zeros. The main contribution of this work is a novel technique for input reconstruction that does not require model inversion. This technique is based on a retrospective cost, which requires a limited number of Markov parameters. Retrospective cost input reconstruction (RCIR) does not require knowledge of nonminimum-phase zero locations or an analytical model of the system. RCIR provides a technique that can be used for model refinement, state estimation, and adaptive control. In the model refinement application, data are used to refine or improve a model of a system. It is assumed that the difference between the model output and the data is due to an unmodeled subsystem whose interconnection with the modeled system is inaccessible, that is, the interconnection signals cannot be measured and thus standard system identification techniques cannot be used. Using input reconstruction, these inaccessible signals can be estimated, and the inaccessible subsystem can be fitted. We demonstrate input reconstruction in a model refinement framework by identifying unknown physics in a space weather model and by estimating an unknown film growth in a lithium ion battery. The same technique can be used to obtain estimates of states that cannot be directly measured. Adaptive control can be formulated as a model-refinement problem, where the unknown subsystem is the idealized controller that minimizes a measured performance variable. Minimal modeling input reconstruction for adaptive control is useful for applications where modeling information may be difficult to obtain. We demonstrate

  16. Wavefront Control for Extreme Adaptive Optics

    SciTech Connect

    Poyneer, L A

    2003-07-16

    Current plans for Extreme Adaptive Optics systems place challenging requirements on wave-front control. This paper focuses on control system dynamics, wave-front sensing and wave-front correction device characteristics. It may be necessary to run an ExAO system after a slower, low-order AO system. Running two independent systems can result in very good temporal performance, provided specific design constraints are followed. The spatially-filtered wave-front sensor, which prevents aliasing and improves PSF sensitivity, is summarized. Different models of continuous and segmented deformable mirrors are studied. In a noise-free case, a piston-tip-tilt segmented MEMS device can achieve nearly equivalent performance to a continuous-sheet DM in compensating for a static phase aberration with use of spatial filtering.

  17. Adaptive Control of Flexible Structures Using Residual Mode Filters

    NASA Technical Reports Server (NTRS)

    Balas, Mark J.; Frost, Susan

    2010-01-01

    Flexible structures containing a large number of modes can benefit from adaptive control techniques which are well suited to applications that have unknown modeling parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend our adaptive control theory to accommodate troublesome modal subsystems of a plant that might inhibit the adaptive controller. In some cases the plant does not satisfy the requirements of Almost Strict Positive Realness. Instead, there maybe be a modal subsystem that inhibits this property. This section will present new results for our adaptive control theory. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for the troublesome modal subsystem, or the Q modes. Here we present the theory for adaptive controllers modified by RMFs, with attention to the issue of disturbances propagating through the Q modes. We apply the theoretical results to a flexible structure example to illustrate the behavior with and without the residual mode filter. We have proposed a modified adaptive controller with a residual mode filter. The RMF is used to accommodate troublesome modes in the system that might otherwise inhibit the adaptive controller, in particular the ASPR condition. This new theory accounts for leakage of the disturbance term into the Q modes. A simple three-mode example shows that the RMF can restore stability to an otherwise unstable adaptively controlled system. This is done without modifying the adaptive controller design.

  18. Adaptive and predictive control of a simulated robot arm.

    PubMed

    Tolu, Silvia; Vanegas, Mauricio; Garrido, Jesús A; Luque, Niceto R; Ros, Eduardo

    2013-06-01

    In this work, a basic cerebellar neural layer and a machine learning engine are embedded in a recurrent loop which avoids dealing with the motor error or distal error problem. The presented approach learns the motor control based on available sensor error estimates (position, velocity, and acceleration) without explicitly knowing the motor errors. The paper focuses on how to decompose the input into different components in order to facilitate the learning process using an automatic incremental learning model (locally weighted projection regression (LWPR) algorithm). LWPR incrementally learns the forward model of the robot arm and provides the cerebellar module with optimal pre-processed signals. We present a recurrent adaptive control architecture in which an adaptive feedback (AF) controller guarantees a precise, compliant, and stable control during the manipulation of objects. Therefore, this approach efficiently integrates a bio-inspired module (cerebellar circuitry) with a machine learning component (LWPR). The cerebellar-LWPR synergy makes the robot adaptable to changing conditions. We evaluate how this scheme scales for robot-arms of a high number of degrees of freedom (DOFs) using a simulated model of a robot arm of the new generation of light weight robots (LWRs).

  19. Indirect model reference adaptive control for a class of fractional order systems

    NASA Astrophysics Data System (ADS)

    Chen, Yuquan; Wei, Yiheng; Liang, Shu; Wang, Yong

    2016-10-01

    This article focuses on the indirect model reference adaptive control problem for fractional order systems. A constrained gradient estimation method was established firstly, since parameter estimation is part and parcel of the whole control problem. Then a novel adaptive control law is designed, from which the two problems, i.e., parameter estimation and reference tracking, can be unified perfectly. On these basis, an effective control scheme is established. The stability of the resulting closed-loop system is analyzed rigorously via indirect Lyapunov method and frequency distributed model. Finally, a careful simulation study is reported to illustrate the effectiveness of the proposed scheme.

  20. Real-time Adaptive Control Using Neural Generalized Predictive Control

    NASA Technical Reports Server (NTRS)

    Haley, Pam; Soloway, Don; Gold, Brian

    1999-01-01

    The objective of this paper is to demonstrate the feasibility of a Nonlinear Generalized Predictive Control algorithm by showing real-time adaptive control on a plant with relatively fast time-constants. Generalized Predictive Control has classically been used in process control where linear control laws were formulated for plants with relatively slow time-constants. The plant of interest for this paper is a magnetic levitation device that is nonlinear and open-loop unstable. In this application, the reference model of the plant is a neural network that has an embedded nominal linear model in the network weights. The control based on the linear model provides initial stability at the beginning of network training. In using a neural network the control laws are nonlinear and online adaptation of the model is possible to capture unmodeled or time-varying dynamics. Newton-Raphson is the minimization algorithm. Newton-Raphson requires the calculation of the Hessian, but even with this computational expense the low iteration rate make this a viable algorithm for real-time control.

  1. Linear stochastic optimal control and estimation problem

    NASA Technical Reports Server (NTRS)

    Geyser, L. C.; Lehtinen, F. K. B.

    1980-01-01

    Problem involves design of controls for linear time-invariant system disturbed by white noise. Solution is Kalman filter coupled through set of optimal regulator gains to produce desired control signal. Key to solution is solving matrix Riccati differential equation. LSOCE effectively solves problem for wide range of practical applications. Program is written in FORTRAN IV for batch execution and has been implemented on IBM 360.

  2. Adaptive Training of Manual Control: 1. Comparison of Three Adaptive Variables and Two Logic Schemes.

    ERIC Educational Resources Information Center

    Norman, D. A.; And Others

    "Machine controlled adaptive training is a promising concept. In adaptive training the task presented to the trainee varies as a function of how well he performs. In machine controlled training, adaptive logic performs a function analogous to that performed by a skilled operator." This study looks at the ways in which gain-effective time constant…

  3. Adaptive powertrain control for plugin hybrid electric vehicles

    DOEpatents

    Kedar-Dongarkar, Gurunath; Weslati, Feisel

    2013-10-15

    A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.

  4. Model Reference Adaptive H∞ Control for Distributed Parameter Systems of Hyperbolic Type with Input Nonlinearity by Finite Dimensional Controllers

    NASA Astrophysics Data System (ADS)

    Miyasato, Yoshihiko

    The problem of constructing model reference adaptive H∞ control for distributed parameter systems of hyperbolic type preceded by unknown input nonlinearity such as dead zone or backlash, is considered in this paper. Distributed parameter systems are infinite dimensional processes, but the proposed control scheme is constructed from finite dimensional controllers. An adaptive inverse model is introduced to estimate and compensate the input nonlinearity. The stabilizing control signal is added to regulate the effect of spill-over terms, and it is derived as a solution of certain H∞ control problem where the residual part of the inverse model and the spill-over term are considered as external disturbances to the process.

  5. Robust adaptive control of MEMS triaxial gyroscope using fuzzy compensator.

    PubMed

    Fei, Juntao; Zhou, Jian

    2012-12-01

    In this paper, a robust adaptive control strategy using a fuzzy compensator for MEMS triaxial gyroscope, which has system nonlinearities, including model uncertainties and external disturbances, is proposed. A fuzzy logic controller that could compensate for the model uncertainties and external disturbances is incorporated into the adaptive control scheme in the Lyapunov framework. The proposed adaptive fuzzy controller can guarantee the convergence and asymptotical stability of the closed-loop system. The proposed adaptive fuzzy control strategy does not depend on accurate mathematical models, which simplifies the design procedure. The innovative development of intelligent control methods incorporated with conventional control for the MEMS gyroscope is derived with the strict theoretical proof of the Lyapunov stability. Numerical simulations are investigated to verify the effectiveness of the proposed adaptive fuzzy control scheme and demonstrate the satisfactory tracking performance and robustness against model uncertainties and external disturbances compared with conventional adaptive control method.

  6. Robust adaptive vibration control of a flexible structure.

    PubMed

    Khoshnood, A M; Moradi, H M

    2014-07-01

    Different types of L1 adaptive control systems show that using robust theories with adaptive control approaches has produced high performance controllers. In this study, a model reference adaptive control scheme considering robust theories is used to propose a practical control system for vibration suppression of a flexible launch vehicle (FLV). In this method, control input of the system is shaped from the dynamic model of the vehicle and components of the control input are adaptively constructed by estimating the undesirable vibration frequencies. Robust stability of the adaptive vibration control system is guaranteed by using the L1 small gain theorem. Simulation results of the robust adaptive vibration control strategy confirm that the effects of vibration on the vehicle performance considerably decrease without the loss of the phase margin of the system.

  7. Direct adaptive control of manipulators in Cartesian space

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1987-01-01

    A new adaptive-control scheme for direct control of manipulator end effector to achieve trajectory tracking in Cartesian space is developed in this article. The control structure is obtained from linear multivariable theory and is composed of simple feedforward and feedback controllers and an auxiliary input. The direct adaptation laws are derived from model reference adaptive control theory and are not based on parameter estimation of the robot model. The utilization of adaptive feedforward control and the inclusion of auxiliary input are novel features of the present scheme and result in improved dynamic performance over existing adaptive control schemes. The adaptive controller does not require the complex mathematical model of the robot dynamics or any knowledge of the robot parameters or the payload, and is computationally fast for on-line implementation with high sampling rates. The control scheme is applied to a two-link manipulator for illustration.

  8. Experimental Validation of L1 Adaptive Control: Rohrs' Counterexample in Flight

    NASA Technical Reports Server (NTRS)

    Xargay, Enric; Hovakimyan, Naira; Dobrokhodov, Vladimir; Kaminer, Issac; Kitsios, Ioannis; Cao, Chengyu; Gregory, Irene M.; Valavani, Lena

    2010-01-01

    The paper presents new results on the verification and in-flight validation of an L1 adaptive flight control system, and proposes a general methodology for verification and validation of adaptive flight control algorithms. The proposed framework is based on Rohrs counterexample, a benchmark problem presented in the early 80s to show the limitations of adaptive controllers developed at that time. In this paper, the framework is used to evaluate the performance and robustness characteristics of an L1 adaptive control augmentation loop implemented onboard a small unmanned aerial vehicle. Hardware-in-the-loop simulations and flight test results confirm the ability of the L1 adaptive controller to maintain stability and predictable performance of the closed loop adaptive system in the presence of general (artificially injected) unmodeled dynamics. The results demonstrate the advantages of L1 adaptive control as a verifiable robust adaptive control architecture with the potential of reducing flight control design costs and facilitating the transition of adaptive control into advanced flight control systems.

  9. Adaptive behavior and problem behavior in young children with Williams syndrome.

    PubMed

    Hahn, Laura J; Fidler, Deborah J; Hepburn, Susan L

    2014-01-01

    The present study compares the adaptive behavior profile of 18 young children with Williams syndrome (WS) and a developmentally matched group of 19 children with developmental disabilities and examines the relationship between adaptive behavior and problem behaviors in WS. Parents completed the Vineland Adaptive Behavioral Scales-Interview edition and the Developmental Behavior Checklist-Primary Caregiver version (WS only). Children with WS had higher adaptive communication scores than children with other developmental disabilities. Children with WS demonstrated relative strengths in adaptive communication and socialization, coupled with relative weaknesses in daily living. Adaptive communication and socialization were negatively associated with problem behaviors in social relating in WS.

  10. Adaptation of Social Problem Solving for Children Questionnaire in 6 Age Groups and its Relationships with Preschool Behavior Problems

    ERIC Educational Resources Information Center

    Dereli-Iman, Esra

    2013-01-01

    Social Problem Solving for Child Scale is frequently used to determine behavioral problems of children with their own word and to identify ways of conflict encountered in daily life, and interpersonal relationships in abroad. The primary purpose of this study was to adapt the Wally Child Social Problem-Solving Detective Game Test. In order to…

  11. Improved methods in neural network-based adaptive output feedback control, with applications to flight control

    NASA Astrophysics Data System (ADS)

    Kim, Nakwan

    Utilizing the universal approximation property of neural networks, we develop several novel approaches to neural network-based adaptive output feedback control of nonlinear systems, and illustrate these approaches for several flight control applications. In particular, we address the problem of non-affine systems and eliminate the fixed point assumption present in earlier work. All of the stability proofs are carried out in a form that eliminates an algebraic loop in the neural network implementation. An approximate input/output feedback linearizing controller is augmented with a neural network using input/output sequences of the uncertain system. These approaches permit adaptation to both parametric uncertainty and unmodeled dynamics. All physical systems also have control position and rate limits, which may either deteriorate performance or cause instability for a sufficiently high control bandwidth. Here we apply a method for protecting an adaptive process from the effects of input saturation and time delays, known as "pseudo control hedging". This method was originally developed for the state feedback case, and we provide a stability analysis that extends its domain of applicability to the case of output feedback. The approach is illustrated by the design of a pitch-attitude flight control system for a linearized model of an R-50 experimental helicopter, and by the design of a pitch-rate control system for a 58-state model of a flexible aircraft consisting of rigid body dynamics coupled with actuator and flexible modes. A new approach to augmentation of an existing linear controller is introduced. It is especially useful when there is limited information concerning the plant model, and the existing controller. The approach is applied to the design of an adaptive autopilot for a guided munition. Design of a neural network adaptive control that ensures asymptotically stable tracking performance is also addressed.

  12. Adaptive dynamic programming as a theory of sensorimotor control.

    PubMed

    Jiang, Yu; Jiang, Zhong-Ping

    2014-08-01

    Many characteristics of sensorimotor control can be explained by models based on optimization and optimal control theories. However, most of the previous models assume that the central nervous system has access to the precise knowledge of the sensorimotor system and its interacting environment. This viewpoint is difficult to be justified theoretically and has not been convincingly validated by experiments. To address this problem, this paper presents a new computational mechanism for sensorimotor control from a perspective of adaptive dynamic programming (ADP), which shares some features of reinforcement learning. The ADP-based model for sensorimotor control suggests that a command signal for the human movement is derived directly from the real-time sensory data, without the need to identify the system dynamics. An iterative learning scheme based on the proposed ADP theory is developed, along with rigorous convergence analysis. Interestingly, the computational model as advocated here is able to reproduce the motor learning behavior observed in experiments where a divergent force field or velocity-dependent force field was present. In addition, this modeling strategy provides a clear way to perform stability analysis of the overall system. Hence, we conjecture that human sensorimotor systems use an ADP-type mechanism to control movements and to achieve successful adaptation to uncertainties present in the environment.

  13. Adaptive dynamic programming as a theory of sensorimotor control.

    PubMed

    Jiang, Yu; Jiang, Zhong-Ping

    2014-08-01

    Many characteristics of sensorimotor control can be explained by models based on optimization and optimal control theories. However, most of the previous models assume that the central nervous system has access to the precise knowledge of the sensorimotor system and its interacting environment. This viewpoint is difficult to be justified theoretically and has not been convincingly validated by experiments. To address this problem, this paper presents a new computational mechanism for sensorimotor control from a perspective of adaptive dynamic programming (ADP), which shares some features of reinforcement learning. The ADP-based model for sensorimotor control suggests that a command signal for the human movement is derived directly from the real-time sensory data, without the need to identify the system dynamics. An iterative learning scheme based on the proposed ADP theory is developed, along with rigorous convergence analysis. Interestingly, the computational model as advocated here is able to reproduce the motor learning behavior observed in experiments where a divergent force field or velocity-dependent force field was present. In addition, this modeling strategy provides a clear way to perform stability analysis of the overall system. Hence, we conjecture that human sensorimotor systems use an ADP-type mechanism to control movements and to achieve successful adaptation to uncertainties present in the environment. PMID:24962078

  14. A multi-granular-based fuzzy adaptive controller

    NASA Astrophysics Data System (ADS)

    Lu, Bin

    2006-11-01

    The accuracy and complexity of fuzzy control systems are problems worthy of study deeply. The high accuracy of control means that the controlled variables will have to be represented at fine granularity which increases the complexity of controller. To attain the prescribed accuracy in reducing control complexity, a multi-granular fuzzy adaptive controller is proposed which represents the process of reaching goal at different spaces of the information granularity. When the prescribed accuracy is low, a coarse fuzzy controller can be used. As the process moves from high level to low level, the prescribed accuracy becomes higher and the information granularity to fuzzy controller becomes finer. In this controller, a rough plan is generated to reach the final goal firstly. Then, the plan is decomposed to many sub-goals which are submitted to the next lower level of hierarchy. And the more refined plans to reach these sub-goals are determined. If needed, this process of successive refinement continues until the final prescribed accuracy is obtained. In addition, the methods are presented to determine the depth of levels and the number of granules in each level. Finally, the simulation results of double inverted pendulum indicate the effectiveness of the proposed controller.

  15. Stable adaptive fuzzy controllers with application to inverted pendulum tracking.

    PubMed

    Wang, L X

    1996-01-01

    An adaptive fuzzy controller is constructed from a set of fuzzy IF-THEN rules whose parameters are adjusted on-line according to some adaptation law for the purpose of controlling the plant to track a given-trajectory. In this paper, two adaptive fuzzy controllers are designed based on the Lyapunov synthesis approach. We require that the final closed-loop system must be globally stable in the sense that all signals involved (states, controls, parameters, etc.) must be uniformly bounded. Roughly speaking, the adaptive fuzzy controllers are designed through the following steps: first, construct an initial controller based on linguistic descriptions (in the form of fuzzy IF-THEN rules) about the unknown plant from human experts; then, develop an adaptation law to adjust the parameters of the fuzzy controller on-line. We prove, for both adaptive fuzzy controllers, that: (1) all signals in the closed-loop systems are uniformly bounded; and (2) the tracking errors converge to zero under mild conditions. We provide the specific formulas of the bounds so that controller designers can determine the bounds based on their requirements. Finally, the adaptive fuzzy controllers are used to control the inverted pendulum to track a given trajectory, and the simulation results show that: (1) the adaptive fuzzy controllers can perform successful tracking without using any linguistic information; and (2) after incorporating some linguistic fuzzy rules into the controllers, the adaptation speed becomes faster and the tracking error becomes smaller.

  16. A survey of adaptive control technology in robotics

    NASA Technical Reports Server (NTRS)

    Tosunoglu, S.; Tesar, D.

    1987-01-01

    Previous work on the adaptive control of robotic systems is reviewed. Although the field is relatively new and does not yet represent a mature discipline, considerable attention has been given to the design of sophisticated robot controllers. Here, adaptive control methods are divided into model reference adaptive systems and self-tuning regulators with further definition of various approaches given in each class. The similarity and distinct features of the designed controllers are delineated and tabulated to enhance comparative review.

  17. Full-Scale Flight Research Testbeds: Adaptive and Intelligent Control

    NASA Technical Reports Server (NTRS)

    Pahle, Joe W.

    2008-01-01

    This viewgraph presentation describes the adaptive and intelligent control methods used for aircraft survival. The contents include: 1) Motivation for Adaptive Control; 2) Integrated Resilient Aircraft Control Project; 3) Full-scale Flight Assets in Use for IRAC; 4) NASA NF-15B Tail Number 837; 5) Gen II Direct Adaptive Control Architecture; 6) Limited Authority System; and 7) 837 Flight Experiments. A simulated destabilization failure analysis along with experience and lessons learned are also presented.

  18. Adaptive fuzzy sliding mode control scheme for uncertain systems

    NASA Astrophysics Data System (ADS)

    Noroozi, Navid; Roopaei, Mehdi; Jahromi, M. Zolghadri

    2009-11-01

    Most physical systems inherently contain nonlinearities which are commonly unknown to the system designer. Therefore, in modeling and analysis of such dynamic systems, one needs to handle unknown nonlinearities and/or uncertain parameters. This paper proposes a new adaptive tracking fuzzy sliding mode controller for a class of nonlinear systems in the presence of uncertainties and external disturbances. The main contribution of the proposed method is that the structure of the controlled system is partially unknown and does not require the bounds of uncertainty and disturbance of the system to be known; meanwhile, the chattering phenomenon that frequently appears in the conventional variable structure systems is also eliminated without deteriorating the system robustness. The performance of the proposed approach is evaluated for two well-known benchmark problems. The simulation results illustrate the effectiveness of our proposed controller.

  19. Adaptive measurement control for calorimetric assay

    SciTech Connect

    Glosup, J.G.; Axelrod, M.C.

    1994-10-01

    The performance of a calorimeter is usually evaluated by constructing a Shewhart control chart of its measurement errors for a collection of reference standards. However, Shewhart control charts were developed in a manufacturing setting where observations occur in batches. Additionally, the Shewhart control chart expects the variance of the charted variable to be known or at least well estimated from previous experimentation. For calorimetric assay, observations are collected singly in a time sequence with a (possibly) changing mean, and extensive experimentation to calculate the variance of the measurement errors is seldom feasible. These facts pose problems in constructing a control chart. In this paper, the authors propose using the mean squared successive difference to estimate the variance of measurement errors based solely on prior observations. This procedure reduces or eliminates estimation bias due to a changing mean. However, the use of this estimator requires an adjustment to the definition of the alarm and warning limits for the Shewhart control chart. The authors propose adjusted limits based on an approximate Student`s t-distribution for the measurement errors and discuss the limitations of this approximation. Suggestions for the practical implementation of this method are provided also.

  20. Time domain and frequency domain design techniques for model reference adaptive control systems

    NASA Technical Reports Server (NTRS)

    Boland, J. S., III

    1971-01-01

    Some problems associated with the design of model-reference adaptive control systems are considered and solutions to these problems are advanced. The stability of the adapted system is a primary consideration in the development of both the time-domain and the frequency-domain design techniques. Consequentially, the use of Liapunov's direct method forms an integral part of the derivation of the design procedures. The application of sensitivity coefficients to the design of model-reference adaptive control systems is considered. An application of the design techniques is also presented.

  1. Adaptive Control Allocation in the Presence of Actuator Failures

    NASA Technical Reports Server (NTRS)

    Liu, Yu; Crespo, Luis G.

    2010-01-01

    In this paper, a novel adaptive control allocation framework is proposed. In the adaptive control allocation structure, cooperative actuators are grouped and treated as an equivalent control effector. A state feedback adaptive control signal is designed for the equivalent effector and allocated to the member actuators adaptively. Two adaptive control allocation algorithms are proposed, which guarantee closed-loop stability and asymptotic state tracking in the presence of uncertain loss of effectiveness and constant-magnitude actuator failures. The proposed algorithms can be shown to reduce the controller complexity with proper grouping of the actuators. The proposed adaptive control allocation schemes are applied to two linearized aircraft models, and the simulation results demonstrate the performance of the proposed algorithms.

  2. Real-Time Feedback Control of Flow-Induced Cavity Tones. Part 2; Adaptive Control

    NASA Technical Reports Server (NTRS)

    Kegerise, M. A.; Cabell, R. H.; Cattafesta, L. N., III

    2006-01-01

    An adaptive generalized predictive control (GPC) algorithm was formulated and applied to the cavity flow-tone problem. The algorithm employs gradient descent to update the GPC coefficients at each time step. Past input-output data and an estimate of the open-loop pulse response sequence are all that is needed to implement the algorithm for application at fixed Mach numbers. Transient measurements made during controller adaptation revealed that the controller coefficients converged to a steady state in the mean, and this implies that adaptation can be turned off at some point with no degradation in control performance. When converged, the control algorithm demonstrated multiple Rossiter mode suppression at fixed Mach numbers ranging from 0.275 to 0.38. However, as in the case of fixed-gain GPC, the adaptive GPC performance was limited by spillover in sidebands around the suppressed Rossiter modes. The algorithm was also able to maintain suppression of multiple cavity tones as the freestream Mach number was varied over a modest range (0.275 to 0.29). Beyond this range, stable operation of the control algorithm was not possible due to the fixed plant model in the algorithm.

  3. Novel reinforcement learning approach for difficult control problems

    NASA Astrophysics Data System (ADS)

    Becus, Georges A.; Thompson, Edward A.

    1997-09-01

    We review work conducted over the past several years and aimed at developing reinforcement learning architectures for solving difficult control problems and based on and inspired by associative control process (ACP) networks. We briefly review ACP networks able to reproduce many classical instrumental conditioning test results observed in animal research and to engage in real-time, closed-loop, goal-seeking interactions with their environment. Chronologically, our contributions include the ideally interfaced ACP network which is endowed with hierarchical, attention, and failure recognition interface mechanisms which greatly enhanced the capabilities of the original ACP network. When solving the cart-pole problem, it achieves 100 percent reliability and a reduction in training time similar to that of Baird and Klopf's modified ACP network and additionally an order of magnitude reduction in number of failures experienced for successful training. Next we introduced the command and control center/internal drive (Cid) architecture for artificial neural learning systems. It consists of a hierarchy of command and control centers governing motor selection networks. Internal drives, similar hunger, thirst, or reproduction in biological systems, are formed within the controller to facilitate learning. Efficiency, reliability, and adjustability of this architecture were demonstrated on the benchmark cart-pole control problem. A comparison with other artificial learning systems indicates that it learns over 100 times faster than Barto, et al's adaptive search element/adaptive critic element, experiencing less failures by more than an order of magnitude while capable of being fine-tuned by the user, on- line, for improved performance without additional training. Finally we present work in progress on a 'peaks and valleys' scheme which moves away from the one-dimensional learning mechanism currently found in Cid and shows promises in solving even more difficult learning control

  4. Adaptive fuzzy switched control design for uncertain nonholonomic systems with input nonsmooth constraint

    NASA Astrophysics Data System (ADS)

    Li, Yongming; Tong, Shaocheng

    2016-10-01

    In this paper, a fuzzy adaptive switched control approach is proposed for a class of uncertain nonholonomic chained systems with input nonsmooth constraint. In the control design, an auxiliary dynamic system is designed to address the input nonsmooth constraint, and an adaptive switched control strategy is constructed to overcome the uncontrollability problem associated with x0(t0) = 0. By using fuzzy logic systems to tackle unknown nonlinear functions, a fuzzy adaptive control approach is explored based on the adaptive backstepping technique. By constructing the combination approximation technique and using Young's inequality scaling technique, the number of the online learning parameters is reduced to n and the 'explosion of complexity' problem is avoid. It is proved that the proposed method can guarantee that all variables of the closed-loop system converge to a small neighbourhood of zero. Two simulation examples are provided to illustrate the effectiveness of the proposed control approach.

  5. Adaptive hybrid intelligent control for uncertain nonlinear dynamical systems.

    PubMed

    Wang, Chi-Hsu; Lin, Tsung-Chih; Lee, Tsu-Tian; Liu, Han-Leih

    2002-01-01

    A new hybrid direct/indirect adaptive fuzzy neural network (FNN) controller with a state observer and supervisory controller for a class of uncertain nonlinear dynamic systems is developed in this paper. The hybrid adaptive FNN controller, the free parameters of which can be tuned on-line by an observer-based output feedback control law and adaptive law, is a combination of direct and indirect adaptive FNN controllers. A weighting factor, which can be adjusted by the tradeoff between plant knowledge and control knowledge, is adopted to sum together the control efforts from indirect adaptive FNN controller and direct adaptive FNN controller. Furthermore, a supervisory controller is appended into the FNN controller to force the state to be within the constraint set. Therefore, if the FNN controller cannot maintain the stability, the supervisory controller starts working to guarantee stability. On the other hand, if the FNN controller works well, the supervisory controller will be deactivated. The overall adaptive scheme guarantees the global stability of the resulting closed-loop system in the sense that all signals involved are uniformly bounded. Two nonlinear systems, namely, inverted pendulum system and Chua's (1989) chaotic circuit, are fully illustrated to track sinusoidal signals. The resulting hybrid direct/indirect FNN control systems show better performances, i.e., tracking error and control effort can be made smaller and it is more flexible during the design process.

  6. Modular and Adaptive Control of Sound Processing

    NASA Astrophysics Data System (ADS)

    van Nort, Douglas

    parameters. In this view, desired gestural dynamics and sonic response are achieved through modular construction of mapping layers that are themselves subject to parametric control. Complementing this view of the design process, the work concludes with an approach in which the creation of gestural control/sound dynamics are considered in the low-level of the underlying sound model. The result is an adaptive system that is specialized to noise-based transformations that are particularly relevant in an electroacoustic music context. Taken together, these different approaches to design and evaluation result in a unified framework for creation of an instrumental system. The key point is that this framework addresses the influence that mapping structure and control dynamics have on the perceived feel of the instrument. Each of the results illustrate this using either top-down or bottom-up approaches that consider musical control context, thereby pointing to the greater potential for refined sonic articulation that can be had by combining them in the design process.

  7. Adaptive Behavior and Problem Behavior in Young Children with Williams Syndrome

    ERIC Educational Resources Information Center

    Hahn, Laura J.; Fidler, Deborah J.; Hepburn, Susan L.

    2014-01-01

    The present study compares the adaptive behavior profile of 18 young children with Williams syndrome (WS) and a developmentally matched group of 19 children with developmental disabilities and examines the relationship between adaptive behavior and problem behaviors in WS. Parents completed the Vineland Adaptive Behavioral Scales--Interview…

  8. An adaptive spoiler to control the transonic shock

    NASA Astrophysics Data System (ADS)

    Bein, Th; Hanselka, H.; Breitbach, E.

    2000-04-01

    Market research predicts, for the aircraft industry, a large growth in the number of passengers as well as the airfreight rate with the result of this leading to increased competition for the European aircraft industry, the efficiency of new aircraft has to be improved drastically. One approach, among others, is the aerodynamic optimization of the wing. The fixed wing is designed optimally only for one flight condition. This flight condition is described by the parameters altitude, mach number and aircraft weight, all of which permanently vary during the mission of the aircraft. Therefore, the aircraft is just periodically near to the chosen design point. To compensate for this major disadvantage, an `adaptive wing' for optimal adaptation and variation of the profile geometry to the actual flight conditions will be developed. Daimler-Benz Aerospace Airbus, Daimler-Benz Research and the German Aerospace Center (DLR) are working as project partners on concepts for a variable camber and a local spoiler bump. In this paper a structural concept developed by the DLR for the adaptive spoiler will be presented. The concept is designed under the aspect of adaptive structural systems and requires a high integration of actuators, sensor and controllers in the structure. Special aspects of the design will be discussed and the first results, analytical, numerical as well as experimental, will be presented. Part of the concept design is also the development of new actuators optimized for the specific problem. A new actuator concept for the adaptive spoiler based on a cylindrical tube and activated either by pressure or multifunctional materials (e.g. shape memory alloys) will additionally be shown.

  9. DEVS-based intelligent control of space adapted fluid mixing

    NASA Technical Reports Server (NTRS)

    Chi, Sung-Do; Zeigler, Bernard P.

    1990-01-01

    The development is described of event-based intelligent control system for a space-adapted mixing process by employing the DEVS (Discrete Event System Specification) formalism. In this control paradigm, the controller expects to receive confirming sensor responses to its control commands within definite time windows determined by its DEVS model of the system under control. The DEVS-based intelligent control paradigm was applied in a space-adapted mixing system capable of supporting the laboratory automation aboard a Space Station.

  10. Least-Squares Adaptive Control Using Chebyshev Orthogonal Polynomials

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Burken, John; Ishihara, Abraham

    2011-01-01

    This paper presents a new adaptive control approach using Chebyshev orthogonal polynomials as basis functions in a least-squares functional approximation. The use of orthogonal basis functions improves the function approximation significantly and enables better convergence of parameter estimates. Flight control simulations demonstrate the effectiveness of the proposed adaptive control approach.

  11. Neural control of chronic stress adaptation

    PubMed Central

    Herman, James P.

    2013-01-01

    Stress initiates adaptive processes that allow the organism to physiologically cope with prolonged or intermittent exposure to real or perceived threats. A major component of this response is repeated activation of glucocorticoid secretion by the hypothalamo-pituitary-adrenocortical (HPA) axis, which promotes redistribution of energy in a wide range of organ systems, including the brain. Prolonged or cumulative increases in glucocorticoid secretion can reduce benefits afforded by enhanced stress reactivity and eventually become maladaptive. The long-term impact of stress is kept in check by the process of habituation, which reduces HPA axis responses upon repeated exposure to homotypic stressors and likely limits deleterious actions of prolonged glucocorticoid secretion. Habituation is regulated by limbic stress-regulatory sites, and is at least in part glucocorticoid feedback-dependent. Chronic stress also sensitizes reactivity to new stimuli. While sensitization may be important in maintaining response flexibility in response to new threats, it may also add to the cumulative impact of glucocorticoids on the brain and body. Finally, unpredictable or severe stress exposure may cause long-term and lasting dysregulation of the HPA axis, likely due to altered limbic control of stress effector pathways. Stress-related disorders, such as depression and PTSD, are accompanied by glucocorticoid imbalances and structural/ functional alterations in limbic circuits that resemble those seen following chronic stress, suggesting that inappropriate processing of stressful information may be part of the pathological process. PMID:23964212

  12. Control of Flow Separation Using Adaptive Airfoils

    NASA Technical Reports Server (NTRS)

    Chandrasekhara, M. S.; Wilder, M. C.; Carr, L. W.; Davis, Sanford S. (Technical Monitor)

    1996-01-01

    A novel way of controlling flow separation is reported. The approach involves using an adaptive airfoil geometry that changes its leading edge shape to adjust to the instantaneous flow at high angles of attack such that the flow over it remains attached. In particular, a baseline NACA 0012 airfoil, whose leading edge curvature could be changed dynamically by 400% was tested under quasi-steady compressible flow conditions. A mechanical drive system was used to produce a rounded leading edge to reduce the strong local flow acceleration around its nose and thus reduce the strong adverse pressure gradient that follows such a rapid acceleration. Tests in steady flow showed that at M = 0.3, the flow separated at about 14 deg. angle of attack for the NACA 0012 profile but could be kept attached up to an angle of about 18 deg by changing the nose curvature. No significant hysteresis effects were observed; the flow could be made to reattach from its separated state at high angles by changing the leading edge curvature.

  13. Control of Flow Separation Using Adaptive Airfoils

    NASA Technical Reports Server (NTRS)

    Chandrasekhara, M. S.; Wilder, M. C.; Carr, L. W.; Davis, Sanford S. (Technical Monitor)

    1996-01-01

    A novel way of controlling flow separation is reported. The approach involves using an adaptive airfoil geometry that changes its leading edge shape to adjust to the instantaneous flow at high angles of attack such that the flow over it remains attached. In particular, a baseline NACA 0012 airfoil, whose leading edge curvature could be changed dynamically by 400% was tested under quasi-steady compressible flow conditions. A mechanical drive system was used to produce a rounded leading edge to reduce the strong local flow acceleration around its nose and thus reduce the strong adverse pressure gradient that follows such a rapid acceleration. Tests in steady flow showed that at M = 0.3, the flow separated at about 14 deg. angle of attack for the NACA 0012 profile but could be kept attached up to an angle of about 18 deg by changing the nose curvature. No significant hysteresis effects were observed; the flow could be made to reattach from its separated state at high angles by changing the leading edge curvature. Interestingly, the flow over a nearly semicircular nosed airfoil was separated even at low angles.

  14. Interior Noise Reduction by Adaptive Feedback Vibration Control

    NASA Technical Reports Server (NTRS)

    Lim, Tae W.

    1998-01-01

    The objective of this project is to investigate the possible use of adaptive digital filtering techniques in simultaneous, multiple-mode identification of the modal parameters of a vibrating structure in real-time. It is intended that the results obtained from this project will be used for state estimation needed in adaptive structural acoustics control. The work done in this project is basically an extension of the work on real-time single mode identification, which was performed successfully using a digital signal processor (DSP) at NASA, Langley. Initially, in this investigation the single mode identification work was duplicated on a different processor, namely the Texas Instruments TMS32OC40 DSP. The system identification results for the single mode case were very good. Then an algorithm for simultaneous two mode identification was developed and tested using analytical simulation. When it successfully performed the expected tasks, it was implemented in real-time on the DSP system to identify the first two modes of vibration of a cantilever aluminum beam. The results of the simultaneous two mode case were good but some problems were identified related to frequency warping and spurious mode identification. The frequency warping problem was found to be due to the bilinear transformation used in the algorithm to convert the system transfer function from the continuous-time domain to the discrete-time domain. An alternative approach was developed to rectify the problem. The spurious mode identification problem was found to be associated with high sampling rates. Noise in the signal is suspected to be the cause of this problem but further investigation will be needed to clarify the cause. For simultaneous identification of more than two modes, it was found that theoretically an adaptive digital filter can be designed to identify the required number of modes, but the algebra became very complex which made it impossible to implement in the DSP system used in this study

  15. Prevalence of Multiply Controlled Problem Behavior

    ERIC Educational Resources Information Center

    Beavers, Gracie A.; Iwata, Brian A.

    2011-01-01

    We examined articles in the "Journal of Applied Behavior Analysis" in which results of functional analyses indicated that problem behavior was maintained by multiple sources of reinforcement. Data for 88 (16.9%) of 521 subjects reported in 168 studies met the criteria for multiple control. Data for 11 subjects (2.1%) involved a single response…

  16. Adaptive finite element methods for two-dimensional problems in computational fracture mechanics

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Bass, J. M.; Spradley, L. W.

    1994-01-01

    Some recent results obtained using solution-adaptive finite element methods in two-dimensional problems in linear elastic fracture mechanics are presented. The focus is on the basic issue of adaptive finite element methods for validating the new methodology by computing demonstration problems and comparing the stress intensity factors to analytical results.

  17. Associations between Conceptual Reasoning, Problem Solving, and Adaptive Ability in High-Functioning Autism

    ERIC Educational Resources Information Center

    Williams, Diane L.; Mazefsky, Carla A.; Walker, Jon D.; Minshew, Nancy J.; Goldstein, Gerald

    2014-01-01

    Abstract thinking is generally highly correlated with problem-solving ability which is predictive of better adaptive functioning. Measures of conceptual reasoning, an ecologically-valid laboratory measure of problem-solving, and a report measure of adaptive functioning in the natural environment, were administered to children and adults with and…

  18. Higher-Order Thinking Development through Adaptive Problem-Based Learning

    ERIC Educational Resources Information Center

    Raiyn, Jamal; Tilchin, Oleg

    2015-01-01

    In this paper we propose an approach to organizing Adaptive Problem-Based Learning (PBL) leading to the development of Higher-Order Thinking (HOT) skills and collaborative skills in students. Adaptability of PBL is expressed by changes in fixed instructor assessments caused by the dynamics of developing HOT skills needed for problem solving,…

  19. Adaptive bioinspired landmark identification for navigation control

    NASA Astrophysics Data System (ADS)

    Arena, Paolo; Cruse, Holk; Fortuna, Luigi; Lombardo, Davide; Patané, Luca; Rapisarda, Rosa

    2007-05-01

    In this paper a new methodology for landmark navigation will be introduced. Either for animals or for artificial agents, the whole problem of landmark navigation can be divided into two parts: first, the agent has to recognize, from the dynamic environment, space invariant objects which can be considered as suitable landmarks for driving the motion towards a goal position; second, it has to use the information on the landmarks to effectively navigate within the environment. Here, the problem of determining landmarks has been addressed by processing the external information through a spiking network with dynamic synapses plastically tuned by an STDP algorithm. The learning processes establish correlations between the incoming stimuli, allowing the system to extract from the scenario important features which can play the role of landmarks. Once established the landmarks, the agent acquires geometric relationships between them and the goal position. This process defines the parameters of a recurrent neural network (RNN). This in turn drives the agent navigation, filtering the information about landmarks given within an absolute reference system (e.g the North). When the absolute reference is not available, a safety mechanism acts to control the motion maintaining a correct heading. Simulation results showed the potentiality of the proposed architecture: this is able to drive an agent towards the desired position in presence of stimuli subject to noise and also in the case of partially obscured landmarks.

  20. Adaptive Quality of Transmission Control in Elastic Optical Network

    NASA Astrophysics Data System (ADS)

    Cai, Xinran

    Optical fiber communication is becoming increasingly important due to the burgeoning demand in the internet capacity. However, traditional wavelength division multiplexing (WDM) technique fails to address such demand because of its inefficient spectral utilization. As a result, elastic optical networking (EON) has been under extensive investigation recently. Such network allows sub-wavelength and super-wavelength channel accommodation, and mitigates the stranded bandwidth problem in the WDM network. In addition, elastic optical network is also able to dynamically allocate the spectral resources of the network based on channel conditions and impairments, and adaptively control the quality of transmission of a channel. This application requires two aspects to be investigated: an efficient optical performance monitoring scheme and networking control and management algorithms to reconfigure the network in a dynamic fashion. This thesis focuses on the two aspects discussed above about adaptive QoT control. We demonstrated a supervisory channel method for optical signal to noise ratio (OSNR) and chromatic dispersion (CD) monitoring. In addition, our proof-of-principle testbed experiments show successful impairment aware reconfiguration of the network with modulation format switching (MFS) only and MFS combined with lightpath rerouting (LR) for hundred-GHz QPSK superchannels undergoing time-varying OSNR impairment.

  1. A Class of Solvable Impulse Control Problems

    SciTech Connect

    Alvarez, Luis H. R.

    2004-05-15

    We consider a class of stochastic impulse control problems where the controlled process evolves according to a linear, regular, and time homogeneous diffusion. We state a set of easily verifiable sufficient conditions under which the problem is explicitly solvable. We also state an algebraic equation from which the optimal impulse boundary can be determined and, given this threshold, we present the value of the optimal policy interms of the minimal increasing r-excessive mapping for the controlled diffusion. We also consider the comparative static properties of the optimal policy and state a set of typically satisfied conditions under which increased volatility unambiguously increases the value of the optimal policy and expands the continuation region where exercising the irreversible policy is suboptimal. We also illustrate our results explicitly in two models based on geometric Brownian motion.

  2. Sliding mode control of wind-induced vibrations using fuzzy sliding surface and gain adaptation

    NASA Astrophysics Data System (ADS)

    Thenozhi, Suresh; Yu, Wen

    2016-04-01

    Although fuzzy/adaptive sliding mode control can reduce the chattering problem in structural vibration control applications, they require the equivalent control and the upper bounds of the system uncertainties. In this paper, we used fuzzy logic to approximate the standard sliding surface and designed a dead-zone adaptive law for tuning the switching gain of the sliding mode control. The stability of the proposed controller is established using Lyapunov stability theory. A six-storey building prototype equipped with an active mass damper has been used to demonstrate the effectiveness of the proposed controller towards the wind-induced vibrations.

  3. Experimental investigation of adaptive control of a parallel manipulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Antrazi, Sami S.

    1992-01-01

    The implementation of a joint-space adaptive control scheme used to control non-compliant motion of a Stewart Platform-based Manipulator (SPBM) is presented. The SPBM is used in a facility called the Hardware Real-Time Emulator (HRTE) developed at Goddard Space Flight Center to emulate space operations. The SPBM is comprised of two platforms and six linear actuators driven by DC motors, and possesses six degrees of freedom. The report briefly reviews the development of the adaptive control scheme which is composed of proportional-derivative (PD) controllers whose gains are adjusted by an adaptation law driven by the errors between the desired and actual trajectories of the SPBM actuator lengths. The derivation of the adaptation law is based on the concept of model reference adaptive control (MRAC) and Lyapunov direct method under the assumption that SPBM motion is slow as compared to the controller adaptation rate. An experimental study is conducted to evaluate the performance of the adaptive control scheme implemented to control the SPBM to track a vertical and circular paths under step changes in payload. Experimental results show that the adaptive control scheme provides superior tracking capability as compared to fixed-gain controllers.

  4. Adaptive neural control for a class of nonlinearly parametric time-delay systems.

    PubMed

    Ho, Daniel W C; Li, Junmin; Niu, Yugang

    2005-05-01

    In this paper, an adaptive neural controller for a class of time-delay nonlinear systems with unknown nonlinearities is proposed. Based on a wavelet neural network (WNN) online approximation model, a state feedback adaptive controller is obtained by constructing a novel integral-type Lyapunov-Krasovskii functional, which also efficiently overcomes the controller singularity problem. It is shown that the proposed method guarantees the semiglobal boundedness of all signals in the adaptive closed-loop systems. An example is provided to illustrate the application of the approach.

  5. Load Balancing Unstructured Adaptive Grids for CFD Problems

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Oliker, Leonid

    1996-01-01

    Mesh adaption is a powerful tool for efficient unstructured-grid computations but causes load imbalance among processors on a parallel machine. A dynamic load balancing method is presented that balances the workload across all processors with a global view. After each parallel tetrahedral mesh adaption, the method first determines if the new mesh is sufficiently unbalanced to warrant a repartitioning. If so, the adapted mesh is repartitioned, with new partitions assigned to processors so that the redistribution cost is minimized. The new partitions are accepted only if the remapping cost is compensated by the improved load balance. Results indicate that this strategy is effective for large-scale scientific computations on distributed-memory multiprocessors.

  6. An adaptive identification and control scheme for large space structures

    NASA Technical Reports Server (NTRS)

    Carroll, J. V.

    1988-01-01

    A unified identification and control scheme capable of achieving space at form performance objectives under nominal or failure conditions is described. Preliminary results are also presented, showing that the methodology offers much promise for effective robust control of large space structures. The control method is a multivariable, adaptive, output predictive controller called Model Predictive Control (MPC). MPC uses a state space model and input reference trajectories of set or tracking points to adaptively generate optimum commands. For a fixed model, MPC processes commands with great efficiency, and is also highly robust. A key feature of MPC is its ability to control either nonminimum phase or open loop unstable systems. As an output controller, MPC does not explicitly require full state feedback, as do most multivariable (e.g., Linear Quadratic) methods. Its features are very useful in LSS operations, as they allow non-collocated actuators and sensors. The identification scheme is based on canonical variate analysis (CVA) of input and output data. The CVA technique is particularly suited for the measurement and identification of structural dynamic processes - that is, unsteady transient or dynamically interacting processes such as between aerodynamics and structural deformation - from short, noisy data. CVA is structured so that the identification can be done in real or near real time, using computationally stable algorithms. Modeling LSS dynamics in 1-g laboratories has always been a major impediment not only to understanding their behavior in orbit, but also to controlling it. In cases where the theoretical model is not confirmed, current methods provide few clues concerning additional dynamical relationships that are not included in the theoretical models. CVA needs no a priori model data, or structure; all statistically significant dynamical states are determined using natural, entropy-based methods. Heretofore, a major limitation in applying adaptive

  7. Adapting End Host Congestion Control for Mobility

    NASA Technical Reports Server (NTRS)

    Eddy, Wesley M.; Swami, Yogesh P.

    2005-01-01

    Network layer mobility allows transport protocols to maintain connection state, despite changes in a node's physical location and point of network connectivity. However, some congestion-controlled transport protocols are not designed to deal with these rapid and potentially significant path changes. In this paper we demonstrate several distinct problems that mobility-induced path changes can create for TCP performance. Our premise is that mobility events indicate path changes that require re-initialization of congestion control state at both connection end points. We present the application of this idea to TCP in the form of a simple solution (the Lightweight Mobility Detection and Response algorithm, that has been proposed in the IETF), and examine its effectiveness. In general, we find that the deficiencies presented are both relatively easily and painlessly fixed using this solution. We also find that this solution has the counter-intuitive property of being both more friendly to competing traffic, and simultaneously more aggressive in utilizing newly available capacity than unmodified TCP.

  8. Improve Problem Solving Skills through Adapting Programming Tools

    NASA Technical Reports Server (NTRS)

    Shaykhian, Linda H.; Shaykhian, Gholam Ali

    2007-01-01

    There are numerous ways for engineers and students to become better problem-solvers. The use of command line and visual programming tools can help to model a problem and formulate a solution through visualization. The analysis of problem attributes and constraints provide insight into the scope and complexity of the problem. The visualization aspect of the problem-solving approach tends to make students and engineers more systematic in their thought process and help them catch errors before proceeding too far in the wrong direction. The problem-solver identifies and defines important terms, variables, rules, and procedures required for solving a problem. Every step required to construct the problem solution can be defined in program commands that produce intermediate output. This paper advocates improved problem solving skills through using a programming tool. MatLab created by MathWorks, is an interactive numerical computing environment and programming language. It is a matrix-based system that easily lends itself to matrix manipulation, and plotting of functions and data. MatLab can be used as an interactive command line or a sequence of commands that can be saved in a file as a script or named functions. Prior programming experience is not required to use MatLab commands. The GNU Octave, part of the GNU project, a free computer program for performing numerical computations, is comparable to MatLab. MatLab visual and command programming are presented here.

  9. Direct Adaptive Control of Systems with Actuator Failures: State of the Art and Continuing Challenges

    NASA Technical Reports Server (NTRS)

    Tao, Gang; Joshi, Suresh M.

    2008-01-01

    In this paper, the problem of controlling systems with failures and faults is introduced, and an overview of recent work on direct adaptive control for compensation of uncertain actuator failures is presented. Actuator failures may be characterized by some unknown system inputs being stuck at some unknown (fixed or varying) values at unknown time instants, that cannot be influenced by the control signals. The key task of adaptive compensation is to design the control signals in such a manner that the remaining actuators can automatically and seamlessly take over for the failed ones, and achieve desired stability and asymptotic tracking. A certain degree of redundancy is necessary to accomplish failure compensation. The objective of adaptive control design is to effectively use the available actuation redundancy to handle failures without the knowledge of the failure patterns, parameters, and time of occurrence. This is a challenging problem because failures introduce large uncertainties in the dynamic structure of the system, in addition to parametric uncertainties and unknown disturbances. The paper addresses some theoretical issues in adaptive actuator failure compensation: actuator failure modeling, redundant actuation requirements, plant-model matching, error system dynamics, adaptation laws, and stability, tracking, and performance analysis. Adaptive control designs can be shown to effectively handle uncertain actuator failures without explicit failure detection. Some open technical challenges and research problems in this important research area are discussed.

  10. Problems of substance abuse: exploitation and control.

    PubMed

    Ray, L

    1985-01-01

    The notion of substance abuse is highly problematic. There is considerable disagreement amongst 'experts' as to the relative hazards and addictive properties of both legally and illegally available substances. There are also widely divergent sub-cultural attitudes to the harmfulness or benefit of drug use. One can assume no social consensus as to the nature of the contemporary 'drug problem', nor about the most appropriate means of dealing with it. There is, however, considerable evidence that criminalization of drug use, and harsh penalties against users and suppliers, are ineffective and counter-productive. Other models of control need to be considered, and in particular the merits and de-merits of the medicalization of drug abuse require examination. However, this is only one aspect of the problem. On the other side are the national and international corporations and syndicates, both legitimate and criminal, that earn vast profits from trade in toxic substances. Tobacco is legally available in every country in the world, and the industry is rarely subject to strict control. Thus the issue of substance abuse and control should be seen in a global context, in which account is taken of both legitimate and underworld operations. In attempts to control international trade in toxic substances, the limited success and the problems of already existing legal controls should be acknowledged. Local awareness and regulation of trade in substances is essential, but not sufficient. Amongst other avenues to be explored is the possibility of diverting presently illicitly grown narcotics into indigenous pharmaceutical industries in the Third World. Some problems with this strategy are noted.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Problems of the Social Adaptation of Foreign College Students

    ERIC Educational Resources Information Center

    Dorozhkin, Iu. N.; Mazitova, L. T.

    2008-01-01

    In today's world, interstate education contacts are increasing at an intensive rate, and a growing number of young people would like to acquire an education outside of their own country. To a large extent, the success of foreign college students' studies and the level of their professional training depend on their sociocultural adaptation. It is…

  12. Adaptive robust control of the EBR-II reactor

    SciTech Connect

    Power, M.A.; Edwards, R.M.

    1996-05-01

    Simulation results are presented for an adaptive H{sub {infinity}} controller, a fixed H{sub {infinity}} controller, and a classical controller. The controllers are applied to a simulation of the Experimental Breeder Reactor II primary system. The controllers are tested for the best robustness and performance by step-changing the demanded reactor power and by varying the combined uncertainty in initial reactor power and control rod worth. The adaptive H{sub {infinity}} controller shows the fastest settling time, fastest rise time and smallest peak overshoot when compared to the fixed H{sub {infinity}} and classical controllers. This makes for a superior and more robust controller.

  13. Monitoring the Performance of a Neuro-Adaptive Controller

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Gupta, Pramod

    2004-01-01

    Traditional control has proven to be ineffective to deal with catastrophic changes or slow degradation of complex, highly nonlinear systems like aircraft or spacecraft, robotics, or flexible manufacturing systems. Control systems which can adapt toward changes in the plant have been proposed as they offer many advantages (e.g., better performance, controllability of aircraft despite of a damaged wing). In the last few years, use of neural networks in adaptive controllers (neuro-adaptive control) has been studied actively. Neural networks of various architectures have been used successfully for online learning adaptive controllers. In such a typical control architecture, the neural network receives as an input the current deviation between desired and actual plant behavior and, by on-line training, tries to minimize this discrepancy (e.g.; by producing a control augmentation signal). Even though neuro-adaptive controllers offer many advantages, they have not been used in mission- or safety-critical applications, because performance and safety guarantees cannot b e provided at development time-a major prerequisite for safety certification (e.g., by the FAA or NASA). Verification and Validation (V&V) of an adaptive controller requires the development of new analysis techniques which can demonstrate that the control system behaves safely under all operating conditions. Because of the requirement to adapt toward unforeseen changes during operation, i.e., in real time, design-time V&V is not sufficient.

  14. On the use of adaptive moving grid methods in combustion problems

    SciTech Connect

    Hyman, J.M.; Larrouturou, B.

    1986-01-01

    The investigators have presented the reasons and advantages of adaptively moving the mesh points for the solution of time-dependent PDEs (partial differential equations) systems developing sharp gradients, and more specifically for combustion problems. Several available adaptive dynamic rezone methods have been briefly reviewed, and the effectiveness of these algorithms for combustion problems has been illustrated by the numerical solution of a simple flame propagation problem. 29 refs., 7 figs.

  15. Control problems in very large accelerators

    NASA Astrophysics Data System (ADS)

    Crowley-Milling, M. C.

    1985-06-01

    There is no fundamental difference of kind in the control requirements between a small and a large accelerator since they are built of the same types of components, which individually have similar control inputs and outputs. The main difference is one of scale; the large machine has many more components of each type, and the distances involved are much greater. Both of these factors must be taken into account in determining the optimum way of carrying out the control functions. Small machines should use standard equipment and software for control as much as possible, as special developments for small quantities cannot normally be justified if all costs are taken into account. On the other hand, the very great number of devices needed for a large machine means that, if special developments can result in simplification, they may make possible an appreciable reduction in the control equipment costs. It is the purpose of this report to look at the special control problems of large accelerators, which the author shall arbitarily define as those with a length of circumference in excess of 10 km, and point out where special developments, or the adoption of developments from outside the accelerator control field, can be of assistance in minimizing the cost of the control system. Most of the first part of this report was presented as a paper to the 1985 Particle Accelerator Conference. It has now been extended to include a discussion on the special case of the controls for the SSC.

  16. Closing the Certification Gaps in Adaptive Flight Control Software

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.

    2008-01-01

    Over the last five decades, extensive research has been performed to design and develop adaptive control systems for aerospace systems and other applications where the capability to change controller behavior at different operating conditions is highly desirable. Although adaptive flight control has been partially implemented through the use of gain-scheduled control, truly adaptive control systems using learning algorithms and on-line system identification methods have not seen commercial deployment. The reason is that the certification process for adaptive flight control software for use in national air space has not yet been decided. The purpose of this paper is to examine the gaps between the state-of-the-art methodologies used to certify conventional (i.e., non-adaptive) flight control system software and what will likely to be needed to satisfy FAA airworthiness requirements. These gaps include the lack of a certification plan or process guide, the need to develop verification and validation tools and methodologies to analyze adaptive controller stability and convergence, as well as the development of metrics to evaluate adaptive controller performance at off-nominal flight conditions. This paper presents the major certification gap areas, a description of the current state of the verification methodologies, and what further research efforts will likely be needed to close the gaps remaining in current certification practices. It is envisioned that closing the gap will require certain advances in simulation methods, comprehensive methods to determine learning algorithm stability and convergence rates, the development of performance metrics for adaptive controllers, the application of formal software assurance methods, the application of on-line software monitoring tools for adaptive controller health assessment, and the development of a certification case for adaptive system safety of flight.

  17. Adaptive jitter control for tracker line of sight stabilization

    NASA Astrophysics Data System (ADS)

    Gibson, Steve; Tsao, Tsu-Chin; Herrick, Dan; Beairsto, Christopher; Grimes, Ronnie; Harper, Todd; Radtke, Jeff; Roybal, Benito; Spray, Jay; Squires, Stephen; Tellez, Dave; Thurston, Michael

    2010-08-01

    A field test experiment on a range tracking telescope at the U. S. Army's White Sands Missile Range is exploring the use of recently developed adaptive control methods to minimize track loop jitter. Gimbal and platform vibration are the main sources of jitter in the experiments, although atmospheric turbulence also is a factor. In initial experiments, the adaptive controller reduced the track loop jitter significantly in frequency ranges beyond the bandwidth of the existing track loop. This paper presents some of the initial experimental results along with analysis of the performance of the adaptive control loop. The paper also describes the adaptive control scheme, its implementation on the WSMR telescope and the system identification required for adaptive control.

  18. Adaptive sliding mode control for a class of chaotic systems

    SciTech Connect

    Farid, R.; Ibrahim, A.; Zalam, B.

    2015-03-30

    Chaos control here means to design a controller that is able to mitigating or eliminating the chaos behavior of nonlinear systems that experiencing such phenomenon. In this paper, an Adaptive Sliding Mode Controller (ASMC) is presented based on Lyapunov stability theory. The well known Chua's circuit is chosen to be our case study in this paper. The study shows the effectiveness of the proposed adaptive sliding mode controller.

  19. Systems and Methods for Derivative-Free Adaptive Control

    NASA Technical Reports Server (NTRS)

    Yucelen, Tansel (Inventor); Kim, Kilsoo (Inventor); Calise, Anthony J. (Inventor)

    2015-01-01

    An adaptive control system is disclosed. The control system can control uncertain dynamic systems. The control system can employ one or more derivative-free adaptive control architectures. The control system can further employ one or more derivative-free weight update laws. The derivative-free weight update laws can comprise a time-varying estimate of an ideal vector of weights. The control system of the present invention can therefore quickly stabilize systems that undergo sudden changes in dynamics, caused by, for example, sudden changes in weight. Embodiments of the present invention can also provide a less complex control system than existing adaptive control systems. The control system can control aircraft and other dynamic systems, such as, for example, those with non-minimum phase dynamics.

  20. Dynamic modeling and adaptive control for space stations

    NASA Technical Reports Server (NTRS)

    Ih, C. H. C.; Wang, S. J.

    1985-01-01

    Of all large space structural systems, space stations present a unique challenge and requirement to advanced control technology. Their operations require control system stability over an extremely broad range of parameter changes and high level of disturbances. During shuttle docking the system mass may suddenly increase by more than 100% and during station assembly the mass may vary even more drastically. These coupled with the inherent dynamic model uncertainties associated with large space structural systems require highly sophisticated control systems that can grow as the stations evolve and cope with the uncertainties and time-varying elements to maintain the stability and pointing of the space stations. The aspects of space station operational properties are first examined, including configurations, dynamic models, shuttle docking contact dynamics, solar panel interaction, and load reduction to yield a set of system models and conditions. A model reference adaptive control algorithm along with the inner-loop plant augmentation design for controlling the space stations under severe operational conditions of shuttle docking, excessive model parameter errors, and model truncation are then investigated. The instability problem caused by the zero-frequency rigid body modes and a proposed solution using plant augmentation are addressed. Two sets of sufficient conditions which guarantee the globablly asymptotic stability for the space station systems are obtained.

  1. Dynamic Reconstruction and Multivariable Control for Force-Actuated, Thin Facesheet Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Grocott, Simon C. O.; Miller, David W.

    1997-01-01

    The Multiple Mirror Telescope (MMT) under development at the University of Arizona takes a new approach in adaptive optics placing a large (0.65 m) force-actuated, thin facesheet deformable mirror at the secondary of an astronomical telescope, thus reducing the effects of emissivity which are important in IR astronomy. However, The large size of the mirror and low stiffness actuators used drive the natural frequencies of the mirror down into the bandwidth of the atmospheric distortion. Conventional adaptive optics takes a quasi-static approach to controlling the, deformable mirror. However, flexibility within the control bandwidth calls for a new approach to adaptive optics. Dynamic influence functions are used to characterize the influence of each actuator on the surface of the deformable mirror. A linearized model of atmospheric distortion is combined with dynamic influence functions to produce a dynamic reconstructor. This dynamic reconstructor is recognized as an optimal control problem. Solving the optimal control problem for a system with hundreds of actuators and sensors is formidable. Exploiting the circularly symmetric geometry of the mirror, and a suitable model of atmospheric distortion, the control problem is divided into a number of smaller decoupled control problems using circulant matrix theory. A hierarchic control scheme which seeks to emulate the quasi-static control approach that is generally used in adaptive optics is compared to the proposed dynamic reconstruction technique. Although dynamic reconstruction requires somewhat more computational power to implement, it achieves better performance with less power usage, and is less sensitive than the hierarchic technique.

  2. Multi-level adaptive finite element methods. 1: Variation problems

    NASA Technical Reports Server (NTRS)

    Brandt, A.

    1979-01-01

    A general numerical strategy for solving partial differential equations and other functional problems by cycling between coarser and finer levels of discretization is described. Optimal discretization schemes are provided together with very fast general solvers. It is described in terms of finite element discretizations of general nonlinear minimization problems. The basic processes (relaxation sweeps, fine-grid-to-coarse-grid transfers of residuals, coarse-to-fine interpolations of corrections) are directly and naturally determined by the objective functional and the sequence of approximation spaces. The natural processes, however, are not always optimal. Concrete examples are given and some new techniques are reviewed. Including the local truncation extrapolation and a multilevel procedure for inexpensively solving chains of many boundary value problems, such as those arising in the solution of time-dependent problems.

  3. A new approach to adaptive control of manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1987-01-01

    An approach in which the manipulator inverse is used as a feedforward controller is employed in the adaptive control of manipulators in order to achieve trajectory tracking by the joint angles. The desired trajectory is applied as an input to the feedforward controller, and the controller output is used as the driving torque for the manipulator. An adaptive algorithm obtained from MRAC theory is used to update the controller gains to cope with variations in the manipulator inverse due to changes of the operating point. An adaptive feedback controller and an auxiliary signal enhance closed-loop stability and achieve faster adaptation. Simulation results demonstrate the effectiveness of the proposed control scheme for different reference trajectories, and despite large variations in the payload.

  4. Some problems of human adaptation and ecology under the aspect of general pathology

    NASA Technical Reports Server (NTRS)

    Kaznacheyev, V. P.

    1980-01-01

    The main problems of human adaptation at the level of the body and the population in connection with the features of current morbidity of the population and certain demographic processes are analyzed. The concepts of health and adaptation of the individual and human populations are determined. The importance of the anthropo-ecological approach to the investigation of the adaptation process of human populations is demonstrated. Certain features of the etiopathogenesis of diseases are considered in connection with the population-ecological regularities of human adaptation. The importance of research on general pathology aspects of adaptation and the ecology of man for planning, and organization of public health protection is discussed.

  5. Adaptive control with variable dead-zone nonlinearities

    NASA Technical Reports Server (NTRS)

    Orlicki, D.; Valavani, L.; Athans, M.; Stein, G.

    1984-01-01

    It has been found that fixed error dead-zones as defined in the existing literature result in serious degradation of performance, due to the conservativeness which characterizes the determination of their width. In the present paper, variable width dead-zones are derived for the adaptive control of plants with unmodeled dynamics. The derivation makes use of information available about the unmodeled dynamics both a priori as well as during the adaptation process, so as to stabilize the adaptive loop and at the same time overcome the conservativeness and performance limitations of fixed-dead zone adaptive or fixed gain controllers.

  6. Adaptive, Distributed Control of Constrained Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Bieniawski, Stefan; Wolpert, David H.

    2004-01-01

    Product Distribution (PO) theory was recently developed as a broad framework for analyzing and optimizing distributed systems. Here we demonstrate its use for adaptive distributed control of Multi-Agent Systems (MASS), i.e., for distributed stochastic optimization using MAS s. First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (Probability dist&&on on the joint state of the agents. When the game in question is a team game with constraints, that equilibrium optimizes the expected value of the team game utility, subject to those constraints. One common way to find that equilibrium is to have each agent run a Reinforcement Learning (E) algorithm. PD theory reveals this to be a particular type of search algorithm for minimizing the Lagrangian. Typically that algorithm i s quite inefficient. A more principled alternative is to use a variant of Newton's method to minimize the Lagrangian. Here we compare this alternative to RL-based search in three sets of computer experiments. These are the N Queen s problem and bin-packing problem from the optimization literature, and the Bar problem from the distributed RL literature. Our results confirm that the PD-theory-based approach outperforms the RL-based scheme in all three domains.

  7. Projection Operator: A Step Towards Certification of Adaptive Controllers

    NASA Technical Reports Server (NTRS)

    Larchev, Gregory V.; Campbell, Stefan F.; Kaneshige, John T.

    2010-01-01

    One of the major barriers to wider use of adaptive controllers in commercial aviation is the lack of appropriate certification procedures. In order to be certified by the Federal Aviation Administration (FAA), an aircraft controller is expected to meet a set of guidelines on functionality and reliability while not negatively impacting other systems or safety of aircraft operations. Due to their inherent time-variant and non-linear behavior, adaptive controllers cannot be certified via the metrics used for linear conventional controllers, such as gain and phase margin. Projection Operator is a robustness augmentation technique that bounds the output of a non-linear adaptive controller while conforming to the Lyapunov stability rules. It can also be used to limit the control authority of the adaptive component so that the said control authority can be arbitrarily close to that of a linear controller. In this paper we will present the results of applying the Projection Operator to a Model-Reference Adaptive Controller (MRAC), varying the amount of control authority, and comparing controller s performance and stability characteristics with those of a linear controller. We will also show how adjusting Projection Operator parameters can make it easier for the controller to satisfy the certification guidelines by enabling a tradeoff between controller s performance and robustness.

  8. Hormesis and adaptive cellular control systems

    EPA Science Inventory

    Hormetic dose response occurs for many endpoints associated with exposures of biological organisms to environmental stressors. Cell-based U- or inverted U-shaped responses may derive from common processes involved in activation of adaptive responses required to protect cells from...

  9. An adaptive P300-based control system

    NASA Astrophysics Data System (ADS)

    Jin, Jing; Allison, Brendan Z.; Sellers, Eric W.; Brunner, Clemens; Horki, Petar; Wang, Xingyu; Neuper, Christa

    2011-06-01

    An adaptive P300 brain-computer interface (BCI) using a 12 × 7 matrix explored new paradigms to improve bit rate and accuracy. During online use, the system adaptively selects the number of flashes to average. Five different flash patterns were tested. The 19-flash paradigm represents the typical row/column presentation (i.e. 12 columns and 7 rows). The 9- and 14-flash A and B paradigms present all items of the 12 × 7 matrix three times using either 9 or 14 flashes (instead of 19), decreasing the amount of time to present stimuli. Compared to 9-flash A, 9-flash B decreased the likelihood that neighboring items would flash when the target was not flashing, thereby reducing the interference from items adjacent to targets. 14-flash A also reduced the adjacent item interference and 14-flash B additionally eliminated successive (double) flashes of the same item. Results showed that the accuracy and bit rate of the adaptive system were higher than those of the non-adaptive system. In addition, 9- and 14-flash B produced significantly higher performance than their respective A conditions. The results also show the trend that the 14-flash B paradigm was better than the 19-flash pattern for naive users.

  10. Divided Countries, Divided Mind 1: Psycho-Social Issues in Adaptation Problems of North Korean Defectors

    PubMed Central

    2008-01-01

    A review of studies on the adaptation problems of North Korean defectors in South Korean society and studies of people's adaptation to political and cultural changes in other countries suggests that similar adaptation problems may occur in the process of and after unification. Defectors have various adaptation problems and some of them have psychiatric disorders such as depression and post-traumatic stress disorder (PTSD). The reasons for this were revealed to be the difference in the culture and personality between South and North Korea, which have developed for the last 60 years without any communication with each other, in spite of their common racial and cultural heritage. Economic factors including the lack of skills and knowledge for working at industrialized and competitive society like South Korean society, also aggravate the severity of such adaptation problems. Research on defectors' adaptation problems and on the differences in the culture and mentality between North and South Korea can provide useful information on what kinds of problems may arise during the process of and after unification and what should be done to achieve mutual adaptation and harmonious and peaceful unification. PMID:20046402

  11. [Effect of very early kangaroo care on extrauterine temperature adaptation in newborn infants with hypothermia problems].

    PubMed

    Huang, Ya-Yi; Huang, Ching-Yi; Lin, Shiu-Mei; Wu, Shu-Chuan

    2006-08-01

    Increased morbidity and mortality has been associated with neonates admitted with body temperatures below 36 degrees C. We employed an experimental design in a randomized control trial to compare the effectiveness of using early kangaroo care (KC) for extrauterine temperature adaptation against that of using radiant warmers. Trial subjects included 78 consecutive cesarean newborn infants with hypothermia problems. The KC group received skin-to-skin contact with their mothers in the post-operative room, while infants in the control group received routine care under radiant warmers. The mean temperature of the KC group was slightly higher than that of the control group (36.29 degrees C vs. 36.22 degrees C, p = .044). After four hours, 97.43% of KC group infants had reached normal body temperatures, compared with 82.05% in the radiant warmer group. Results demonstrate the positive effects of KC for extrauterine temperature adaptation in hypothermia infants. In the course of evidence-based practice, KC could be incorporated into the standard care regimen in order to improve hypothermia care. PMID:16874601

  12. Frequency domain synthesis of optimal inputs for adaptive identification and control

    NASA Technical Reports Server (NTRS)

    Fu, Li-Chen; Sastry, Shankar

    1987-01-01

    The input design problem of selecting appropriate inputs for use in SISO adaptive identification and model reference adaptive control algorithms is considered. Averaging theory is used to characterize the optimal inputs in the frequency domain. The design problem is formulated as an optimization problem which maximizes the smallest eigenvalue of the average information matrix over power constrained signals, and the global optimal solution is obtained using a convergent numerical algorithm. A bound on the frequency search range required in the design algorithm has been determined in terms of the desired performance.

  13. Direct Adaptive Control of Utility-Scale Wind Turbine for Speed Regulation

    SciTech Connect

    Frost, S. A.; Balas, M. J.; Wright, A. D.

    2009-01-01

    The accurate modeling of wind turbines is an extremely challenging problem due to the tremendous complexity of the machines and the turbulent and unpredictable conditions in which they operate. Adaptive control techniques are well suited to nonlinear applications, such as wind turbines, which are difficult to accurately model and which have effects from poorly known operating environments. In this paper, we extended the direct model reference adaptive control (DMRAC) approach to track a reference point and to reject persistent disturbances. This approach was then used to design an adaptive collective pitch controller for a high-fidelity simulation of a variable-speed horizontal axis wind turbine. The objective of the adaptive pitch controller was to regulate generator speed in Region 3 and to reject step disturbances. The control objective was accomplished by collectively pitching the turbine blades. The turbine simulation models the controls advanced research turbine (CART) of the National Renewable Energy Laboratory in Golden, Colorado. The CART is a utility-scale wind turbine that has a well-developed and extensively verified simulator. This novel application of adaptive control was compared in simulations with a classical proportional integrator (PI) collective pitch controller. In the simulations, the adaptive pitch controller showed improved speed regulation in Region 3 when compared with the PI pitch controller.

  14. Two-Level Adaptive Algebraic Multigrid for a Sequence of Problems with Slowly Varying Random Coefficients [Adaptive Algebraic Multigrid for Sequence of Problems with Slowly Varying Random Coefficients

    SciTech Connect

    Kalchev, D.; Ketelsen, C.; Vassilevski, P. S.

    2013-11-07

    Our paper proposes an adaptive strategy for reusing a previously constructed coarse space by algebraic multigrid to construct a two-level solver for a problem with nearby characteristics. Furthermore, a main target application is the solution of the linear problems that appear throughout a sequence of Markov chain Monte Carlo simulations of subsurface flow with uncertain permeability field. We demonstrate the efficacy of the method with extensive set of numerical experiments.

  15. Adaptive torque control of variable speed wind turbines

    NASA Astrophysics Data System (ADS)

    Johnson, Kathryn E.

    Wind is a clean, renewable resource that has become more popular in recent years due to numerous advances in technology and public awareness. Wind energy is quickly becoming cost competitive with fossil fuels, but further reductions in the cost of wind energy are necessary before it can grow into a fully mature technology. One reason for higher-than-necessary cost of the wind energy is uncertainty in the aerodynamic parameters, which leads to inefficient controllers. This thesis explores an adaptive control technique designed to reduce the negative effects of this uncertainty. The primary focus of this work is a new adaptive controller that is designed to resemble the standard non-adaptive controller used by the wind industry. The standard controller was developed for variable speed wind turbines operating below rated power. The new adaptive controller uses a simple, highly intuitive gain adaptation law intended to seek out the optimal gain for maximizing the turbine's energy capture. It is designed to work even in real, time-varying winds. The adaptive controller has been tested both in simulation and on a real turbine, with numerous experimental results provided in this work. Simulations have considered the effects of erroneous wind measurements and time-varying turbine parameters, both of which are concerns on the real turbine. The adaptive controller has been found to operate as desired under realistic operating conditions, and energy capture has increased on the real turbine as a result. Theoretical analyses of the standard and adaptive controllers were performed, as well, providing additional insight into the system. Finally, a few extensions were made with the intent of making the adaptive control idea even more appealing in the commercial wind turbine market.

  16. Multiresolution strategies for the numerical solution of optimal control problems

    NASA Astrophysics Data System (ADS)

    Jain, Sachin

    There exist many numerical techniques for solving optimal control problems but less work has been done in the field of making these algorithms run faster and more robustly. The main motivation of this work is to solve optimal control problems accurately in a fast and efficient way. Optimal control problems are often characterized by discontinuities or switchings in the control variables. One way of accurately capturing the irregularities in the solution is to use a high resolution (dense) uniform grid. This requires a large amount of computational resources both in terms of CPU time and memory. Hence, in order to accurately capture any irregularities in the solution using a few computational resources, one can refine the mesh locally in the region close to an irregularity instead of refining the mesh uniformly over the whole domain. Therefore, a novel multiresolution scheme for data compression has been designed which is shown to outperform similar data compression schemes. Specifically, we have shown that the proposed approach results in fewer grid points in the grid compared to a common multiresolution data compression scheme. The validity of the proposed mesh refinement algorithm has been verified by solving several challenging initial-boundary value problems for evolution equations in 1D. The examples have demonstrated the stability and robustness of the proposed algorithm. The algorithm adapted dynamically to any existing or emerging irregularities in the solution by automatically allocating more grid points to the region where the solution exhibited sharp features and fewer points to the region where the solution was smooth. Thereby, the computational time and memory usage has been reduced significantly, while maintaining an accuracy equivalent to the one obtained using a fine uniform mesh. Next, a direct multiresolution-based approach for solving trajectory optimization problems is developed. The original optimal control problem is transcribed into a

  17. The Classroom Adaptation Scale: A Behavior Rating Scale Designed to Screen Primary Grade Children for School Adaptation Problems.

    ERIC Educational Resources Information Center

    Virbickis, Joseph A.

    After a brief historical review of the background and research, the paper focuses on development of a teacher-administered behavior rating scale to screen for school adaptation problems on a large scale basis using as Ss 15 primary grade teachers and their ratings of 315 primary grade children (ages 6-to-10 years) in their classes. A 16-item…

  18. Adaptive Fuzzy Control of a Direct Drive Motor

    NASA Technical Reports Server (NTRS)

    Medina, E.; Kim, Y. T.; Akbaradeh-T., M. -R.

    1997-01-01

    This paper presents a state feedback adaptive control method for position and velocity control of a direct drive motor. The proposed control scheme allows for integrating heuristic knowledge with mathematical knowledge of a system. It performs well even when mathematical model of the system is poorly understood. The controller consists of an adaptive fuzzy controller and a supervisory controller. The supervisory controller requires only knowledge of the upper bound and lower bound of the system parameters. The fuzzy controller is based on fuzzy basis functions and states of the system. The adaptation law is derived based on the Lyapunov function which ensures that the state of the system asymptotically approaches zero. The proposed controller is applied to a direct drive motor with payload and parameter uncertainty, and the effectiveness is verified by simulation results.

  19. Adaptive Fuzzy Control of a Direct Drive Motor: Experimental Aspects

    NASA Technical Reports Server (NTRS)

    Medina, E.; Akbarzadeh-T, M.-R.; Kim, Y. T.

    1998-01-01

    This paper presents a state feedback adaptive control method for position and velocity control of a direct drive motor. The proposed control scheme allows for integrating heuristic knowledge with mathematical knowledge of a system. It performs well even when mathematical model of the system is poorly understood. The controller consists of an adaptive fuzzy controller and a supervisory controller. The supervisory controller requires only knowledge of the upper bound and lower bound of the system parameters. The fuzzy controller is based on fuzzy basis functions and states of the system. The adaptation law is derived based on the Lyapunov function which ensures that the state of the system asymptotically approaches zero. The proposed controller is applied to a direct drive motor with payload and parameter uncertainty, and the effectiveness is experimentally verified. The real-time performance is compared with simulation results.

  20. Adapting the traveling salesman problem to an adiabatic quantum computer

    NASA Astrophysics Data System (ADS)

    Warren, Richard H.

    2013-04-01

    We show how to guide a quantum computer to select an optimal tour for the traveling salesman. This is significant because it opens a rapid solution method for the wide range of applications of the traveling salesman problem, which include vehicle routing, job sequencing and data clustering.

  1. Simple adaptive control system design for a quadrotor with an internal PFC

    NASA Astrophysics Data System (ADS)

    Mizumoto, Ikuro; Nakamura, Takuto; Kumon, Makoto; Takagi, Taro

    2014-12-01

    The paper deals with an adaptive control system design problem for a four rotor helicopter or quadrotor. A simple adaptive control design scheme with a parallel feedforward compensator (PFC) in the internal loop of the considered quadrotor will be proposed based on the backstepping strategy. As is well known, the backstepping control strategy is one of the advanced control strategy for nonlinear systems. However, the control algorithm will become complex if the system has higher order relative degrees. We will show that one can skip some design steps of the backstepping method by introducing a PFC in the inner loop of the considered quadrotor, so that the structure of the obtained controller will be simplified and a high gain based adaptive feedback control system will be designed. The effectiveness of the proposed method will be confirmed through numerical simulations.

  2. Simple adaptive control system design for a quadrotor with an internal PFC

    SciTech Connect

    Mizumoto, Ikuro; Nakamura, Takuto; Kumon, Makoto; Takagi, Taro

    2014-12-10

    The paper deals with an adaptive control system design problem for a four rotor helicopter or quadrotor. A simple adaptive control design scheme with a parallel feedforward compensator (PFC) in the internal loop of the considered quadrotor will be proposed based on the backstepping strategy. As is well known, the backstepping control strategy is one of the advanced control strategy for nonlinear systems. However, the control algorithm will become complex if the system has higher order relative degrees. We will show that one can skip some design steps of the backstepping method by introducing a PFC in the inner loop of the considered quadrotor, so that the structure of the obtained controller will be simplified and a high gain based adaptive feedback control system will be designed. The effectiveness of the proposed method will be confirmed through numerical simulations.

  3. Design of Low Complexity Model Reference Adaptive Controllers

    NASA Technical Reports Server (NTRS)

    Hanson, Curt; Schaefer, Jacob; Johnson, Marcus; Nguyen, Nhan

    2012-01-01

    Flight research experiments have demonstrated that adaptive flight controls can be an effective technology for improving aircraft safety in the event of failures or damage. However, the nonlinear, timevarying nature of adaptive algorithms continues to challenge traditional methods for the verification and validation testing of safety-critical flight control systems. Increasingly complex adaptive control theories and designs are emerging, but only make testing challenges more difficult. A potential first step toward the acceptance of adaptive flight controllers by aircraft manufacturers, operators, and certification authorities is a very simple design that operates as an augmentation to a non-adaptive baseline controller. Three such controllers were developed as part of a National Aeronautics and Space Administration flight research experiment to determine the appropriate level of complexity required to restore acceptable handling qualities to an aircraft that has suffered failures or damage. The controllers consist of the same basic design, but incorporate incrementally-increasing levels of complexity. Derivations of the controllers and their adaptive parameter update laws are presented along with details of the controllers implementations.

  4. Adaptive optimization and control using neural networks

    SciTech Connect

    Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.

    1993-10-22

    Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.

  5. Stochastic time-optimal control problems

    NASA Technical Reports Server (NTRS)

    Zhang, W.; Elliot, D.

    1988-01-01

    Two types of stochastic time-optimal controls in a one-dimensional setting are considered. Multidimensional problems, in the case of complete state information available and the system modeled by stochastic differential equations, are studied under the formulation of minimizing the expected transient-response time. The necessary condition of optimality is the satisfaction for the value function of a parabolic partial differential equation with boundary conditions. The sufficient condition of optimality is also provided, based on Dynkin's formula. Finally, three examples are given.

  6. Direct Adaptive Control Methodologies for Flexible-Joint Space Manipulators with Uncertainties and Modeling Errors

    NASA Astrophysics Data System (ADS)

    Ulrich, Steve

    This work addresses the direct adaptive trajectory tracking control problem associated with lightweight space robotic manipulators that exhibit elastic vibrations in their joints, and which are subject to parametric uncertainties and modeling errors. Unlike existing adaptive control methodologies, the proposed flexible-joint control techniques do not require identification of unknown parameters, or mathematical models of the system to be controlled. The direct adaptive controllers developed in this work are based on the model reference adaptive control approach, and manage modeling errors and parametric uncertainties by time-varying the controller gains using new adaptation mechanisms, thereby reducing the errors between an ideal model and the actual robot system. More specifically, new decentralized adaptation mechanisms derived from the simple adaptive control technique and fuzzy logic control theory are considered in this work. Numerical simulations compare the performance of the adaptive controllers with a nonadaptive and a conventional model-based controller, in the context of 12.6 m xx 12.6 m square trajectory tracking. To validate the robustness of the controllers to modeling errors, a new dynamics formulation that includes several nonlinear effects usually neglected in flexible-joint dynamics models is proposed. Results obtained with the adaptive methodologies demonstrate an increased robustness to both uncertainties in joint stiffness coefficients and dynamics modeling errors, as well as highly improved tracking performance compared with the nonadaptive and model-based strategies. Finally, this work considers the partial state feedback problem related to flexible-joint space robotic manipulators equipped only with sensors that provide noisy measurements of motor positions and velocities. An extended Kalman filter-based estimation strategy is developed to estimate all state variables in real-time. The state estimation filter is combined with an adaptive

  7. Problemes de Developpement et D'Adaptation Sociale. [Problems of Development and Social Adjustment.

    ERIC Educational Resources Information Center

    Tardif, Genevieve; Coutu, Sylvain; Lavigueur, Susanne; Dubeau, Diane

    2002-01-01

    Reviews and summarizes the literature on developmental and behavior problems displayed by young children. Focuses on the definition and classification of problems found in family or child care settings, prevalence of problems as reported by epidemiological studies, and the relative stability of behavior problems from preschool to adolescence.…

  8. Adaptive Instability Suppression Controls in a Liquid-fueled Combustor

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; DeLaat, John C.

    2002-01-01

    An adaptive control algorithm has been developed for the suppression of combustion thermo-acoustic instabilities. This technique involves modulating the fuel flow in the combustor with a control phase that continuously slides within the stable phase region, in a back and forth motion. The control method is referred to as Adaptive Sliding Phasor Averaged Control (ASPAC). The control method is evaluated against a simplified simulation of the combustion instability. Plans are to validate the control approach against a more physics-based model and an actual experimental combustor rig.

  9. Adaptive hybrid optimal quantum control for imprecisely characterized systems.

    PubMed

    Egger, D J; Wilhelm, F K

    2014-06-20

    Optimal quantum control theory carries a huge promise for quantum technology. Its experimental application, however, is often hindered by imprecise knowledge of the input variables, the quantum system's parameters. We show how to overcome this by adaptive hybrid optimal control, using a protocol named Ad-HOC. This protocol combines open- and closed-loop optimal control by first performing a gradient search towards a near-optimal control pulse and then an experimental fidelity estimation with a gradient-free method. For typical settings in solid-state quantum information processing, adaptive hybrid optimal control enhances gate fidelities by an order of magnitude, making optimal control theory applicable and useful. PMID:24996074

  10. Visualizing Geophysical Flow Problems with Adaptive Mesh Refinement

    NASA Astrophysics Data System (ADS)

    Sevre, E. O.; Yuen, D. A.; George, D. L.; Lee, S.

    2011-12-01

    Adaptive Mesh Refinement (AMR) is a technique used in software to decompose a computational domain based on the level of refinement necessary for spatial and temporal calculations. Comparing AMR runs to uniform grids allows for an unbounded gain in computational time. In this paper we will look at techniques for visualizing tsunami simulations that were run with AMR using the GeoClaw [Berger2011-1, Berger2011-2] software. Due to the computational efficiency of AMR we have decided to look into techniques for visualization of AMR data. By having good visualization tools for geoscientists more time can be spent interpreting results and analyzing data. Good visualization tools can be adapted easily to work with a variety of output formats, and the goal of this work is to provide a foundation for geoscientists to work with. In the past year GeoClaw has been used to model the 2011 Tohoku tsunami originating off the coast of Sendai Japan and delivering catastrophic damage to the Fukushima power plant. The aftermath of this single geologic event is still making headlines 4 months after the fact [Fackler2011]. GeoClaw utilizes the shallow water equations to model a variety of flows that range from tsunami to floods to landslides and debris flows [George2011]. With the advanced computations provided by AMR it is important for researchers to visualize and understand ways that are meaningful to both scientists and civilians affected by the potential outcomes of the computation. Special visualization techniques can be used to visualize and look at data generated with AMR. By incorporating these techniques into their software geoscientists will be able to harness powerful computational tools, such as GeoClaw, while also maintaining an informative view of their data.

  11. Smart Rehabilitation Devices: Part II – Adaptive Motion Control

    PubMed Central

    Dong, Shufang; Lu, Ke-Qian; Sun, J. Q.; Rudolph, Katherine

    2008-01-01

    This article presents a study of adaptive motion control of smart versatile rehabilitation devices using MR fluids. The device provides both isometric and isokinetic strength training and is reconfigurable for several human joints. Adaptive controls are developed to regulate resistance force based on the prescription of the therapist. Special consideration has been given to the human–machine interaction in the adaptive control that can modify the behavior of the device to account for strength gains or muscle fatigue of the human subject. PMID:18548131

  12. Development of a digital adaptive optimal linear regulator flight controller

    NASA Technical Reports Server (NTRS)

    Berry, P.; Kaufman, H.

    1975-01-01

    Digital adaptive controllers have been proposed as a means for retaining uniform handling qualities over the flight envelope of a high-performance aircraft. Towards such an implementation, an explicit adaptive controller, which makes direct use of online parameter identification, has been developed and applied to the linearized lateral equations of motion for a typical fighter aircraft. The system is composed of an online weighted least-squares parameter identifier, a Kalman state filter, and a model following control law designed using optimal linear regulator theory. Simulation experiments with realistic measurement noise indicate that the proposed adaptive system has the potential for onboard implementation.

  13. Discrete-time adaptive control of robot manipulators

    NASA Technical Reports Server (NTRS)

    Tarokh, M.

    1989-01-01

    A discrete-time model reference adaptive control scheme is developed for trajectory tracking of robot manipulators. Hyperstability theory is utilized to derive the adaptation laws for the controller gain matrices. It is shown that asymptotic trajectory tracking is achieved despite gross robot parameter variation and uncertainties. The method offers considerable design flexibility and enables the designer to improve the performance of the control system by adjusting free design parameters. The discrete-time adaptation algorithm is extremely simple and is therefore suitable for real-time implementation.

  14. A theoretical stochastic control framework for adapting radiotherapy to hypoxia

    NASA Astrophysics Data System (ADS)

    Saberian, Fatemeh; Ghate, Archis; Kim, Minsun

    2016-10-01

    Hypoxia, that is, insufficient oxygen partial pressure, is a known cause of reduced radiosensitivity in solid tumors, and especially in head-and-neck tumors. It is thus believed to adversely affect the outcome of fractionated radiotherapy. Oxygen partial pressure varies spatially and temporally over the treatment course and exhibits inter-patient and intra-tumor variation. Emerging advances in non-invasive functional imaging offer the future possibility of adapting radiotherapy plans to this uncertain spatiotemporal evolution of hypoxia over the treatment course. We study the potential benefits of such adaptive planning via a theoretical stochastic control framework using computer-simulated evolution of hypoxia on computer-generated test cases in head-and-neck cancer. The exact solution of the resulting control problem is computationally intractable. We develop an approximation algorithm, called certainty equivalent control, that calls for the solution of a sequence of convex programs over the treatment course; dose-volume constraints are handled using a simple constraint generation method. These convex programs are solved using an interior point algorithm with a logarithmic barrier via Newton’s method and backtracking line search. Convexity of various formulations in this paper is guaranteed by a sufficient condition on radiobiological tumor-response parameters. This condition is expected to hold for head-and-neck tumors and for other similarly responding tumors where the linear dose-response parameter is larger than the quadratic dose-response parameter. We perform numerical experiments on four test cases by using a first-order vector autoregressive process with exponential and rational-quadratic covariance functions from the spatiotemporal statistics literature to simulate the evolution of hypoxia. Our results suggest that dynamic planning could lead to a considerable improvement in the number of tumor cells remaining at the end of the treatment course

  15. Disturbance Accommodating Adaptive Control with Application to Wind Turbines

    NASA Technical Reports Server (NTRS)

    Frost, Susan

    2012-01-01

    Adaptive control techniques are well suited to applications that have unknown modeling parameters and poorly known operating conditions. Many physical systems experience external disturbances that are persistent or continually recurring. Flexible structures and systems with compliance between components often form a class of systems that fail to meet standard requirements for adaptive control. For these classes of systems, a residual mode filter can restore the ability of the adaptive controller to perform in a stable manner. New theory will be presented that enables adaptive control with accommodation of persistent disturbances using residual mode filters. After a short introduction to some of the control challenges of large utility-scale wind turbines, this theory will be applied to a high-fidelity simulation of a wind turbine.

  16. Identification and dual adaptive control of a turbojet engine

    NASA Technical Reports Server (NTRS)

    Merrill, W.; Leininger, G.

    1979-01-01

    The objective of this paper is to utilize the design methods of modern control theory to realize a dual-adaptive feedback control unit for a highly nonlinear single spool airbreathing turbojet engine. Using a very detailed and accurate simulation of the nonlinear engine as the data source, linear operating point models of unspecified dimension are identified. Feedback control laws are designed at each operating point for a prespecified set of sampling rates using sampled-data output regulator theory. The control system sampling rate is determined by an adaptive sampling algorithm in correspondence with turbojet engine performance. The result is a dual-adaptive control law that is functionally dependent upon the sampling rate selected and environmental operating conditions. Simulation transients demonstrate the utility of the dual-adaptive design to improve on-board computer utilization while maintaining acceptable levels of engine performance.

  17. Functional error estimators for the adaptive discretization of inverse problems

    NASA Astrophysics Data System (ADS)

    Clason, Christian; Kaltenbacher, Barbara; Wachsmuth, Daniel

    2016-10-01

    So-called functional error estimators provide a valuable tool for reliably estimating the discretization error for a sum of two convex functions. We apply this concept to Tikhonov regularization for the solution of inverse problems for partial differential equations, not only for quadratic Hilbert space regularization terms but also for nonsmooth Banach space penalties. Examples include the measure-space norm (i.e., sparsity regularization) or the indicator function of an {L}∞ ball (i.e., Ivanov regularization). The error estimators can be written in terms of residuals in the optimality system that can then be estimated by conventional techniques, thus leading to explicit estimators. This is illustrated by means of an elliptic inverse source problem with the above-mentioned penalties, and numerical results are provided for the case of sparsity regularization.

  18. Dynamics and Adaptive Control for Stability Recovery of Damaged Aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Krishnakumar, Kalmanje; Kaneshige, John; Nespeca, Pascal

    2006-01-01

    This paper presents a recent study of a damaged generic transport model as part of a NASA research project to investigate adaptive control methods for stability recovery of damaged aircraft operating in off-nominal flight conditions under damage and or failures. Aerodynamic modeling of damage effects is performed using an aerodynamic code to assess changes in the stability and control derivatives of a generic transport aircraft. Certain types of damage such as damage to one of the wings or horizontal stabilizers can cause the aircraft to become asymmetric, thus resulting in a coupling between the longitudinal and lateral motions. Flight dynamics for a general asymmetric aircraft is derived to account for changes in the center of gravity that can compromise the stability of the damaged aircraft. An iterative trim analysis for the translational motion is developed to refine the trim procedure by accounting for the effects of the control surface deflection. A hybrid direct-indirect neural network, adaptive flight control is proposed as an adaptive law for stabilizing the rotational motion of the damaged aircraft. The indirect adaptation is designed to estimate the plant dynamics of the damaged aircraft in conjunction with the direct adaptation that computes the control augmentation. Two approaches are presented 1) an adaptive law derived from the Lyapunov stability theory to ensure that the signals are bounded, and 2) a recursive least-square method for parameter identification. A hardware-in-the-loop simulation is conducted and demonstrates the effectiveness of the direct neural network adaptive flight control in the stability recovery of the damaged aircraft. A preliminary simulation of the hybrid adaptive flight control has been performed and initial data have shown the effectiveness of the proposed hybrid approach. Future work will include further investigations and high-fidelity simulations of the proposed hybrid adaptive Bight control approach.

  19. Algae control problems and practices workshop

    SciTech Connect

    Pryfogle, P.A.; Ghio, G.

    1996-09-01

    Western water resources are continuously facing increased demand from industry and the public. Consequently, many of these resources are required to perform multiple tasks as they cycle through the ecosystem. Many plants and animals depend upon these resources for growth. Algae are one group of plants associated with nutrient and energy cycles in many aquatic ecosystems. Although most freshwater algae are microscopic in size, they are capable of dominating and proliferating to the extent that the value of the water resource for both industrial and domestic needs is compromised. There is a great diversity of aquatic environments and systems in which algae may be found, and there are many varieties of treatment and control techniques available to reduce the impacts of excessive growth. This workshop was organized to exchange information about these control problems and practices.

  20. Adaptive Suction and Blowing for Twin-Tail Buffet Control

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Yang, Zhi

    1999-01-01

    Adaptive active flow control for twin-tail buffet alleviation is investigated. The concept behind this technique is to place control ports on the tail outer and inner surfaces with flow suction or blowing applied through these ports in order to minimize the pressure difference across the tail. The suction or blowing volume flow rate from each port is proportional to the pressure difference across the tail at this location. A parametric study of the effects of the number and location of these ports on the buffet response is carried out. The computational model consists of a sharp-edged delta wing of aspect ratio one and swept-back flexible twin tail with taper ratio of 0.23. This complex multidisciplinary problem is solved sequentially using three sets of equations for the fluid flow, aeroelastic response and grid deformation, using a dynamic multi-block grid structure. The computational model is pitched at 30 deg angle of attack. The freestream Mach number and Reynolds number are 0.3 and 1.25 million, respectively. The model is investigated for the inboard position of the twin tails, which corresponds to a separation distance between the twin tails of 33% of the wing span. Comparison of the time history and power spectral density responses of the tails for various distributions of the control ports are presented and discussed.

  1. Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines

    PubMed Central

    Manoonpong, Poramate; Parlitz, Ulrich; Wörgötter, Florentin

    2013-01-01

    Living creatures, like walking animals, have found fascinating solutions for the problem of locomotion control. Their movements show the impression of elegance including versatile, energy-efficient, and adaptable locomotion. During the last few decades, roboticists have tried to imitate such natural properties with artificial legged locomotion systems by using different approaches including machine learning algorithms, classical engineering control techniques, and biologically-inspired control mechanisms. However, their levels of performance are still far from the natural ones. By contrast, animal locomotion mechanisms seem to largely depend not only on central mechanisms (central pattern generators, CPGs) and sensory feedback (afferent-based control) but also on internal forward models (efference copies). They are used to a different degree in different animals. Generally, CPGs organize basic rhythmic motions which are shaped by sensory feedback while internal models are used for sensory prediction and state estimations. According to this concept, we present here adaptive neural locomotion control consisting of a CPG mechanism with neuromodulation and local leg control mechanisms based on sensory feedback and adaptive neural forward models with efference copies. This neural closed-loop controller enables a walking machine to perform a multitude of different walking patterns including insect-like leg movements and gaits as well as energy-efficient locomotion. In addition, the forward models allow the machine to autonomously adapt its locomotion to deal with a change of terrain, losing of ground contact during stance phase, stepping on or hitting an obstacle during swing phase, leg damage, and even to promote cockroach-like climbing behavior. Thus, the results presented here show that the employed embodied neural closed-loop system can be a powerful way for developing robust and adaptable machines. PMID:23408775

  2. Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines.

    PubMed

    Manoonpong, Poramate; Parlitz, Ulrich; Wörgötter, Florentin

    2013-01-01

    Living creatures, like walking animals, have found fascinating solutions for the problem of locomotion control. Their movements show the impression of elegance including versatile, energy-efficient, and adaptable locomotion. During the last few decades, roboticists have tried to imitate such natural properties with artificial legged locomotion systems by using different approaches including machine learning algorithms, classical engineering control techniques, and biologically-inspired control mechanisms. However, their levels of performance are still far from the natural ones. By contrast, animal locomotion mechanisms seem to largely depend not only on central mechanisms (central pattern generators, CPGs) and sensory feedback (afferent-based control) but also on internal forward models (efference copies). They are used to a different degree in different animals. Generally, CPGs organize basic rhythmic motions which are shaped by sensory feedback while internal models are used for sensory prediction and state estimations. According to this concept, we present here adaptive neural locomotion control consisting of a CPG mechanism with neuromodulation and local leg control mechanisms based on sensory feedback and adaptive neural forward models with efference copies. This neural closed-loop controller enables a walking machine to perform a multitude of different walking patterns including insect-like leg movements and gaits as well as energy-efficient locomotion. In addition, the forward models allow the machine to autonomously adapt its locomotion to deal with a change of terrain, losing of ground contact during stance phase, stepping on or hitting an obstacle during swing phase, leg damage, and even to promote cockroach-like climbing behavior. Thus, the results presented here show that the employed embodied neural closed-loop system can be a powerful way for developing robust and adaptable machines. PMID:23408775

  3. Nonlinear versus Ordinary Adaptive Control of Continuous Stirred-Tank Reactor

    PubMed Central

    Vojtesek, Jiri; Dostal, Petr

    2015-01-01

    Unfortunately, the major group of the systems in industry has nonlinear behavior and control of such processes with conventional control approaches with fixed parameters causes problems and suboptimal or unstable control results. An adaptive control is one way to how we can cope with nonlinearity of the system. This contribution compares classic adaptive control and its modification with Wiener system. This configuration divides nonlinear controller into the dynamic linear part and the static nonlinear part. The dynamic linear part is constructed with the use of polynomial synthesis together with the pole-placement method and the spectral factorization. The static nonlinear part uses static analysis of the controlled plant for introducing the mathematical nonlinear description of the relation between the controlled output and the change of the control input. Proposed controller is tested by the simulations on the mathematical model of the continuous stirred-tank reactor with cooling in the jacket as a typical nonlinear system. PMID:26346878

  4. A robust adaptive nonlinear fault-tolerant controller via norm estimation for reusable launch vehicles

    NASA Astrophysics Data System (ADS)

    Hu, Chaofang; Gao, Zhifei; Ren, Yanli; Liu, Yunbing

    2016-11-01

    In this paper, a reusable launch vehicle (RLV) attitude control problem with actuator faults is addressed via the robust adaptive nonlinear fault-tolerant control (FTC) with norm estimation. Firstly, the accurate tracking task of attitude angles in the presence of parameter uncertainties and external disturbances is considered. A fault-free controller is proposed using dynamic surface control (DSC) combined with fuzzy adaptive approach. Furthermore, the minimal learning parameter strategy via norm estimation technique is introduced to reduce the multi-parameter adaptive computation burden of fuzzy approximation of the lump uncertainties. Secondly, a compensation controller is designed to handle the partial loss fault of actuator effectiveness. The unknown maximum eigenvalue of actuator efficiency loss factors is estimated online. Moreover, stability analysis guarantees that all signals of the closed-loop control system are semi-global uniformly ultimately bounded. Finally, illustrative simulations show the effectiveness of the proposed method.

  5. A study of interceptor attitude control based on adaptive wavelet neural networks

    NASA Astrophysics Data System (ADS)

    Li, Da; Wang, Qing-chao

    2005-12-01

    This paper engages to study the 3-DOF attitude control problem of the kinetic interceptor. When the kinetic interceptor enters into terminal guidance it has to maneuver with large angles. The characteristic of interceptor attitude system is nonlinearity, strong-coupling and MIMO. A kind of inverse control approach based on adaptive wavelet neural networks was proposed in this paper. Instead of using one complex neural network as the controller, the nonlinear dynamics of the interceptor can be approximated by three independent subsystems applying exact feedback-linearization firstly, and then controllers for each subsystem are designed using adaptive wavelet neural networks respectively. This method avoids computing a large amount of the weights and bias in one massive neural network and the control parameters can be adaptive changed online. Simulation results betray that the proposed controller performs remarkably well.

  6. The adaptive problems of female teenage refugees and their behavioral adjustment methods for coping

    PubMed Central

    Mhaidat, Fatin

    2016-01-01

    This study aimed at identifying the levels of adaptive problems among teenage female refugees in the government schools and explored the behavioral methods that were used to cope with the problems. The sample was composed of 220 Syrian female students (seventh to first secondary grades) enrolled at government schools within the Zarqa Directorate and who came to Jordan due to the war conditions in their home country. The study used the scale of adaptive problems that consists of four dimensions (depression, anger and hostility, low self-esteem, and feeling insecure) and a questionnaire of the behavioral adjustment methods for dealing with the problem of asylum. The results indicated that the Syrian teenage female refugees suffer a moderate degree of adaptation problems, and the positive adjustment methods they have used are more than the negatives. PMID:27175098

  7. New Hamiltonian expansions adapted to the Trojan problem

    NASA Astrophysics Data System (ADS)

    Páez, Rocío Isabel; Locatelli, Ugo; Efthymiopoulos, Christos

    2016-07-01

    A number of studies, referring to the observed Trojan asteroids of various planets in our Solar System, or to hypothetical Trojan bodies in extrasolar planetary systems, have emphasized the importance of so-called secondary resonances in the problem of the long term stability of Trojan motions. Such resonances describe commensurabilities between the fast, synodic, and secular frequency of the Trojan body, and, possibly, additional slow frequencies produced by more than one perturbing bodies. The presence of secondary resonances sculpts the dynamical structure of the phase space. Hence, identifying their location is a relevant task for theoretical studies. In the present paper we combine the methods introduced in two recent papers (Páez and Efthymiopoulos in Celest Mech Dyn Astron 121(2):139, 2015; Páez and Locatelli in MNRAS 453(2):2177, 2015) in order to analytically predict the location of secondary resonances in the Trojan problem. In Páez and Efthymiopoulos (2015), the motion of a Trojan body was studied in the context of the planar Elliptic Restricted Three Body or the planar Restricted Multi-Planet Problem. It was shown that the Hamiltonian admits a generic decomposition H=H_b+H_{sec} . The term H_b , called the basic Hamiltonian, is a model of two degrees of freedom characterizing the short-period and synodic motions of a Trojan body. Also, it yields a constant `proper eccentricity' allowing to define a third secular frequency connected to the body's perihelion precession. H_{sec} contains all remaining secular perturbations due to the primary or to additional perturbing bodies. Here, we first investigate up to what extent the decomposition H=H_b+H_{sec} provides a meaningful model. To this end, we produce numerical examples of surfaces of section under H_b and compare with those of the full model. We also discuss how secular perturbations alter the dynamics under H_b . Secondly, we explore the normal form approach introduced in Páez and Locatelli (2015

  8. Adaptive neural network tracking control of MIMO nonlinear systems with unknown dead zones and control directions.

    PubMed

    Zhang, Tianping; Ge, Shuzhi Sam

    2009-03-01

    In this paper, adaptive neural network (NN) tracking control is investigated for a class of uncertain multiple-input-multiple-output (MIMO) nonlinear systems in triangular control structure with unknown nonsymmetric dead zones and control directions. The design is based on the principle of sliding mode control and the use of Nussbaum-type functions in solving the problem of the completely unknown control directions. It is shown that the dead-zone output can be represented as a simple linear system with a static time-varying gain and bounded disturbance by introducing characteristic function. By utilizing the integral-type Lyapunov function and introducing an adaptive compensation term for the upper bound of the optimal approximation error and the dead-zone disturbance, the closed-loop control system is proved to be semiglobally uniformly ultimately bounded, with tracking errors converging to zero under the condition that the slopes of unknown dead zones are equal. Simulation results demonstrate the effectiveness of the approach.

  9. Developmental Pathways among Adaptive Functioning and Externalizing and Internalizing Behavioral Problems: Cascades from Childhood into Adolescence.

    PubMed

    Bornstein, Marc H; Hahn, Chun-Shin; Suwalsky, Joan T D

    2013-01-01

    A developmental cascade describes a longitudinal cross-domain unique relation. Here, a 3-wave multivariate design and developmental cascade analysis were used to investigate pathways among adaptive functioning and externalizing and internalizing behavioral problems in a community sample of 134 children seen at 4, 10, and 14 years. Children, mothers, and teachers provided data. Nested path analytic models tested the plausible cascades among the three domains apart from their covariation at each age and rank-order stability across age. Adaptive functioning in early adolescence was predicted by early childhood adaptive functioning and externalizing behavioral problems, with both effects mediated by late childhood adaptive functioning and internalizing behavioral problems; externalizing behavioral problems in early adolescence were predicted by early childhood internalizing behavioral problems with the effect mediated by late childhood externalizing behavioral problems. These developmental cascades obtained independent of child intelligence; child age and maternal education and social desirability were also considered but were not related to any outcome variables. The findings suggest that strategically timed and targeted interventions designed to address young children's behavioral problems may return investment in terms of an enhanced epidemiology of adaptively functioning teens. PMID:23585713

  10. Developmental Pathways among Adaptive Functioning and Externalizing and Internalizing Behavioral Problems: Cascades from Childhood into Adolescence

    PubMed Central

    Bornstein, Marc H.; Hahn, Chun-Shin; Suwalsky, Joan T. D.

    2013-01-01

    A developmental cascade describes a longitudinal cross-domain unique relation. Here, a 3-wave multivariate design and developmental cascade analysis were used to investigate pathways among adaptive functioning and externalizing and internalizing behavioral problems in a community sample of 134 children seen at 4, 10, and 14 years. Children, mothers, and teachers provided data. Nested path analytic models tested the plausible cascades among the three domains apart from their covariation at each age and rank-order stability across age. Adaptive functioning in early adolescence was predicted by early childhood adaptive functioning and externalizing behavioral problems, with both effects mediated by late childhood adaptive functioning and internalizing behavioral problems; externalizing behavioral problems in early adolescence were predicted by early childhood internalizing behavioral problems with the effect mediated by late childhood externalizing behavioral problems. These developmental cascades obtained independent of child intelligence; child age and maternal education and social desirability were also considered but were not related to any outcome variables. The findings suggest that strategically timed and targeted interventions designed to address young children’s behavioral problems may return investment in terms of an enhanced epidemiology of adaptively functioning teens. PMID:23585713

  11. Digital adaptive controllers for VTOL vehicles. Volume 1: Concept evaluation

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Stein, G.; Pratt, S. G.

    1979-01-01

    A digital self-adaptive flight control system was developed for flight test in the VTOL approach and landing technology (VALT) research aircraft (a modified CH-47 helicopter). The control laws accept commands from an automatic on-board guidance system. The primary objective of the control laws is to provide good command-following with a minimum cross-axis response. Three attitudes and vertical velocity are separately commanded. Adaptation of the control laws is based on information from rate and attitude gyros and a vertical velocity measurement. The final design resulted from a comparison of two different adaptive concepts--one based on explicit parameter estimates from a real-time maximum-likelihood estimation algorithm, the other based on an implicit model reference adaptive system. The two designs were compared on the basis of performance and complexity.

  12. Adaptive Wavefront Calibration and Control for the Gemini Planet Imager

    SciTech Connect

    Poyneer, L A; Veran, J

    2007-02-02

    Quasi-static errors in the science leg and internal AO flexure will be corrected. Wavefront control will adapt to current atmospheric conditions through Fourier modal gain optimization, or the prediction of atmospheric layers with Kalman filtering.

  13. Robust adaptive tracking control for nonholonomic mobile manipulator with uncertainties.

    PubMed

    Peng, Jinzhu; Yu, Jie; Wang, Jie

    2014-07-01

    In this paper, mobile manipulator is divided into two subsystems, that is, nonholonomic mobile platform subsystem and holonomic manipulator subsystem. First, the kinematic controller of the mobile platform is derived to obtain a desired velocity. Second, regarding the coupling between the two subsystems as disturbances, Lyapunov functions of the two subsystems are designed respectively. Third, a robust adaptive tracking controller is proposed to deal with the unknown upper bounds of parameter uncertainties and disturbances. According to the Lyapunov stability theory, the derived robust adaptive controller guarantees global stability of the closed-loop system, and the tracking errors and adaptive coefficient errors are all bounded. Finally, simulation results show that the proposed robust adaptive tracking controller for nonholonomic mobile manipulator is effective and has good tracking capacity. PMID:24917071

  14. Bi-Objective Optimal Control Modification Adaptive Control for Systems with Input Uncertainty

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2012-01-01

    This paper presents a new model-reference adaptive control method based on a bi-objective optimal control formulation for systems with input uncertainty. A parallel predictor model is constructed to relate the predictor error to the estimation error of the control effectiveness matrix. In this work, we develop an optimal control modification adaptive control approach that seeks to minimize a bi-objective linear quadratic cost function of both the tracking error norm and predictor error norm simultaneously. The resulting adaptive laws for the parametric uncertainty and control effectiveness uncertainty are dependent on both the tracking error and predictor error, while the adaptive laws for the feedback gain and command feedforward gain are only dependent on the tracking error. The optimal control modification term provides robustness to the adaptive laws naturally from the optimal control framework. Simulations demonstrate the effectiveness of the proposed adaptive control approach.

  15. To adapt or not to adapt: the question of domain-general cognitive control.

    PubMed

    Kan, Irene P; Teubner-Rhodes, Susan; Drummey, Anna B; Nutile, Lauren; Krupa, Lauren; Novick, Jared M

    2013-12-01

    What do perceptually bistable figures, sentences vulnerable to misinterpretation and the Stroop task have in common? Although seemingly disparate, they all contain elements of conflict or ambiguity. Consequently, in order to monitor a fluctuating percept, reinterpret sentence meaning, or say "blue" when the word RED is printed in blue ink, individuals must regulate attention and engage cognitive control. According to the Conflict Monitoring Theory (Botvinick, Braver, Barch, Carter, & Cohen, 2001), the detection of conflict automatically triggers cognitive control mechanisms, which can enhance resolution of subsequent conflict, namely, "conflict adaptation." If adaptation reflects the recruitment of domain-general processes, then conflict detection in one domain should facilitate conflict resolution in an entirely different domain. We report two novel findings: (i) significant conflict adaptation from a syntactic to a non-syntactic domain and (ii) from a perceptual to a verbal domain, providing strong evidence that adaptation is mediated by domain-general cognitive control. PMID:24103774

  16. Parallelization of an Adaptive Multigrid Algorithm for Fast Solution of Finite Element Structural Problems

    SciTech Connect

    Crane, N K; Parsons, I D; Hjelmstad, K D

    2002-03-21

    Adaptive mesh refinement selectively subdivides the elements of a coarse user supplied mesh to produce a fine mesh with reduced discretization error. Effective use of adaptive mesh refinement coupled with an a posteriori error estimator can produce a mesh that solves a problem to a given discretization error using far fewer elements than uniform refinement. A geometric multigrid solver uses increasingly finer discretizations of the same geometry to produce a very fast and numerically scalable solution to a set of linear equations. Adaptive mesh refinement is a natural method for creating the different meshes required by the multigrid solver. This paper describes the implementation of a scalable adaptive multigrid method on a distributed memory parallel computer. Results are presented that demonstrate the parallel performance of the methodology by solving a linear elastic rocket fuel deformation problem on an SGI Origin 3000. Two challenges must be met when implementing adaptive multigrid algorithms on massively parallel computing platforms. First, although the fine mesh for which the solution is desired may be large and scaled to the number of processors, the multigrid algorithm must also operate on much smaller fixed-size data sets on the coarse levels. Second, the mesh must be repartitioned as it is adapted to maintain good load balancing. In an adaptive multigrid algorithm, separate mesh levels may require separate partitioning, further complicating the load balance problem. This paper shows that, when the proper optimizations are made, parallel adaptive multigrid algorithms perform well on machines with several hundreds of processors.

  17. Malaria control: achievements, problems and strategies.

    PubMed

    Nájera, J A

    2001-06-01

    scale was steered by the Malaria Commission of the League of Nations and greatly supported by the Rockefeller Foundation. Perhaps the most important contribution of this period was the development of malaria epidemiology, including the study of the genesis of epidemics and their possible forecasting and prevention. Although the great effectiveness of DDT was perhaps the main determinant for proposing the global eradication of the disease in the 1950s, it was the confidence in the epidemiological knowledge and the prestige of malariology, which gave credibility to the proposal at the political level. The second part deals with the global malaria eradication campaign of the 1950s and 1960s. It recognises the enormous impact of the eradication effort in the consolidation of the control successes of the first half of the century, as well as its influence in the development of planning of health programmes. Nevertheless, it also stresses the negative influence that the failure to achieve its utopian expectations had on the general disappointment and slow progress of malaria control, which characterised the last third of the century. The paper then analyses the evolution of malaria control funding, which often appears out of tune with political statements. The fourth part is devoted to the search for realistic approaches to malaria control, leading to the adoption of the global malaria control strategy in Amsterdam in 1992, and the challenge, at the end of the century, to rally forces commensurate with the magnitude of the problem, while aiming at realistic objectives. After discussing the conflicting views on the relations between malaria and socio-economic development and the desirable integration of malaria control into sustainable development, the paper ends with some considerations on the perspectives of malaria control, as seen by the author in early 1998, just before the launching of the current Roll Back Malaria initiative by WHO. PMID:11921521

  18. Adaptive Attitude Control of the Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Muse, Jonathan

    2010-01-01

    An H(sub infinity)-NMA architecture for the Crew Launch Vehicle was developed in a state feedback setting. The minimal complexity adaptive law was shown to improve base line performance relative to a performance metric based on Crew Launch Vehicle design requirements for all most all of the Worst-on-Worst dispersion cases. The adaptive law was able to maintain stability for some dispersions that are unstable with the nominal control law. Due to the nature of the H(sub infinity)-NMA architecture, the augmented adaptive control signal has low bandwidth which is a great benefit for a manned launch vehicle.

  19. Adaptive pitch control for load mitigation of wind turbines

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan; Tang, J.

    2015-04-01

    In this research, model reference adaptive control is examined for the pitch control of wind turbines that may suffer from reduced life owing to extreme loads and fatigue when operated under a high wind speed. Specifically, we aim at making a trade-off between the maximum energy captured and the load induced. The adaptive controller is designed to track the optimal generator speed and at the same time to mitigate component loads under turbulent wind field and other uncertainties. The proposed algorithm is tested on the NREL offshore 5-MW baseline wind turbine, and its performance is compared with that those of the gain scheduled proportional integral (GSPI) control and the disturbance accommodating control (DAC). The results show that the blade root flapwise load can be reduced at a slight expense of optimal power output. The generator speed regulation under adaptive controller is better than DAC.

  20. An adaptive learning control system for aircraft

    NASA Technical Reports Server (NTRS)

    Mekel, R.; Nachmias, S.

    1978-01-01

    A learning control system and its utilization as a flight control system for F-8 Digital Fly-By-Wire (DFBW) research aircraft is studied. The system has the ability to adjust a gain schedule to account for changing plant characteristics and to improve its performance and the plant's performance in the course of its own operation. Three subsystems are detailed: (1) the information acquisition subsystem which identifies the plant's parameters at a given operating condition; (2) the learning algorithm subsystem which relates the identified parameters to predetermined analytical expressions describing the behavior of the parameters over a range of operating conditions; and (3) the memory and control process subsystem which consists of the collection of updated coefficients (memory) and the derived control laws. Simulation experiments indicate that the learning control system is effective in compensating for parameter variations caused by changes in flight conditions.

  1. Adaptive recurrent neural network control of uncertain constrained nonholonomic mobile manipulators

    NASA Astrophysics Data System (ADS)

    Wang, Z. P.; Zhou, T.; Mao, Y.; Chen, Q. J.

    2014-02-01

    In this article, motion/force control problem of a class of constrained mobile manipulators with unknown dynamics is considered. The system is subject to both holonomic and nonholonomic constraints. An adaptive recurrent neural network controller is proposed to deal with the unmodelled system dynamics. The proposed control strategy guarantees that the system motion asymptotically converges to the desired manifold while the constraint force remains bounded. In addition, an adaptive method is proposed to identify the contact surface. Simulation studies are carried out to verify the validation of the proposed approach.

  2. Adaptive output feedback control of a class of uncertain nonlinear systems with unknown time delays

    NASA Astrophysics Data System (ADS)

    Guan, Wei

    2012-04-01

    This article studies the adaptive output feedback control problem of a class of uncertain nonlinear systems with unknown time delays. The systems considered are dominated by a triangular system without zero dynamics satisfying linear growth in the unmeasurable states. The novelty of this article is that a universal-type adaptive output feedback controller is presented to time-delay systems, which can globally regulate all the states of the uncertain systems without knowing the growth rate. An illustrative example is provided to show the applicability of the developed control strategy.

  3. Sleep Disruption as a Correlate to Cognitive and Adaptive Behavior Problems in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Taylor, Matthew A.; Schreck, Kimberly A.; Mulick, James A.

    2012-01-01

    Sleep problems associated with autism spectrum disorders (ASD) have been well documented, but less is known about the effects of sleep problems on day-time cognitive and adaptive performance in this population. Children diagnosed with autism or pervasive developmental disorder-not otherwise specified (PDD-NOS) (N = 335) from 1 to 10 years of age…

  4. Adaptive control of nonlinear systems with actuator failures and uncertainties

    NASA Astrophysics Data System (ADS)

    Tang, Xidong

    2005-11-01

    Actuator failures have damaging effect on the performance of control systems, leading to undesired system behavior or even instability. Actuator failures are unknown in terms of failure time instants, failure patterns, and failure parameters. For system safety and reliability, the compensation of actuator failures is of both theoretical and practical significance. This dissertation is to further the study of adaptive designs for actuator failure compensation to nonlinear systems. In this dissertation a theoretical framework for adaptive control of nonlinear systems with actuator failures and system uncertainties is established. The contributions are the development of new adaptive nonlinear control schemes to handle unknown actuator failures for convergent tracking performance, the specification of conditions as a guideline for applications and system designs, and the extension of the adaptive nonlinear control theory. In the dissertation, adaptive actuator failure compensation is studied for several classes of nonlinear systems. In particular, adaptive state feedback schemes are developed for feedback linearizable systems and parametric strict-feedback systems. Adaptive output feedback schemes are deigned for output-feedback systems and a class of systems with unknown state-dependent nonlinearities. Furthermore, adaptive designs are addressed for MIMO systems with actuator failures, based on two grouping techniques: fixed grouping and virtual grouping. Theoretical issues such as controller structures, actuation schemes, zero dynamics, observation, grouping conditions, closed-loop stability, and tracking performance are extensively investigated. For each scheme, design conditions are clarified, and detailed stability and performance analysis is presented. A variety of applications including a wing-rock model, twin otter aircraft, hypersonic aircraft, and cooperative multiple manipulators are addressed with simulation results showing the effectiveness of the

  5. Investigation of the Multiple Model Adaptive Control (MMAC) method for flight control systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The application was investigated of control theoretic ideas to the design of flight control systems for the F-8 aircraft. The design of an adaptive control system based upon the so-called multiple model adaptive control (MMAC) method is considered. Progress is reported.

  6. Adaptive control of Hammerstein-Wiener nonlinear systems

    NASA Astrophysics Data System (ADS)

    Zhang, Bi; Hong, Hyokchan; Mao, Zhizhong

    2016-07-01

    The Hammerstein-Wiener model is a block-oriented model, having a linear dynamic block sandwiched by two static nonlinear blocks. This note develops an adaptive controller for a special form of Hammerstein-Wiener nonlinear systems which are parameterized by the key-term separation principle. The adaptive control law and recursive parameter estimation are updated by the use of internal variable estimations. By modeling the errors due to the estimation of internal variables, we establish convergence and stability properties. Theoretical results show that parameter estimation convergence and closed-loop system stability can be guaranteed under sufficient condition. From a qualitative analysis of the sufficient condition, we introduce an adaptive weighted factor to improve the performance of the adaptive controller. Numerical examples are given to confirm the results in this paper.

  7. Analysis, preliminary design and simulation systems for control-structure interaction problems

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Alvin, Kenneth F.

    1991-01-01

    Software aspects of control-structure interaction (CSI) analysis are discussed. The following subject areas are covered: (1) implementation of a partitioned algorithm for simulation of large CSI problems; (2) second-order discrete Kalman filtering equations for CSI simulations; and (3) parallel computations and control of adaptive structures.

  8. Modeling-Error-Driven Performance-Seeking Direct Adaptive Control

    NASA Technical Reports Server (NTRS)

    Kulkarni, Nilesh V.; Kaneshige, John; Krishnakumar, Kalmanje; Burken, John

    2008-01-01

    This paper presents a stable discrete-time adaptive law that targets modeling errors in a direct adaptive control framework. The update law was developed in our previous work for the adaptive disturbance rejection application. The approach is based on the philosophy that without modeling errors, the original control design has been tuned to achieve the desired performance. The adaptive control should, therefore, work towards getting this performance even in the face of modeling uncertainties/errors. In this work, the baseline controller uses dynamic inversion with proportional-integral augmentation. Dynamic inversion is carried out using the assumed system model. On-line adaptation of this control law is achieved by providing a parameterized augmentation signal to the dynamic inversion block. The parameters of this augmentation signal are updated to achieve the nominal desired error dynamics. Contrary to the typical Lyapunov-based adaptive approaches that guarantee only stability, the current approach investigates conditions for stability as well as performance. A high-fidelity F-15 model is used to illustrate the overall approach.

  9. Decentralized adaptive control of manipulators - Theory, simulation, and experimentation

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1989-01-01

    The author presents a simple decentralized adaptive-control scheme for multijoint robot manipulators based on the independent joint control concept. The control objective is to achieve accurate tracking of desired joint trajectories. The proposed control scheme does not use the complex manipulator dynamic model, and each joint is controlled simply by a PID (proportional-integral-derivative) feedback controller and a position-velocity-acceleration feedforward controller, both with adjustable gains. Simulation results are given for a two-link direct-drive manipulator under adaptive independent joint control. The results illustrate trajectory tracking under coupled dynamics and varying payload. The proposed scheme is implemented on a MicroVAX II computer for motion control of the three major joints of a PUMA 560 arm. Experimental results are presented to demonstrate that trajectory tracking is achieved despite coupled nonlinear joint dynamics.

  10. Online Parameter Estimation and Adaptive Control of Magnetic Wire Actuators

    NASA Astrophysics Data System (ADS)

    Karve, Harshwardhan

    Cantilevered magnetic wires and fibers can be used as actuators in microfluidic applications. The actuator may be unstable in some range of displacements. Precise position control is required for actuation. The goal of this work is to develop position controllers for cantilevered magnetic wires. A simple exact model knowledge (EMK) controller can be used for position control, but the actuator needs to be modeled accurately for the EMK controller to work. Continuum models have been proposed for magnetic wires in literature. Reduced order models have also been proposed. A one degree of freedom model sufficiently describes the dynamics of a cantilevered wire in the field of one magnet over small displacements. This reduced order model is used to develop the EMK controller here. The EMK controller assumes that model parameters are known accurately. Some model parameters depend on the magnetic field. However, the effect of the magnetic field on the wire is difficult to measure in practice. Stability analysis shows that an inaccurate estimate of the magnetic field introduces parametric perturbations in the closed loop system. This makes the system less robust to disturbances. Therefore, the model parameters need to be estimated accurately for the EMK controller to work. An adaptive observer that can estimate system parameters on-line and reduce parametric perturbations is designed here. The adaptive observer only works if the system is stable. The EMK controller is not guaranteed to stabilize the system under perturbations. Precise tuning of parameters is required to stabilize the system using the EMK controller. Therefore, a controller that stabilizes the system using imprecise model parameters is required for the observer to work as intended. The adaptive observer estimates system states and parameters. These states and parameters are used here to implement an indirect adaptive controller. This indirect controller can stabilize the system using imprecise initial

  11. Control Reallocation Strategies for Damage Adaptation in Transport Class Aircraft

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen; Krishnakumar, K.; Limes, Greg; Bryant, Don

    2003-01-01

    This paper examines the feasibility, potential benefits and implementation issues associated with retrofitting a neural-adaptive flight control system (NFCS) to existing transport aircraft, including both cable/hydraulic and fly-by-wire configurations. NFCS uses a neural network based direct adaptive control approach for applying alternate sources of control authority in the presence of damage or failures in order to achieve desired flight control performance. Neural networks are used to provide consistent handling qualities across flight conditions, adapt to changes in aircraft dynamics and to make the controller easy to apply when implemented on different aircraft. Full-motion piloted simulation studies were performed on two different transport models: the Boeing 747-400 and the Boeing C-17. Subjects included NASA, Air Force and commercial airline pilots. Results demonstrate the potential for improving handing qualities and significantly increased survivability rates under various simulated failure conditions.

  12. Identification and dual adaptive control of a turbojet engine

    NASA Technical Reports Server (NTRS)

    Merrill, W.; Leininger, G.

    1979-01-01

    The objective of this paper is to utilize the design methods of modern control theory to realize a 'dual-adaptive' feedback control unit for a highly non-linear single spool airbreathing turbojet engine. Using a very detailed and accurate simulation of the non-linear engine as the data source, linear operating point models of unspecified dimension are identified. Feedback control laws are designed at each operating point for a prespecified set of sampling rates using sampled-data output regulator theory. The control system sampling rate is determined by an adaptive sampling algorithm in correspondence with turbojet engine performance. The result is a 'dual-adpative' control law that is functionally dependent upon the sampling rate selected and environmental operating conditions. Simulation transients demonstrate the utility of the dual-adaptive design to improve on-board computer utilization while maintaining acceptable levels of engine performance.

  13. Hybrid adaptive ascent flight control for a flexible launch vehicle

    NASA Astrophysics Data System (ADS)

    Lefevre, Brian D.

    For the purpose of maintaining dynamic stability and improving guidance command tracking performance under off-nominal flight conditions, a hybrid adaptive control scheme is selected and modified for use as a launch vehicle flight controller. This architecture merges a model reference adaptive approach, which utilizes both direct and indirect adaptive elements, with a classical dynamic inversion controller. This structure is chosen for a number of reasons: the properties of the reference model can be easily adjusted to tune the desired handling qualities of the spacecraft, the indirect adaptive element (which consists of an online parameter identification algorithm) continually refines the estimates of the evolving characteristic parameters utilized in the dynamic inversion, and the direct adaptive element (which consists of a neural network) augments the linear feedback signal to compensate for any nonlinearities in the vehicle dynamics. The combination of these elements enables the control system to retain the nonlinear capabilities of an adaptive network while relying heavily on the linear portion of the feedback signal to dictate the dynamic response under most operating conditions. To begin the analysis, the ascent dynamics of a launch vehicle with a single 1st stage rocket motor (typical of the Ares 1 spacecraft) are characterized. The dynamics are then linearized with assumptions that are appropriate for a launch vehicle, so that the resulting equations may be inverted by the flight controller in order to compute the control signals necessary to generate the desired response from the vehicle. Next, the development of the hybrid adaptive launch vehicle ascent flight control architecture is discussed in detail. Alterations of the generic hybrid adaptive control architecture include the incorporation of a command conversion operation which transforms guidance input from quaternion form (as provided by NASA) to the body-fixed angular rate commands needed by the

  14. A Newton method with adaptive finite elements for solving phase-change problems with natural convection

    NASA Astrophysics Data System (ADS)

    Danaila, Ionut; Moglan, Raluca; Hecht, Frédéric; Le Masson, Stéphane

    2014-10-01

    We present a new numerical system using finite elements with mesh adaptivity for the simulation of solid-liquid phase change systems. In the liquid phase, the natural convection flow is simulated by solving the incompressible Navier-Stokes equations with Boussinesq approximation. A variable viscosity model allows the velocity to progressively vanish in the solid phase, through an intermediate mushy region. The phase change is modeled by introducing an implicit enthalpy source term in the heat equation. The final system of equations describing the liquid-solid system by a single domain approach is solved using a Newton iterative algorithm. The space discretization is based on a P2-P1 Taylor-Hood finite elements and mesh adaptivity by metric control is used to accurately track the solid-liquid interface or the density inversion interface for water flows. The numerical method is validated against classical benchmarks that progressively add strong non-linearities in the system of equations: natural convection of air, natural convection of water, melting of a phase-change material and water freezing. Very good agreement with experimental data is obtained for each test case, proving the capability of the method to deal with both melting and solidification problems with convection. The presented numerical method is easy to implement using FreeFem++ software using a syntax close to the mathematical formulation.

  15. Simulation of a Reconfigurable Adaptive Control Architecture

    NASA Astrophysics Data System (ADS)

    Rapetti, Ryan John

    A set of algorithms and software components are developed to investigate the use of a priori models of damaged aircraft to improve control of similarly damaged aircraft. An addition to Model Predictive Control called state trajectory extrapolation is also developed to deliver good handling qualities in nominal an off-nominal aircraft. System identification algorithms are also used to improve model accuracy after a damage event. Simulations were run to demonstrate the efficacy of the algorithms and software components developed herein. The effect of model order on system identification convergence and performance is also investigated. A feasibility study for flight testing is also conducted. A preliminary hardware prototype was developed, as was the necessary software to integrate the avionics and ground station systems. Simulation results show significant improvement in both tracking and cross-coupling performance when a priori control models are used, and further improvement when identified models are used.

  16. Finite-horizon control-constrained nonlinear optimal control using single network adaptive critics.

    PubMed

    Heydari, Ali; Balakrishnan, Sivasubramanya N

    2013-01-01

    To synthesize fixed-final-time control-constrained optimal controllers for discrete-time nonlinear control-affine systems, a single neural network (NN)-based controller called the Finite-horizon Single Network Adaptive Critic is developed in this paper. Inputs to the NN are the current system states and the time-to-go, and the network outputs are the costates that are used to compute optimal feedback control. Control constraints are handled through a nonquadratic cost function. Convergence proofs of: 1) the reinforcement learning-based training method to the optimal solution; 2) the training error; and 3) the network weights are provided. The resulting controller is shown to solve the associated time-varying Hamilton-Jacobi-Bellman equation and provide the fixed-final-time optimal solution. Performance of the new synthesis technique is demonstrated through different examples including an attitude control problem wherein a rigid spacecraft performs a finite-time attitude maneuver subject to control bounds. The new formulation has great potential for implementation since it consists of only one NN with single set of weights and it provides comprehensive feedback solutions online, though it is trained offline.

  17. Finite-horizon control-constrained nonlinear optimal control using single network adaptive critics.

    PubMed

    Heydari, Ali; Balakrishnan, Sivasubramanya N

    2013-01-01

    To synthesize fixed-final-time control-constrained optimal controllers for discrete-time nonlinear control-affine systems, a single neural network (NN)-based controller called the Finite-horizon Single Network Adaptive Critic is developed in this paper. Inputs to the NN are the current system states and the time-to-go, and the network outputs are the costates that are used to compute optimal feedback control. Control constraints are handled through a nonquadratic cost function. Convergence proofs of: 1) the reinforcement learning-based training method to the optimal solution; 2) the training error; and 3) the network weights are provided. The resulting controller is shown to solve the associated time-varying Hamilton-Jacobi-Bellman equation and provide the fixed-final-time optimal solution. Performance of the new synthesis technique is demonstrated through different examples including an attitude control problem wherein a rigid spacecraft performs a finite-time attitude maneuver subject to control bounds. The new formulation has great potential for implementation since it consists of only one NN with single set of weights and it provides comprehensive feedback solutions online, though it is trained offline. PMID:24808214

  18. Adaptive control system for pulsed megawatt klystrons

    DOEpatents

    Bolie, Victor W.

    1992-01-01

    The invention provides an arrangement for reducing waveform errors such as errors in phase or amplitude in output pulses produced by pulsed power output devices such as klystrons by generating an error voltage representing the extent of error still present in the trailing edge of the previous output pulse, using the error voltage to provide a stored control voltage, and applying the stored control voltage to the pulsed power output device to limit the extent of error in the leading edge of the next output pulse.

  19. Tensor Product Model Transformation Based Adaptive Integral-Sliding Mode Controller: Equivalent Control Method

    PubMed Central

    Zhao, Guoliang; Li, Hongxing

    2013-01-01

    This paper proposes new methodologies for the design of adaptive integral-sliding mode control. A tensor product model transformation based adaptive integral-sliding mode control law with respect to uncertainties and perturbations is studied, while upper bounds on the perturbations and uncertainties are assumed to be unknown. The advantage of proposed controllers consists in having a dynamical adaptive control gain to establish a sliding mode right at the beginning of the process. Gain dynamics ensure a reasonable adaptive gain with respect to the uncertainties. Finally, efficacy of the proposed controller is verified by simulations on an uncertain nonlinear system model. PMID:24453897

  20. Tensor product model transformation based adaptive integral-sliding mode controller: equivalent control method.

    PubMed

    Zhao, Guoliang; Sun, Kaibiao; Li, Hongxing

    2013-01-01

    This paper proposes new methodologies for the design of adaptive integral-sliding mode control. A tensor product model transformation based adaptive integral-sliding mode control law with respect to uncertainties and perturbations is studied, while upper bounds on the perturbations and uncertainties are assumed to be unknown. The advantage of proposed controllers consists in having a dynamical adaptive control gain to establish a sliding mode right at the beginning of the process. Gain dynamics ensure a reasonable adaptive gain with respect to the uncertainties. Finally, efficacy of the proposed controller is verified by simulations on an uncertain nonlinear system model.

  1. Modern control concepts in hydrology. [parameter identification in adaptive stochastic control approach

    NASA Technical Reports Server (NTRS)

    Duong, N.; Winn, C. B.; Johnson, G. R.

    1975-01-01

    Two approaches to an identification problem in hydrology are presented, based upon concepts from modern control and estimation theory. The first approach treats the identification of unknown parameters in a hydrologic system subject to noisy inputs as an adaptive linear stochastic control problem; the second approach alters the model equation to account for the random part in the inputs, and then uses a nonlinear estimation scheme to estimate the unknown parameters. Both approaches use state-space concepts. The identification schemes are sequential and adaptive and can handle either time-invariant or time-dependent parameters. They are used to identify parameters in the Prasad model of rainfall-runoff. The results obtained are encouraging and confirm the results from two previous studies; the first using numerical integration of the model equation along with a trial-and-error procedure, and the second using a quasi-linearization technique. The proposed approaches offer a systematic way of analyzing the rainfall-runoff process when the input data are imbedded in noise.

  2. Embedded intelligent adaptive PI controller for an electromechanical system.

    PubMed

    El-Nagar, Ahmad M

    2016-09-01

    In this study, an intelligent adaptive controller approach using the interval type-2 fuzzy neural network (IT2FNN) is presented. The proposed controller consists of a lower level proportional - integral (PI) controller, which is the main controller and an upper level IT2FNN which tuning on-line the parameters of a PI controller. The proposed adaptive PI controller based on IT2FNN (API-IT2FNN) is implemented practically using the Arduino DUE kit for controlling the speed of a nonlinear DC motor-generator system. The parameters of the IT2FNN are tuned on-line using back-propagation algorithm. The Lyapunov theorem is used to derive the stability and convergence of the IT2FNN. The obtained experimental results, which are compared with other controllers, demonstrate that the proposed API-IT2FNN is able to improve the system response over a wide range of system uncertainties. PMID:27342993

  3. Direct adaptive control of a PUMA 560 industrial robot

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun; Lee, Thomas; Delpech, Michel

    1989-01-01

    The implementation and experimental validation of a new direct adaptive control scheme on a PUMA 560 industrial robot is described. The testbed facility consists of a Unimation PUMA 560 six-jointed robot and controller, and a DEC MicroVAX II computer which hosts the Robot Control C Library software. The control algorithm is implemented on the MicroVAX which acts as a digital controller for the PUMA robot, and the Unimation controller is effectively bypassed and used merely as an I/O device to interface the MicroVAX to the joint motors. The control algorithm for each robot joint consists of an auxiliary signal generated by a constant-gain Proportional plus Integral plus Derivative (PID) controller, and an adaptive position-velocity (PD) feedback controller with adjustable gains. The adaptive independent joint controllers compensate for the inter-joint couplings and achieve accurate trajectory tracking without the need for the complex dynamic model and parameter values of the robot. Extensive experimental results on PUMA joint control are presented to confirm the feasibility of the proposed scheme, in spite of strong interactions between joint motions. Experimental results validate the capabilities of the proposed control scheme. The control scheme is extremely simple and computationally very fast for concurrent processing with high sampling rates.

  4. Neural and Fuzzy Adaptive Control of Induction Motor Drives

    NASA Astrophysics Data System (ADS)

    Bensalem, Y.; Sbita, L.; Abdelkrim, M. N.

    2008-06-01

    This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller.

  5. Neural and Fuzzy Adaptive Control of Induction Motor Drives

    SciTech Connect

    Bensalem, Y.; Sbita, L.; Abdelkrim, M. N.

    2008-06-12

    This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller.

  6. Adaptive Power Control for Space Communications

    NASA Technical Reports Server (NTRS)

    Thompson, Willie L., II; Israel, David J.

    2008-01-01

    This paper investigates the implementation of power control techniques for crosslinks communications during a rendezvous scenario of the Crew Exploration Vehicle (CEV) and the Lunar Surface Access Module (LSAM). During the rendezvous, NASA requires that the CEV supports two communication links: space-to-ground and crosslink simultaneously. The crosslink will generate excess interference to the space-to-ground link as the distances between the two vehicles decreases, if the output power is fixed and optimized for the worst-case link analysis at the maximum distance range. As a result, power control is required to maintain the optimal power level for the crosslink without interfering with the space-to-ground link. A proof-of-concept will be described and implemented with Goddard Space Flight Center (GSFC) Communications, Standard, and Technology Lab (CSTL).

  7. Adapting Inspection Data for Computer Numerical Control

    NASA Technical Reports Server (NTRS)

    Hutchison, E. E.

    1986-01-01

    Machining time for repetitive tasks reduced. Program converts measurements of stub post locations by coordinate-measuring machine into form used by numerical-control computer. Work time thus reduced by 10 to 15 minutes for each post. Since there are 600 such posts on each injector, time saved per injector is 100 to 150 hours. With modifications this approach applicable to machining of many precise holes on large machine frames and similar objects.

  8. Error estimation and adaptive order nodal method for solving multidimensional transport problems

    SciTech Connect

    Zamonsky, O.M.; Gho, C.J.; Azmy, Y.Y.

    1998-01-01

    The authors propose a modification of the Arbitrarily High Order Transport Nodal method whereby they solve each node and each direction using different expansion order. With this feature and a previously proposed a posteriori error estimator they develop an adaptive order scheme to automatically improve the accuracy of the solution of the transport equation. They implemented the modified nodal method, the error estimator and the adaptive order scheme into a discrete-ordinates code for solving monoenergetic, fixed source, isotropic scattering problems in two-dimensional Cartesian geometry. They solve two test problems with large homogeneous regions to test the adaptive order scheme. The results show that using the adaptive process the storage requirements are reduced while preserving the accuracy of the results.

  9. Adaptive neural network motion control of manipulators with experimental evaluations.

    PubMed

    Puga-Guzmán, S; Moreno-Valenzuela, J; Santibáñez, V

    2014-01-01

    A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller. PMID:24574910

  10. Adaptive Neural Network Motion Control of Manipulators with Experimental Evaluations

    PubMed Central

    Puga-Guzmán, S.; Moreno-Valenzuela, J.; Santibáñez, V.

    2014-01-01

    A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller. PMID:24574910

  11. Adaptive neural network motion control of manipulators with experimental evaluations.

    PubMed

    Puga-Guzmán, S; Moreno-Valenzuela, J; Santibáñez, V

    2014-01-01

    A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller.

  12. Adaptive control experiment with a large flexible structure

    NASA Technical Reports Server (NTRS)

    Ih, Che-Hang Charles; Bayard, David S.; Wang, Shyh Jong; Eldred, Daniel B.

    1988-01-01

    A large space antenna-like ground experiment structure has been developed for conducting research and validation of advanced control technology. A set of proof-of-concept adaptive control experiments for transient and initial deflection regulation with a small set of sensors and actuators were conducted. Very limited knowledge of the plant dynamics and its environment was used in the design of the adaptive controller so that performance could be demonstrated under conditions of gross underlying uncertainties. High performance has been observed under such stringent conditions. These experiments have established a baseline for future studies involving more complex hardware and environmental conditions, and utilizing additional sets of sensors and actuators.

  13. Real-time control system for adaptive resonator

    SciTech Connect

    Flath, L; An, J; Brase, J; Hurd, R; Kartz, M; Sawvel, R; Silva, D

    2000-07-24

    Sustained operation of high average power solid-state lasers currently requires an adaptive resonator to produce the optimal beam quality. We describe the architecture of a real-time adaptive control system for correcting intra-cavity aberrations in a heat capacity laser. Image data collected from a wavefront sensor are processed and used to control phase with a high-spatial-resolution deformable mirror. Our controller takes advantage of recent developments in low-cost, high-performance processor technology. A desktop-based computational engine and object-oriented software architecture replaces the high-cost rack-mount embedded computers of previous systems.

  14. Adaptive Transmission Control Method for Communication-Broadcasting Integrated Services

    NASA Astrophysics Data System (ADS)

    Koto, Hideyuki; Furuya, Hiroki; Nakamura, Hajime

    This paper proposes an adaptive transmission control method for massive and intensive telecommunication traffic generated by communication-broadcasting integrated services. The proposed method adaptively controls data transmissions from viewers depending on the congestion states, so that severe congestion can be effectively avoided. Furthermore, it utilizes the broadcasting channel which is not only scalable, but also reliable for controlling the responses from vast numbers of viewers. The performance of the proposed method is evaluated through experiments on a test bed where approximately one million viewers are emulated. The obtained results quantitatively demonstrate the performance of the proposed method and its effectiveness under massive and intensive traffic conditions.

  15. Adaptive Control of Truss Structures for Gossamer Spacecraft

    NASA Technical Reports Server (NTRS)

    Yang Bong-Jun; Calise, anthony J.; Craig, James I.; Whorton, Mark S.

    2007-01-01

    Neural network-based adaptive control is considered for active control of a highly flexible truss structure which may be used to support solar sail membranes. The objective is to suppress unwanted vibrations in SAFE (Solar Array Flight Experiment) boom, a test-bed located at NASA. Compared to previous tests that restrained truss structures in planar motion, full three dimensional motions are tested. Experimental results illustrate the potential of adaptive control in compensating for nonlinear actuation and modeling error, and in rejecting external disturbances.

  16. A Decentralized Adaptive Approach to Fault Tolerant Flight Control

    NASA Technical Reports Server (NTRS)

    Wu, N. Eva; Nikulin, Vladimir; Heimes, Felix; Shormin, Victor

    2000-01-01

    This paper briefly reports some results of our study on the application of a decentralized adaptive control approach to a 6 DOF nonlinear aircraft model. The simulation results showed the potential of using this approach to achieve fault tolerant control. Based on this observation and some analysis, the paper proposes a multiple channel adaptive control scheme that makes use of the functionally redundant actuating and sensing capabilities in the model, and explains how to implement the scheme to tolerate actuator and sensor failures. The conditions, under which the scheme is applicable, are stated in the paper.

  17. On Using Exponential Parameter Estimators with an Adaptive Controller

    NASA Technical Reports Server (NTRS)

    Patre, Parag; Joshi, Suresh M.

    2011-01-01

    Typical adaptive controllers are restricted to using a specific update law to generate parameter estimates. This paper investigates the possibility of using any exponential parameter estimator with an adaptive controller such that the system tracks a desired trajectory. The goal is to provide flexibility in choosing any update law suitable for a given application. The development relies on a previously developed concept of controller/update law modularity in the adaptive control literature, and the use of a converse Lyapunov-like theorem. Stability analysis is presented to derive gain conditions under which this is possible, and inferences are made about the tracking error performance. The development is based on a class of Euler-Lagrange systems that are used to model various engineering systems including space robots and manipulators.

  18. Robust projective lag synchronization in drive-response dynamical networks via adaptive control

    NASA Astrophysics Data System (ADS)

    Al-mahbashi, G.; Noorani, M. S. Md; Bakar, S. A.; Al-sawalha, M. M.

    2016-02-01

    This paper investigates the problem of projective lag synchronization behavior in drive-response dynamical networks (DRDNs) with identical and non-identical nodes. An adaptive control method is designed to achieve projective lag synchronization with fully unknown parameters and unknown bounded disturbances. These parameters were estimated by adaptive laws obtained by Lyapunov stability theory. Furthermore, sufficient conditions for synchronization are derived analytically using the Lyapunov stability theory and adaptive control. In addition, the unknown bounded disturbances are also overcome by the proposed control. Finally, analytical results show that the states of the dynamical network with non-delayed coupling can be asymptotically synchronized onto a desired scaling factor under the designed controller. Simulation results show the effectiveness of the proposed method.

  19. Comparability of naturalistic and controlled observation assessment of adaptive behavior.

    PubMed

    Millham, J; Chilcutt, J; Atkinson, B L

    1978-07-01

    The comparability of retrospective naturalistic and controlled observation assessment of adaptive behavior was evaluated. The number, degree, and direction of discrepancies were evaluated with respect to level of retardation of the client, rater differences, behavior domain sampled, and prior observational base for the ratings. Generally poor comparability between the procedures was found and questions were raised concerning the types of generalizability that can be made from adaptive behavior assessment obtained under the two procedures.

  20. Adaptive implicit-explicit finite element algorithms for fluid mechanics problems

    NASA Technical Reports Server (NTRS)

    Tezduyar, T. E.; Liou, J.

    1988-01-01

    The adaptive implicit-explicit (AIE) approach is presented for the finite-element solution of various problems in computational fluid mechanics. In the AIE approach, the elements are dynamically (adaptively) arranged into differently treated groups. The differences in treatment could be based on considerations such as the cost efficiency, the type of spatial or temporal discretization employed, the choice of field equations, etc. Several numerical tests are performed to demonstrate that this approach can achieve substantial savings in CPU time and memory.

  1. Highly integrated digital electronic control: Digital flight control, aircraft model identification, and adaptive engine control

    NASA Technical Reports Server (NTRS)

    Baer-Riedhart, Jennifer L.; Landy, Robert J.

    1987-01-01

    The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.

  2. Adaptive control of large space structures using recursive lattice filters

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.

    1985-01-01

    The use of recursive lattice filters for identification and adaptive control of large space structures was studied. Lattice filters are used widely in the areas of speech and signal processing. Herein, they are used to identify the structural dynamics model of the flexible structures. This identified model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures control is engaged. This type of validation scheme prevents instability when the overall loop is closed. The results obtained from simulation were compared to those obtained from experiments. In this regard, the flexible beam and grid apparatus at the Aerospace Control Research Lab (ACRL) of NASA Langley Research Center were used as the principal candidates for carrying out the above tasks. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods.

  3. Adaptive mass expulsion attitude control system

    NASA Technical Reports Server (NTRS)

    Rodden, John J. (Inventor); Stevens, Homer D. (Inventor); Carrou, Stephane (Inventor)

    2001-01-01

    An attitude control system and method operative with a thruster controls the attitude of a vehicle carrying the thruster, wherein the thruster has a valve enabling the formation of pulses of expelled gas from a source of compressed gas. Data of the attitude of the vehicle is gathered, wherein the vehicle is located within a force field tending to orient the vehicle in a first attitude different from a desired attitude. The attitude data is evaluated to determine a pattern of values of attitude of the vehicle in response to the gas pulses of the thruster and in response to the force field. The system and the method maintain the attitude within a predetermined band of values of attitude which includes the desired attitude. Computation circuitry establishes an optimal duration of each of the gas pulses based on the pattern of values of attitude, the optimal duration providing for a minimal number of opening and closure operations of the valve. The thruster is operated to provide gas pulses having the optimal duration.

  4. A novel adaptive controller for two-degree of freedom polar robot with unknown perturbations

    NASA Astrophysics Data System (ADS)

    Faieghi, Mohammad Reza; Delavari, Hadi; Baleanu, Dumitru

    2012-02-01

    In industrial applications, the performance of robot manipulators is always affected due to the presence of uncertainties and disturbances. This paper proposes a novel adaptive control scheme for robust control of robotic manipulators perturbed by unknown uncertainties and disturbances. First, an active sliding mode controller is designed and a sufficient condition is obtained guarantying reachability of the states to hit the sliding surface in finite time. Then, based on a Lyapunov function candidate an adaptive switching gain is derived which make the controller capable to bring the tracking error to zero without any disturbance exerted upon the stability. By virtue of this controller it can be shown that the controller can track the desired trajectories even in the presence of unknown perturbations. For the problem of determining the control parameters Particle Swarm Optimization (PSO) algorithm has been employed. Our theoretic achievements are verified by numerical simulations.

  5. Robust master-slave synchronization for general uncertain delayed dynamical model based on adaptive control scheme.

    PubMed

    Wang, Tianbo; Zhou, Wuneng; Zhao, Shouwei; Yu, Weiqin

    2014-03-01

    In this paper, the robust exponential synchronization problem for a class of uncertain delayed master-slave dynamical system is investigated by using the adaptive control method. Different from some existing master-slave models, the considered master-slave system includes bounded unmodeled dynamics. In order to compensate the effect of unmodeled dynamics and effectively achieve synchronization, a novel adaptive controller with simple updated laws is proposed. Moreover, the results are given in terms of LMIs, which can be easily solved by LMI Toolbox in Matlab. A numerical example is given to illustrate the effectiveness of the method.

  6. L1 adaptive control of uncertain gear transmission servo systems with deadzone nonlinearity.

    PubMed

    Zuo, Zongyu; Li, Xiao; Shi, Zhiguang

    2015-09-01

    This paper deals with the adaptive control problem of Gear Transmission Servo (GTS) systems in the presence of unknown deadzone nonlinearity and viscous friction. A global differential homeomorphism based on a novel differentiable deadzone model is proposed first. Since there exist both matched and unmatched state-dependent unknown nonlinearities, a full-state feedback L1 adaptive controller is constructed to achieve uniformly bounded transient response in addition to steady-state performance. Finally, simulation results are included to show the elimination of limit cycles, in addition to demonstrating the main results in this paper. PMID:26250588

  7. Adaptive moving mesh methods for simulating one-dimensional groundwater problems with sharp moving fronts

    USGS Publications Warehouse

    Huang, W.; Zheng, Lingyun; Zhan, X.

    2002-01-01

    Accurate modelling of groundwater flow and transport with sharp moving fronts often involves high computational cost, when a fixed/uniform mesh is used. In this paper, we investigate the modelling of groundwater problems using a particular adaptive mesh method called the moving mesh partial differential equation approach. With this approach, the mesh is dynamically relocated through a partial differential equation to capture the evolving sharp fronts with a relatively small number of grid points. The mesh movement and physical system modelling are realized by solving the mesh movement and physical partial differential equations alternately. The method is applied to the modelling of a range of groundwater problems, including advection dominated chemical transport and reaction, non-linear infiltration in soil, and the coupling of density dependent flow and transport. Numerical results demonstrate that sharp moving fronts can be accurately and efficiently captured by the moving mesh approach. Also addressed are important implementation strategies, e.g. the construction of the monitor function based on the interpolation error, control of mesh concentration, and two-layer mesh movement. Copyright ?? 2002 John Wiley and Sons, Ltd.

  8. A self adaptive hybrid enhanced artificial bee colony algorithm for continuous optimization problems.

    PubMed

    Shan, Hai; Yasuda, Toshiyuki; Ohkura, Kazuhiro

    2015-06-01

    The artificial bee colony (ABC) algorithm is one of popular swarm intelligence algorithms that inspired by the foraging behavior of honeybee colonies. To improve the convergence ability, search speed of finding the best solution and control the balance between exploration and exploitation using this approach, we propose a self adaptive hybrid enhanced ABC algorithm in this paper. To evaluate the performance of standard ABC, best-so-far ABC (BsfABC), incremental ABC (IABC), and the proposed ABC algorithms, we implemented numerical optimization problems based on the IEEE Congress on Evolutionary Computation (CEC) 2014 test suite. Our experimental results show the comparative performance of standard ABC, BsfABC, IABC, and the proposed ABC algorithms. According to the results, we conclude that the proposed ABC algorithm is competitive to those state-of-the-art modified ABC algorithms such as BsfABC and IABC algorithms based on the benchmark problems defined by CEC 2014 test suite with dimension sizes of 10, 30, and 50, respectively.

  9. A self adaptive hybrid enhanced artificial bee colony algorithm for continuous optimization problems.

    PubMed

    Shan, Hai; Yasuda, Toshiyuki; Ohkura, Kazuhiro

    2015-06-01

    The artificial bee colony (ABC) algorithm is one of popular swarm intelligence algorithms that inspired by the foraging behavior of honeybee colonies. To improve the convergence ability, search speed of finding the best solution and control the balance between exploration and exploitation using this approach, we propose a self adaptive hybrid enhanced ABC algorithm in this paper. To evaluate the performance of standard ABC, best-so-far ABC (BsfABC), incremental ABC (IABC), and the proposed ABC algorithms, we implemented numerical optimization problems based on the IEEE Congress on Evolutionary Computation (CEC) 2014 test suite. Our experimental results show the comparative performance of standard ABC, BsfABC, IABC, and the proposed ABC algorithms. According to the results, we conclude that the proposed ABC algorithm is competitive to those state-of-the-art modified ABC algorithms such as BsfABC and IABC algorithms based on the benchmark problems defined by CEC 2014 test suite with dimension sizes of 10, 30, and 50, respectively. PMID:25982071

  10. Analysis of modified SMI method for adaptive array weight control

    NASA Technical Reports Server (NTRS)

    Dilsavor, R. L.; Moses, R. L.

    1989-01-01

    An adaptive array is applied to the problem of receiving a desired signal in the presence of weak interference signals which need to be suppressed. A modification, suggested by Gupta, of the sample matrix inversion (SMI) algorithm controls the array weights. In the modified SMI algorithm, interference suppression is increased by subtracting a fraction F of the noise power from the diagonal elements of the estimated covariance matrix. Given the true covariance matrix and the desired signal direction, the modified algorithm is shown to maximize a well-defined, intuitive output power ratio criterion. Expressions are derived for the expected value and variance of the array weights and output powers as a function of the fraction F and the number of snapshots used in the covariance matrix estimate. These expressions are compared with computer simulation and good agreement is found. A trade-off is found to exist between the desired level of interference suppression and the number of snapshots required in order to achieve that level with some certainty. The removal of noise eigenvectors from the covariance matrix inverse is also discussed with respect to this application. Finally, the type and severity of errors which occur in the covariance matrix estimate are characterized through simulation.

  11. Adaptive Performance Seeking Control Using Fuzzy Model Reference Learning Control and Positive Gradient Control

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    1997-01-01

    Performance Seeking Control attempts to find the operating condition that will generate optimal performance and control the plant at that operating condition. In this paper a nonlinear multivariable Adaptive Performance Seeking Control (APSC) methodology will be developed and it will be demonstrated on a nonlinear system. The APSC is comprised of the Positive Gradient Control (PGC) and the Fuzzy Model Reference Learning Control (FMRLC). The PGC computes the positive gradients of the desired performance function with respect to the control inputs in order to drive the plant set points to the operating point that will produce optimal performance. The PGC approach will be derived in this paper. The feedback control of the plant is performed by the FMRLC. For the FMRLC, the conventional fuzzy model reference learning control methodology is utilized, with guidelines generated here for the effective tuning of the FMRLC controller.

  12. Adaptive independent joint control of manipulators - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1988-01-01

    The author presents a simple decentralized adaptive control scheme for multijoint robot manipulators based on the independent joint control concept. The proposed control scheme for each joint consists of a PID (proportional integral and differential) feedback controller and a position-velocity-acceleration feedforward controller, both with adjustable gains. The static and dynamic couplings that exist between the joint motions are compensated by the adaptive independent joint controllers while ensuring trajectory tracking. The proposed scheme is implemented on a MicroVAX II computer for motion control of the first three joints of a PUMA 560 arm. Experimental results are presented to demonstrate that trajectory tracking is achieved despite strongly coupled, highly nonlinear joint dynamics. The results confirm that the proposed decentralized adaptive control of manipulators is feasible, in spite of strong interactions between joint motions. The control scheme presented is computationally very fast and is amenable to parallel processing implementation within a distributed computing architecture, where each joint is controlled independently by a simple algorithm on a dedicated microprocessor.

  13. An Adaptive Fuzzy-Logic Traffic Control System in Conditions of Saturated Transport Stream.

    PubMed

    Yusupbekov, N R; Marakhimov, A R; Igamberdiev, H Z; Umarov, Sh X

    2016-01-01

    This paper considers the problem of building adaptive fuzzy-logic traffic control systems (AFLTCS) to deal with information fuzziness and uncertainty in case of heavy traffic streams. Methods of formal description of traffic control on the crossroads based on fuzzy sets and fuzzy logic are proposed. This paper also provides efficient algorithms for implementing AFLTCS and develops the appropriate simulation models to test the efficiency of suggested approach. PMID:27517081

  14. Adaptive Control System of Hydraulic Pressure Based on The Mathematical Modeling

    NASA Astrophysics Data System (ADS)

    Pilipenko, A. V.; Pilipenko, A. P.; Kanatnikov, N. V.

    2016-04-01

    In this paper, the authors highlight the problem of replacing an old heavy industrial equipment, and offer the replacement of obsolete control systems on the modern adaptive control system, which takes into account changes in the hydraulic system of the press and compensates them with a corrective action. The proposed system can reduce a water hammer and thereby increase the durability of the hydraulic system and tools.

  15. An Adaptive Fuzzy-Logic Traffic Control System in Conditions of Saturated Transport Stream

    PubMed Central

    Marakhimov, A. R.; Igamberdiev, H. Z.; Umarov, Sh. X.

    2016-01-01

    This paper considers the problem of building adaptive fuzzy-logic traffic control systems (AFLTCS) to deal with information fuzziness and uncertainty in case of heavy traffic streams. Methods of formal description of traffic control on the crossroads based on fuzzy sets and fuzzy logic are proposed. This paper also provides efficient algorithms for implementing AFLTCS and develops the appropriate simulation models to test the efficiency of suggested approach. PMID:27517081

  16. An Adaptive Fuzzy-Logic Traffic Control System in Conditions of Saturated Transport Stream.

    PubMed

    Yusupbekov, N R; Marakhimov, A R; Igamberdiev, H Z; Umarov, Sh X

    2016-01-01

    This paper considers the problem of building adaptive fuzzy-logic traffic control systems (AFLTCS) to deal with information fuzziness and uncertainty in case of heavy traffic streams. Methods of formal description of traffic control on the crossroads based on fuzzy sets and fuzzy logic are proposed. This paper also provides efficient algorithms for implementing AFLTCS and develops the appropriate simulation models to test the efficiency of suggested approach.

  17. Adaptive control of large space structures using recursive lattice filters

    NASA Technical Reports Server (NTRS)

    Sundararajan, N.; Goglia, G. L.

    1985-01-01

    The use of recursive lattice filters for identification and adaptive control of large space structures is studied. Lattice filters were used to identify the structural dynamics model of the flexible structures. This identification model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures is control engaged. This type of validation scheme prevents instability when the overall loop is closed. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods. The method uses the Linear Quadratic Guassian/Loop Transfer Recovery (LQG/LTR) approach to ensure stability against unmodeled higher frequency modes and achieves the desired performance.

  18. Autonomous and Adaptive Voltage Control using Multiple Distributed Energy Resources

    SciTech Connect

    Li, Huijuan; Li, Fangxing; Xu, Yan; Rizy, D Tom

    2012-01-01

    Voltage regulation using distributed energy resources (DE) or distributed generators (DG) with power electronics interfaces and logic control has drawn increasing interests. This paper addresses the challenges of controlling multiple DEs to regulate voltages in distribution systems using an autonomous and adaptive control approach. Theoretical analysis shows that there exists a corresponding formulation of the dynamic control parameters with multiple DEs. Hence, the proposed control method is theoretically solid. Simulation results confirm that this method is capable of satisfying the fast response requirement for operational use without causing oscillation or inefficiency. This method is autonomous based on local information and the other DEs input without the instructions from any control center, is widely adaptive to variable power system operational situations, and has a high tolerance to data shortage of systems parameter. Hence, it is suitable for broad utility application

  19. Parallel computation of geometry control in adaptive truss structures

    NASA Technical Reports Server (NTRS)

    Ramesh, A. V.; Utku, S.; Wada, B. K.

    1992-01-01

    The fast computation of geometry control in adaptive truss structures involves two distinct parts: the efficient integration of the inverse kinematic differential equations that govern the geometry control and the fast computation of the Jacobian, which appears on the right-hand-side of the inverse kinematic equations. This paper present an efficient parallel implementation of the Jacobian computation on an MIMD machine. Large speedup from the parallel implementation is obtained, which reduces the Jacobian computation to an O(M-squared/n) procedure on an n-processor machine, where M is the number of members in the adaptive truss. The parallel algorithm given here is a good candidate for on-line geometry control of adaptive structures using attached processors.

  20. A discrete-time adaptive control scheme for robot manipulators

    NASA Technical Reports Server (NTRS)

    Tarokh, M.

    1990-01-01

    A discrete-time model reference adaptive control scheme is developed for trajectory tracking of robot manipulators. The scheme utilizes feedback, feedforward, and auxiliary signals, obtained from joint angle measurement through simple expressions. Hyperstability theory is utilized to derive the adaptation laws for the controller gain matrices. It is shown that trajectory tracking is achieved despite gross robot parameter variation and uncertainties. The method offers considerable design flexibility and enables the designer to improve the performance of the control system by adjusting free design parameters. The discrete-time adaptation algorithm is extremely simple and is therefore suitable for real-time implementation. Simulations and experimental results are given to demonstrate the performance of the scheme.

  1. Vibration suppression for large scale adaptive truss structures using direct output feedback control

    NASA Technical Reports Server (NTRS)

    Lu, Lyan-Ywan; Utku, Senol; Wada, Ben K.

    1993-01-01

    In this article, the vibration control of adaptive truss structures, where the control actuation is provided by length adjustable active members, is formulated as a direct output feedback control problem. A control method named Model Truncated Output Feedback (MTOF) is presented. The method allows the control feedback gain to be determined in a decoupled and truncated modal space in which only the critical vibration modes are retained. The on-board computation required by MTOF is minimal; thus, the method is favorable for the applications of vibration control of large scale structures. The truncation of the modal space inevitably introduces spillover effect during the control process. In this article, the effect is quantified in terms of active member locations, and it is shown that the optimal placement of active members, which minimizes the spillover effect (and thus, maximizes the control performance) can be sought. The problem of optimally selecting the locations of active members is also treated.

  2. Increasing autonomy of precision spacecraft using neural network adaptive control

    NASA Astrophysics Data System (ADS)

    Denoyer, Keith K.; Ninneman, R. Rory

    1999-01-01

    In recent years, there has been a significant interest in the use of adaptive methods for controlling structures in high precision aerospace applications. This is because adaptive methods offer the potential to autonomously adjust to system characteristics different from those modeled or seen in qualification testing. This is especially true of spacecraft, which are generally tested in a 1-g environment. Despite extensive research, it remains extremely difficult to predict on-orbit 0-g behavior. In addition, system dynamics often tend to be time varying. This can take the form of slow changes due to degradation of materials and aging of the spacecraft or sudden failures such as the loss of a sensor or actuator. These events become increasingly likely as spacecraft become more and more complex. By decreasing modeling and testing requirements, lowering operations and maintenance activities that require human intervention, and increasing reliability, adaptive methods have the potential to significantly reduce cost and increase performance of these systems. One class of adaptive control methods are those which utilize artificial neural networks. The use of neural networks has become increasingly mature in a number of areas such as image processing and speech recognition. However, despite a number of publications on the subject, very few instances exist where neural networks have actually been used in control and in particular, structural control applications. The United States Air Force Research Laboratory (AFRL) is currently engaged in advancing adaptive neural control technologies for application to precision space systems. This paper gives an overview of several past and current ground and space based adaptive neural control experiments.

  3. Mechanisms of motor adaptation in reactive balance control.

    PubMed

    Welch, Torrence D J; Ting, Lena H

    2014-01-01

    Balance control must be rapidly modified to provide stability in the face of environmental challenges. Although changes in reactive balance over repeated perturbations have been observed previously, only anticipatory postural adjustments preceding voluntary movements have been studied in the framework of motor adaptation and learning theory. Here, we hypothesized that adaptation occurs in task-level balance control during responses to perturbations due to central changes in the control of both anticipatory and reactive components of balance. Our adaptation paradigm consisted of a Training set of forward support-surface perturbations, a Reversal set of novel countermanding perturbations that reversed direction, and a Washout set identical to the Training set. Adaptation was characterized by a change in a motor variable from the beginning to the end of each set, the presence of aftereffects at the beginning of the Washout set when the novel perturbations were removed, and a return of the variable at the end of the Washout to a level comparable to the end of the Training set. Task-level balance performance was characterized by peak center of mass (CoM) excursion and velocity, which showed adaptive changes with repetitive trials. Only small changes in anticipatory postural control, characterized by body lean and background muscle activity were observed. Adaptation was found in the evoked long-latency muscular response, and also in the sensorimotor transformation mediating that response. Finally, in each set, temporal patterns of muscle activity converged towards an optimum predicted by a trade-off between maximizing motor performance and minimizing muscle activity. Our results suggest that adaptation in balance, as well as other motor tasks, is mediated by altering central sensitivity to perturbations and may be driven by energetic considerations. PMID:24810991

  4. Active Attenuation of Acoustic Noise Using Adaptive Armax Control.

    NASA Astrophysics Data System (ADS)

    Swanson, David Carl

    An adaptive auxiliary input autoregressive moving average (ARMAX) control system using the recursive least -squares lattice for system identification is developed for active control of dynamic systems. The closed-loop adaptive ARMAX control system is applied to active acoustic noise reduction in three-dimensional spaces. The structure of the ARMAX system is compared to that for duct cancellation systems, model-reference control systems, and the general field solution and is seen as a reasonable approach for active field control in the general case. The ARMAX system is derived for multiple inputs and outputs where the measured outputs are to be driven to desired waveforms with least -squares error using a multi-channel ARMAX lattice for recursive system identification. A significant reduction in complexity is obtained by neglecting the ARMAX zeros for the special case of active attenuation of non-dispersive acoustic waves. It is shown that using the least-squares lattice requires fewer multiplies, divides, additions, and subtractions than the recursive least-squares algorithm which is based on the matrix inversion lemma. Computational complexity is seen as an important issue in the application of adaptive ARMAX systems to active field control because the system must control relatively higher numbers of modes and frequencies in real time than are seen in industrial process plants for which the adaptive ARMAX systems were first developed using recursive least squares. Convergence requirements using the lattice system identification algorithm are the same as that for the recursive least squares algorithm in adaptive ARMAX system and are verified in numerical simulations using known ARMAX parameters. A real-time simulation of active attenuation of acoustic noise is presented using the blade-excited harmonics from a small axial flow fan. The adaptive ARMAX controller provides active attenuation for correlated spectral peaks but not for uncorrelated noise from turbulence

  5. Adaptive mechanism-based congestion control for networked systems

    NASA Astrophysics Data System (ADS)

    Liu, Zhi; Zhang, Yun; Chen, C. L. Philip

    2013-03-01

    In order to assure the communication quality in network systems with heavy traffic and limited bandwidth, a new ATRED (adaptive thresholds random early detection) congestion control algorithm is proposed for the congestion avoidance and resource management of network systems. Different to the traditional AQM (active queue management) algorithms, the control parameters of ATRED are not configured statically, but dynamically adjusted by the adaptive mechanism. By integrating with the adaptive strategy, ATRED alleviates the tuning difficulty of RED (random early detection) and shows a better control on the queue management, and achieve a more robust performance than RED under varying network conditions. Furthermore, a dynamic transmission control protocol-AQM control system using ATRED controller is introduced for the systematic analysis. It is proved that the stability of the network system can be guaranteed when the adaptive mechanism is finely designed. Simulation studies show the proposed ATRED algorithm achieves a good performance in varying network environments, which is superior to the RED and Gentle-RED algorithm, and providing more reliable service under varying network conditions.

  6. Adaptive discrete-time sliding-mode control of nonlinear systems described by Wiener models

    NASA Astrophysics Data System (ADS)

    Salhi, Houda; Kamoun, Samira; Essounbouli, Najib; Hamzaoui, Abdelaziz

    2016-03-01

    In this paper, we propose an adaptive control scheme that can be applied to nonlinear systems with unknown parameters. The considered class of nonlinear systems is described by the block-oriented models, specifically, the Wiener models. These models consist of dynamic linear blocks in series with static nonlinear blocks. The proposed adaptive control method is based on the inverse of the nonlinear function block and on the discrete-time sliding-mode controller. The parameters adaptation are performed using a new recursive parametric estimation algorithm. This algorithm is developed using the adjustable model method and the least squares technique. A recursive least squares (RLS) algorithm is used to estimate the inverse nonlinear function. A time-varying gain is proposed, in the discrete-time sliding mode controller, to reduce the chattering problem. The stability of the closed-loop nonlinear system, with the proposed adaptive control scheme, has been proved. An application to a pH neutralisation process has been carried out and the simulation results clearly show the effectiveness of the proposed adaptive control scheme.

  7. Adaptive control system having hedge unit and related apparatus and methods

    NASA Technical Reports Server (NTRS)

    Johnson, Eric Norman (Inventor); Calise, Anthony J. (Inventor)

    2007-01-01

    The invention includes an adaptive control system used to control a plant. The adaptive control system includes a hedge unit that receives at least one control signal and a plant state signal. The hedge unit generates a hedge signal based on the control signal, the plant state signal, and a hedge model including a first model having one or more characteristics to which the adaptive control system is not to adapt, and a second model not having the characteristic(s) to which the adaptive control system is not to adapt. The hedge signal is used in the adaptive control system to remove the effect of the characteristic from a signal supplied to an adaptation law unit of the adaptive control system so that the adaptive control system does not adapt to the characteristic in controlling the plant.

  8. Adaptive control system having hedge unit and related apparatus and methods

    NASA Technical Reports Server (NTRS)

    Johnson, Eric Norman (Inventor); Calise, Anthony J. (Inventor)

    2003-01-01

    The invention includes an adaptive control system used to control a plant. The adaptive control system includes a hedge unit that receives at least one control signal and a plant state signal. The hedge unit generates a hedge signal based on the control signal, the plant state signal, and a hedge model including a first model having one or more characteristics to which the adaptive control system is not to adapt, and a second model not having the characteristic(s) to which the adaptive control system is not to adapt. The hedge signal is used in the adaptive control system to remove the effect of the characteristic from a signal supplied to an adaptation law unit of the adaptive control system so that the adaptive control system does not adapt to the characteristic in controlling the plant.

  9. Adaptive fuzzy backstepping control for a class of switched nonlinear systems with actuator faults

    NASA Astrophysics Data System (ADS)

    Hou, Yingxue; Tong, Shaocheng; Li, Yongming

    2016-11-01

    This paper investigates the problem of fault-tolerant control (FTC) for a class of switched nonlinear systems. These systems are under arbitrary switchings and are subject to both lock-in-place and loss-of-effectiveness actuator faults. In the control design, fuzzy logic systems are used to identify the unknown switched nonlinear systems. Under the framework of the backstepping control design, FTC, fuzzy adaptive control and common Lyapunov function stability theory, an adaptive fuzzy control approach is developed. It is proved that the proposed control approach can guarantee that all the signals in the closed-loop switched system are semi-globally uniformly ultimately bounded (SGUUB) and the tracking error remains an adjustable neighbourhood of the origin. Two simulation examples are provided to illustrate the effectiveness of the proposed approach.

  10. Design of sewage treatment system by applying fuzzy adaptive PID controller

    NASA Astrophysics Data System (ADS)

    Jin, Liang-Ping; Li, Hong-Chan

    2013-03-01

    In the sewage treatment system, the dissolved oxygen concentration control, due to its nonlinear, time-varying, large time delay and uncertainty, is difficult to establish the exact mathematical model. While the conventional PID controller only works with good linear not far from its operating point, it is difficult to realize the system control when the operating point far off. In order to solve the above problems, the paper proposed a method which combine fuzzy control with PID methods and designed a fuzzy adaptive PID controller based on S7-300 PLC .It employs fuzzy inference method to achieve the online tuning for PID parameters. The control algorithm by simulation and practical application show that the system has stronger robustness and better adaptability.

  11. A Direct Adaptive Control Approach in the Presence of Model Mismatch

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh M.; Tao, Gang; Khong, Thuan

    2009-01-01

    This paper considers the problem of direct model reference adaptive control when the plant-model matching conditions are violated due to abnormal changes in the plant or incorrect knowledge of the plant's mathematical structure. The approach consists of direct adaptation of state feedback gains for state tracking, and simultaneous estimation of the plant-model mismatch. Because of the mismatch, the plant can no longer track the state of the original reference model, but may be able to track a new reference model that still provides satisfactory performance. The reference model is updated if the estimated plant-model mismatch exceeds a bound that is determined via robust stability and/or performance criteria. The resulting controller is a hybrid direct-indirect adaptive controller that offers asymptotic state tracking in the presence of plant-model mismatch as well as parameter deviations.

  12. Observed-Based Adaptive Fuzzy Tracking Control for Switched Nonlinear Systems With Dead-Zone.

    PubMed

    Tong, Shaocheng; Sui, Shuai; Li, Yongming

    2015-12-01

    In this paper, the problem of adaptive fuzzy output-feedback control is investigated for a class of uncertain switched nonlinear systems in strict-feedback form. The considered switched systems contain unknown nonlinearities, dead-zone, and immeasurable states. Fuzzy logic systems are utilized to approximate the unknown nonlinear functions, a switched fuzzy state observer is designed and thus the immeasurable states are obtained by it. By applying the adaptive backstepping design principle and the average dwell time method, an adaptive fuzzy output-feedback tracking control approach is developed. It is proved that the proposed control approach can guarantee that all the variables in the closed-loop system are bounded under a class of switching signals with average dwell time, and also that the system output can track a given reference signal as closely as possible. The simulation results are given to check the effectiveness of the proposed approach.

  13. Adaptive Failure Compensation for Aircraft Flight Control Using Engine Differentials: Regulation

    NASA Technical Reports Server (NTRS)

    Yu, Liu; Xidong, Tang; Gang, Tao; Joshi, Suresh M.

    2005-01-01

    The problem of using engine thrust differentials to compensate for rudder and aileron failures in aircraft flight control is addressed in this paper in a new framework. A nonlinear aircraft model that incorporates engine di erentials in the dynamic equations is employed and linearized to describe the aircraft s longitudinal and lateral motion. In this model two engine thrusts of an aircraft can be adjusted independently so as to provide the control flexibility for rudder or aileron failure compensation. A direct adaptive compensation scheme for asymptotic regulation is developed to handle uncertain actuator failures in the linearized system. A design condition is specified to characterize the system redundancy needed for failure compensation. The adaptive regulation control scheme is applied to the linearized model of a large transport aircraft in which the longitudinal and lateral motions are coupled as the result of using engine thrust differentials. Simulation results are presented to demonstrate the effectiveness of the adaptive compensation scheme.

  14. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  15. Adaptive control for space debris removal with uncertain kinematics, dynamics and states

    NASA Astrophysics Data System (ADS)

    Huang, Panfeng; Zhang, Fan; Meng, Zhongjie; Liu, Zhengxiong

    2016-11-01

    As the Tethered Space Robot is considered to be a promising solution for the Active Debris Removal, a lot of problems arise in the approaching, capturing and removing phases. Particularly, kinematics and dynamics parameters of the debris are unknown, and parts of the states are unmeasurable according to the specifics of tether, which is a tough problem for the target retrieval/de-orbiting. This work proposes a full adaptive control strategy for the space debris removal via a Tethered Space Robot with unknown kinematics, dynamics and part of the states. First we derive a dynamics model for the retrieval by treating the base satellite (chaser) and the unknown space debris (target) as rigid bodies in the presence of offsets, and involving the flexibility and elasticity of tether. Then, a full adaptive controller is presented including a control law, a dynamic adaption law, and a kinematic adaption law. A modified controller is also presented according to the peculiarities of this system. Finally, simulation results are presented to illustrate the performance of two proposed controllers.

  16. The design of digital-adaptive controllers for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.; Broussard, J. R.; Berry, P. W.

    1976-01-01

    Design procedures for VTOL automatic control systems have been developed and are presented. Using linear-optimal estimation and control techniques as a starting point, digital-adaptive control laws have been designed for the VALT Research Aircraft, a tandem-rotor helicopter which is equipped for fully automatic flight in terminal area operations. These control laws are designed to interface with velocity-command and attitude-command guidance logic, which could be used in short-haul VTOL operations. Developments reported here include new algorithms for designing non-zero-set-point digital regulators, design procedures for rate-limited systems, and algorithms for dynamic control trim setting.

  17. Model-free adaptive control of advanced power plants

    SciTech Connect

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  18. Ground adaptive standing controller for a powered transfemoral prosthesis.

    PubMed

    Lawson, Brian E; Varol, Huseyin Atakan; Goldfarb, Michael

    2011-01-01

    The scope of this work is the design and verification of a new standing controller for a powered knee and ankle prosthesis. The controller is based upon a finite-state impedance control approach previously developed by the authors. The controller provides a comprehensive standing behavior that incorporates ground adaptation for unlevel terrain. An amputee subject tested the controller with a powered prosthesis for a variety of standing conditions. Results indicate that the powered prosthesis can estimate the ground slope within ±1 degree over a range of ±15 degrees, and that it can provide appropriate joint impedances for standing on slopes within this range.

  19. Adaptive-Control Experiments On A Large Flexible Structure

    NASA Technical Reports Server (NTRS)

    Ih, Che-Hang C.; Bayard, David S.; Wang, Shyh J.; Eldred, Daniel B.

    1990-01-01

    Antennalike flexible structure built for research in advanced technology including suppression of vibrations and control of initial deflections. Structure instrumented with sensors and actuators connected to digital electronic control system, programmed with control algorithms to be tested. Particular attention in this research focused on direct model-reference adaptive-control algorithm based on command generator tracker theory. Built to exhibit multiple vibrational modes, low modal frequencies, and low structural damping. Made three-dimensional so complicated interactions among components of structure and control system investigated.

  20. Applications of active adaptive noise control to jet engines

    NASA Technical Reports Server (NTRS)

    Shoureshi, Rahmat; Brackney, Larry

    1993-01-01

    During phase 2 research on the application of active noise control to jet engines, the development of multiple-input/multiple-output (MIMO) active adaptive noise control algorithms and acoustic/controls models for turbofan engines were considered. Specific goals for this research phase included: (1) implementation of a MIMO adaptive minimum variance active noise controller; and (2) turbofan engine model development. A minimum variance control law for adaptive active noise control has been developed, simulated, and implemented for single-input/single-output (SISO) systems. Since acoustic systems tend to be distributed, multiple sensors, and actuators are more appropriate. As such, the SISO minimum variance controller was extended to the MIMO case. Simulation and experimental results are presented. A state-space model of a simplified gas turbine engine is developed using the bond graph technique. The model retains important system behavior, yet is of low enough order to be useful for controller design. Expansion of the model to include multiple stages and spools is also discussed.

  1. Rhetorical Dissent as an Adaptive Response to Classroom Problems: A Test of Protection Motivation Theory

    ERIC Educational Resources Information Center

    Bolkan, San; Goodboy, Alan K.

    2016-01-01

    Protection motivation theory (PMT) explains people's adaptive behavior in response to personal threats. In this study, PMT was used to predict rhetorical dissent episodes related to 210 student reports of perceived classroom problems. In line with theoretical predictions, a moderated moderation analysis revealed that students were likely to voice…

  2. Overcoming the "Walmart Syndrome": Adapting Problem-Based Management Education in East Asia

    ERIC Educational Resources Information Center

    Hallinger, Philip; Lu, Jiafang

    2012-01-01

    This paper explores design issues to be considered in adapting the problem-based learning (PBL) for use in the context of East Asian higher education and tests its instructional effectiveness in a Master of Management degree program at a graduate school of business (GSB) in Thailand. The research analyzes course evaluation data obtained from…

  3. Adaptation de maillage pour les problemes a surfaces libres en mecanique des fluides

    NASA Astrophysics Data System (ADS)

    Mokwinski, Yvan

    This Ph.D. thesis deals with mesh adaptivity for the numerical simulation of free surface problems in fluids mechanics. We study various aspects of the modeling and the numerical simulation of free surface flows. We use an Eulerian approach for the modeling of the dynamics of the interface. We opt for the pseudo-concentration method so that topologic changes do not add to the algorithmic complexity of the overall numerical strategy. The challenges related to the use of this interface capturing method are detailed and we propose a set of cures to improve the accuracy of the numerical computations when the methodology is not well chosen. Mesh adaptivity is a central component of the proposed methodology. A good mesh helps making the pseudo-concentration method competitive. We pursue three specific objectives in this thesis. To be able to model problems with surface tension, we developed a numerical methodology for the computation of capillary force. The developed methodology includes the reinitialization of the Eulerian marker to allow the accurate modeling of the physics of the problems under study. Finally, in order to perform mesh adaptivity to transient simulations, we propose a methodology which includes the definition of appropriate metrics, the interpolation of finite element functions between meshes and the introduction of a predictor in the mesh adaptivity process. The numerical simulation of verification problems involving the modeling of the dynamics of free surfaces illustrates the contributions.

  4. Qualitative adaptation of child behaviour problem instruments in a developing-country setting.

    PubMed

    Khan, B; Avan, B I

    2014-07-08

    A key barrier to epidemiological research on child behaviour problems in developing countries is the lack of culturally relevant, internationally recognized psychometric instruments. This paper proposes a model for the qualitative adaptation of psychometric instruments in developing-country settings and presents a case study of the adaptation of 3 internationally recognized instruments in Pakistan: the Child Behavior Checklist, the Youth Self-Report and the Teacher's Report Form. This model encompassed a systematic procedure with 6 distinct phases to minimize bias and ensure equivalence with the original instruments: selection, deliberation, alteration, feasibility, testing and formal approval. The process was conducted in collaboration with the instruments' developer. A multidisciplinary working group of experts identified equivalence issues and suggested modifications. Focus group discussions with informants highlighted comprehension issues. Subsequently modified instruments were thoroughly tested. Finally, the instruments' developer approval further validated the qualitative adaptation. The study proposes a rigorous and systematic model to effectively achieve cultural adaptation of psychometric instruments.

  5. Fault-Tolerant Trajectory Tracking of Unmanned Aerial Vehicles Using Immunity-Based Model Reference Adaptive Control

    NASA Astrophysics Data System (ADS)

    Wilburn, Brenton K.

    This dissertation presents the design, development, and simulation testing of an adaptive trajectory tracking algorithm capable of compensating for various aircraft subsystem failures and upset conditions. A comprehensive adaptive control framework, here within referred to as the immune model reference adaptive control (IMRAC) algorithm, is developed by synergistically merging core concepts from the biologically- inspired artificial immune system (AIS) paradigm with more traditional optimal and adaptive control techniques. In particular, a model reference adaptive control (MRAC) algorithm is enhanced with the detection and learning capabilities of a novel, artificial neural network augmented AIS scheme. With the given modifications, the MRAC scheme is capable of detecting and identifying a given failure or upset condition, learning how to adapt to the problem, responding in a manner specific to the given failure condition, and retaining the learning parameters for quicker adaptation to subsequent failures of the same nature. The IMRAC algorithm developed in this dissertation is applicable to a wide range of control problems. However, the proposed methodology is demonstrated in simulation for an unmanned aerial vehicle. The results presented show that the IMRAC algorithm is an effective and valuable extension to traditional optimal and adaptive control techniques. The implementation of this methodology can potentially have significant impacts on the operational safety of many complex systems.

  6. Adaptive backstepping slide mode control of pneumatic position servo system

    NASA Astrophysics Data System (ADS)

    Ren, Haipeng; Fan, Juntao

    2016-06-01

    With the price decreasing of the pneumatic proportional valve and the high performance micro controller, the simple structure and high tracking performance pneumatic servo system demonstrates more application potential in many fields. However, most existing control methods with high tracking performance need to know the model information and to use pressure sensor. This limits the application of the pneumatic servo system. An adaptive backstepping slide mode control method is proposed for pneumatic position servo system. The proposed method designs adaptive slide mode controller using backstepping design technique. The controller parameter adaptive law is derived from Lyapunov analysis to guarantee the stability of the system. A theorem is testified to show that the state of closed-loop system is uniformly bounded, and the closed-loop system is stable. The advantages of the proposed method include that system dynamic model parameters are not required for the controller design, uncertain parameters bounds are not need, and the bulk and expensive pressure sensor is not needed as well. Experimental results show that the designed controller can achieve better tracking performance, as compared with some existing methods.

  7. A Conditional Exposure Control Method for Multidimensional Adaptive Testing

    ERIC Educational Resources Information Center

    Finkelman, Matthew; Nering, Michael L.; Roussos, Louis A.

    2009-01-01

    In computerized adaptive testing (CAT), ensuring the security of test items is a crucial practical consideration. A common approach to reducing item theft is to define maximum item exposure rates, i.e., to limit the proportion of examinees to whom a given item can be administered. Numerous methods for controlling exposure rates have been proposed…

  8. Controlling Item Exposure Rates in a Realistic Adaptive Testing Paradigm.

    ERIC Educational Resources Information Center

    Stocking, Martha L.

    In the context of paper and pencil testing, the frequency of the exposure of items is usually controlled through policies that regulate both the reuse of test forms and the frequency with which a candidate may retake the test. In the context of computerized adaptive testing, where item pools are large and expensive to produce and testing can be on…

  9. Adaptive Insecure Attachment and Resource Control Strategies during Middle Childhood

    ERIC Educational Resources Information Center

    Chen, Bin-Bin; Chang, Lei

    2012-01-01

    By integrating the life history theory of attachment with resource control theory, the current study examines the hypothesis that insecure attachment styles reorganized in middle childhood are alternative adaptive strategies used to prepare for upcoming competition with the peer group. A sample of 654 children in the second through seventh grades…

  10. Rapid inversion of velocity map images for adaptive femtosecond control

    NASA Astrophysics Data System (ADS)

    Rallis, C.; Andrews, P.; Averin, R.; Jochim, B.; Gregerson, N.; Wells, E.; Zohrabi, M.; de, S.; Gaire, B.; Carnes, K. D.; Ben-Itzhak, I.; Bergues, B.; Kling, M. F.

    2011-05-01

    We report techniques developed to utilize three dimensional momentum information as feedback in adaptive femtosecond control of molecular systems. Velocity map imaging of the dissociating ions following interaction with an intense ultrafast laser pulse provides raw data. In order to recover momentum information, however, the two-dimensional image must be inverted to reconstruct the three-dimensional photofragment distribution. Using a variation of the onion-peeling technique, we invert 1054 × 1040 pixel images in under 1 second. This rapid inversion allows a slice of the momentum distribution to be used as feedback in a closed-loop adaptive control scheme. We report techniques developed to utilize three dimensional momentum information as feedback in adaptive femtosecond control of molecular systems. Velocity map imaging of the dissociating ions following interaction with an intense ultrafast laser pulse provides raw data. In order to recover momentum information, however, the two-dimensional image must be inverted to reconstruct the three-dimensional photofragment distribution. Using a variation of the onion-peeling technique, we invert 1054 × 1040 pixel images in under 1 second. This rapid inversion allows a slice of the momentum distribution to be used as feedback in a closed-loop adaptive control scheme. This work supported by National Science Foundation award PHY-0969687 and the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Science, Office of Science, US Department of Energy.

  11. Global adaptive output feedback control for a class of nonlinear time-delay systems.

    PubMed

    Zhai, Jun-yong; Zha, Wen-ting

    2014-01-01

    This paper addresses the problem of global output feedback control for a class of nonlinear time-delay systems. The nonlinearities are dominated by a triangular form satisfying linear growth condition in the unmeasurable states with an unknown growth rate. With a change of coordinates, a linear-like controller is constructed, which avoids the repeated derivatives of the nonlinearities depending on the observer states and the dynamic gain in backstepping approach and therefore, simplifies the design procedure. Using the idea of universal control, we explicitly construct a universal-type adaptive output feedback controller which globally regulates all the states of the nonlinear time-delay systems.

  12. A Comprehensive Robust Adaptive Controller for Gust Load Alleviation

    PubMed Central

    Quagliotti, Fulvia

    2014-01-01

    The objective of this paper is the implementation and validation of an adaptive controller for aircraft gust load alleviation. The contribution of this paper is the design of a robust controller that guarantees the reduction of the gust loads, even when the nominal conditions change. Some preliminary results are presented, considering the symmetric aileron deflection as control device. The proposed approach is validated on subsonic transport aircraft for different mass and flight conditions. Moreover, if the controller parameters are tuned for a specific gust model, even if the gust frequency changes, no parameter retuning is required. PMID:24688411

  13. Adaptive second-order sliding mode control with uncertainty compensation

    NASA Astrophysics Data System (ADS)

    Bartolini, G.; Levant, A.; Pisano, A.; Usai, E.

    2016-09-01

    This paper endows the second-order sliding mode control (2-SMC) approach with additional capabilities of learning and control adaptation. We present a 2-SMC scheme that estimates and compensates for the uncertainties affecting the system dynamics. It also adjusts the discontinuous control effort online, so that it can be reduced to arbitrarily small values. The proposed scheme is particularly useful when the available information regarding the uncertainties is conservative, and the classical `fixed-gain' SMC would inevitably lead to largely oversized discontinuous control effort. Benefits from the viewpoint of chattering reduction are obtained, as confirmed by computer simulations.

  14. Adaptive mesh refinement techniques for the immersed interface method applied to flow problems.

    PubMed

    Li, Zhilin; Song, Peng

    2013-06-01

    In this paper, we develop an adaptive mesh refinement strategy of the Immersed Interface Method for flow problems with a moving interface. The work is built on the AMR method developed for two-dimensional elliptic interface problems in the paper [12] (CiCP, 12(2012), 515-527). The interface is captured by the zero level set of a Lipschitz continuous function φ(x, y, t). Our adaptive mesh refinement is built within a small band of |φ(x, y, t)| ≤ δ with finer Cartesian meshes. The AMR-IIM is validated for Stokes and Navier-Stokes equations with exact solutions, moving interfaces driven by the surface tension, and classical bubble deformation problems. A new simple area preserving strategy is also proposed in this paper for the level set method.

  15. Adaptive mesh refinement techniques for the immersed interface method applied to flow problems

    PubMed Central

    Li, Zhilin; Song, Peng

    2013-01-01

    In this paper, we develop an adaptive mesh refinement strategy of the Immersed Interface Method for flow problems with a moving interface. The work is built on the AMR method developed for two-dimensional elliptic interface problems in the paper [12] (CiCP, 12(2012), 515–527). The interface is captured by the zero level set of a Lipschitz continuous function φ(x, y, t). Our adaptive mesh refinement is built within a small band of |φ(x, y, t)| ≤ δ with finer Cartesian meshes. The AMR-IIM is validated for Stokes and Navier-Stokes equations with exact solutions, moving interfaces driven by the surface tension, and classical bubble deformation problems. A new simple area preserving strategy is also proposed in this paper for the level set method. PMID:23794763

  16. Adaptive Jacobian Fuzzy Attitude Control for Flexible Spacecraft Combined Attitude and Sun Tracking System

    NASA Astrophysics Data System (ADS)

    Chak, Yew-Chung; Varatharajoo, Renuganth

    2016-07-01

    Many spacecraft attitude control systems today use reaction wheels to deliver precise torques to achieve three-axis attitude stabilization. However, irrecoverable mechanical failure of reaction wheels could potentially lead to mission interruption or total loss. The electrically-powered Solar Array Drive Assemblies (SADA) are usually installed in the pitch axis which rotate the solar arrays to track the Sun, can produce torques to compensate for the pitch-axis wheel failure. In addition, the attitude control of a flexible spacecraft poses a difficult problem. These difficulties include the strong nonlinear coupled dynamics between the rigid hub and flexible solar arrays, and the imprecisely known system parameters, such as inertia matrix, damping ratios, and flexible mode frequencies. In order to overcome these drawbacks, the adaptive Jacobian tracking fuzzy control is proposed for the combined attitude and sun-tracking control problem of a flexible spacecraft during attitude maneuvers in this work. For the adaptation of kinematic and dynamic uncertainties, the proposed scheme uses an adaptive sliding vector based on estimated attitude velocity via approximate Jacobian matrix. The unknown nonlinearities are approximated by deriving the fuzzy models with a set of linguistic If-Then rules using the idea of sector nonlinearity and local approximation in fuzzy partition spaces. The uncertain parameters of the estimated nonlinearities and the Jacobian matrix are being adjusted online by an adaptive law to realize feedback control. The attitude of the spacecraft can be directly controlled with the Jacobian feedback control when the attitude pointing trajectory is designed with respect to the spacecraft coordinate frame itself. A significant feature of this work is that the proposed adaptive Jacobian tracking scheme will result in not only the convergence of angular position and angular velocity tracking errors, but also the convergence of estimated angular velocity to

  17. Adaptive inverse control for rotorcraft vibration reduction. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Jacklin, S. A.

    1985-01-01

    The Least Mean Square (LMS) algorithm is extended to solve the multiple-input, multiple-output problem of alleviating N/Rev helicopter fuselage vibration by means of adaptive inverse control. A frequency domain locally linear model is used to represent the transfer matrix relating the high harmonic pitch control inputs to the harmonic vibration outputs to be controlled. By using the inverse matrix as the controller gain matrix, an adaptive inverse regulator is formed to alleviate the N/Rev vibration. The stability and rate of convergence properties of the extended LMS algorithm are discussed. It is shown that the stability ranges for the elements of the stability gain matrix are directly related to the eigenvalues of the vibration signal information matrix for the learning phase, but not for the control phase. The overall conclusion is that the LMS adaptive inverse control method can form a robust vibration control system, but will require some tuning of the input sensor gains, the stability gain matrix, and the amount of control relaxation to be used. The learning curve of the controller during the learning phase is shown to be quantitatively close to that predicted by averaging the learning curves of the normal modes. It is shown that the best selections of the stability gain matrix elements and the amount of control relaxation is basically a compromise between slow, stable convergence and fast convergence with increased possibility of unstable identification.

  18. An adaptation of the Interpersonal Problem Areas Rating Scale: pilot and interrater agreement study

    PubMed Central

    de Andrade, Ana Claudia Fontes; Frank, Ellen; Neto, Francisco Lotufo; Houck, Patricia R

    2012-01-01

    Objective This article describes the adaptation of a rating scale of interpersonal psychotherapy problem areas to include a fifth problem area appropriate to bipolar disorder and an interrater agreement study in identifying interpersonal problem areas and selecting a primary treatment focus if patients were to engage in treatment. Method Five research interpersonal psychotherapists assessed nine audiotapes of a single interview with five bipolar and four unipolar patients in which the interpersonal inventory and identification of problem areas were undertaken. Results Raters agreed on presence and absence of problem areas in seven tapes. Kappas for identification of problem areas were 1.00 (grief), 0.77 (role dispute), 0.61 (role transition), 0.57 (interpersonal deficits) and 1.00 (loss of healthy self). Kappa for agreement on a primary clinical focus if patients were to engage in interpersonal psychotherapy treatment was 0.64. Conclusions The adaptation of the original scale to include an area pertinent to bipolar disorder proved to be applicable and relevant for use with this population. The results show substantial interrater agreement in identifying problem areas and potential treatment focus. PMID:19142412

  19. F-8C adaptive control law refinement and software development

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Stein, G.

    1981-01-01

    An explicit adaptive control algorithm based on maximum likelihood estimation of parameters was designed. To avoid iterative calculations, the algorithm uses parallel channels of Kalman filters operating at fixed locations in parameter space. This algorithm was implemented in NASA/DFRC's Remotely Augmented Vehicle (RAV) facility. Real-time sensor outputs (rate gyro, accelerometer, surface position) are telemetered to a ground computer which sends new gain values to an on-board system. Ground test data and flight records were used to establish design values of noise statistics and to verify the ground-based adaptive software.

  20. Photonic lantern adaptive spatial mode control in LMA fiber amplifiers.

    PubMed

    Montoya, Juan; Aleshire, Chris; Hwang, Christopher; Fontaine, Nicolas K; Velázquez-Benítez, Amado; Martz, Dale H; Fan, T Y; Ripin, Dan

    2016-02-22

    We demonstrate adaptive-spatial mode control (ASMC) in few-moded double-clad large mode area (LMA) fiber amplifiers by using an all-fiber-based photonic lantern. Three single-mode fiber inputs are used to adaptively inject the appropriate superposition of input modes in a multimode gain fiber to achieve the desired mode at the output. By actively adjusting the relative phase of the single-mode inputs, near-unity coherent combination resulting in a single fundamental mode at the output is achieved.

  1. 3D positional control of magnetic levitation system using adaptive control: improvement of positioning control in horizontal plane

    NASA Astrophysics Data System (ADS)

    Nishino, Toshimasa; Fujitani, Yasuhiro; Kato, Norihiko; Tsuda, Naoaki; Nomura, Yoshihiko; Matsui, Hirokazu

    2012-01-01

    The objective of this paper is to establish a technique that levitates and conveys a hand, a kind of micro-robot, by applying magnetic forces: the hand is assumed to have a function of holding and detaching the objects. The equipment to be used in our experiments consists of four pole-pieces of electromagnets, and is expected to work as a 4DOF drive unit within some restricted range of 3D space: the three DOF are corresponding to 3D positional control and the remaining one DOF, rotational oscillation damping control. Having used the same equipment, Khamesee et al. had manipulated the impressed voltages on the four electric magnetics by a PID controller by the use of the feedback signal of the hand's 3D position, the controlled variable. However, in this system, there were some problems remaining: in the horizontal direction, when translating the hand out of restricted region, positional control performance was suddenly degraded. The authors propose a method to apply an adaptive control to the horizontal directional control. It is expected that the technique to be presented in this paper contributes not only to the improvement of the response characteristic but also to widening the applicable range in the horizontal directional control.

  2. Stability of adaptive control of a light beam in the presence of nonstationary thermal blooming in a moving medium

    SciTech Connect

    Egorov, K.D.

    1988-06-01

    The adaptive control problem for a nonlinearly propagating light beam in a moving atmosphere presupposes continuous optimization of the beam parameters while the characteristics of the medium are varying. If the time scales of such variations are comparable to the characteristic times for the establishment of a thermal lens along the ray path, the beam can be controlled under highly nonstationary propagation conditions. We investigate the mechanism of stability loss during adaptive focusing of a light beam subject to wind refraction. In the aberrationless approximation, we examine the dynamics of beam parameters controlled by adaptive systems capable of operating at different speeds.

  3. Nucleo-olivary inhibition balances the interaction between the reactive and adaptive layers in motor control.

    PubMed

    Herreros, Ivan; Verschure, Paul F M J

    2013-11-01

    In the acquisition of adaptive motor reflexes to aversive stimuli, the cerebellar output fulfills a double purpose: it controls a motor response and it relays a sensory prediction. However, the question of how these two apparently incompatible goals might be achieved by the same cerebellar area remains open. Here we propose a solution where the inhibition of the Inferior Olive (IO) by the cerebellar Deep Nuclei (DN) translates the motor command signal into a sensory prediction allowing a single cerebellar area to simultaneously tackle both aspects of the problem: execution and prediction. We demonstrate that having a graded error signal, the gain of the Nucleo-Olivary Inhibition (NOI) balances the generation of the response between the cerebellar and the reflexive controllers or, in other words, between the adaptive and the reactive layers of behavior. Moreover, we show that the resulting system is fully autonomous and can either acquire or erase adaptive responses according to their utility.

  4. Adaptive optimal control of highly dissipative nonlinear spatially distributed processes with neuro-dynamic programming.

    PubMed

    Luo, Biao; Wu, Huai-Ning; Li, Han-Xiong

    2015-04-01

    Highly dissipative nonlinear partial differential equations (PDEs) are widely employed to describe the system dynamics of industrial spatially distributed processes (SDPs). In this paper, we consider the optimal control problem of the general highly dissipative SDPs, and propose an adaptive optimal control approach based on neuro-dynamic programming (NDP). Initially, Karhunen-Loève decomposition is employed to compute empirical eigenfunctions (EEFs) of the SDP based on the method of snapshots. These EEFs together with singular perturbation technique are then used to obtain a finite-dimensional slow subsystem of ordinary differential equations that accurately describes the dominant dynamics of the PDE system. Subsequently, the optimal control problem is reformulated on the basis of the slow subsystem, which is further converted to solve a Hamilton-Jacobi-Bellman (HJB) equation. HJB equation is a nonlinear PDE that has proven to be impossible to solve analytically. Thus, an adaptive optimal control method is developed via NDP that solves the HJB equation online using neural network (NN) for approximating the value function; and an online NN weight tuning law is proposed without requiring an initial stabilizing control policy. Moreover, by involving the NN estimation error, we prove that the original closed-loop PDE system with the adaptive optimal control policy is semiglobally uniformly ultimately bounded. Finally, the developed method is tested on a nonlinear diffusion-convection-reaction process and applied to a temperature cooling fin of high-speed aerospace vehicle, and the achieved results show its effectiveness.

  5. Adaptive optimal control of highly dissipative nonlinear spatially distributed processes with neuro-dynamic programming.

    PubMed

    Luo, Biao; Wu, Huai-Ning; Li, Han-Xiong

    2015-04-01

    Highly dissipative nonlinear partial differential equations (PDEs) are widely employed to describe the system dynamics of industrial spatially distributed processes (SDPs). In this paper, we consider the optimal control problem of the general highly dissipative SDPs, and propose an adaptive optimal control approach based on neuro-dynamic programming (NDP). Initially, Karhunen-Loève decomposition is employed to compute empirical eigenfunctions (EEFs) of the SDP based on the method of snapshots. These EEFs together with singular perturbation technique are then used to obtain a finite-dimensional slow subsystem of ordinary differential equations that accurately describes the dominant dynamics of the PDE system. Subsequently, the optimal control problem is reformulated on the basis of the slow subsystem, which is further converted to solve a Hamilton-Jacobi-Bellman (HJB) equation. HJB equation is a nonlinear PDE that has proven to be impossible to solve analytically. Thus, an adaptive optimal control method is developed via NDP that solves the HJB equation online using neural network (NN) for approximating the value function; and an online NN weight tuning law is proposed without requiring an initial stabilizing control policy. Moreover, by involving the NN estimation error, we prove that the original closed-loop PDE system with the adaptive optimal control policy is semiglobally uniformly ultimately bounded. Finally, the developed method is tested on a nonlinear diffusion-convection-reaction process and applied to a temperature cooling fin of high-speed aerospace vehicle, and the achieved results show its effectiveness. PMID:25794375

  6. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Montenegro, Justino (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of Field Programmable Gate Arrays (FPGA's) in the hardware implementation of fast digital signal processing functions. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used Proportional-Integral-Derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a Digital Signal Processor (DSP) device or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using DSP devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, Pulse Width Modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacemap. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive-control algorithm

  7. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Monenegro, Justino (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used proportional-integral-derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM-based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a DSP (Digital Signal Processor) or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSP) devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. An alternative is required for compact implementation of such functionality to withstand the harsh environment

  8. Fixed gain and adaptive techniques for rotorcraft vibration control

    NASA Technical Reports Server (NTRS)

    Roy, R. H.; Saberi, H. A.; Walker, R. A.

    1985-01-01

    The results of an analysis effort performed to demonstrate the feasibility of employing approximate dynamical models and frequency shaped cost functional control law desgin techniques for helicopter vibration suppression are presented. Both fixed gain and adaptive control designs based on linear second order dynamical models were implemented in a detailed Rotor Systems Research Aircraft (RSRA) simulation to validate these active vibration suppression control laws. Approximate models of fuselage flexibility were included in the RSRA simulation in order to more accurately characterize the structural dynamics. The results for both the fixed gain and adaptive approaches are promising and provide a foundation for pursuing further validation in more extensive simulation studies and in wind tunnel and/or flight tests.

  9. Network Adaptive Deadband: NCS Data Flow Control for Shared Networks

    PubMed Central

    Díaz-Cacho, Miguel; Delgado, Emma; Prieto, José A. G.; López, Joaquín

    2012-01-01

    This paper proposes a new middleware solution called Network Adaptive Deadband (NAD) for long time operation of Networked Control Systems (NCS) through the Internet or any shared network based on IP technology. The proposed middleware takes into account the network status and the NCS status, to improve the global system performance and to share more effectively the network by several NCS and sensor/actuator data flows. Relationship between network status and NCS status is solved with a TCP-friendly transport flow control protocol and the deadband concept, relating deadband value and transmission throughput. This creates a deadband-based flow control solution. Simulation and experiments in shared networks show that the implemented network adaptive deadband has better performance than an optimal constant deadband solution in the same circumstances. PMID:23208556

  10. Decentralized adaptive control of robot manipulators with robust stabilization design

    NASA Technical Reports Server (NTRS)

    Yuan, Bau-San; Book, Wayne J.

    1988-01-01

    Due to geometric nonlinearities and complex dynamics, a decentralized technique for adaptive control for multilink robot arms is attractive. Lyapunov-function theory for stability analysis provides an approach to robust stabilization. Each joint of the arm is treated as a component subsystem. The adaptive controller is made locally stable with servo signals including proportional and integral gains. This results in the bound on the dynamical interactions with other subsystems. A nonlinear controller which stabilizes the system with uniform boundedness is used to improve the robustness properties of the overall system. As a result, the robot tracks the reference trajectories with convergence. This strategy makes computation simple and therefore facilitates real-time implementation.

  11. Adaptive Control of a Transport Aircraft Using Differential Thrust

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vahram; Krishnakumar, Kalmanje; Nguyen, Nhan

    2009-01-01

    The paper presents an adaptive control technique for a damaged large transport aircraft subject to unknown atmospheric disturbances such as wind gust or turbulence. It is assumed that the damage results in vertical tail loss with no rudder authority, which is replaced with a differential thrust input. The proposed technique uses the adaptive prediction based control design in conjunction with the time scale separation principle, based on the singular perturbation theory. The application of later is necessitated by the fact that the engine response to a throttle command is substantially slow that the angular rate dynamics of the aircraft. It is shown that this control technique guarantees the stability of the closed-loop system and the tracking of a given reference model. The simulation example shows the benefits of the approach.

  12. Adaptation with disturbance attenuation in nonlinear control systems

    SciTech Connect

    Basar, T.

    1997-12-31

    We present an optimization-based adaptive controller design for nonlinear systems exhibiting parametric as well as functional uncertainty. The approach involves the formulation of an appropriate cost functional that places positive weight on deviations from the achievement of desired objectives (such as tracking of a reference trajectory while the system exhibits good transient performance) and negative weight on the energy of the uncertainty. This cost functional also translates into a disturbance attenuation inequality which quantifies the effect of the presence of uncertainty on the desired objective, which in turn yields an interpretation for the optimizing control as one that optimally attenuates the disturbance, viewed as the collection of unknown parameters and unknown signals entering the system dynamics. In addition to this disturbance attenuation property, the controllers obtained also feature adaptation in the sense that they help with identification of the unknown parameters, even though this has not been set as the primary goal of the design. In spite of this adaptation/identification role, the controllers obtained are not of certainty-equivalent type, which means that the identification and the control phases of the design are not decoupled.

  13. VSS Robust Adaptive Control Including a Self-Tuning Controller for a Rotary Inverted Pendulum

    NASA Astrophysics Data System (ADS)

    Hirata, Hiroshi; Takabe, Tomohiro; Anabuki, Masatoshi; Ouchi, Shigeto

    So many papers with respect to the stabilization of the inverted pendulum are reported, because it is typically unstable system and is well used as example to verify many control theories. However, few approaches consider the inverted pendulum as unknown parameter system. This paper proposes a new VSS (Variable Structure System) robust adaptive control system including a self-tuning controller for a rotary inverted pendulum whose whole parameters are unknown. The control system prepares two kinds of adaptive controllers, and the stabilization of inverted pendulum is achieved by separating the system to two parts of the pendulum and the rotary arm. The rotational angle of the pendulum is stabilized by tracking type's VSS adaptive control method, and the rotary arm is simultaneously stabilized by STC (self-tuning control) system that assures the boundary reference angle of the pendulum. It is then not sufficient to construct STC system by using only adjustable parameter of VSS adaptive control system. Therefore, whole basic parameters are recursively estimated in order to realize STC system by using least squares parameter adaptive law, and it is achieved by superposing the perturbation signal to the stable adaptive control input on limited short interval. Furthermore, STC system designs LQ controller by developing an efficient QR method for real time operation. Finally, the validity of the proposed system is demonstrated through some numerical simulations and practical experimental result.

  14. Beaconless adaptive-optics technique for HEL beam control

    NASA Astrophysics Data System (ADS)

    Khizhnyak, Anatoliy; Markov, Vladimir

    2016-05-01

    Effective performance of forthcoming laser systems capable of power delivery on a distant target requires an adaptive optics system to correct atmospheric perturbations on the laser beam. The turbulence-induced effects are responsible for beam wobbling, wandering, and intensity scintillation, resulting in degradation of the beam quality and power density on the target. Adaptive optics methods are used to compensate for these negative effects. In its turn, operation of the AOS system requires a reference wave that can be generated by the beacon on the target. This report discusses a beaconless approach for wavefront correction with its performance based on the detection of the target-scattered light. Postprocessing of the beacon-generated light field enables retrieval and detailed characterization of the turbulence-perturbed wavefront -data that is essential to control the adaptive optics module of a high-power laser system.

  15. Investigation of the Multiple Method Adaptive Control (MMAC) method for flight control systems

    NASA Technical Reports Server (NTRS)

    Athans, M.; Baram, Y.; Castanon, D.; Dunn, K. P.; Green, C. S.; Lee, W. H.; Sandell, N. R., Jr.; Willsky, A. S.

    1979-01-01

    The stochastic adaptive control of the NASA F-8C digital-fly-by-wire aircraft using the multiple model adaptive control (MMAC) method is presented. The selection of the performance criteria for the lateral and the longitudinal dynamics, the design of the Kalman filters for different operating conditions, the identification algorithm associated with the MMAC method, the control system design, and simulation results obtained using the real time simulator of the F-8 aircraft at the NASA Langley Research Center are discussed.

  16. Parameter Estimation Analysis for Hybrid Adaptive Fault Tolerant Control

    NASA Astrophysics Data System (ADS)

    Eshak, Peter B.

    Research efforts have increased in recent years toward the development of intelligent fault tolerant control laws, which are capable of helping the pilot to safely maintain aircraft control at post failure conditions. Researchers at West Virginia University (WVU) have been actively involved in the development of fault tolerant adaptive control laws in all three major categories: direct, indirect, and hybrid. The first implemented design to provide adaptation was a direct adaptive controller, which used artificial neural networks to generate augmentation commands in order to reduce the modeling error. Indirect adaptive laws were implemented in another controller, which utilized online PID to estimate and update the controller parameter. Finally, a new controller design was introduced, which integrated both direct and indirect control laws. This controller is known as hybrid adaptive controller. This last control design outperformed the two earlier designs in terms of less NNs effort and better tracking quality. The performance of online PID has an important role in the quality of the hybrid controller; therefore, the quality of the estimation will be of a great importance. Unfortunately, PID is not perfect and the online estimation process has some inherited issues; the online PID estimates are primarily affected by delays and biases. In order to ensure updating reliable estimates to the controller, the estimator consumes some time to converge. Moreover, the estimator will often converge to a biased value. This thesis conducts a sensitivity analysis for the estimation issues, delay and bias, and their effect on the tracking quality. In addition, the performance of the hybrid controller as compared to direct adaptive controller is explored. In order to serve this purpose, a simulation environment in MATLAB/SIMULINK has been created. The simulation environment is customized to provide the user with the flexibility to add different combinations of biases and delays to

  17. Direct model reference adaptive control of a flexible robotic manipulator

    NASA Technical Reports Server (NTRS)

    Meldrum, D. R.

    1985-01-01

    Quick, precise control of a flexible manipulator in a space environment is essential for future Space Station repair and satellite servicing. Numerous control algorithms have proven successful in controlling rigid manipulators wih colocated sensors and actuators; however, few have been tested on a flexible manipulator with noncolocated sensors and actuators. In this thesis, a model reference adaptive control (MRAC) scheme based on command generator tracker theory is designed for a flexible manipulator. Quicker, more precise tracking results are expected over nonadaptive control laws for this MRAC approach. Equations of motion in modal coordinates are derived for a single-link, flexible manipulator with an actuator at the pinned-end and a sensor at the free end. An MRAC is designed with the objective of controlling the torquing actuator so that the tip position follows a trajectory that is prescribed by the reference model. An appealing feature of this direct MRAC law is that it allows the reference model to have fewer states than the plant itself. Direct adaptive control also adjusts the controller parameters directly with knowledge of only the plant output and input signals.

  18. Improved Adaptive-Reinforcement Learning Control for morphing unmanned air vehicles.

    PubMed

    Valasek, John; Doebbler, James; Tandale, Monish D; Meade, Andrew J

    2008-08-01

    This paper presents an improved Adaptive-Reinforcement Learning Control methodology for the problem of unmanned air vehicle morphing control. The reinforcement learning morphing control function that learns the optimal shape change policy is integrated with an adaptive dynamic inversion control trajectory tracking function. An episodic unsupervised learning simulation using the Q-learning method is developed to replace an earlier and less accurate Actor-Critic algorithm. Sequential Function Approximation, a Galerkin-based scattered data approximation scheme, replaces a K-Nearest Neighbors (KNN) method and is used to generalize the learning from previously experienced quantized states and actions to the continuous state-action space, all of which may not have been experienced before. The improved method showed smaller errors and improved learning of the optimal shape compared to the KNN. PMID:18632393

  19. Improved Adaptive-Reinforcement Learning Control for morphing unmanned air vehicles.

    PubMed

    Valasek, John; Doebbler, James; Tandale, Monish D; Meade, Andrew J

    2008-08-01

    This paper presents an improved Adaptive-Reinforcement Learning Control methodology for the problem of unmanned air vehicle morphing control. The reinforcement learning morphing control function that learns the optimal shape change policy is integrated with an adaptive dynamic inversion control trajectory tracking function. An episodic unsupervised learning simulation using the Q-learning method is developed to replace an earlier and less accurate Actor-Critic algorithm. Sequential Function Approximation, a Galerkin-based scattered data approximation scheme, replaces a K-Nearest Neighbors (KNN) method and is used to generalize the learning from previously experienced quantized states and actions to the continuous state-action space, all of which may not have been experienced before. The improved method showed smaller errors and improved learning of the optimal shape compared to the KNN.

  20. Rule-based mechanisms of learning for intelligent adaptive flight control

    NASA Technical Reports Server (NTRS)

    Handelman, David A.; Stengel, Robert F.

    1990-01-01

    How certain aspects of human learning can be used to characterize learning in intelligent adaptive control systems is investigated. Reflexive and declarative memory and learning are described. It is shown that model-based systems-theoretic adaptive control methods exhibit attributes of reflexive learning, whereas the problem-solving capabilities of knowledge-based systems of artificial intelligence are naturally suited for implementing declarative learning. Issues related to learning in knowledge-based control systems are addressed, with particular attention given to rule-based systems. A mechanism for real-time rule-based knowledge acquisition is suggested, and utilization of this mechanism within the context of failure diagnosis for fault-tolerant flight control is demonstrated.

  1. Performance-Based Adaptive Fuzzy Tracking Control for Networked Industrial Processes.

    PubMed

    Wang, Tong; Qiu, Jianbin; Yin, Shen; Gao, Huijun; Fan, Jialu; Chai, Tianyou

    2016-08-01

    In this paper, the performance-based control design problem for double-layer networked industrial processes is investigated. At the device layer, the prescribed performance functions are first given to describe the output tracking performance, and then by using backstepping technique, new adaptive fuzzy controllers are designed to guarantee the tracking performance under the effects of input dead-zone and the constraint of prescribed tracking performance functions. At operation layer, by considering the stochastic disturbance, actual index value, target index value, and index prediction simultaneously, an adaptive inverse optimal controller in discrete-time form is designed to optimize the overall performance and stabilize the overall nonlinear system. Finally, a simulation example of continuous stirred tank reactor system is presented to show the effectiveness of the proposed control method.

  2. Global adaptive stabilisation for nonlinear systems with unknown control directions and input disturbance

    NASA Astrophysics Data System (ADS)

    Man, Yongchao; Liu, Yungang

    2016-05-01

    This paper addresses the global adaptive stabilisation via switching and learning strategies for a class of uncertain nonlinear systems. Remarkably, the systems in question simultaneously have unknown control directions, unknown input disturbance and unknown growth rate, which makes the problem in question challenging to solve and essentially different from those in the existing literature. To solve the problem, an adaptive scheme via switching and learning is proposed by skilfully integrating the techniques of backstepping design, adaptive learning and adaptive switching. One key point in the design scheme is the introduction of the learning mechanism, in order to compensate the unknown input disturbance, and the other one is the design of the switching mechanism, through tuning the design parameters online to deal with the unknown control directions, unknown bound and period of input disturbance and unknown growth rate. The designed controller guarantees that all the signals of the resulting closed-loop systems are bounded, and furthermore, the closed-loop system states globally converge to zero.

  3. An adaptive fuzzy controller for permanent-magnet AC servo drives

    SciTech Connect

    Le-Huy, H.

    1995-12-31

    This paper presents a theoretical study on a model-reference adaptive fuzzy logic controller for vector-controlled permanent-magnet ac servo drives. In the proposed system, fuzzy logic is used to implement the direct controller as well as the adaptation mechanism. The operation of the direct fuzzy controller and the fuzzy logic based adaptation mechanism is studied. The control performance of the adaptive fuzzy controller is evaluated by simulation for various operating conditions. The results are compared with that provided by a non-adaptive fuzzy controller. The implementation of proposed adaptive fuzzy controller is discussed.

  4. Towards feasible and effective predictive wavefront control for adaptive optics

    SciTech Connect

    Poyneer, L A; Veran, J

    2008-06-04

    We have recently proposed Predictive Fourier Control, a computationally efficient and adaptive algorithm for predictive wavefront control that assumes frozen flow turbulence. We summarize refinements to the state-space model that allow operation with arbitrary computational delays and reduce the computational cost of solving for new control. We present initial atmospheric characterization using observations with Gemini North's Altair AO system. These observations, taken over 1 year, indicate that frozen flow is exists, contains substantial power, and is strongly detected 94% of the time.

  5. Adaptive Fuzzy Tracking Control of Nonlinear Systems With Asymmetric Actuator Backlash Based on a New Smooth Inverse.

    PubMed

    Lai, Guanyu; Liu, Zhi; Zhang, Yun; Philip Chen, C L

    2016-06-01

    This paper is concentrated on the problem of adaptive fuzzy tracking control for an uncertain nonlinear system whose actuator is encountered by the asymmetric backlash behavior. First, we propose a new smooth inverse model which can approximate the asymmetric actuator backlash arbitrarily. By applying it, two adaptive fuzzy control scenarios, namely, the compensation-based control scheme and nonlinear decomposition-based control scheme, are then developed successively. It is worth noticing that the first fuzzy controller exhibits a better tracking control performance, although it recourses to a known slope ratio of backlash nonlinearity. The second one further removes the restriction, and also gets a desirable control performance. By the strict Lyapunov argument, both adaptive fuzzy controllers guarantee that the output tracking error is convergent to an adjustable region of zero asymptotically, while all the signals remain semiglobally uniformly ultimately bounded. Lastly, two comparative simulations are conducted to verify the effectiveness of the proposed fuzzy controllers. PMID:27187937

  6. Application of simple adaptive control to water hydraulic servo cylinder system

    NASA Astrophysics Data System (ADS)

    Ito, Kazuhisa; Yamada, Tsuyoshi; Ikeo, Shigeru; Takahashi, Koji

    2012-09-01

    Although conventional model reference adaptive control (MRAC) achieves good tracking performance for cylinder control, the controller structure is much more complicated and has less robustness to disturbance in real applications. This paper discusses the use of simple adaptive control (SAC) for positioning a water hydraulic servo cylinder system. Compared with MRAC, SAC has a simpler and lower order structure, i.e., higher feasibility. The control performance of SAC is examined and evaluated on a water hydraulic servo cylinder system. With the recent increased concerns over global environmental problems, the water hydraulic technique using pure tap water as a pressure medium has become a new drive source comparable to electric, oil hydraulic, and pneumatic drive systems. This technique is also preferred because of its high power density, high safety against fire hazards in production plants, and easy availability. However, the main problems for precise control in a water hydraulic system are steady state errors and overshoot due to its large friction torque and considerable leakage flow. MRAC has been already applied to compensate for these effects, and better control performances have been obtained. However, there have been no reports on the application of SAC for water hydraulics. To make clear the merits of SAC, the tracking control performance and robustness are discussed based on experimental results. SAC is confirmed to give better tracking performance compared with PI control, and a control precision comparable to MRAC (within 10 μm of the reference position) and higher robustness to parameter change, despite the simple controller. The research results ensure a wider application of simple adaptive control in real mechanical systems.

  7. Visuomotor Control of Human Adaptive Locomotion: Understanding the Anticipatory Nature

    PubMed Central

    Higuchi, Takahiro

    2013-01-01

    To maintain balance during locomotion, the central nervous system (CNS) accommodates changes in the constraints of spatial environment (e.g., existence of an obstacle or changes in the surface properties). Locomotion while modifying the basic movement patterns in response to such constraints is referred to as adaptive locomotion. The most powerful means of ensuring balance during adaptive locomotion is to visually perceive the environmental properties at a distance and modify the movement patterns in an anticipatory manner to avoid perturbation altogether. For this reason, visuomotor control of adaptive locomotion is characterized, at least in part, by its anticipatory nature. The purpose of the present article is to review the relevant studies which revealed the anticipatory nature of the visuomotor control of adaptive locomotion. The anticipatory locomotor adjustments for stationary and changeable environment, as well as the spatio-temporal patterns of gaze behavior to support the anticipatory locomotor adjustments are described. Such description will clearly show that anticipatory locomotor adjustments are initiated when an object of interest (e.g., a goal or obstacle) still exists in far space. This review also show that, as a prerequisite of anticipatory locomotor adjustments, environmental properties are accurately perceived from a distance in relation to individual’s action capabilities. PMID:23720647

  8. Effect of prism adaptation on thermoregulatory control in humans.

    PubMed

    Calzolari, Elena; Gallace, Alberto; Moseley, G Lorimer; Vallar, Giuseppe

    2016-01-01

    The physiological regulation of skin temperature can be modulated not only by autonomic brain regions, but also by a network of higher-level cortical areas involved in the maintenance of a coherent representation of the body. In this study we assessed in healthy participants if the sensorimotor changes taking place during motor adaptation to the lateral displacement of the visual scene induced by wearing prismatic lenses (prism adaptation, PA), and the aftereffects, after prisms' removal, on the ability to process spatial coordinates, were associated with skin temperature regulation changes. We found a difference in thermoregulatory control as a function of the direction of the prism-induced displacement of the visual scene, and the subsequent sensorimotor adaptation. After PA to rightward displacing lenses, with leftward aftereffects (the same directional procedure efficaciously used for ameliorating left spatial neglect in right-brain-damaged patients) the hands' temperature decreased. Conversely, after adaptation to neutral lenses, and PA to leftward displacing lenses, with rightward aftereffects, the temperature of both hands increased. These results suggest a lateral asymmetry in the effects of PA on skin temperature regulation, and a relationship between body spatial representations and homeostatic control in humans.

  9. Energy-saving technology of vector controlled induction motor based on the adaptive neuro-controller

    NASA Astrophysics Data System (ADS)

    Engel, E.; Kovalev, I. V.; Karandeev, D.

    2015-10-01

    The ongoing evolution of the power system towards a Smart Grid implies an important role of intelligent technologies, but poses strict requirements on their control schemes to preserve stability and controllability. This paper presents the adaptive neuro-controller for the vector control of induction motor within Smart Gird. The validity and effectiveness of the proposed energy-saving technology of vector controlled induction motor based on adaptive neuro-controller are verified by simulation results at different operating conditions over a wide speed range of induction motor.

  10. Minimal control synthesis adaptive control of nonlinear systems: utilizing the properties of chaos.

    PubMed

    di Bernardo, M; Stoten, D P

    2006-09-15

    This paper discusses a novel approach to the control of chaos based on the use of the adaptive minimal control synthesis algorithm. The strategies presented are based on the explicit exploitation of different properties of chaotic systems including the boundedness of the chaotic attractors and their topological transitivity (or ergodicity). It is shown that chaos can be exploited to synthesize more efficient control techniques for nonlinear systems. For instance, by using the ergodicity of the chaotic trajectory, we show that a local adaptive control strategy can be used to synthesize a global controller. An application is to the swing-up control of a double inverted pendulum. PMID:16893794

  11. Geometry adaptive control of a composite reflector using PZT actuator

    NASA Astrophysics Data System (ADS)

    Lan, Lan; Jiang, Shuidong; Zhou, Yang; Fang, Houfei; Tan, Shujun; Wu, Zhigang

    2015-04-01

    Maintaining geometrical high precision for a graphite fiber reinforced composite (GFRC) reflector is a challenging task. Although great efforts have been placed to improve the fabrication precision, geometry adaptive control for a reflector is becoming more and more necessary. This paper studied geometry adaptive control for a GFRC reflector with piezoelectric ceramic transducer (PZT) actuators assembled on the ribs. In order to model the piezoelectric effect in finite element analysis (FEA), a thermal analogy was used in which the temperature was applied to simulate the actuation voltage, and the piezoelectric constant was mimicked by a Coefficient of Thermal Expansion (CTE). PZT actuator's equivalent model was validated by an experiment. The deformations of a triangular GFRC specimen with three PZT actuators were also measured experimentally and compared with that of simulation. This study developed a multidisciplinary analytical model, which includes the composite structure, thermal, thermal deformation and control system, to perform an optimization analysis and design for the adaptive GFRC reflector by considering the free vibration, gravity deformation and geometry controllability.

  12. An adaptive learning control system for large flexible structures

    NASA Technical Reports Server (NTRS)

    Thau, F. E.

    1985-01-01

    The objective of the research has been to study the design of adaptive/learning control systems for the control of large flexible structures. In the first activity an adaptive/learning control methodology for flexible space structures was investigated. The approach was based on using a modal model of the flexible structure dynamics and an output-error identification scheme to identify modal parameters. In the second activity, a least-squares identification scheme was proposed for estimating both modal parameters and modal-to-actuator and modal-to-sensor shape functions. The technique was applied to experimental data obtained from the NASA Langley beam experiment. In the third activity, a separable nonlinear least-squares approach was developed for estimating the number of excited modes, shape functions, modal parameters, and modal amplitude and velocity time functions for a flexible structure. In the final research activity, a dual-adaptive control strategy was developed for regulating the modal dynamics and identifying modal parameters of a flexible structure. A min-max approach was used for finding an input to provide modal parameter identification while not exceeding reasonable bounds on modal displacement.

  13. Application of network control systems for adaptive optics

    NASA Astrophysics Data System (ADS)

    Eager, Robert J.

    2008-04-01

    The communication architecture for most pointing, tracking, and high order adaptive optics control systems has been based on a centralized point-to-point and bus based approach. With the increased use of larger arrays and multiple sensors, actuators and processing nodes, these evolving systems require decentralized control, modularity, flexibility redundancy, integrated diagnostics, dynamic resource allocation, and ease of maintenance to support a wide range of experiments. Network control systems provide all of these critical functionalities. This paper begins with a quick overview of adaptive optics as a control system and communication architecture. It then provides an introduction to network control systems, identifying the key design areas that impact system performance. The paper then discusses the performance test results of a fielded network control system used to implement an adaptive optics system comprised of: a 10KHz, 32x32 spatial selfreferencing interferometer wave front sensor, a 705 channel "Tweeter" deformable mirror, a 177 channel "Woofer" deformable mirror, ten processing nodes, and six data acquisition nodes. The reconstructor algorithm utilized a modulo-2pi wave front phase measurement and a least-squares phase un-wrapper with branch point correction. The servo control algorithm is a hybrid of exponential and infinite impulse response controllers, with tweeter-to-woofer saturation offloading. This system achieved a first-pixel-out to last-mirror-voltage latency of 86 microseconds, with the network accounting for 4 microseconds of the measured latency. Finally, the extensibility of this architecture will be illustrated, by detailing the integration of a tracking sub-system into the existing network.

  14. Adaptive model predictive process control using neural networks

    DOEpatents

    Buescher, Kevin L.; Baum, Christopher C.; Jones, Roger D.

    1997-01-01

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data.

  15. Adaptive model predictive process control using neural networks

    DOEpatents

    Buescher, K.L.; Baum, C.C.; Jones, R.D.

    1997-08-19

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.

  16. Adaptive and neuroadaptive control for nonnegative and compartmental dynamical systems

    NASA Astrophysics Data System (ADS)

    Volyanskyy, Kostyantyn Y.

    Neural networks have been extensively used for adaptive system identification as well as adaptive and neuroadaptive control of highly uncertain systems. The goal of adaptive and neuroadaptive control is to achieve system performance without excessive reliance on system models. To improve robustness and the speed of adaptation of adaptive and neuroadaptive controllers several controller architectures have been proposed in the literature. In this dissertation, we develop a new neuroadaptive control architecture for nonlinear uncertain dynamical systems. The proposed framework involves a novel controller architecture with additional terms in the update laws that are constructed using a moving window of the integrated system uncertainty. These terms can be used to identify the ideal system weights of the neural network as well as effectively suppress system uncertainty. Linear and nonlinear parameterizations of the system uncertainty are considered and state and output feedback neuroadaptive controllers are developed. Furthermore, we extend the developed framework to discrete-time dynamical systems. To illustrate the efficacy of the proposed approach we apply our results to an aircraft model with wing rock dynamics, a spacecraft model with unknown moment of inertia, and an unmanned combat aerial vehicle undergoing actuator failures, and compare our results with standard neuroadaptive control methods. Nonnegative systems are essential in capturing the behavior of a wide range of dynamical systems involving dynamic states whose values are nonnegative. A sub-class of nonnegative dynamical systems are compartmental systems. These systems are derived from mass and energy balance considerations and are comprised of homogeneous interconnected microscopic subsystems or compartments which exchange variable quantities of material via intercompartmental flow laws. In this dissertation, we develop direct adaptive and neuroadaptive control framework for stabilization, disturbance

  17. Fuzzy-based adaptive bandwidth control for loss guarantees.

    PubMed

    Siripongwutikorn, Peerapon; Banerjee, Sujata; Tipper, David

    2005-09-01

    This paper presents the use of adaptive bandwidth control (ABC) for a quantitative packet loss rate guarantee to aggregate traffic in packet switched networks. ABC starts with some initial amount of bandwidth allocated to a queue and adjusts it over time based on online measurements of system states to ensure that the allocated bandwidth is just enough to attain the specified loss requirement. Consequently, no a priori detailed traffic information is required, making ABC more suitable for efficient aggregate quality of service (QoS) provisioning. We propose an ABC algorithm called augmented Fuzzy (A-Fuzzy) control, whereby fuzzy logic control is used to keep an average queue length at an appropriate target value, and the measured packet loss rate is used to augment the standard control to achieve better performance. An extensive simulation study based on both theoretical traffic models and real traffic traces under a wide range of system configurations demonstrates that the A-Fuzzy control itself is highly robust, yields high bandwidth utilization, and is indeed a viable alternative and improvement to static bandwidth allocation (SBA) and existing adaptive bandwidth allocation schemes. Additionally, we develop a simple and efficient measurement-based admission control procedure which limits the amount of input traffic in order to maintain the performance of the A-Fuzzy control at an acceptable level.

  18. Discrete-time minimal control synthesis adaptive algorithm

    NASA Astrophysics Data System (ADS)

    di Bernardo, M.; di Gennaro, F.; Olm, J. M.; Santini, S.

    2010-12-01

    This article proposes a discrete-time Minimal Control Synthesis (MCS) algorithm for a class of single-input single-output discrete-time systems written in controllable canonical form. As it happens with the continuous-time MCS strategy, the algorithm arises from the family of hyperstability-based discrete-time model reference adaptive controllers introduced in (Landau, Y. (1979), Adaptive Control: The Model Reference Approach, New York: Marcel Dekker, Inc.) and is able to ensure tracking of the states of a given reference model with minimal knowledge about the plant. The control design shows robustness to parameter uncertainties, slow parameter variation and matched disturbances. Furthermore, it is proved that the proposed discrete-time MCS algorithm can be used to control discretised continuous-time plants with the same performance features. Contrary to previous discrete-time implementations of the continuous-time MCS algorithm, here a formal proof of asymptotic stability is given for generic n-dimensional plants in controllable canonical form. The theoretical approach is validated by means of simulation results.

  19. Adaptive randomized algorithms for analysis and design of control systems under uncertain environments

    NASA Astrophysics Data System (ADS)

    Chen, Xinjia

    2015-05-01

    We consider the general problem of analysis and design of control systems in the presence of uncertainties. We treat uncertainties that affect a control system as random variables. The performance of the system is measured by the expectation of some derived random variables, which are typically bounded. We develop adaptive sequential randomized algorithms for estimating and optimizing the expectation of such bounded random variables with guaranteed accuracy and confidence level. These algorithms can be applied to overcome the conservatism and computational complexity in the analysis and design of controllers to be used in uncertain environments. We develop methods for investigating the optimality and computational complexity of such algorithms.

  20. Study of space shuttle environmental control and life support problems

    NASA Technical Reports Server (NTRS)

    Dibble, K. P.; Riley, F. E.

    1971-01-01

    Four problem areas were treated: (1) cargo module environmental control and life support systems; (2) space shuttle/space station interfaces; (3) thermal control considerations for payloads; and (4) feasibility of improving system reusability.

  1. Adaptive pitch control for variable speed wind turbines

    DOEpatents

    Johnson, Kathryn E.; Fingersh, Lee Jay

    2012-05-08

    An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.

  2. Controller-structure interaction compensation using adaptive residual mode filters

    NASA Technical Reports Server (NTRS)

    Davidson, Roger A.; Balas, Mark J.

    1990-01-01

    It is not feasible to construct controllers for large space structures or large scale systems (LSS's) which are of the same order as the structures. The complexity of the dynamics of these systems is such that full knowledge of its behavior cannot by processed by today's controller design methods. The controller for system performance of such a system is therefore based on a much smaller reduced-order model (ROM). Unfortunately, the interaction between the LSS and the ROM-based controller can produce instabilities in the closed-loop system due to the unmodeled dynamics of the LSS. Residual mode filters (RMF's) allow the systematic removal of these instabilities in a matter which does not require a redesign of the controller. In addition RMF's have a strong theoretical basis. As simple first- or second-order filters, the RMF CSI compensation technique is at once modular, simple and highly effective. RMF compensation requires knowledge of the dynamics of the system modes which resulted in the previous closed-loop instabilities (the residual modes), but this information is sometimes known imperfectly. An adaptive, self-tuning RMF design, which compensates for uncertainty in the frequency of the residual mode, has been simulated using continuous-time and discrete-time models of a flexible robot manipulator. Work has also been completed on the discrete-time experimental implementation on the Martin Marietta flexible robot manipulator experiment. This paper will present the results of that work on adaptive, self-tuning RMF's, and will clearly show the advantage of this adaptive compensation technique for controller-structure interaction (CSI) instabilities in actively-controlled LSS's.

  3. Adapting a theoretical framework for characterizing students' use of equations in physics problem solving

    NASA Astrophysics Data System (ADS)

    Rebello, Carina M.; Rebello, N. Sanjay

    2012-02-01

    Previous studies have focused on the resources that students activate and utilize while solving a given physics problem. However, few studies explore how students relate a given resource such as an equation, to various types of physics problems and contexts and how they ascertain the meaning and applicability of that resource. We explore how students view physics equations, derive meaning from those equations, and use those equations in physics problem solving. We adapt Dubinsky and McDonald's description of APOS (action-process-object-schema) theory of learning in mathematics, to construct a theoretical framework that describes how students interpret and use equations in physics in terms of actions, processes, objects, and schemas. This framework provides a lens for understanding how students construct their understanding of physics concepts and their relation to equations. We highlight how APOS theory can be operationalized to serve as a lens for studying the use of mathematics in physics problem solving.

  4. An adaptive ant colony system algorithm for continuous-space optimization problems.

    PubMed

    Li, Yan-jun; Wu, Tie-jun

    2003-01-01

    Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is proposed in this paper to tackle continuous-space optimization problems, using a new objective-function-based heuristic pheromone assignment approach for pheromone update to filtrate solution candidates. Global optimal solutions can be reached more rapidly by self-adjusting the path searching behaviors of the ants according to objective values. The performance of the proposed algorithm is compared with a basic ant colony algorithm and a Square Quadratic Programming approach in solving two benchmark problems with multiple extremes. The results indicated that the efficiency and reliability of the proposed algorithm were greatly improved. PMID:12656341

  5. An adaptive multiscale finite element method for unsaturated flow problems in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    He, Xinguang; Ren, Li

    2009-07-01

    SummaryIn this paper we present an adaptive multiscale finite element method for solving the unsaturated water flow problems in heterogeneous porous media spanning over many scales. The main purpose is to design a numerical method which is capable of adaptively capturing the large-scale behavior of the solution on a coarse-scale mesh without resolving all the small-scale details at each time step. This is accomplished by constructing the multiscale base functions that are adapted to the time change of the unsaturated hydraulic conductivity field. The key idea of our method is to use a criterion based on the temporal variation of the hydraulic conductivity field to determine when and where to update our multiscale base functions. As a consequence, these base functions are able to dynamically account for the spatio-temporal variability in the equation coefficients. We described the principle for constructing such a method in detail and gave an algorithm for implementing it. Numerical experiments were carried out for the unsaturated water flow equation with randomly generated lognormal hydraulic parameters to demonstrate the efficiency and accuracy of the proposed method. The results show that throughout the adaptive simulation, only a very small fraction of the multiscale base functions needs to be recomputed, and the level of accuracy of the adaptive method is higher than that of the multiscale finite element technique in which the base functions are not updated with the time change of the hydraulic conductivity.

  6. THE EFFECTS OF BRAIN LATERALIZATION ON MOTOR CONTROL AND ADAPTATION

    PubMed Central

    Mutha, Pratik K.; Haaland, Kathleen Y.; Sainburg, Robert L.

    2012-01-01

    Lateralization of mechanisms mediating functions such as language and perception is widely accepted as a fundamental feature of neural organization. Recent research has revealed that a similar organization exists for the control of motor actions, in that each brain hemisphere contributes unique control mechanisms to the movements of each arm. We now review current research that addresses the nature of the control mechanisms that are lateralized to each hemisphere and how they impact motor adaptation and learning. In general, the studies reviewed here suggest an enhanced role for the left hemisphere during adaptation, and the learning of new sequences and skills. We suggest that this specialization emerges from a left hemisphere specialization for predictive control – the ability to effectively plan and coordinate motor actions, possibly by optimizing certain cost functions. In contrast, right hemisphere circuits appear to be important for updating ongoing actions and stopping at a goal position, through modulation of sensorimotor stabilization mechanisms such as reflexes. We also propose that each brain hemisphere contributes its mechanism to the control of both arms. We conclude by examining the potential advantages of such a lateralized control system. PMID:23237468

  7. An adaptive metamodel-based global optimization algorithm for black-box type problems

    NASA Astrophysics Data System (ADS)

    Jie, Haoxiang; Wu, Yizhong; Ding, Jianwan

    2015-11-01

    In this article, an adaptive metamodel-based global optimization (AMGO) algorithm is presented to solve unconstrained black-box problems. In the AMGO algorithm, a type of hybrid model composed of kriging and augmented radial basis function (RBF) is used as the surrogate model. The weight factors of hybrid model are adaptively selected in the optimization process. To balance the local and global search, a sub-optimization problem is constructed during each iteration to determine the new iterative points. As numerical experiments, six standard two-dimensional test functions are selected to show the distributions of iterative points. The AMGO algorithm is also tested on seven well-known benchmark optimization problems and contrasted with three representative metamodel-based optimization methods: efficient global optimization (EGO), GutmannRBF and hybrid and adaptive metamodel (HAM). The test results demonstrate the efficiency and robustness of the proposed method. The AMGO algorithm is finally applied to the structural design of the import and export chamber of a cycloid gear pump, achieving satisfactory results.

  8. The adaptation problems of patients undergoing hemodialysis: socio-economic and clinical aspects1

    PubMed Central

    Frazão, Cecília Maria Farias de Queiroz; de Sá, Jéssica Dantas; Medeiros, Ana Beatriz de Almeida; Fernandes, Maria Isabel da Conceição Dias; Lira, Ana Luisa Brandão de Carvalho; Lopes, Marcos Venícios de Oliveira

    2014-01-01

    OBJECTIVES: to identify adaptation problems under Roy's Model in patients undergoing hemodialysis and to correlate them with the socioeconomic and clinical aspects. METHOD: a transversal study, undertaken using a questionnaire. The sample was made up of 178 individuals. The Chi-squared and Mann-Whitney U tests were undertaken. RESULTS: the adaptation problems and the socioeconomic and clinical aspects which presented statistical associations were: Hyperkalemia and age; Edema and income; Impairment of a primary sense: touch and income; Role failure and age; Sexual dysfunction and marital status and sex; Impairment of a primary sense: vision and years of education; Intolerance to activity and years of education; Chronic pain and sex and years of education; Impaired skin integrity and age: Hypocalcemia and access; Potential for injury and age and years of education; Nutrition below the organism's requirements and age; Impairment of a primary sense: hearing and sex and kinetic evaluation of urea; Mobility in gait and/or coordination restricted, and months of hemodialysis; and, Loss of ability for self-care, and months of hemodialysis and months of illness. CONCLUSION: adaptation problems in the clientele undergoing hemodialysis can be influenced by socioeconomic/clinical data. These findings contribute to the development of the profession, fostering the nurse's reflection regarding the care. PMID:25591091

  9. Adaptive Proactive Inhibitory Control for Embedded Real-Time Applications

    PubMed Central

    Yang, Shufan; McGinnity, T. Martin; Wong-Lin, KongFatt

    2012-01-01

    Psychologists have studied the inhibitory control of voluntary movement for many years. In particular, the countermanding of an impending action has been extensively studied. In this work, we propose a neural mechanism for adaptive inhibitory control in a firing-rate type model based on current findings in animal electrophysiological and human psychophysical experiments. We then implement this model on a field-programmable gate array (FPGA) prototyping system, using dedicated real-time hardware circuitry. Our results show that the FPGA-based implementation can run in real-time while achieving behavioral performance qualitatively suggestive of the animal experiments. Implementing such biological inhibitory control in an embedded device can lead to the development of control systems that may be used in more realistic cognitive robotics or in neural prosthetic systems aiding human movement control. PMID:22701420

  10. Neural controller for adaptive movements with unforeseen payloads

    NASA Technical Reports Server (NTRS)

    Kuperstein, Michael; Wang, Jyhpyng

    1990-01-01

    A theory and computer simulation of a neural controller that learns to move and position a link carrying an unforeseen payload accurately are presented. The neural controller learns adaptive dynamic control from its own experience. It does not use information about link mass, link length, or direction of gravity, and it uses only indirect uncalibrated information about payload and actuator limits. Its average positioning accuracy across a large range of payloads after learning is 3 percent of the positioning range. This neural controller can be used as a basis for coordinating any number of sensory inputs with limbs of any number of joints. The feedforward nature of control allows parallel implementation in real time across multiple joints.

  11. Weak Hamiltonian finite element method for optimal control problems

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Bless, Robert R.

    1991-01-01

    A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.

  12. A weak Hamiltonian finite element method for optimal control problems

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Bless, Robert R.

    1990-01-01

    A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.

  13. A weak Hamiltonian finite element method for optimal control problems

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Bless, Robert R.

    1989-01-01

    A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.

  14. On a Highly Nonlinear Self-Obstacle Optimal Control Problem

    SciTech Connect

    Di Donato, Daniela; Mugnai, Dimitri

    2015-10-15

    We consider a non-quadratic optimal control problem associated to a nonlinear elliptic variational inequality, where the obstacle is the control itself. We show that, fixed a desired profile, there exists an optimal solution which is not far from it. Detailed characterizations of the optimal solution are given, also in terms of approximating problems.

  15. Control and Alcohol-Problem Recognition among College Students

    ERIC Educational Resources Information Center

    Simons, Raluca M.; Hahn, Austin M.; Simons, Jeffrey S.; Gaster, Sam

    2015-01-01

    Objective: This study examined negative control (ie, perceived lack of control over life outcomes) and need for control as predictors of alcohol-problem recognition, evaluations (good/bad), and expectancies (likely/unlikely) among college students. The study also explored the interaction between the need for control and alcohol consumption in…

  16. Hybrid Decompositional Verification for Discovering Failures in Adaptive Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Thompson, Sarah; Davies, Misty D.; Gundy-Burlet, Karen

    2010-01-01

    Adaptive flight control systems hold tremendous promise for maintaining the safety of a damaged aircraft and its passengers. However, most currently proposed adaptive control methodologies rely on online learning neural networks (OLNNs), which necessarily have the property that the controller is changing during the flight. These changes tend to be highly nonlinear, and difficult or impossible to analyze using standard techniques. In this paper, we approach the problem with a variant of compositional verification. The overall system is broken into components. Undesirable behavior is fed backwards through the system. Components which can be solved using formal methods techniques explicitly for the ranges of safe and unsafe input bounds are treated as white box components. The remaining black box components are analyzed with heuristic techniques that try to predict a range of component inputs that may lead to unsafe behavior. The composition of these component inputs throughout the system leads to overall system test vectors that may elucidate the undesirable behavior

  17. Adaptive Control in the Presence of Simultaneous Sensor Bias and Actuator Failures

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh M.

    2012-01-01

    The problem of simultaneously accommodating unknown sensor biases and unknown actuator failures in uncertain systems is considered in a direct model reference adaptive control (MRAC) setting for state tracking using state feedback. Sensor biases and actuator faults may be present at the outset or may occur at unknown instants of time during operation. A modified MRAC law is proposed, which combines sensor bias estimation with control gain adaptation for accommodation of sensor biases and actuator failures. This control law is shown to provide signal boundedness in the resulting system. For the case when an external asymptotically stable sensor bias estimator is available, an MRAC law is developed to accomplish asymptotic state tracking and signal boundedness. For a special case wherein biases are only present in the rate measurements and bias-free position measurements are available, an MRAC law is developed using a model-independent bias estimator, and is shown to provide asymptotic state tracking with signal boundedness.

  18. Difference equation state approximations for nonlinear hereditary control problems

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1984-01-01

    Discrete approximation schemes for the solution of nonlinear hereditary control problems are constructed. The methods involve approximation by a sequence of optimal control problems in which the original infinite dimensional state equation has been approximated by a finite dimensional discrete difference equation. Convergence of the state approximations is argued using linear semigroup theory and is then used to demonstrate that solutions to the approximating optimal control problems in some sense approximate solutions to the original control problem. Two schemes, one based upon piecewise constant approximation, and the other involving spline functions are discussed. Numerical results are presented, analyzed and used to compare the schemes to other available approximation methods for the solution of hereditary control problems. Previously announced in STAR as N83-33589

  19. Difference equation state approximations for nonlinear hereditary control problems

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1982-01-01

    Discrete approximation schemes for the solution of nonlinear hereditary control problems are constructed. The methods involve approximation by a sequence of optimal control problems in which the original infinite dimensional state equation has been approximated by a finite dimensional discrete difference equation. Convergence of the state approximations is argued using linear semigroup theory and is then used to demonstrate that solutions to the approximating optimal control problems in some sense approximate solutions to the original control problem. Two schemes, one based upon piecewise constant approximation, and the other involving spline functions are discussed. Numerical results are presented, analyzed and used to compare the schemes to other available approximation methods for the solution of hereditary control problems.

  20. Mechanisms in Adaptive Feedback Control: Photoisomerization in a Liquid

    SciTech Connect

    Hoki, Kunihito; Brumer, Paul

    2005-10-14

    The underlying mechanism for Adaptive Feedback Control in the experimental photoisomerization of 3,3'-diethyl-2,2'-thiacyanine iodide (NK88) in methanol is exposed theoretically. With given laboratory limitations on laser output, the complicated electric fields are shown to achieve their targets in qualitatively simple ways. Further, control over the cis population without laser limitations reveals an incoherent pump-dump scenario as the optimal isomerization strategy. In neither case are there substantial contributions from quantum multiple-path interference or from nuclear wave packet coherence. Environmentally induced decoherence is shown to justify the use of a simplified theoretical model.

  1. An experimental study of a hybrid adaptive control system

    NASA Technical Reports Server (NTRS)

    Lizewski, E. F.; Monopoli, R. V.

    1974-01-01

    A Liapunov type model reference adaptive control system with five adjustable gains is implemented using a PDP-11 digital computer and an EAI 380 analog computer. The plant controlled is a laboratory type dc servo system. It is made to follow closely a second order linear model. The experimental results demonstrate the feasibility of implementing this rather complex design using only a minicomputer and a reasonable number of operational amplifiers. Also, it points out that satisfactory performance can be achieved even when certain assumptions necessary for the theory are not satisfied.

  2. Prediction and control of chaotic processes using nonlinear adaptive networks

    SciTech Connect

    Jones, R.D.; Barnes, C.W.; Flake, G.W.; Lee, K.; Lewis, P.S.; O'Rouke, M.K.; Qian, S.

    1990-01-01

    We present the theory of nonlinear adaptive networks and discuss a few applications. In particular, we review the theory of feedforward backpropagation networks. We then present the theory of the Connectionist Normalized Linear Spline network in both its feedforward and iterated modes. Also, we briefly discuss the theory of stochastic cellular automata. We then discuss applications to chaotic time series, tidal prediction in Venice lagoon, finite differencing, sonar transient detection, control of nonlinear processes, control of a negative ion source, balancing a double inverted pendulum and design advice for free electron lasers and laser fusion targets.

  3. An Adaptive Buddy Check for Observational Quality Control

    NASA Technical Reports Server (NTRS)

    Dee, Dick P.; Rukhovets, Leonid; Todling, Ricardo; DaSilva, Arlindo M.; Larson, Jay W.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    An adaptive buddy check algorithm is presented that adjusts tolerances for outlier observations based on the variability of surrounding data. The algorithm derives from a statistical hypothesis test combined with maximum-likelihood covariance estimation. Its stability is shown to depend on the initial identification of outliers by a simple background check. The adaptive feature ensures that the final quality control decisions are not very sensitive to prescribed statistics of first-guess and observation errors, nor on other approximations introduced into the algorithm. The implementation of the algorithm in a global atmospheric data assimilation is described. Its performance is contrasted with that of a non-adaptive buddy check, for the surface analysis of an extreme storm that took place in Europe on 27 December 1999. The adaptive algorithm allowed the inclusion of many important observations that differed greatly from the first guess and that would have been excluded on the basis of prescribed statistics. The analysis of the storm development was much improved as a result of these additional observations.

  4. Adaptive myoelectric pattern recognition toward improved multifunctional prosthesis control.

    PubMed

    Liu, Jie

    2015-04-01

    The non-stationary property of electromyography (EMG) signals in real life settings usually hinders the clinical application of the myoelectric pattern recognition for prosthesis control. The classical EMG pattern recognition approach consists of two separate steps: training and testing, without considering the changes between training and testing data induced by electrode shift, fatigue, impedance changes and psychological factors, and often results in performance degradation. The aim of this study was to develop an adaptive myoelectric pattern recognition system, aiming to retrain the classifier online with the testing data without supervision, providing a self-correction mechanism for suppressing misclassifications. This paper presents an adaptive unsupervised classifier based on support vector machine (SVM) to improve the classification performance. Experimental data from 15 healthy subjects were used to evaluate performance. Preliminary study on intra-session and inter-session EMG data was conducted to verify the performance of the unsupervised adaptive SVM classifier. The unsupervised adaptive SVM classifier outperformed the conventional SVM by 3.3% and 8.0% for the combination of time-domain and autoregressive features in the intra-session and inter-session tests, respectively. The proposed approach is capable of incorporating the useful information in testing data to the classification model by taking into account the overtime changes in the testing data with respect to the training data to retrain the original classifier, therefore providing a self-correction mechanism for suppressing misclassifications.

  5. Adaptive critic learning techniques for engine torque and air-fuel ratio control.

    PubMed

    Liu, Derong; Javaherian, Hossein; Kovalenko, Olesia; Huang, Ting

    2008-08-01

    A new approach for engine calibration and control is proposed. In this paper, we present our research results on the implementation of adaptive critic designs for self-learning control of automotive engines. A class of adaptive critic designs that can be classified as (model-free) action-dependent heuristic dynamic programming is used in this research project. The goals of the present learning control design for automotive engines include improved performance, reduced emissions, and maintained optimum performance under various operating conditions. Using the data from a test vehicle with a V8 engine, we developed a neural network model of the engine and neural network controllers based on the idea of approximate dynamic programming to achieve optimal control. We have developed and simulated self-learning neural network controllers for both engine torque (TRQ) and exhaust air-fuel ratio (AFR) control. The goal of TRQ control and AFR control is to track the commanded values. For both control problems, excellent neural network controller transient performance has been achieved.

  6. Digital adaptive flight control design using single stage model following indices

    NASA Technical Reports Server (NTRS)

    Alag, G.; Kaufman, H.

    1974-01-01

    Simple mechanical linkages are often unable to cope with many control problems associated with high-performance aircraft. This has led to the development of digital fly-by-wire control systems and in particular digital adaptive controllers that can be efficiently adjusted during system operation. To this effect, a control law has been derived based upon the minimization of a single-stage weighted combination of control energy and the squared error between the states of a linear plant and model. This control logic is interfaced with an on-line weighted least-squares estimator and a Kalman state filter. The utility of the resultant control system is illustrated by its application to the linearized dynamics of a typical fighter aircraft.

  7. Controlled ecological life support system - biological problems

    NASA Technical Reports Server (NTRS)

    Moore, B., III (Editor); Macelroy, R. D. (Editor)

    1982-01-01

    The general processes and controls associated with two distinct experimental paradigms are examined. Specific areas for research related to biotic production (food production) and biotic decomposition (waste management) are explored. The workshop discussions were directed toward Elemental cycles and the biological factors that affect the transformations of nutrients into food, of food material into waste, and of waste into nutrients were discussed. To focus on biological issues, the discussion assumed that (1) food production would be by biological means (thus excluding chemical synthesis), (2) energy would not be a limiting factor, and (3) engineering capacity for composition and leak rate would be adequate.

  8. Self-teaching neural network learns difficult reactor control problem

    SciTech Connect

    Jouse, W.C.

    1989-01-01

    A self-teaching neural network used as an adaptive controller quickly learns to control an unstable reactor configuration. The network models the behavior of a human operator. It is trained by allowing it to operate the reactivity control impulsively. It is punished whenever either the power or fuel temperature stray outside technical limits. Using a simple paradigm, the network constructs an internal representation of the punishment and of the reactor system. The reactor is constrained to small power orbits.

  9. Synchronisation of high-order MIMO nonlinear systems using distributed neuro-adaptive control

    NASA Astrophysics Data System (ADS)

    Ghiti Sarand, Hassan; Karimi, Bahram

    2016-07-01

    This paper addresses synchronisation problem of high-order multi-input/multi-output (MIMO) multi-agent systems. Each agent has unknown nonlinear dynamics and is subject to uncertain external disturbances. The agents must follow a reference trajectory. An adaptive distributed controller based on relative information of neighbours of each agent is designed to solve the problem for any undirected connected communication topology. A radial basis function neural network is used to represent the controller's unknown structure. Lyapunov stability analysis is employed to guarantee stability of the overall system. By the theoretical analysis, the closed-loop control system is shown to be uniformly ultimately bounded. Finally, simulations are provided to show effectiveness of the proposed control method against uncertainty and disturbances.

  10. A simplified adaptive neural network prescribed performance controller for uncertain MIMO feedback linearizable systems.

    PubMed

    Theodorakopoulos, Achilles; Rovithakis, George A

    2015-03-01

    In this paper, the problem of deriving a continuous, state-feedback controller for a class of multiinput multioutput feedback linearizable systems is considered with special emphasis on controller simplification and reduction of the overall design complexity with respect to the current state of the art. The proposed scheme achieves prescribed bounds on the transient and steady-state performance of the output tracking errors despite the uncertainty in system nonlinearities. Contrary to the current state of the art, however, only a single neural network is utilized to approximate a scalar function that partly incorporates the system nonlinearities. Furthermore, the loss of model controllability problem, typically introduced owing to approximation model singularities, is avoided without attaching additional complexity to the control or adaptive law. Simulations are performed to verify and clarify the theoretical findings.

  11. Simulation and control problems in elastic robots

    NASA Technical Reports Server (NTRS)

    Tadikonda, S. S. K.; Baruh, H.

    1989-01-01

    Computational issues associated with modeling and control of robots with revolute joints and elastic arms are considered. A manipulator with one arm and pinned at one end is considered to investigate various aspects of the modeling procedure and the model, and the effect of coupling between the rigid-body and the elastic motions. The rigid-body motion of a manipulator arm is described by means of a reference frame attached to the shadow beam, and the linear elastic operator denoting flexibility is defined with respect to this reference frame. The small elastic motion assumption coupled with the method of assumed modes is used to model the elasticity in the arm. It is shown that only terms up to quadratic in these model amplitudes need to be retained. An important aspect of the coupling between the rigid-body and the elastic motion is the centrifugal stiffening effect. This effect stiffens the elastic structure, as to be expected on physical grounds, gives rise to a time-varying inertia term for the rigid-body motion, and, in general, results in an effective inertia term smaller than the rigid-body inertia term. Simulation results are presented for an elastic beam pinned at one end and free at the other, and rotating in a horizontal plane, and control issues such as the order of the model, number of sensors, and modal extraction are examined within this context.

  12. New synchronization criteria for memristor-based networks: adaptive control and feedback control schemes.

    PubMed

    Li, Ning; Cao, Jinde

    2015-01-01

    In this paper, we investigate synchronization for memristor-based neural networks with time-varying delay via an adaptive and feedback controller. Under the framework of Filippov's solution and differential inclusion theory, and by using the adaptive control technique and structuring a novel Lyapunov functional, an adaptive updated law was designed, and two synchronization criteria were derived for memristor-based neural networks with time-varying delay. By removing some of the basic literature assumptions, the derived synchronization criteria were found to be more general than those in existing literature. Finally, two simulation examples are provided to illustrate the effectiveness of the theoretical results.

  13. New synchronization criteria for memristor-based networks: adaptive control and feedback control schemes.

    PubMed

    Li, Ning; Cao, Jinde

    2015-01-01

    In this paper, we investigate synchronization for memristor-based neural networks with time-varying delay via an adaptive and feedback controller. Under the framework of Filippov's solution and differential inclusion theory, and by using the adaptive control technique and structuring a novel Lyapunov functional, an adaptive updated law was designed, and two synchronization criteria were derived for memristor-based neural networks with time-varying delay. By removing some of the basic literature assumptions, the derived synchronization criteria were found to be more general than those in existing literature. Finally, two simulation examples are provided to illustrate the effectiveness of the theoretical results. PMID:25299765

  14. Method and apparatus for adaptive force and position control of manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun (Inventor)

    1989-01-01

    The present invention discloses systematic methods and apparatus for the design of real time controllers. Real-time control employs adaptive force/position by use of feedforward and feedback controllers, with the feedforward controller being the inverse of the linearized model of robot dynamics and containing only proportional-double-derivative terms is disclosed. The feedback controller, of the proportional-integral-derivative type, ensures that manipulator joints follow reference trajectories and the feedback controller achieves robust tracking of step-plus-exponential trajectories, all in real time. The adaptive controller includes adaptive force and position control within a hybrid control architecture. The adaptive controller, for force control, achieves tracking of desired force setpoints, and the adaptive position controller accomplishes tracking of desired position trajectories. Circuits in the adaptive feedback and feedforward controllers are varied by adaptation laws.

  15. IIR filtering based adaptive active vibration control methodology with online secondary path modeling using PZT actuators

    NASA Astrophysics Data System (ADS)

    Boz, Utku; Basdogan, Ipek

    2015-12-01

    Structural vibrations is a major cause for noise problems, discomfort and mechanical failures in aerospace, automotive and marine systems, which are mainly composed of plate-like structures. In order to reduce structural vibrations on these structures, active vibration control (AVC) is an effective approach. Adaptive filtering methodologies are preferred in AVC due to their ability to adjust themselves for varying dynamics of the structure during the operation. The filtered-X LMS (FXLMS) algorithm is a simple adaptive filtering algorithm widely implemented in active control applications. Proper implementation of FXLMS requires availability of a reference signal to mimic the disturbance and model of the dynamics between the control actuator and the error sensor, namely the secondary path. However, the controller output could interfere with the reference signal and the secondary path dynamics may change during the operation. This interference problem can be resolved by using an infinite impulse response (IIR) filter which considers feedback of the one or more previous control signals to the controller output and the changing secondary path dynamics can be updated using an online modeling technique. In this paper, IIR filtering based filtered-U LMS (FULMS) controller is combined with online secondary path modeling algorithm to suppress the vibrations of a plate-like structure. The results are validated through numerical and experimental studies. The results show that the FULMS with online secondary path modeling approach has more vibration rejection capabilities with higher convergence rate than the FXLMS counterpart.

  16. Speed tracking and synchronization of multiple motors using ring coupling control and adaptive sliding mode control.

    PubMed

    Li, Le-Bao; Sun, Ling-Ling; Zhang, Sheng-Zhou; Yang, Qing-Quan

    2015-09-01

    A new control approach for speed tracking and synchronization of multiple motors is developed, by incorporating an adaptive sliding mode control (ASMC) technique into a ring coupling synchronization control structure. This control approach can stabilize speed tracking of each motor and synchronize its motion with other motors' motion so that speed tracking errors and synchronization errors converge to zero. Moreover, an adaptive law is exploited to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort and attenuate chattering. Performance comparisons with parallel control, relative coupling control and conventional PI control are investigated on a four-motor synchronization control system. Extensive simulation results show the effectiveness of the proposed control scheme.

  17. An adaptive computation mesh for the solution of singular perturbation problems

    NASA Technical Reports Server (NTRS)

    Brackbill, J. U.; Saltzman, J.

    1980-01-01

    In singular perturbation problems, control of zone size variation can affect the effort required to obtain accurate, numerical solutions of finite difference equations. The mesh is generated by the solution of potential equations. Numerical results for a singular perturbation problem in two dimensions are presented. The mesh was used in calculations of resistive magnetohydrodynamic flow in two dimensions.

  18. A mathematical basis for the design and design optimization of adaptive trusses in precision control

    NASA Technical Reports Server (NTRS)

    Das, S. K.; Utku, S.; Chen, G.-S.; Wada, B. K.

    1991-01-01

    A mathematical basis for the optimal design of adaptive trusses to be used in supporting precision equipment is provided. The general theory of adaptive structures is introduced, and the global optimization problem of placing a limited number, q, of actuators, so as to maximally achieve precision control and provide prestress, is stated. Two serialized optimization problems, namely, optimal actuator placement for prestress and optimal actuator placement for precision control, are addressed. In the case of prestressing, the computation of a 'desired' prestress is discussed, the interaction between actuators and redundants in conveying the prestress is shown in its mathematical form, and a methodology for arriving at the optimal placement of actuators and additional redundants is discussed. With regard to precision control, an optimal placement scheme (for q actuators) for maximum 'authority' over the precision points is suggested. The results of the two serialized optimization problems are combined to give a suboptimal solution to the global optimization problem. A method for improving this suboptimal actuator placement scheme by iteration is presented.

  19. Tree snubbing operation solves well control problem

    SciTech Connect

    Gebhardt, F.; Thompson, J.D.

    1987-09-01

    Wild Well Control, Inc. has used a unique method to remove a Christmas tree under high pressure and install BOPs without a rig. This allowed workover of a gas-condensate well with a shallow tubing break that could not be killed by surface pumping due to casing pressure limitations. The procedure eliminated the need for drilling a relief well. The tree-stripping procedure is applicable to wells with Christmas trees that are screwed to the tubing string and equipped with wrap-around tubing hangers. The method would not be required if the tree were provided with a mandrel hanger that could receive a back-pressure valve. The step-by-step procedure used to remove the tree under pressure is described.

  20. Robust adaptive integrated translation and rotation control of a rigid spacecraft with control saturation and actuator misalignment

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Duan, Guangren

    2013-05-01

    This paper handles the integrated translation and rotation tracking control problem of a rigid spacecraft with unknown mass property, actuator misalignment and control saturation. In view of the system natural coupling, the coupled translational and rotational dynamics of the spacecraft is developed, where a thruster configuration with installation misalignment is taken into account. By using anti-windup technique and backstepping philosophy, a robust adaptive integrated control scheme is proposed such that the spacecraft is able to track the command position and attitude signals in the presence of external disturbance, unknown mass property, thruster misalignment and control saturation. Within the Lyapunov framework, the uniformly ultimate boundedness of the system states is guaranteed. In particular, given the nominal case, the asymptotic convergence of the system states can be further ensured by the proposed control scheme. Finally, numerical simulation demonstrates the effect of the designed control strategy.

  1. Adaptive output feedback NN control of a class of discrete-time MIMO nonlinear systems with unknown control directions.

    PubMed

    Li, Yanan; Yang, Chenguang; Ge, Shuzhi Sam; Lee, Tong Heng

    2011-04-01

    In this paper, adaptive neural network (NN) control is investigated for a class of block triangular multiinput-multioutput nonlinear discrete-time systems with each subsystem in pure-feedback form with unknown control directions. These systems are of couplings in every equation of each subsystem, and different subsystems may have different orders. To avoid the noncausal problem in the control design, the system is transformed into a predictor form by rigorous derivation. By exploring the properties of the block triangular form, implicit controls are developed for each subsystem such that the couplings of inputs and states among subsystems have been completely decoupled. The radial basis function NN is employed to approximate the unknown control. Each subsystem achieves a semiglobal uniformly ultimately bounded stability with the proposed control, and simulation results are presented to demonstrate its efficiency.

  2. Direct model reference adaptive control of robotic arms

    NASA Technical Reports Server (NTRS)

    Kaufman, Howard; Swift, David C.; Cummings, Steven T.; Shankey, Jeffrey R.

    1993-01-01

    The results of controlling A PUMA 560 Robotic Manipulator and the NASA shuttle Remote Manipulator System (RMS) using a Command Generator Tracker (CGT) based Model Reference Adaptive Controller (DMRAC) are presented. Initially, the DMRAC algorithm was run in simulation using a detailed dynamic model of the PUMA 560. The algorithm was tuned on the simulation and then used to control the manipulator using minimum jerk trajectories as the desired reference inputs. The ability to track a trajectory in the presence of load changes was also investigated in the simulation. Satisfactory performance was achieved in both simulation and on the actual robot. The obtained responses showed that the algorithm was robust in the presence of sudden load changes. Because these results indicate that the DMRAC algorithm can indeed be successfully applied to the control of robotic manipulators, additional testing was performed to validate the applicability of DMRAC to simulated dynamics of the shuttle RMS.

  3. Adaptive control of a vibratory angle measuring gyroscope.

    PubMed

    Park, Sungsu

    2010-01-01

    This paper presents an adaptive control algorithm for realizing a vibratory angle measuring gyroscope so that rotation angle can be directly measured without integration of angular rate, thus eliminating the accumulation of numerical integration errors. The proposed control algorithm uses a trajectory following approach and the reference trajectory is generated by an ideal angle measuring gyroscope driven by the estimate of angular rate and the auxiliary sinusoidal input so that the persistent excitation condition is satisfied. The developed control algorithm can compensate for all types of fabrication imperfections such as coupled damping and stiffness, and mismatched stiffness and un-equal damping term in an on-line fashion. The simulation results show the feasibility and effectiveness of the developed control algorithm that is capable of directly measuring rotation angle without the integration of angular rate.

  4. Decentralized adaptive control designs and microstrip antennas for smart structures

    NASA Astrophysics Data System (ADS)

    Khorrami, Farshad; Jain, Sandeep; Das, Nirod K.

    1996-05-01

    Smart structures lend themselves naturally to a decentralized control design framework, especially with adaptation mechanisms. The main reason being that it is highly undesirable to connect all the sensors and actuators in a large structure to a central processor. It is rather desirable to have local decision-making at each smart patch. Furthermore, this local controllers should be easily `expandable' to `contractible.' This corresponds to the fact that addition/deletion of several smart patches should not require a total redesign of the control system. The decentralized control strategies advocated in this paper are of expandable/contractible type. On another front, we are considering utilization of micro-strip antennas for power transfer to and from smart structures. We have made preliminary contributions in this direction and further developments are underway. These approaches are being pursued for active vibration damping and noise cancellation via piezoelectric ceramics although the methodology is general enough to be applicable to other type of active structures.

  5. Direct model reference adaptive control of robotic arms

    NASA Astrophysics Data System (ADS)

    Kaufman, Howard; Swift, David C.; Cummings, Steven T.; Shankey, Jeffrey R.

    1993-12-01

    The results of controlling A PUMA 560 Robotic Manipulator and the NASA shuttle Remote Manipulator System (RMS) using a Command Generator Tracker (CGT) based Model Reference Adaptive Controller (DMRAC) are presented. Initially, the DMRAC algorithm was run in simulation using a detailed dynamic model of the PUMA 560. The algorithm was tuned on the simulation and then used to control the manipulator using minimum jerk trajectories as the desired reference inputs. The ability to track a trajectory in the presence of load changes was also investigated in the simulation. Satisfactory performance was achieved in both simulation and on the actual robot. The obtained responses showed that the algorithm was robust in the presence of sudden load changes. Because these results indicate that the DMRAC algorithm can indeed be successfully applied to the control of robotic manipulators, additional testing was performed to validate the applicability of DMRAC to simulated dynamics of the shuttle RMS.

  6. Fuzzy control for a nonlinear mimo-liquid level problem

    SciTech Connect

    Smith, R. E.; Mortensen, F. N.; Wantuck, P. J.; Parkinson, W. J. ,

    2001-01-01

    Nonlinear systems are very common in the chemical process industries. Control of these systems, particularly multivariable systems, is extremely difficult. In many chemical plants, because of this difficulty, control is seldom optimal. Quite often, the best control is obtained in the manual mode using experienced operators. Liquid level control is probably one of the most common control problems in a chemical plant. Liquid level is important in heat exchanger control where heat and mass transfer rates can be controlled by the amount of liquid covering the tubes. Distillation columns, mixing tanks, and surge tanks are other examples where liquid level control is very important. The problem discussed in this paper is based on the simultaneous level control of three tanks connected in series. Each tank holds slightly less than 0.01 m{sup 3} of liquid. All three tanks are connected, Liquid is pumped into the first and the third tanks to maintain their levels. The third tank in the series drains to the system exit. The levels in the first and third tank control the level in the middle tank. The level in the middle tank affects the levels in the two end tanks. Many other chemical plant systems can be controlled in a manner similar to this three-tank system. For example, in any distillation column liquid level control problems can be represented as a total condenser with liquid level control, a reboiler with liquid level control, with the interactive column in between. The solution to the three-tank-problem can provide insight into many of the nonlinear control problems in the chemical process industries. The system was tested using the fuzzy logic controller and a proportional-integral (PI) controller, in both the setpoint tracking mode and disturbance rejection mode. The experimental results are discussed and comparisons between fuzzy controller and the standard PI controller are made.

  7. Adaptive neural-network-based control of robotic manipulators

    NASA Astrophysics Data System (ADS)

    Mitchell, Kyle; Dagli, Cihan H.

    2001-03-01

    Robotic manipulators are beginning to be seen doing more tasks in our environment. Classical controls engineers have long known how to control these automated hands. They have failed to address the continued control of these devices after parts of the control infrastructure have failed. A failed motor or actuator in a manipulator decreases its range of motion and changes its control structure. Most failures however do not render the manipulator useless. This paper will discuss the use of a neural network to actively update the controller design as portions of a manipulator fail. Actuators can become stuck and later free themselves. Motors can lose range of motion or stop completely. Connecting arms can become bent or entangled. Results will be presented on the ability to maintain functionality through a variety of failure modes. The neural network is constructed and tested in a Matlab environment. This allows testing of several neural network techniques such as back propagation and temporal processing without the need to continually reconfigure target hardware. In this paper we will demonstrate that a modified ensemble of back propagation experts can be trained to control a robotic manipulator without the need to calculate the inverse kinematics equations. Further individual experts can be retrained online to allow for adaptive control through changing dynamics. This allows for manipulators to remain in service through failures in the manipulator infrastructure without the need for human intervention into control equations.

  8. Adaptive meshing technique applied to an orthopaedic finite element contact problem.

    PubMed

    Roarty, Colleen M; Grosland, Nicole M

    2004-01-01

    Finite element methods have been applied extensively and with much success in the analysis of orthopaedic implants. Recently a growing interest has developed, in the orthopaedic biomechanics community, in how numerical models can be constructed for the optimal solution of problems in contact mechanics. New developments in this area are of paramount importance in the design of improved implants for orthopaedic surgery. Finite element and other computational techniques are widely applied in the analysis and design of hip and knee implants, with additional joints (ankle, shoulder, wrist) attracting increased attention. The objective of this investigation was to develop a simplified adaptive meshing scheme to facilitate the finite element analysis of a dual-curvature total wrist implant. Using currently available software, the analyst has great flexibility in mesh generation, but must prescribe element sizes and refinement schemes throughout the domain of interest. Unfortunately, it is often difficult to predict in advance a mesh spacing that will give acceptable results. Adaptive finite-element mesh capabilities operate to continuously refine the mesh to improve accuracy where it is required, with minimal intervention by the analyst. Such mesh adaptation generally means that in certain areas of the analysis domain, the size of the elements is decreased (or increased) and/or the order of the elements may be increased (or decreased). In concept, mesh adaptation is very appealing. Although there have been several previous applications of adaptive meshing for in-house FE codes, we have coupled an adaptive mesh formulation with the pre-existing commercial programs PATRAN (MacNeal-Schwendler Corp., USA) and ABAQUS (Hibbit Karlson and Sorensen, Pawtucket, RI). In doing so, we have retained several attributes of the commercial software, which are very attractive for orthopaedic implant applications.

  9. Verifiable Adaptive Control with Analytical Stability Margins by Optimal Control Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2010-01-01

    This paper presents a verifiable model-reference adaptive control method based on an optimal control formulation for linear uncertain systems. A predictor model is formulated to enable a parameter estimation of the system parametric uncertainty. The adaptation is based on both the tracking error and predictor error. Using a singular perturbation argument, it can be shown that the closed-loop system tends to a linear time invariant model asymptotically under an assumption of fast adaptation. A stability margin analysis is given to estimate a lower bound of the time delay margin using a matrix measure method. Using this analytical method, the free design parameter n of the optimal control modification adaptive law can be determined to meet a specification of stability margin for verification purposes.

  10. Control Systems with Normalized and Covariance Adaptation by Optimal Control Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T. (Inventor); Burken, John J. (Inventor); Hanson, Curtis E. (Inventor)

    2016-01-01

    Disclosed is a novel adaptive control method and system called optimal control modification with normalization and covariance adjustment. The invention addresses specifically to current challenges with adaptive control in these areas: 1) persistent excitation, 2) complex nonlinear input-output mapping, 3) large inputs and persistent learning, and 4) the lack of stability analysis tools for certification. The invention has been subject to many simulations and flight testing. The results substantiate the effectiveness of the invention and demonstrate the technical feasibility for use in modern aircraft flight control systems.

  11. Modeling and control of nonlinear systems using novel fuzzy wavelet networks: The output adaptive control approach

    NASA Astrophysics Data System (ADS)

    Mousavi, Seyyed Hossein; Noroozi, Navid; Safavi, Ali Akbar; Ebadat, Afrooz

    2011-09-01

    This paper proposes an observer based self-structuring robust adaptive fuzzy wave-net (FWN) controller for a class of nonlinear uncertain multi-input multi-output systems. The control signal is comprised of two parts. The first part arises from an adaptive fuzzy wave-net based controller that approximates the system structural uncertainties. The second part comes from a robust H∞ based controller that is used to attenuate the effect of function approximation error and disturbance. Moreover, a new self structuring algorithm is proposed to determine the location of basis functions. Simulation results are provided for a two DOF robot to show the effectiveness of the proposed method.

  12. Controls on Extreme Droughts and Adaptation Strategies in Semiarid Regions

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.; Cook, C.; Fernando, D. N.; LeBlanc, M.

    2012-12-01

    Increasing vulnerability to droughts with reduced per capita water storage, particularly in semiarid regions, underscores the need for predictive understanding of drought controls and development of adaptation strategies for water resources management. In this study we evaluate causes of major droughts in southwest and southcentral US (California and Texas) and southeast Australia (Murray Darling Basin). Impacts of climate cycles (ENSO, PDO, AMO, NAO, IOD) and atmospheric circulation on drought initiation and persistence are examined. Effects of drought on surface water reservoir storage, groundwater storage, irrigation, and crop production are compared. Adaptation strategies being evaluated include water transfers among sectors, particularly from irrigated agriculture to other groups, increasing storage using managed aquifer recharge, water reuse, and development of new water sources (e.g. seawater desalination). It is critical to develop a broad portfolio of water sources to increase resilience to future droughts.

  13. A new adaptive configuration of PID type fuzzy logic controller.

    PubMed

    Fereidouni, Alireza; Masoum, Mohammad A S; Moghbel, Moayed

    2015-05-01

    In this paper, an adaptive configuration for PID type fuzzy logic controller (FLC) is proposed to improve the performances of both conventional PID (C-PID) controller and conventional PID type FLC (C-PID-FLC). The proposed configuration is called adaptive because its output scaling factors (SFs) are dynamically tuned while the controller is functioning. The initial values of SFs are calculated based on its well-tuned counterpart while the proceeding values are generated using a proposed stochastic hybrid bacterial foraging particle swarm optimization (h-BF-PSO) algorithm. The performance of the proposed configuration is evaluated through extensive simulations for different operating conditions (changes in reference, load disturbance and noise signals). The results reveal that the proposed scheme performs significantly better over the C-PID controller and the C-PID-FLC in terms of several performance indices (integral absolute error (IAE), integral-of-time-multiplied absolute error (ITAE) and integral-of-time-multiplied squared error (ITSE)), overshoot and settling time for plants with and without dead time.

  14. Sequential Insertion Heuristic with Adaptive Bee Colony Optimisation Algorithm for Vehicle Routing Problem with Time Windows.

    PubMed

    Jawarneh, Sana; Abdullah, Salwani

    2015-01-01

    This paper presents a bee colony optimisation (BCO) algorithm to tackle the vehicle routing problem with time window (VRPTW). The VRPTW involves recovering an ideal set of routes for a fleet of vehicles serving a defined number of customers. The BCO algorithm is a population-based algorithm that mimics the social communication patterns of honeybees in solving problems. The performance of the BCO algorithm is dependent on its parameters, so the online (self-adaptive) parameter tuning strategy is used to improve its effectiveness and robustness. Compared with the basic BCO, the adaptive BCO performs better. Diversification is crucial to the performance of the population-based algorithm, but the initial population in the BCO algorithm is generated using a greedy heuristic, which has insufficient diversification. Therefore the ways in which the sequential insertion heuristic (SIH) for the initial population drives the population toward improved solutions are examined. Experimental comparisons indicate that the proposed adaptive BCO-SIH algorithm works well across all instances and is able to obtain 11 best results in comparison with the best-known results in the literature when tested on Solomon's 56 VRPTW 100 customer instances. Also, a statistical test shows that there is a significant difference between the results.

  15. Sequential Insertion Heuristic with Adaptive Bee Colony Optimisation Algorithm for Vehicle Routing Problem with Time Windows.

    PubMed

    Jawarneh, Sana; Abdullah, Salwani

    2015-01-01

    This paper presents a bee colony optimisation (BCO) algorithm to tackle the vehicle routing problem with time window (VRPTW). The VRPTW involves recovering an ideal set of routes for a fleet of vehicles serving a defined number of customers. The BCO algorithm is a population-based algorithm that mimics the social communication patterns of honeybees in solving problems. The performance of the BCO algorithm is dependent on its parameters, so the online (self-adaptive) parameter tuning strategy is used to improve its effectiveness and robustness. Compared with the basic BCO, the adaptive BCO performs better. Diversification is crucial to the performance of the population-based algorithm, but the initial population in the BCO algorithm is generated using a greedy heuristic, which has insufficient diversification. Therefore the ways in which the sequential insertion heuristic (SIH) for the initial population drives the population toward improved solutions are examined. Experimental comparisons indicate that the proposed adaptive BCO-SIH algorithm works well across all instances and is able to obtain 11 best results in comparison with the best-known results in the literature when tested on Solomon's 56 VRPTW 100 customer instances. Also, a statistical test shows that there is a significant difference between the results. PMID:26132158

  16. Family quality of life and ASD: the role of child adaptive functioning and behavior problems.

    PubMed

    Emily, Gardiner; Grace, Iarocci

    2015-04-01

    The family is the key support network for children with autism spectrum disorder (ASD), in many cases into adulthood. The Family Quality of Life (FQOL) construct encompasses family satisfaction with both internal and external dynamics, as well as support availability. Therefore, although these families face considerable risk in raising a child with a disability, the FQOL outcome is conceptualized as representative of a continuum of family adaptation. This study examined the role of child characteristics, including adaptive functioning and behaviour problems, in relation to FQOL. Eighty-four caregivers of children and adolescents (range = 6-18 years) with ASD participated, completing questionnaires online and by telephone. Adaptive functioning, and specifically daily living skills, emerged as a significant predictor of FQOL satisfaction, after accounting for behavioural and demographic characteristics, including child age, gender, perceived disability severity, and behavioural problems, as well as family income. Furthermore, there were significant differences across each domain of FQOL when groups were separated by daily living skill functioning level ('low,' 'moderately low,' and 'adequate'). The results suggest that intervention strategies targeting daily living skills will likely have beneficial effects for both individual and family well-being, and may reduce family support demands.

  17. Sequential Insertion Heuristic with Adaptive Bee Colony Optimisation Algorithm for Vehicle Routing Problem with Time Windows

    PubMed Central

    Jawarneh, Sana; Abdullah, Salwani

    2015-01-01

    This paper presents a bee colony optimisation (BCO) algorithm to tackle the vehicle routing problem with time window (VRPTW). The VRPTW involves recovering an ideal set of routes for a fleet of vehicles serving a defined number of customers. The BCO algorithm is a population-based algorithm that mimics the social communication patterns of honeybees in solving problems. The performance of the BCO algorithm is dependent on its parameters, so the online (self-adaptive) parameter tuning strategy is used to improve its effectiveness and robustness. Compared with the basic BCO, the adaptive BCO performs better. Diversification is crucial to the performance of the population-based algorithm, but the initial population in the BCO algorithm is generated using a greedy heuristic, which has insufficient diversification. Therefore the ways in which the sequential insertion heuristic (SIH) for the initial population drives the population toward improved solutions are examined. Experimental comparisons indicate that the proposed adaptive BCO-SIH algorithm works well across all instances and is able to obtain 11 best results in comparison with the best-known results in the literature when tested on Solomon’s 56 VRPTW 100 customer instances. Also, a statistical test shows that there is a significant difference between the results. PMID:26132158

  18. Methods and evaluations of MRI content-adaptive finite element mesh generation for bioelectromagnetic problems.

    PubMed

    Lee, W H; Kim, T-S; Cho, M H; Ahn, Y B; Lee, S Y

    2006-12-01

    In studying bioelectromagnetic problems, finite element analysis (FEA) offers several advantages over conventional methods such as the boundary element method. It allows truly volumetric analysis and incorporation of material properties such as anisotropic conductivity. For FEA, mesh generation is the first critical requirement and there exist many different approaches. However, conventional approaches offered by commercial packages and various algorithms do not generate content-adaptive meshes (cMeshes), resulting in numerous nodes and elements in modelling the conducting domain, and thereby increasing computational load and demand. In this work, we present efficient content-adaptive mesh generation schemes for complex biological volumes of MR images. The presented methodology is fully automatic and generates FE meshes that are adaptive to the geometrical contents of MR images, allowing optimal representation of conducting domain for FEA. We have also evaluated the effect of cMeshes on FEA in three dimensions by comparing the forward solutions from various cMesh head models to the solutions from the reference FE head model in which fine and equidistant FEs constitute the model. The results show that there is a significant gain in computation time with minor loss in numerical accuracy. We believe that cMeshes should be useful in the FEA of bioelectromagnetic problems.

  19. Analysis of a multistate control problem related to food technology

    NASA Astrophysics Data System (ADS)

    Alvarez-Vázquez, Lino J.; Fernández, Francisco J.; Muñoz-Sola, Rafael

    This paper is concerned with an optimal control problem related to the determination of an optimal profile for the steam temperature into the autoclave along the processing of canned foods. The problem studies a system coupling the evolution Navier-Stokes equations with the heat transfer equation by natural convection (the so-called Boussinesq equations), and with the microorganisms removal equation. The essential difficulties in the study of this multistate control problem arise from the lack of uniqueness for the solution of the state system. Here we obtain—after a careful analysis of the problem mathematical formulation—the uniqueness of part of the state, and the existence of optimal solutions.

  20. Functional Based Adaptive and Fuzzy Sliding Controller for Non-Autonomous Active Suspension System

    NASA Astrophysics Data System (ADS)

    Huang, Shiuh-Jer; Chen, Hung-Yi

    In this paper, an adaptive sliding controller is developed for controlling a vehicle active suspension system. The functional approximation technique is employed to substitute the unknown non-autonomous functions of the suspension system and release the model-based requirement of sliding mode control algorithm. In order to improve the control performance and reduce the implementation problem, a fuzzy strategy with online learning ability is added to compensate the functional approximation error. The update laws of the functional approximation coefficients and the fuzzy tuning parameters are derived from the Lyapunov theorem to guarantee the system stability. The proposed controller is implemented on a quarter-car hydraulic actuating active suspension system test-rig. The experimental results show that the proposed controller suppresses the oscillation amplitude of the suspension system effectively.