Fixed gain and adaptive techniques for rotorcraft vibration control
NASA Technical Reports Server (NTRS)
Roy, R. H.; Saberi, H. A.; Walker, R. A.
1985-01-01
The results of an analysis effort performed to demonstrate the feasibility of employing approximate dynamical models and frequency shaped cost functional control law desgin techniques for helicopter vibration suppression are presented. Both fixed gain and adaptive control designs based on linear second order dynamical models were implemented in a detailed Rotor Systems Research Aircraft (RSRA) simulation to validate these active vibration suppression control laws. Approximate models of fuselage flexibility were included in the RSRA simulation in order to more accurately characterize the structural dynamics. The results for both the fixed gain and adaptive approaches are promising and provide a foundation for pursuing further validation in more extensive simulation studies and in wind tunnel and/or flight tests.
Beaconless adaptive-optics technique for HEL beam control
NASA Astrophysics Data System (ADS)
Khizhnyak, Anatoliy; Markov, Vladimir
2016-05-01
Effective performance of forthcoming laser systems capable of power delivery on a distant target requires an adaptive optics system to correct atmospheric perturbations on the laser beam. The turbulence-induced effects are responsible for beam wobbling, wandering, and intensity scintillation, resulting in degradation of the beam quality and power density on the target. Adaptive optics methods are used to compensate for these negative effects. In its turn, operation of the AOS system requires a reference wave that can be generated by the beacon on the target. This report discusses a beaconless approach for wavefront correction with its performance based on the detection of the target-scattered light. Postprocessing of the beacon-generated light field enables retrieval and detailed characterization of the turbulence-perturbed wavefront -data that is essential to control the adaptive optics module of a high-power laser system.
Time domain and frequency domain design techniques for model reference adaptive control systems
NASA Technical Reports Server (NTRS)
Boland, J. S., III
1971-01-01
Some problems associated with the design of model-reference adaptive control systems are considered and solutions to these problems are advanced. The stability of the adapted system is a primary consideration in the development of both the time-domain and the frequency-domain design techniques. Consequentially, the use of Liapunov's direct method forms an integral part of the derivation of the design procedures. The application of sensitivity coefficients to the design of model-reference adaptive control systems is considered. An application of the design techniques is also presented.
Zheng, Shiqi; Tang, Xiaoqi; Song, Bao; Lu, Shaowu; Ye, Bosheng
2013-07-01
In this paper, a stable adaptive PI control strategy based on the improved just-in-time learning (IJITL) technique is proposed for permanent magnet synchronous motor (PMSM) drive. Firstly, the traditional JITL technique is improved. The new IJITL technique has less computational burden and is more suitable for online identification of the PMSM drive system which is highly real-time compared to traditional JITL. In this way, the PMSM drive system is identified by IJITL technique, which provides information to an adaptive PI controller. Secondly, the adaptive PI controller is designed in discrete time domain which is composed of a PI controller and a supervisory controller. The PI controller is capable of automatically online tuning the control gains based on the gradient descent method and the supervisory controller is developed to eliminate the effect of the approximation error introduced by the PI controller upon the system stability in the Lyapunov sense. Finally, experimental results on the PMSM drive system show accurate identification and favorable tracking performance.
Adaptive data rate control TDMA systems as a rain attenuation compensation technique
NASA Technical Reports Server (NTRS)
Sato, Masaki; Wakana, Hiromitsu; Takahashi, Takashi; Takeuchi, Makoto; Yamamoto, Minoru
1993-01-01
Rainfall attenuation has a severe effect on signal strength and impairs communication links for future mobile and personal satellite communications using Ka-band and millimeter wave frequencies. As rain attenuation compensation techniques, several methods such as uplink power control, site diversity, and adaptive control of data rate or forward error correction have been proposed. In this paper, we propose a TDMA system that can compensate rain attenuation by adaptive control of transmission rates. To evaluate the performance of this TDMA terminal, we carried out three types of experiments: experiments using a Japanese CS-3 satellite with Ka-band transponders, in house IF loop-back experiments, and computer simulations. Experimental results show that this TDMA system has advantages over the conventional constant-rate TDMA systems, as resource sharing technique, in both bit error rate and total TDMA burst lengths required for transmitting given information.
Adaptive-compression based congestion control technique for wireless sensor networks.
Lee, Joa-Hyoung; Jung, In-Bum
2010-01-01
Congestion in a wireless sensor network causes an increase in the amount of data loss and delays in data transmission. In this paper, we propose a new congestion control technique (ACT, Adaptive Compression-based congestion control Technique) based on an adaptive compression scheme for packet reduction in case of congestion. The compression techniques used in the ACT are Discrete Wavelet Transform (DWT), Adaptive Differential Pulse Code Modulation (ADPCM), and Run-Length Coding (RLC). The ACT first transforms the data from the time domain to the frequency domain, reduces the range of data by using ADPCM, and then reduces the number of packets with the help of RLC before transferring the data to the source node. It introduces the DWT for priority-based congestion control because the DWT classifies the data into four groups with different frequencies. The ACT assigns priorities to these data groups in an inverse proportion to the respective frequencies of the data groups and defines the quantization step size of ADPCM in an inverse proportion to the priorities. RLC generates a smaller number of packets for a data group with a low priority. In the relaying node, the ACT reduces the amount of packets by increasing the quantization step size of ADPCM in case of congestion. Moreover, in order to facilitate the back pressure, the queue is controlled adaptively according to the congestion state. We experimentally demonstrate that the ACT increases the network efficiency and guarantees fairness to sensor nodes, as compared with the existing methods. Moreover, it exhibits a very high ratio of the available data in the sink. PMID:22319280
Adaptive-Compression Based Congestion Control Technique for Wireless Sensor Networks
Lee, Joa-Hyoung; Jung, In-Bum
2010-01-01
Congestion in a wireless sensor network causes an increase in the amount of data loss and delays in data transmission. In this paper, we propose a new congestion control technique (ACT, Adaptive Compression-based congestion control Technique) based on an adaptive compression scheme for packet reduction in case of congestion. The compression techniques used in the ACT are Discrete Wavelet Transform (DWT), Adaptive Differential Pulse Code Modulation (ADPCM), and Run-Length Coding (RLC). The ACT first transforms the data from the time domain to the frequency domain, reduces the range of data by using ADPCM, and then reduces the number of packets with the help of RLC before transferring the data to the source node. It introduces the DWT for priority-based congestion control because the DWT classifies the data into four groups with different frequencies. The ACT assigns priorities to these data groups in an inverse proportion to the respective frequencies of the data groups and defines the quantization step size of ADPCM in an inverse proportion to the priorities. RLC generates a smaller number of packets for a data group with a low priority. In the relaying node, the ACT reduces the amount of packets by increasing the quantization step size of ADPCM in case of congestion. Moreover, in order to facilitate the back pressure, the queue is controlled adaptively according to the congestion state. We experimentally demonstrate that the ACT increases the network efficiency and guarantees fairness to sensor nodes, as compared with the existing methods. Moreover, it exhibits a very high ratio of the available data in the sink. PMID:22319280
Adaptive Neural Control of Pure-Feedback Nonlinear Time-Delay Systems via Dynamic Surface Technique.
Min Wang; Xiaoping Liu; Peng Shi
2011-12-01
This paper is concerned with robust stabilization problem for a class of nonaffine pure-feedback systems with unknown time-delay functions and perturbed uncertainties. Novel continuous packaged functions are introduced in advance to remove unknown nonlinear terms deduced from perturbed uncertainties and unknown time-delay functions, which avoids the functions with control law to be approximated by radial basis function (RBF) neural networks. This technique combining implicit function and mean value theorems overcomes the difficulty in controlling the nonaffine pure-feedback systems. Dynamic surface control (DSC) is used to avoid "the explosion of complexity" in the backstepping design. Design difficulties from unknown time-delay functions are overcome using the function separation technique, the Lyapunov-Krasovskii functionals, and the desirable property of hyperbolic tangent functions. RBF neural networks are employed to approximate desired virtual controls and desired practical control. Under the proposed adaptive neural DSC, the number of adaptive parameters required is reduced significantly, and semiglobal uniform ultimate boundedness of all of the signals in the closed-loop system is guaranteed. Simulation studies are given to demonstrate the effectiveness of the proposed design scheme.
Adaptive cancellation techniques
NASA Astrophysics Data System (ADS)
1983-11-01
An adaptive signal canceller has been evaluated for the enhancement of pulse signal reception during the transmission of a high power ECM jamming signal. The canceller design is based on the use of DRFM(Digital RF Memory) technology as part of an adaptive multiple tapped delay line. The study includes analysis of relationship of tap spacing and waveform bandwidth, survey of related documents in areas of sidelobe cancellers, transversal equalizers, and adaptive filters, and derivation of control equations and corresponding control processes. The simulation of overall processes included geometric analysis of the multibeam transmitting antenna, multiple reflection sources and the receiving antenna; waveforms, tap spacings and bandwidths; and alternate control algorithms. Conclusions are provided regarding practical system control algorithms, design characteristics and limitations.
Adaptive critic learning techniques for engine torque and air-fuel ratio control.
Liu, Derong; Javaherian, Hossein; Kovalenko, Olesia; Huang, Ting
2008-08-01
A new approach for engine calibration and control is proposed. In this paper, we present our research results on the implementation of adaptive critic designs for self-learning control of automotive engines. A class of adaptive critic designs that can be classified as (model-free) action-dependent heuristic dynamic programming is used in this research project. The goals of the present learning control design for automotive engines include improved performance, reduced emissions, and maintained optimum performance under various operating conditions. Using the data from a test vehicle with a V8 engine, we developed a neural network model of the engine and neural network controllers based on the idea of approximate dynamic programming to achieve optimal control. We have developed and simulated self-learning neural network controllers for both engine torque (TRQ) and exhaust air-fuel ratio (AFR) control. The goal of TRQ control and AFR control is to track the commanded values. For both control problems, excellent neural network controller transient performance has been achieved.
NASA Astrophysics Data System (ADS)
Zapateiro, Mauricio; Karimi, Hamid Reza; Luo, Ningsu
2011-05-01
This article presents a new approach to the vibration mitigation problem in structures subject to seismic motions. These kinds of structures are characterised by the uncertainties of the parameters that describe their dynamics, such as stiffness and damping coefficients. Moreover, the dampers used to mitigate the vibrations caused by earthquakes are usually nonlinear devices with frictional or hysteretic dynamics. We propose an adaptive backstepping controller to account for the uncertainties and the nonlinearities. The controller is formulated in such a way that it satisfies an H ∞ performance. It is designed for a 10-storey building whose base is isolated with a frictional damper (passive device) and a magnetorheological damper (semiactive device). Controller performance is analysed through numerical simulations.
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Pope, Alan T.; Freeman, Frederick G.
2001-01-01
Prinzel, Hadley, Freeman, and Mikulka found that adaptive task allocation significantly enhanced performance only when used at the endpoints of the task workload continuum (i.e., very low or high workload), but that the technique degraded performance if invoked during other levels of task demand. These researchers suggested that other techniques should be used in conjunction with adaptive automation to help minimize the onset of hazardous states of awareness (HSA) and keep the operator 'in-the-loop.' The paper reports on such a technique that uses psychophysiological self-regulation to modulate the level of task engagement. Eighteen participants were assigned to three groups (self-regulation, false feedback, and control) and performed a compensatory tracking task that was cycled between three levels of task difficulty on the basis of the electroencephalogram (EEG) record. Those participants who had received self-regulation training performed significantly better and reported lower NASA-TLX scores than participants in the false feedback and control groups. Furthermore, the false feedback and control groups had significantly more task allocations resulting in return-to-manual performance decrements and higher EEG difference scores. Theoretical and practical implications of these results for adaptive automation are discussed.
Coherent optical adaptive techniques.
Bridges, W B; Brunner, P T; Lazzara, S P; Nussmeier, T A; O'Meara, T R; Sanguinet, J A; Brown, W P
1974-02-01
The theory of multidither adaptive optical radar phased arrays is briefly reviewed as an introduction to the experimental results obtained with seven-element linear and three-element triangular array systems operating at 0.6328 microm. Atmospheric turbulence compensation and adaptive tracking capabilities are demonstrated.
Method For Model-Reference Adaptive Control
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1990-01-01
Relatively simple method of model-reference adaptive control (MRAC) developed from two prior classes of MRAC techniques: signal-synthesis method and parameter-adaption method. Incorporated into unified theory, which yields more general adaptation scheme.
Schlipf, David; Raach, Steffen; Haizmann, Florian; Cheng, Po Wen; Fleming, Paul; Scholbrock, Andrew, Krishnamurthy, Raghu; Boquet, Mathieu
2015-12-14
This paper presents first steps toward an adaptive lidar data processing technique crucial for lidar-assisted control in wind turbines. The prediction time and the quality of the wind preview from lidar measurements depend on several factors and are not constant. If the data processing is not continually adjusted, the benefit of lidar-assisted control cannot be fully exploited, or can even result in harmful control action. An online analysis of the lidar and turbine data are necessary to continually reassess the prediction time and lidar data quality. In this work, a structured process to develop an analysis tool for the prediction time and a new hardware setup for lidar-assisted control are presented. The tool consists of an online estimation of the rotor effective wind speed from lidar and turbine data and the implementation of an online cross correlation to determine the time shift between both signals. Further, initial results from an ongoing campaign in which this system was employed for providing lidar preview for feed-forward pitch control are presented.
Decentralized adaptive control
NASA Technical Reports Server (NTRS)
Oh, B. J.; Jamshidi, M.; Seraji, H.
1988-01-01
A decentralized adaptive control is proposed to stabilize and track the nonlinear, interconnected subsystems with unknown parameters. The adaptation of the controller gain is derived by using model reference adaptive control theory based on Lyapunov's direct method. The adaptive gains consist of sigma, proportional, and integral combination of the measured and reference values of the corresponding subsystem. The proposed control is applied to the joint control of a two-link robot manipulator, and the performance in computer simulation corresponds with what is expected in theoretical development.
Robust Optimal Adaptive Control Method with Large Adaptive Gain
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2009-01-01
In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.
Chen, Wen; Chowdhury, Fahmida N; Djuric, Ana; Yeh, Chih-Ping
2014-09-01
This paper provides a new design of robust fault detection for turbofan engines with adaptive controllers. The critical issue is that the adaptive controllers can depress the faulty effects such that the actual system outputs remain the pre-specified values, making it difficult to detect faults/failures. To solve this problem, a Total Measurable Fault Information Residual (ToMFIR) technique with the aid of system transformation is adopted to detect faults in turbofan engines with adaptive controllers. This design is a ToMFIR-redundancy-based robust fault detection. The ToMFIR is first introduced and existing results are also summarized. The Detailed design process of the ToMFIRs is presented and a turbofan engine model is simulated to verify the effectiveness of the proposed ToMFIR-based fault-detection strategy.
Adaptive sequential controller
El-Sharkawi, Mohamed A.; Xing, Jian; Butler, Nicholas G.; Rodriguez, Alonso
1994-01-01
An adaptive sequential controller (50/50') for controlling a circuit breaker (52) or other switching device to substantially eliminate transients on a distribution line caused by closing and opening the circuit breaker. The device adaptively compensates for changes in the response time of the circuit breaker due to aging and environmental effects. A potential transformer (70) provides a reference signal corresponding to the zero crossing of the voltage waveform, and a phase shift comparator circuit (96) compares the reference signal to the time at which any transient was produced when the circuit breaker closed, producing a signal indicative of the adaptive adjustment that should be made. Similarly, in controlling the opening of the circuit breaker, a current transformer (88) provides a reference signal that is compared against the time at which any transient is detected when the circuit breaker last opened. An adaptive adjustment circuit (102) produces a compensation time that is appropriately modified to account for changes in the circuit breaker response, including the effect of ambient conditions and aging. When next opened or closed, the circuit breaker is activated at an appropriately compensated time, so that it closes when the voltage crosses zero and opens when the current crosses zero, minimizing any transients on the distribution line. Phase angle can be used to control the opening of the circuit breaker relative to the reference signal provided by the potential transformer.
NASA Astrophysics Data System (ADS)
Reif, Konrad
Die adaptive Fahrgeschwindigkeitsregelung (ACC, Adaptive Cruise Control) ist eine Weiterentwicklung der konventionellen Fahrgeschwindigkeitsregelung, die eine konstante Fahrgeschwindigkeit einstellt. ACC überwacht mittels eines Radarsensors den Bereich vor dem Fahrzeug und passt die Geschwindigkeit den Gegebenheiten an. ACC reagiert auf langsamer vorausfahrende oder einscherende Fahrzeuge mit einer Reduzierung der Geschwindigkeit, sodass der vorgeschriebene Mindestabstand zum vorausfahrenden Fahrzeug nicht unterschritten wird. Hierzu greift ACC in Antrieb und Bremse ein. Sobald das vorausfahrende Fahrzeug beschleunigt oder die Spur verlässt, regelt ACC die Geschwindigkeit wieder auf die vorgegebene Sollgeschwindigkeit ein (Bild 1). ACC steht somit für eine Geschwindigkeitsregelung, die sich dem vorausfahrenden Verkehr anpasst.
Adaptive control with aerospace applications
NASA Astrophysics Data System (ADS)
Gadient, Ross
Robust and adaptive control techniques have a rich history of theoretical development with successful application. Despite the accomplishments made, attempts to combine the best elements of each approach into robust adaptive systems has proven challenging, particularly in the area of application to real world aerospace systems. In this research, we investigate design methods for general classes of systems that may be applied to representative aerospace dynamics. By combining robust baseline control design with augmentation designs, our work aims to leverage the advantages of each approach. This research contributes the development of robust model-based control design for two classes of dynamics: 2nd order cascaded systems, and a more general MIMO framework. We present a theoretically justified method for state limiting via augmentation of a robust baseline control design. Through the development of adaptive augmentation designs, we are able to retain system performance in the presence of uncertainties. We include an extension that combines robust baseline design with both state limiting and adaptive augmentations. In addition we develop an adaptive augmentation design approach for a class of dynamic input uncertainties. We present formal stability proofs and analyses for all proposed designs in the research. Throughout the work, we present real world aerospace applications using relevant flight dynamics and flight test results. We derive robust baseline control designs with application to both piloted and unpiloted aerospace system. Using our developed methods, we add a flight envelope protecting state limiting augmentation for piloted aircraft applications and demonstrate the efficacy of our approach via both simulation and flight test. We illustrate our adaptive augmentation designs via application to relevant fixed-wing aircraft dynamics. Both a piloted example combining the state limiting and adaptive augmentation approaches, and an unpiloted example with
Adaptive control for accelerators
Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.
1991-01-01
An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.
Adaptive nonlinear flight control
NASA Astrophysics Data System (ADS)
Rysdyk, Rolf Theoduor
1998-08-01
Research under supervision of Dr. Calise and Dr. Prasad at the Georgia Institute of Technology, School of Aerospace Engineering. has demonstrated the applicability of an adaptive controller architecture. The architecture successfully combines model inversion control with adaptive neural network (NN) compensation to cancel the inversion error. The tiltrotor aircraft provides a specifically interesting control design challenge. The tiltrotor aircraft is capable of converting from stable responsive fixed wing flight to unstable sluggish hover in helicopter configuration. It is desirable to provide the pilot with consistency in handling qualities through a conversion from fixed wing flight to hover. The linear model inversion architecture was adapted by providing frequency separation in the command filter and the error-dynamics, while not exiting the actuator modes. This design of the architecture provides for a model following setup with guaranteed performance. This in turn allowed for convenient implementation of guaranteed handling qualities. A rigorous proof of boundedness is presented making use of compact sets and the LaSalle-Yoshizawa theorem. The analysis allows for the addition of the e-modification which guarantees boundedness of the NN weights in the absence of persistent excitation. The controller is demonstrated on the Generic Tiltrotor Simulator of Bell-Textron and NASA Ames R.C. The model inversion implementation is robustified with respect to unmodeled input dynamics, by adding dynamic nonlinear damping. A proof of boundedness of signals in the system is included. The effectiveness of the robustification is also demonstrated on the XV-15 tiltrotor. The SHL Perceptron NN provides a more powerful application, based on the universal approximation property of this type of NN. The SHL NN based architecture is also robustified with the dynamic nonlinear damping. A proof of boundedness extends the SHL NN augmentation with robustness to unmodeled actuator
Adaptive techniques in electrical impedance tomography reconstruction.
Li, Taoran; Isaacson, David; Newell, Jonathan C; Saulnier, Gary J
2014-06-01
We present an adaptive algorithm for solving the inverse problem in electrical impedance tomography. To strike a balance between the accuracy of the reconstructed images and the computational efficiency of the forward and inverse solvers, we propose to combine an adaptive mesh refinement technique with the adaptive Kaczmarz method. The iterative algorithm adaptively generates the optimal current patterns and a locally-refined mesh given the conductivity estimate and solves for the unknown conductivity distribution with the block Kaczmarz update step. Simulation and experimental results with numerical analysis demonstrate the accuracy and the efficiency of the proposed algorithm.
Contamination Control Techniques
EBY, J.L.
2000-05-16
Welcome to a workshop on contamination Control techniques. This work shop is designed for about two hours. Attendee participation is encouraged during the workshop. We will address different topics within contamination control techniques; present processes, products and equipment used here at Hanford and then open the floor to you, the attendees for your input on the topics.
Adaptive control of robotic manipulators
NASA Technical Reports Server (NTRS)
Seraji, H.
1987-01-01
The author presents a novel approach to adaptive control of manipulators to achieve trajectory tracking by the joint angles. The central concept in this approach is the utilization of the manipulator inverse as a feedforward controller. The desired trajectory is applied as an input to the feedforward controller which behaves as the inverse of the manipulator at any operating point; the controller output is used as the driving torque for the manipulator. The controller gains are then updated by an adaptation algorithm derived from MRAC (model reference adaptive control) theory to cope with variations in the manipulator inverse due to changes of the operating point. An adaptive feedback controller and an auxiliary signal are also used to enhance closed-loop stability and to achieve faster adaptation. The proposed control scheme is computationally fast and does not require a priori knowledge of the complex dynamic model or the parameter values of the manipulator or the payload.
NASA Astrophysics Data System (ADS)
Kromer, Robin; Costil, Sophie; Cormier, Jonathan; Berthe, Laurent; Peyre, Patrice; Courapied, Damien
2016-02-01
Coating characteristics are highly dependent on substrate preparation and spray parameters. Hence, the surface must be adapted mechanically and physicochemically to favor coating-substrate adhesion. Conventional surface preparation methods such as grit blasting are limited by surface embrittlement and produce large plastic deformations throughout the surface, resulting in compressive stress and potential cracks. Among all such methods, laser patterning is suitable to prepare the surface of sensitive materials. No embedded grit particles can be observed, and high-quality coatings are obtained. Finally, laser surface patterning adapts the impacted surface, creating large anchoring area. Optimized surface topographies can then be elaborated according to the material as well as the application. The objective of this study is to compare the adhesive bond strength between two surface preparation methods, namely grit blasting and laser surface patterning, for two material couples used in aerospace applications: 2017 aluminum alloy and AISI 304L stainless steel coated with NiAl and YSZ, respectively. Laser patterning significantly increases adherence values for similar contact area due to mixed-mode (cohesive and adhesive) failure. The coating is locked in the pattern.
Advanced Wavefront Control Techniques
Olivier, S S; Brase, J M; Avicola, K; Thompson, C A; Kartz, M W; Winters, S; Hartley, R; Wihelmsen, J; Dowla, F V; Carrano, C J; Bauman, B J; Pennington, D M; Lande, D; Sawvel, R M; Silva, D A; Cooke, J B; Brown, C G
2001-02-21
Programs at LLNL that involve large laser systems--ranging from the National Ignition Facility to new tactical laser weapons--depend on the maintenance of laser beam quality through precise control of the optical wavefront. This can be accomplished using adaptive optics, which compensate for time-varying aberrations that are often caused by heating in a high-power laser system. Over the past two decades, LLNL has developed a broad capability in adaptive optics technology for both laser beam control and high-resolution imaging. This adaptive optics capability has been based on thin deformable glass mirrors with individual ceramic actuators bonded to the back. In the case of high-power lasers, these adaptive optics systems have successfully improved beam quality. However, as we continue to extend our applications requirements, the existing technology base for wavefront control cannot satisfy them. To address this issue, this project studied improved modeling tools to increase our detailed understanding of the performance of these systems, and evaluated novel approaches to low-order wavefront control that offer the possibility of reduced cost and complexity. We also investigated improved beam control technology for high-resolution wavefront control. Many high-power laser systems suffer from high-spatial-frequency aberrations that require control of hundreds or thousands of phase points to provide adequate correction. However, the cost and size of current deformable mirrors can become prohibitive for applications requiring more than a few tens of phase control points. New phase control technologies are becoming available which offer control of many phase points with small low-cost devices. The goal of this project was to expand our wavefront control capabilities with improved modeling tools, new devices that reduce system cost and complexity, and extensions to high spatial and temporal frequencies using new adaptive optics technologies. In FY 99, the second year of
A novel online adaptive time delay identification technique
NASA Astrophysics Data System (ADS)
Bayrak, Alper; Tatlicioglu, Enver
2016-05-01
Time delay is a phenomenon which is common in signal processing, communication, control applications, etc. The special feature of time delay that makes it attractive is that it is a commonly faced problem in many systems. A literature search on time-delay identification highlights the fact that most studies focused on numerical solutions. In this study, a novel online adaptive time-delay identification technique is proposed. This technique is based on an adaptive update law through a minimum-maximum strategy which is firstly applied to time-delay identification. In the design of the adaptive identification law, Lyapunov-based stability analysis techniques are utilised. Several numerical simulations were conducted with Matlab/Simulink to evaluate the performance of the proposed technique. It is numerically demonstrated that the proposed technique works efficiently in identifying both constant and disturbed time delays, and is also robust to measurement noise.
Aircraft adaptive learning control
NASA Technical Reports Server (NTRS)
Lee, P. S. T.; Vanlandingham, H. F.
1979-01-01
The optimal control theory of stochastic linear systems is discussed in terms of the advantages of distributed-control systems, and the control of randomly-sampled systems. An optimal solution to longitudinal control is derived and applied to the F-8 DFBW aircraft. A randomly-sampled linear process model with additive process and noise is developed.
Indirect techniques for adaptive input-output linearization of non-linear systems
NASA Technical Reports Server (NTRS)
Teel, Andrew; Kadiyala, Raja; Kokotovic, Peter; Sastry, Shankar
1991-01-01
A technique of indirect adaptive control based on certainty equivalence for input output linearization of nonlinear systems is proven convergent. It does not suffer from the overparameterization drawbacks of the direct adaptive control techniques on the same plant. This paper also contains a semiindirect adaptive controller which has several attractive features of both the direct and indirect schemes.
Stochastic Feedforward Control Technique
NASA Technical Reports Server (NTRS)
Halyo, Nesim
1990-01-01
Class of commanded trajectories modeled as stochastic process. Advanced Transport Operating Systems (ATOPS) research and development program conducted by NASA Langley Research Center aimed at developing capabilities for increases in capacities of airports, safe and accurate flight in adverse weather conditions including shear, winds, avoidance of wake vortexes, and reduced consumption of fuel. Advances in techniques for design of modern controls and increased capabilities of digital flight computers coupled with accurate guidance information from Microwave Landing System (MLS). Stochastic feedforward control technique developed within context of ATOPS program.
Adaptive Control Of Remote Manipulator
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1989-01-01
Robotic control system causes remote manipulator to follow closely reference trajectory in Cartesian reference frame in work space, without resort to computationally intensive mathematical model of robot dynamics and without knowledge of robot and load parameters. System, derived from linear multivariable theory, uses relatively simple feedforward and feedback controllers with model-reference adaptive control.
Nonlinear and adaptive control
NASA Technical Reports Server (NTRS)
Athans, Michael
1989-01-01
The primary thrust of the research was to conduct fundamental research in the theories and methodologies for designing complex high-performance multivariable feedback control systems; and to conduct feasibiltiy studies in application areas of interest to NASA sponsors that point out advantages and shortcomings of available control system design methodologies.
Hybrid Adaptive Flight Control with Model Inversion Adaptation
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2011-01-01
This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.
Criticality of Adaptive Control Dynamics
NASA Astrophysics Data System (ADS)
Patzelt, Felix; Pawelzik, Klaus
2011-12-01
We show, that stabilization of a dynamical system can annihilate observable information about its structure. This mechanism induces critical points as attractors in locally adaptive control. It also reveals, that previously reported criticality in simple controllers is caused by adaptation and not by other controller details. We apply these results to a real-system example: human balancing behavior. A model of predictive adaptive closed-loop control subject to some realistic constraints is introduced and shown to reproduce experimental observations in unprecedented detail. Our results suggests, that observed error distributions in between the Lévy and Gaussian regimes may reflect a nearly optimal compromise between the elimination of random local trends and rare large errors.
Adaptive Control For Flexible Structures
NASA Technical Reports Server (NTRS)
Bayard, David S.; Ih, Che-Hang Charles; Wang, Shyh Jong
1988-01-01
Paper discusses ways to cope with measurement noise in adaptive control system for large, flexible structure in outer space. System generates control signals for torque and thrust actuators to turn all or parts of structure to desired orientations while suppressing torsional and other vibrations. Main result of paper is general theory for introduction of filters to suppress measurement noise while preserving stability.
Robust, Practical Adaptive Control for Launch Vehicles
NASA Technical Reports Server (NTRS)
Orr, Jeb. S.; VanZwieten, Tannen S.
2012-01-01
A modern mechanization of a classical adaptive control concept is presented with an application to launch vehicle attitude control systems. Due to a rigorous flight certification environment, many adaptive control concepts are infeasible when applied to high-risk aerospace systems; methods of stability analysis are either intractable for high complexity models or cannot be reconciled in light of classical requirements. Furthermore, many adaptive techniques appearing in the literature are not suitable for application to conditionally stable systems with complex flexible-body dynamics, as is often the case with launch vehicles. The present technique is a multiplicative forward loop gain adaptive law similar to that used for the NASA X-15 flight research vehicle. In digital implementation with several novel features, it is well-suited to application on aerodynamically unstable launch vehicles with thrust vector control via augmentation of the baseline attitude/attitude-rate feedback control scheme. The approach is compatible with standard design features of autopilots for launch vehicles, including phase stabilization of lateral bending and slosh via linear filters. In addition, the method of assessing flight control stability via classical gain and phase margins is not affected under reasonable assumptions. The algorithm s ability to recover from certain unstable operating regimes can in fact be understood in terms of frequency-domain criteria. Finally, simulation results are presented that confirm the ability of the algorithm to improve performance and robustness in realistic failure scenarios.
Adaptive interference techniques for mobile antennas
NASA Astrophysics Data System (ADS)
Griffiths, Lloyd J.; Satorius, E.
1988-05-01
The results of a study performed to investigate effective, low cost adaptive signal processing techniques for suppressing mutual satellite interference that can arise in a mobile satellite (MSAT) communication system are discussed. The study focused on the use of adaptive sidelobe cancelling as a method to overcome undesired interference caused by a multiplicity of satellite transmissions within the field of view of the ground station. Results are presented which show that the conventional sidelobe canceller produces undesired reduction of the useful signal. This effect is due to the presence of the useful component in the reference antenna element. An alternative structure, the generalized sidelobe canceller (GSC), has been proposed to overcome this difficulty. A preliminary investigation of possible implementations of the GSC was conducted. It was found that at most 8 bits would be required to implement the GSC processor under conditions in which the desired signal-to-interference ratio is 25 dB.
Adaptive interference techniques for mobile antennas
NASA Technical Reports Server (NTRS)
Griffiths, Lloyd J.; Satorius, E.
1988-01-01
The results of a study performed to investigate effective, low cost adaptive signal processing techniques for suppressing mutual satellite interference that can arise in a mobile satellite (MSAT) communication system are discussed. The study focused on the use of adaptive sidelobe cancelling as a method to overcome undesired interference caused by a multiplicity of satellite transmissions within the field of view of the ground station. Results are presented which show that the conventional sidelobe canceller produces undesired reduction of the useful signal. This effect is due to the presence of the useful component in the reference antenna element. An alternative structure, the generalized sidelobe canceller (GSC), has been proposed to overcome this difficulty. A preliminary investigation of possible implementations of the GSC was conducted. It was found that at most 8 bits would be required to implement the GSC processor under conditions in which the desired signal-to-interference ratio is 25 dB.
Adaptive Control Using Residual Mode Filters Applied to Wind Turbines
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Balas, Mark J.
2011-01-01
Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a model reference direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will augment the adaptive controller using a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. We apply these theoretical results to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine that has minimum phase zeros.
Adaptive node techniques for Maxwell's equations
Hewett, D W
2000-04-01
The computational mesh in numerical simulation provides a framework on which to monitor the spatial dependence of function and their derivatives. Spatial mesh is therefore essential to the ability to integrate systems in time without loss of fidelity. Several philosophies have emerged to provide such fidelity (Eulerian, Lagrangian, Arbitrary Lagrangian Eulerian ALE, Adaptive Mesh Refinement AMR, and adaptive node generation/deletion). Regardless of the type of mesh, a major difficulty is in setting up the initial mesh. Clearly a high density of grid points is essential in regions of high geometric complexity and/or regions of intense, energetic activity. For some problems, mesh generation is such a crucial part of the problem that it can take as much computational effort as the run itself, and these tasks are now taking weeks of massively parallel CPU time. Mesh generation is no less crucial to electromagnetic calculations. In fact EM problem set up can be even more challenging without the clues given by fluid motion in hydrodynamic systems. When the mesh is advected with the fluid (Lagrangian), mesh points naturally congregate in regions of high activity. Similarly in AMR algorithms, strong gradients in the fluid flow are one of the triggers for mesh refinement. In the hyperbolic Maxwell's equations without advection, mesh point placement/motion is not so intuitive. In fixed geometry systems, it at least feasible to finely mesh high leverage, geometrically challenged areas. For other systems, where the action takes place far from the boundaries and, likely, changes position in time, the options are limited to either using a high resolution (expensive) mesh in all regions that could require such resolution or adaptively generating nodes to resolve the physics as it evolves. The authors have developed a new time of adaptive node technique for Maxwell's equations to deal with this set of issues.
Adaptable state based control system
NASA Technical Reports Server (NTRS)
Rasmussen, Robert D. (Inventor); Dvorak, Daniel L. (Inventor); Gostelow, Kim P. (Inventor); Starbird, Thomas W. (Inventor); Gat, Erann (Inventor); Chien, Steve Ankuo (Inventor); Keller, Robert M. (Inventor)
2004-01-01
An autonomous controller, comprised of a state knowledge manager, a control executor, hardware proxies and a statistical estimator collaborates with a goal elaborator, with which it shares common models of the behavior of the system and the controller. The elaborator uses the common models to generate from temporally indeterminate sets of goals, executable goals to be executed by the controller. The controller may be updated to operate in a different system or environment than that for which it was originally designed by the replacement of shared statistical models and by the instantiation of a new set of state variable objects derived from a state variable class. The adaptation of the controller does not require substantial modification of the goal elaborator for its application to the new system or environment.
Adaptive Control of Flexible Structures Using Residual Mode Filters
NASA Technical Reports Server (NTRS)
Balas, Mark J.; Frost, Susan
2010-01-01
Flexible structures containing a large number of modes can benefit from adaptive control techniques which are well suited to applications that have unknown modeling parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend our adaptive control theory to accommodate troublesome modal subsystems of a plant that might inhibit the adaptive controller. In some cases the plant does not satisfy the requirements of Almost Strict Positive Realness. Instead, there maybe be a modal subsystem that inhibits this property. This section will present new results for our adaptive control theory. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for the troublesome modal subsystem, or the Q modes. Here we present the theory for adaptive controllers modified by RMFs, with attention to the issue of disturbances propagating through the Q modes. We apply the theoretical results to a flexible structure example to illustrate the behavior with and without the residual mode filter. We have proposed a modified adaptive controller with a residual mode filter. The RMF is used to accommodate troublesome modes in the system that might otherwise inhibit the adaptive controller, in particular the ASPR condition. This new theory accounts for leakage of the disturbance term into the Q modes. A simple three-mode example shows that the RMF can restore stability to an otherwise unstable adaptively controlled system. This is done without modifying the adaptive controller design.
Kibrom, Awet Z; Knight, Kellie A
2015-12-01
Significant changes in the shape, size and position of the bladder during radiotherapy (RT) treatment for bladder cancer have been correlated with high local failure rates; typically due to geographical misses. To account for this, large margins are added around the target volumes in conventional RT; however, this increases the volume of healthy tissue irradiation. The availability of cone beam computed tomography (CBCT) has not only allowed in-room volumetric imaging of the bladder, but also the development of adaptive radiotherapy (ART) for modification of plans to patient-specific changes. The aim of this review is to: (1) identify and explain the different ART techniques being used in clinical practice and (2) compare and contrast these different ART techniques to conventional RT in terms of target coverage and dose to healthy tissue: A literature search was conducted using EMBASE, MEDLINE and Scopus with the key words 'bladder, adaptive, radiotherapy/radiation therapy'. 11 studies were obtained that compared different adaptive RT techniques to conventional RT in terms of target volume coverage and healthy tissue sparing. All studies showed superior target volume coverage and/or healthy tissue sparing in adaptive RT compared to conventional RT. Cross-study comparison between different adaptive techniques could not be made due to the difference in protocols used in different studies. However, one study found daily re-optimisation of plans to be superior to plan of the day technique. The use of adaptive RT for bladder cancer is promising. Further study is required to assess adaptive RT versus conventional RT in terms of local control and long-term toxicity. PMID:27512574
Adaptive controller for hyperthermia robot
Kress, R.L.
1997-03-01
This paper describes the development of an adaptive computer control routine for a robotically, deployed focused, ultrasonic hyperthermia cancer treatment system. The control algorithm developed herein uses physiological models of a tumor and the surrounding healthy tissue regions and transient temperature data to estimate the treatment region`s blood perfusion. This estimate is used to vary the specific power profile of a scanned, focused ultrasonic transducer to achieve a temperature distribution as close as possible to an optimal temperature distribution. The controller is evaluated using simulations of diseased tissue and using limited experiments on a scanned, focused ultrasonic treatment system that employs a 5-Degree-of-Freedom (D.O.F.) robot to scan the treatment transducers over a simulated patient. Results of the simulations and experiments indicate that the adaptive control routine improves the temperature distribution over standard classical control algorithms if good (although not exact) knowledge of the treated region is available. Although developed with a scanned, focused ultrasonic robotic treatment system in mind, the control algorithm is applicable to any system with the capability to vary specific power as a function of volume and having an unknown distributed energy sink proportional to temperature elevation (e.g., other robotically deployed hyperthermia treatment methods using different heating modalities).
Effects of incomplete adaptation and disturbance in adaptive control.
NASA Technical Reports Server (NTRS)
Lindorff, D. P.
1972-01-01
In this paper consideration is given to the effects of disturbance and incomplete parameter adaptation on the performance of adaptive control systems in which Liapunov theory is used in deriving the control law. A design equation for the bounded error is derived. It is further shown that parameters in the adaptive controller may not converge in the presence of disturbance unless the input signal has a rich enough frequency constant. Design examples are presented.
Keck adaptive optics: control subsystem
Brase, J.M.; An, J.; Avicola, K.
1996-03-08
Adaptive optics on the Keck 10 meter telescope will provide an unprecedented level of capability in high resolution ground based astronomical imaging. The system is designed to provide near diffraction limited imaging performance with Strehl {gt} 0.3 n median Keck seeing of r0 = 25 cm, T =10 msec at 500 nm wavelength. The system will be equipped with a 20 watt sodium laser guide star to provide nearly full sky coverage. The wavefront control subsystem is responsible for wavefront sensing and the control of the tip-tilt and deformable mirrors which actively correct atmospheric turbulence. The spatial sampling interval for the wavefront sensor and deformable mirror is de=0.56 m which gives us 349 actuators and 244 subapertures. This paper summarizes the wavefront control system and discusses particular issues in designing a wavefront controller for the Keck telescope.
Genetic Adaptive Control for PZT Actuators
NASA Technical Reports Server (NTRS)
Kim, Jeongwook; Stover, Shelley K.; Madisetti, Vijay K.
1995-01-01
A piezoelectric transducer (PZT) is capable of providing linear motion if controlled correctly and could provide a replacement for traditional heavy and large servo systems using motors. This paper focuses on a genetic model reference adaptive control technique (GMRAC) for a PZT which is moving a mirror where the goal is to keep the mirror velocity constant. Genetic Algorithms (GAs) are an integral part of the GMRAC technique acting as the search engine for an optimal PID controller. Two methods are suggested to control the actuator in this research. The first one is to change the PID parameters and the other is to add an additional reference input in the system. The simulation results of these two methods are compared. Simulated Annealing (SA) is also used to solve the problem. Simulation results of GAs and SA are compared after simulation. GAs show the best result according to the simulation results. The entire model is designed using the Mathworks' Simulink tool.
Adaptive Force Control in Compliant Motion
NASA Technical Reports Server (NTRS)
Seraji, H.
1994-01-01
This paper addresses the problem of controlling a manipulator in compliant motion while in contact with an environment having an unknown stiffness. Two classes of solutions are discussed: adaptive admittance control and adaptive compliance control. In both admittance and compliance control schemes, compensator adaptation is used to ensure a stable and uniform system performance.
Adaptive Controller Effects on Pilot Behavior
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Gregory, Irene M.; Hempley, Lucas E.
2014-01-01
Adaptive control provides robustness and resilience for highly uncertain, and potentially unpredictable, flight dynamics characteristic. Some of the recent flight experiences of pilot-in-the-loop with an adaptive controller have exhibited unpredicted interactions. In retrospect, this is not surprising once it is realized that there are now two adaptive controllers interacting, the software adaptive control system and the pilot. An experiment was conducted to categorize these interactions on the pilot with an adaptive controller during control surface failures. One of the objectives of this experiment was to determine how the adaptation time of the controller affects pilots. The pitch and roll errors, and stick input increased for increasing adaptation time and during the segment when the adaptive controller was adapting. Not surprisingly, altitude, cross track and angle deviations, and vertical velocity also increase during the failure and then slowly return to pre-failure levels. Subjects may change their behavior even as an adaptive controller is adapting with additional stick inputs. Therefore, the adaptive controller should adapt as fast as possible to minimize flight track errors. This will minimize undesirable interactions between the pilot and the adaptive controller and maintain maneuvering precision.
NASA Technical Reports Server (NTRS)
Barney, Timothy A.; Shin, Y. S.; Agrawal, B. N.
2001-01-01
This research develops an adaptive controller that actively suppresses a single frequency disturbance source at a remote position and tests the system on the NPS Space Truss. The experimental results are then compared to those predicted by an ANSYS finite element model. The NPS space truss is a 3.7-meter long truss that simulates a space-borne appendage with sensitive equipment mounted at its extremities. One of two installed piezoelectric actuators and an Adaptive Multi-Layer LMS control law were used to effectively eliminate an axial component of the vibrations induced by a linear proof mass actuator mounted at one end of the truss. Experimental and analytical results both demonstrate reductions to the level of system noise. Vibration reductions in excess of 50dB were obtained through experimentation and over 100dB using ANSYS, demonstrating the ability to model this system with a finite element model. This report also proposes a method to use distributed quartz accelerometers to evaluate the location, direction, and energy of impacts on the NPS space truss using the dSPACE data acquisition and processing system to capture the structural response and compare it to known reference Signals.
A recursive technique for adaptive vector quantization
NASA Technical Reports Server (NTRS)
Lindsay, Robert A.
1989-01-01
Vector Quantization (VQ) is fast becoming an accepted, if not preferred method for image compression. The VQ performs well when compressing all types of imagery including Video, Electro-Optical (EO), Infrared (IR), Synthetic Aperture Radar (SAR), Multi-Spectral (MS), and digital map data. The only requirement is to change the codebook to switch the compressor from one image sensor to another. There are several approaches for designing codebooks for a vector quantizer. Adaptive Vector Quantization is a procedure that simultaneously designs codebooks as the data is being encoded or quantized. This is done by computing the centroid as a recursive moving average where the centroids move after every vector is encoded. When computing the centroid of a fixed set of vectors the resultant centroid is identical to the previous centroid calculation. This method of centroid calculation can be easily combined with VQ encoding techniques. The defined quantizer changes after every encoded vector by recursively updating the centroid of minimum distance which is the selected by the encoder. Since the quantizer is changing definition or states after every encoded vector, the decoder must now receive updates to the codebook. This is done as side information by multiplexing bits into the compressed source data.
Block adaptive rate controlled image data compression
NASA Technical Reports Server (NTRS)
Rice, R. F.; Hilbert, E.; Lee, J.-J.; Schlutsmeyer, A.
1979-01-01
A block adaptive rate controlled (BARC) image data compression algorithm is described. It is noted that in the algorithm's principal rate controlled mode, image lines can be coded at selected rates by combining practical universal noiseless coding techniques with block adaptive adjustments in linear quantization. Compression of any source data at chosen rates of 3.0 bits/sample and above can be expected to yield visual image quality with imperceptible degradation. Exact reconstruction will be obtained if the one-dimensional difference entropy is below the selected compression rate. It is noted that the compressor can also be operated as a floating rate noiseless coder by simply not altering the input data quantization. Here, the universal noiseless coder ensures that the code rate is always close to the entropy. Application of BARC image data compression to the Galileo orbiter mission of Jupiter is considered.
Modeling and adaptive control of acoustic noise
NASA Astrophysics Data System (ADS)
Venugopal, Ravinder
Active noise control is a problem that receives significant attention in many areas including aerospace and manufacturing. The advent of inexpensive high performance processors has made it possible to implement real-time control algorithms to effect active noise control. Both fixed-gain and adaptive methods may be used to design controllers for this problem. For fixed-gain methods, it is necessary to obtain a mathematical model of the system to design controllers. In addition, models help us gain phenomenological insights into the dynamics of the system. Models are also necessary to perform numerical simulations. However, models are often inadequate for the purpose of controller design because they involve parameters that are difficult to determine and also because there are always unmodeled effects. This fact motivates the use of adaptive algorithms for control since adaptive methods usually require significantly less model information than fixed-gain methods. The first part of this dissertation deals with derivation of a state space model of a one-dimensional acoustic duct. Two types of actuation, namely, a side-mounted speaker (interior control) and an end-mounted speaker (boundary control) are considered. The techniques used to derive the model of the acoustic duct are extended to the problem of fluid surface wave control. A state space model of small amplitude surfaces waves of a fluid in a rectangular container is derived and two types of control methods, namely, surface pressure control and map actuator based control are proposed and analyzed. The second part of this dissertation deals with the development of an adaptive disturbance rejection algorithm that is applied to the problem of active noise control. ARMARKOV models which have the same structure as predictor models are used for system representation. The algorithm requires knowledge of only one path of the system, from control to performance, and does not require a measurement of the disturbance nor
Adaptive control: Stability, convergence, and robustness
NASA Technical Reports Server (NTRS)
Sastry, Shankar; Bodson, Marc
1989-01-01
The deterministic theory of adaptive control (AC) is presented in an introduction for graduate students and practicing engineers. Chapters are devoted to basic AC approaches, notation and fundamental theorems, the identification problem, model-reference AC, parameter convergence using averaging techniques, and AC robustness. Consideration is given to the use of prior information, the global stability of indirect AC schemes, multivariable AC, linearizing AC for a class of nonlinear systems, AC of linearizable minimum-phase systems, and MIMO systems decouplable by static state feedback.
Dual-arm manipulators with adaptive control
NASA Technical Reports Server (NTRS)
Seraji, Homayoun (Inventor)
1991-01-01
The described and improved multi-arm invention of this application presents three strategies for adaptive control of cooperative multi-arm robots which coordinate control over a common load. In the position-position control strategy, the adaptive controllers ensure that the end-effector positions of both arms track desired trajectories in Cartesian space despite unknown time-varying interaction forces exerted through a load. In the position-hybrid control strategy, the adaptive controller of one arm controls end-effector motions in the free directions and applied forces in the constraint directions; while the adaptive controller of the other arm ensures that the end-effector tracks desired position trajectories. In the hybrid-hybrid control strategy, the adaptive controllers ensure that both end-effectors track reference position trajectories while simultaneously applying desired forces on the load. In all three control strategies, the cross-coupling effects between the arms are treated as disturbances which are compensated for by the adaptive controllers while following desired commands in a common frame of reference. The adaptive controllers do not require the complex mathematical model of the arm dynamics or any knowledge of the arm dynamic parameters or the load parameters such as mass and stiffness. Circuits in the adaptive feedback and feedforward controllers are varied by novel adaptation laws.
Simple method for model reference adaptive control
NASA Technical Reports Server (NTRS)
Seraji, H.
1989-01-01
A simple method is presented for combined signal synthesis and parameter adaptation within the framework of model reference adaptive control theory. The results are obtained using a simple derivation based on an improved Liapunov function.
Adaptive density partitioning technique in the auxiliary plane wave method
NASA Astrophysics Data System (ADS)
Kurashige, Yuki; Nakajima, Takahito; Hirao, Kimihiko
2006-01-01
We have developed the adaptive density partitioning technique (ADPT) in the auxiliary plane wave method, in which a part of the density is expanded to plane waves, for the fast evaluation of Coulomb matrix. Our partitioning is based on the error estimations and allows us to control the accuracy and efficiency. Moreover, we can drastically reduce the core Gaussian products that are left in Gaussian representation (its analytical integrals is the bottleneck in this method). For the taxol molecule with 6-31G** basis, the core Gaussian products accounted only for 5% in submicrohartree error.
Statistical Physics for Adaptive Distributed Control
NASA Technical Reports Server (NTRS)
Wolpert, David H.
2005-01-01
A viewgraph presentation on statistical physics for distributed adaptive control is shown. The topics include: 1) The Golden Rule; 2) Advantages; 3) Roadmap; 4) What is Distributed Control? 5) Review of Information Theory; 6) Iterative Distributed Control; 7) Minimizing L(q) Via Gradient Descent; and 8) Adaptive Distributed Control.
Flight Test Approach to Adaptive Control Research
NASA Technical Reports Server (NTRS)
Pavlock, Kate Maureen; Less, James L.; Larson, David Nils
2011-01-01
The National Aeronautics and Space Administration s Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The validation of adaptive controls has the potential to enhance safety in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.
Adaptive, predictive controller for optimal process control
Brown, S.K.; Baum, C.C.; Bowling, P.S.; Buescher, K.L.; Hanagandi, V.M.; Hinde, R.F. Jr.; Jones, R.D.; Parkinson, W.J.
1995-12-01
One can derive a model for use in a Model Predictive Controller (MPC) from first principles or from experimental data. Until recently, both methods failed for all but the simplest processes. First principles are almost always incomplete and fitting to experimental data fails for dimensions greater than one as well as for non-linear cases. Several authors have suggested the use of a neural network to fit the experimental data to a multi-dimensional and/or non-linear model. Most networks, however, use simple sigmoid functions and backpropagation for fitting. Training of these networks generally requires large amounts of data and, consequently, very long training times. In 1993 we reported on the tuning and optimization of a negative ion source using a special neural network[2]. One of the properties of this network (CNLSnet), a modified radial basis function network, is that it is able to fit data with few basis functions. Another is that its training is linear resulting in guaranteed convergence and rapid training. We found the training to be rapid enough to support real-time control. This work has been extended to incorporate this network into an MPC using the model built by the network for predictive control. This controller has shown some remarkable capabilities in such non-linear applications as continuous stirred exothermic tank reactors and high-purity fractional distillation columns[3]. The controller is able not only to build an appropriate model from operating data but also to thin the network continuously so that the model adapts to changing plant conditions. The controller is discussed as well as its possible use in various of the difficult control problems that face this community.
Research in digital adaptive flight controllers
NASA Technical Reports Server (NTRS)
Kaufman, H.
1976-01-01
A design study of adaptive control logic suitable for implementation in modern airborne digital flight computers was conducted. Both explicit controllers which directly utilize parameter identification and implicit controllers which do not require identification were considered. Extensive analytical and simulation efforts resulted in the recommendation of two explicit digital adaptive flight controllers. Interface weighted least squares estimation procedures with control logic were developed using either optimal regulator theory or with control logic based upon single stage performance indices.
An adaptive Cartesian control scheme for manipulators
NASA Technical Reports Server (NTRS)
Seraji, H.
1987-01-01
A adaptive control scheme for direct control of manipulator end-effectors to achieve trajectory tracking in Cartesian space is developed. The control structure is obtained from linear multivariable theory and is composed of simple feedforward and feedback controllers and an auxiliary input. The direct adaptation laws are derived from model reference adaptive control theory and are not based on parameter estimation of the robot model. The utilization of feedforward control and the inclusion of auxiliary input are novel features of the present scheme and result in improved dynamic performance over existing adaptive control schemes. The adaptive controller does not require the complex mathematical model of the robot dynamics or any knowledge of the robot parameters or the payload, and is computationally fast for online implementation with high sampling rates.
Adaptive control: Myths and realities
NASA Technical Reports Server (NTRS)
Athans, M.; Valavani, L.
1984-01-01
It was found that all currently existing globally stable adaptive algorithms have three basic properties in common: positive realness of the error equation, square-integrability of the parameter adjustment law and, need for sufficient excitation for asymptotic parameter convergence. Of the three, the first property is of primary importance since it satisfies a sufficient condition for stabillity of the overall system, which is a baseline design objective. The second property has been instrumental in the proof of asymptotic error convergence to zero, while the third addresses the issue of parameter convergence. Positive-real error dynamics can be generated only if the relative degree (excess of poles over zeroes) of the process to be controlled is known exactly; this, in turn, implies perfect modeling. This and other assumptions, such as absence of nonminimum phase plant zeros on which the mathematical arguments are based, do not necessarily reflect properties of real systems. As a result, it is natural to inquire what happens to the designs under less than ideal assumptions. The issues arising from violation of the exact modeling assumption which is extremely restrictive in practice and impacts the most important system property, stability, are discussed.
Adaptive Flight Control Design with Optimal Control Modification on an F-18 Aircraft Model
NASA Technical Reports Server (NTRS)
Burken, John J.; Nguyen, Nhan T.; Griffin, Brian J.
2010-01-01
In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to as the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly; however, a large adaptive gain can lead to high-frequency oscillations which can adversely affect the robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient robustness. A damping term (v) is added in the modification to increase damping as needed. Simulations were conducted on a damaged F-18 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) with both the standard baseline dynamic inversion controller and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model.
Adaptive Controller Adaptation Time and Available Control Authority Effects on Piloting
NASA Technical Reports Server (NTRS)
Trujillo, Anna; Gregory, Irene
2013-01-01
Adaptive control is considered for highly uncertain, and potentially unpredictable, flight dynamics characteristic of adverse conditions. This experiment looked at how adaptive controller adaptation time to recover nominal aircraft dynamics affects pilots and how pilots want information about available control authority transmitted. Results indicate that an adaptive controller that takes three seconds to adapt helped pilots when looking at lateral and longitudinal errors. The controllability ratings improved with the adaptive controller, again the most for the three seconds adaptation time while workload decreased with the adaptive controller. The effects of the displays showing the percentage amount of available safe flight envelope used in the maneuver were dominated by the adaptation time. With the displays, the altitude error increased, controllability slightly decreased, and mental demand increased. Therefore, the displays did require some of the subjects resources but these negatives may be outweighed by pilots having more situation awareness of their aircraft.
Adaptive control of dual-arm robots
NASA Technical Reports Server (NTRS)
Seraji, H.
1987-01-01
Three strategies for adaptive control of cooperative dual-arm robots are described. In the position-position control strategy, the adaptive controllers ensure that the end-effector positions of both arms track desired trajectories in Cartesian space despite unknown time-varying interaction forces exerted through the load. In the position-hybrid control strategy, the adaptive controller of one arm controls end-effector motions in the free directions and applied forces in the constraint directions, while the adaptive controller of the other arm ensures that the end-effector tracks desired position trajectories. In the hybrid-hybrid control strategy, the adaptive controllers ensure that both end-effectors track reference position trajectories while simultaneously applying desired forces on the load. In all three control strategies, the cross-coupling effects between the arms are treated as disturbances which are rejected by the adaptive controllers while following desired commands in a common frame of reference. The adaptive controllers do not require the complex mathematical model of the arm dynamics or any knowledge of the arm dynamic parameters or the load parameters such as mass and stiffness. The controllers have simple structures and are computationally fast for on-line implementation with high sampling rates.
Monitoring the Performance of a Neuro-Adaptive Controller
NASA Technical Reports Server (NTRS)
Schumann, Johann; Gupta, Pramod
2004-01-01
Traditional control has proven to be ineffective to deal with catastrophic changes or slow degradation of complex, highly nonlinear systems like aircraft or spacecraft, robotics, or flexible manufacturing systems. Control systems which can adapt toward changes in the plant have been proposed as they offer many advantages (e.g., better performance, controllability of aircraft despite of a damaged wing). In the last few years, use of neural networks in adaptive controllers (neuro-adaptive control) has been studied actively. Neural networks of various architectures have been used successfully for online learning adaptive controllers. In such a typical control architecture, the neural network receives as an input the current deviation between desired and actual plant behavior and, by on-line training, tries to minimize this discrepancy (e.g.; by producing a control augmentation signal). Even though neuro-adaptive controllers offer many advantages, they have not been used in mission- or safety-critical applications, because performance and safety guarantees cannot b e provided at development time-a major prerequisite for safety certification (e.g., by the FAA or NASA). Verification and Validation (V&V) of an adaptive controller requires the development of new analysis techniques which can demonstrate that the control system behaves safely under all operating conditions. Because of the requirement to adapt toward unforeseen changes during operation, i.e., in real time, design-time V&V is not sufficient.
Adaptive Instability Suppression Controls in a Liquid-fueled Combustor
NASA Technical Reports Server (NTRS)
Kopasakis, George; DeLaat, John C.
2002-01-01
An adaptive control algorithm has been developed for the suppression of combustion thermo-acoustic instabilities. This technique involves modulating the fuel flow in the combustor with a control phase that continuously slides within the stable phase region, in a back and forth motion. The control method is referred to as Adaptive Sliding Phasor Averaged Control (ASPAC). The control method is evaluated against a simplified simulation of the combustion instability. Plans are to validate the control approach against a more physics-based model and an actual experimental combustor rig.
A novel bit-wise adaptable entropy coding technique
NASA Technical Reports Server (NTRS)
Kiely, A.; Klimesh, M.
2001-01-01
We present a novel entropy coding technique which is adaptable in that each bit to be encoded may have an associated probability esitmate which depends on previously encoded bits. The technique may have advantages over arithmetic coding. The technique can achieve arbitrarily small redundancy and admits a simple and fast decoder.
Effects of incomplete adaption and disturbance in adaptive control
NASA Technical Reports Server (NTRS)
Lindorff, D. P.
1972-01-01
This investigation focused attention on the fact that the synthesis of adaptive control systems has often been discussed in the framework of idealizations which may represent over simplifications. A condition for boundedness of the tracking error has been derived for the case in which incomplete adaption and disturbance are present. When using Parks' design it is shown that instability of the adaptive gains can result due to the presence of disturbance. The theory has been applied to a nontrivial example in order to illustrate the concepts involved.
Diagnostic analysis of vibration signals using adaptive digital filtering techniques
NASA Technical Reports Server (NTRS)
Jewell, R. E.; Jones, J. H.; Paul, J. E.
1983-01-01
Signal enhancement techniques are described using recently developed digital adaptive filtering equipment. Adaptive filtering concepts are not new; however, as a result of recent advances in microprocessor-based electronics, hardware has been developed that has stable characteristics and of a size exceeding 1000th order. Selected data processing examples are presented illustrating spectral line enhancement, adaptive noise cancellation, and transfer function estimation in the presence of corrupting noise.
Dynamic optimization and adaptive controller design
NASA Astrophysics Data System (ADS)
Inamdar, S. R.
2010-10-01
In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.
Development of adaptive resonator techniques for high-power lasers
An, J; Brase, J; Carrano, C; Dane, C B; Flath, L; Fochs, S; Hurd, R; Kartz, M; Sawvel, R
1999-07-12
The design of an adaptive wavefront control system for a high-power Nd:Glass laser will be presented. Features of this system include: an unstable resonator in confocal configuration, a multi-module slab amplifier, and real-time intracavity adaptive phase control using deformable mirrors and high-speed wavefront sensors. Experimental results demonstrate the adaptive correction of an aberrated passive resonator (no gain).
Adaptive mesh refinement techniques for electrical impedance tomography.
Molinari, M; Cox, S J; Blott, B H; Daniell, G J
2001-02-01
Adaptive mesh refinement techniques can be applied to increase the efficiency of electrical impedance tomography reconstruction algorithms by reducing computational and storage cost as well as providing problem-dependent solution structures. A self-adaptive refinement algorithm based on an a posteriori error estimate has been developed and its results are shown in comparison with uniform mesh refinement for a simple head model.
Adaptive control applied to Space Station attitude control system
NASA Technical Reports Server (NTRS)
Lam, Quang M.; Chipman, Richard; Hu, Tsay-Hsin G.; Holmes, Eric B.; Sunkel, John
1992-01-01
This paper presents an adaptive control approach to enhance the performance of current attitude control system used by the Space Station Freedom. The proposed control law was developed based on the direct adaptive control or model reference adaptive control scheme. Performance comparisons, subject to inertia variation, of the adaptive controller and the fixed-gain linear quadratic regulator currently implemented for the Space Station are conducted. Both the fixed-gain and the adaptive gain controllers are able to maintain the Station stability for inertia variations of up to 35 percent. However, when a 50 percent inertia variation is applied to the Station, only the adaptive controller is able to maintain the Station attitude.
Predictor-Based Model Reference Adaptive Control
NASA Technical Reports Server (NTRS)
Lavretsky, Eugene; Gadient, Ross; Gregory, Irene M.
2009-01-01
This paper is devoted to robust, Predictor-based Model Reference Adaptive Control (PMRAC) design. The proposed adaptive system is compared with the now-classical Model Reference Adaptive Control (MRAC) architecture. Simulation examples are presented. Numerical evidence indicates that the proposed PMRAC tracking architecture has better than MRAC transient characteristics. In this paper, we presented a state-predictor based direct adaptive tracking design methodology for multi-input dynamical systems, with partially known dynamics. Efficiency of the design was demonstrated using short period dynamics of an aircraft. Formal proof of the reported PMRAC benefits constitute future research and will be reported elsewhere.
Adaptive muffler based on controlled flow valves.
Šteblaj, Peter; Čudina, Mirko; Lipar, Primož; Prezelj, Jurij
2015-06-01
An adaptive muffler with a flexible internal structure is considered. Flexibility is achieved using controlled flow valves. The proposed adaptive muffler is able to adapt to changes in engine operating conditions. It consists of a Helmholtz resonator, expansion chamber, and quarter wavelength resonator. Different combinations of the control valves' states at different operating conditions define the main working principle. To control the valve's position, an active noise control approach was used. With the proposed muffler, the transmission loss can be increased by more than 10 dB in the selected frequency range. PMID:26093462
Flight Approach to Adaptive Control Research
NASA Technical Reports Server (NTRS)
Pavlock, Kate Maureen; Less, James L.; Larson, David Nils
2011-01-01
The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The testbed served as a full-scale vehicle to test and validate adaptive flight control research addressing technical challenges involved with reducing risk to enable safe flight in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.
Disturbance Accommodating Adaptive Control with Application to Wind Turbines
NASA Technical Reports Server (NTRS)
Frost, Susan
2012-01-01
Adaptive control techniques are well suited to applications that have unknown modeling parameters and poorly known operating conditions. Many physical systems experience external disturbances that are persistent or continually recurring. Flexible structures and systems with compliance between components often form a class of systems that fail to meet standard requirements for adaptive control. For these classes of systems, a residual mode filter can restore the ability of the adaptive controller to perform in a stable manner. New theory will be presented that enables adaptive control with accommodation of persistent disturbances using residual mode filters. After a short introduction to some of the control challenges of large utility-scale wind turbines, this theory will be applied to a high-fidelity simulation of a wind turbine.
Projection Operator: A Step Towards Certification of Adaptive Controllers
NASA Technical Reports Server (NTRS)
Larchev, Gregory V.; Campbell, Stefan F.; Kaneshige, John T.
2010-01-01
One of the major barriers to wider use of adaptive controllers in commercial aviation is the lack of appropriate certification procedures. In order to be certified by the Federal Aviation Administration (FAA), an aircraft controller is expected to meet a set of guidelines on functionality and reliability while not negatively impacting other systems or safety of aircraft operations. Due to their inherent time-variant and non-linear behavior, adaptive controllers cannot be certified via the metrics used for linear conventional controllers, such as gain and phase margin. Projection Operator is a robustness augmentation technique that bounds the output of a non-linear adaptive controller while conforming to the Lyapunov stability rules. It can also be used to limit the control authority of the adaptive component so that the said control authority can be arbitrarily close to that of a linear controller. In this paper we will present the results of applying the Projection Operator to a Model-Reference Adaptive Controller (MRAC), varying the amount of control authority, and comparing controller s performance and stability characteristics with those of a linear controller. We will also show how adjusting Projection Operator parameters can make it easier for the controller to satisfy the certification guidelines by enabling a tradeoff between controller s performance and robustness.
Neuro adaptive control for aerospace and distributed systems
NASA Astrophysics Data System (ADS)
Das, Abhijit
Nonlinear and adaptive control is generally considered one of the most effective techniques for stabilizing complex nonlinear systems, where linear control techniques may fail completely. Thousands of research papers are published on either theory or applications of nonlinear and adaptive control. But often one obvious question arises how to implement these techniques in real life model? The best answer that one can think of is to develop simple nonlinear control laws which are easy to implement. Moreover for controlling multi-agent systems, it is often required to distribute the control laws based on limited information available among the agents. This research provides some of these issues in the following way. a) Autopilot design for Aerospace systems: this research developes adaptive backstepping and dynamic inversion methods with internal dynamics stabilization for the quadrotor. Quadrotor helicopter models usually show two main characteristics. First, strong coupling among the system states and second, under-actuation where many states are to be controlled with few control inputs. Due to these unique characteristics, the design of stabilizing control inputs is always challenging for quadrotor models. To confront these problems, first, a dynamic inversion technique with zero dynamics stabilization loop is introduced to a practical quadrotor model, second, an adaptive-backstepping technique is developed to a lagrangian quadrotor model. The stabilizing control laws for both of these techniques are developed using on Lyapunov based method; and b) Coordination of multi-agent systems: coordination among multiple agents is generally done based on balanced or bi-directed communication graph models. If the agents are nonlinear and passive then for a balanced graph model synchronization is possible. But, for other than balanced and bi-directed graph models, it is difficult to synchronize nonlinear systems. Moreover, the performance of synchronization is normally
Adaptive Impedance Control Of Redundant Manipulators
NASA Technical Reports Server (NTRS)
Seraji, Homayoun; Colbaugh, Richard D.; Glass, Kristin L.
1994-01-01
Improved method of controlling mechanical impedance of end effector of redundant robotic manipulator based on adaptive-control theory. Consists of two subsystems: adaptive impedance controller generating force-control inputs in Cartesian space of end effector to provide desired end-effector-impedance characteristics, and subsystem implementing algorithm that maps force-control inputs into torques applied to joints of manipulator. Accurate control of end effector and effective utilization of redundancy achieved simultaneously by use of method. Potential use to improve performance of such typical impedance-control tasks as deburring edges and accommodating transitions between unconstrained and constrained motions of end effectors.
Adaptive spacecraft attitude control utilizing eigenaxis rotations
NASA Technical Reports Server (NTRS)
Cochran, J. E., Jr.; Colburn, B. K.; Speakman, N. O.
1975-01-01
Conventional and adaptive attitude control of spacecraft which use control moment gyros (CMG's) as torque sources are discussed. Control laws predicated on the assumption of a linear system are used since the spacecraft equations of motion are formulated in an 'eigenaxis system' so that they are essentially linear during 'slow' maneuvers even if large angles are involved. The overall control schemes are 'optimal' in several senses. Eigenaxis rotations and a weighted pseudo-inverse CMG steering law are used and, in the adaptive case, a Model Reference Adaptive System (MRAS) controller based on Liapunov's Second Method is adopted. To substantiate the theory, digital simulation results obtained using physical parameters of a Large Space Telescope type spacecraft are presented. These results indicate that an adaptive control law is often desirable.
Chaotic satellite attitude control by adaptive approach
NASA Astrophysics Data System (ADS)
Wei, Wei; Wang, Jing; Zuo, Min; Liu, Zaiwen; Du, Junping
2014-06-01
In this article, chaos control of satellite attitude motion is considered. Adaptive control based on dynamic compensation is utilised to suppress the chaotic behaviour. Control approaches with three control inputs and with only one control input are proposed. Since the adaptive control employed is based on dynamic compensation, faithful model of the system is of no necessity. Sinusoidal disturbance and parameter uncertainties are considered to evaluate the robustness of the closed-loop system. Both of the approaches are confirmed by theoretical and numerical results.
Adaptive Flight Control Research at NASA
NASA Technical Reports Server (NTRS)
Motter, Mark A.
2008-01-01
A broad overview of current adaptive flight control research efforts at NASA is presented, as well as some more detailed discussion of selected specific approaches. The stated objective of the Integrated Resilient Aircraft Control Project, one of NASA s Aviation Safety programs, is to advance the state-of-the-art of adaptive controls as a design option to provide enhanced stability and maneuverability margins for safe landing in the presence of adverse conditions such as actuator or sensor failures. Under this project, a number of adaptive control approaches are being pursued, including neural networks and multiple models. Validation of all the adaptive control approaches will use not only traditional methods such as simulation, wind tunnel testing and manned flight tests, but will be augmented with recently developed capabilities in unmanned flight testing.
Robust control of a bimorph mirror for adaptive optics systems.
Baudouin, Lucie; Prieur, Christophe; Guignard, Fabien; Arzelier, Denis
2008-07-10
We apply robust control techniques to an adaptive optics system including a dynamic model of the deformable mirror. The dynamic model of the mirror is a modification of the usual plate equation. We propose also a state-space approach to model the turbulent phase. A continuous time control of our model is suggested, taking into account the frequential behavior of the turbulent phase. An H(infinity) controller is designed in an infinite-dimensional setting. Because of the multivariable nature of the control problem involved in adaptive optics systems, a significant improvement is obtained with respect to traditional single input-single output methods.
Adaptive torque control of variable speed wind turbines
NASA Astrophysics Data System (ADS)
Johnson, Kathryn E.
Wind is a clean, renewable resource that has become more popular in recent years due to numerous advances in technology and public awareness. Wind energy is quickly becoming cost competitive with fossil fuels, but further reductions in the cost of wind energy are necessary before it can grow into a fully mature technology. One reason for higher-than-necessary cost of the wind energy is uncertainty in the aerodynamic parameters, which leads to inefficient controllers. This thesis explores an adaptive control technique designed to reduce the negative effects of this uncertainty. The primary focus of this work is a new adaptive controller that is designed to resemble the standard non-adaptive controller used by the wind industry. The standard controller was developed for variable speed wind turbines operating below rated power. The new adaptive controller uses a simple, highly intuitive gain adaptation law intended to seek out the optimal gain for maximizing the turbine's energy capture. It is designed to work even in real, time-varying winds. The adaptive controller has been tested both in simulation and on a real turbine, with numerous experimental results provided in this work. Simulations have considered the effects of erroneous wind measurements and time-varying turbine parameters, both of which are concerns on the real turbine. The adaptive controller has been found to operate as desired under realistic operating conditions, and energy capture has increased on the real turbine as a result. Theoretical analyses of the standard and adaptive controllers were performed, as well, providing additional insight into the system. Finally, a few extensions were made with the intent of making the adaptive control idea even more appealing in the commercial wind turbine market.
Control technique for planetary rover
NASA Technical Reports Server (NTRS)
Nakatani, Ichiro; Kubota, Takashi; Adachi, Tadashi; Saitou, Hiroaki; Okamoto, Sinya
1994-01-01
Beginning next century, several schemes for sending a planetary rover to the moon or Mars are being planned. As part of the development program, autonomous navigation technology is being studied to allow the rover the ability to move autonomously over a long range of unknown planetary surface. In the previous study, we ran the autonomous navigation experiment on an outdoor test terrain by using a rover test-bed that was controlled by a conventional sense-plan-act method. In some cases during the experiment, a problem occurred with the rover moving into untraversable areas. To improve this situation, a new control technique has been developed that gives the rover the ability of reacting to the outputs of the proximity sensors, a reaction behavior if you will. We have developed a new rover test-bed system on which an autonomous navigation experiment was performed using the newly developed control technique. In this outdoor experiment, the new control technique effectively produced the control command for the rover to avoid obstacles and be guided to the goal point safely.
Stability and Performance Metrics for Adaptive Flight Control
NASA Technical Reports Server (NTRS)
Stepanyan, Vahram; Krishnakumar, Kalmanje; Nguyen, Nhan; VanEykeren, Luarens
2009-01-01
This paper addresses the problem of verifying adaptive control techniques for enabling safe flight in the presence of adverse conditions. Since the adaptive systems are non-linear by design, the existing control verification metrics are not applicable to adaptive controllers. Moreover, these systems are in general highly uncertain. Hence, the system's characteristics cannot be evaluated by relying on the available dynamical models. This necessitates the development of control verification metrics based on the system's input-output information. For this point of view, a set of metrics is introduced that compares the uncertain aircraft's input-output behavior under the action of an adaptive controller to that of a closed-loop linear reference model to be followed by the aircraft. This reference model is constructed for each specific maneuver using the exact aerodynamic and mass properties of the aircraft to meet the stability and performance requirements commonly accepted in flight control. The proposed metrics are unified in the sense that they are model independent and not restricted to any specific adaptive control methods. As an example, we present simulation results for a wing damaged generic transport aircraft with several existing adaptive controllers.
Decentralized digital adaptive control of robot motion
NASA Technical Reports Server (NTRS)
Tarokh, M.
1990-01-01
A decentralized model reference adaptive scheme is developed for digital control of robot manipulators. The adaptation laws are derived using hyperstability theory, which guarantees asymptotic trajectory tracking despite gross robot parameter variations. The control scheme has a decentralized structure in the sense that each local controller receives only its joint angle measurement to produce its joint torque. The independent joint controllers have simple structures and can be programmed using a very simple and computationally fast algorithm. As a result, the scheme is suitable for real-time motion control.
Multiple model adaptive control with mixing
NASA Astrophysics Data System (ADS)
Kuipers, Matthew
Despite the remarkable theoretical accomplishments and successful applications of adaptive control, the field is not sufficiently mature to solve challenging control problems requiring strict performance and safety guarantees. Towards addressing these issues, a novel deterministic multiple-model adaptive control approach called adaptive mixing control is proposed. In this approach, adaptation comes from a high-level system called the supervisor that mixes into feedback a number of candidate controllers, each finely-tuned to a subset of the parameter space. The mixing signal, the supervisor's output, is generated by estimating the unknown parameters and, at every instant of time, calculating the contribution level of each candidate controller based on certainty equivalence. The proposed architecture provides two characteristics relevant to solving stringent, performance-driven applications. First, the full-suite of linear time invariant control tools is available. A disadvantage of conventional adaptive control is its restriction to utilizing only those control laws whose solutions can be feasibly computed in real-time, such as model reference and pole-placement type controllers. Because its candidate controllers are computed off line, the proposed approach suffers no such restriction. Second, the supervisor's output is smooth and does not necessarily depend on explicit a priori knowledge of the disturbance model. These characteristics can lead to improved performance by avoiding the unnecessary switching and chattering behaviors associated with some other multiple adaptive control approaches. The stability and robustness properties of the adaptive scheme are analyzed. It is shown that the mean-square regulation error is of the order of the modeling error. And when the parameter estimate converges to its true value, which is guaranteed if a persistence of excitation condition is satisfied, the adaptive closed-loop system converges exponentially fast to a closed
On fractional Model Reference Adaptive Control.
Shi, Bao; Yuan, Jian; Dong, Chao
2014-01-01
This paper extends the conventional Model Reference Adaptive Control systems to fractional ones based on the theory of fractional calculus. A control law and an incommensurate fractional adaptation law are designed for the fractional plant and the fractional reference model. The stability and tracking convergence are analyzed using the frequency distributed fractional integrator model and Lyapunov theory. Moreover, numerical simulations of both linear and nonlinear systems are performed to exhibit the viability and effectiveness of the proposed methodology. PMID:24574897
Simple adaptive tracking control for mobile robots
NASA Astrophysics Data System (ADS)
Bobtsov, Alexey; Faronov, Maxim; Kolyubin, Sergey; Pyrkin, Anton
2014-12-01
The problem of simple adaptive and robust control is studied for the case of parametric and dynamic dimension uncertainties: only the maximum possible relative degree of the plant model is known. The control approach "consecutive compensator" is investigated. To illustrate the efficiency of proposed approach an example with the mobile robot motion control using computer vision system is considered.
An adaptive grid with directional control
NASA Technical Reports Server (NTRS)
Brackbill, J. U.
1993-01-01
An adaptive grid generator for adaptive node movement is here derived by combining a variational formulation of Winslow's (1981) variable-diffusion method with a directional control functional. By applying harmonic-function theory, it becomes possible to define conditions under which there exist unique solutions of the resulting elliptic equations. The results obtained for the grid generator's application to the complex problem posed by the fluid instability-driven magnetic field reconnection demonstrate one-tenth the computational cost of either a Eulerian grid or an adaptive grid without directional control.
Genetic algorithms in adaptive fuzzy control
NASA Technical Reports Server (NTRS)
Karr, C. Lucas; Harper, Tony R.
1992-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust fuzzy membership functions in response to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific computer-simulated chemical system is used to demonstrate the ideas presented.
Adaptive Control for Microgravity Vibration Isolation System
NASA Technical Reports Server (NTRS)
Yang, Bong-Jun; Calise, Anthony J.; Craig, James I.; Whorton, Mark S.
2005-01-01
Most active vibration isolation systems that try to a provide quiescent acceleration environment for space science experiments have utilized linear design methods. In this paper, we address adaptive control augmentation of an existing classical controller that employs a high-gain acceleration feedback together with a low-gain position feedback to center the isolated platform. The control design feature includes parametric and dynamic uncertainties because the hardware of the isolation system is built as a payload-level isolator, and the acceleration Sensor exhibits a significant bias. A neural network is incorporated to adaptively compensate for the system uncertainties, and a high-pass filter is introduced to mitigate the effect of the measurement bias. Simulations show that the adaptive control improves the performance of the existing acceleration controller and keep the level of the isolated platform deviation to that of the existing control system.
An Optimal Control Modification to Model-Reference Adaptive Control for Fast Adaptation
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Krishnakumar, Kalmanje; Boskovic, Jovan
2008-01-01
This paper presents a method that can achieve fast adaptation for a class of model-reference adaptive control. It is well-known that standard model-reference adaptive control exhibits high-gain control behaviors when a large adaptive gain is used to achieve fast adaptation in order to reduce tracking error rapidly. High gain control creates high-frequency oscillations that can excite unmodeled dynamics and can lead to instability. The fast adaptation approach is based on the minimization of the squares of the tracking error, which is formulated as an optimal control problem. The necessary condition of optimality is used to derive an adaptive law using the gradient method. This adaptive law is shown to result in uniform boundedness of the tracking error by means of the Lyapunov s direct method. Furthermore, this adaptive law allows a large adaptive gain to be used without causing undesired high-gain control effects. The method is shown to be more robust than standard model-reference adaptive control. Simulations demonstrate the effectiveness of the proposed method.
Intelligent Engine Systems: Adaptive Control
NASA Technical Reports Server (NTRS)
Gibson, Nathan
2008-01-01
We have studied the application of the baseline Model Predictive Control (MPC) algorithm to the control of main fuel flow rate (WF36), variable bleed valve (AE24) and variable stator vane (STP25) control of a simulated high-bypass turbofan engine. Using reference trajectories for thrust and turbine inlet temperature (T41) generated by a simulated new engine, we have examined MPC for tracking these two reference outputs while controlling a deteriorated engine. We have examined the results of MPC control for six different transients: two idle-to-takeoff transients at sea level static (SLS) conditions, one takeoff-to-idle transient at SLS, a Bode power command and reverse Bode power command at 20,000 ft/Mach 0.5, and a reverse Bode transient at 35,000 ft/Mach 0.84. For all cases, our primary focus was on the computational effort required by MPC for varying MPC update rates, control horizons, and prediction horizons. We have also considered the effects of these MPC parameters on the performance of the control, with special emphasis on the thrust tracking error, the peak T41, and the sizes of violations of the constraints on the problem, primarily the booster stall margin limit, which for most cases is the lone constraint that is violated with any frequency.
Adaptive change in corporate control practices.
Alexander, J A
1991-03-01
Multidivisional organizations are not concerned with what structure to adopt but with how they should exercise control within the divisional form to achieve economic efficiencies. Using an information-processing framework, I examined control arrangements between the headquarters and operating divisions of such organizations and how managers adapted control practices to accommodate increasing environmental uncertainty. Also considered were the moderating effects of contextual attributes on such adaptive behavior. Analyses of panel data from 97 multihospital systems suggested that organizations generally practice selective decentralization under conditions of increasing uncertainty but that organizational age, dispersion, and initial control arrangements significantly moderate the direction and magnitude of such changes.
Adaptive Inner-Loop Rover Control
NASA Technical Reports Server (NTRS)
Kulkarni, Nilesh; Ippolito, Corey; Krishnakumar, Kalmanje; Al-Ali, Khalid M.
2006-01-01
Adaptive control technology is developed for the inner-loop speed and steering control of the MAX Rover. MAX, a CMU developed rover, is a compact low-cost 4-wheel drive, 4-wheel steer (double Ackerman), high-clearance agile durable chassis, outfitted with sensors and electronics that make it ideally suited for supporting research relevant to intelligent teleoperation and as a low-cost autonomous robotic test bed and appliance. The design consists of a feedback linearization based controller with a proportional - integral (PI) feedback that is augmented by an online adaptive neural network. The adaptation law has guaranteed stability properties for safe operation. The control design is retrofit in nature so that it fits inside the outer-loop path planning algorithms. Successful hardware implementation of the controller is illustrated for several scenarios consisting of actuator failures and modeling errors in the nominal design.
Rapid inversion of velocity map images for adaptive femtosecond control
NASA Astrophysics Data System (ADS)
Rallis, C.; Andrews, P.; Averin, R.; Jochim, B.; Gregerson, N.; Wells, E.; Zohrabi, M.; de, S.; Gaire, B.; Carnes, K. D.; Ben-Itzhak, I.; Bergues, B.; Kling, M. F.
2011-05-01
We report techniques developed to utilize three dimensional momentum information as feedback in adaptive femtosecond control of molecular systems. Velocity map imaging of the dissociating ions following interaction with an intense ultrafast laser pulse provides raw data. In order to recover momentum information, however, the two-dimensional image must be inverted to reconstruct the three-dimensional photofragment distribution. Using a variation of the onion-peeling technique, we invert 1054 × 1040 pixel images in under 1 second. This rapid inversion allows a slice of the momentum distribution to be used as feedback in a closed-loop adaptive control scheme. We report techniques developed to utilize three dimensional momentum information as feedback in adaptive femtosecond control of molecular systems. Velocity map imaging of the dissociating ions following interaction with an intense ultrafast laser pulse provides raw data. In order to recover momentum information, however, the two-dimensional image must be inverted to reconstruct the three-dimensional photofragment distribution. Using a variation of the onion-peeling technique, we invert 1054 × 1040 pixel images in under 1 second. This rapid inversion allows a slice of the momentum distribution to be used as feedback in a closed-loop adaptive control scheme. This work supported by National Science Foundation award PHY-0969687 and the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Science, Office of Science, US Department of Energy.
Adaptive Control Strategies for Flexible Robotic Arm
NASA Technical Reports Server (NTRS)
Bialasiewicz, Jan T.
1996-01-01
The control problem of a flexible robotic arm has been investigated. The control strategies that have been developed have a wide application in approaching the general control problem of flexible space structures. The following control strategies have been developed and evaluated: neural self-tuning control algorithm, neural-network-based fuzzy logic control algorithm, and adaptive pole assignment algorithm. All of the above algorithms have been tested through computer simulation. In addition, the hardware implementation of a computer control system that controls the tip position of a flexible arm clamped on a rigid hub mounted directly on the vertical shaft of a dc motor, has been developed. An adaptive pole assignment algorithm has been applied to suppress vibrations of the described physical model of flexible robotic arm and has been successfully tested using this testbed.
Language control in bilinguals: The adaptive control hypothesis
Abutalebi, Jubin
2013-01-01
Speech comprehension and production are governed by control processes. We explore their nature and dynamics in bilingual speakers with a focus on speech production. Prior research indicates that individuals increase cognitive control in order to achieve a desired goal. In the adaptive control hypothesis we propose a stronger hypothesis: Language control processes themselves adapt to the recurrent demands placed on them by the interactional context. Adapting a control process means changing a parameter or parameters about the way it works (its neural capacity or efficiency) or the way it works in concert, or in cascade, with other control processes (e.g., its connectedness). We distinguish eight control processes (goal maintenance, conflict monitoring, interference suppression, salient cue detection, selective response inhibition, task disengagement, task engagement, opportunistic planning). We consider the demands on these processes imposed by three interactional contexts (single language, dual language, and dense code-switching). We predict adaptive changes in the neural regions and circuits associated with specific control processes. A dual-language context, for example, is predicted to lead to the adaptation of a circuit mediating a cascade of control processes that circumvents a control dilemma. Effective test of the adaptive control hypothesis requires behavioural and neuroimaging work that assesses language control in a range of tasks within the same individual. PMID:25077013
Adaptive Control of a Transport Aircraft Using Differential Thrust
NASA Technical Reports Server (NTRS)
Stepanyan, Vahram; Krishnakumar, Kalmanje; Nguyen, Nhan
2009-01-01
The paper presents an adaptive control technique for a damaged large transport aircraft subject to unknown atmospheric disturbances such as wind gust or turbulence. It is assumed that the damage results in vertical tail loss with no rudder authority, which is replaced with a differential thrust input. The proposed technique uses the adaptive prediction based control design in conjunction with the time scale separation principle, based on the singular perturbation theory. The application of later is necessitated by the fact that the engine response to a throttle command is substantially slow that the angular rate dynamics of the aircraft. It is shown that this control technique guarantees the stability of the closed-loop system and the tracking of a given reference model. The simulation example shows the benefits of the approach.
Adaptive output feedback control of flexible systems
NASA Astrophysics Data System (ADS)
Yang, Bong-Jun
Neural network-based adaptive output feedback approaches that augment a linear control design are described in this thesis, and emphasis is placed on their real-time implementation with flexible systems. Two different control architectures that are robust to parametric uncertainties and unmodelled dynamics are presented. The unmodelled effects can consist of minimum phase internal dynamics of the system together with external disturbance process. Within this context, adaptive compensation for external disturbances is addressed. In the first approach, internal model-following control, adaptive elements are designed using feedback inversion. The effect of an actuator limit is treated using control hedging, and the effect of other actuation nonlinearities, such as dead zone and backlash, is mitigated by a disturbance observer-based control design. The effectiveness of the approach is illustrated through simulation and experimental testing with a three-disk torsional system, which is subjected to control voltage limit and stiction. While the internal model-following control is limited to minimum phase systems, the second approach, external model-following control, does not involve feedback linearization and can be applied to non-minimum phase systems. The unstable zero dynamics are assumed to have been modelled in the design of the existing linear controller. The laboratory tests for this method include a three-disk torsional pendulum, an inverted pendulum, and a flexible-base robot manipulator. The external model-following control architecture is further extended in three ways. The first extension is an approach for control of multivariable nonlinear systems. The second extension is a decentralized adaptive control approach for large-scale interconnected systems. The third extension is to make use of an adaptive observer to augment a linear observer-based controller. In this extension, augmenting terms for the adaptive observer can be used to achieve adaptation in
Adaptive Modal Identification for Flutter Suppression Control
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Drew, Michael; Swei, Sean S.
2016-01-01
In this paper, we will develop an adaptive modal identification method for identifying the frequencies and damping of a flutter mode based on model-reference adaptive control (MRAC) and least-squares methods. The least-squares parameter estimation will achieve parameter convergence in the presence of persistent excitation whereas the MRAC parameter estimation does not guarantee parameter convergence. Two adaptive flutter suppression control approaches are developed: one based on MRAC and the other based on the least-squares method. The MRAC flutter suppression control is designed as an integral part of the parameter estimation where the feedback signal is used to estimate the modal information. On the other hand, the separation principle of control and estimation is applied to the least-squares method. The least-squares modal identification is used to perform parameter estimation.
Adaptive control with an expert system based supervisory level. Thesis
NASA Technical Reports Server (NTRS)
Sullivan, Gerald A.
1991-01-01
Adaptive control is presently one of the methods available which may be used to control plants with poorly modelled dynamics or time varying dynamics. Although many variations of adaptive controllers exist, a common characteristic of all adaptive control schemes, is that input/output measurements from the plant are used to adjust a control law in an on-line fashion. Ideally the adjustment mechanism of the adaptive controller is able to learn enough about the dynamics of the plant from input/output measurements to effectively control the plant. In practice, problems such as measurement noise, controller saturation, and incorrect model order, to name a few, may prevent proper adjustment of the controller and poor performance or instability result. In this work we set out to avoid the inadequacies of procedurally implemented safety nets, by introducing a two level control scheme in which an expert system based 'supervisor' at the upper level provides all the safety net functions for an adaptive controller at the lower level. The expert system is based on a shell called IPEX, (Interactive Process EXpert), that we developed specifically for the diagnosis and treatment of dynamic systems. Some of the more important functions that the IPEX system provides are: (1) temporal reasoning; (2) planning of diagnostic activities; and (3) interactive diagnosis. Also, because knowledge and control logic are separate, the incorporation of new diagnostic and treatment knowledge is relatively simple. We note that the flexibility available in the system to express diagnostic and treatment knowledge, allows much greater functionality than could ever be reasonably expected from procedural implementations of safety nets. The remainder of this chapter is divided into three sections. In section 1.1 we give a detailed review of the literature in the area of supervisory systems for adaptive controllers. In particular, we describe the evolution of safety nets from simple ad hoc techniques, up
Application of adaptive antenna techniques to future commercial satellite communication
NASA Technical Reports Server (NTRS)
Ersoy, L.; Lee, E. A.; Matthews, E. W.
1987-01-01
The purpose of this contract was to identify the application of adaptive antenna technique in future operational commercial satellite communication systems and to quantify potential benefits. The contract consisted of two major subtasks. Task 1, Assessment of Future Commercial Satellite System Requirements, was generally referred to as the Adaptive section. Task 2 dealt with Pointing Error Compensation Study for a Multiple Scanning/Fixed Spot Beam Reflector Antenna System and was referred to as the reconfigurable system. Each of these tasks was further sub-divided into smaller subtasks. It should also be noted that the reconfigurable system is usually defined as an open-loop system while the adaptive system is a closed-loop system. The differences between the open- and closed-loop systems were defined. Both the adaptive and reconfigurable systems were explained and the potential applications of such systems were presented in the context of commercial communication satellite systems.
Techniques for grid manipulation and adaptation. [computational fluid dynamics
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Eisemann, Peter R.; Lee, Ki D.
1992-01-01
Two approaches have been taken to provide systematic grid manipulation for improved grid quality. One is the control point form (CPF) of algebraic grid generation. It provides explicit control of the physical grid shape and grid spacing through the movement of the control points. It works well in the interactive computer graphics environment and hence can be a good candidate for integration with other emerging technologies. The other approach is grid adaptation using a numerical mapping between the physical space and a parametric space. Grid adaptation is achieved by modifying the mapping functions through the effects of grid control sources. The adaptation process can be repeated in a cyclic manner if satisfactory results are not achieved after a single application.
Adaptive control of nonlinear systems with actuator failures and uncertainties
NASA Astrophysics Data System (ADS)
Tang, Xidong
2005-11-01
Actuator failures have damaging effect on the performance of control systems, leading to undesired system behavior or even instability. Actuator failures are unknown in terms of failure time instants, failure patterns, and failure parameters. For system safety and reliability, the compensation of actuator failures is of both theoretical and practical significance. This dissertation is to further the study of adaptive designs for actuator failure compensation to nonlinear systems. In this dissertation a theoretical framework for adaptive control of nonlinear systems with actuator failures and system uncertainties is established. The contributions are the development of new adaptive nonlinear control schemes to handle unknown actuator failures for convergent tracking performance, the specification of conditions as a guideline for applications and system designs, and the extension of the adaptive nonlinear control theory. In the dissertation, adaptive actuator failure compensation is studied for several classes of nonlinear systems. In particular, adaptive state feedback schemes are developed for feedback linearizable systems and parametric strict-feedback systems. Adaptive output feedback schemes are deigned for output-feedback systems and a class of systems with unknown state-dependent nonlinearities. Furthermore, adaptive designs are addressed for MIMO systems with actuator failures, based on two grouping techniques: fixed grouping and virtual grouping. Theoretical issues such as controller structures, actuation schemes, zero dynamics, observation, grouping conditions, closed-loop stability, and tracking performance are extensively investigated. For each scheme, design conditions are clarified, and detailed stability and performance analysis is presented. A variety of applications including a wing-rock model, twin otter aircraft, hypersonic aircraft, and cooperative multiple manipulators are addressed with simulation results showing the effectiveness of the
Adaptations of advanced safety and reliability techniques to petroleum and other industries
NASA Technical Reports Server (NTRS)
Purser, P. E.
1974-01-01
The underlying philosophy of the general approach to failure reduction and control is presented. Safety and reliability management techniques developed in the industries which have participated in the U.S. space and defense programs are described along with adaptations to nonaerospace activities. The examples given illustrate the scope of applicability of these techniques. It is indicated that any activity treated as a 'system' is a potential user of aerospace safety and reliability management techniques.
Adaptive neural control of aeroelastic response
NASA Astrophysics Data System (ADS)
Lichtenwalner, Peter F.; Little, Gerald R.; Scott, Robert C.
1996-05-01
The Adaptive Neural Control of Aeroelastic Response (ANCAR) program is a joint research and development effort conducted by McDonnell Douglas Aerospace (MDA) and the National Aeronautics and Space Administration, Langley Research Center (NASA LaRC) under a Memorandum of Agreement (MOA). The purpose of the MOA is to cooperatively develop the smart structure technologies necessary for alleviating undesirable vibration and aeroelastic response associated with highly flexible structures. Adaptive control can reduce aeroelastic response associated with buffet and atmospheric turbulence, it can increase flutter margins, and it may be able to reduce response associated with nonlinear phenomenon like limit cycle oscillations. By reducing vibration levels and loads, aircraft structures can have lower acquisition cost, reduced maintenance, and extended lifetimes. Phase I of the ANCAR program involved development and demonstration of a neural network-based semi-adaptive flutter suppression system which used a neural network for scheduling control laws as a function of Mach number and dynamic pressure. This controller was tested along with a robust fixed-gain control law in NASA's Transonic Dynamics Tunnel (TDT) utilizing the Benchmark Active Controls Testing (BACT) wing. During Phase II, a fully adaptive on-line learning neural network control system has been developed for flutter suppression which will be tested in 1996. This paper presents the results of Phase I testing as well as the development progress of Phase II.
Bayesian nonparametric adaptive control using Gaussian processes.
Chowdhary, Girish; Kingravi, Hassan A; How, Jonathan P; Vela, Patricio A
2015-03-01
Most current model reference adaptive control (MRAC) methods rely on parametric adaptive elements, in which the number of parameters of the adaptive element are fixed a priori, often through expert judgment. An example of such an adaptive element is radial basis function networks (RBFNs), with RBF centers preallocated based on the expected operating domain. If the system operates outside of the expected operating domain, this adaptive element can become noneffective in capturing and canceling the uncertainty, thus rendering the adaptive controller only semiglobal in nature. This paper investigates a Gaussian process-based Bayesian MRAC architecture (GP-MRAC), which leverages the power and flexibility of GP Bayesian nonparametric models of uncertainty. The GP-MRAC does not require the centers to be preallocated, can inherently handle measurement noise, and enables MRAC to handle a broader set of uncertainties, including those that are defined as distributions over functions. We use stochastic stability arguments to show that GP-MRAC guarantees good closed-loop performance with no prior domain knowledge of the uncertainty. Online implementable GP inference methods are compared in numerical simulations against RBFN-MRAC with preallocated centers and are shown to provide better tracking and improved long-term learning.
Minimal control synthesis adaptive control of nonlinear systems: utilizing the properties of chaos.
di Bernardo, M; Stoten, D P
2006-09-15
This paper discusses a novel approach to the control of chaos based on the use of the adaptive minimal control synthesis algorithm. The strategies presented are based on the explicit exploitation of different properties of chaotic systems including the boundedness of the chaotic attractors and their topological transitivity (or ergodicity). It is shown that chaos can be exploited to synthesize more efficient control techniques for nonlinear systems. For instance, by using the ergodicity of the chaotic trajectory, we show that a local adaptive control strategy can be used to synthesize a global controller. An application is to the swing-up control of a double inverted pendulum. PMID:16893794
Neural and Fuzzy Adaptive Control of Induction Motor Drives
NASA Astrophysics Data System (ADS)
Bensalem, Y.; Sbita, L.; Abdelkrim, M. N.
2008-06-01
This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller.
Neural and Fuzzy Adaptive Control of Induction Motor Drives
Bensalem, Y.; Sbita, L.; Abdelkrim, M. N.
2008-06-12
This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller.
NASA Astrophysics Data System (ADS)
D'Amato, Anthony M.
Input reconstruction is the process of using the output of a system to estimate its input. In some cases, input reconstruction can be accomplished by determining the output of the inverse of a model of the system whose input is the output of the original system. Inversion, however, requires an exact and fully known analytical model, and is limited by instabilities arising from nonminimum-phase zeros. The main contribution of this work is a novel technique for input reconstruction that does not require model inversion. This technique is based on a retrospective cost, which requires a limited number of Markov parameters. Retrospective cost input reconstruction (RCIR) does not require knowledge of nonminimum-phase zero locations or an analytical model of the system. RCIR provides a technique that can be used for model refinement, state estimation, and adaptive control. In the model refinement application, data are used to refine or improve a model of a system. It is assumed that the difference between the model output and the data is due to an unmodeled subsystem whose interconnection with the modeled system is inaccessible, that is, the interconnection signals cannot be measured and thus standard system identification techniques cannot be used. Using input reconstruction, these inaccessible signals can be estimated, and the inaccessible subsystem can be fitted. We demonstrate input reconstruction in a model refinement framework by identifying unknown physics in a space weather model and by estimating an unknown film growth in a lithium ion battery. The same technique can be used to obtain estimates of states that cannot be directly measured. Adaptive control can be formulated as a model-refinement problem, where the unknown subsystem is the idealized controller that minimizes a measured performance variable. Minimal modeling input reconstruction for adaptive control is useful for applications where modeling information may be difficult to obtain. We demonstrate
The design of digital-adaptive controllers for VTOL aircraft
NASA Technical Reports Server (NTRS)
Stengel, R. F.; Broussard, J. R.; Berry, P. W.
1976-01-01
Design procedures for VTOL automatic control systems have been developed and are presented. Using linear-optimal estimation and control techniques as a starting point, digital-adaptive control laws have been designed for the VALT Research Aircraft, a tandem-rotor helicopter which is equipped for fully automatic flight in terminal area operations. These control laws are designed to interface with velocity-command and attitude-command guidance logic, which could be used in short-haul VTOL operations. Developments reported here include new algorithms for designing non-zero-set-point digital regulators, design procedures for rate-limited systems, and algorithms for dynamic control trim setting.
Mesh adaptation technique for Fourier-domain fluorescence lifetime imaging
Soloviev, Vadim Y.
2006-11-15
A novel adaptive mesh technique in the Fourier domain is introduced for problems in fluorescence lifetime imaging. A dynamical adaptation of the three-dimensional scheme based on the finite volume formulation reduces computational time and balances the ill-posed nature of the inverse problem. Light propagation in the medium is modeled by the telegraph equation, while the lifetime reconstruction algorithm is derived from the Fredholm integral equation of the first kind. Stability and computational efficiency of the method are demonstrated by image reconstruction of two spherical fluorescent objects embedded in a tissue phantom.
Adaptive control design for hysteretic smart systems
NASA Astrophysics Data System (ADS)
McMahan, Jerry A.; Smith, Ralph C.
2011-04-01
Ferroelectric and ferromagnetic actuators are being considered for a range of industrial, aerospace, aeronautic and biomedical applications due to their unique transduction capabilities. However, they also exhibit hysteretic and nonlinear behavior that must be accommodated in models and control designs. If uncompensated, these effects can yield reduced system performance and, in the worst case, can produce unpredictable behavior of the control system. In this paper, we address the development of adaptive control designs for hysteretic systems. We review an MRAC-like adaptive control algorithm used to track a reference trajectory while computing online estimates for certain model parameters. This method is incorporated in a composite control algorithm to improve the tracking capabilities of the system. Issues arising in the implementation of these algorithms are addressed, and a numerical example is presented, comparing the results of each method.
Adaptive control of a robotic manipulator
NASA Technical Reports Server (NTRS)
Lewis, R. A.
1977-01-01
A control hierarchy for a robotic manipulator is described. The hierarchy includes perception and robot/environment interaction, the latter consisting of planning, path control, and terminal guidance loops. Environment-sensitive features include the provision of control governed by proximity, tactile, and visual sensors as well as the usual kinematic sensors. The manipulator is considered as part of an overall robot system. 'Adaptive control' in the present context refers to both the hierarchical nature of the control system and to its environment-responsive nature.
Evolving Systems and Adaptive Key Component Control
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Balas, Mark J.
2009-01-01
We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. An introduction to Evolving Systems and exploration of the essential topics of the control and stability properties of Evolving Systems is provided. This chapter defines a framework for Evolving Systems, develops theory and control solutions for fundamental characteristics of Evolving Systems, and provides illustrative examples of Evolving Systems and their control with adaptive key component controllers.
Adaptive control of sulfur recovery units
Cunningham, D.B. )
1994-08-01
In a recent trial, adaptive control reduce the standard deviation of the tail gas ratio by 38%--increasing sulfur recovery efficiency by an estimated 0.3%. By using the controller on other control loops in the process, further increases are expected. Improved process control is a cost effective way to meet existing emissions limits. Future legislation will reduce the permissible emissions level, so it is imperative that existing sulfur recovery equipment by operated at peak efficiency. Peak efficiency can only be achieved with good trim air control, since it determines recovery efficiency. But process time delays and changes in the incoming gas stream make good control difficult to achieve. An adaptive controller is well suited to trim air control, since it can easily handle time delay sand adapt to changing process conditions. The improved efficiency is a considerable economic benefit to gas processing plants, since: (1) capital and operating expenses needed to improve recovery efficiency are avoided; (2) increased production is possible, since sulfur license limits are easier to meet; and (3) catalyst bed life is extended. Results of the test are discussed.
Adaptive near-field beamforming techniques for sound source imaging.
Cho, Yong Thung; Roan, Michael J
2009-02-01
Phased array signal processing techniques such as beamforming have a long history in applications such as sonar for detection and localization of far-field sound sources. Two sometimes competing challenges arise in any type of spatial processing; these are to minimize contributions from directions other than the look direction and minimize the width of the main lobe. To tackle this problem a large body of work has been devoted to the development of adaptive procedures that attempt to minimize side lobe contributions to the spatial processor output. In this paper, two adaptive beamforming procedures-minimum variance distorsionless response and weight optimization to minimize maximum side lobes--are modified for use in source visualization applications to estimate beamforming pressure and intensity using near-field pressure measurements. These adaptive techniques are compared to a fixed near-field focusing technique (both techniques use near-field beamforming weightings focusing at source locations estimated based on spherical wave array manifold vectors with spatial windows). Sound source resolution accuracies of near-field imaging procedures with different weighting strategies are compared using numerical simulations both in anechoic and reverberant environments with random measurement noise. Also, experimental results are given for near-field sound pressure measurements of an enclosed loudspeaker.
Bounded Linear Stability Margin Analysis of Nonlinear Hybrid Adaptive Control
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Boskovic, Jovan D.
2008-01-01
This paper presents a bounded linear stability analysis for a hybrid adaptive control that blends both direct and indirect adaptive control. Stability and convergence of nonlinear adaptive control are analyzed using an approximate linear equivalent system. A stability margin analysis shows that a large adaptive gain can lead to a reduced phase margin. This method can enable metrics-driven adaptive control whereby the adaptive gain is adjusted to meet stability margin requirements.
Adaptive control system for gas producing wells
Fedor, Pashchenko; Sergey, Gulyaev; Alexander, Pashchenko
2015-03-10
Optimal adaptive automatic control system for gas producing wells cluster is proposed intended for solving the problem of stabilization of the output gas pressure in the cluster at conditions of changing gas flow rate and changing parameters of the wells themselves, providing the maximum high resource of hardware elements of automation.
Predictive Control of Speededness in Adaptive Testing
ERIC Educational Resources Information Center
van der Linden, Wim J.
2009-01-01
An adaptive testing method is presented that controls the speededness of a test using predictions of the test takers' response times on the candidate items in the pool. Two different types of predictions are investigated: posterior predictions given the actual response times on the items already administered and posterior predictions that use the…
Robust Adaptive Control In Hilbert Space
NASA Technical Reports Server (NTRS)
Wen, John Ting-Yung; Balas, Mark J.
1990-01-01
Paper discusses generalization of scheme for adaptive control of finite-dimensional system to infinite-dimensional Hilbert space. Approach involves generalization of command-generator tracker (CGT) theory. Does not require reference model to be same order as that of plant, and knowledge of order of plant not needed. Suitable for application to high-order systems, main emphasis on adjustment of low-order feedback-gain matrix. Analysis particularly relevant to control of large, flexible structures.
Robust adaptive control of HVDC systems
Reeve, J.; Sultan, M. )
1994-07-01
The transient performance of an HVDC power system is highly dependent on the parameters of the current/voltage regulators of the converter controls. In order to better accommodate changes in system structure or dc operating conditions, this paper introduces a new adaptive control strategy. The advantages of automatic tuning for continuous fine tuning are combined with predetermined gain scheduling in order to achieve robustness for large disturbances. Examples are provided for a digitally simulated back-to-back dc system.
Adaptive Variable Bias Magnetic Bearing Control
NASA Technical Reports Server (NTRS)
Johnson, Dexter; Brown, Gerald V.; Inman, Daniel J.
1998-01-01
Most magnetic bearing control schemes use a bias current with a superimposed control current to linearize the relationship between the control current and the force it delivers. With the existence of the bias current, even in no load conditions, there is always some power consumption. In aerospace applications, power consumption becomes an important concern. In response to this concern, an alternative magnetic bearing control method, called Adaptive Variable Bias Control (AVBC), has been developed and its performance examined. The AVBC operates primarily as a proportional-derivative controller with a relatively slow, bias current dependent, time-varying gain. The AVBC is shown to reduce electrical power loss, be nominally stable, and provide control performance similar to conventional bias control. Analytical, computer simulation, and experimental results are presented in this paper.
Adapted Fuzzy Controller for Astronomical Telescope Tracking
NASA Astrophysics Data System (ADS)
Attia, Abdel-Fattah
2004-04-01
This paper presents a novel application of fuzzy logic (FL) controller driven by an adaptive fuzzy set (AFS) for position tracking of the telescope driven by electric motor. Also, the proposed FL controller, driven by AFS, is compared with a classical FL control, driven by a static fuzzy set (SFS). Both FL controllers algorithm use the position error and its rate of change as an input vector. The mathematical model of the telescope driven by electric motor is highly nonlinear differential equations. Therefore the use of the artificial intelligent controller, such as FL is much better than the conventional controller, to cover a wide range of operating conditions. So, the output of FL control is utilized to force the electric drives, of the telescope, to satisfy a perfect matching of the predefined desired position of the telescope arms. Both of FL controllers, using AFS and SFS, are simulated and tested when the system is subjected to a step change in reference value. In addition, these simulation results are compared with the conventional Proportional-Derivative (PD) controller, driven by fixed gain. The proposed FL, using an adaptive fuzzy set, improve the dynamic response of the overall system by improving the damping coefficient and decreasing the rise time and settling time compared with other two controllers.
Adaptive mesh refinement techniques for 3-D skin electrode modeling.
Sawicki, Bartosz; Okoniewski, Michal
2010-03-01
In this paper, we develop a 3-D adaptive mesh refinement technique. The algorithm is constructed with an electric impedance tomography forward problem and the finite-element method in mind, but is applicable to a much wider class of problems. We use the method to evaluate the distribution of currents injected into a model of a human body through skin contact electrodes. We demonstrate that the technique leads to a significantly improved solution, particularly near the electrodes. We discuss error estimation, efficiency, and quality of the refinement algorithm and methods that allow for preserving mesh attributes in the refinement process.
Adaptive control of Space Station with control moment gyros
NASA Technical Reports Server (NTRS)
Bishop, Robert H.; Paynter, Scott J.; Sunkel, John W.
1992-01-01
An adaptive approach to Space Station attitude control is investigated. The main components of the controller are the parameter identification scheme, the control gain calculation, and the control law. The control law is a full-state feedback space station baseline control law. The control gain calculation is based on linear-quadratic regulator theory with eigenvalues placement in a vertical strip. The parameter identification scheme is a recursive extended Kalman filter that estimates the inertias and also provides an estimate of the unmodeled disturbances due to the aerodynamic torques and to the nonlinear effects. An analysis of the inertia estimation problem suggests that it is possible to estimate Space Station inertias accurately during nominal control moment gyro operations. The closed-loop adaptive control law is shown to be capable of stabilizing the Space Station after large inertia changes. Results are presented for the pitch axis.
Li, Ning; Cao, Jinde
2015-01-01
In this paper, we investigate synchronization for memristor-based neural networks with time-varying delay via an adaptive and feedback controller. Under the framework of Filippov's solution and differential inclusion theory, and by using the adaptive control technique and structuring a novel Lyapunov functional, an adaptive updated law was designed, and two synchronization criteria were derived for memristor-based neural networks with time-varying delay. By removing some of the basic literature assumptions, the derived synchronization criteria were found to be more general than those in existing literature. Finally, two simulation examples are provided to illustrate the effectiveness of the theoretical results.
Li, Ning; Cao, Jinde
2015-01-01
In this paper, we investigate synchronization for memristor-based neural networks with time-varying delay via an adaptive and feedback controller. Under the framework of Filippov's solution and differential inclusion theory, and by using the adaptive control technique and structuring a novel Lyapunov functional, an adaptive updated law was designed, and two synchronization criteria were derived for memristor-based neural networks with time-varying delay. By removing some of the basic literature assumptions, the derived synchronization criteria were found to be more general than those in existing literature. Finally, two simulation examples are provided to illustrate the effectiveness of the theoretical results. PMID:25299765
Adaptive control strategies for flexible robotic arm
NASA Technical Reports Server (NTRS)
Bialasiewicz, Jan T.
1993-01-01
The motivation of this research came about when a neural network direct adaptive control scheme was applied to control the tip position of a flexible robotic arm. Satisfactory control performance was not attainable due to the inherent non-minimum phase characteristics of the flexible robotic arm tip. Most of the existing neural network control algorithms are based on the direct method and exhibit very high sensitivity if not unstable closed-loop behavior. Therefore a neural self-tuning control (NSTC) algorithm is developed and applied to this problem and showed promising results. Simulation results of the NSTC scheme and the conventional self-tuning (STR) control scheme are used to examine performance factors such as control tracking mean square error, estimation mean square error, transient response, and steady state response.
Adaptable and adaptive materials for light flux control
NASA Astrophysics Data System (ADS)
Sixou, Pierre; Magnaldo, A.; Nourry, J.; Laye, C.
1996-04-01
The purpose of this paper is to describe and examine properties of light flux control materials. Indeed, intelligent light flux control is necessary not only to improve everyday visual convenience but also in an economical point of view in order to reduce global home energetic cost. Several types of materials are good potential candidates for such functions: (1) The most well-known investigations concern inorganic materials such as tungsten or molybdenum oxides in which an electrochrom layer darkens when enriched in ions, and looses its color when impoverished. Unfortunately, at the moment, there is no convenient way to realize correct ions suppliers. Moreover, other drawbacks arise, such as poor reversibility, reactive interferences or a sensitivity of the material to its environment. These systems only need a low voltage level to work. But, their dynamic response, which is correlated to the component surface, is quite long. (2) At the present time, another attractive issue seems promising. More and more studies concern micro-composite liquid crystal films. For first, we shall remind their principles as well as their way of preparation. After having talked about their main advantages as intelligent materials, we shall discuss their control, their light flux adaptability, or their memory capabilities.
Parallel computations and control of adaptive structures
NASA Technical Reports Server (NTRS)
Park, K. C.; Alvin, Kenneth F.; Belvin, W. Keith; Chong, K. P. (Editor); Liu, S. C. (Editor); Li, J. C. (Editor)
1991-01-01
The equations of motion for structures with adaptive elements for vibration control are presented for parallel computations to be used as a software package for real-time control of flexible space structures. A brief introduction of the state-of-the-art parallel computational capability is also presented. Time marching strategies are developed for an effective use of massive parallel mapping, partitioning, and the necessary arithmetic operations. An example is offered for the simulation of control-structure interaction on a parallel computer and the impact of the approach presented for applications in other disciplines than aerospace industry is assessed.
F-8C adaptive flight control laws
NASA Technical Reports Server (NTRS)
Hartmann, G. L.; Harvey, C. A.; Stein, G.; Carlson, D. N.; Hendrick, R. C.
1977-01-01
Three candidate digital adaptive control laws were designed for NASA's F-8C digital flyby wire aircraft. Each design used the same control laws but adjusted the gains with a different adaptative algorithm. The three adaptive concepts were: high-gain limit cycle, Liapunov-stable model tracking, and maximum likelihood estimation. Sensors were restricted to conventional inertial instruments (rate gyros and accelerometers) without use of air-data measurements. Performance, growth potential, and computer requirements were used as criteria for selecting the most promising of these candidates for further refinement. The maximum likelihood concept was selected primarily because it offers the greatest potential for identifying several aircraft parameters and hence for improved control performance in future aircraft application. In terms of identification and gain adjustment accuracy, the MLE design is slightly superior to the other two, but this has no significant effects on the control performance achievable with the F-8C aircraft. The maximum likelihood design is recommended for flight test, and several refinements to that design are proposed.
Birth control techniques in China.
Xiao, B; Wang, M
1983-12-01
This article describes the major birth control techniques in use in China, based on data from a contraceptive prevalence study conducted in September, 1982. 118 million of the 170 million married women of child bearing age use birth control. IUD insertion accounts for 50.2% of birth control methods used, tubal ligation accounts for 25.4%, vas deferens ligation 10.0% oral contraceptives (OCs) 8.2%, and condoms 2.0%. A table of clinical data on 9 China made IUDs reveals that pregnancy rates range from 0 (V Cu-300 model) to 5.83% (mixed ring model). A method of IUD insertion immediately after delivery has been researched and adopted, using a silastic Delta IUD with barium added to reduce the high postpartum expulsion rate. fixing the IUD by sutures during Cesarean section has also been developed. Electronmicroscopic studies of the endometrium of women who have used a stainless steel IUD for more than 20 years showes no tendency towards malignancy, nor negative effects on the endocrine functions of the ovaries. 28 million Chinese women have accepted sterilization as of June, 1982. Local anesthesia and the use of acupuncture have reduced complications due to general anesthesia seen previously. Sterilization by means of chemically induced adhesion of Fallopian tube tissue has also been performed successfully; however, this method makes later anastomosis difficult, and is not suitable for young women with only 1 child. Fallopian tube occlusion by means of a silver clip has been performed in 1,128 cases, with a pregnancy rate of only .85%. 10.62 million men have accepted sterilization. While most of the procedures are val ligations, 300,000 men have been sterilized by direct injection of an adhesive agent throuh the skin of the scrotum. No increase in auto immune or vascular disease has been found. 3 low-dose OCs, used since 1969, have proven to be reliable and freer of side effects than higher-dose compounds. In addition, longterm OCs containing quinestrol have been used
Model reference adaptive control of robots
NASA Technical Reports Server (NTRS)
Steinvorth, Rodrigo
1991-01-01
This project presents the results of controlling two types of robots using new Command Generator Tracker (CGT) based Direct Model Reference Adaptive Control (MRAC) algorithms. Two mathematical models were used to represent a single-link, flexible joint arm and a Unimation PUMA 560 arm; and these were then controlled in simulation using different MRAC algorithms. Special attention was given to the performance of the algorithms in the presence of sudden changes in the robot load. Previously used CGT based MRAC algorithms had several problems. The original algorithm that was developed guaranteed asymptotic stability only for almost strictly positive real (ASPR) plants. This condition is very restrictive, since most systems do not satisfy this assumption. Further developments to the algorithm led to an expansion of the number of plants that could be controlled, however, a steady state error was introduced in the response. These problems led to the introduction of some modifications to the algorithms so that they would be able to control a wider class of plants and at the same time would asymptotically track the reference model. This project presents the development of two algorithms that achieve the desired results and simulates the control of the two robots mentioned before. The results of the simulations are satisfactory and show that the problems stated above have been corrected in the new algorithms. In addition, the responses obtained show that the adaptively controlled processes are resistant to sudden changes in the load.
A successive overrelaxation iterative technique for an adaptive equalizer
NASA Technical Reports Server (NTRS)
Kosovych, O. S.
1973-01-01
An adaptive strategy for the equalization of pulse-amplitude-modulated signals in the presence of intersymbol interference and additive noise is reported. The successive overrelaxation iterative technique is used as the algorithm for the iterative adjustment of the equalizer coefficents during a training period for the minimization of the mean square error. With 2-cyclic and nonnegative Jacobi matrices substantial improvement is demonstrated in the rate of convergence over the commonly used gradient techniques. The Jacobi theorems are also extended to nonpositive Jacobi matrices. Numerical examples strongly indicate that the improvements obtained for the special cases are possible for general channel characteristics. The technique is analytically demonstrated to decrease the mean square error at each iteration for a large range of parameter values for light or moderate intersymbol interference and for small intervals for general channels. Analytically, convergence of the relaxation algorithm was proven in a noisy environment and the coefficient variance was demonstrated to be bounded.
L(sub 1) Adaptive Flight Control System: Flight Evaluation and Technology Transition
NASA Technical Reports Server (NTRS)
Xargay, Enric; Hovakimyan, Naira; Dobrokhodov, Vladimir; Kaminer, Isaac; Gregory, Irene M.; Cao, Chengyu
2010-01-01
Certification of adaptive control technologies for both manned and unmanned aircraft represent a major challenge for current Verification and Validation techniques. A (missing) key step towards flight certification of adaptive flight control systems is the definition and development of analysis tools and methods to support Verification and Validation for nonlinear systems, similar to the procedures currently used for linear systems. In this paper, we describe and demonstrate the advantages of L(sub l) adaptive control architectures for closing some of the gaps in certification of adaptive flight control systems, which may facilitate the transition of adaptive control into military and commercial aerospace applications. As illustrative examples, we present the results of a piloted simulation evaluation on the NASA AirSTAR flight test vehicle, and results of an extensive flight test program conducted by the Naval Postgraduate School to demonstrate the advantages of L(sub l) adaptive control as a verifiable robust adaptive flight control system.
Adaptive control based on retrospective cost optimization
NASA Technical Reports Server (NTRS)
Santillo, Mario A. (Inventor); Bernstein, Dennis S. (Inventor)
2012-01-01
A discrete-time adaptive control law for stabilization, command following, and disturbance rejection that is effective for systems that are unstable, MIMO, and/or nonminimum phase. The adaptive control algorithm includes guidelines concerning the modeling information needed for implementation. This information includes the relative degree, the first nonzero Markov parameter, and the nonminimum-phase zeros. Except when the plant has nonminimum-phase zeros whose absolute value is less than the plant's spectral radius, the required zero information can be approximated by a sufficient number of Markov parameters. No additional information about the poles or zeros need be known. Numerical examples are presented to illustrate the algorithm's effectiveness in handling systems with errors in the required modeling data, unknown latency, sensor noise, and saturation.
Adaptive Control with Reference Model Modification
NASA Technical Reports Server (NTRS)
Stepanyan, Vahram; Krishnakumar, Kalmanje
2012-01-01
This paper presents a modification of the conventional model reference adaptive control (MRAC) architecture in order to improve transient performance of the input and output signals of uncertain systems. A simple modification of the reference model is proposed by feeding back the tracking error signal. It is shown that the proposed approach guarantees tracking of the given reference command and the reference control signal (one that would be designed if the system were known) not only asymptotically but also in transient. Moreover, it prevents generation of high frequency oscillations, which are unavoidable in conventional MRAC systems for large adaptation rates. The provided design guideline makes it possible to track a reference commands of any magnitude from any initial position without re-tuning. The benefits of the method are demonstrated with a simulation example
Applications of active adaptive noise control to jet engines
NASA Technical Reports Server (NTRS)
Shoureshi, Rahmat; Brackney, Larry
1993-01-01
During phase 2 research on the application of active noise control to jet engines, the development of multiple-input/multiple-output (MIMO) active adaptive noise control algorithms and acoustic/controls models for turbofan engines were considered. Specific goals for this research phase included: (1) implementation of a MIMO adaptive minimum variance active noise controller; and (2) turbofan engine model development. A minimum variance control law for adaptive active noise control has been developed, simulated, and implemented for single-input/single-output (SISO) systems. Since acoustic systems tend to be distributed, multiple sensors, and actuators are more appropriate. As such, the SISO minimum variance controller was extended to the MIMO case. Simulation and experimental results are presented. A state-space model of a simplified gas turbine engine is developed using the bond graph technique. The model retains important system behavior, yet is of low enough order to be useful for controller design. Expansion of the model to include multiple stages and spools is also discussed.
Durham adaptive optics real-time controller.
Basden, Alastair; Geng, Deli; Myers, Richard; Younger, Eddy
2010-11-10
The Durham adaptive optics (AO) real-time controller was initially a proof of concept design for a generic AO control system. It has since been developed into a modern and powerful central-processing-unit-based real-time control system, capable of using hardware acceleration (including field programmable gate arrays and graphical processing units), based primarily around commercial off-the-shelf hardware. It is powerful enough to be used as the real-time controller for all currently planned 8 m class telescope AO systems. Here we give details of this controller and the concepts behind it, and report on performance, including latency and jitter, which is less than 10 μs for small AO systems.
Applying statistical process control to the adaptive rate control problem
NASA Astrophysics Data System (ADS)
Manohar, Nelson R.; Willebeek-LeMair, Marc H.; Prakash, Atul
1997-12-01
Due to the heterogeneity and shared resource nature of today's computer network environments, the end-to-end delivery of multimedia requires adaptive mechanisms to be effective. We present a framework for the adaptive streaming of heterogeneous media. We introduce the application of online statistical process control (SPC) to the problem of dynamic rate control. In SPC, the goal is to establish (and preserve) a state of statistical quality control (i.e., controlled variability around a target mean) over a process. We consider the end-to-end streaming of multimedia content over the internet as the process to be controlled. First, at each client, we measure process performance and apply statistical quality control (SQC) with respect to application-level requirements. Then, we guide an adaptive rate control (ARC) problem at the server based on the statistical significance of trends and departures on these measurements. We show this scheme facilitates handling of heterogeneous media. Last, because SPC is designed to monitor long-term process performance, we show that our online SPC scheme could be used to adapt to various degrees of long-term (network) variability (i.e., statistically significant process shifts as opposed to short-term random fluctuations). We develop several examples and analyze its statistical behavior and guarantees.
Li, Le-Bao; Sun, Ling-Ling; Zhang, Sheng-Zhou; Yang, Qing-Quan
2015-09-01
A new control approach for speed tracking and synchronization of multiple motors is developed, by incorporating an adaptive sliding mode control (ASMC) technique into a ring coupling synchronization control structure. This control approach can stabilize speed tracking of each motor and synchronize its motion with other motors' motion so that speed tracking errors and synchronization errors converge to zero. Moreover, an adaptive law is exploited to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort and attenuate chattering. Performance comparisons with parallel control, relative coupling control and conventional PI control are investigated on a four-motor synchronization control system. Extensive simulation results show the effectiveness of the proposed control scheme.
Maneuver tracking using an adaptive Gaussian sum technique
NASA Astrophysics Data System (ADS)
Stubberud, Stephen C.; Kramer, Kathleen A.
2005-03-01
The best method to track through a maneuver is to know the motion model of the maneuvering target. Unfortunately, a priori knowledge of the maneuver is not usually known. If the motion model of the maneuver can be estimated quickly from the measurements then the resulting track estimate will be better than the a priori static model. An adaptive function approximation technique to improve the motion model while tracking is analyzed for its potential to track through various maneuvers. The basic function approximation technique is that of a Gaussian sum. The Gaussian sum approximates the function which represents the error between the initial static model and the actual model of the maneuver. The parameters of the Gaussian sum are identified on-line using a Kalman filter identification scheme. This scheme, used in conjunction with a Kalman filter tracker, creates a coupled technique that can improve the motion model quickly. This adaptive Gaussian sum approach to maneuver tracking has its performance analyzed for three maneuvers. These maneuvers include a maneuvering ballistic target, a target going through an s-curve, and real target with a multiple racetrack flight path. The results of these test cases demonstrate the capabilities of this approach to track maneuvering targets.
Experiments on Adaptive Techniques for Host-Based Intrusion Detection
DRAELOS, TIMOTHY J.; COLLINS, MICHAEL J.; DUGGAN, DAVID P.; THOMAS, EDWARD V.; WUNSCH, DONALD
2001-09-01
This research explores four experiments of adaptive host-based intrusion detection (ID) techniques in an attempt to develop systems that can detect novel exploits. The technique considered to have the most potential is adaptive critic designs (ACDs) because of their utilization of reinforcement learning, which allows learning exploits that are difficult to pinpoint in sensor data. Preliminary results of ID using an ACD, an Elman recurrent neural network, and a statistical anomaly detection technique demonstrate an ability to learn to distinguish between clean and exploit data. We used the Solaris Basic Security Module (BSM) as a data source and performed considerable preprocessing on the raw data. A detection approach called generalized signature-based ID is recommended as a middle ground between signature-based ID, which has an inability to detect novel exploits, and anomaly detection, which detects too many events including events that are not exploits. The primary results of the ID experiments demonstrate the use of custom data for generalized signature-based intrusion detection and the ability of neural network-based systems to learn in this application environment.
Rapid Structured Volume Grid Smoothing and Adaption Technique
NASA Technical Reports Server (NTRS)
Alter, Stephen J.
2006-01-01
A rapid, structured volume grid smoothing and adaption technique, based on signal processing methods, was developed and applied to the Shuttle Orbiter at hypervelocity flight conditions in support of the Columbia Accident Investigation. Because of the fast pace of the investigation, computational aerothermodynamicists, applying hypersonic viscous flow solving computational fluid dynamic (CFD) codes, refined and enhanced a grid for an undamaged baseline vehicle to assess a variety of damage scenarios. Of the many methods available to modify a structured grid, most are time-consuming and require significant user interaction. By casting the grid data into different coordinate systems, specifically two computational coordinates with arclength as the third coordinate, signal processing methods are used for filtering the data [Taubin, CG v/29 1995]. Using a reverse transformation, the processed data are used to smooth the Cartesian coordinates of the structured grids. By coupling the signal processing method with existing grid operations within the Volume Grid Manipulator tool, problems related to grid smoothing are solved efficiently and with minimal user interaction. Examples of these smoothing operations are illustrated for reductions in grid stretching and volume grid adaptation. In each of these examples, other techniques existed at the time of the Columbia accident, but the incorporation of signal processing techniques reduced the time to perform the corrections by nearly 60%. This reduction in time to perform the corrections therefore enabled the assessment of approximately twice the number of damage scenarios than previously possible during the allocated investigation time.
An adaptive robust controller for time delay maglev transportation systems
NASA Astrophysics Data System (ADS)
Milani, Reza Hamidi; Zarabadipour, Hassan; Shahnazi, Reza
2012-12-01
For engineering systems, uncertainties and time delays are two important issues that must be considered in control design. Uncertainties are often encountered in various dynamical systems due to modeling errors, measurement noises, linearization and approximations. Time delays have always been among the most difficult problems encountered in process control. In practical applications of feedback control, time delay arises frequently and can severely degrade closed-loop system performance and in some cases, drives the system to instability. Therefore, stability analysis and controller synthesis for uncertain nonlinear time-delay systems are important both in theory and in practice and many analytical techniques have been developed using delay-dependent Lyapunov function. In the past decade the magnetic and levitation (maglev) transportation system as a new system with high functionality has been the focus of numerous studies. However, maglev transportation systems are highly nonlinear and thus designing controller for those are challenging. The main topic of this paper is to design an adaptive robust controller for maglev transportation systems with time-delay, parametric uncertainties and external disturbances. In this paper, an adaptive robust control (ARC) is designed for this purpose. It should be noted that the adaptive gain is derived from Lyapunov-Krasovskii synthesis method, therefore asymptotic stability is guaranteed.
Adaptive backstepping slide mode control of pneumatic position servo system
NASA Astrophysics Data System (ADS)
Ren, Haipeng; Fan, Juntao
2016-06-01
With the price decreasing of the pneumatic proportional valve and the high performance micro controller, the simple structure and high tracking performance pneumatic servo system demonstrates more application potential in many fields. However, most existing control methods with high tracking performance need to know the model information and to use pressure sensor. This limits the application of the pneumatic servo system. An adaptive backstepping slide mode control method is proposed for pneumatic position servo system. The proposed method designs adaptive slide mode controller using backstepping design technique. The controller parameter adaptive law is derived from Lyapunov analysis to guarantee the stability of the system. A theorem is testified to show that the state of closed-loop system is uniformly bounded, and the closed-loop system is stable. The advantages of the proposed method include that system dynamic model parameters are not required for the controller design, uncertain parameters bounds are not need, and the bulk and expensive pressure sensor is not needed as well. Experimental results show that the designed controller can achieve better tracking performance, as compared with some existing methods.
Decentralized adaptive control of robot manipulators with robust stabilization design
NASA Technical Reports Server (NTRS)
Yuan, Bau-San; Book, Wayne J.
1988-01-01
Due to geometric nonlinearities and complex dynamics, a decentralized technique for adaptive control for multilink robot arms is attractive. Lyapunov-function theory for stability analysis provides an approach to robust stabilization. Each joint of the arm is treated as a component subsystem. The adaptive controller is made locally stable with servo signals including proportional and integral gains. This results in the bound on the dynamical interactions with other subsystems. A nonlinear controller which stabilizes the system with uniform boundedness is used to improve the robustness properties of the overall system. As a result, the robot tracks the reference trajectories with convergence. This strategy makes computation simple and therefore facilitates real-time implementation.
Neural Control Adaptation to Motor Noise Manipulation.
Hasson, Christopher J; Gelina, Olga; Woo, Garrett
2016-01-01
Antagonistic muscular co-activation can compensate for movement variability induced by motor noise at the expense of increased energetic costs. Greater antagonistic co-activation is commonly observed in older adults, which could be an adaptation to increased motor noise. The present study tested this hypothesis by manipulating motor noise in 12 young subjects while they practiced a goal-directed task using a myoelectric virtual arm, which was controlled by their biceps and triceps muscle activity. Motor noise was increased by increasing the coefficient of variation (CV) of the myoelectric signals. As hypothesized, subjects adapted by increasing antagonistic co-activation, and this was associated with reduced noise-induced performance decrements. A second hypothesis was that a virtual decrease in motor noise, achieved by smoothing the myoelectric signals, would have the opposite effect: co-activation would decrease and motor performance would improve. However, the results showed that a decrease in noise made performance worse instead of better, with no change in co-activation. Overall, these findings suggest that the nervous system adapts to virtual increases in motor noise by increasing antagonistic co-activation, and this preserves motor performance. Reducing noise may have failed to benefit performance due to characteristics of the filtering process itself, e.g., delays are introduced and muscle activity bursts are attenuated. The observed adaptations to increased noise may explain in part why older adults and many patient populations have greater antagonistic co-activation, which could represent an adaptation to increased motor noise, along with a desire for increased joint stability. PMID:26973487
Neural Control Adaptation to Motor Noise Manipulation
Hasson, Christopher J.; Gelina, Olga; Woo, Garrett
2016-01-01
Antagonistic muscular co-activation can compensate for movement variability induced by motor noise at the expense of increased energetic costs. Greater antagonistic co-activation is commonly observed in older adults, which could be an adaptation to increased motor noise. The present study tested this hypothesis by manipulating motor noise in 12 young subjects while they practiced a goal-directed task using a myoelectric virtual arm, which was controlled by their biceps and triceps muscle activity. Motor noise was increased by increasing the coefficient of variation (CV) of the myoelectric signals. As hypothesized, subjects adapted by increasing antagonistic co-activation, and this was associated with reduced noise-induced performance decrements. A second hypothesis was that a virtual decrease in motor noise, achieved by smoothing the myoelectric signals, would have the opposite effect: co-activation would decrease and motor performance would improve. However, the results showed that a decrease in noise made performance worse instead of better, with no change in co-activation. Overall, these findings suggest that the nervous system adapts to virtual increases in motor noise by increasing antagonistic co-activation, and this preserves motor performance. Reducing noise may have failed to benefit performance due to characteristics of the filtering process itself, e.g., delays are introduced and muscle activity bursts are attenuated. The observed adaptations to increased noise may explain in part why older adults and many patient populations have greater antagonistic co-activation, which could represent an adaptation to increased motor noise, along with a desire for increased joint stability. PMID:26973487
Robust adaptive control for Unmanned Aerial Vehicles
NASA Astrophysics Data System (ADS)
Kahveci, Nazli E.
The objective of meeting higher endurance requirements remains a challenging task for any type and size of Unmanned Aerial Vehicles (UAVs). According to recent research studies significant energy savings can be realized through utilization of thermal currents. The navigation strategies followed across thermal regions, however, are based on rather intuitive assessments of remote pilots and lack any systematic path planning approaches. Various methods to enhance the autonomy of UAVs in soaring applications are investigated while seeking guarantees for flight performance improvements. The dynamics of the aircraft, small UAVs in particular, are affected by the environmental conditions, whereas unmodeled dynamics possibly become significant during aggressive flight maneuvers. Besides, the demanded control inputs might have a magnitude range beyond the limits dictated by the control surface actuators. The consequences of ignoring these issues can be catastrophic. Supporting this claim NASA Dryden Flight Research Center reports considerable performance degradation and even loss of stability in autonomous soaring flight tests with the subsequent risk of an aircraft crash. The existing control schemes are concluded to suffer from limited performance. Considering the aircraft dynamics and the thermal characteristics we define a vehicle-specific trajectory optimization problem to achieve increased cross-country speed and extended range of flight. In an environment with geographically dispersed set of thermals of possibly limited lifespan, we identify the similarities to the Vehicle Routing Problem (VRP) and provide both exact and approximate guidance algorithms for the navigation of automated UAVs. An additional stochastic approach is used to quantify the performance losses due to incorrect thermal data while dealing with random gust disturbances and onboard sensor measurement inaccuracies. One of the main contributions of this research is a novel adaptive control design with
Road map to adaptive optimal control. [jet engine control
NASA Technical Reports Server (NTRS)
Boyer, R.
1980-01-01
A building block control structure leading toward adaptive, optimal control for jet engines is developed. This approach simplifies the addition of new features and allows for easier checkout of the control by providing a baseline system for comparison. Also, it is possible to eliminate certain features that do not have payoff by being selective in the addition of new building blocks to be added to the baseline system. The minimum risk approach specifically addresses the need for active identification of the plant to be controlled in real time and real time optimization of the control for the identified plant.
Design of an adaptive controller for dive-plane control of a torpedo-shaped AUV
NASA Astrophysics Data System (ADS)
Cao, Jian; Su, Yumin; Zhao, Jinxin
2011-09-01
Underwater vehicles operating in complex ocean conditions present difficulties in determining accurate dynamic models. To guarantee robustness against parameter uncertainty, an adaptive controller for dive-plane control, based on Lyapunov theory and back-stepping techniques, was proposed. In the closed-loop system, asymptotic tracking of the reference depth and pitch angle trajectories was accomplished. Simulation results were presented which show effective dive-plane control in spite of the uncertainties in the system parameters.
Techniques for radar imaging using a wideband adaptive array
NASA Astrophysics Data System (ADS)
Curry, Mark Andrew
A microwave imaging approach is simulated and validated experimentally that uses a small, wideband adaptive array. The experimental 12-element linear array and microwave receiver uses stepped frequency CW signals from 2--3 GHz and receives backscattered energy from short range objects in a +/-90° field of view. Discone antenna elements are used due to their wide temporal bandwidth, isotropic azimuth beam pattern and fixed phase center. It is also shown that these antennas have very low mutual coupling, which significantly reduces the calibration requirements. The MUSIC spectrum is used as a calibration tool. Spatial resampling is used to correct the dispersion effects, which if not compensated causes severe reduction in detection and resolution for medium and large off-axis angles. Fourier processing provides range resolution and the minimum variance spectral estimate is employed to resolve constant range targets for improved angular resolution. Spatial smoothing techniques are used to generate signal plus interference covariance matrices at each range bin. Clutter affects the angular resolution of the array due to the increase in rank of the signal plus clutter covariance matrix, whereas at the same time the rank of this matrix is reduced for closely spaced scatterers due to signal coherence. A method is proposed to enhance angular resolution in the presence of clutter by an approximate signal subspace projection (ASSP) that maps the received signal space to a lower effective rank approximation. This projection operator has a scalar control parameter that is a function of the signal and clutter amplitude estimates. These operations are accomplished without using eigendecomposition. The low sidelobe levels allow the imaging of the integrated backscattering from the absorber cones in the chamber. This creates a fairly large clutter signature for testing ASSP. We can easily resolve 2 dihedrals placed at about 70% of a beamwidth apart, with a signal to clutter ratio
A Methodology for Investigating Adaptive Postural Control
NASA Technical Reports Server (NTRS)
McDonald, P. V.; Riccio, G. E.
1999-01-01
Our research on postural control and human-environment interactions provides an appropriate scientific foundation for understanding the skill of mass handling by astronauts in weightless conditions (e.g., extravehicular activity or EVA). We conducted an investigation of such skills in NASA's principal mass-handling simulator, the Precision Air-Bearing Floor, at the Johnson Space Center. We have studied skilled movement-body within a multidisciplinary context that draws on concepts and methods from biological and behavioral sciences (e.g., psychology, kinesiology and neurophysiology) as well as bioengineering. Our multidisciplinary research has led to the development of measures, for manual interactions between individuals and the substantial environment, that plausibly are observable by human sensory systems. We consider these methods to be the most important general contribution of our EVA investigation. We describe our perspective as control theoretic because it draws more on fundamental concepts about control systems in engineering than it does on working constructs from the subdisciplines of biomechanics and motor control in the bio-behavioral sciences. At the same time, we have attempted to identify the theoretical underpinnings of control-systems engineering that are most relevant to control by human beings. We believe that these underpinnings are implicit in the assumptions that cut across diverse methods in control-systems engineering, especially the various methods associated with "nonlinear control", "fuzzy control," and "adaptive control" in engineering. Our methods are based on these theoretical foundations rather than on the mathematical formalisms that are associated with particular methods in control-systems engineering. The most important aspects of the human-environment interaction in our investigation of mass handling are the functional consequences that body configuration and stability have for the pick up of information or the achievement of
Adaptive control of robotic manipulators with structural flexibility
NASA Astrophysics Data System (ADS)
Wu, Sijun
The control problem of mechanically flexible systems was an important issue for the past decade due mainly to the growing needs for fast, precise manipulators in industry and space applications. In this thesis, stable, high precision, and high-bandwidth closed-loop tip position control of a one-link flexible robot was investigated. Two adaptive control methods are developed and studied. A non-dimensionalized dynamic model for the flexible robot arm is developed. Payload mass and moment of inertia are also considered in the modeling. It can be shown that with a set of strain gauge measurements, the payload mass and moment of inertia could be estimated. This provides a convenient tool to detect the variations of the payload, which is crucial for precision control. The lattice filter used in the tip position control of a flexible arm proves to be a good parameter identifier in the on-line identification of the robot due to its high convergence rate and noise rejection capability. Although the lattice filter is usualy designed for auto-regressive or moving-average processes, its applications are extended to include auto-regressive and moving-average processes. The proposed model reference adaptive inverse controller is in the form of a series type of model reference system. It differs from other model reference controller in that the forward controller is the identified systems inverse. Moreover, an additional control signal is applied which comes from a signal synthesis block to compensate the output tracking and parameter identification errors. Compared with other control techniques such as stable factorization and linear quadratic Gaussian, the predictive adaptive controller could provide faster control with reasonably low input energy level.
Buteyko technique use to control asthma symptoms.
Austin, Gillian
The Buteyko breathing technique is recommended in national guidance for control of asthma symptoms. This article explores the evidence base for the technique, outlines its main principles and includes two cases studies.
Adaptive nonlinear control of missiles using neural networks
NASA Astrophysics Data System (ADS)
McFarland, Michael Bryan
Research has shown that neural networks can be used to improve upon approximate dynamic inversion for control of uncertain nonlinear systems. In one architecture, the neural network adaptively cancels inversion errors through on-line learning. Such learning is accomplished by a simple weight update rule derived from Lyapunov theory, thus assuring stability of the closed-loop system. In this research, previous results using linear-in-parameters neural networks were reformulated in the context of a more general class of composite nonlinear systems, and the control scheme was shown to possess important similarities and major differences with established methods of adaptive control. The neural-adaptive nonlinear control methodology in question has been used to design an autopilot for an anti-air missile with enhanced agile maneuvering capability, and simulation results indicate that this approach is a feasible one. There are, however, certain difficulties associated with choosing the proper network architecture which make it difficult to achieve the rapid learning required in this application. Accordingly, this technique has been further extended to incorporate the important class of feedforward neural networks with a single hidden layer. These neural networks feature well-known approximation capabilities and provide an effective, although nonlinear, parameterization of the adaptive control problem. Numerical results from a six-degree-of-freedom nonlinear agile anti-air missile simulation demonstrate the effectiveness of the autopilot design based on multilayer networks. Previous work in this area has implicitly assumed precise knowledge of the plant order, and made no allowances for unmodeled dynamics. This thesis describes an approach to the problem of controlling a class of nonlinear systems in the face of both unknown nonlinearities and unmodeled dynamics. The proposed methodology is similar to robust adaptive control techniques derived for control of linear
Adaptive Accommodation Control Method for Complex Assembly
NASA Astrophysics Data System (ADS)
Kang, Sungchul; Kim, Munsang; Park, Shinsuk
Robotic systems have been used to automate assembly tasks in manufacturing and in teleoperation. Conventional robotic systems, however, have been ineffective in controlling contact force in multiple contact states of complex assemblythat involves interactions between complex-shaped parts. Unlike robots, humans excel at complex assembly tasks by utilizing their intrinsic impedance, forces and torque sensation, and tactile contact clues. By examining the human behavior in assembling complex parts, this study proposes a novel geometry-independent control method for robotic assembly using adaptive accommodation (or damping) algorithm. Two important conditions for complex assembly, target approachability and bounded contact force, can be met by the proposed control scheme. It generates target approachable motion that leads the object to move closer to a desired target position, while contact force is kept under a predetermined value. Experimental results from complex assembly tests have confirmed the feasibility and applicability of the proposed method.
Controlling cluster synchronization by adapting the topology.
Lehnert, Judith; Hövel, Philipp; Selivanov, Anton; Fradkov, Alexander; Schöll, Eckehard
2014-10-01
We suggest an adaptive control scheme for the control of in-phase and cluster synchronization in delay-coupled networks. Based on the speed-gradient method, our scheme adapts the topology of a network such that the target state is realized. It is robust towards different initial conditions as well as changes in the coupling parameters. The emerging topology is characterized by a delicate interplay of excitatory and inhibitory links leading to the stabilization of the desired cluster state. As a crucial parameter determining this interplay we identify the delay time. Furthermore, we show how to construct networks such that they exhibit not only a given cluster state but also with a given oscillation frequency. We apply our method to coupled Stuart-Landau oscillators, a paradigmatic normal form that naturally arises in an expansion of systems close to a Hopf bifurcation. The successful and robust control of this generic model opens up possible applications in a wide range of systems in physics, chemistry, technology, and life science.
Kalman filter based control for Adaptive Optics
NASA Astrophysics Data System (ADS)
Petit, Cyril; Quiros-Pacheco, Fernando; Conan, Jean-Marc; Kulcsár, Caroline; Raynaud, Henri-François; Fusco, Thierry
2004-12-01
Classical Adaptive Optics suffer from a limitation of the corrected Field Of View. This drawback has lead to the development of MultiConjugated Adaptive Optics. While the first MCAO experimental set-ups are presently under construction, little attention has been paid to the control loop. This is however a key element in the optimization process especially for MCAO systems. Different approaches have been proposed in recent articles for astronomical applications : simple integrator, Optimized Modal Gain Integrator and Kalman filtering. We study here Kalman filtering which seems a very promising solution. Following the work of Brice Leroux, we focus on a frequential characterization of kalman filters, computing a transfer matrix. The result brings much information about their behaviour and allows comparisons with classical controllers. It also appears that straightforward improvements of the system models can lead to static aberrations and vibrations filtering. Simulation results are proposed and analysed thanks to our frequential characterization. Related problems such as model errors, aliasing effect reduction or experimental implementation and testing of Kalman filter control loop on a simplified MCAO experimental set-up could be then discussed.
Controller-structure interaction compensation using adaptive residual mode filters
NASA Technical Reports Server (NTRS)
Davidson, Roger A.; Balas, Mark J.
1990-01-01
It is not feasible to construct controllers for large space structures or large scale systems (LSS's) which are of the same order as the structures. The complexity of the dynamics of these systems is such that full knowledge of its behavior cannot by processed by today's controller design methods. The controller for system performance of such a system is therefore based on a much smaller reduced-order model (ROM). Unfortunately, the interaction between the LSS and the ROM-based controller can produce instabilities in the closed-loop system due to the unmodeled dynamics of the LSS. Residual mode filters (RMF's) allow the systematic removal of these instabilities in a matter which does not require a redesign of the controller. In addition RMF's have a strong theoretical basis. As simple first- or second-order filters, the RMF CSI compensation technique is at once modular, simple and highly effective. RMF compensation requires knowledge of the dynamics of the system modes which resulted in the previous closed-loop instabilities (the residual modes), but this information is sometimes known imperfectly. An adaptive, self-tuning RMF design, which compensates for uncertainty in the frequency of the residual mode, has been simulated using continuous-time and discrete-time models of a flexible robot manipulator. Work has also been completed on the discrete-time experimental implementation on the Martin Marietta flexible robot manipulator experiment. This paper will present the results of that work on adaptive, self-tuning RMF's, and will clearly show the advantage of this adaptive compensation technique for controller-structure interaction (CSI) instabilities in actively-controlled LSS's.
Adaptive method with intercessory feedback control for an intelligent agent
Goldsmith, Steven Y.
2004-06-22
An adaptive architecture method with feedback control for an intelligent agent provides for adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. An adaptive architecture method with feedback control for multiple intelligent agents provides for coordinating and adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. Re-programming of the adaptive architecture is through a nexus which coordinates reflexive and deliberator components.
Multi-Level Adaptive Techniques (MLAT) for singular-perturbation problems
NASA Technical Reports Server (NTRS)
Brandt, A.
1978-01-01
The multilevel (multigrid) adaptive technique, a general strategy of solving continuous problems by cycling between coarser and finer levels of discretization is described. It provides very fast general solvers, together with adaptive, nearly optimal discretization schemes. In the process, boundary layers are automatically either resolved or skipped, depending on a control function which expresses the computational goal. The global error decreases exponentially as a function of the overall computational work, in a uniform rate independent of the magnitude of the singular-perturbation terms. The key is high-order uniformly stable difference equations, and uniformly smoothing relaxation schemes.
NASA Technical Reports Server (NTRS)
Johnson, C. R., Jr.; Lawrence, D. A.
1981-01-01
The reduced order model problem in distributed parameter systems adaptive identification and control is investigated. A comprehensive examination of real-time centralized adaptive control options for flexible spacecraft is provided.
Wavefront Control for Extreme Adaptive Optics
Poyneer, L A
2003-07-16
Current plans for Extreme Adaptive Optics systems place challenging requirements on wave-front control. This paper focuses on control system dynamics, wave-front sensing and wave-front correction device characteristics. It may be necessary to run an ExAO system after a slower, low-order AO system. Running two independent systems can result in very good temporal performance, provided specific design constraints are followed. The spatially-filtered wave-front sensor, which prevents aliasing and improves PSF sensitivity, is summarized. Different models of continuous and segmented deformable mirrors are studied. In a noise-free case, a piston-tip-tilt segmented MEMS device can achieve nearly equivalent performance to a continuous-sheet DM in compensating for a static phase aberration with use of spatial filtering.
An adaptive learning control system for large flexible structures
NASA Technical Reports Server (NTRS)
Thau, F. E.
1985-01-01
The objective of the research has been to study the design of adaptive/learning control systems for the control of large flexible structures. In the first activity an adaptive/learning control methodology for flexible space structures was investigated. The approach was based on using a modal model of the flexible structure dynamics and an output-error identification scheme to identify modal parameters. In the second activity, a least-squares identification scheme was proposed for estimating both modal parameters and modal-to-actuator and modal-to-sensor shape functions. The technique was applied to experimental data obtained from the NASA Langley beam experiment. In the third activity, a separable nonlinear least-squares approach was developed for estimating the number of excited modes, shape functions, modal parameters, and modal amplitude and velocity time functions for a flexible structure. In the final research activity, a dual-adaptive control strategy was developed for regulating the modal dynamics and identifying modal parameters of a flexible structure. A min-max approach was used for finding an input to provide modal parameter identification while not exceeding reasonable bounds on modal displacement.
Real-time Adaptive Control Using Neural Generalized Predictive Control
NASA Technical Reports Server (NTRS)
Haley, Pam; Soloway, Don; Gold, Brian
1999-01-01
The objective of this paper is to demonstrate the feasibility of a Nonlinear Generalized Predictive Control algorithm by showing real-time adaptive control on a plant with relatively fast time-constants. Generalized Predictive Control has classically been used in process control where linear control laws were formulated for plants with relatively slow time-constants. The plant of interest for this paper is a magnetic levitation device that is nonlinear and open-loop unstable. In this application, the reference model of the plant is a neural network that has an embedded nominal linear model in the network weights. The control based on the linear model provides initial stability at the beginning of network training. In using a neural network the control laws are nonlinear and online adaptation of the model is possible to capture unmodeled or time-varying dynamics. Newton-Raphson is the minimization algorithm. Newton-Raphson requires the calculation of the Hessian, but even with this computational expense the low iteration rate make this a viable algorithm for real-time control.
A Solution Adaptive Technique Using Tetrahedral Unstructured Grids
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
2000-01-01
An adaptive unstructured grid refinement technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The method is based on a combination of surface mesh subdivision and local remeshing of the volume grid Simple functions of flow quantities are employed to detect dominant features of the flowfield The method is designed for modular coupling with various error/feature analyzers and flow solvers. Several steady-state, inviscid flow test cases are presented to demonstrate the applicability of the method for solving practical three-dimensional problems. In all cases, accurate solutions featuring complex, nonlinear flow phenomena such as shock waves and vortices have been generated automatically and efficiently.
ERIC Educational Resources Information Center
Norman, D. A.; And Others
"Machine controlled adaptive training is a promising concept. In adaptive training the task presented to the trainee varies as a function of how well he performs. In machine controlled training, adaptive logic performs a function analogous to that performed by a skilled operator." This study looks at the ways in which gain-effective time constant…
Mode estimation and adaptive feedforward control for stabilization of a flexible gun tube
NASA Astrophysics Data System (ADS)
Vandegrift, Mark W.; DiRenzo, Michael T.
1998-07-01
In this paper we describe an approach for designing a pointing and stabilization system for an unbalanced, flexible gun. Our approach is based upon classical control techniques as well as system identification and adaptive feedforward techniques. Adaptive algorithms identify the flexible modes of the system and estimate the dynamics unbalance. This information is used to update the control law in order to improve the stabilization accuracy of the system.
NASA Astrophysics Data System (ADS)
Li, Yongming; Tong, Shaocheng
2016-10-01
In this paper, a fuzzy adaptive switched control approach is proposed for a class of uncertain nonholonomic chained systems with input nonsmooth constraint. In the control design, an auxiliary dynamic system is designed to address the input nonsmooth constraint, and an adaptive switched control strategy is constructed to overcome the uncontrollability problem associated with x0(t0) = 0. By using fuzzy logic systems to tackle unknown nonlinear functions, a fuzzy adaptive control approach is explored based on the adaptive backstepping technique. By constructing the combination approximation technique and using Young's inequality scaling technique, the number of the online learning parameters is reduced to n and the 'explosion of complexity' problem is avoid. It is proved that the proposed method can guarantee that all variables of the closed-loop system converge to a small neighbourhood of zero. Two simulation examples are provided to illustrate the effectiveness of the proposed control approach.
Adaptive powertrain control for plugin hybrid electric vehicles
Kedar-Dongarkar, Gurunath; Weslati, Feisel
2013-10-15
A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.
Sensor Web Dynamic Measurement Techniques and Adaptive Observing Strategies
NASA Technical Reports Server (NTRS)
Talabac, Stephen J.
2004-01-01
Sensor Web observing systems may have the potential to significantly improve our ability to monitor, understand, and predict the evolution of rapidly evolving, transient, or variable environmental features and events. This improvement will come about by integrating novel data collection techniques, new or improved instruments, emerging communications technologies and protocols, sensor mark-up languages, and interoperable planning and scheduling systems. In contrast to today's observing systems, "event-driven" sensor webs will synthesize real- or near-real time measurements and information from other platforms and then react by reconfiguring the platforms and instruments to invoke new measurement modes and adaptive observation strategies. Similarly, "model-driven" sensor webs will utilize environmental prediction models to initiate targeted sensor measurements or to use a new observing strategy. The sensor web concept contrasts with today's data collection techniques and observing system operations concepts where independent measurements are made by remote sensing and in situ platforms that do not share, and therefore cannot act upon, potentially useful complementary sensor measurement data and platform state information. This presentation describes NASA's view of event-driven and model-driven Sensor Webs and highlights several research and development activities at the Goddard Space Flight Center.
Optical techniques to understand biofunctional adaptation in human dentine
NASA Astrophysics Data System (ADS)
Kishen, Anil; Asundi, Anand K.
2004-08-01
Human tooth structure in the oral environment is subjected to mechanical forces and thermal fluctuations. Dentine, the major component of the tooth structure, is a bio-composite, mainly composed of a highly mineralized phase and a collagenous phase. When subjected to changes in load and/or temperature, dentine will experience stresses and strains distribution within their structure. Though such effects are found to cause deleterious effects on artificial dental restorations, biological structures such as dentine seem to posses an inherent ability to adapt to functional thermo-mechanical loads. Optical techniques enable visualization and quantification of deformation, strain and stress on dental structures and provide a better understanding on their thermo-mechanical response. In this study 2-dimensional and 3-dimensional digital photoelasticity, digital moiré interferometry and Electronic Speckle Pattern Interferometry (ESPI) are all shown to be quite promising in this application. This paper will highlight these techniques and the corresponding applications. These experiments will aid in designing and development of better dental restorations and implants in clinical practice.
Adaptive Techniques for Intelligent Onboard Magnetospheric/Ionospheric Radar
NASA Astrophysics Data System (ADS)
Galkin, I. A.; Huang, X.; Reinisch, B. W.; Benson, R. F.
2006-12-01
Rapid detection and response to sudden changes in the space plasma surrounding the Earth is instrumental to achieving the strategic goals in Sun-Earth Connection and Space Weather research conducted by NASA. It also provides important knowledge for adaptive planning of the science instrument operations that have to accommodate tremendous plasma variability along the orbit. Radio sounding has been used by multiple space missions to accurately determine plasma density, both locally and remotely. Its major science product, however, is an image of signal strength in the frequency vs. travel time frame, whose autonomous analysis onboard is a non-trivial, intelligent system task. We present a fully-autonomous technique for analysis of relaxation sounding data collected by the Radio Plasma Imager (RPI) on IMAGE satellite during 2000-2005. The technique interprets data by detecting signatures of major plasma resonances in the image and then interpreting them by seeking the best match to the theoretical model of resonance inter-dependencies. Testing of the algorithm against collected RPI data indicate partial success in evaluation of resonance frequencies. Whereas robust and accurate determination of the electron gyro-frequency from RPI data appears possible, the plasma frequency signatures can often be too weak to be detected and interpreted automatically. We discuss the conditions for correct evaluation of the plasma frequency in the RPI data, derive requirements to the radar instrument design from the analysis results, and outline potential for onboard implementation and utility in subsequent decision making process.
Robust control technique for nuclear power plants
Murphy, G.V.; Bailey, J.M.
1989-03-01
This report summarizes the linear quadratic Guassian (LQG) design technique with loop transfer recovery (LQG/LTR) for design of control systems. The concepts of return ratio, return difference, inverse return difference, and singular values are summarized. The LQG/LTR design technique allows the synthesis of a robust control system. To illustrate the LQG/LTR technique, a linearized model of a simple process has been chosen. The process has three state variables, one input, and one output. Three control system design methods are compared: LQG, LQG/LTR, and a proportional plus integral controller (PI). 7 refs., 20 figs., 6 tabs.
Robust adaptive control of MEMS triaxial gyroscope using fuzzy compensator.
Fei, Juntao; Zhou, Jian
2012-12-01
In this paper, a robust adaptive control strategy using a fuzzy compensator for MEMS triaxial gyroscope, which has system nonlinearities, including model uncertainties and external disturbances, is proposed. A fuzzy logic controller that could compensate for the model uncertainties and external disturbances is incorporated into the adaptive control scheme in the Lyapunov framework. The proposed adaptive fuzzy controller can guarantee the convergence and asymptotical stability of the closed-loop system. The proposed adaptive fuzzy control strategy does not depend on accurate mathematical models, which simplifies the design procedure. The innovative development of intelligent control methods incorporated with conventional control for the MEMS gyroscope is derived with the strict theoretical proof of the Lyapunov stability. Numerical simulations are investigated to verify the effectiveness of the proposed adaptive fuzzy control scheme and demonstrate the satisfactory tracking performance and robustness against model uncertainties and external disturbances compared with conventional adaptive control method.
Robust adaptive vibration control of a flexible structure.
Khoshnood, A M; Moradi, H M
2014-07-01
Different types of L1 adaptive control systems show that using robust theories with adaptive control approaches has produced high performance controllers. In this study, a model reference adaptive control scheme considering robust theories is used to propose a practical control system for vibration suppression of a flexible launch vehicle (FLV). In this method, control input of the system is shaped from the dynamic model of the vehicle and components of the control input are adaptively constructed by estimating the undesirable vibration frequencies. Robust stability of the adaptive vibration control system is guaranteed by using the L1 small gain theorem. Simulation results of the robust adaptive vibration control strategy confirm that the effects of vibration on the vehicle performance considerably decrease without the loss of the phase margin of the system.
Direct adaptive control of manipulators in Cartesian space
NASA Technical Reports Server (NTRS)
Seraji, H.
1987-01-01
A new adaptive-control scheme for direct control of manipulator end effector to achieve trajectory tracking in Cartesian space is developed in this article. The control structure is obtained from linear multivariable theory and is composed of simple feedforward and feedback controllers and an auxiliary input. The direct adaptation laws are derived from model reference adaptive control theory and are not based on parameter estimation of the robot model. The utilization of adaptive feedforward control and the inclusion of auxiliary input are novel features of the present scheme and result in improved dynamic performance over existing adaptive control schemes. The adaptive controller does not require the complex mathematical model of the robot dynamics or any knowledge of the robot parameters or the payload, and is computationally fast for on-line implementation with high sampling rates. The control scheme is applied to a two-link manipulator for illustration.
Stable adaptive fuzzy controllers with application to inverted pendulum tracking.
Wang, L X
1996-01-01
An adaptive fuzzy controller is constructed from a set of fuzzy IF-THEN rules whose parameters are adjusted on-line according to some adaptation law for the purpose of controlling the plant to track a given-trajectory. In this paper, two adaptive fuzzy controllers are designed based on the Lyapunov synthesis approach. We require that the final closed-loop system must be globally stable in the sense that all signals involved (states, controls, parameters, etc.) must be uniformly bounded. Roughly speaking, the adaptive fuzzy controllers are designed through the following steps: first, construct an initial controller based on linguistic descriptions (in the form of fuzzy IF-THEN rules) about the unknown plant from human experts; then, develop an adaptation law to adjust the parameters of the fuzzy controller on-line. We prove, for both adaptive fuzzy controllers, that: (1) all signals in the closed-loop systems are uniformly bounded; and (2) the tracking errors converge to zero under mild conditions. We provide the specific formulas of the bounds so that controller designers can determine the bounds based on their requirements. Finally, the adaptive fuzzy controllers are used to control the inverted pendulum to track a given trajectory, and the simulation results show that: (1) the adaptive fuzzy controllers can perform successful tracking without using any linguistic information; and (2) after incorporating some linguistic fuzzy rules into the controllers, the adaptation speed becomes faster and the tracking error becomes smaller.
Broadband Noise Control Using Predictive Techniques
NASA Technical Reports Server (NTRS)
Eure, Kenneth W.; Juang, Jer-Nan
1997-01-01
Predictive controllers have found applications in a wide range of industrial processes. Two types of such controllers are generalized predictive control and deadbeat control. Recently, deadbeat control has been augmented to include an extended horizon. This modification, named deadbeat predictive control, retains the advantage of guaranteed stability and offers a novel way of control weighting. This paper presents an application of both predictive control techniques to vibration suppression of plate modes. Several system identification routines are presented. Both algorithms are outlined and shown to be useful in the suppression of plate vibrations. Experimental results are given and the algorithms are shown to be applicable to non- minimal phase systems.
A survey of adaptive control technology in robotics
NASA Technical Reports Server (NTRS)
Tosunoglu, S.; Tesar, D.
1987-01-01
Previous work on the adaptive control of robotic systems is reviewed. Although the field is relatively new and does not yet represent a mature discipline, considerable attention has been given to the design of sophisticated robot controllers. Here, adaptive control methods are divided into model reference adaptive systems and self-tuning regulators with further definition of various approaches given in each class. The similarity and distinct features of the designed controllers are delineated and tabulated to enhance comparative review.
Full-Scale Flight Research Testbeds: Adaptive and Intelligent Control
NASA Technical Reports Server (NTRS)
Pahle, Joe W.
2008-01-01
This viewgraph presentation describes the adaptive and intelligent control methods used for aircraft survival. The contents include: 1) Motivation for Adaptive Control; 2) Integrated Resilient Aircraft Control Project; 3) Full-scale Flight Assets in Use for IRAC; 4) NASA NF-15B Tail Number 837; 5) Gen II Direct Adaptive Control Architecture; 6) Limited Authority System; and 7) 837 Flight Experiments. A simulated destabilization failure analysis along with experience and lessons learned are also presented.
Control Techniques for Particulate Air Pollutants.
ERIC Educational Resources Information Center
National Air Pollution Control Administration (DHEW), Washington, DC.
Included is a comprehensive review of the approaches commonly recommended for controlling the sources of particulate air pollution. Not all possible combinations of control techniques that might bring about more stringent control of each individual source are reviewed. The many agricultural, commercial, domestic, industrial, and municipal…
NASA Astrophysics Data System (ADS)
Alfred, Q. Md.; Chakravarty, T.; Singh, G.; Sanyal, S. K.
2008-03-01
In this article, a simple and efficient technique for the wideband shaped beam and sector beam pattern generation with their adaptive interference rejection is proposed. A microcontroller controlled and time delay based beam forming network for simultaneously generating multiple beams, shaped beam and sector beam is conceptualized. The antenna patterns considered here is formed by linear array of isotropic elements grouped as subarray. The shaped and sector beam synthesis procedure is practically simplified by simultaneous adding the constituents beams from the subarrays, was theoretically established by Woodward and Lawson (Proc. IEE. 95(1):362 370, 1948). Apart from the shaped beam generation a technique for adaptive interference rejection in shaped patterns using combination of time delay and phase shifter is discussed. This topic promises good prospect for wideband pattern generation and interference rejection.
Radar Range Sidelobe Reduction Using Adaptive Pulse Compression Technique
NASA Technical Reports Server (NTRS)
Li, Lihua; Coon, Michael; McLinden, Matthew
2013-01-01
Pulse compression has been widely used in radars so that low-power, long RF pulses can be transmitted, rather than a highpower short pulse. Pulse compression radars offer a number of advantages over high-power short pulsed radars, such as no need of high-power RF circuitry, no need of high-voltage electronics, compact size and light weight, better range resolution, and better reliability. However, range sidelobe associated with pulse compression has prevented the use of this technique on spaceborne radars since surface returns detected by range sidelobes may mask the returns from a nearby weak cloud or precipitation particles. Research on adaptive pulse compression was carried out utilizing a field-programmable gate array (FPGA) waveform generation board and a radar transceiver simulator. The results have shown significant improvements in pulse compression sidelobe performance. Microwave and millimeter-wave radars present many technological challenges for Earth and planetary science applications. The traditional tube-based radars use high-voltage power supply/modulators and high-power RF transmitters; therefore, these radars usually have large size, heavy weight, and reliability issues for space and airborne platforms. Pulse compression technology has provided a path toward meeting many of these radar challenges. Recent advances in digital waveform generation, digital receivers, and solid-state power amplifiers have opened a new era for applying pulse compression to the development of compact and high-performance airborne and spaceborne remote sensing radars. The primary objective of this innovative effort is to develop and test a new pulse compression technique to achieve ultrarange sidelobes so that this technique can be applied to spaceborne, airborne, and ground-based remote sensing radars to meet future science requirements. By using digital waveform generation, digital receiver, and solid-state power amplifier technologies, this improved pulse compression
Adaptive Control Allocation in the Presence of Actuator Failures
NASA Technical Reports Server (NTRS)
Liu, Yu; Crespo, Luis G.
2010-01-01
In this paper, a novel adaptive control allocation framework is proposed. In the adaptive control allocation structure, cooperative actuators are grouped and treated as an equivalent control effector. A state feedback adaptive control signal is designed for the equivalent effector and allocated to the member actuators adaptively. Two adaptive control allocation algorithms are proposed, which guarantee closed-loop stability and asymptotic state tracking in the presence of uncertain loss of effectiveness and constant-magnitude actuator failures. The proposed algorithms can be shown to reduce the controller complexity with proper grouping of the actuators. The proposed adaptive control allocation schemes are applied to two linearized aircraft models, and the simulation results demonstrate the performance of the proposed algorithms.
Adaptive Power Control for Space Communications
NASA Technical Reports Server (NTRS)
Thompson, Willie L., II; Israel, David J.
2008-01-01
This paper investigates the implementation of power control techniques for crosslinks communications during a rendezvous scenario of the Crew Exploration Vehicle (CEV) and the Lunar Surface Access Module (LSAM). During the rendezvous, NASA requires that the CEV supports two communication links: space-to-ground and crosslink simultaneously. The crosslink will generate excess interference to the space-to-ground link as the distances between the two vehicles decreases, if the output power is fixed and optimized for the worst-case link analysis at the maximum distance range. As a result, power control is required to maintain the optimal power level for the crosslink without interfering with the space-to-ground link. A proof-of-concept will be described and implemented with Goddard Space Flight Center (GSFC) Communications, Standard, and Technology Lab (CSTL).
Adaptive hybrid intelligent control for uncertain nonlinear dynamical systems.
Wang, Chi-Hsu; Lin, Tsung-Chih; Lee, Tsu-Tian; Liu, Han-Leih
2002-01-01
A new hybrid direct/indirect adaptive fuzzy neural network (FNN) controller with a state observer and supervisory controller for a class of uncertain nonlinear dynamic systems is developed in this paper. The hybrid adaptive FNN controller, the free parameters of which can be tuned on-line by an observer-based output feedback control law and adaptive law, is a combination of direct and indirect adaptive FNN controllers. A weighting factor, which can be adjusted by the tradeoff between plant knowledge and control knowledge, is adopted to sum together the control efforts from indirect adaptive FNN controller and direct adaptive FNN controller. Furthermore, a supervisory controller is appended into the FNN controller to force the state to be within the constraint set. Therefore, if the FNN controller cannot maintain the stability, the supervisory controller starts working to guarantee stability. On the other hand, if the FNN controller works well, the supervisory controller will be deactivated. The overall adaptive scheme guarantees the global stability of the resulting closed-loop system in the sense that all signals involved are uniformly bounded. Two nonlinear systems, namely, inverted pendulum system and Chua's (1989) chaotic circuit, are fully illustrated to track sinusoidal signals. The resulting hybrid direct/indirect FNN control systems show better performances, i.e., tracking error and control effort can be made smaller and it is more flexible during the design process.
Adaptive neural-network-based control of robotic manipulators
NASA Astrophysics Data System (ADS)
Mitchell, Kyle; Dagli, Cihan H.
2001-03-01
Robotic manipulators are beginning to be seen doing more tasks in our environment. Classical controls engineers have long known how to control these automated hands. They have failed to address the continued control of these devices after parts of the control infrastructure have failed. A failed motor or actuator in a manipulator decreases its range of motion and changes its control structure. Most failures however do not render the manipulator useless. This paper will discuss the use of a neural network to actively update the controller design as portions of a manipulator fail. Actuators can become stuck and later free themselves. Motors can lose range of motion or stop completely. Connecting arms can become bent or entangled. Results will be presented on the ability to maintain functionality through a variety of failure modes. The neural network is constructed and tested in a Matlab environment. This allows testing of several neural network techniques such as back propagation and temporal processing without the need to continually reconfigure target hardware. In this paper we will demonstrate that a modified ensemble of back propagation experts can be trained to control a robotic manipulator without the need to calculate the inverse kinematics equations. Further individual experts can be retrained online to allow for adaptive control through changing dynamics. This allows for manipulators to remain in service through failures in the manipulator infrastructure without the need for human intervention into control equations.
Algorithms for adaptive control of two-arm flexible manipulators under uncertainty
NASA Technical Reports Server (NTRS)
Skowronski, J. M.
1987-01-01
A nonlinear extension of model reference adaptive control (MRAC) technique is used to guide a double arm nonlinearizable robot manipulator with flexible links, driven by actuators collocated with joints subject to uncertain payload and inertia. The objective is to track a given simple linear and rigid but compatible dynamical model in real, possible stipulated time and within stipulated degree of accuracy of convergence while avoiding collision of the arms. The objective is attained by a specified signal adaptive feedback controller and by adaptive laws, both given in closed form. A case of 4 DOF manipulator illustrates the technique.
Modular and Adaptive Control of Sound Processing
NASA Astrophysics Data System (ADS)
van Nort, Douglas
parameters. In this view, desired gestural dynamics and sonic response are achieved through modular construction of mapping layers that are themselves subject to parametric control. Complementing this view of the design process, the work concludes with an approach in which the creation of gestural control/sound dynamics are considered in the low-level of the underlying sound model. The result is an adaptive system that is specialized to noise-based transformations that are particularly relevant in an electroacoustic music context. Taken together, these different approaches to design and evaluation result in a unified framework for creation of an instrumental system. The key point is that this framework addresses the influence that mapping structure and control dynamics have on the perceived feel of the instrument. Each of the results illustrate this using either top-down or bottom-up approaches that consider musical control context, thereby pointing to the greater potential for refined sonic articulation that can be had by combining them in the design process.
DEVS-based intelligent control of space adapted fluid mixing
NASA Technical Reports Server (NTRS)
Chi, Sung-Do; Zeigler, Bernard P.
1990-01-01
The development is described of event-based intelligent control system for a space-adapted mixing process by employing the DEVS (Discrete Event System Specification) formalism. In this control paradigm, the controller expects to receive confirming sensor responses to its control commands within definite time windows determined by its DEVS model of the system under control. The DEVS-based intelligent control paradigm was applied in a space-adapted mixing system capable of supporting the laboratory automation aboard a Space Station.
Least-Squares Adaptive Control Using Chebyshev Orthogonal Polynomials
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Burken, John; Ishihara, Abraham
2011-01-01
This paper presents a new adaptive control approach using Chebyshev orthogonal polynomials as basis functions in a least-squares functional approximation. The use of orthogonal basis functions improves the function approximation significantly and enables better convergence of parameter estimates. Flight control simulations demonstrate the effectiveness of the proposed adaptive control approach.
Neural control of chronic stress adaptation
Herman, James P.
2013-01-01
Stress initiates adaptive processes that allow the organism to physiologically cope with prolonged or intermittent exposure to real or perceived threats. A major component of this response is repeated activation of glucocorticoid secretion by the hypothalamo-pituitary-adrenocortical (HPA) axis, which promotes redistribution of energy in a wide range of organ systems, including the brain. Prolonged or cumulative increases in glucocorticoid secretion can reduce benefits afforded by enhanced stress reactivity and eventually become maladaptive. The long-term impact of stress is kept in check by the process of habituation, which reduces HPA axis responses upon repeated exposure to homotypic stressors and likely limits deleterious actions of prolonged glucocorticoid secretion. Habituation is regulated by limbic stress-regulatory sites, and is at least in part glucocorticoid feedback-dependent. Chronic stress also sensitizes reactivity to new stimuli. While sensitization may be important in maintaining response flexibility in response to new threats, it may also add to the cumulative impact of glucocorticoids on the brain and body. Finally, unpredictable or severe stress exposure may cause long-term and lasting dysregulation of the HPA axis, likely due to altered limbic control of stress effector pathways. Stress-related disorders, such as depression and PTSD, are accompanied by glucocorticoid imbalances and structural/ functional alterations in limbic circuits that resemble those seen following chronic stress, suggesting that inappropriate processing of stressful information may be part of the pathological process. PMID:23964212
Control of Flow Separation Using Adaptive Airfoils
NASA Technical Reports Server (NTRS)
Chandrasekhara, M. S.; Wilder, M. C.; Carr, L. W.; Davis, Sanford S. (Technical Monitor)
1996-01-01
A novel way of controlling flow separation is reported. The approach involves using an adaptive airfoil geometry that changes its leading edge shape to adjust to the instantaneous flow at high angles of attack such that the flow over it remains attached. In particular, a baseline NACA 0012 airfoil, whose leading edge curvature could be changed dynamically by 400% was tested under quasi-steady compressible flow conditions. A mechanical drive system was used to produce a rounded leading edge to reduce the strong local flow acceleration around its nose and thus reduce the strong adverse pressure gradient that follows such a rapid acceleration. Tests in steady flow showed that at M = 0.3, the flow separated at about 14 deg. angle of attack for the NACA 0012 profile but could be kept attached up to an angle of about 18 deg by changing the nose curvature. No significant hysteresis effects were observed; the flow could be made to reattach from its separated state at high angles by changing the leading edge curvature.
Control of Flow Separation Using Adaptive Airfoils
NASA Technical Reports Server (NTRS)
Chandrasekhara, M. S.; Wilder, M. C.; Carr, L. W.; Davis, Sanford S. (Technical Monitor)
1996-01-01
A novel way of controlling flow separation is reported. The approach involves using an adaptive airfoil geometry that changes its leading edge shape to adjust to the instantaneous flow at high angles of attack such that the flow over it remains attached. In particular, a baseline NACA 0012 airfoil, whose leading edge curvature could be changed dynamically by 400% was tested under quasi-steady compressible flow conditions. A mechanical drive system was used to produce a rounded leading edge to reduce the strong local flow acceleration around its nose and thus reduce the strong adverse pressure gradient that follows such a rapid acceleration. Tests in steady flow showed that at M = 0.3, the flow separated at about 14 deg. angle of attack for the NACA 0012 profile but could be kept attached up to an angle of about 18 deg by changing the nose curvature. No significant hysteresis effects were observed; the flow could be made to reattach from its separated state at high angles by changing the leading edge curvature. Interestingly, the flow over a nearly semicircular nosed airfoil was separated even at low angles.
Adaptive robust controller based on integral sliding mode concept
NASA Astrophysics Data System (ADS)
Taleb, M.; Plestan, F.
2016-09-01
This paper proposes, for a class of uncertain nonlinear systems, an adaptive controller based on adaptive second-order sliding mode control and integral sliding mode control concepts. The adaptation strategy solves the problem of gain tuning and has the advantage of chattering reduction. Moreover, limited information about perturbation and uncertainties has to be known. The control is composed of two parts: an adaptive one whose objective is to reject the perturbation and system uncertainties, whereas the second one is chosen such as the nominal part of the system is stabilised in zero. To illustrate the effectiveness of the proposed approach, an application on an academic example is shown with simulation results.
Synthetic consciousness: the distributed adaptive control perspective.
Verschure, Paul F M J
2016-08-19
Understanding the nature of consciousness is one of the grand outstanding scientific challenges. The fundamental methodological problem is how phenomenal first person experience can be accounted for in a third person verifiable form, while the conceptual challenge is to both define its function and physical realization. The distributed adaptive control theory of consciousness (DACtoc) proposes answers to these three challenges. The methodological challenge is answered relative to the hard problem and DACtoc proposes that it can be addressed using a convergent synthetic methodology using the analysis of synthetic biologically grounded agents, or quale parsing. DACtoc hypothesizes that consciousness in both its primary and secondary forms serves the ability to deal with the hidden states of the world and emerged during the Cambrian period, affording stable multi-agent environments to emerge. The process of consciousness is an autonomous virtualization memory, which serializes and unifies the parallel and subconscious simulations of the hidden states of the world that are largely due to other agents and the self with the objective to extract norms. These norms are in turn projected as value onto the parallel simulation and control systems that are driving action. This functional hypothesis is mapped onto the brainstem, midbrain and the thalamo-cortical and cortico-cortical systems and analysed with respect to our understanding of deficits of consciousness. Subsequently, some of the implications and predictions of DACtoc are outlined, in particular, the prediction that normative bootstrapping of conscious agents is predicated on an intentionality prior. In the view advanced here, human consciousness constitutes the ultimate evolutionary transition by allowing agents to become autonomous with respect to their evolutionary priors leading to a post-biological Anthropocene.This article is part of the themed issue 'The major synthetic evolutionary transitions'. PMID
Adaptive control system for large annular momentum control device
NASA Technical Reports Server (NTRS)
Montgomery, R. C.; Johnson, C. R., Jr.
1981-01-01
A dual momentum vector control concept, consisting of two counterrotating rings (each designated as an annular momentum control device), was studied for pointing and slewing control of large spacecraft. In a disturbance free space environment, the concept provides for three axis pointing and slewing capabilities while requiring no expendables. The approach utilizes two large diameter counterrotating rings or wheels suspended magnetically in many race supports distributed around the antenna structure. When the magnets are energized, attracting the two wheels, the resulting gyroscopic torque produces a rate along the appropriate axis. Roll control is provided by alternating the radiative rotational velocity of the two wheels. Wheels with diameters of 500 to 800 m and with sufficient momentum storage capability require rims only a few centimeters thick. The wheels are extremely flexible; therefore, it is necessary to account for the distributed nature of the rings in the design of the bearing controllers. Also, ring behavior is unpredictably sensitive to ring temperature, spin rate, manufacturing imperfections, and other variables. An adaptive control system designed to handle these problems is described.
Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems
NASA Astrophysics Data System (ADS)
Williams, Rube B.
2004-02-01
Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.
Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems
Williams, Rube B.
2004-02-04
Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.
The beauty of simple adaptive control and new developments in nonlinear systems stability analysis
NASA Astrophysics Data System (ADS)
Barkana, Itzhak
2014-12-01
Although various adaptive control techniques have been around for a long time and in spite of successful proofs of stability and even successful demonstrations of performance, the eventual use of adaptive control methodologies in practical real world systems has met a rather strong resistance from practitioners and has remained limited. Apparently, it is difficult to guarantee or even understand the conditions that can guarantee stable operations of adaptive control systems under realistic operational environments. Besides, it is difficult to measure the robustness of adaptive control system stability and allow it to be compared with the common and widely used measure of phase margin and gain margin that is utilized by present, mainly LTI, controllers. Furthermore, customary stability analysis methods seem to imply that the mere stability of adaptive systems may be adversely affected by any tiny deviation from the pretty idealistic and assumably required stability conditions. This paper first revisits the fundamental qualities of customary direct adaptive control methodologies, in particular the classical Model Reference Adaptive Control, and shows that some of their basic drawbacks have been addressed and eliminated within the so-called Simple Adaptive Control methodology. Moreover, recent developments in the stability analysis methods of nonlinear systems show that prior conditions that were customarily assumed to be needed for stability are only apparent and can be eliminated. As a result, sufficient conditions that guarantee stability are clearly stated and lead to similarly clear proofs of stability. As many real-world applications show, once robust stability of the adaptive systems can be guaranteed, the added value of using Add-On Adaptive Control along with classical Control design techniques is pushing the desired performance beyond any previous limits.
The beauty of simple adaptive control and new developments in nonlinear systems stability analysis
Barkana, Itzhak
2014-12-10
Although various adaptive control techniques have been around for a long time and in spite of successful proofs of stability and even successful demonstrations of performance, the eventual use of adaptive control methodologies in practical real world systems has met a rather strong resistance from practitioners and has remained limited. Apparently, it is difficult to guarantee or even understand the conditions that can guarantee stable operations of adaptive control systems under realistic operational environments. Besides, it is difficult to measure the robustness of adaptive control system stability and allow it to be compared with the common and widely used measure of phase margin and gain margin that is utilized by present, mainly LTI, controllers. Furthermore, customary stability analysis methods seem to imply that the mere stability of adaptive systems may be adversely affected by any tiny deviation from the pretty idealistic and assumably required stability conditions. This paper first revisits the fundamental qualities of customary direct adaptive control methodologies, in particular the classical Model Reference Adaptive Control, and shows that some of their basic drawbacks have been addressed and eliminated within the so-called Simple Adaptive Control methodology. Moreover, recent developments in the stability analysis methods of nonlinear systems show that prior conditions that were customarily assumed to be needed for stability are only apparent and can be eliminated. As a result, sufficient conditions that guarantee stability are clearly stated and lead to similarly clear proofs of stability. As many real-world applications show, once robust stability of the adaptive systems can be guaranteed, the added value of using Add-On Adaptive Control along with classical Control design techniques is pushing the desired performance beyond any previous limits.
Adaptive Quality of Transmission Control in Elastic Optical Network
NASA Astrophysics Data System (ADS)
Cai, Xinran
Optical fiber communication is becoming increasingly important due to the burgeoning demand in the internet capacity. However, traditional wavelength division multiplexing (WDM) technique fails to address such demand because of its inefficient spectral utilization. As a result, elastic optical networking (EON) has been under extensive investigation recently. Such network allows sub-wavelength and super-wavelength channel accommodation, and mitigates the stranded bandwidth problem in the WDM network. In addition, elastic optical network is also able to dynamically allocate the spectral resources of the network based on channel conditions and impairments, and adaptively control the quality of transmission of a channel. This application requires two aspects to be investigated: an efficient optical performance monitoring scheme and networking control and management algorithms to reconfigure the network in a dynamic fashion. This thesis focuses on the two aspects discussed above about adaptive QoT control. We demonstrated a supervisory channel method for optical signal to noise ratio (OSNR) and chromatic dispersion (CD) monitoring. In addition, our proof-of-principle testbed experiments show successful impairment aware reconfiguration of the network with modulation format switching (MFS) only and MFS combined with lightpath rerouting (LR) for hundred-GHz QPSK superchannels undergoing time-varying OSNR impairment.
Active load control techniques for wind turbines.
van Dam, C.P.; Berg, Dale E.; Johnson, Scott J.
2008-07-01
This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.
Experimental investigation of adaptive control of a parallel manipulator
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Antrazi, Sami S.
1992-01-01
The implementation of a joint-space adaptive control scheme used to control non-compliant motion of a Stewart Platform-based Manipulator (SPBM) is presented. The SPBM is used in a facility called the Hardware Real-Time Emulator (HRTE) developed at Goddard Space Flight Center to emulate space operations. The SPBM is comprised of two platforms and six linear actuators driven by DC motors, and possesses six degrees of freedom. The report briefly reviews the development of the adaptive control scheme which is composed of proportional-derivative (PD) controllers whose gains are adjusted by an adaptation law driven by the errors between the desired and actual trajectories of the SPBM actuator lengths. The derivation of the adaptation law is based on the concept of model reference adaptive control (MRAC) and Lyapunov direct method under the assumption that SPBM motion is slow as compared to the controller adaptation rate. An experimental study is conducted to evaluate the performance of the adaptive control scheme implemented to control the SPBM to track a vertical and circular paths under step changes in payload. Experimental results show that the adaptive control scheme provides superior tracking capability as compared to fixed-gain controllers.
Adaptive Force Control For Compliant Motion Of A Robot
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1995-01-01
Two adaptive control schemes offer robust solutions to problem of stable control of forces of contact between robotic manipulator and objects in its environment. They are called "adaptive admittance control" and "adaptive compliance control." Both schemes involve use of force-and torque sensors that indicate contact forces. These schemes performed well when tested in computational simulations in which they were used to control seven-degree-of-freedom robot arm in executing contact tasks. Choice between admittance or compliance control is dictated by requirements of the application at hand.
An adaptive identification and control scheme for large space structures
NASA Technical Reports Server (NTRS)
Carroll, J. V.
1988-01-01
A unified identification and control scheme capable of achieving space at form performance objectives under nominal or failure conditions is described. Preliminary results are also presented, showing that the methodology offers much promise for effective robust control of large space structures. The control method is a multivariable, adaptive, output predictive controller called Model Predictive Control (MPC). MPC uses a state space model and input reference trajectories of set or tracking points to adaptively generate optimum commands. For a fixed model, MPC processes commands with great efficiency, and is also highly robust. A key feature of MPC is its ability to control either nonminimum phase or open loop unstable systems. As an output controller, MPC does not explicitly require full state feedback, as do most multivariable (e.g., Linear Quadratic) methods. Its features are very useful in LSS operations, as they allow non-collocated actuators and sensors. The identification scheme is based on canonical variate analysis (CVA) of input and output data. The CVA technique is particularly suited for the measurement and identification of structural dynamic processes - that is, unsteady transient or dynamically interacting processes such as between aerodynamics and structural deformation - from short, noisy data. CVA is structured so that the identification can be done in real or near real time, using computationally stable algorithms. Modeling LSS dynamics in 1-g laboratories has always been a major impediment not only to understanding their behavior in orbit, but also to controlling it. In cases where the theoretical model is not confirmed, current methods provide few clues concerning additional dynamical relationships that are not included in the theoretical models. CVA needs no a priori model data, or structure; all statistically significant dynamical states are determined using natural, entropy-based methods. Heretofore, a major limitation in applying adaptive
Adaptive robust control of the EBR-II reactor
Power, M.A.; Edwards, R.M.
1996-05-01
Simulation results are presented for an adaptive H{sub {infinity}} controller, a fixed H{sub {infinity}} controller, and a classical controller. The controllers are applied to a simulation of the Experimental Breeder Reactor II primary system. The controllers are tested for the best robustness and performance by step-changing the demanded reactor power and by varying the combined uncertainty in initial reactor power and control rod worth. The adaptive H{sub {infinity}} controller shows the fastest settling time, fastest rise time and smallest peak overshoot when compared to the fixed H{sub {infinity}} and classical controllers. This makes for a superior and more robust controller.
Digital adaptive controllers for VTOL vehicles. Volume 2: Software documentation
NASA Technical Reports Server (NTRS)
Hartmann, G. L.; Stein, G.; Pratt, S. G.
1979-01-01
The VTOL approach and landing test (VALT) adaptive software is documented. Two self-adaptive algorithms, one based on an implicit model reference design and the other on an explicit parameter estimation technique were evaluated. The organization of the software, user options, and a nominal set of input data are presented along with a flow chart and program listing of each algorithm.
An adaptive control scheme for coordinated multimanipulator systems
Jonghann Jean; Lichen Fu . Dept. of Electrical Engineering)
1993-04-01
The problem of adaptive coordinated control of multiple robot arms transporting an object is addressed. A stable adaptive control scheme for both trajectory tracking and internal force control is presented. Detailed analyses on tracking properties of the object position, velocity and the internal forces exerted on the object are given. It is shown that this control scheme can achieve satisfactory tracking performance without using the measurement of contact forces and their derivatives. It can be shown that this scheme can be realized by decentralized implementation to reduce the computational burden. Moreover, some efficient adaptive control strategies can be incorporated to reduce the computational complexity.
MTPA control of mechanical sensorless IPMSM based on adaptive nonlinear control.
Najjar-Khodabakhsh, Abbas; Soltani, Jafar
2016-03-01
In this paper, an adaptive nonlinear control scheme has been proposed for implementing maximum torque per ampere (MTPA) control strategy corresponding to interior permanent magnet synchronous motor (IPMSM) drive. This control scheme is developed in the rotor d-q axis reference frame using adaptive input-output state feedback linearization (AIOFL) method. The drive system control stability is supported by Lyapunov theory. The motor inductances are online estimated by an estimation law obtained by AIOFL. The estimation errors of these parameters are proved to be asymptotically converged to zero. Based on minimizing the motor current amplitude, the MTPA control strategy is performed by using the nonlinear optimization technique while considering the online reference torque. The motor reference torque is generated by a conventional rotor speed PI controller. By performing MTPA control strategy, the generated online motor d-q reference currents were used in AIOFL controller to obtain the SV-PWM reference voltages and the online estimation of the motor d-q inductances. In addition, the stator resistance is online estimated using a conventional PI controller. Moreover, the rotor position is detected using the online estimation of the stator flux and online estimation of the motor q-axis inductance. Simulation and experimental results obtained prove the effectiveness and the capability of the proposed control method. PMID:26830002
NASA Technical Reports Server (NTRS)
Balas, Mark; Frost, Susan
2012-01-01
Flexible structures containing a large number of modes can benefit from adaptive control techniques which are well suited to applications that have unknown modeling parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend our adaptive control theory to accommodate troublesome modal subsystems of a plant that might inhibit the adaptive controller. In some cases the plant does not satisfy the requirements of Almost Strict Positive Realness. Instead, there maybe be a modal subsystem that inhibits this property. This section will present new results for our adaptive control theory. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for the troublesome modal subsystem, or the Q modes. Here we present the theory for adaptive controllers modified by RMFs, with attention to the issue of disturbances propagating through the Q modes. We apply the theoretical results to a flexible structure example to illustrate the behavior with and without the residual mode filter.
Closing the Certification Gaps in Adaptive Flight Control Software
NASA Technical Reports Server (NTRS)
Jacklin, Stephen A.
2008-01-01
Over the last five decades, extensive research has been performed to design and develop adaptive control systems for aerospace systems and other applications where the capability to change controller behavior at different operating conditions is highly desirable. Although adaptive flight control has been partially implemented through the use of gain-scheduled control, truly adaptive control systems using learning algorithms and on-line system identification methods have not seen commercial deployment. The reason is that the certification process for adaptive flight control software for use in national air space has not yet been decided. The purpose of this paper is to examine the gaps between the state-of-the-art methodologies used to certify conventional (i.e., non-adaptive) flight control system software and what will likely to be needed to satisfy FAA airworthiness requirements. These gaps include the lack of a certification plan or process guide, the need to develop verification and validation tools and methodologies to analyze adaptive controller stability and convergence, as well as the development of metrics to evaluate adaptive controller performance at off-nominal flight conditions. This paper presents the major certification gap areas, a description of the current state of the verification methodologies, and what further research efforts will likely be needed to close the gaps remaining in current certification practices. It is envisioned that closing the gap will require certain advances in simulation methods, comprehensive methods to determine learning algorithm stability and convergence rates, the development of performance metrics for adaptive controllers, the application of formal software assurance methods, the application of on-line software monitoring tools for adaptive controller health assessment, and the development of a certification case for adaptive system safety of flight.
Guo, Qing; Sun, Ping; Yin, Jing-Min; Yu, Tian; Jiang, Dan
2016-05-01
Some unknown parameter estimation of electro-hydraulic system (EHS) should be considered in hydraulic controller design due to many parameter uncertainties in practice. In this study, a parametric adaptive backstepping control method is proposed to improve the dynamic behavior of EHS under parametric uncertainties and unknown disturbance (i.e., hydraulic parameters and external load). The unknown parameters of EHS model are estimated by the parametric adaptive estimation law. Then the recursive backstepping controller is designed by Lyapunov technique to realize the displacement control of EHS. To avoid explosion of virtual control in traditional backstepping, a decayed memory filter is presented to re-estimate the virtual control and the dynamic external load. The effectiveness of the proposed controller has been demonstrated by comparison with the controller without adaptive and filter estimation. The comparative experimental results in critical working conditions indicate the proposed approach can achieve better dynamic performance on the motion control of Two-DOF robotic arm. PMID:26920086
Guo, Qing; Sun, Ping; Yin, Jing-Min; Yu, Tian; Jiang, Dan
2016-05-01
Some unknown parameter estimation of electro-hydraulic system (EHS) should be considered in hydraulic controller design due to many parameter uncertainties in practice. In this study, a parametric adaptive backstepping control method is proposed to improve the dynamic behavior of EHS under parametric uncertainties and unknown disturbance (i.e., hydraulic parameters and external load). The unknown parameters of EHS model are estimated by the parametric adaptive estimation law. Then the recursive backstepping controller is designed by Lyapunov technique to realize the displacement control of EHS. To avoid explosion of virtual control in traditional backstepping, a decayed memory filter is presented to re-estimate the virtual control and the dynamic external load. The effectiveness of the proposed controller has been demonstrated by comparison with the controller without adaptive and filter estimation. The comparative experimental results in critical working conditions indicate the proposed approach can achieve better dynamic performance on the motion control of Two-DOF robotic arm.
Adaptive jitter control for tracker line of sight stabilization
NASA Astrophysics Data System (ADS)
Gibson, Steve; Tsao, Tsu-Chin; Herrick, Dan; Beairsto, Christopher; Grimes, Ronnie; Harper, Todd; Radtke, Jeff; Roybal, Benito; Spray, Jay; Squires, Stephen; Tellez, Dave; Thurston, Michael
2010-08-01
A field test experiment on a range tracking telescope at the U. S. Army's White Sands Missile Range is exploring the use of recently developed adaptive control methods to minimize track loop jitter. Gimbal and platform vibration are the main sources of jitter in the experiments, although atmospheric turbulence also is a factor. In initial experiments, the adaptive controller reduced the track loop jitter significantly in frequency ranges beyond the bandwidth of the existing track loop. This paper presents some of the initial experimental results along with analysis of the performance of the adaptive control loop. The paper also describes the adaptive control scheme, its implementation on the WSMR telescope and the system identification required for adaptive control.
Adaptive sliding mode control for a class of chaotic systems
Farid, R.; Ibrahim, A.; Zalam, B.
2015-03-30
Chaos control here means to design a controller that is able to mitigating or eliminating the chaos behavior of nonlinear systems that experiencing such phenomenon. In this paper, an Adaptive Sliding Mode Controller (ASMC) is presented based on Lyapunov stability theory. The well known Chua's circuit is chosen to be our case study in this paper. The study shows the effectiveness of the proposed adaptive sliding mode controller.
NASA Astrophysics Data System (ADS)
Phu, Do Xuan; Shah, Kruti; Choi, Seung-Bok
2014-06-01
This paper presents a new adaptive fuzzy controller and its implementation for the damping force control of a magnetorheological (MR) fluid damper in order to validate the effectiveness of the control performance. An interval type 2 fuzzy model is built, and then combined with modified adaptive control to achieve the desired damping force. In the formulation of the new adaptive controller, an enhanced iterative algorithm is integrated with the fuzzy model to decrease the time of calculation (D Wu 2013 IEEE Trans. Fuzzy Syst. 21 80-99) and the control algorithm is synthesized based on the {{H}^{\\infty }} tracking technique. In addition, for the verification of good control performance of the proposed controller, a cylindrical MR damper which can be applied to the vibration control of a washing machine is designed and manufactured. For the operating fluid, a recently developed plate-like particle-based MR fluid is used instead of a conventional MR fluid featuring spherical particles. To highlight the control performance of the proposed controller, two existing adaptive fuzzy control algorithms proposed by other researchers are adopted and altered for a comparative study. It is demonstrated from both simulation and experiment that the proposed new adaptive controller shows better performance of damping force control in terms of response time and tracking accuracy than the existing approaches.
Systems and Methods for Derivative-Free Adaptive Control
NASA Technical Reports Server (NTRS)
Yucelen, Tansel (Inventor); Kim, Kilsoo (Inventor); Calise, Anthony J. (Inventor)
2015-01-01
An adaptive control system is disclosed. The control system can control uncertain dynamic systems. The control system can employ one or more derivative-free adaptive control architectures. The control system can further employ one or more derivative-free weight update laws. The derivative-free weight update laws can comprise a time-varying estimate of an ideal vector of weights. The control system of the present invention can therefore quickly stabilize systems that undergo sudden changes in dynamics, caused by, for example, sudden changes in weight. Embodiments of the present invention can also provide a less complex control system than existing adaptive control systems. The control system can control aircraft and other dynamic systems, such as, for example, those with non-minimum phase dynamics.
NASA Technical Reports Server (NTRS)
Kefauver, W. Neill; Carpenter, Bernie F.
1994-01-01
Creation of an antenna system that could autonomously adapt contours of reflecting surfaces to compensate for structural loads induced by a variable environment would maximize performance of space-based communication systems. Design of such a system requires the comprehensive development and integration of advanced actuator, sensor, and control technologies. As an initial step in this process, a test has been performed to assess the use of a shape memory alloy as a potential actuation technique. For this test, an existing, offset, cassegrain antenna system was retrofit with a subreflector equipped with shape memory alloy actuators for surface contour control. The impacts that the actuators had on both the subreflector contour and the antenna system patterns were measured. The results of this study indicate the potential for using shape memory alloy actuation techniques to adaptively control antenna performance; both variations in gain and beam steering capabilities were demonstrated. Future development effort is required to evolve this potential into a useful technology for satellite applications.
Internal models in sensorimotor integration: perspectives from adaptive control theory.
Tin, Chung; Poon, Chi-Sang
2005-09-01
Internal models and adaptive controls are empirical and mathematical paradigms that have evolved separately to describe learning control processes in brain systems and engineering systems, respectively. This paper presents a comprehensive appraisal of the correlation between these paradigms with a view to forging a unified theoretical framework that may benefit both disciplines. It is suggested that the classic equilibrium-point theory of impedance control of arm movement is analogous to continuous gain-scheduling or high-gain adaptive control within or across movement trials, respectively, and that the recently proposed inverse internal model is akin to adaptive sliding control originally for robotic manipulator applications. Modular internal models' architecture for multiple motor tasks is a form of multi-model adaptive control. Stochastic methods, such as generalized predictive control, reinforcement learning, Bayesian learning and Hebbian feedback covariance learning, are reviewed and their possible relevance to motor control is discussed. Possible applicability of a Luenberger observer and an extended Kalman filter to state estimation problems-such as sensorimotor prediction or the resolution of vestibular sensory ambiguity-is also discussed. The important role played by vestibular system identification in postural control suggests an indirect adaptive control scheme whereby system states or parameters are explicitly estimated prior to the implementation of control. This interdisciplinary framework should facilitate the experimental elucidation of the mechanisms of internal models in sensorimotor systems and the reverse engineering of such neural mechanisms into novel brain-inspired adaptive control paradigms in future.
Reinforcement learning output feedback NN control using deterministic learning technique.
Xu, Bin; Yang, Chenguang; Shi, Zhongke
2014-03-01
In this brief, a novel adaptive-critic-based neural network (NN) controller is investigated for nonlinear pure-feedback systems. The controller design is based on the transformed predictor form, and the actor-critic NN control architecture includes two NNs, whereas the critic NN is used to approximate the strategic utility function, and the action NN is employed to minimize both the strategic utility function and the tracking error. A deterministic learning technique has been employed to guarantee that the partial persistent excitation condition of internal states is satisfied during tracking control to a periodic reference orbit. The uniformly ultimate boundedness of closed-loop signals is shown via Lyapunov stability analysis. Simulation results are presented to demonstrate the effectiveness of the proposed control. PMID:24807456
Reinforcement learning output feedback NN control using deterministic learning technique.
Xu, Bin; Yang, Chenguang; Shi, Zhongke
2014-03-01
In this brief, a novel adaptive-critic-based neural network (NN) controller is investigated for nonlinear pure-feedback systems. The controller design is based on the transformed predictor form, and the actor-critic NN control architecture includes two NNs, whereas the critic NN is used to approximate the strategic utility function, and the action NN is employed to minimize both the strategic utility function and the tracking error. A deterministic learning technique has been employed to guarantee that the partial persistent excitation condition of internal states is satisfied during tracking control to a periodic reference orbit. The uniformly ultimate boundedness of closed-loop signals is shown via Lyapunov stability analysis. Simulation results are presented to demonstrate the effectiveness of the proposed control.
A new approach to adaptive control of manipulators
NASA Technical Reports Server (NTRS)
Seraji, H.
1987-01-01
An approach in which the manipulator inverse is used as a feedforward controller is employed in the adaptive control of manipulators in order to achieve trajectory tracking by the joint angles. The desired trajectory is applied as an input to the feedforward controller, and the controller output is used as the driving torque for the manipulator. An adaptive algorithm obtained from MRAC theory is used to update the controller gains to cope with variations in the manipulator inverse due to changes of the operating point. An adaptive feedback controller and an auxiliary signal enhance closed-loop stability and achieve faster adaptation. Simulation results demonstrate the effectiveness of the proposed control scheme for different reference trajectories, and despite large variations in the payload.
Ultrasonic techniques for process monitoring and control.
Chien, H.-T.
1999-03-24
Ultrasonic techniques have been applied successfully to process monitoring and control for many industries, such as energy, medical, textile, oil, and material. It helps those industries in quality control, energy efficiency improving, waste reducing, and cost saving. This paper presents four ultrasonic systems, ultrasonic viscometer, on-loom, real-time ultrasonic imaging system, ultrasonic leak detection system, and ultrasonic solid concentration monitoring system, developed at Argonne National Laboratory in the past five years for various applications.
Adaptive control with variable dead-zone nonlinearities
NASA Technical Reports Server (NTRS)
Orlicki, D.; Valavani, L.; Athans, M.; Stein, G.
1984-01-01
It has been found that fixed error dead-zones as defined in the existing literature result in serious degradation of performance, due to the conservativeness which characterizes the determination of their width. In the present paper, variable width dead-zones are derived for the adaptive control of plants with unmodeled dynamics. The derivation makes use of information available about the unmodeled dynamics both a priori as well as during the adaptation process, so as to stabilize the adaptive loop and at the same time overcome the conservativeness and performance limitations of fixed-dead zone adaptive or fixed gain controllers.
Use of Adaptive Focused Acoustics™ ultrasound in controlling liposome formation.
Shen, Katherine C; Kakumanu, Srikanth; Beckett, Carl D; Laugharn, James A
2015-11-01
Many techniques for producing large unilamellar vesicles (LUVs) or small unilamellar vesicles (SUVs) have drawbacks, including exposure of sensitive biological materials to harsh organic solvents or high temperatures. Here we describe the use of controlled focused ultrasound, Adaptive Focused Acoustics™ (AFA), to make LUV or SUV at low temperature without organic solvents and at a consistent, chosen size. We studied the effects of peak incident power (PIP), cycles per burst (CPB), duty factor (DF), temperature, and lipid composition (natural or synthetic), on liposome size distribution. We found that an increase in PIP, DF, CPB, or temperature decreased liposome size. When processed under the same conditions as the natural lipid composition [Phospholipon 90 G], the synthetic lipid composition [HSPC, DSPE-PEG-2000, Chol] generally produced larger liposomes, although extending processing time reduced liposomes to similar size. In combination with AFA, these trends can help pinpoint parameter values that achieve a desired liposome size distribution.
Five Climate Control Techniques for Schools.
ERIC Educational Resources Information Center
Wilson, Maurice J.
1963-01-01
There are many reasons for air-conditioning schools and among them are--(1) the improvement of learning and teaching efficiency, (2) effective use of the educational plant for a greater part of the year, and (3) more efficient use of space through compact building design. Five climate control techniques are cited as providing optimum…
Hormesis and adaptive cellular control systems
Hormetic dose response occurs for many endpoints associated with exposures of biological organisms to environmental stressors. Cell-based U- or inverted U-shaped responses may derive from common processes involved in activation of adaptive responses required to protect cells from...
An adaptive P300-based control system
NASA Astrophysics Data System (ADS)
Jin, Jing; Allison, Brendan Z.; Sellers, Eric W.; Brunner, Clemens; Horki, Petar; Wang, Xingyu; Neuper, Christa
2011-06-01
An adaptive P300 brain-computer interface (BCI) using a 12 × 7 matrix explored new paradigms to improve bit rate and accuracy. During online use, the system adaptively selects the number of flashes to average. Five different flash patterns were tested. The 19-flash paradigm represents the typical row/column presentation (i.e. 12 columns and 7 rows). The 9- and 14-flash A and B paradigms present all items of the 12 × 7 matrix three times using either 9 or 14 flashes (instead of 19), decreasing the amount of time to present stimuli. Compared to 9-flash A, 9-flash B decreased the likelihood that neighboring items would flash when the target was not flashing, thereby reducing the interference from items adjacent to targets. 14-flash A also reduced the adjacent item interference and 14-flash B additionally eliminated successive (double) flashes of the same item. Results showed that the accuracy and bit rate of the adaptive system were higher than those of the non-adaptive system. In addition, 9- and 14-flash B produced significantly higher performance than their respective A conditions. The results also show the trend that the 14-flash B paradigm was better than the 19-flash pattern for naive users.
Multidisciplinary Techniques and Novel Aircraft Control Systems
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; Rogers, James L.; Raney, David L.
2000-01-01
The Aircraft Morphing Program at NASA Langley Research Center explores opportunities to improve airframe designs with smart technologies. Two elements of this basic research program are multidisciplinary design optimization (MDO) and advanced flow control. This paper describes examples where MDO techniques such as sensitivity analysis, automatic differentiation, and genetic algorithms contribute to the design of novel control systems. In the test case, the design and use of distributed shapechange devices to provide low-rate maneuvering capability for a tailless aircraft is considered. The ability of MDO to add value to control system development is illustrated using results from several years of research funded by the Aircraft Morphing Program.
Direct Adaptive Control of Utility-Scale Wind Turbine for Speed Regulation
Frost, S. A.; Balas, M. J.; Wright, A. D.
2009-01-01
The accurate modeling of wind turbines is an extremely challenging problem due to the tremendous complexity of the machines and the turbulent and unpredictable conditions in which they operate. Adaptive control techniques are well suited to nonlinear applications, such as wind turbines, which are difficult to accurately model and which have effects from poorly known operating environments. In this paper, we extended the direct model reference adaptive control (DMRAC) approach to track a reference point and to reject persistent disturbances. This approach was then used to design an adaptive collective pitch controller for a high-fidelity simulation of a variable-speed horizontal axis wind turbine. The objective of the adaptive pitch controller was to regulate generator speed in Region 3 and to reject step disturbances. The control objective was accomplished by collectively pitching the turbine blades. The turbine simulation models the controls advanced research turbine (CART) of the National Renewable Energy Laboratory in Golden, Colorado. The CART is a utility-scale wind turbine that has a well-developed and extensively verified simulator. This novel application of adaptive control was compared in simulations with a classical proportional integrator (PI) collective pitch controller. In the simulations, the adaptive pitch controller showed improved speed regulation in Region 3 when compared with the PI pitch controller.
Adaptive Control of a Utility-Scale Wind Turbine Operating in Region 3
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Balas, Mark J.; Wright, Alan D.
2009-01-01
Adaptive control techniques are well suited to nonlinear applications, such as wind turbines, which are difficult to accurately model and which have effects from poorly known operating environments. The turbulent and unpredictable conditions in which wind turbines operate create many challenges for their operation. In this paper, we design an adaptive collective pitch controller for a high-fidelity simulation of a utility scale, variable-speed horizontal axis wind turbine. The objective of the adaptive pitch controller in Region 3 is to regulate generator speed and reject step disturbances. The control objective is accomplished by collectively pitching the turbine blades. We use an extension of the Direct Model Reference Adaptive Control (DMRAC) approach to track a reference point and to reject persistent disturbances. The turbine simulation models the Controls Advanced Research Turbine (CART) of the National Renewable Energy Laboratory in Golden, Colorado. The CART is a utility-scale wind turbine which has a well-developed and extensively verified simulator. The adaptive collective pitch controller for Region 3 was compared in simulations with a bas celliansesical Proportional Integrator (PI) collective pitch controller. In the simulations, the adaptive pitch controller showed improved speed regulation in Region 3 when compared with the baseline PI pitch controller and it demonstrated robustness to modeling errors.
Adaptive Fuzzy Control of a Direct Drive Motor
NASA Technical Reports Server (NTRS)
Medina, E.; Kim, Y. T.; Akbaradeh-T., M. -R.
1997-01-01
This paper presents a state feedback adaptive control method for position and velocity control of a direct drive motor. The proposed control scheme allows for integrating heuristic knowledge with mathematical knowledge of a system. It performs well even when mathematical model of the system is poorly understood. The controller consists of an adaptive fuzzy controller and a supervisory controller. The supervisory controller requires only knowledge of the upper bound and lower bound of the system parameters. The fuzzy controller is based on fuzzy basis functions and states of the system. The adaptation law is derived based on the Lyapunov function which ensures that the state of the system asymptotically approaches zero. The proposed controller is applied to a direct drive motor with payload and parameter uncertainty, and the effectiveness is verified by simulation results.
Adaptive Fuzzy Control of a Direct Drive Motor: Experimental Aspects
NASA Technical Reports Server (NTRS)
Medina, E.; Akbarzadeh-T, M.-R.; Kim, Y. T.
1998-01-01
This paper presents a state feedback adaptive control method for position and velocity control of a direct drive motor. The proposed control scheme allows for integrating heuristic knowledge with mathematical knowledge of a system. It performs well even when mathematical model of the system is poorly understood. The controller consists of an adaptive fuzzy controller and a supervisory controller. The supervisory controller requires only knowledge of the upper bound and lower bound of the system parameters. The fuzzy controller is based on fuzzy basis functions and states of the system. The adaptation law is derived based on the Lyapunov function which ensures that the state of the system asymptotically approaches zero. The proposed controller is applied to a direct drive motor with payload and parameter uncertainty, and the effectiveness is experimentally verified. The real-time performance is compared with simulation results.
Xia, Kewei; Huo, Wei
2016-05-01
This paper presents a robust adaptive neural networks control strategy for spacecraft rendezvous and docking with the coupled position and attitude dynamics under input saturation. Backstepping technique is applied to design a relative attitude controller and a relative position controller, respectively. The dynamics uncertainties are approximated by radial basis function neural networks (RBFNNs). A novel switching controller consists of an adaptive neural networks controller dominating in its active region combined with an extra robust controller to avoid invalidation of the RBFNNs destroying stability of the system outside the neural active region. An auxiliary signal is introduced to compensate the input saturation with anti-windup technique, and a command filter is employed to approximate derivative of the virtual control in the backstepping procedure. Globally uniformly ultimately bounded of the relative states is proved via Lyapunov theory. Simulation example demonstrates effectiveness of the proposed control scheme.
Xia, Kewei; Huo, Wei
2016-05-01
This paper presents a robust adaptive neural networks control strategy for spacecraft rendezvous and docking with the coupled position and attitude dynamics under input saturation. Backstepping technique is applied to design a relative attitude controller and a relative position controller, respectively. The dynamics uncertainties are approximated by radial basis function neural networks (RBFNNs). A novel switching controller consists of an adaptive neural networks controller dominating in its active region combined with an extra robust controller to avoid invalidation of the RBFNNs destroying stability of the system outside the neural active region. An auxiliary signal is introduced to compensate the input saturation with anti-windup technique, and a command filter is employed to approximate derivative of the virtual control in the backstepping procedure. Globally uniformly ultimately bounded of the relative states is proved via Lyapunov theory. Simulation example demonstrates effectiveness of the proposed control scheme. PMID:26892402
NASA Astrophysics Data System (ADS)
Ma, H.; Fan, C.; Zhang, P.; Zhang, J.; Qiao, C.; Wang, H.
2012-03-01
An adaptive optics system utilizing a Shack-Hartmann wavefront sensor and a deformable mirror can successfully correct a distorted wavefront by the conjugation principle. However, if a wave propagates over such a path that scintillation is not negligible, the appearance of branch points makes least-squares reconstruction fail to estimate the wavefront effectively. An adaptive optics technique based on the stochastic parallel gradient descent (SPGD) control algorithm is an alternative approach which does not need wavefront information but optimizes the performance metric directly. Performance was evaluated by simulating a SPGD control system and conventional adaptive correction with least-squares reconstruction in the context of a laser beam projection system. We also examined the relative performance of coping with branch points by the SPGD technique through an example. All studies were carried out under the conditions of assuming the systems have noise-free measurements and infinite time control bandwidth. Results indicate that the SPGD adaptive system always performs better than the system based on the least-squares wavefront reconstruction technique in the presence of relatively serious intensity scintillations. The reason is that the SPGD adaptive system has the ability of compensating a discontinuous phase, although the phase is not detected and reconstructed.
Adaptive Remote-Sensing Techniques Implementing Swarms of Mobile Agents
Asher, R.B.; Cameron, S.M.; Loubriel, G.M.; Robinett, R.D.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.
1998-11-25
In many situations, stand-off remote-sensing and hazard-interdiction techniques over realistic operational areas are often impractical "and difficult to characterize. An alternative approach is to implement an adap- tively deployable array of sensitive agent-specific devices. Our group has been studying the collective be- havior of an autonomous, multi-agent system applied to chedbio detection and related emerging threat applications, The current physics-based models we are using coordinate a sensor array for mukivanate sig- nal optimization and coverage as re,alized by a swarm of robots or mobile vehicles. These intelligent control systems integrate'glob"ally operating decision-making systems and locally cooperative learning neural net- works to enhance re+-timp operational responses to dynarnical environments examples of which include obstacle avoidance, res~onding to prevailing wind patterns, and overcoming other natural obscurants or in- terferences. Collectively',tkensor nefirons with simple properties, interacting according to basic community rules, can accomplish complex interconnecting functions such as generalization, error correction, pattern recognition, sensor fusion, and localization. Neural nets provide a greater degree of robusmess and fault tolerance than conventional systems in that minor variations or imperfections do not impair performance. The robotic platforms would be equipped with sensor devices that perform opticaI detection of biologicais in combination with multivariate chemical analysis tools based on genetic and neural network algorithms, laser-diode LIDAR analysis, ultra-wideband short-pulsed transmitting and receiving antennas, thermal im- a:ing sensors, and optical Communication technology providing robust data throughput pathways. Mission scenarios under consideration include ground penetrating radar (GPR) for detection of underground struc- tures, airborne systems, and plume migration and mitigation. We will describe our research in
Adaptive Remote-Sensing Techniques Implementing Swarms of Mobile Agents
Cameron, S.M.; Loubriel, G.M.; Rbinett, R.D. III; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.
1999-04-01
This paper focuses on our recent work at Sandia National Laboratories toward engineering a physics-based swarm of mobile vehicles for distributed sensing applications. Our goal is to coordinate a sensor array that optimizes sensor coverage and multivariate signal analysis by implementing artificial intelligence and evolutionary computational techniques. These intelligent control systems integrate both globally operating decision-making systems and locally cooperative information-sharing modes using genetically-trained neural networks. Once trained, neural networks have the ability to enhance real-time operational responses to dynamical environments, such as obstacle avoidance, responding to prevailing wind patterns, and overcoming other natural obscurants or interferences (jammers). The swarm realizes a collective set of sensor neurons with simple properties incorporating interactions based on basic community rules (potential fields) and complex interconnecting functions based on various neural network architectures, Therefore, the swarm is capable of redundant heterogeneous measurements which furnishes an additional degree of robustness and fault tolerance not afforded by conventional systems, while accomplishing such cognitive tasks as generalization, error correction, pattern recognition, and sensor fission. The robotic platforms could be equipped with specialized sensor devices including transmit/receive dipole antennas, chemical or biological sniffers in combination with recognition analysis tools, communication modulators, and laser diodes. Our group has been studying the collective behavior of an autonomous, multi-agent system applied to emerging threat applications. To accomplish such tasks, research in the fields of robotics, sensor technology, and swarms are being conducted within an integrated program. Mission scenarios under consideration include ground penetrating impulse radar (GPR) for detection of under-ground structures, airborne systems, and plume
Design of Low Complexity Model Reference Adaptive Controllers
NASA Technical Reports Server (NTRS)
Hanson, Curt; Schaefer, Jacob; Johnson, Marcus; Nguyen, Nhan
2012-01-01
Flight research experiments have demonstrated that adaptive flight controls can be an effective technology for improving aircraft safety in the event of failures or damage. However, the nonlinear, timevarying nature of adaptive algorithms continues to challenge traditional methods for the verification and validation testing of safety-critical flight control systems. Increasingly complex adaptive control theories and designs are emerging, but only make testing challenges more difficult. A potential first step toward the acceptance of adaptive flight controllers by aircraft manufacturers, operators, and certification authorities is a very simple design that operates as an augmentation to a non-adaptive baseline controller. Three such controllers were developed as part of a National Aeronautics and Space Administration flight research experiment to determine the appropriate level of complexity required to restore acceptable handling qualities to an aircraft that has suffered failures or damage. The controllers consist of the same basic design, but incorporate incrementally-increasing levels of complexity. Derivations of the controllers and their adaptive parameter update laws are presented along with details of the controllers implementations.
Adaptive optimization and control using neural networks
Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.
1993-10-22
Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.
Song, Zhankui; Sun, Kaibiao
2014-01-01
A novel adaptive backstepping sliding mode control (ABSMC) law with fuzzy monitoring strategy is proposed for the tracking-control of a kind of nonlinear mechanical system. The proposed ABSMC scheme combining the sliding mode control and backstepping technique ensure that the occurrence of the sliding motion in finite-time and the trajectory of tracking-error converge to equilibrium point. To obtain a better perturbation rejection property, an adaptive control law is employed to compensate the lumped perturbation. Furthermore, we introduce fuzzy monitoring strategy to improve adaptive capacity and soften the control signal. The convergence and stability of the proposed control scheme are proved by using Lyaponov's method. Finally, numerical simulations demonstrate the effectiveness of the proposed control scheme.
Adaptive hybrid optimal quantum control for imprecisely characterized systems.
Egger, D J; Wilhelm, F K
2014-06-20
Optimal quantum control theory carries a huge promise for quantum technology. Its experimental application, however, is often hindered by imprecise knowledge of the input variables, the quantum system's parameters. We show how to overcome this by adaptive hybrid optimal control, using a protocol named Ad-HOC. This protocol combines open- and closed-loop optimal control by first performing a gradient search towards a near-optimal control pulse and then an experimental fidelity estimation with a gradient-free method. For typical settings in solid-state quantum information processing, adaptive hybrid optimal control enhances gate fidelities by an order of magnitude, making optimal control theory applicable and useful. PMID:24996074
Smart Rehabilitation Devices: Part II – Adaptive Motion Control
Dong, Shufang; Lu, Ke-Qian; Sun, J. Q.; Rudolph, Katherine
2008-01-01
This article presents a study of adaptive motion control of smart versatile rehabilitation devices using MR fluids. The device provides both isometric and isokinetic strength training and is reconfigurable for several human joints. Adaptive controls are developed to regulate resistance force based on the prescription of the therapist. Special consideration has been given to the human–machine interaction in the adaptive control that can modify the behavior of the device to account for strength gains or muscle fatigue of the human subject. PMID:18548131
Development of a digital adaptive optimal linear regulator flight controller
NASA Technical Reports Server (NTRS)
Berry, P.; Kaufman, H.
1975-01-01
Digital adaptive controllers have been proposed as a means for retaining uniform handling qualities over the flight envelope of a high-performance aircraft. Towards such an implementation, an explicit adaptive controller, which makes direct use of online parameter identification, has been developed and applied to the linearized lateral equations of motion for a typical fighter aircraft. The system is composed of an online weighted least-squares parameter identifier, a Kalman state filter, and a model following control law designed using optimal linear regulator theory. Simulation experiments with realistic measurement noise indicate that the proposed adaptive system has the potential for onboard implementation.
Discrete-time adaptive control of robot manipulators
NASA Technical Reports Server (NTRS)
Tarokh, M.
1989-01-01
A discrete-time model reference adaptive control scheme is developed for trajectory tracking of robot manipulators. Hyperstability theory is utilized to derive the adaptation laws for the controller gain matrices. It is shown that asymptotic trajectory tracking is achieved despite gross robot parameter variation and uncertainties. The method offers considerable design flexibility and enables the designer to improve the performance of the control system by adjusting free design parameters. The discrete-time adaptation algorithm is extremely simple and is therefore suitable for real-time implementation.
Identification and dual adaptive control of a turbojet engine
NASA Technical Reports Server (NTRS)
Merrill, W.; Leininger, G.
1979-01-01
The objective of this paper is to utilize the design methods of modern control theory to realize a dual-adaptive feedback control unit for a highly nonlinear single spool airbreathing turbojet engine. Using a very detailed and accurate simulation of the nonlinear engine as the data source, linear operating point models of unspecified dimension are identified. Feedback control laws are designed at each operating point for a prespecified set of sampling rates using sampled-data output regulator theory. The control system sampling rate is determined by an adaptive sampling algorithm in correspondence with turbojet engine performance. The result is a dual-adaptive control law that is functionally dependent upon the sampling rate selected and environmental operating conditions. Simulation transients demonstrate the utility of the dual-adaptive design to improve on-board computer utilization while maintaining acceptable levels of engine performance.
Dynamics and Adaptive Control for Stability Recovery of Damaged Aircraft
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Krishnakumar, Kalmanje; Kaneshige, John; Nespeca, Pascal
2006-01-01
This paper presents a recent study of a damaged generic transport model as part of a NASA research project to investigate adaptive control methods for stability recovery of damaged aircraft operating in off-nominal flight conditions under damage and or failures. Aerodynamic modeling of damage effects is performed using an aerodynamic code to assess changes in the stability and control derivatives of a generic transport aircraft. Certain types of damage such as damage to one of the wings or horizontal stabilizers can cause the aircraft to become asymmetric, thus resulting in a coupling between the longitudinal and lateral motions. Flight dynamics for a general asymmetric aircraft is derived to account for changes in the center of gravity that can compromise the stability of the damaged aircraft. An iterative trim analysis for the translational motion is developed to refine the trim procedure by accounting for the effects of the control surface deflection. A hybrid direct-indirect neural network, adaptive flight control is proposed as an adaptive law for stabilizing the rotational motion of the damaged aircraft. The indirect adaptation is designed to estimate the plant dynamics of the damaged aircraft in conjunction with the direct adaptation that computes the control augmentation. Two approaches are presented 1) an adaptive law derived from the Lyapunov stability theory to ensure that the signals are bounded, and 2) a recursive least-square method for parameter identification. A hardware-in-the-loop simulation is conducted and demonstrates the effectiveness of the direct neural network adaptive flight control in the stability recovery of the damaged aircraft. A preliminary simulation of the hybrid adaptive flight control has been performed and initial data have shown the effectiveness of the proposed hybrid approach. Future work will include further investigations and high-fidelity simulations of the proposed hybrid adaptive Bight control approach.
NASA Astrophysics Data System (ADS)
Ulrich, Steve
This work addresses the direct adaptive trajectory tracking control problem associated with lightweight space robotic manipulators that exhibit elastic vibrations in their joints, and which are subject to parametric uncertainties and modeling errors. Unlike existing adaptive control methodologies, the proposed flexible-joint control techniques do not require identification of unknown parameters, or mathematical models of the system to be controlled. The direct adaptive controllers developed in this work are based on the model reference adaptive control approach, and manage modeling errors and parametric uncertainties by time-varying the controller gains using new adaptation mechanisms, thereby reducing the errors between an ideal model and the actual robot system. More specifically, new decentralized adaptation mechanisms derived from the simple adaptive control technique and fuzzy logic control theory are considered in this work. Numerical simulations compare the performance of the adaptive controllers with a nonadaptive and a conventional model-based controller, in the context of 12.6 m xx 12.6 m square trajectory tracking. To validate the robustness of the controllers to modeling errors, a new dynamics formulation that includes several nonlinear effects usually neglected in flexible-joint dynamics models is proposed. Results obtained with the adaptive methodologies demonstrate an increased robustness to both uncertainties in joint stiffness coefficients and dynamics modeling errors, as well as highly improved tracking performance compared with the nonadaptive and model-based strategies. Finally, this work considers the partial state feedback problem related to flexible-joint space robotic manipulators equipped only with sensors that provide noisy measurements of motor positions and velocities. An extended Kalman filter-based estimation strategy is developed to estimate all state variables in real-time. The state estimation filter is combined with an adaptive
Stabilization of an axially moving accelerated/decelerated system via an adaptive boundary control.
Liu, Yu; Zhao, Zhijia; He, Wei
2016-09-01
In this study, an adaptive boundary control is developed for vibration suppression of an axially moving accelerated/decelerated belt system. The dynamic model of the belt system is represented by partial-ordinary differential equations with consideration of the high acceleration/deceleration and unknown distributed disturbance. By utilizing adaptive technique and Lyapunov-based back stepping method, an adaptive boundary control is proposed for vibration suppression of the belt system, a disturbance observer is introduced to attenuate the effects of unknown boundary disturbance, the adaptive law is developed to handle parametric uncertainties and the S-curve acceleration/deceleration method is adopted to plan the belt׳s speed. With the proposed control scheme, the well-posedness and stability of the closed-loop system are mathematically demonstrated. Simulations are displayed to illustrate the effectiveness of the proposed control. PMID:27269191
Fuzzy Backstepping Torque Control Of Passive Torque Simulator With Algebraic Parameters Adaptation
NASA Astrophysics Data System (ADS)
Ullah, Nasim; Wang, Shaoping; Wang, Xingjian
2015-07-01
This work presents fuzzy backstepping control techniques applied to the load simulator for good tracking performance in presence of extra torque, and nonlinear friction effects. Assuming that the parameters of the system are uncertain and bounded, Algebraic parameters adaptation algorithm is used to adopt the unknown parameters. The effect of transient fuzzy estimation error on parameters adaptation algorithm is analyzed and the fuzzy estimation error is further compensated using saturation function based adaptive control law working in parallel with the actual system to improve the transient performance of closed loop system. The saturation function based adaptive control term is large in the transient time and settles to an optimal lower value in the steady state for which the closed loop system remains stable. The simulation results verify the validity of the proposed control method applied to the complex aerodynamics passive load simulator.
L1 adaptive output-feedback control architectures
NASA Astrophysics Data System (ADS)
Kharisov, Evgeny
This research focuses on development of L 1 adaptive output-feedback control. The objective is to extend the L1 adaptive control framework to a wider class of systems, as well as obtain architectures that afford more straightforward tuning. We start by considering an existing L1 adaptive output-feedback controller for non-strictly positive real systems based on piecewise constant adaptation law. It is shown that L 1 adaptive control architectures achieve decoupling of adaptation from control, which leads to bounded away from zero time-delay and gain margins in the presence of arbitrarily fast adaptation. Computed performance bounds provide quantifiable performance guarantees both for system output and control signal in transient and steady state. A noticeable feature of the L1 adaptive controller is that its output behavior can be made close to the behavior of a linear time-invariant system. In particular, proper design of the lowpass filter can achieve output response, which almost scales for different step reference commands. This property is relevant to applications with human operator in the loop (for example: control augmentation systems of piloted aircraft), since predictability of the system response is necessary for adequate performance of the operator. Next we present applications of the L1 adaptive output-feedback controller in two different fields of engineering: feedback control of human anesthesia, and ascent control of a NASA crew launch vehicle (CLV). The purpose of the feedback controller for anesthesia is to ensure that the patient's level of sedation during surgery follows a prespecified profile. The L1 controller is enabled by anesthesiologist after he/she achieves sufficient patient sedation level by introducing sedatives manually. This problem formulation requires safe switching mechanism, which avoids controller initialization transients. For this purpose, we used an L1 adaptive controller with special output predictor initialization routine
Flexible control techniques for a lunar base
NASA Technical Reports Server (NTRS)
Kraus, Thomas W.
1992-01-01
applications with little or no customization. This means that lunar process control projects will not be delayed by unforeseen problems or last minute process modifications. The software will include all of the tools needed to adapt to virtually any changes. In contrast to other space programs which required the development of tremendous amounts of custom software, lunar-based processing facilities will benefit from the use of existing software technology which is being proven in commercial applications on Earth.
Adaptive Importance Sampling for Control and Inference
NASA Astrophysics Data System (ADS)
Kappen, H. J.; Ruiz, H. C.
2016-03-01
Path integral (PI) control problems are a restricted class of non-linear control problems that can be solved formally as a Feynman-Kac PI and can be estimated using Monte Carlo sampling. In this contribution we review PI control theory in the finite horizon case. We subsequently focus on the problem how to compute and represent control solutions. We review the most commonly used methods in robotics and control. Within the PI theory, the question of how to compute becomes the question of importance sampling. Efficient importance samplers are state feedback controllers and the use of these requires an efficient representation. Learning and representing effective state-feedback controllers for non-linear stochastic control problems is a very challenging, and largely unsolved, problem. We show how to learn and represent such controllers using ideas from the cross entropy method. We derive a gradient descent method that allows to learn feed-back controllers using an arbitrary parametrisation. We refer to this method as the path integral cross entropy method or PICE. We illustrate this method for some simple examples. The PI control methods can be used to estimate the posterior distribution in latent state models. In neuroscience these problems arise when estimating connectivity from neural recording data using EM. We demonstrate the PI control method as an accurate alternative to particle filtering.
Missile guidance law design using adaptive cerebellar model articulation controller.
Lin, Chih-Min; Peng, Ya-Fu
2005-05-01
An adaptive cerebellar model articulation controller (CMAC) is proposed for command to line-of-sight (CLOS) missile guidance law design. In this design, the three-dimensional (3-D) CLOS guidance problem is formulated as a tracking problem of a time-varying nonlinear system. The adaptive CMAC control system is comprised of a CMAC and a compensation controller. The CMAC control is used to imitate a feedback linearization control law and the compensation controller is utilized to compensate the difference between the feedback linearization control law and the CMAC control. The online adaptive law is derived based on the Lyapunov stability theorem to learn the weights of receptive-field basis functions in CMAC control. In addition, in order to relax the requirement of approximation error bound, an estimation law is derived to estimate the error bound. Then the adaptive CMAC control system is designed to achieve satisfactory tracking performance. Simulation results for different engagement scenarios illustrate the validity of the proposed adaptive CMAC-based guidance law.
Scientific Motivational Techniques Adaptable to Social Studies Lessons
ERIC Educational Resources Information Center
Steiner, Robert L.
1975-01-01
Two science classroom techniques that can be used in the social studies classroom to motivate students involve puzzling phenomena and relating science to social issues such as over-population, energy, and pollution. (JR)
Manoonpong, Poramate; Parlitz, Ulrich; Wörgötter, Florentin
2013-01-01
Living creatures, like walking animals, have found fascinating solutions for the problem of locomotion control. Their movements show the impression of elegance including versatile, energy-efficient, and adaptable locomotion. During the last few decades, roboticists have tried to imitate such natural properties with artificial legged locomotion systems by using different approaches including machine learning algorithms, classical engineering control techniques, and biologically-inspired control mechanisms. However, their levels of performance are still far from the natural ones. By contrast, animal locomotion mechanisms seem to largely depend not only on central mechanisms (central pattern generators, CPGs) and sensory feedback (afferent-based control) but also on internal forward models (efference copies). They are used to a different degree in different animals. Generally, CPGs organize basic rhythmic motions which are shaped by sensory feedback while internal models are used for sensory prediction and state estimations. According to this concept, we present here adaptive neural locomotion control consisting of a CPG mechanism with neuromodulation and local leg control mechanisms based on sensory feedback and adaptive neural forward models with efference copies. This neural closed-loop controller enables a walking machine to perform a multitude of different walking patterns including insect-like leg movements and gaits as well as energy-efficient locomotion. In addition, the forward models allow the machine to autonomously adapt its locomotion to deal with a change of terrain, losing of ground contact during stance phase, stepping on or hitting an obstacle during swing phase, leg damage, and even to promote cockroach-like climbing behavior. Thus, the results presented here show that the employed embodied neural closed-loop system can be a powerful way for developing robust and adaptable machines. PMID:23408775
Manoonpong, Poramate; Parlitz, Ulrich; Wörgötter, Florentin
2013-01-01
Living creatures, like walking animals, have found fascinating solutions for the problem of locomotion control. Their movements show the impression of elegance including versatile, energy-efficient, and adaptable locomotion. During the last few decades, roboticists have tried to imitate such natural properties with artificial legged locomotion systems by using different approaches including machine learning algorithms, classical engineering control techniques, and biologically-inspired control mechanisms. However, their levels of performance are still far from the natural ones. By contrast, animal locomotion mechanisms seem to largely depend not only on central mechanisms (central pattern generators, CPGs) and sensory feedback (afferent-based control) but also on internal forward models (efference copies). They are used to a different degree in different animals. Generally, CPGs organize basic rhythmic motions which are shaped by sensory feedback while internal models are used for sensory prediction and state estimations. According to this concept, we present here adaptive neural locomotion control consisting of a CPG mechanism with neuromodulation and local leg control mechanisms based on sensory feedback and adaptive neural forward models with efference copies. This neural closed-loop controller enables a walking machine to perform a multitude of different walking patterns including insect-like leg movements and gaits as well as energy-efficient locomotion. In addition, the forward models allow the machine to autonomously adapt its locomotion to deal with a change of terrain, losing of ground contact during stance phase, stepping on or hitting an obstacle during swing phase, leg damage, and even to promote cockroach-like climbing behavior. Thus, the results presented here show that the employed embodied neural closed-loop system can be a powerful way for developing robust and adaptable machines. PMID:23408775
Adaptive Suction and Blowing for Twin-Tail Buffet Control
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Yang, Zhi
1999-01-01
Adaptive active flow control for twin-tail buffet alleviation is investigated. The concept behind this technique is to place control ports on the tail outer and inner surfaces with flow suction or blowing applied through these ports in order to minimize the pressure difference across the tail. The suction or blowing volume flow rate from each port is proportional to the pressure difference across the tail at this location. A parametric study of the effects of the number and location of these ports on the buffet response is carried out. The computational model consists of a sharp-edged delta wing of aspect ratio one and swept-back flexible twin tail with taper ratio of 0.23. This complex multidisciplinary problem is solved sequentially using three sets of equations for the fluid flow, aeroelastic response and grid deformation, using a dynamic multi-block grid structure. The computational model is pitched at 30 deg angle of attack. The freestream Mach number and Reynolds number are 0.3 and 1.25 million, respectively. The model is investigated for the inboard position of the twin tails, which corresponds to a separation distance between the twin tails of 33% of the wing span. Comparison of the time history and power spectral density responses of the tails for various distributions of the control ports are presented and discussed.
Adaptive hybrid position/force control of robotic manipulators
NASA Technical Reports Server (NTRS)
Pourboghrat, F.
1987-01-01
The problem of position and force control for the compliant motion of the manipulators is considered. The external force and the position of the end-effector are related by a second order impedance function. The force control problem is then translated into a position control problem. For that, an adaptive controller is designed to achieve the compliant motion. The design uses the Liapunov's direct method to derive the adaptation law. The stability of the process is guaranteed from the Liapunov's stability theory. The controller does not require the knowledge of the system parameters for the implementation, and hence is easy for applications.
Digital adaptive controllers for VTOL vehicles. Volume 1: Concept evaluation
NASA Technical Reports Server (NTRS)
Hartmann, G. L.; Stein, G.; Pratt, S. G.
1979-01-01
A digital self-adaptive flight control system was developed for flight test in the VTOL approach and landing technology (VALT) research aircraft (a modified CH-47 helicopter). The control laws accept commands from an automatic on-board guidance system. The primary objective of the control laws is to provide good command-following with a minimum cross-axis response. Three attitudes and vertical velocity are separately commanded. Adaptation of the control laws is based on information from rate and attitude gyros and a vertical velocity measurement. The final design resulted from a comparison of two different adaptive concepts--one based on explicit parameter estimates from a real-time maximum-likelihood estimation algorithm, the other based on an implicit model reference adaptive system. The two designs were compared on the basis of performance and complexity.
Adaptive Wavefront Calibration and Control for the Gemini Planet Imager
Poyneer, L A; Veran, J
2007-02-02
Quasi-static errors in the science leg and internal AO flexure will be corrected. Wavefront control will adapt to current atmospheric conditions through Fourier modal gain optimization, or the prediction of atmospheric layers with Kalman filtering.
Robust adaptive tracking control for nonholonomic mobile manipulator with uncertainties.
Peng, Jinzhu; Yu, Jie; Wang, Jie
2014-07-01
In this paper, mobile manipulator is divided into two subsystems, that is, nonholonomic mobile platform subsystem and holonomic manipulator subsystem. First, the kinematic controller of the mobile platform is derived to obtain a desired velocity. Second, regarding the coupling between the two subsystems as disturbances, Lyapunov functions of the two subsystems are designed respectively. Third, a robust adaptive tracking controller is proposed to deal with the unknown upper bounds of parameter uncertainties and disturbances. According to the Lyapunov stability theory, the derived robust adaptive controller guarantees global stability of the closed-loop system, and the tracking errors and adaptive coefficient errors are all bounded. Finally, simulation results show that the proposed robust adaptive tracking controller for nonholonomic mobile manipulator is effective and has good tracking capacity. PMID:24917071
Adaptive Controller for Compact Fourier Transform Spectrometer with Space Applications
NASA Astrophysics Data System (ADS)
Keymeulen, D.; Yiu, P.; Berisford, D. F.; Hand, K. P.; Carlson, R. W.; Conroy, M.
2014-12-01
Here we present noise mitigation techniques developed as part of an adaptive controller for a very compact Compositional InfraRed Interferometric Spectrometer (CIRIS) implemented on a stand-alone field programmable gate array (FPGA) architecture with emphasis on space applications in high radiation environments such as Europa. CIRIS is a novel take on traditional Fourier Transform Spectrometers (FTS) and replaces linearly moving mirrors (characteristic of Michelson interferometers) with a constant-velocity rotating refractor to variably phase shift and alter the path length of incoming light. The design eschews a monochromatic reference laser typically used for sampling clock generation and instead utilizes constant time-sampling via internally generated clocks. This allows for a compact and robust device, making it ideal for spaceborne measurements in the near-IR to thermal-IR band (2-12 µm) on planetary exploration missions. The instrument's embedded microcontroller is implemented on a VIRTEX-5 FPGA and a PowerPC with the aim of sampling the instrument's detector and optical rotary encoder in order to construct interferograms. Subsequent onboard signal processing provides spectral immunity from the noise effects introduced by the compact design's removal of a reference laser and by the radiation encountered during space flight to destinations such as Europa. A variety of signal processing techniques including resampling, radiation peak removal, Fast Fourier Transform (FFT), spectral feature alignment, dispersion correction and calibration processes are applied to compose the sample spectrum in real-time with signal-to-noise-ratio (SNR) performance comparable to laser-based FTS designs in radiation-free environments. The instrument's FPGA controller is demonstrated with the FTS to characterize its noise mitigation techniques and highlight its suitability for implementation in space systems.
Bi-Objective Optimal Control Modification Adaptive Control for Systems with Input Uncertainty
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2012-01-01
This paper presents a new model-reference adaptive control method based on a bi-objective optimal control formulation for systems with input uncertainty. A parallel predictor model is constructed to relate the predictor error to the estimation error of the control effectiveness matrix. In this work, we develop an optimal control modification adaptive control approach that seeks to minimize a bi-objective linear quadratic cost function of both the tracking error norm and predictor error norm simultaneously. The resulting adaptive laws for the parametric uncertainty and control effectiveness uncertainty are dependent on both the tracking error and predictor error, while the adaptive laws for the feedback gain and command feedforward gain are only dependent on the tracking error. The optimal control modification term provides robustness to the adaptive laws naturally from the optimal control framework. Simulations demonstrate the effectiveness of the proposed adaptive control approach.
To adapt or not to adapt: the question of domain-general cognitive control.
Kan, Irene P; Teubner-Rhodes, Susan; Drummey, Anna B; Nutile, Lauren; Krupa, Lauren; Novick, Jared M
2013-12-01
What do perceptually bistable figures, sentences vulnerable to misinterpretation and the Stroop task have in common? Although seemingly disparate, they all contain elements of conflict or ambiguity. Consequently, in order to monitor a fluctuating percept, reinterpret sentence meaning, or say "blue" when the word RED is printed in blue ink, individuals must regulate attention and engage cognitive control. According to the Conflict Monitoring Theory (Botvinick, Braver, Barch, Carter, & Cohen, 2001), the detection of conflict automatically triggers cognitive control mechanisms, which can enhance resolution of subsequent conflict, namely, "conflict adaptation." If adaptation reflects the recruitment of domain-general processes, then conflict detection in one domain should facilitate conflict resolution in an entirely different domain. We report two novel findings: (i) significant conflict adaptation from a syntactic to a non-syntactic domain and (ii) from a perceptual to a verbal domain, providing strong evidence that adaptation is mediated by domain-general cognitive control. PMID:24103774
NASA Astrophysics Data System (ADS)
Hu, Chaofang; Gao, Zhifei; Ren, Yanli; Liu, Yunbing
2016-11-01
In this paper, a reusable launch vehicle (RLV) attitude control problem with actuator faults is addressed via the robust adaptive nonlinear fault-tolerant control (FTC) with norm estimation. Firstly, the accurate tracking task of attitude angles in the presence of parameter uncertainties and external disturbances is considered. A fault-free controller is proposed using dynamic surface control (DSC) combined with fuzzy adaptive approach. Furthermore, the minimal learning parameter strategy via norm estimation technique is introduced to reduce the multi-parameter adaptive computation burden of fuzzy approximation of the lump uncertainties. Secondly, a compensation controller is designed to handle the partial loss fault of actuator effectiveness. The unknown maximum eigenvalue of actuator efficiency loss factors is estimated online. Moreover, stability analysis guarantees that all signals of the closed-loop control system are semi-global uniformly ultimately bounded. Finally, illustrative simulations show the effectiveness of the proposed method.
NASA Technical Reports Server (NTRS)
VanZwieten, Tannen; Zhu, J. Jim; Adami, Tony; Berry, Kyle; Grammar, Alex; Orr, Jeb S.; Best, Eric A.
2014-01-01
Recently, a robust and practical adaptive control scheme for launch vehicles [ [1] has been introduced. It augments a classical controller with a real-time loop-gain adaptation, and it is therefore called Adaptive Augmentation Control (AAC). The loop-gain will be increased from the nominal design when the tracking error between the (filtered) output and the (filtered) command trajectory is large; whereas it will be decreased when excitation of flex or sloshing modes are detected. There is a need to determine the range and rate of the loop-gain adaptation in order to retain (exponential) stability, which is critical in vehicle operation, and to develop some theoretically based heuristic tuning methods for the adaptive law gain parameters. The classical launch vehicle flight controller design technics are based on gain-scheduling, whereby the launch vehicle dynamics model is linearized at selected operating points along the nominal tracking command trajectory, and Linear Time-Invariant (LTI) controller design techniques are employed to ensure asymptotic stability of the tracking error dynamics, typically by meeting some prescribed Gain Margin (GM) and Phase Margin (PM) specifications. The controller gains at the design points are then scheduled, tuned and sometimes interpolated to achieve good performance and stability robustness under external disturbances (e.g. winds) and structural perturbations (e.g. vehicle modeling errors). While the GM does give a bound for loop-gain variation without losing stability, it is for constant dispersions of the loop-gain because the GM is based on frequency-domain analysis, which is applicable only for LTI systems. The real-time adaptive loop-gain variation of the AAC effectively renders the closed-loop system a time-varying system, for which it is well-known that the LTI system stability criterion is neither necessary nor sufficient when applying to a Linear Time-Varying (LTV) system in a frozen-time fashion. Therefore, a
Adaptive Attitude Control of the Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Muse, Jonathan
2010-01-01
An H(sub infinity)-NMA architecture for the Crew Launch Vehicle was developed in a state feedback setting. The minimal complexity adaptive law was shown to improve base line performance relative to a performance metric based on Crew Launch Vehicle design requirements for all most all of the Worst-on-Worst dispersion cases. The adaptive law was able to maintain stability for some dispersions that are unstable with the nominal control law. Due to the nature of the H(sub infinity)-NMA architecture, the augmented adaptive control signal has low bandwidth which is a great benefit for a manned launch vehicle.
Adaptive Process Control with Fuzzy Logic and Genetic Algorithms
NASA Technical Reports Server (NTRS)
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
Adaptive process control using fuzzy logic and genetic algorithms
NASA Technical Reports Server (NTRS)
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
Adaptive pitch control for load mitigation of wind turbines
NASA Astrophysics Data System (ADS)
Yuan, Yuan; Tang, J.
2015-04-01
In this research, model reference adaptive control is examined for the pitch control of wind turbines that may suffer from reduced life owing to extreme loads and fatigue when operated under a high wind speed. Specifically, we aim at making a trade-off between the maximum energy captured and the load induced. The adaptive controller is designed to track the optimal generator speed and at the same time to mitigate component loads under turbulent wind field and other uncertainties. The proposed algorithm is tested on the NREL offshore 5-MW baseline wind turbine, and its performance is compared with that those of the gain scheduled proportional integral (GSPI) control and the disturbance accommodating control (DAC). The results show that the blade root flapwise load can be reduced at a slight expense of optimal power output. The generator speed regulation under adaptive controller is better than DAC.
An adaptive learning control system for aircraft
NASA Technical Reports Server (NTRS)
Mekel, R.; Nachmias, S.
1978-01-01
A learning control system and its utilization as a flight control system for F-8 Digital Fly-By-Wire (DFBW) research aircraft is studied. The system has the ability to adjust a gain schedule to account for changing plant characteristics and to improve its performance and the plant's performance in the course of its own operation. Three subsystems are detailed: (1) the information acquisition subsystem which identifies the plant's parameters at a given operating condition; (2) the learning algorithm subsystem which relates the identified parameters to predetermined analytical expressions describing the behavior of the parameters over a range of operating conditions; and (3) the memory and control process subsystem which consists of the collection of updated coefficients (memory) and the derived control laws. Simulation experiments indicate that the learning control system is effective in compensating for parameter variations caused by changes in flight conditions.
Research review: Indoor air quality control techniques
Fisk, W.J.
1986-10-01
Techniques for controlling the concentration of radon, formaldehyde, and combustion products in the indoor air are reviewed. The most effective techniques, which are generally based on limiting or reducing indoor pollutant source strengths, can decrease indoor pollutant concentrations by a factor of 3 to 10. Unless the initial ventilation rate is unusually low, it is difficult to reduce indoor pollutant concentrations more than approximately 50% by increasing the ventilation rate of an entire building. However, the efficiency of indoor pollutant control by ventilation can be enhanced through the use of local exhaust ventilation near concentrated sources of pollutants, by minimizing short circuiting of air from supply to exhaust when pollutant sources are dispersed and, in some situations, by promoting a displacement flow of air and pollutants toward the exhaust. Active air cleaning is also examined briefly. Filtration and electrostatic air cleaning for removal of particles from the indoor air are the most practical and effective currently available techniques of air cleaning. 49 refs., 7 figs.
Investigation of the Multiple Model Adaptive Control (MMAC) method for flight control systems
NASA Technical Reports Server (NTRS)
1975-01-01
The application was investigated of control theoretic ideas to the design of flight control systems for the F-8 aircraft. The design of an adaptive control system based upon the so-called multiple model adaptive control (MMAC) method is considered. Progress is reported.
Swarm Intelligence: New Techniques for Adaptive Systems to Provide Learning Support
ERIC Educational Resources Information Center
Wong, Lung-Hsiang; Looi, Chee-Kit
2012-01-01
The notion of a system adapting itself to provide support for learning has always been an important issue of research for technology-enabled learning. One approach to provide adaptivity is to use social navigation approaches and techniques which involve analysing data of what was previously selected by a cluster of users or what worked for…
Develop techniques for ion implantation of PLZT for adaptive optics
NASA Astrophysics Data System (ADS)
Craig, R. A.; Batishko, C. R.; Brimhall, J. L.; Pawlewicz, W. T.; Stahl, K. A.
1989-11-01
Battelle Pacific Northwest Laboratory (PNL) conducted research into the preparation and characterization of ion-implanted adaptive optic elements based on lead-lanthanum-zirconate-titanate (PLZT). Over the 4-yr effort beginning FY 1985, the ability to increase the photosensitivity of PLZT and extend it to longer wavelengths was developed. The emphasis during the last two years was to develop a model to provide a basis for choosing implantation species and parameters. Experiments which probe the electronic structure were performed on virgin and implanted PLZT samples. Also performed were experiments designed to connect the developing conceptual model with the experimental results. The emphasis in FY 1988 was to extend the photosensitivity out to diode laser wavelengths. The experiments and modelling effort indicate that manganese will form appropriate intermediate energy states to achieve the longer wavelength photosensitivity. Preliminary experiments were also conducted to deposit thin film PLZT.
Adaptive control of Hammerstein-Wiener nonlinear systems
NASA Astrophysics Data System (ADS)
Zhang, Bi; Hong, Hyokchan; Mao, Zhizhong
2016-07-01
The Hammerstein-Wiener model is a block-oriented model, having a linear dynamic block sandwiched by two static nonlinear blocks. This note develops an adaptive controller for a special form of Hammerstein-Wiener nonlinear systems which are parameterized by the key-term separation principle. The adaptive control law and recursive parameter estimation are updated by the use of internal variable estimations. By modeling the errors due to the estimation of internal variables, we establish convergence and stability properties. Theoretical results show that parameter estimation convergence and closed-loop system stability can be guaranteed under sufficient condition. From a qualitative analysis of the sufficient condition, we introduce an adaptive weighted factor to improve the performance of the adaptive controller. Numerical examples are given to confirm the results in this paper.
Modeling-Error-Driven Performance-Seeking Direct Adaptive Control
NASA Technical Reports Server (NTRS)
Kulkarni, Nilesh V.; Kaneshige, John; Krishnakumar, Kalmanje; Burken, John
2008-01-01
This paper presents a stable discrete-time adaptive law that targets modeling errors in a direct adaptive control framework. The update law was developed in our previous work for the adaptive disturbance rejection application. The approach is based on the philosophy that without modeling errors, the original control design has been tuned to achieve the desired performance. The adaptive control should, therefore, work towards getting this performance even in the face of modeling uncertainties/errors. In this work, the baseline controller uses dynamic inversion with proportional-integral augmentation. Dynamic inversion is carried out using the assumed system model. On-line adaptation of this control law is achieved by providing a parameterized augmentation signal to the dynamic inversion block. The parameters of this augmentation signal are updated to achieve the nominal desired error dynamics. Contrary to the typical Lyapunov-based adaptive approaches that guarantee only stability, the current approach investigates conditions for stability as well as performance. A high-fidelity F-15 model is used to illustrate the overall approach.
Decentralized adaptive control of manipulators - Theory, simulation, and experimentation
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1989-01-01
The author presents a simple decentralized adaptive-control scheme for multijoint robot manipulators based on the independent joint control concept. The control objective is to achieve accurate tracking of desired joint trajectories. The proposed control scheme does not use the complex manipulator dynamic model, and each joint is controlled simply by a PID (proportional-integral-derivative) feedback controller and a position-velocity-acceleration feedforward controller, both with adjustable gains. Simulation results are given for a two-link direct-drive manipulator under adaptive independent joint control. The results illustrate trajectory tracking under coupled dynamics and varying payload. The proposed scheme is implemented on a MicroVAX II computer for motion control of the three major joints of a PUMA 560 arm. Experimental results are presented to demonstrate that trajectory tracking is achieved despite coupled nonlinear joint dynamics.
Adaptive Phase Synchronization Techniques for Unbalanced and Distorted Three-Phase Voltage System
NASA Astrophysics Data System (ADS)
Woinowsky-Krieger, Alexis
Interfacing and operating AC power electronic systems requires rapid and accurate estimation of the phase angle of the power source, and specifically of the positive sequence of the three-phase utility grid voltage. This is needed to ensure reliable operation of the power control devices and of the resulting power flow. However, the quality of this information is undermined by various distortions and unbalanced conditions of the three-phase grid voltage. Phase estimation and power control can both be performed in real time by a DSP, but a DSP typically has limited computational resources, especially in regards to speed and memory, which motivates the search for computationally efficient algorithms to accomplish these tasks. In contrast to conventional PLL techniques, recent approaches have used adaptive amplitude estimation to enhance the acquisition of the phase information, resulting in faster response and improved performance. This thesis presents a novel technique to estimate the phase of the positive sequence of a three-phase voltage in the presence of frequency variations and unbalanced conditions, referred to as hybrid negative sequence adaptive synchronous amplitude estimation with PLL, or H-NSASAE-PLL. The key feature consists of a feedback structure which embeds a positive sequence PLL and an adaptive synchronous negative sequence estimator to enhance the performance of the PLL. The resulting benefits include faster estimation of the phase of the positive sequence under unbalanced conditions with zero steady state error, simplified tuning of PLL parameters to address a wide range of application requirements, robust performance with respect to distortions and PLL parameters, a structure of minimal dynamical order (fifth) to estimate the main signal parameters of interest, simplified discretization, and reduced computational costs, making the proposed technique suitable for real time execution on a DSP. The H-NSASAE-PLL is developed in the Matlab
Online Parameter Estimation and Adaptive Control of Magnetic Wire Actuators
NASA Astrophysics Data System (ADS)
Karve, Harshwardhan
Cantilevered magnetic wires and fibers can be used as actuators in microfluidic applications. The actuator may be unstable in some range of displacements. Precise position control is required for actuation. The goal of this work is to develop position controllers for cantilevered magnetic wires. A simple exact model knowledge (EMK) controller can be used for position control, but the actuator needs to be modeled accurately for the EMK controller to work. Continuum models have been proposed for magnetic wires in literature. Reduced order models have also been proposed. A one degree of freedom model sufficiently describes the dynamics of a cantilevered wire in the field of one magnet over small displacements. This reduced order model is used to develop the EMK controller here. The EMK controller assumes that model parameters are known accurately. Some model parameters depend on the magnetic field. However, the effect of the magnetic field on the wire is difficult to measure in practice. Stability analysis shows that an inaccurate estimate of the magnetic field introduces parametric perturbations in the closed loop system. This makes the system less robust to disturbances. Therefore, the model parameters need to be estimated accurately for the EMK controller to work. An adaptive observer that can estimate system parameters on-line and reduce parametric perturbations is designed here. The adaptive observer only works if the system is stable. The EMK controller is not guaranteed to stabilize the system under perturbations. Precise tuning of parameters is required to stabilize the system using the EMK controller. Therefore, a controller that stabilizes the system using imprecise model parameters is required for the observer to work as intended. The adaptive observer estimates system states and parameters. These states and parameters are used here to implement an indirect adaptive controller. This indirect controller can stabilize the system using imprecise initial
Gain scheduling adaptive control strategies for HVDC systems to accommodate large disturbances
Reeve, J.; Sultan, M. )
1994-02-01
Techniques have been developed to permit the response of the controls for dc transmission systems to adapt to large system changes. A gain scheduling approach tunes the control as an on-line function of the effective short-circuit ratio and contingency indicators. The method has been tested by digital simulation, based on EMTP, of a back-to-back dc system. It has been found to be robust and control performance has been enhanced.
Assessment of Service Protocols Adaptability Using a Novel Path Computation Technique
NASA Astrophysics Data System (ADS)
Zhou, Zhangbing; Bhiri, Sami; Haller, Armin; Zhuge, Hai; Hauswirth, Manfred
In this paper we propose a new kind of adaptability assessment that determines whether service protocols of a requestor and a provider are adaptable, computes their adaptation degree, and identifies conditions that determine when they can be adapted. We also propose a technique that implements this adaptability assessment: (1) we construct a complete adaptation graph that captures all service interactions adaptable between these two service protocols. The emptiness or non-emptiness of this graph corresponds to the fact that whether or not they are adaptable; (2) we propose a novel path computation technique to generate all instance sub-protocols which reflect valid executions of a particular service protocol, and to derive all instance sub-protocol pairs captured by the complete adaptation graph. An adaptation degree is computed as a ratio between the number of instance sub-protocols captured by these instance sub-protocol pairs with respect to a service protocol and that of this service protocol; (3) and finally we identify a set of conditions based on these instance sub-protocol pairs. A condition is the conjunction of all conditions specified on the transitions of a given pair of instance sub-protocols. This assessment is a comprehensive means of selecting the suitable service protocol among functionally-equivalent candidates according to the requestor's business requirements.
Control Reallocation Strategies for Damage Adaptation in Transport Class Aircraft
NASA Technical Reports Server (NTRS)
Gundy-Burlet, Karen; Krishnakumar, K.; Limes, Greg; Bryant, Don
2003-01-01
This paper examines the feasibility, potential benefits and implementation issues associated with retrofitting a neural-adaptive flight control system (NFCS) to existing transport aircraft, including both cable/hydraulic and fly-by-wire configurations. NFCS uses a neural network based direct adaptive control approach for applying alternate sources of control authority in the presence of damage or failures in order to achieve desired flight control performance. Neural networks are used to provide consistent handling qualities across flight conditions, adapt to changes in aircraft dynamics and to make the controller easy to apply when implemented on different aircraft. Full-motion piloted simulation studies were performed on two different transport models: the Boeing 747-400 and the Boeing C-17. Subjects included NASA, Air Force and commercial airline pilots. Results demonstrate the potential for improving handing qualities and significantly increased survivability rates under various simulated failure conditions.
Identification and dual adaptive control of a turbojet engine
NASA Technical Reports Server (NTRS)
Merrill, W.; Leininger, G.
1979-01-01
The objective of this paper is to utilize the design methods of modern control theory to realize a 'dual-adaptive' feedback control unit for a highly non-linear single spool airbreathing turbojet engine. Using a very detailed and accurate simulation of the non-linear engine as the data source, linear operating point models of unspecified dimension are identified. Feedback control laws are designed at each operating point for a prespecified set of sampling rates using sampled-data output regulator theory. The control system sampling rate is determined by an adaptive sampling algorithm in correspondence with turbojet engine performance. The result is a 'dual-adpative' control law that is functionally dependent upon the sampling rate selected and environmental operating conditions. Simulation transients demonstrate the utility of the dual-adaptive design to improve on-board computer utilization while maintaining acceptable levels of engine performance.
Hybrid adaptive ascent flight control for a flexible launch vehicle
NASA Astrophysics Data System (ADS)
Lefevre, Brian D.
For the purpose of maintaining dynamic stability and improving guidance command tracking performance under off-nominal flight conditions, a hybrid adaptive control scheme is selected and modified for use as a launch vehicle flight controller. This architecture merges a model reference adaptive approach, which utilizes both direct and indirect adaptive elements, with a classical dynamic inversion controller. This structure is chosen for a number of reasons: the properties of the reference model can be easily adjusted to tune the desired handling qualities of the spacecraft, the indirect adaptive element (which consists of an online parameter identification algorithm) continually refines the estimates of the evolving characteristic parameters utilized in the dynamic inversion, and the direct adaptive element (which consists of a neural network) augments the linear feedback signal to compensate for any nonlinearities in the vehicle dynamics. The combination of these elements enables the control system to retain the nonlinear capabilities of an adaptive network while relying heavily on the linear portion of the feedback signal to dictate the dynamic response under most operating conditions. To begin the analysis, the ascent dynamics of a launch vehicle with a single 1st stage rocket motor (typical of the Ares 1 spacecraft) are characterized. The dynamics are then linearized with assumptions that are appropriate for a launch vehicle, so that the resulting equations may be inverted by the flight controller in order to compute the control signals necessary to generate the desired response from the vehicle. Next, the development of the hybrid adaptive launch vehicle ascent flight control architecture is discussed in detail. Alterations of the generic hybrid adaptive control architecture include the incorporation of a command conversion operation which transforms guidance input from quaternion form (as provided by NASA) to the body-fixed angular rate commands needed by the
Adaptive measurement control for calorimetric assay
Glosup, J.G.; Axelrod, M.C.
1994-10-01
The performance of a calorimeter is usually evaluated by constructing a Shewhart control chart of its measurement errors for a collection of reference standards. However, Shewhart control charts were developed in a manufacturing setting where observations occur in batches. Additionally, the Shewhart control chart expects the variance of the charted variable to be known or at least well estimated from previous experimentation. For calorimetric assay, observations are collected singly in a time sequence with a (possibly) changing mean, and extensive experimentation to calculate the variance of the measurement errors is seldom feasible. These facts pose problems in constructing a control chart. In this paper, the authors propose using the mean squared successive difference to estimate the variance of measurement errors based solely on prior observations. This procedure reduces or eliminates estimation bias due to a changing mean. However, the use of this estimator requires an adjustment to the definition of the alarm and warning limits for the Shewhart control chart. The authors propose adjusted limits based on an approximate Student`s t-distribution for the measurement errors and discuss the limitations of this approximation. Suggestions for the practical implementation of this method are provided also.
Simulation of a Reconfigurable Adaptive Control Architecture
NASA Astrophysics Data System (ADS)
Rapetti, Ryan John
A set of algorithms and software components are developed to investigate the use of a priori models of damaged aircraft to improve control of similarly damaged aircraft. An addition to Model Predictive Control called state trajectory extrapolation is also developed to deliver good handling qualities in nominal an off-nominal aircraft. System identification algorithms are also used to improve model accuracy after a damage event. Simulations were run to demonstrate the efficacy of the algorithms and software components developed herein. The effect of model order on system identification convergence and performance is also investigated. A feasibility study for flight testing is also conducted. A preliminary hardware prototype was developed, as was the necessary software to integrate the avionics and ground station systems. Simulation results show significant improvement in both tracking and cross-coupling performance when a priori control models are used, and further improvement when identified models are used.
Interior Noise Reduction by Adaptive Feedback Vibration Control
NASA Technical Reports Server (NTRS)
Lim, Tae W.
1998-01-01
The objective of this project is to investigate the possible use of adaptive digital filtering techniques in simultaneous, multiple-mode identification of the modal parameters of a vibrating structure in real-time. It is intended that the results obtained from this project will be used for state estimation needed in adaptive structural acoustics control. The work done in this project is basically an extension of the work on real-time single mode identification, which was performed successfully using a digital signal processor (DSP) at NASA, Langley. Initially, in this investigation the single mode identification work was duplicated on a different processor, namely the Texas Instruments TMS32OC40 DSP. The system identification results for the single mode case were very good. Then an algorithm for simultaneous two mode identification was developed and tested using analytical simulation. When it successfully performed the expected tasks, it was implemented in real-time on the DSP system to identify the first two modes of vibration of a cantilever aluminum beam. The results of the simultaneous two mode case were good but some problems were identified related to frequency warping and spurious mode identification. The frequency warping problem was found to be due to the bilinear transformation used in the algorithm to convert the system transfer function from the continuous-time domain to the discrete-time domain. An alternative approach was developed to rectify the problem. The spurious mode identification problem was found to be associated with high sampling rates. Noise in the signal is suspected to be the cause of this problem but further investigation will be needed to clarify the cause. For simultaneous identification of more than two modes, it was found that theoretically an adaptive digital filter can be designed to identify the required number of modes, but the algebra became very complex which made it impossible to implement in the DSP system used in this study
Adaptive control system for pulsed megawatt klystrons
Bolie, Victor W.
1992-01-01
The invention provides an arrangement for reducing waveform errors such as errors in phase or amplitude in output pulses produced by pulsed power output devices such as klystrons by generating an error voltage representing the extent of error still present in the trailing edge of the previous output pulse, using the error voltage to provide a stored control voltage, and applying the stored control voltage to the pulsed power output device to limit the extent of error in the leading edge of the next output pulse.
Automatic carrier landing system for V/STOL aircraft using L1 adaptive and optimal control
NASA Astrophysics Data System (ADS)
Hariharapura Ramesh, Shashank
This thesis presents a framework for developing automatic carrier landing systems for aircraft with vertical or short take-off and landing capability using two different control strategies---gain-scheduled linear optimal control, and L1 adaptive control. The carrier landing sequence of V/STOL aircraft involves large variations in dynamic pressure and aerodynamic coefficients arising because of the transition from aerodynamic-supported to jet-borne flight, descent to the touchdown altitude, and turns performed to align with the runway. Consequently, the dynamics of the aircraft exhibit a highly non-linear dynamical behavior with variations in flight conditions prior to touchdown. Therefore, the implication is the need for non-linear control techniques to achieve automatic landing. Gain-scheduling has been one of the most widely employed techniques for control of aircraft, which involves designing linear controllers for numerous trimmed flight conditions, and interpolating them to achieve a global non-linear control. Adaptive control technique, on the other hand, eliminates the need to schedule the controller parameters as they adapt to changing flight conditions.
Zhao, Guoliang; Li, Hongxing
2013-01-01
This paper proposes new methodologies for the design of adaptive integral-sliding mode control. A tensor product model transformation based adaptive integral-sliding mode control law with respect to uncertainties and perturbations is studied, while upper bounds on the perturbations and uncertainties are assumed to be unknown. The advantage of proposed controllers consists in having a dynamical adaptive control gain to establish a sliding mode right at the beginning of the process. Gain dynamics ensure a reasonable adaptive gain with respect to the uncertainties. Finally, efficacy of the proposed controller is verified by simulations on an uncertain nonlinear system model. PMID:24453897
Zhao, Guoliang; Sun, Kaibiao; Li, Hongxing
2013-01-01
This paper proposes new methodologies for the design of adaptive integral-sliding mode control. A tensor product model transformation based adaptive integral-sliding mode control law with respect to uncertainties and perturbations is studied, while upper bounds on the perturbations and uncertainties are assumed to be unknown. The advantage of proposed controllers consists in having a dynamical adaptive control gain to establish a sliding mode right at the beginning of the process. Gain dynamics ensure a reasonable adaptive gain with respect to the uncertainties. Finally, efficacy of the proposed controller is verified by simulations on an uncertain nonlinear system model.
Dynamic Reconstruction and Multivariable Control for Force-Actuated, Thin Facesheet Adaptive Optics
NASA Technical Reports Server (NTRS)
Grocott, Simon C. O.; Miller, David W.
1997-01-01
The Multiple Mirror Telescope (MMT) under development at the University of Arizona takes a new approach in adaptive optics placing a large (0.65 m) force-actuated, thin facesheet deformable mirror at the secondary of an astronomical telescope, thus reducing the effects of emissivity which are important in IR astronomy. However, The large size of the mirror and low stiffness actuators used drive the natural frequencies of the mirror down into the bandwidth of the atmospheric distortion. Conventional adaptive optics takes a quasi-static approach to controlling the, deformable mirror. However, flexibility within the control bandwidth calls for a new approach to adaptive optics. Dynamic influence functions are used to characterize the influence of each actuator on the surface of the deformable mirror. A linearized model of atmospheric distortion is combined with dynamic influence functions to produce a dynamic reconstructor. This dynamic reconstructor is recognized as an optimal control problem. Solving the optimal control problem for a system with hundreds of actuators and sensors is formidable. Exploiting the circularly symmetric geometry of the mirror, and a suitable model of atmospheric distortion, the control problem is divided into a number of smaller decoupled control problems using circulant matrix theory. A hierarchic control scheme which seeks to emulate the quasi-static control approach that is generally used in adaptive optics is compared to the proposed dynamic reconstruction technique. Although dynamic reconstruction requires somewhat more computational power to implement, it achieves better performance with less power usage, and is less sensitive than the hierarchic technique.
Embedded intelligent adaptive PI controller for an electromechanical system.
El-Nagar, Ahmad M
2016-09-01
In this study, an intelligent adaptive controller approach using the interval type-2 fuzzy neural network (IT2FNN) is presented. The proposed controller consists of a lower level proportional - integral (PI) controller, which is the main controller and an upper level IT2FNN which tuning on-line the parameters of a PI controller. The proposed adaptive PI controller based on IT2FNN (API-IT2FNN) is implemented practically using the Arduino DUE kit for controlling the speed of a nonlinear DC motor-generator system. The parameters of the IT2FNN are tuned on-line using back-propagation algorithm. The Lyapunov theorem is used to derive the stability and convergence of the IT2FNN. The obtained experimental results, which are compared with other controllers, demonstrate that the proposed API-IT2FNN is able to improve the system response over a wide range of system uncertainties. PMID:27342993
Finite-horizon control-constrained nonlinear optimal control using single network adaptive critics.
Heydari, Ali; Balakrishnan, Sivasubramanya N
2013-01-01
To synthesize fixed-final-time control-constrained optimal controllers for discrete-time nonlinear control-affine systems, a single neural network (NN)-based controller called the Finite-horizon Single Network Adaptive Critic is developed in this paper. Inputs to the NN are the current system states and the time-to-go, and the network outputs are the costates that are used to compute optimal feedback control. Control constraints are handled through a nonquadratic cost function. Convergence proofs of: 1) the reinforcement learning-based training method to the optimal solution; 2) the training error; and 3) the network weights are provided. The resulting controller is shown to solve the associated time-varying Hamilton-Jacobi-Bellman equation and provide the fixed-final-time optimal solution. Performance of the new synthesis technique is demonstrated through different examples including an attitude control problem wherein a rigid spacecraft performs a finite-time attitude maneuver subject to control bounds. The new formulation has great potential for implementation since it consists of only one NN with single set of weights and it provides comprehensive feedback solutions online, though it is trained offline.
Finite-horizon control-constrained nonlinear optimal control using single network adaptive critics.
Heydari, Ali; Balakrishnan, Sivasubramanya N
2013-01-01
To synthesize fixed-final-time control-constrained optimal controllers for discrete-time nonlinear control-affine systems, a single neural network (NN)-based controller called the Finite-horizon Single Network Adaptive Critic is developed in this paper. Inputs to the NN are the current system states and the time-to-go, and the network outputs are the costates that are used to compute optimal feedback control. Control constraints are handled through a nonquadratic cost function. Convergence proofs of: 1) the reinforcement learning-based training method to the optimal solution; 2) the training error; and 3) the network weights are provided. The resulting controller is shown to solve the associated time-varying Hamilton-Jacobi-Bellman equation and provide the fixed-final-time optimal solution. Performance of the new synthesis technique is demonstrated through different examples including an attitude control problem wherein a rigid spacecraft performs a finite-time attitude maneuver subject to control bounds. The new formulation has great potential for implementation since it consists of only one NN with single set of weights and it provides comprehensive feedback solutions online, though it is trained offline. PMID:24808214
Direct adaptive control of a PUMA 560 industrial robot
NASA Technical Reports Server (NTRS)
Seraji, Homayoun; Lee, Thomas; Delpech, Michel
1989-01-01
The implementation and experimental validation of a new direct adaptive control scheme on a PUMA 560 industrial robot is described. The testbed facility consists of a Unimation PUMA 560 six-jointed robot and controller, and a DEC MicroVAX II computer which hosts the Robot Control C Library software. The control algorithm is implemented on the MicroVAX which acts as a digital controller for the PUMA robot, and the Unimation controller is effectively bypassed and used merely as an I/O device to interface the MicroVAX to the joint motors. The control algorithm for each robot joint consists of an auxiliary signal generated by a constant-gain Proportional plus Integral plus Derivative (PID) controller, and an adaptive position-velocity (PD) feedback controller with adjustable gains. The adaptive independent joint controllers compensate for the inter-joint couplings and achieve accurate trajectory tracking without the need for the complex dynamic model and parameter values of the robot. Extensive experimental results on PUMA joint control are presented to confirm the feasibility of the proposed scheme, in spite of strong interactions between joint motions. Experimental results validate the capabilities of the proposed control scheme. The control scheme is extremely simple and computationally very fast for concurrent processing with high sampling rates.
Parallel adaptive mesh refinement techniques for plasticity problems
NASA Technical Reports Server (NTRS)
Barry, W. J.; Jones, M. T.; Plassmann, P. E.
1997-01-01
The accurate modeling of the nonlinear properties of materials can be computationally expensive. Parallel computing offers an attractive way for solving such problems; however, the efficient use of these systems requires the vertical integration of a number of very different software components, we explore the solution of two- and three-dimensional, small-strain plasticity problems. We consider a finite-element formulation of the problem with adaptive refinement of an unstructured mesh to accurately model plastic transition zones. We present a framework for the parallel implementation of such complex algorithms. This framework, using libraries from the SUMAA3d project, allows a user to build a parallel finite-element application without writing any parallel code. To demonstrate the effectiveness of this approach on widely varying parallel architectures, we present experimental results from an IBM SP parallel computer and an ATM-connected network of Sun UltraSparc workstations. The results detail the parallel performance of the computational phases of the application during the process while the material is incrementally loaded.
Adaptive Identification and Control of Flow-Induced Cavity Oscillations
NASA Technical Reports Server (NTRS)
Kegerise, M. A.; Cattafesta, L. N.; Ha, C.
2002-01-01
Progress towards an adaptive self-tuning regulator (STR) for the cavity tone problem is discussed in this paper. Adaptive system identification algorithms were applied to an experimental cavity-flow tested as a prerequisite to control. In addition, a simple digital controller and a piezoelectric bimorph actuator were used to demonstrate multiple tone suppression. The control tests at Mach numbers of 0.275, 0.40, and 0.60 indicated approx. = 7dB tone reductions at multiple frequencies. Several different adaptive system identification algorithms were applied at a single freestream Mach number of 0.275. Adaptive finite-impulse response (FIR) filters of orders up to N = 100 were found to be unsuitable for modeling the cavity flow dynamics. Adaptive infinite-impulse response (IIR) filters of comparable order better captured the system dynamics. Two recursive algorithms, the least-mean square (LMS) and the recursive-least square (RLS), were utilized to update the adaptive filter coefficients. Given the sample-time requirements imposed by the cavity flow dynamics, the computational simplicity of the least mean squares (LMS) algorithm is advantageous for real-time control.
Adaptive dual-layer super-twisting control and observation
NASA Astrophysics Data System (ADS)
Edwards, Christopher; Shtessel, Yuri
2016-09-01
In this paper, a super-twisting-like structure with adaptive gains is proposed. The structure is parameterised by two scalar gains, both of which adapt, and by an additional time-varying term. The magnitudes of the adaptive terms are allowed to both increase and decrease as appropriate so that they are as small as possible, in the sense that they do not unnecessarily over-bound the uncertainty, and yet are large enough to sustain a sliding motion. In the paper, a new time varying gain is incorporated into the traditional super-twisting architecture. The proposed adaption law has a dual-layer structure which is formally analyzed using Lyapunov techniques. The additional term has the effect of simplifying the stability analysis whilst guaranteeing the second-order sliding mode properties of the traditional super-twisting scheme.
Adapting Inspection Data for Computer Numerical Control
NASA Technical Reports Server (NTRS)
Hutchison, E. E.
1986-01-01
Machining time for repetitive tasks reduced. Program converts measurements of stub post locations by coordinate-measuring machine into form used by numerical-control computer. Work time thus reduced by 10 to 15 minutes for each post. Since there are 600 such posts on each injector, time saved per injector is 100 to 150 hours. With modifications this approach applicable to machining of many precise holes on large machine frames and similar objects.
Alves, Eliane Bemerguy; Alonso, Roberta Caroline Bruschi; Correr, Gisele Maria; Correr, Américo Bortolazzo; de Moraes, Rafael Ratto; Sinhoreti, Mário Alexandre Coelho; Correr-Sobrinho, Lourenço
2008-01-01
This study investigated the influence of different light sources associated with a transdental photoactivation technique on the marginal adaptation and hardness of composite restorations. Cavities (3 mm wide x 3 mm long x 1.5 mm in deep) were prepared on flattened bovine dentin and filled with Z250 composite (3M ESPE). Nine groups (n=10) were defined according to the curing technique (direct; transdental--photo-activation through 1 mm of enamel and 2 mm of dentin; mixed--transdental + direct) and light source (QTH XL2500, 3M ESPE; PAC Apollo 95E, DMD; LED Ultrablue Is, DMC) combination. Marginal adaptation was evaluated using a dye staining method, and the percentage of stained margins was recorded. Knoop Hardness readings were made across the transversal section of the fillings. Data were submitted to two-way ANOVA and Tukey's test (p< or =0.05). For margin analysis, although none of the curing conditions provided perfect adaptation, the mixed technique showed lower gap formation. No significant differences were detected between the transdental and other techniques, and no significant differences were detected among the light sources. For hardness, the direct technique showed slightly greater hardness than the mixed technique. Also, the mixed technique yielded greater hardness than the transdental technique. Among the light sources, the LED showed greater hardness than the PAC; whereas, no significant differences between the QTH and other sources were detected. The mixed technique might improve the marginal adaptation of restorations, while not being detrimental to composite hardness.
Baseline Adaptive Wavelet Thresholding Technique for sEMG Denoising
NASA Astrophysics Data System (ADS)
Bartolomeo, L.; Zecca, M.; Sessa, S.; Lin, Z.; Mukaeda, Y.; Ishii, H.; Takanishi, Atsuo
2011-06-01
The surface Electromyography (sEMG) signal is affected by different sources of noises: current technology is considerably robust to the interferences of the power line or the cable motion artifacts, but still there are many limitations with the baseline and the movement artifact noise. In particular, these sources have frequency spectra that include also the low-frequency components of the sEMG frequency spectrum; therefore, a standard all-bandwidth filtering could alter important information. The Wavelet denoising method has been demonstrated to be a powerful solution in processing white Gaussian noise in biological signals. In this paper we introduce a new technique for the denoising of the sEMG signal: by using the baseline of the signal before the task, we estimate the thresholds to apply to the Wavelet thresholding procedure. The experiments have been performed on ten healthy subjects, by placing the electrodes on the Extensor Carpi Ulnaris and Triceps Brachii on right upper and lower arms, and performing a flexion and extension of the right wrist. An Inertial Measurement Unit, developed in our group, has been used to recognize the movements of the hands to segment the exercise and the pre-task baseline. Finally, we show better performances of the proposed method in term of noise cancellation and distortion of the signal, quantified by a new suggested indicator of denoising quality, compared to the standard Donoho technique.
Adaptive neural network motion control of manipulators with experimental evaluations.
Puga-Guzmán, S; Moreno-Valenzuela, J; Santibáñez, V
2014-01-01
A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller. PMID:24574910
Adaptive Neural Network Motion Control of Manipulators with Experimental Evaluations
Puga-Guzmán, S.; Moreno-Valenzuela, J.; Santibáñez, V.
2014-01-01
A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller. PMID:24574910
Adaptive neural network motion control of manipulators with experimental evaluations.
Puga-Guzmán, S; Moreno-Valenzuela, J; Santibáñez, V
2014-01-01
A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller.
Hybrid Decompositional Verification for Discovering Failures in Adaptive Flight Control Systems
NASA Technical Reports Server (NTRS)
Thompson, Sarah; Davies, Misty D.; Gundy-Burlet, Karen
2010-01-01
Adaptive flight control systems hold tremendous promise for maintaining the safety of a damaged aircraft and its passengers. However, most currently proposed adaptive control methodologies rely on online learning neural networks (OLNNs), which necessarily have the property that the controller is changing during the flight. These changes tend to be highly nonlinear, and difficult or impossible to analyze using standard techniques. In this paper, we approach the problem with a variant of compositional verification. The overall system is broken into components. Undesirable behavior is fed backwards through the system. Components which can be solved using formal methods techniques explicitly for the ranges of safe and unsafe input bounds are treated as white box components. The remaining black box components are analyzed with heuristic techniques that try to predict a range of component inputs that may lead to unsafe behavior. The composition of these component inputs throughout the system leads to overall system test vectors that may elucidate the undesirable behavior
Adaptive control experiment with a large flexible structure
NASA Technical Reports Server (NTRS)
Ih, Che-Hang Charles; Bayard, David S.; Wang, Shyh Jong; Eldred, Daniel B.
1988-01-01
A large space antenna-like ground experiment structure has been developed for conducting research and validation of advanced control technology. A set of proof-of-concept adaptive control experiments for transient and initial deflection regulation with a small set of sensors and actuators were conducted. Very limited knowledge of the plant dynamics and its environment was used in the design of the adaptive controller so that performance could be demonstrated under conditions of gross underlying uncertainties. High performance has been observed under such stringent conditions. These experiments have established a baseline for future studies involving more complex hardware and environmental conditions, and utilizing additional sets of sensors and actuators.
Real-time control system for adaptive resonator
Flath, L; An, J; Brase, J; Hurd, R; Kartz, M; Sawvel, R; Silva, D
2000-07-24
Sustained operation of high average power solid-state lasers currently requires an adaptive resonator to produce the optimal beam quality. We describe the architecture of a real-time adaptive control system for correcting intra-cavity aberrations in a heat capacity laser. Image data collected from a wavefront sensor are processed and used to control phase with a high-spatial-resolution deformable mirror. Our controller takes advantage of recent developments in low-cost, high-performance processor technology. A desktop-based computational engine and object-oriented software architecture replaces the high-cost rack-mount embedded computers of previous systems.
Adaptive Transmission Control Method for Communication-Broadcasting Integrated Services
NASA Astrophysics Data System (ADS)
Koto, Hideyuki; Furuya, Hiroki; Nakamura, Hajime
This paper proposes an adaptive transmission control method for massive and intensive telecommunication traffic generated by communication-broadcasting integrated services. The proposed method adaptively controls data transmissions from viewers depending on the congestion states, so that severe congestion can be effectively avoided. Furthermore, it utilizes the broadcasting channel which is not only scalable, but also reliable for controlling the responses from vast numbers of viewers. The performance of the proposed method is evaluated through experiments on a test bed where approximately one million viewers are emulated. The obtained results quantitatively demonstrate the performance of the proposed method and its effectiveness under massive and intensive traffic conditions.
Adaptive Control of Truss Structures for Gossamer Spacecraft
NASA Technical Reports Server (NTRS)
Yang Bong-Jun; Calise, anthony J.; Craig, James I.; Whorton, Mark S.
2007-01-01
Neural network-based adaptive control is considered for active control of a highly flexible truss structure which may be used to support solar sail membranes. The objective is to suppress unwanted vibrations in SAFE (Solar Array Flight Experiment) boom, a test-bed located at NASA. Compared to previous tests that restrained truss structures in planar motion, full three dimensional motions are tested. Experimental results illustrate the potential of adaptive control in compensating for nonlinear actuation and modeling error, and in rejecting external disturbances.
A Decentralized Adaptive Approach to Fault Tolerant Flight Control
NASA Technical Reports Server (NTRS)
Wu, N. Eva; Nikulin, Vladimir; Heimes, Felix; Shormin, Victor
2000-01-01
This paper briefly reports some results of our study on the application of a decentralized adaptive control approach to a 6 DOF nonlinear aircraft model. The simulation results showed the potential of using this approach to achieve fault tolerant control. Based on this observation and some analysis, the paper proposes a multiple channel adaptive control scheme that makes use of the functionally redundant actuating and sensing capabilities in the model, and explains how to implement the scheme to tolerate actuator and sensor failures. The conditions, under which the scheme is applicable, are stated in the paper.
On Using Exponential Parameter Estimators with an Adaptive Controller
NASA Technical Reports Server (NTRS)
Patre, Parag; Joshi, Suresh M.
2011-01-01
Typical adaptive controllers are restricted to using a specific update law to generate parameter estimates. This paper investigates the possibility of using any exponential parameter estimator with an adaptive controller such that the system tracks a desired trajectory. The goal is to provide flexibility in choosing any update law suitable for a given application. The development relies on a previously developed concept of controller/update law modularity in the adaptive control literature, and the use of a converse Lyapunov-like theorem. Stability analysis is presented to derive gain conditions under which this is possible, and inferences are made about the tracking error performance. The development is based on a class of Euler-Lagrange systems that are used to model various engineering systems including space robots and manipulators.
Balancing Training Techniques for Flight Controller Certification
NASA Technical Reports Server (NTRS)
Gosling, Christina
2011-01-01
Training of ground control teams has been a difficult task in space operations. There are several intangible skills that must be learned to become the steely eyed men and women of mission control who respond to spacecraft failures that can lead to loss of vehicle or crew if handled improperly. And as difficult as training is, it can also be costly. Every day, month or year an operator is in training, is a day that not only they are being trained without direct benefit to the organization, but potentially an instructor or mentor is also being paid for hours spent assisting them. Therefore, optimization of the training flow is highly desired. Recently the Expedition Division (DI) at Johnson Space Flight Center has recreated their training flows for the purpose of both moving to an operator/specialist/instructor hierarchy and to address past inefficiencies in the training flow. This paper will discuss the types of training DI is utilizing in their new flows, and the balance that has been struck between the ideal learning environments and realistic constraints. Specifically, the past training flow for the ISS Attitude Determination and Control Officer will be presented, including drawbacks that were encountered. Then the new training flow will be discussed and how a new approach utilizes more training methods and teaching techniques. We will look at how DI has integrated classes, workshops, checkouts, module reviews, scenarios, OJT, paper sims, Mini Sims, and finally Integrated Sims to balance the cost and timing of training a new flight controller.
NASA Technical Reports Server (NTRS)
Kilgore, Robert A.; Dress, David A.; Wolf, Stephen W. D.; Britcher, Colin P.
1989-01-01
The ability to get good experimental data in wind tunnels is often compromised by things seemingly beyond our control. Inadequate Reynolds number, wall interference, and support interference are three of the major problems in wind tunnel testing. Techniques for solving these problems are available. Cryogenic wind tunnels solve the problem of low Reynolds number. Adaptive wall test sections can go a long way toward eliminating wall interference. A magnetic suspension and balance system (MSBS) completely eliminates support interference. Cryogenic tunnels, adaptive wall test sections, and MSBS are surveyed. A brief historical overview is given and the present state of development and application in each area is described.
Adaptive control and orbit determination for elliptical rendezvous
NASA Astrophysics Data System (ADS)
Xu, Lijia; Hu, Yong; Jiang, Tiantian
2016-10-01
In this paper, we study the control and orbit determination problems for elliptical rendezvous. Autonomous rendezvous is achieved by the proposed adaptive control based on the measurements of relative position and velocity between the chaser and target spacecraft. Moreover, the target orbital elements can be estimated during the rendezvous process. Finally, the effectiveness of the method is illustrated by simulations.
Study on rule-based adaptive fuzzy excitation control technology
NASA Astrophysics Data System (ADS)
Zhao, Hui; Wang, Hong-jun; Liu, Lu-yuan; Yue, You-jun
2008-10-01
Power system is a kind of typical non-linear system, it is hard to achieve excellent control performance with conventional PID controller under different operating conditions. Fuzzy parameter adaptive PID exciting controller is very efficient to overcome the influence of tiny disturbances, but the performance of the control system will be worsened when operating conditions of the system change greatly or larger disturbances occur. To solve this problem, this article presents a rule adaptive fuzzy control scheme for synchronous generator exciting system. In this scheme the control rule adaptation is implemented by regulating the value of parameter di under the given proportional divisors K1, K2 and K3 of fuzzy sets Ai and Bi. This rule adaptive mechanism is constituted by two groups of original rules about the self-generation and self-correction of the control rule. Using two groups of rules, the control rule activated by status 1 and 2 in figure 2 system can be regulated automatically and simultaneously at the time instant k. The results from both theoretical analysis and simulation show that the presented scheme is effective and feasible and possesses good performance.
Comparability of naturalistic and controlled observation assessment of adaptive behavior.
Millham, J; Chilcutt, J; Atkinson, B L
1978-07-01
The comparability of retrospective naturalistic and controlled observation assessment of adaptive behavior was evaluated. The number, degree, and direction of discrepancies were evaluated with respect to level of retardation of the client, rater differences, behavior domain sampled, and prior observational base for the ratings. Generally poor comparability between the procedures was found and questions were raised concerning the types of generalizability that can be made from adaptive behavior assessment obtained under the two procedures.
Magnetic force control technique in industrial application
NASA Astrophysics Data System (ADS)
Nishijima, S.
2010-11-01
Techniques of the magnetic force control have been examined for industrial application. The problems and the technique are different in dispersion medium of gas and that of liquid. In addition, the method is different depending on the magnetic characteristic of the target objects. In case of the liquid, the dispersion medium having different viscosity was examined. The separation speed is decided with the magnitude of the magnetic force because a drag force increases with the viscosity. When the water is the dispersion medium, magnetic seeding is possible and hence the nonmagnetic materials can be separated and even the dissolved material could be separated. The separation technique has been used for purifying the waste water form paper mill or wash water of drum. On the other hand when the water is not dispersion medium, mainly the ferromagnetism particle becomes the target object because the magnetic seeding becomes difficult. The iron fragments have been separated from the slurry of slicing machine of solar battery. It has been clarified high gradient magnetic separation (HGMS) can be applied for the viscous fluid of which viscosity was as high as 10 Pa s. When the dispersion medium is gaseous material, the air is important. The drag force from air depends greatly on Reynolds number. When speed of the air is small, the Reynolds number is small, and the drag force is calculated by the Stokes’ law of resistance. The study with gaseous dispersion medium is not carried out much. The magnetic separation will discuss the possibility of the industrial application of this technique.
NASA Technical Reports Server (NTRS)
Baer-Riedhart, Jennifer L.; Landy, Robert J.
1987-01-01
The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.
Stochastic Leader Gravitational Search Algorithm for Enhanced Adaptive Beamforming Technique
Darzi, Soodabeh; Islam, Mohammad Tariqul; Tiong, Sieh Kiong; Kibria, Salehin; Singh, Mandeep
2015-01-01
In this paper, stochastic leader gravitational search algorithm (SL-GSA) based on randomized k is proposed. Standard GSA (SGSA) utilizes the best agents without any randomization, thus it is more prone to converge at suboptimal results. Initially, the new approach randomly choses k agents from the set of all agents to improve the global search ability. Gradually, the set of agents is reduced by eliminating the agents with the poorest performances to allow rapid convergence. The performance of the SL-GSA was analyzed for six well-known benchmark functions, and the results are compared with SGSA and some of its variants. Furthermore, the SL-GSA is applied to minimum variance distortionless response (MVDR) beamforming technique to ensure compatibility with real world optimization problems. The proposed algorithm demonstrates superior convergence rate and quality of solution for both real world problems and benchmark functions compared to original algorithm and other recent variants of SGSA. PMID:26552032
Adaptation of a coculture technique to the Minitek anaerobe system.
Hussain, Z; Lannigan, R; Bürger, H; Groves, D
1985-01-01
A method to produce anaerobic conditions by coculture with a nonfermentative organism was utilized in conjunction with the Minitek anaerobe system (BBL Microbiology Systems, Cockeysville, Md.) for identification of anaerobic bacteria from clinical specimens. With the coculture method, the Minitek anaerobe identification tests could be incubated under aerobic conditions. In 1,900 individual biochemical reactions, 1,826 (96%) were identical whether anaerobic conditions were achieved by conventional or coculture techniques. In comparison with the reference identification (Virginia Polytechnic Institute and State University, Blacksburg), both systems of incubation identified 91 of 99 strains (92%) correctly. The method of incubation had an effect on identification to the genus level in 1 of 99 (1%) strains and to the species level in 3 of 99 (3%) strains. PMID:3886697
Adaptive array technique for differential-phase reflectometry in QUEST
Idei, H. Hanada, K.; Zushi, H.; Nagata, K.; Mishra, K.; Itado, T.; Akimoto, R.; Yamamoto, M. K.
2014-11-15
A Phased Array Antenna (PAA) was considered as launching and receiving antennae in reflectometry to attain good directivity in its applied microwave range. A well-focused beam was obtained in a launching antenna application, and differential-phase evolution was properly measured by using a metal reflector plate in the proof-of-principle experiment at low power test facilities. Differential-phase evolution was also evaluated by using the PAA in the Q-shu University Experiment with Steady State Spherical Tokamak (QUEST). A beam-forming technique was applied in receiving phased-array antenna measurements. In the QUEST device that should be considered as a large oversized cavity, standing wave effect was significantly observed with perturbed phase evolution. A new approach using derivative of measured field on propagating wavenumber was proposed to eliminate the standing wave effect.
Adaptive control of large space structures using recursive lattice filters
NASA Technical Reports Server (NTRS)
Goglia, G. L.
1985-01-01
The use of recursive lattice filters for identification and adaptive control of large space structures was studied. Lattice filters are used widely in the areas of speech and signal processing. Herein, they are used to identify the structural dynamics model of the flexible structures. This identified model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures control is engaged. This type of validation scheme prevents instability when the overall loop is closed. The results obtained from simulation were compared to those obtained from experiments. In this regard, the flexible beam and grid apparatus at the Aerospace Control Research Lab (ACRL) of NASA Langley Research Center were used as the principal candidates for carrying out the above tasks. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods.
Bounded Linear Stability Analysis - A Time Delay Margin Estimation Approach for Adaptive Control
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Ishihara, Abraham K.; Krishnakumar, Kalmanje Srinlvas; Bakhtiari-Nejad, Maryam
2009-01-01
This paper presents a method for estimating time delay margin for model-reference adaptive control of systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent the conventional model-reference adaptive law by a locally bounded linear approximation within a small time window using the comparison lemma. The locally bounded linear approximation of the combined adaptive system is cast in a form of an input-time-delay differential equation over a small time window. The time delay margin of this system represents a local stability measure and is computed analytically by a matrix measure method, which provides a simple analytical technique for estimating an upper bound of time delay margin. Based on simulation results for a scalar model-reference adaptive control system, both the bounded linear stability method and the matrix measure method are seen to provide a reasonably accurate and yet not too conservative time delay margin estimation.
Carmena, Jose M.
2016-01-01
Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain’s behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user’s motor intention during CLDA—a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to
Shanechi, Maryam M; Orsborn, Amy L; Carmena, Jose M
2016-04-01
Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain's behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user's motor intention during CLDA-a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to parameter
Adapting End Host Congestion Control for Mobility
NASA Technical Reports Server (NTRS)
Eddy, Wesley M.; Swami, Yogesh P.
2005-01-01
Network layer mobility allows transport protocols to maintain connection state, despite changes in a node's physical location and point of network connectivity. However, some congestion-controlled transport protocols are not designed to deal with these rapid and potentially significant path changes. In this paper we demonstrate several distinct problems that mobility-induced path changes can create for TCP performance. Our premise is that mobility events indicate path changes that require re-initialization of congestion control state at both connection end points. We present the application of this idea to TCP in the form of a simple solution (the Lightweight Mobility Detection and Response algorithm, that has been proposed in the IETF), and examine its effectiveness. In general, we find that the deficiencies presented are both relatively easily and painlessly fixed using this solution. We also find that this solution has the counter-intuitive property of being both more friendly to competing traffic, and simultaneously more aggressive in utilizing newly available capacity than unmodified TCP.
Adaptive mass expulsion attitude control system
NASA Technical Reports Server (NTRS)
Rodden, John J. (Inventor); Stevens, Homer D. (Inventor); Carrou, Stephane (Inventor)
2001-01-01
An attitude control system and method operative with a thruster controls the attitude of a vehicle carrying the thruster, wherein the thruster has a valve enabling the formation of pulses of expelled gas from a source of compressed gas. Data of the attitude of the vehicle is gathered, wherein the vehicle is located within a force field tending to orient the vehicle in a first attitude different from a desired attitude. The attitude data is evaluated to determine a pattern of values of attitude of the vehicle in response to the gas pulses of the thruster and in response to the force field. The system and the method maintain the attitude within a predetermined band of values of attitude which includes the desired attitude. Computation circuitry establishes an optimal duration of each of the gas pulses based on the pattern of values of attitude, the optimal duration providing for a minimal number of opening and closure operations of the valve. The thruster is operated to provide gas pulses having the optimal duration.
My Solar System: A Developmentally Adapted Eco-Mapping Technique for Children
ERIC Educational Resources Information Center
Curry, Jennifer R.; Fazio-Griffith, Laura J.; Rohr, Shannon N.
2008-01-01
Counseling children requires specific skills and techniques, such as play therapy and expressive arts, to address developmental manifestations and to facilitate the understanding of presenting problems. This article outlines an adapted eco-mapping activity that can be used as a creative counseling technique with children in order to promote…
Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems.
Zhang, Yanjun; Tao, Gang; Chen, Mou
2016-09-01
This paper presents a new study on the adaptive neural network-based control of a class of noncanonical nonlinear systems with large parametric uncertainties. Unlike commonly studied canonical form nonlinear systems whose neural network approximation system models have explicit relative degree structures, which can directly be used to derive parameterized controllers for adaptation, noncanonical form nonlinear systems usually do not have explicit relative degrees, and thus their approximation system models are also in noncanonical forms. It is well-known that the adaptive control of noncanonical form nonlinear systems involves the parameterization of system dynamics. As demonstrated in this paper, it is also the case for noncanonical neural network approximation system models. Effective control of such systems is an open research problem, especially in the presence of uncertain parameters. This paper shows that it is necessary to reparameterize such neural network system models for adaptive control design, and that such reparameterization can be realized using a relative degree formulation, a concept yet to be studied for general neural network system models. This paper then derives the parameterized controllers that guarantee closed-loop stability and asymptotic output tracking for noncanonical form neural network system models. An illustrative example is presented with the simulation results to demonstrate the control design procedure, and to verify the effectiveness of such a new design method.
Non-linear adaptive sliding mode switching control with average dwell-time
NASA Astrophysics Data System (ADS)
Yu, Lei; Zhang, Maoqing; Fei, Shumin
2013-03-01
In this article, an adaptive integral sliding mode control scheme is addressed for switched non-linear systems in the presence of model uncertainties and external disturbances. The control law includes two parts: a slide mode controller for the reduced model of the plant and a compensation controller to deal with the non-linear systems with parameter uncertainties. The adaptive updated laws have been derived from the switched multiple Lyapunov function method, also an admissible switching signal with average dwell-time technique is given. The simplicity of the proposed control scheme facilitates its implementation and the overall control scheme guarantees the global asymptotic stability in the Lyapunov sense such that the sliding surface of the control system is well reached. Simulation results are presented to demonstrate the effectiveness and the feasibility of the proposed approach.
NASA Technical Reports Server (NTRS)
Kopasakis, George
1997-01-01
Performance Seeking Control attempts to find the operating condition that will generate optimal performance and control the plant at that operating condition. In this paper a nonlinear multivariable Adaptive Performance Seeking Control (APSC) methodology will be developed and it will be demonstrated on a nonlinear system. The APSC is comprised of the Positive Gradient Control (PGC) and the Fuzzy Model Reference Learning Control (FMRLC). The PGC computes the positive gradients of the desired performance function with respect to the control inputs in order to drive the plant set points to the operating point that will produce optimal performance. The PGC approach will be derived in this paper. The feedback control of the plant is performed by the FMRLC. For the FMRLC, the conventional fuzzy model reference learning control methodology is utilized, with guidelines generated here for the effective tuning of the FMRLC controller.
NASA Astrophysics Data System (ADS)
Nishino, Toshimasa; Fujitani, Yasuhiro; Kato, Norihiko; Tsuda, Naoaki; Nomura, Yoshihiko; Matsui, Hirokazu
2012-01-01
The objective of this paper is to establish a technique that levitates and conveys a hand, a kind of micro-robot, by applying magnetic forces: the hand is assumed to have a function of holding and detaching the objects. The equipment to be used in our experiments consists of four pole-pieces of electromagnets, and is expected to work as a 4DOF drive unit within some restricted range of 3D space: the three DOF are corresponding to 3D positional control and the remaining one DOF, rotational oscillation damping control. Having used the same equipment, Khamesee et al. had manipulated the impressed voltages on the four electric magnetics by a PID controller by the use of the feedback signal of the hand's 3D position, the controlled variable. However, in this system, there were some problems remaining: in the horizontal direction, when translating the hand out of restricted region, positional control performance was suddenly degraded. The authors propose a method to apply an adaptive control to the horizontal directional control. It is expected that the technique to be presented in this paper contributes not only to the improvement of the response characteristic but also to widening the applicable range in the horizontal directional control.
Adaptive independent joint control of manipulators - Theory and experiment
NASA Technical Reports Server (NTRS)
Seraji, H.
1988-01-01
The author presents a simple decentralized adaptive control scheme for multijoint robot manipulators based on the independent joint control concept. The proposed control scheme for each joint consists of a PID (proportional integral and differential) feedback controller and a position-velocity-acceleration feedforward controller, both with adjustable gains. The static and dynamic couplings that exist between the joint motions are compensated by the adaptive independent joint controllers while ensuring trajectory tracking. The proposed scheme is implemented on a MicroVAX II computer for motion control of the first three joints of a PUMA 560 arm. Experimental results are presented to demonstrate that trajectory tracking is achieved despite strongly coupled, highly nonlinear joint dynamics. The results confirm that the proposed decentralized adaptive control of manipulators is feasible, in spite of strong interactions between joint motions. The control scheme presented is computationally very fast and is amenable to parallel processing implementation within a distributed computing architecture, where each joint is controlled independently by a simple algorithm on a dedicated microprocessor.
Adaptive control of large space structures using recursive lattice filters
NASA Technical Reports Server (NTRS)
Sundararajan, N.; Goglia, G. L.
1985-01-01
The use of recursive lattice filters for identification and adaptive control of large space structures is studied. Lattice filters were used to identify the structural dynamics model of the flexible structures. This identification model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures is control engaged. This type of validation scheme prevents instability when the overall loop is closed. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods. The method uses the Linear Quadratic Guassian/Loop Transfer Recovery (LQG/LTR) approach to ensure stability against unmodeled higher frequency modes and achieves the desired performance.
Autonomous and Adaptive Voltage Control using Multiple Distributed Energy Resources
Li, Huijuan; Li, Fangxing; Xu, Yan; Rizy, D Tom
2012-01-01
Voltage regulation using distributed energy resources (DE) or distributed generators (DG) with power electronics interfaces and logic control has drawn increasing interests. This paper addresses the challenges of controlling multiple DEs to regulate voltages in distribution systems using an autonomous and adaptive control approach. Theoretical analysis shows that there exists a corresponding formulation of the dynamic control parameters with multiple DEs. Hence, the proposed control method is theoretically solid. Simulation results confirm that this method is capable of satisfying the fast response requirement for operational use without causing oscillation or inefficiency. This method is autonomous based on local information and the other DEs input without the instructions from any control center, is widely adaptive to variable power system operational situations, and has a high tolerance to data shortage of systems parameter. Hence, it is suitable for broad utility application
An adaptable Boolean net trainable to control a computing robot
Lauria, F. E.; Prevete, R.; Milo, M.; Visco, S.
1999-03-22
We discuss a method to implement in a Boolean neural network a Hebbian rule so to obtain an adaptable universal control system. We start by presenting both the Boolean neural net and the Hebbian rule we have considered. Then we discuss, first, the problems arising when the latter is naively implemented in a Boolean neural net, second, the method consenting us to overcome them and the ensuing adaptable Boolean neural net paradigm. Next, we present the adaptable Boolean neural net as an intelligent control system, actually controlling a writing robot, and discuss how to train it in the execution of the elementary arithmetic operations on operands represented by numerals with an arbitrary number of digits.
Parallel computation of geometry control in adaptive truss structures
NASA Technical Reports Server (NTRS)
Ramesh, A. V.; Utku, S.; Wada, B. K.
1992-01-01
The fast computation of geometry control in adaptive truss structures involves two distinct parts: the efficient integration of the inverse kinematic differential equations that govern the geometry control and the fast computation of the Jacobian, which appears on the right-hand-side of the inverse kinematic equations. This paper present an efficient parallel implementation of the Jacobian computation on an MIMD machine. Large speedup from the parallel implementation is obtained, which reduces the Jacobian computation to an O(M-squared/n) procedure on an n-processor machine, where M is the number of members in the adaptive truss. The parallel algorithm given here is a good candidate for on-line geometry control of adaptive structures using attached processors.
A discrete-time adaptive control scheme for robot manipulators
NASA Technical Reports Server (NTRS)
Tarokh, M.
1990-01-01
A discrete-time model reference adaptive control scheme is developed for trajectory tracking of robot manipulators. The scheme utilizes feedback, feedforward, and auxiliary signals, obtained from joint angle measurement through simple expressions. Hyperstability theory is utilized to derive the adaptation laws for the controller gain matrices. It is shown that trajectory tracking is achieved despite gross robot parameter variation and uncertainties. The method offers considerable design flexibility and enables the designer to improve the performance of the control system by adjusting free design parameters. The discrete-time adaptation algorithm is extremely simple and is therefore suitable for real-time implementation. Simulations and experimental results are given to demonstrate the performance of the scheme.
Adaptive bioinspired landmark identification for navigation control
NASA Astrophysics Data System (ADS)
Arena, Paolo; Cruse, Holk; Fortuna, Luigi; Lombardo, Davide; Patané, Luca; Rapisarda, Rosa
2007-05-01
In this paper a new methodology for landmark navigation will be introduced. Either for animals or for artificial agents, the whole problem of landmark navigation can be divided into two parts: first, the agent has to recognize, from the dynamic environment, space invariant objects which can be considered as suitable landmarks for driving the motion towards a goal position; second, it has to use the information on the landmarks to effectively navigate within the environment. Here, the problem of determining landmarks has been addressed by processing the external information through a spiking network with dynamic synapses plastically tuned by an STDP algorithm. The learning processes establish correlations between the incoming stimuli, allowing the system to extract from the scenario important features which can play the role of landmarks. Once established the landmarks, the agent acquires geometric relationships between them and the goal position. This process defines the parameters of a recurrent neural network (RNN). This in turn drives the agent navigation, filtering the information about landmarks given within an absolute reference system (e.g the North). When the absolute reference is not available, a safety mechanism acts to control the motion maintaining a correct heading. Simulation results showed the potentiality of the proposed architecture: this is able to drive an agent towards the desired position in presence of stimuli subject to noise and also in the case of partially obscured landmarks.
Increasing autonomy of precision spacecraft using neural network adaptive control
NASA Astrophysics Data System (ADS)
Denoyer, Keith K.; Ninneman, R. Rory
1999-01-01
In recent years, there has been a significant interest in the use of adaptive methods for controlling structures in high precision aerospace applications. This is because adaptive methods offer the potential to autonomously adjust to system characteristics different from those modeled or seen in qualification testing. This is especially true of spacecraft, which are generally tested in a 1-g environment. Despite extensive research, it remains extremely difficult to predict on-orbit 0-g behavior. In addition, system dynamics often tend to be time varying. This can take the form of slow changes due to degradation of materials and aging of the spacecraft or sudden failures such as the loss of a sensor or actuator. These events become increasingly likely as spacecraft become more and more complex. By decreasing modeling and testing requirements, lowering operations and maintenance activities that require human intervention, and increasing reliability, adaptive methods have the potential to significantly reduce cost and increase performance of these systems. One class of adaptive control methods are those which utilize artificial neural networks. The use of neural networks has become increasingly mature in a number of areas such as image processing and speech recognition. However, despite a number of publications on the subject, very few instances exist where neural networks have actually been used in control and in particular, structural control applications. The United States Air Force Research Laboratory (AFRL) is currently engaged in advancing adaptive neural control technologies for application to precision space systems. This paper gives an overview of several past and current ground and space based adaptive neural control experiments.
Mechanisms of motor adaptation in reactive balance control.
Welch, Torrence D J; Ting, Lena H
2014-01-01
Balance control must be rapidly modified to provide stability in the face of environmental challenges. Although changes in reactive balance over repeated perturbations have been observed previously, only anticipatory postural adjustments preceding voluntary movements have been studied in the framework of motor adaptation and learning theory. Here, we hypothesized that adaptation occurs in task-level balance control during responses to perturbations due to central changes in the control of both anticipatory and reactive components of balance. Our adaptation paradigm consisted of a Training set of forward support-surface perturbations, a Reversal set of novel countermanding perturbations that reversed direction, and a Washout set identical to the Training set. Adaptation was characterized by a change in a motor variable from the beginning to the end of each set, the presence of aftereffects at the beginning of the Washout set when the novel perturbations were removed, and a return of the variable at the end of the Washout to a level comparable to the end of the Training set. Task-level balance performance was characterized by peak center of mass (CoM) excursion and velocity, which showed adaptive changes with repetitive trials. Only small changes in anticipatory postural control, characterized by body lean and background muscle activity were observed. Adaptation was found in the evoked long-latency muscular response, and also in the sensorimotor transformation mediating that response. Finally, in each set, temporal patterns of muscle activity converged towards an optimum predicted by a trade-off between maximizing motor performance and minimizing muscle activity. Our results suggest that adaptation in balance, as well as other motor tasks, is mediated by altering central sensitivity to perturbations and may be driven by energetic considerations. PMID:24810991
Active Attenuation of Acoustic Noise Using Adaptive Armax Control.
NASA Astrophysics Data System (ADS)
Swanson, David Carl
An adaptive auxiliary input autoregressive moving average (ARMAX) control system using the recursive least -squares lattice for system identification is developed for active control of dynamic systems. The closed-loop adaptive ARMAX control system is applied to active acoustic noise reduction in three-dimensional spaces. The structure of the ARMAX system is compared to that for duct cancellation systems, model-reference control systems, and the general field solution and is seen as a reasonable approach for active field control in the general case. The ARMAX system is derived for multiple inputs and outputs where the measured outputs are to be driven to desired waveforms with least -squares error using a multi-channel ARMAX lattice for recursive system identification. A significant reduction in complexity is obtained by neglecting the ARMAX zeros for the special case of active attenuation of non-dispersive acoustic waves. It is shown that using the least-squares lattice requires fewer multiplies, divides, additions, and subtractions than the recursive least-squares algorithm which is based on the matrix inversion lemma. Computational complexity is seen as an important issue in the application of adaptive ARMAX systems to active field control because the system must control relatively higher numbers of modes and frequencies in real time than are seen in industrial process plants for which the adaptive ARMAX systems were first developed using recursive least squares. Convergence requirements using the lattice system identification algorithm are the same as that for the recursive least squares algorithm in adaptive ARMAX system and are verified in numerical simulations using known ARMAX parameters. A real-time simulation of active attenuation of acoustic noise is presented using the blade-excited harmonics from a small axial flow fan. The adaptive ARMAX controller provides active attenuation for correlated spectral peaks but not for uncorrelated noise from turbulence
Adaptive mechanism-based congestion control for networked systems
NASA Astrophysics Data System (ADS)
Liu, Zhi; Zhang, Yun; Chen, C. L. Philip
2013-03-01
In order to assure the communication quality in network systems with heavy traffic and limited bandwidth, a new ATRED (adaptive thresholds random early detection) congestion control algorithm is proposed for the congestion avoidance and resource management of network systems. Different to the traditional AQM (active queue management) algorithms, the control parameters of ATRED are not configured statically, but dynamically adjusted by the adaptive mechanism. By integrating with the adaptive strategy, ATRED alleviates the tuning difficulty of RED (random early detection) and shows a better control on the queue management, and achieve a more robust performance than RED under varying network conditions. Furthermore, a dynamic transmission control protocol-AQM control system using ATRED controller is introduced for the systematic analysis. It is proved that the stability of the network system can be guaranteed when the adaptive mechanism is finely designed. Simulation studies show the proposed ATRED algorithm achieves a good performance in varying network environments, which is superior to the RED and Gentle-RED algorithm, and providing more reliable service under varying network conditions.
Adaptive control system having hedge unit and related apparatus and methods
NASA Technical Reports Server (NTRS)
Johnson, Eric Norman (Inventor); Calise, Anthony J. (Inventor)
2007-01-01
The invention includes an adaptive control system used to control a plant. The adaptive control system includes a hedge unit that receives at least one control signal and a plant state signal. The hedge unit generates a hedge signal based on the control signal, the plant state signal, and a hedge model including a first model having one or more characteristics to which the adaptive control system is not to adapt, and a second model not having the characteristic(s) to which the adaptive control system is not to adapt. The hedge signal is used in the adaptive control system to remove the effect of the characteristic from a signal supplied to an adaptation law unit of the adaptive control system so that the adaptive control system does not adapt to the characteristic in controlling the plant.
Adaptive control system having hedge unit and related apparatus and methods
NASA Technical Reports Server (NTRS)
Johnson, Eric Norman (Inventor); Calise, Anthony J. (Inventor)
2003-01-01
The invention includes an adaptive control system used to control a plant. The adaptive control system includes a hedge unit that receives at least one control signal and a plant state signal. The hedge unit generates a hedge signal based on the control signal, the plant state signal, and a hedge model including a first model having one or more characteristics to which the adaptive control system is not to adapt, and a second model not having the characteristic(s) to which the adaptive control system is not to adapt. The hedge signal is used in the adaptive control system to remove the effect of the characteristic from a signal supplied to an adaptation law unit of the adaptive control system so that the adaptive control system does not adapt to the characteristic in controlling the plant.
Adaptability of laser diffraction measurement technique in soil physics methodology
NASA Astrophysics Data System (ADS)
Barna, Gyöngyi; Szabó, József; Rajkai, Kálmán; Bakacsi, Zsófia; Koós, Sándor; László, Péter; Hauk, Gabriella; Makó, András
2016-04-01
There are intentions all around the world to harmonize soils' particle size distribution (PSD) data by the laser diffractometer measurements (LDM) to that of the sedimentation techniques (pipette or hydrometer methods). Unfortunately, up to the applied methodology (e. g. type of pre-treatments, kind of dispersant etc.), PSDs of the sedimentation methods (due to different standards) are dissimilar and could be hardly harmonized with each other, as well. A need was arisen therefore to build up a database, containing PSD values measured by the pipette method according to the Hungarian standard (MSZ-08. 0205: 1978) and the LDM according to a widespread and widely used procedure. In our current publication the first results of statistical analysis of the new and growing PSD database are presented: 204 soil samples measured with pipette method and LDM (Malvern Mastersizer 2000, HydroG dispersion unit) were compared. Applying usual size limits at the LDM, clay fraction was highly under- and silt fraction was overestimated compared to the pipette method. Subsequently soil texture classes determined from the LDM measurements significantly differ from results of the pipette method. According to previous surveys and relating to each other the two dataset to optimizing, the clay/silt boundary at LDM was changed. Comparing the results of PSDs by pipette method to that of the LDM, in case of clay and silt fractions the modified size limits gave higher similarities. Extension of upper size limit of clay fraction from 0.002 to 0.0066 mm, and so change the lower size limit of silt fractions causes more easy comparability of pipette method and LDM. Higher correlations were found between clay content and water vapor adsorption, specific surface area in case of modified limit, as well. Texture classes were also found less dissimilar. The difference between the results of the two kind of PSD measurement methods could be further reduced knowing other routinely analyzed soil parameters
Adaptive on-line estimation and control of overlay tool bias
NASA Astrophysics Data System (ADS)
Martinez, Victor M.; Finn, Karen; Edgar, Thomas F.
2003-06-01
Modern lithographic manufacturing processes rely on various types of exposure tools, used in a mix-and-match fashion. The motivation to use older tools alongside state-of-the-art tools is lower cost and one of the tradeoffs is a degradation in overlay performance. While average prices of semiconductor products continue to fall, the cost of manufacturing equipment rises with every product generation. Lithography processing, including the cost of ownership for tools, accounts for roughly 30% of the wafer processing costs, thus the importance of mix-and-match strategies. Exponentially Weighted Moving Average (EWMA) run-by-run controllers are widely used in the semiconductor manufacturing industry. This type of controller has been implemented successfully in volume manufacturing, improving Cpk values dramatically in processes like photolithography and chemical mechanical planarization. This simple, but powerful control scheme is well suited for adding corrections to compensate for Overlay Tool Bias (OTB). We have developed an adaptive estimation technique to compensate for overlay variability due to differences in the processing tools. The OTB can be dynamically calculated for each tool, based on the most recent measurements available, and used to correct the control variables. One approach to tracking the effect of different tools is adaptive modeling and control. The basic premise of an adaptive system is to change or adapt the controller as the operating conditions of the system change. Using closed-loop data, the adaptive control algorithm estimates the controller parameters using a recursive estimation technique. Once an updated model of the system is available, modelbased control becomes feasible. In the simplest scenario, the control law can be reformulated to include the current state of the tool (or its estimate) to compensate dynamically for OTB. We have performed simulation studies to predict the impact of deploying this strategy in production. The results
Yang, Chenguang; Li, Zhijun; Li, Jing
2013-02-01
In this paper, we investigate optimized adaptive control and trajectory generation for a class of wheeled inverted pendulum (WIP) models of vehicle systems. Aiming at shaping the controlled vehicle dynamics to be of minimized motion tracking errors as well as angular accelerations, we employ the linear quadratic regulation optimization technique to obtain an optimal reference model. Adaptive control has then been developed using variable structure method to ensure the reference model to be exactly matched in a finite-time horizon, even in the presence of various internal and external uncertainties. The minimized yaw and tilt angular accelerations help to enhance the vehicle rider's comfort. In addition, due to the underactuated mechanism of WIP, the vehicle forward velocity dynamics cannot be controlled separately from the pendulum tilt angle dynamics. Inspired by the control strategy of human drivers, who usually manipulate the tilt angle to control the forward velocity, we design a neural-network-based adaptive generator of implicit control trajectory (AGICT) of the tilt angle which indirectly "controls" the forward velocity such that it tracks the desired velocity asymptotically. The stability and optimal tracking performance have been rigorously established by theoretic analysis. In addition, simulation studies have been carried out to demonstrate the efficiency of the developed AGICT and optimized adaptive controller.
Adaptive discrete-time sliding-mode control of nonlinear systems described by Wiener models
NASA Astrophysics Data System (ADS)
Salhi, Houda; Kamoun, Samira; Essounbouli, Najib; Hamzaoui, Abdelaziz
2016-03-01
In this paper, we propose an adaptive control scheme that can be applied to nonlinear systems with unknown parameters. The considered class of nonlinear systems is described by the block-oriented models, specifically, the Wiener models. These models consist of dynamic linear blocks in series with static nonlinear blocks. The proposed adaptive control method is based on the inverse of the nonlinear function block and on the discrete-time sliding-mode controller. The parameters adaptation are performed using a new recursive parametric estimation algorithm. This algorithm is developed using the adjustable model method and the least squares technique. A recursive least squares (RLS) algorithm is used to estimate the inverse nonlinear function. A time-varying gain is proposed, in the discrete-time sliding mode controller, to reduce the chattering problem. The stability of the closed-loop nonlinear system, with the proposed adaptive control scheme, has been proved. An application to a pH neutralisation process has been carried out and the simulation results clearly show the effectiveness of the proposed adaptive control scheme.
Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks
NASA Technical Reports Server (NTRS)
Jorgensen, Charles C.
1997-01-01
A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.
Model-free adaptive control of advanced power plants
Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang
2015-08-18
A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.
Ground adaptive standing controller for a powered transfemoral prosthesis.
Lawson, Brian E; Varol, Huseyin Atakan; Goldfarb, Michael
2011-01-01
The scope of this work is the design and verification of a new standing controller for a powered knee and ankle prosthesis. The controller is based upon a finite-state impedance control approach previously developed by the authors. The controller provides a comprehensive standing behavior that incorporates ground adaptation for unlevel terrain. An amputee subject tested the controller with a powered prosthesis for a variety of standing conditions. Results indicate that the powered prosthesis can estimate the ground slope within ±1 degree over a range of ±15 degrees, and that it can provide appropriate joint impedances for standing on slopes within this range.
Adaptive-Control Experiments On A Large Flexible Structure
NASA Technical Reports Server (NTRS)
Ih, Che-Hang C.; Bayard, David S.; Wang, Shyh J.; Eldred, Daniel B.
1990-01-01
Antennalike flexible structure built for research in advanced technology including suppression of vibrations and control of initial deflections. Structure instrumented with sensors and actuators connected to digital electronic control system, programmed with control algorithms to be tested. Particular attention in this research focused on direct model-reference adaptive-control algorithm based on command generator tracker theory. Built to exhibit multiple vibrational modes, low modal frequencies, and low structural damping. Made three-dimensional so complicated interactions among components of structure and control system investigated.
Adaptive Readout Technique For A Sixteen Channel Peak Sensing ADC In the FERA Format
Yaver, H.; Maier, M.R.; Lindstrom, D.; Ludewigt, B.A.
1998-11-01
An adaptive, variable block-size readout technique for use with multiple, sixteen-channel CAMAC ADCs with a FERA-bus readout has been developed and designed. It can be used to read data from experiments with or without coincidence, i.e. singles, without having to change the readout protocol. Details of the implementation are discussed and initial results are presented. Further applications of the adaptive readout are also discussed.
A sequential adaptation technique and its application to the Mark 12 IFF system
NASA Astrophysics Data System (ADS)
Bailey, John S.; Mallett, John D.; Sheppard, Duane J.; Warner, F. Neal; Adams, Robert
1986-07-01
Sequential adaptation uses only two sets of receivers, correlators, and A/D converters which are time multiplexed to effect spatial adaptation in a system with (N) adaptive degrees of freedom. This technique can substantially reduce the hardware cost over what is realizable in a parallel architecture. A three channel L-band version of the sequential adapter was built and tested for use with the MARK XII IFF (identify friend or foe) system. In this system the sequentially determined adaptive weights were obtained digitally but implemented at RF. As a result, many of the post RF hardware induced sources of error that normally limit cancellation, such as receiver mismatch, are removed by the feedback property. The result is a system that can yield high levels of cancellation and be readily retrofitted to currently fielded equipment.
Adaptive support vector regression for UAV flight control.
Shin, Jongho; Jin Kim, H; Kim, Youdan
2011-01-01
This paper explores an application of support vector regression for adaptive control of an unmanned aerial vehicle (UAV). Unlike neural networks, support vector regression (SVR) generates global solutions, because SVR basically solves quadratic programming (QP) problems. With this advantage, the input-output feedback-linearized inverse dynamic model and the compensation term for the inversion error are identified off-line, which we call I-SVR (inversion SVR) and C-SVR (compensation SVR), respectively. In order to compensate for the inversion error and the unexpected uncertainty, an online adaptation algorithm for the C-SVR is proposed. Then, the stability of the overall error dynamics is analyzed by the uniformly ultimately bounded property in the nonlinear system theory. In order to validate the effectiveness of the proposed adaptive controller, numerical simulations are performed on the UAV model.
Wen, Han; Marsolo, Keith A.; Bennett, Eric E.; Kutten, Kwame S.; Lewis, Ryan P.; Lipps, David B.; Epstein, Neal D.; Plehn, Jonathan F.; Croisille, Pierre
2010-01-01
The purpose of this study was to prospectively assess the effects of two adaptive postprocessing techniques on the evaluation of myocardial function with displacement-encoded magnetic resonance (MR) imaging, including sensitivity for abnormal wall motion, with two-dimensional echocardiography as the reference standard. Sixteen patients (11 men, five women; age range, 26–74 years) and 12 volunteers (six men, six women; age range, 29–53 years) underwent breath-hold MR imaging. Institutional review board approval and informed consent were obtained. Adaptive phase-unwrapping and spatial filtering techniques were compared with conventional phase-unwrapping and spatial filtering techniques. Use of the adaptive techniques led to a reduced rate of failure with the phase-unwrapping technique from 18.9% to 0.6% (P < .001), resulted in lower variability of segmental strain measurements among healthy volunteers (P < .001 to P = .02), and increased the sensitivity of quantitative detection of abnormal segments in patients from 82.5% to 87.7% (P = .034). The adaptive techniques improved the semiautomated postprocessing of displacement-encoded cardiac images and increased the sensitivity of detection of abnormal wall motion in patients. PMID:18096537
NASA Technical Reports Server (NTRS)
Duong, N.; Winn, C. B.; Johnson, G. R.
1975-01-01
Two approaches to an identification problem in hydrology are presented, based upon concepts from modern control and estimation theory. The first approach treats the identification of unknown parameters in a hydrologic system subject to noisy inputs as an adaptive linear stochastic control problem; the second approach alters the model equation to account for the random part in the inputs, and then uses a nonlinear estimation scheme to estimate the unknown parameters. Both approaches use state-space concepts. The identification schemes are sequential and adaptive and can handle either time-invariant or time-dependent parameters. They are used to identify parameters in the Prasad model of rainfall-runoff. The results obtained are encouraging and confirm the results from two previous studies; the first using numerical integration of the model equation along with a trial-and-error procedure, and the second using a quasi-linearization technique. The proposed approaches offer a systematic way of analyzing the rainfall-runoff process when the input data are imbedded in noise.
NASA Astrophysics Data System (ADS)
WU, J.-D.; BAI, M. R.
2001-02-01
This paper describes two configurations of feedforward adaptive active-noise control (ANC) technique for reducing blade passing noise in centrifugal fans. In one configuration, the control speaker is installed at the cut-off region of the fan, while in the other configuration at the exit duct. The proposed ANC system is based on the filtered-x least-mean-squares (FXLMS) algorithm with multi-sine synthesized reference signal and frequency counting and is implemented by using a digital signal processor (DSP). Experiments are carried out to evaluate the proposed system for reducing the noise at the blade passing frequency (BPF) and its harmonics at various flow speeds. The results of the experiment indicated that the ANC technique is effective in reducing the blade passing noise for two configurations by using the feedforward adaptive control.
NASA Astrophysics Data System (ADS)
Ghasemi-Nejhad, Mehrdad N.
2013-04-01
designed to have tip-tilt pointing and simultaneous multi-degree-of-freedom vibration isolation capability for pointing stabilization. Analytical approaches have been employed for determining the loads in the components as well as optimizing the design of the system. The different critical components such as telescope tube struts, flexure joints, and the secondary mirror mount have been designed and analyzed using finite element technique. The Simultaneous Precision Positioning and Vibration Suppression (SPPVS) smart composites platforms for the adaptive TVC and adaptive composite telescope are analogous (e.g., see work by Ghasemi-Nejhad and co-workers [1, 2]), where innovative concepts and control strategies are introduced, and experimental verifications of simultaneous thrust vector control and vibration isolation of satellites were performed. The smart composite platforms function as an active structural interface between the main thruster of a satellite and the satellite structure for the adaptive TVC application and as an active structural interface between the main smart composite telescope and the satellite structure for the adaptive laser communication application. The cascaded multiple feedback loops compensate the hysteresis (for piezoelectric stacks inside the three linear actuators that individually have simultaneous precision positioning and vibration suppression), dead-zone, back-lash, and friction nonlinearities very well, and provide precision and quick smart platform control and satisfactory thrust vector control capability. In addition, for example for the adaptive TVC, the experimental results show that the smart composite platform satisfactorily provided precision and fast smart platform control as well as the satisfactory thrust vector control capability. The vibration controller isolated 97% of the vibration energy due to the thruster firing.
NASA Astrophysics Data System (ADS)
Palermo, Samuel; Chiang, Patrick; Yu, Kunzhi; Bai, Rui; Li, Cheng; Chen, Chin-Hui; Fiorentino, Marco; Beausoleil, Ray; Li, Hao; Shafik, Ayman; Titriku, Alex
2016-03-01
Interconnect architectures based on high-Q silicon photonic microring resonator devices offer a promising solution to address the dramatic increase in datacenter I/O bandwidth demands due to their ability to realize wavelength-division multiplexing (WDM) in a compact and energy efficient manner. However, challenges exist in realizing efficient receivers for these systems due to varying per-channel link budgets, sensitivity requirements, and ring resonance wavelength shifts. This paper reports on adaptive optical receiver design techniques which address these issues and have been demonstrated in two hybrid-integrated prototypes based on microring drop filters and waveguide photodetectors implemented in a 130nm SOI process and high-speed optical front-ends designed in 65nm CMOS. A 10Gb/s powerscalable architecture employs supply voltage scaling of a three inverter-stage transimpedance amplifier (TIA) that is adapted with an eye-monitor control loop to yield the necessary sensitivity for a given channel. As reduction of TIA input-referred noise is more critical at higher data rates, a 25Gb/s design utilizes a large input-stage feedback resistor TIA cascaded with a continuous-time linear equalizer (CTLE) that compensates for the increased input pole. When tested with a waveguide Ge PD with 0.45A/W responsivity, this topology achieves 25Gb/s operation with -8.2dBm sensitivity at a BER=10-12. In order to address microring drop filters sensitivity to fabrication tolerances and thermal variations, efficient wavelength-stabilization control loops are necessary. A peak-power-based monitoring loop which locks the drop filter to the input wavelength, while achieving compatibility with the high-speed TIA offset-correction feedback loop is implemented with a 0.7nm tuning range at 43μW/GHz efficiency.
A Conditional Exposure Control Method for Multidimensional Adaptive Testing
ERIC Educational Resources Information Center
Finkelman, Matthew; Nering, Michael L.; Roussos, Louis A.
2009-01-01
In computerized adaptive testing (CAT), ensuring the security of test items is a crucial practical consideration. A common approach to reducing item theft is to define maximum item exposure rates, i.e., to limit the proportion of examinees to whom a given item can be administered. Numerous methods for controlling exposure rates have been proposed…
Controlling Item Exposure Rates in a Realistic Adaptive Testing Paradigm.
ERIC Educational Resources Information Center
Stocking, Martha L.
In the context of paper and pencil testing, the frequency of the exposure of items is usually controlled through policies that regulate both the reuse of test forms and the frequency with which a candidate may retake the test. In the context of computerized adaptive testing, where item pools are large and expensive to produce and testing can be on…
Adaptive Insecure Attachment and Resource Control Strategies during Middle Childhood
ERIC Educational Resources Information Center
Chen, Bin-Bin; Chang, Lei
2012-01-01
By integrating the life history theory of attachment with resource control theory, the current study examines the hypothesis that insecure attachment styles reorganized in middle childhood are alternative adaptive strategies used to prepare for upcoming competition with the peer group. A sample of 654 children in the second through seventh grades…
NASA Astrophysics Data System (ADS)
Wilburn, Brenton K.
This dissertation presents the design, development, and simulation testing of an adaptive trajectory tracking algorithm capable of compensating for various aircraft subsystem failures and upset conditions. A comprehensive adaptive control framework, here within referred to as the immune model reference adaptive control (IMRAC) algorithm, is developed by synergistically merging core concepts from the biologically- inspired artificial immune system (AIS) paradigm with more traditional optimal and adaptive control techniques. In particular, a model reference adaptive control (MRAC) algorithm is enhanced with the detection and learning capabilities of a novel, artificial neural network augmented AIS scheme. With the given modifications, the MRAC scheme is capable of detecting and identifying a given failure or upset condition, learning how to adapt to the problem, responding in a manner specific to the given failure condition, and retaining the learning parameters for quicker adaptation to subsequent failures of the same nature. The IMRAC algorithm developed in this dissertation is applicable to a wide range of control problems. However, the proposed methodology is demonstrated in simulation for an unmanned aerial vehicle. The results presented show that the IMRAC algorithm is an effective and valuable extension to traditional optimal and adaptive control techniques. The implementation of this methodology can potentially have significant impacts on the operational safety of many complex systems.
Variable Neural Adaptive Robust Control: A Switched System Approach
Lian, Jianming; Hu, Jianghai; Zak, Stanislaw H.
2015-05-01
Variable neural adaptive robust control strategies are proposed for the output tracking control of a class of multi-input multi-output uncertain systems. The controllers incorporate a variable-structure radial basis function (RBF) network as the self-organizing approximator for unknown system dynamics. The variable-structure RBF network solves the problem of structure determination associated with fixed-structure RBF networks. It can determine the network structure on-line dynamically by adding or removing radial basis functions according to the tracking performance. The structure variation is taken into account in the stability analysis of the closed-loop system using a switched system approach with the aid of the piecewise quadratic Lyapunov function. The performance of the proposed variable neural adaptive robust controllers is illustrated with simulations.
Vilser, W; Schack, B; Bareshova, E; Senff, I; Bräuer-Burchardt, C; Münch, K; Strobel, J
1995-10-01
There are highly significant differences in the measuring results of arterial blood velocity between the indicator and laser-Doppler techniques (up to 800%). A new measuring procedure for the analysis of indicator dilution curves was developed based on indicator model and experimental results. The use of this new measuring procedure results in reduced mean systematic error between the indicator and laser-Doppler techniques to values around 10%. With the introduction of adaptive measuring arrays for the creation of indicator dilution curves and the application of adaptive algorithms for centering and spectral normalizing of the dilution curves, improved reproducibility can be expected.
Control techniques for millimeter-wave active arrays
Sjogren, L.B.; Liu, H.L.; Liu, T.; Wang, F.; Domier, C.W.; Luhmann, N.C. Jr. )
1993-06-01
Control techniques for millimeter-wave active arrays are considered. In addition to voltage control, optical and quasi-optical approaches are discussed as analog control techniques. Digital control techniques discussed include on/off switching arrays and designs with superimposed device and/or grid structures for multi-bit capability. A quasi-optical Q switch, capable of high peak power pulse generation, is discussed as an example application of these techniques. 31 refs., 7 figs.
Fuzzy Adaptive Control for Intelligent Autonomous Space Exploration Problems
NASA Technical Reports Server (NTRS)
Esogbue, Augustine O.
1998-01-01
The principal objective of the research reported here is the re-design, analysis and optimization of our newly developed neural network fuzzy adaptive controller model for complex processes capable of learning fuzzy control rules using process data and improving its control through on-line adaption. The learned improvement is according to a performance objective function that provides evaluative feedback; this performance objective is broadly defined to meet long-range goals over time. Although fuzzy control had proven effective for complex, nonlinear, imprecisely-defined processes for which standard models and controls are either inefficient, impractical or cannot be derived, the state of the art prior to our work showed that procedures for deriving fuzzy control, however, were mostly ad hoc heuristics. The learning ability of neural networks was exploited to systematically derive fuzzy control and permit on-line adaption and in the process optimize control. The operation of neural networks integrates very naturally with fuzzy logic. The neural networks which were designed and tested using simulation software and simulated data, followed by realistic industrial data were reconfigured for application on several platforms as well as for the employment of improved algorithms. The statistical procedures of the learning process were investigated and evaluated with standard statistical procedures (such as ANOVA, graphical analysis of residuals, etc.). The computational advantage of dynamic programming-like methods of optimal control was used to permit on-line fuzzy adaptive control. Tests for the consistency, completeness and interaction of the control rules were applied. Comparisons to other methods and controllers were made so as to identify the major advantages of the resulting controller model. Several specific modifications and extensions were made to the original controller. Additional modifications and explorations have been proposed for further study. Some of
A Comprehensive Robust Adaptive Controller for Gust Load Alleviation
Quagliotti, Fulvia
2014-01-01
The objective of this paper is the implementation and validation of an adaptive controller for aircraft gust load alleviation. The contribution of this paper is the design of a robust controller that guarantees the reduction of the gust loads, even when the nominal conditions change. Some preliminary results are presented, considering the symmetric aileron deflection as control device. The proposed approach is validated on subsonic transport aircraft for different mass and flight conditions. Moreover, if the controller parameters are tuned for a specific gust model, even if the gust frequency changes, no parameter retuning is required. PMID:24688411
Adaptive second-order sliding mode control with uncertainty compensation
NASA Astrophysics Data System (ADS)
Bartolini, G.; Levant, A.; Pisano, A.; Usai, E.
2016-09-01
This paper endows the second-order sliding mode control (2-SMC) approach with additional capabilities of learning and control adaptation. We present a 2-SMC scheme that estimates and compensates for the uncertainties affecting the system dynamics. It also adjusts the discontinuous control effort online, so that it can be reduced to arbitrarily small values. The proposed scheme is particularly useful when the available information regarding the uncertainties is conservative, and the classical `fixed-gain' SMC would inevitably lead to largely oversized discontinuous control effort. Benefits from the viewpoint of chattering reduction are obtained, as confirmed by computer simulations.
Adaptive NN Control of a Class of Nonlinear Systems With Asymmetric Saturation Actuators.
Ma, Jianjun; Ge, Shuzhi Sam; Zheng, Zhiqiang; Hu, Dewen
2015-07-01
In this note, adaptive neural network (NN) control is investigated for a class of uncertain nonlinear systems with asymmetric saturation actuators and external disturbances. To handle the effect of nonsmooth asymmetric saturation nonlinearity, a Gaussian error function-based continuous differentiable asymmetric saturation model is employed such that the backstepping technique can be used in the control design. The explosion of complexity in traditional backstepping design is avoided using dynamic surface control. Using radial basis function NN, adaptive control is developed to guarantee that all the signals in the closed-loop system are semiglobally uniformly ultimately bounded, and the tracking error converges to a small neighborhood of origin by appropriately choosing design constants. The effectiveness of the proposed control is demonstrated in the simulation study.
F-8C adaptive control law refinement and software development
NASA Technical Reports Server (NTRS)
Hartmann, G. L.; Stein, G.
1981-01-01
An explicit adaptive control algorithm based on maximum likelihood estimation of parameters was designed. To avoid iterative calculations, the algorithm uses parallel channels of Kalman filters operating at fixed locations in parameter space. This algorithm was implemented in NASA/DFRC's Remotely Augmented Vehicle (RAV) facility. Real-time sensor outputs (rate gyro, accelerometer, surface position) are telemetered to a ground computer which sends new gain values to an on-board system. Ground test data and flight records were used to establish design values of noise statistics and to verify the ground-based adaptive software.
Photonic lantern adaptive spatial mode control in LMA fiber amplifiers.
Montoya, Juan; Aleshire, Chris; Hwang, Christopher; Fontaine, Nicolas K; Velázquez-Benítez, Amado; Martz, Dale H; Fan, T Y; Ripin, Dan
2016-02-22
We demonstrate adaptive-spatial mode control (ASMC) in few-moded double-clad large mode area (LMA) fiber amplifiers by using an all-fiber-based photonic lantern. Three single-mode fiber inputs are used to adaptively inject the appropriate superposition of input modes in a multimode gain fiber to achieve the desired mode at the output. By actively adjusting the relative phase of the single-mode inputs, near-unity coherent combination resulting in a single fundamental mode at the output is achieved.
Robust observer-based adaptive fuzzy sliding mode controller
NASA Astrophysics Data System (ADS)
Oveisi, Atta; Nestorović, Tamara
2016-08-01
In this paper, a new observer-based adaptive fuzzy integral sliding mode controller is proposed based on the Lyapunov stability theorem. The plant is subjected to a square-integrable disturbance and is assumed to have mismatch uncertainties both in state- and input-matrices. Based on the classical sliding mode controller, the equivalent control effort is obtained to satisfy the sufficient requirement of sliding mode controller and then the control law is modified to guarantee the reachability of the system trajectory to the sliding manifold. In order to relax the norm-bounded constrains on the control law and solve the chattering problem of sliding mode controller, a fuzzy logic inference mechanism is combined with the controller. An adaptive law is then introduced to tune the parameters of the fuzzy system on-line. Finally, for evaluating the controller and the robust performance of the closed-loop system, the proposed regulator is implemented on a real-time mechanical vibrating system.
Implementation of Adaptive Digital Controllers on Programmable Logic Devices
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Montenegro, Justino (Technical Monitor)
2002-01-01
Much has been made of the capabilities of Field Programmable Gate Arrays (FPGA's) in the hardware implementation of fast digital signal processing functions. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used Proportional-Integral-Derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a Digital Signal Processor (DSP) device or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using DSP devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, Pulse Width Modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacemap. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive-control algorithm
Implementation of Adaptive Digital Controllers on Programmable Logic Devices
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Monenegro, Justino (Technical Monitor)
2002-01-01
Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used proportional-integral-derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM-based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a DSP (Digital Signal Processor) or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSP) devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. An alternative is required for compact implementation of such functionality to withstand the harsh environment
Adaptive boundary control of a flexible manipulator with input saturation
NASA Astrophysics Data System (ADS)
Liu, Zhijie; Liu, Jinkun; He, Wei
2016-06-01
In this study, we consider the anti-windup design as one of the approaches for the boundary control problem of a flexible manipulator in the presence of system parametric uncertainties, external disturbances and bounded inputs. The dynamics of the system are represented by partial differential equations (PDEs). Using the singular perturbation approach, the PDE model is divided into two simpler subsystems. With the Lyapunov's direct method, an adaptive boundary control scheme is developed to regulate the angular position and suppress the elastic vibration simultaneously and the adaptive laws are designed to compensate for the system parametric uncertainties and the disturbances. The proposed control scheme allows the application of smooth hyperbolic functions, which satisfy physical conditions and input restrictions, be easily realised. Numerical simulations demonstrate the effectiveness of the proposed scheme.
Network Adaptive Deadband: NCS Data Flow Control for Shared Networks
Díaz-Cacho, Miguel; Delgado, Emma; Prieto, José A. G.; López, Joaquín
2012-01-01
This paper proposes a new middleware solution called Network Adaptive Deadband (NAD) for long time operation of Networked Control Systems (NCS) through the Internet or any shared network based on IP technology. The proposed middleware takes into account the network status and the NCS status, to improve the global system performance and to share more effectively the network by several NCS and sensor/actuator data flows. Relationship between network status and NCS status is solved with a TCP-friendly transport flow control protocol and the deadband concept, relating deadband value and transmission throughput. This creates a deadband-based flow control solution. Simulation and experiments in shared networks show that the implemented network adaptive deadband has better performance than an optimal constant deadband solution in the same circumstances. PMID:23208556
Adaptive Fuzzy Control of Strict-Feedback Nonlinear Time-Delay Systems With Unmodeled Dynamics.
Yin, Shen; Shi, Peng; Yang, Hongyan
2016-08-01
In this paper, an approximated-based adaptive fuzzy control approach with only one adaptive parameter is presented for a class of single input single output strict-feedback nonlinear systems in order to deal with phenomena like nonlinear uncertainties, unmodeled dynamics, dynamic disturbances, and unknown time delays. Lyapunov-Krasovskii function approach is employed to compensate the unknown time delays in the design procedure. By combining the advances of the hyperbolic tangent function with adaptive fuzzy backstepping technique, the proposed controller guarantees the semi-globally uniformly ultimately boundedness of all the signals in the closed-loop system from the mean square point of view. Two simulation examples are finally provided to show the superior effectiveness of the proposed scheme.
A Robot Manipulator with Adaptive Fuzzy Controller in Obstacle Avoidance
NASA Astrophysics Data System (ADS)
Sreekumar, Muthuswamy
2016-07-01
Building robots and machines to act within a fuzzy environment is a problem featuring complexity and ambiguity. In order to avoid obstacles, or move away from it, the robot has to perform functions such as obstacle identification, finding the location of the obstacle, its velocity, direction of movement, size, shape, and so on. This paper presents about the design, and implementation of an adaptive fuzzy controller designed for a 3 degree of freedom spherical coordinate robotic manipulator interfaced with a microcontroller and an ultrasonic sensor. Distance between the obstacle and the sensor and its time rate are considered as inputs to the controller and how the manipulator to take diversion from its planned trajectory, in order to avoid collision with the obstacle, is treated as output from the controller. The obstacles are identified as stationary or moving objects and accordingly adaptive self tuning is accomplished with three set of linguistic rules. The prototype of the manipulator has been fabricated and tested for collision avoidance by placing stationary and moving obstacles in its planned trajectory. The performance of the adaptive control algorithm is analyzed in MATLAB by generating 3D fuzzy control surfaces.
Adaptation with disturbance attenuation in nonlinear control systems
Basar, T.
1997-12-31
We present an optimization-based adaptive controller design for nonlinear systems exhibiting parametric as well as functional uncertainty. The approach involves the formulation of an appropriate cost functional that places positive weight on deviations from the achievement of desired objectives (such as tracking of a reference trajectory while the system exhibits good transient performance) and negative weight on the energy of the uncertainty. This cost functional also translates into a disturbance attenuation inequality which quantifies the effect of the presence of uncertainty on the desired objective, which in turn yields an interpretation for the optimizing control as one that optimally attenuates the disturbance, viewed as the collection of unknown parameters and unknown signals entering the system dynamics. In addition to this disturbance attenuation property, the controllers obtained also feature adaptation in the sense that they help with identification of the unknown parameters, even though this has not been set as the primary goal of the design. In spite of this adaptation/identification role, the controllers obtained are not of certainty-equivalent type, which means that the identification and the control phases of the design are not decoupled.
VSS Robust Adaptive Control Including a Self-Tuning Controller for a Rotary Inverted Pendulum
NASA Astrophysics Data System (ADS)
Hirata, Hiroshi; Takabe, Tomohiro; Anabuki, Masatoshi; Ouchi, Shigeto
So many papers with respect to the stabilization of the inverted pendulum are reported, because it is typically unstable system and is well used as example to verify many control theories. However, few approaches consider the inverted pendulum as unknown parameter system. This paper proposes a new VSS (Variable Structure System) robust adaptive control system including a self-tuning controller for a rotary inverted pendulum whose whole parameters are unknown. The control system prepares two kinds of adaptive controllers, and the stabilization of inverted pendulum is achieved by separating the system to two parts of the pendulum and the rotary arm. The rotational angle of the pendulum is stabilized by tracking type's VSS adaptive control method, and the rotary arm is simultaneously stabilized by STC (self-tuning control) system that assures the boundary reference angle of the pendulum. It is then not sufficient to construct STC system by using only adjustable parameter of VSS adaptive control system. Therefore, whole basic parameters are recursively estimated in order to realize STC system by using least squares parameter adaptive law, and it is achieved by superposing the perturbation signal to the stable adaptive control input on limited short interval. Furthermore, STC system designs LQ controller by developing an efficient QR method for real time operation. Finally, the validity of the proposed system is demonstrated through some numerical simulations and practical experimental result.
Zhong, Xiangnan; He, Haibo; Zhang, Huaguang; Wang, Zhanshan
2014-12-01
In this paper, we develop and analyze an optimal control method for a class of discrete-time nonlinear Markov jump systems (MJSs) with unknown system dynamics. Specifically, an identifier is established for the unknown systems to approximate system states, and an optimal control approach for nonlinear MJSs is developed to solve the Hamilton-Jacobi-Bellman equation based on the adaptive dynamic programming technique. We also develop detailed stability analysis of the control approach, including the convergence of the performance index function for nonlinear MJSs and the existence of the corresponding admissible control. Neural network techniques are used to approximate the proposed performance index function and the control law. To demonstrate the effectiveness of our approach, three simulation studies, one linear case, one nonlinear case, and one single link robot arm case, are used to validate the performance of the proposed optimal control method.
Zhong, Xiangnan; He, Haibo; Zhang, Huaguang; Wang, Zhanshan
2014-12-01
In this paper, we develop and analyze an optimal control method for a class of discrete-time nonlinear Markov jump systems (MJSs) with unknown system dynamics. Specifically, an identifier is established for the unknown systems to approximate system states, and an optimal control approach for nonlinear MJSs is developed to solve the Hamilton-Jacobi-Bellman equation based on the adaptive dynamic programming technique. We also develop detailed stability analysis of the control approach, including the convergence of the performance index function for nonlinear MJSs and the existence of the corresponding admissible control. Neural network techniques are used to approximate the proposed performance index function and the control law. To demonstrate the effectiveness of our approach, three simulation studies, one linear case, one nonlinear case, and one single link robot arm case, are used to validate the performance of the proposed optimal control method. PMID:25420238
Adaptive control of Space Station during nominal operations with CMGs. [Control Moment Gyroscopes
NASA Technical Reports Server (NTRS)
Bishop, R. H.; Paynter, S. J.; Sunkel, J. W.
1991-01-01
An adaptive control approach is investigated for the Space Station. The main components of the adaptive controller are the parameter identification scheme, the control gain calculation, and the control law. The control law is the Space Station baseline control law. The control gain calculation is based on linear quadratic regulator theory with eigenvalue placement in a vertical strip. The parameter identification scheme is a real-time recursive extended Kalman filter which estimates the inertias and also provides an estimate of the unmodeled disturbances due to the aerodynamic torques and to the nonlinear effects. An analysis of the inertia estimation problem suggests that it is possible to compute accurate estimates of the Space Station inertias during nominal CMG (control moment gyro) operations. The closed-loop adaptive control law is shown to be capable of stabilizing the Space Station after large inertia changes. Results are presented for the pitch axis.
Investigation of the Multiple Method Adaptive Control (MMAC) method for flight control systems
NASA Technical Reports Server (NTRS)
Athans, M.; Baram, Y.; Castanon, D.; Dunn, K. P.; Green, C. S.; Lee, W. H.; Sandell, N. R., Jr.; Willsky, A. S.
1979-01-01
The stochastic adaptive control of the NASA F-8C digital-fly-by-wire aircraft using the multiple model adaptive control (MMAC) method is presented. The selection of the performance criteria for the lateral and the longitudinal dynamics, the design of the Kalman filters for different operating conditions, the identification algorithm associated with the MMAC method, the control system design, and simulation results obtained using the real time simulator of the F-8 aircraft at the NASA Langley Research Center are discussed.
Parameter Estimation Analysis for Hybrid Adaptive Fault Tolerant Control
NASA Astrophysics Data System (ADS)
Eshak, Peter B.
Research efforts have increased in recent years toward the development of intelligent fault tolerant control laws, which are capable of helping the pilot to safely maintain aircraft control at post failure conditions. Researchers at West Virginia University (WVU) have been actively involved in the development of fault tolerant adaptive control laws in all three major categories: direct, indirect, and hybrid. The first implemented design to provide adaptation was a direct adaptive controller, which used artificial neural networks to generate augmentation commands in order to reduce the modeling error. Indirect adaptive laws were implemented in another controller, which utilized online PID to estimate and update the controller parameter. Finally, a new controller design was introduced, which integrated both direct and indirect control laws. This controller is known as hybrid adaptive controller. This last control design outperformed the two earlier designs in terms of less NNs effort and better tracking quality. The performance of online PID has an important role in the quality of the hybrid controller; therefore, the quality of the estimation will be of a great importance. Unfortunately, PID is not perfect and the online estimation process has some inherited issues; the online PID estimates are primarily affected by delays and biases. In order to ensure updating reliable estimates to the controller, the estimator consumes some time to converge. Moreover, the estimator will often converge to a biased value. This thesis conducts a sensitivity analysis for the estimation issues, delay and bias, and their effect on the tracking quality. In addition, the performance of the hybrid controller as compared to direct adaptive controller is explored. In order to serve this purpose, a simulation environment in MATLAB/SIMULINK has been created. The simulation environment is customized to provide the user with the flexibility to add different combinations of biases and delays to
Direct model reference adaptive control of a flexible robotic manipulator
NASA Technical Reports Server (NTRS)
Meldrum, D. R.
1985-01-01
Quick, precise control of a flexible manipulator in a space environment is essential for future Space Station repair and satellite servicing. Numerous control algorithms have proven successful in controlling rigid manipulators wih colocated sensors and actuators; however, few have been tested on a flexible manipulator with noncolocated sensors and actuators. In this thesis, a model reference adaptive control (MRAC) scheme based on command generator tracker theory is designed for a flexible manipulator. Quicker, more precise tracking results are expected over nonadaptive control laws for this MRAC approach. Equations of motion in modal coordinates are derived for a single-link, flexible manipulator with an actuator at the pinned-end and a sensor at the free end. An MRAC is designed with the objective of controlling the torquing actuator so that the tip position follows a trajectory that is prescribed by the reference model. An appealing feature of this direct MRAC law is that it allows the reference model to have fewer states than the plant itself. Direct adaptive control also adjusts the controller parameters directly with knowledge of only the plant output and input signals.
Robust adaptive backstepping control for reentry reusable launch vehicles
NASA Astrophysics Data System (ADS)
Wang, Zhen; Wu, Zhong; Du, Yijiang
2016-09-01
During the reentry process of reusable launch vehicles (RLVs), the large range of flight envelope will not only result in high nonlinearities, strong coupling and fast time-varying characteristics of the attitude dynamics, but also result in great uncertainties in the atmospheric density, aerodynamic coefficients and environmental disturbances, etc. In order to attenuate the effects of these problems on the control performance of the reentry process, a robust adaptive backstepping control (RABC) strategy is proposed for RLV in this paper. This strategy consists of two-loop controllers designed via backstepping method. Both the outer and the inner loop adopt a robust adaptive controller, which can deal with the disturbances and uncertainties by the variable-structure term with the estimation of their bounds. The outer loop can track the desired attitude by the design of virtual control-the desired angular velocity, while the inner one can track the desired angular velocity by the design of control torque. Theoretical analysis indicates that the closed-loop system under the proposed control strategy is globally asymptotically stable. Even if the boundaries of the disturbances and uncertainties are unknown, the attitude can track the desired value accurately. Simulation results of a certain RLV demonstrate the effectiveness of the control strategy.
Adaptive suboptimal second-order sliding mode control for microgrids
NASA Astrophysics Data System (ADS)
Incremona, Gian Paolo; Cucuzzella, Michele; Ferrara, Antonella
2016-09-01
This paper deals with the design of adaptive suboptimal second-order sliding mode (ASSOSM) control laws for grid-connected microgrids. Due to the presence of the inverter, of unpredicted load changes, of switching among different renewable energy sources, and of electrical parameters variations, the microgrid model is usually affected by uncertain terms which are bounded, but with unknown upper bounds. To theoretically frame the control problem, the class of second-order systems in Brunovsky canonical form, characterised by the presence of matched uncertain terms with unknown bounds, is first considered. Four adaptive strategies are designed, analysed and compared to select the most effective ones to be applied to the microgrid case study. In the first two strategies, the control amplitude is continuously adjusted, so as to arrive at dominating the effect of the uncertainty on the controlled system. When a suitable control amplitude is attained, the origin of the state space of the auxiliary system becomes attractive. In the other two strategies, a suitable blend between two components, one mainly working during the reaching phase, the other being the predominant one in a vicinity of the sliding manifold, is generated, so as to reduce the control amplitude in steady state. The microgrid system in a grid-connected operation mode, controlled via the selected ASSOSM control strategies, exhibits appreciable stability properties, as proved theoretically and shown in simulation.
NASA Technical Reports Server (NTRS)
Ersoy, L.; Lee, E. A.; Matthews, E. W.
1987-01-01
The purpose of this contract was to identify the application of adaptive antenna technique in future operational commercial satellite communication systems and to quantify potential benefits. The contract consisted of two major subtasks. Task 1, Assessment of Future Commercial Satellite System Requirements, was generally referred to as the Adaptive section. Task 2 dealt with Pointing Error Compensation Study for a Multiple Scanning/Fixed Spot Beam Reflector Antenna System and was referred to as the reconfigurable system. Each of these tasks was further subdivided into smaller subtasks. It should also be noted that the reconfigurable system is usually defined as an open-loop system while the adaptive system is a closed-loop system. The differences between the open- and closed-loop systems were defined. Both the adaptive and reconfigurable systems were explained and the potential applications of such systems were presented in the context of commercial communication satellite systems.
Impulse radar imaging for dispersive concrete using inverse adaptive filtering techniques
Arellano, J.; Hernandez, J.M.; Brase, J.
1993-05-01
This publication addresses applications of a delayed inverse model adaptive filter for modeled data obtained from short-pulse radar reflectometry. To determine the integrity of concrete, a digital adaptive filter was used, which allows compensation of dispersion and clutter generated by the concrete. A standard set of weights produced by an adaptive filter are used on modeled data to obtain the inverse-impulse response of the concrete. The data for this report include: Multiple target, nondispersive data; single-target, variable-size dispersive data; single-target, variable-depth dispersive data; and single-target, variable transmitted-pulse-width dispersive data. Results of this simulation indicate that data generated by the weights of the adaptive filter, coupled with a two-dimensional, synthetic-aperture focusing technique, successfully generate two-dimensional images of targets within the concrete from modeled data.
SWAT system performance predictions. Project report. [SWAT (Short-Wavelength Adaptive Techniques)
Parenti, R.R.; Sasiela, R.J.
1993-03-10
In the next phase of Lincoln Laboratory's SWAT (Short-Wavelength Adaptive Techniques) program, the performance of a 241-actuator adaptive-optics system will be measured using a variety of synthetic-beacon geometries. As an aid in this experimental investigation, a detailed set of theoretical predictions has also been assembled. The computational tools that have been applied in this study include a numerical approach in which Monte-Carlo ray-trace simulations of accumulated phase error are developed, and an analytical analysis of the expected system behavior. This report describes the basis of these two computational techniques and compares their estimates of overall system performance. Although their regions of applicability tend to be complementary rather than redundant, good agreement is usually obtained when both sets of results can be derived for the same engagement scenario.... Adaptive optics, Phase conjugation, Atmospheric turbulence Synthetic beacon, Laser guide star.
An adaptive fuzzy controller for permanent-magnet AC servo drives
Le-Huy, H.
1995-12-31
This paper presents a theoretical study on a model-reference adaptive fuzzy logic controller for vector-controlled permanent-magnet ac servo drives. In the proposed system, fuzzy logic is used to implement the direct controller as well as the adaptation mechanism. The operation of the direct fuzzy controller and the fuzzy logic based adaptation mechanism is studied. The control performance of the adaptive fuzzy controller is evaluated by simulation for various operating conditions. The results are compared with that provided by a non-adaptive fuzzy controller. The implementation of proposed adaptive fuzzy controller is discussed.
Towards feasible and effective predictive wavefront control for adaptive optics
Poyneer, L A; Veran, J
2008-06-04
We have recently proposed Predictive Fourier Control, a computationally efficient and adaptive algorithm for predictive wavefront control that assumes frozen flow turbulence. We summarize refinements to the state-space model that allow operation with arbitrary computational delays and reduce the computational cost of solving for new control. We present initial atmospheric characterization using observations with Gemini North's Altair AO system. These observations, taken over 1 year, indicate that frozen flow is exists, contains substantial power, and is strongly detected 94% of the time.
ERIC Educational Resources Information Center
Alfonseca, Enrique; Rodriguez, Pilar; Perez, Diana
2007-01-01
This work describes a framework that combines techniques from Adaptive Hypermedia and Natural Language processing in order to create, in a fully automated way, on-line information systems from linear texts in electronic format, such as textbooks. The process is divided into two steps: an "off-line" processing step, which analyses the source text,…
Voice Therapy Techniques Adapted to Treatment of Habit Cough: A Pilot Study.
ERIC Educational Resources Information Center
Blager, Florence B.; And Others
1988-01-01
Individuals with long-standing habit cough having no organic basis can be successfully treated with a combination of psychotherapy and speech therapy. Techniques for speech therapy are adapted from those used with hyperfunctional voice disorders to fit this debilitating laryngeal disorder. (Author)
Visuomotor Control of Human Adaptive Locomotion: Understanding the Anticipatory Nature
Higuchi, Takahiro
2013-01-01
To maintain balance during locomotion, the central nervous system (CNS) accommodates changes in the constraints of spatial environment (e.g., existence of an obstacle or changes in the surface properties). Locomotion while modifying the basic movement patterns in response to such constraints is referred to as adaptive locomotion. The most powerful means of ensuring balance during adaptive locomotion is to visually perceive the environmental properties at a distance and modify the movement patterns in an anticipatory manner to avoid perturbation altogether. For this reason, visuomotor control of adaptive locomotion is characterized, at least in part, by its anticipatory nature. The purpose of the present article is to review the relevant studies which revealed the anticipatory nature of the visuomotor control of adaptive locomotion. The anticipatory locomotor adjustments for stationary and changeable environment, as well as the spatio-temporal patterns of gaze behavior to support the anticipatory locomotor adjustments are described. Such description will clearly show that anticipatory locomotor adjustments are initiated when an object of interest (e.g., a goal or obstacle) still exists in far space. This review also show that, as a prerequisite of anticipatory locomotor adjustments, environmental properties are accurately perceived from a distance in relation to individual’s action capabilities. PMID:23720647
Effect of prism adaptation on thermoregulatory control in humans.
Calzolari, Elena; Gallace, Alberto; Moseley, G Lorimer; Vallar, Giuseppe
2016-01-01
The physiological regulation of skin temperature can be modulated not only by autonomic brain regions, but also by a network of higher-level cortical areas involved in the maintenance of a coherent representation of the body. In this study we assessed in healthy participants if the sensorimotor changes taking place during motor adaptation to the lateral displacement of the visual scene induced by wearing prismatic lenses (prism adaptation, PA), and the aftereffects, after prisms' removal, on the ability to process spatial coordinates, were associated with skin temperature regulation changes. We found a difference in thermoregulatory control as a function of the direction of the prism-induced displacement of the visual scene, and the subsequent sensorimotor adaptation. After PA to rightward displacing lenses, with leftward aftereffects (the same directional procedure efficaciously used for ameliorating left spatial neglect in right-brain-damaged patients) the hands' temperature decreased. Conversely, after adaptation to neutral lenses, and PA to leftward displacing lenses, with rightward aftereffects, the temperature of both hands increased. These results suggest a lateral asymmetry in the effects of PA on skin temperature regulation, and a relationship between body spatial representations and homeostatic control in humans.
Energy-saving technology of vector controlled induction motor based on the adaptive neuro-controller
NASA Astrophysics Data System (ADS)
Engel, E.; Kovalev, I. V.; Karandeev, D.
2015-10-01
The ongoing evolution of the power system towards a Smart Grid implies an important role of intelligent technologies, but poses strict requirements on their control schemes to preserve stability and controllability. This paper presents the adaptive neuro-controller for the vector control of induction motor within Smart Gird. The validity and effectiveness of the proposed energy-saving technology of vector controlled induction motor based on adaptive neuro-controller are verified by simulation results at different operating conditions over a wide speed range of induction motor.
Performance-Based Adaptive Fuzzy Tracking Control for Networked Industrial Processes.
Wang, Tong; Qiu, Jianbin; Yin, Shen; Gao, Huijun; Fan, Jialu; Chai, Tianyou
2016-08-01
In this paper, the performance-based control design problem for double-layer networked industrial processes is investigated. At the device layer, the prescribed performance functions are first given to describe the output tracking performance, and then by using backstepping technique, new adaptive fuzzy controllers are designed to guarantee the tracking performance under the effects of input dead-zone and the constraint of prescribed tracking performance functions. At operation layer, by considering the stochastic disturbance, actual index value, target index value, and index prediction simultaneously, an adaptive inverse optimal controller in discrete-time form is designed to optimize the overall performance and stabilize the overall nonlinear system. Finally, a simulation example of continuous stirred tank reactor system is presented to show the effectiveness of the proposed control method.
Geometry adaptive control of a composite reflector using PZT actuator
NASA Astrophysics Data System (ADS)
Lan, Lan; Jiang, Shuidong; Zhou, Yang; Fang, Houfei; Tan, Shujun; Wu, Zhigang
2015-04-01
Maintaining geometrical high precision for a graphite fiber reinforced composite (GFRC) reflector is a challenging task. Although great efforts have been placed to improve the fabrication precision, geometry adaptive control for a reflector is becoming more and more necessary. This paper studied geometry adaptive control for a GFRC reflector with piezoelectric ceramic transducer (PZT) actuators assembled on the ribs. In order to model the piezoelectric effect in finite element analysis (FEA), a thermal analogy was used in which the temperature was applied to simulate the actuation voltage, and the piezoelectric constant was mimicked by a Coefficient of Thermal Expansion (CTE). PZT actuator's equivalent model was validated by an experiment. The deformations of a triangular GFRC specimen with three PZT actuators were also measured experimentally and compared with that of simulation. This study developed a multidisciplinary analytical model, which includes the composite structure, thermal, thermal deformation and control system, to perform an optimization analysis and design for the adaptive GFRC reflector by considering the free vibration, gravity deformation and geometry controllability.
Adaptive and predictive control of a simulated robot arm.
Tolu, Silvia; Vanegas, Mauricio; Garrido, Jesús A; Luque, Niceto R; Ros, Eduardo
2013-06-01
In this work, a basic cerebellar neural layer and a machine learning engine are embedded in a recurrent loop which avoids dealing with the motor error or distal error problem. The presented approach learns the motor control based on available sensor error estimates (position, velocity, and acceleration) without explicitly knowing the motor errors. The paper focuses on how to decompose the input into different components in order to facilitate the learning process using an automatic incremental learning model (locally weighted projection regression (LWPR) algorithm). LWPR incrementally learns the forward model of the robot arm and provides the cerebellar module with optimal pre-processed signals. We present a recurrent adaptive control architecture in which an adaptive feedback (AF) controller guarantees a precise, compliant, and stable control during the manipulation of objects. Therefore, this approach efficiently integrates a bio-inspired module (cerebellar circuitry) with a machine learning component (LWPR). The cerebellar-LWPR synergy makes the robot adaptable to changing conditions. We evaluate how this scheme scales for robot-arms of a high number of degrees of freedom (DOFs) using a simulated model of a robot arm of the new generation of light weight robots (LWRs).
Application of network control systems for adaptive optics
NASA Astrophysics Data System (ADS)
Eager, Robert J.
2008-04-01
The communication architecture for most pointing, tracking, and high order adaptive optics control systems has been based on a centralized point-to-point and bus based approach. With the increased use of larger arrays and multiple sensors, actuators and processing nodes, these evolving systems require decentralized control, modularity, flexibility redundancy, integrated diagnostics, dynamic resource allocation, and ease of maintenance to support a wide range of experiments. Network control systems provide all of these critical functionalities. This paper begins with a quick overview of adaptive optics as a control system and communication architecture. It then provides an introduction to network control systems, identifying the key design areas that impact system performance. The paper then discusses the performance test results of a fielded network control system used to implement an adaptive optics system comprised of: a 10KHz, 32x32 spatial selfreferencing interferometer wave front sensor, a 705 channel "Tweeter" deformable mirror, a 177 channel "Woofer" deformable mirror, ten processing nodes, and six data acquisition nodes. The reconstructor algorithm utilized a modulo-2pi wave front phase measurement and a least-squares phase un-wrapper with branch point correction. The servo control algorithm is a hybrid of exponential and infinite impulse response controllers, with tweeter-to-woofer saturation offloading. This system achieved a first-pixel-out to last-mirror-voltage latency of 86 microseconds, with the network accounting for 4 microseconds of the measured latency. Finally, the extensibility of this architecture will be illustrated, by detailing the integration of a tracking sub-system into the existing network.
Adaptive Control of Non-Minimum Phase Modal Systems Using Residual Mode Filters2. Parts 1 and 2
NASA Technical Reports Server (NTRS)
Balas, Mark J.; Frost, Susan
2011-01-01
Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. This paper will be divided into two parts. Here in Part I we will review the basic adaptive control approach and introduce the primary ideas. In Part II, we will present the RMF methodology and complete the proofs of all our results. Also, we will apply the above theoretical results to a simple flexible structure example to illustrate the behavior with and without the residual mode filter.
Adaptive model predictive process control using neural networks
Buescher, Kevin L.; Baum, Christopher C.; Jones, Roger D.
1997-01-01
A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data.
Adaptive model predictive process control using neural networks
Buescher, K.L.; Baum, C.C.; Jones, R.D.
1997-08-19
A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.
Adaptive and neuroadaptive control for nonnegative and compartmental dynamical systems
NASA Astrophysics Data System (ADS)
Volyanskyy, Kostyantyn Y.
Neural networks have been extensively used for adaptive system identification as well as adaptive and neuroadaptive control of highly uncertain systems. The goal of adaptive and neuroadaptive control is to achieve system performance without excessive reliance on system models. To improve robustness and the speed of adaptation of adaptive and neuroadaptive controllers several controller architectures have been proposed in the literature. In this dissertation, we develop a new neuroadaptive control architecture for nonlinear uncertain dynamical systems. The proposed framework involves a novel controller architecture with additional terms in the update laws that are constructed using a moving window of the integrated system uncertainty. These terms can be used to identify the ideal system weights of the neural network as well as effectively suppress system uncertainty. Linear and nonlinear parameterizations of the system uncertainty are considered and state and output feedback neuroadaptive controllers are developed. Furthermore, we extend the developed framework to discrete-time dynamical systems. To illustrate the efficacy of the proposed approach we apply our results to an aircraft model with wing rock dynamics, a spacecraft model with unknown moment of inertia, and an unmanned combat aerial vehicle undergoing actuator failures, and compare our results with standard neuroadaptive control methods. Nonnegative systems are essential in capturing the behavior of a wide range of dynamical systems involving dynamic states whose values are nonnegative. A sub-class of nonnegative dynamical systems are compartmental systems. These systems are derived from mass and energy balance considerations and are comprised of homogeneous interconnected microscopic subsystems or compartments which exchange variable quantities of material via intercompartmental flow laws. In this dissertation, we develop direct adaptive and neuroadaptive control framework for stabilization, disturbance
Fuzzy-based adaptive bandwidth control for loss guarantees.
Siripongwutikorn, Peerapon; Banerjee, Sujata; Tipper, David
2005-09-01
This paper presents the use of adaptive bandwidth control (ABC) for a quantitative packet loss rate guarantee to aggregate traffic in packet switched networks. ABC starts with some initial amount of bandwidth allocated to a queue and adjusts it over time based on online measurements of system states to ensure that the allocated bandwidth is just enough to attain the specified loss requirement. Consequently, no a priori detailed traffic information is required, making ABC more suitable for efficient aggregate quality of service (QoS) provisioning. We propose an ABC algorithm called augmented Fuzzy (A-Fuzzy) control, whereby fuzzy logic control is used to keep an average queue length at an appropriate target value, and the measured packet loss rate is used to augment the standard control to achieve better performance. An extensive simulation study based on both theoretical traffic models and real traffic traces under a wide range of system configurations demonstrates that the A-Fuzzy control itself is highly robust, yields high bandwidth utilization, and is indeed a viable alternative and improvement to static bandwidth allocation (SBA) and existing adaptive bandwidth allocation schemes. Additionally, we develop a simple and efficient measurement-based admission control procedure which limits the amount of input traffic in order to maintain the performance of the A-Fuzzy control at an acceptable level.
Discrete-time minimal control synthesis adaptive algorithm
NASA Astrophysics Data System (ADS)
di Bernardo, M.; di Gennaro, F.; Olm, J. M.; Santini, S.
2010-12-01
This article proposes a discrete-time Minimal Control Synthesis (MCS) algorithm for a class of single-input single-output discrete-time systems written in controllable canonical form. As it happens with the continuous-time MCS strategy, the algorithm arises from the family of hyperstability-based discrete-time model reference adaptive controllers introduced in (Landau, Y. (1979), Adaptive Control: The Model Reference Approach, New York: Marcel Dekker, Inc.) and is able to ensure tracking of the states of a given reference model with minimal knowledge about the plant. The control design shows robustness to parameter uncertainties, slow parameter variation and matched disturbances. Furthermore, it is proved that the proposed discrete-time MCS algorithm can be used to control discretised continuous-time plants with the same performance features. Contrary to previous discrete-time implementations of the continuous-time MCS algorithm, here a formal proof of asymptotic stability is given for generic n-dimensional plants in controllable canonical form. The theoretical approach is validated by means of simulation results.
Application of simple adaptive control to water hydraulic servo cylinder system
NASA Astrophysics Data System (ADS)
Ito, Kazuhisa; Yamada, Tsuyoshi; Ikeo, Shigeru; Takahashi, Koji
2012-09-01
Although conventional model reference adaptive control (MRAC) achieves good tracking performance for cylinder control, the controller structure is much more complicated and has less robustness to disturbance in real applications. This paper discusses the use of simple adaptive control (SAC) for positioning a water hydraulic servo cylinder system. Compared with MRAC, SAC has a simpler and lower order structure, i.e., higher feasibility. The control performance of SAC is examined and evaluated on a water hydraulic servo cylinder system. With the recent increased concerns over global environmental problems, the water hydraulic technique using pure tap water as a pressure medium has become a new drive source comparable to electric, oil hydraulic, and pneumatic drive systems. This technique is also preferred because of its high power density, high safety against fire hazards in production plants, and easy availability. However, the main problems for precise control in a water hydraulic system are steady state errors and overshoot due to its large friction torque and considerable leakage flow. MRAC has been already applied to compensate for these effects, and better control performances have been obtained. However, there have been no reports on the application of SAC for water hydraulics. To make clear the merits of SAC, the tracking control performance and robustness are discussed based on experimental results. SAC is confirmed to give better tracking performance compared with PI control, and a control precision comparable to MRAC (within 10 μm of the reference position) and higher robustness to parameter change, despite the simple controller. The research results ensure a wider application of simple adaptive control in real mechanical systems.
Adaptive pitch control for variable speed wind turbines
Johnson, Kathryn E.; Fingersh, Lee Jay
2012-05-08
An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.
Auto-adaptive robot-aided therapy using machine learning techniques.
Badesa, Francisco J; Morales, Ricardo; Garcia-Aracil, Nicolas; Sabater, J M; Casals, Alicia; Zollo, Loredana
2014-09-01
This paper presents an application of a classification method to adaptively and dynamically modify the therapy and real-time displays of a virtual reality system in accordance with the specific state of each patient using his/her physiological reactions. First, a theoretical background about several machine learning techniques for classification is presented. Then, nine machine learning techniques are compared in order to select the best candidate in terms of accuracy. Finally, first experimental results are presented to show that the therapy can be modulated in function of the patient state using machine learning classification techniques.
Serbezov, Valery
2013-01-01
The applications of Pulsed Laser Deposition (PLD) for producing nanoparticles, nanostructures and nanocomposites coatings based on recently developed laser ablating techniques and their convergence are being reviewed. The problems of in situ synthesis of hybrid inorganic-organic nanocomposites coatings by these techniques are being discussed. The novel modification of PLD called Pulsed Laser Adaptive Deposition (PLAD) technique is presented. The in situ synthesized inorganic/organic nanocomposites coatings from Magnesium (Mg) alloy/Rhodamine B and Mg alloy/ Desoximetasone by PLAD are described. The trends, applications and future development of discussed patented methods based on the laser ablating technologies for producing hybrid nanocomposite coatings have also been discussed in this review.
Adaptive technique for P and T wave delineation in electrocardiogram signals.
Bayasi, Nourhan; Tekeste, Temesghen; Saleh, Hani; Khandoker, Ahsan; Mohammad, Baker; Ismail, Mohammed
2014-01-01
The T and P waves of electrocardiogram signals are excellent indicators in the analysis and interpretation of cardiac arrhythmia. As such, the need to address and develop an accurate delineation technique for the detection of these waves is necessary. In this paper, we present a novel robust and adaptive T and P wave delineation method for real-time analysis and nonstandard ECG morphologies. The proposed method is based on ECG signal filtering, value estimation of different fiducial points, applying backward and forward search windows as well as adaptive thresholds. Simulations and evaluations prove the accuracy of the proposed technique in comparison to those proposed techniques in the literature. The mean error for the T peak, T offset, P peak and P offset values are found to be 9.8, 2.3, 7.3 and 3.5 milliseconds, respectively, based on the Physionet QT database, rendering our algorithm as an excellent candidate for ECG signal analysis. PMID:25569904
THE EFFECTS OF BRAIN LATERALIZATION ON MOTOR CONTROL AND ADAPTATION
Mutha, Pratik K.; Haaland, Kathleen Y.; Sainburg, Robert L.
2012-01-01
Lateralization of mechanisms mediating functions such as language and perception is widely accepted as a fundamental feature of neural organization. Recent research has revealed that a similar organization exists for the control of motor actions, in that each brain hemisphere contributes unique control mechanisms to the movements of each arm. We now review current research that addresses the nature of the control mechanisms that are lateralized to each hemisphere and how they impact motor adaptation and learning. In general, the studies reviewed here suggest an enhanced role for the left hemisphere during adaptation, and the learning of new sequences and skills. We suggest that this specialization emerges from a left hemisphere specialization for predictive control – the ability to effectively plan and coordinate motor actions, possibly by optimizing certain cost functions. In contrast, right hemisphere circuits appear to be important for updating ongoing actions and stopping at a goal position, through modulation of sensorimotor stabilization mechanisms such as reflexes. We also propose that each brain hemisphere contributes its mechanism to the control of both arms. We conclude by examining the potential advantages of such a lateralized control system. PMID:23237468
Experiments in Nonlinear Adaptive Control of Multi-Manipulator, Free-Flying Space Robots
NASA Technical Reports Server (NTRS)
Chen, Vincent Wei-Kang
1992-01-01
Sophisticated robots can greatly enhance the role of humans in space by relieving astronauts of low level, tedious assembly and maintenance chores and allowing them to concentrate on higher level tasks. Robots and astronauts can work together efficiently, as a team; but the robot must be capable of accomplishing complex operations and yet be easy to use. Multiple cooperating manipulators are essential to dexterity and can broaden greatly the types of activities the robot can achieve; adding adaptive control can ease greatly robot usage by allowing the robot to change its own controller actions, without human intervention, in response to changes in its environment. Previous work in the Aerospace Robotics Laboratory (ARL) have shown the usefulness of a space robot with cooperating manipulators. The research presented in this dissertation extends that work by adding adaptive control. To help achieve this high level of robot sophistication, this research made several advances to the field of nonlinear adaptive control of robotic systems. A nonlinear adaptive control algorithm developed originally for control of robots, but requiring joint positions as inputs, was extended here to handle the much more general case of manipulator endpoint-position commands. A new system modelling technique, called system concatenation was developed to simplify the generation of a system model for complicated systems, such as a free-flying multiple-manipulator robot system. Finally, the task-space concept was introduced wherein the operator's inputs specify only the robot's task. The robot's subsequent autonomous performance of each task still involves, of course, endpoint positions and joint configurations as subsets. The combination of these developments resulted in a new adaptive control framework that is capable of continuously providing full adaptation capability to the complex space-robot system in all modes of operation. The new adaptive control algorithm easily handles free
Adaptive Proactive Inhibitory Control for Embedded Real-Time Applications
Yang, Shufan; McGinnity, T. Martin; Wong-Lin, KongFatt
2012-01-01
Psychologists have studied the inhibitory control of voluntary movement for many years. In particular, the countermanding of an impending action has been extensively studied. In this work, we propose a neural mechanism for adaptive inhibitory control in a firing-rate type model based on current findings in animal electrophysiological and human psychophysical experiments. We then implement this model on a field-programmable gate array (FPGA) prototyping system, using dedicated real-time hardware circuitry. Our results show that the FPGA-based implementation can run in real-time while achieving behavioral performance qualitatively suggestive of the animal experiments. Implementing such biological inhibitory control in an embedded device can lead to the development of control systems that may be used in more realistic cognitive robotics or in neural prosthetic systems aiding human movement control. PMID:22701420
Neural controller for adaptive movements with unforeseen payloads
NASA Technical Reports Server (NTRS)
Kuperstein, Michael; Wang, Jyhpyng
1990-01-01
A theory and computer simulation of a neural controller that learns to move and position a link carrying an unforeseen payload accurately are presented. The neural controller learns adaptive dynamic control from its own experience. It does not use information about link mass, link length, or direction of gravity, and it uses only indirect uncalibrated information about payload and actuator limits. Its average positioning accuracy across a large range of payloads after learning is 3 percent of the positioning range. This neural controller can be used as a basis for coordinating any number of sensory inputs with limbs of any number of joints. The feedforward nature of control allows parallel implementation in real time across multiple joints.
Hopkins, David James
2008-05-13
A control system and method for actively reducing vibration in a spindle housing caused by unbalance forces on a rotating spindle, by measuring the force-induced spindle-housing motion, determining control signals based on synchronous demodulation, and provide compensation for the measured displacement to cancel or otherwise reduce or attenuate the vibration. In particular, the synchronous demodulation technique is performed to recover a measured spindle housing displacement signal related only to the rotation of a machine tool spindle, and consequently rejects measured displacement not related to spindle motion or synchronous to a cycle of revolution. Furthermore, the controller actuates at least one voice-coil (VC) motor, to cancel the original force-induced motion, and adapts the magnitude of voice coil signal until this measured displacement signal is brought to a null. In order to adjust the signal to a null, it must have the correct phase relative to the spindle angle. The feedback phase signal is used to adjust a common (to both outputs) commutation offset register (offset relative to spindle encoder angle) to force the feedback phase signal output to a null. Once both of these feedback signals are null, the system is compensating properly for the spindle-induced motion.
NASA Astrophysics Data System (ADS)
Ding, Xiaohong; Ji, Xuerong; Ma, Man; Hou, Jianyun
2013-11-01
The application of the adaptive growth method is limited because several key techniques during the design process need manual intervention of designers. Key techniques of the method including the ground structure construction and seed selection are studied, so as to make it possible to improve the effectiveness and applicability of the adaptive growth method in stiffener layout design optimization of plates and shells. Three schemes of ground structures, which are comprised by different shell elements and beam elements, are proposed. It is found that the main stiffener layouts resulted from different ground structures are almost the same, but the ground structure comprised by 8-nodes shell elements and both 3-nodes and 2-nodes beam elements can result in clearest stiffener layout, and has good adaptability and low computational cost. An automatic seed selection approach is proposed, which is based on such selection rules that the seeds should be positioned on where the structural strain energy is great for the minimum compliance problem, and satisfy the dispersancy requirement. The adaptive growth method with the suggested key techniques is integrated into an ANSYS-based program, which provides a design tool for the stiffener layout design optimization of plates and shells. Typical design examples, including plate and shell structures to achieve minimum compliance and maximum bulking stability are illustrated. In addition, as a practical mechanical structural design example, the stiffener layout of an inlet structure for a large-scale electrostatic precipitator is also demonstrated. The design results show that the adaptive growth method integrated with the suggested key techniques can effectively and flexibly deal with stiffener layout design problem for plates and shells with complex geometrical shape and loading conditions to achieve various design objectives, thus it provides a new solution method for engineering structural topology design optimization.
Mechanisms in Adaptive Feedback Control: Photoisomerization in a Liquid
Hoki, Kunihito; Brumer, Paul
2005-10-14
The underlying mechanism for Adaptive Feedback Control in the experimental photoisomerization of 3,3'-diethyl-2,2'-thiacyanine iodide (NK88) in methanol is exposed theoretically. With given laboratory limitations on laser output, the complicated electric fields are shown to achieve their targets in qualitatively simple ways. Further, control over the cis population without laser limitations reveals an incoherent pump-dump scenario as the optimal isomerization strategy. In neither case are there substantial contributions from quantum multiple-path interference or from nuclear wave packet coherence. Environmentally induced decoherence is shown to justify the use of a simplified theoretical model.
An experimental study of a hybrid adaptive control system
NASA Technical Reports Server (NTRS)
Lizewski, E. F.; Monopoli, R. V.
1974-01-01
A Liapunov type model reference adaptive control system with five adjustable gains is implemented using a PDP-11 digital computer and an EAI 380 analog computer. The plant controlled is a laboratory type dc servo system. It is made to follow closely a second order linear model. The experimental results demonstrate the feasibility of implementing this rather complex design using only a minicomputer and a reasonable number of operational amplifiers. Also, it points out that satisfactory performance can be achieved even when certain assumptions necessary for the theory are not satisfied.
Prediction and control of chaotic processes using nonlinear adaptive networks
Jones, R.D.; Barnes, C.W.; Flake, G.W.; Lee, K.; Lewis, P.S.; O'Rouke, M.K.; Qian, S.
1990-01-01
We present the theory of nonlinear adaptive networks and discuss a few applications. In particular, we review the theory of feedforward backpropagation networks. We then present the theory of the Connectionist Normalized Linear Spline network in both its feedforward and iterated modes. Also, we briefly discuss the theory of stochastic cellular automata. We then discuss applications to chaotic time series, tidal prediction in Venice lagoon, finite differencing, sonar transient detection, control of nonlinear processes, control of a negative ion source, balancing a double inverted pendulum and design advice for free electron lasers and laser fusion targets.
An Adaptive Buddy Check for Observational Quality Control
NASA Technical Reports Server (NTRS)
Dee, Dick P.; Rukhovets, Leonid; Todling, Ricardo; DaSilva, Arlindo M.; Larson, Jay W.; Einaudi, Franco (Technical Monitor)
2000-01-01
An adaptive buddy check algorithm is presented that adjusts tolerances for outlier observations based on the variability of surrounding data. The algorithm derives from a statistical hypothesis test combined with maximum-likelihood covariance estimation. Its stability is shown to depend on the initial identification of outliers by a simple background check. The adaptive feature ensures that the final quality control decisions are not very sensitive to prescribed statistics of first-guess and observation errors, nor on other approximations introduced into the algorithm. The implementation of the algorithm in a global atmospheric data assimilation is described. Its performance is contrasted with that of a non-adaptive buddy check, for the surface analysis of an extreme storm that took place in Europe on 27 December 1999. The adaptive algorithm allowed the inclusion of many important observations that differed greatly from the first guess and that would have been excluded on the basis of prescribed statistics. The analysis of the storm development was much improved as a result of these additional observations.
Adaptive myoelectric pattern recognition toward improved multifunctional prosthesis control.
Liu, Jie
2015-04-01
The non-stationary property of electromyography (EMG) signals in real life settings usually hinders the clinical application of the myoelectric pattern recognition for prosthesis control. The classical EMG pattern recognition approach consists of two separate steps: training and testing, without considering the changes between training and testing data induced by electrode shift, fatigue, impedance changes and psychological factors, and often results in performance degradation. The aim of this study was to develop an adaptive myoelectric pattern recognition system, aiming to retrain the classifier online with the testing data without supervision, providing a self-correction mechanism for suppressing misclassifications. This paper presents an adaptive unsupervised classifier based on support vector machine (SVM) to improve the classification performance. Experimental data from 15 healthy subjects were used to evaluate performance. Preliminary study on intra-session and inter-session EMG data was conducted to verify the performance of the unsupervised adaptive SVM classifier. The unsupervised adaptive SVM classifier outperformed the conventional SVM by 3.3% and 8.0% for the combination of time-domain and autoregressive features in the intra-session and inter-session tests, respectively. The proposed approach is capable of incorporating the useful information in testing data to the classification model by taking into account the overtime changes in the testing data with respect to the training data to retrain the original classifier, therefore providing a self-correction mechanism for suppressing misclassifications.
Adaptive Strategies for Controls of Flexible Arms. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Yuan, Bau-San
1989-01-01
An adaptive controller for a modern manipulator has been designed based on asymptotical stability via the Lyapunov criterion with the output error between the system and a reference model used as the actuating control signal. Computer simulations were carried out to test the design. The combination of the adaptive controller and a system vibration and mode shape estimator show that the flexible arm should move along a pre-defined trajectory with high-speed motion and fast vibration setting time. An existing computer-controlled prototype two link manipulator, RALF (Robotic Arm, Large Flexible), with a parallel mechanism driven by hydraulic actuators was used to verify the mathematical analysis. The experimental results illustrate that assumed modes found from finite element techniques can be used to derive the equations of motion with acceptable accuracy. The robust adaptive (modal) control is implemented to compensate for unmodelled modes and nonlinearities and is compared with the joint feedback control in additional experiments. Preliminary results show promise for the experimental control algorithm.
Adaptive dynamic programming as a theory of sensorimotor control.
Jiang, Yu; Jiang, Zhong-Ping
2014-08-01
Many characteristics of sensorimotor control can be explained by models based on optimization and optimal control theories. However, most of the previous models assume that the central nervous system has access to the precise knowledge of the sensorimotor system and its interacting environment. This viewpoint is difficult to be justified theoretically and has not been convincingly validated by experiments. To address this problem, this paper presents a new computational mechanism for sensorimotor control from a perspective of adaptive dynamic programming (ADP), which shares some features of reinforcement learning. The ADP-based model for sensorimotor control suggests that a command signal for the human movement is derived directly from the real-time sensory data, without the need to identify the system dynamics. An iterative learning scheme based on the proposed ADP theory is developed, along with rigorous convergence analysis. Interestingly, the computational model as advocated here is able to reproduce the motor learning behavior observed in experiments where a divergent force field or velocity-dependent force field was present. In addition, this modeling strategy provides a clear way to perform stability analysis of the overall system. Hence, we conjecture that human sensorimotor systems use an ADP-type mechanism to control movements and to achieve successful adaptation to uncertainties present in the environment.
Adaptive dynamic programming as a theory of sensorimotor control.
Jiang, Yu; Jiang, Zhong-Ping
2014-08-01
Many characteristics of sensorimotor control can be explained by models based on optimization and optimal control theories. However, most of the previous models assume that the central nervous system has access to the precise knowledge of the sensorimotor system and its interacting environment. This viewpoint is difficult to be justified theoretically and has not been convincingly validated by experiments. To address this problem, this paper presents a new computational mechanism for sensorimotor control from a perspective of adaptive dynamic programming (ADP), which shares some features of reinforcement learning. The ADP-based model for sensorimotor control suggests that a command signal for the human movement is derived directly from the real-time sensory data, without the need to identify the system dynamics. An iterative learning scheme based on the proposed ADP theory is developed, along with rigorous convergence analysis. Interestingly, the computational model as advocated here is able to reproduce the motor learning behavior observed in experiments where a divergent force field or velocity-dependent force field was present. In addition, this modeling strategy provides a clear way to perform stability analysis of the overall system. Hence, we conjecture that human sensorimotor systems use an ADP-type mechanism to control movements and to achieve successful adaptation to uncertainties present in the environment. PMID:24962078
A multi-granular-based fuzzy adaptive controller
NASA Astrophysics Data System (ADS)
Lu, Bin
2006-11-01
The accuracy and complexity of fuzzy control systems are problems worthy of study deeply. The high accuracy of control means that the controlled variables will have to be represented at fine granularity which increases the complexity of controller. To attain the prescribed accuracy in reducing control complexity, a multi-granular fuzzy adaptive controller is proposed which represents the process of reaching goal at different spaces of the information granularity. When the prescribed accuracy is low, a coarse fuzzy controller can be used. As the process moves from high level to low level, the prescribed accuracy becomes higher and the information granularity to fuzzy controller becomes finer. In this controller, a rough plan is generated to reach the final goal firstly. Then, the plan is decomposed to many sub-goals which are submitted to the next lower level of hierarchy. And the more refined plans to reach these sub-goals are determined. If needed, this process of successive refinement continues until the final prescribed accuracy is obtained. In addition, the methods are presented to determine the depth of levels and the number of granules in each level. Finally, the simulation results of double inverted pendulum indicate the effectiveness of the proposed controller.
Method and apparatus for adaptive force and position control of manipulators
NASA Technical Reports Server (NTRS)
Seraji, Homayoun (Inventor)
1989-01-01
The present invention discloses systematic methods and apparatus for the design of real time controllers. Real-time control employs adaptive force/position by use of feedforward and feedback controllers, with the feedforward controller being the inverse of the linearized model of robot dynamics and containing only proportional-double-derivative terms is disclosed. The feedback controller, of the proportional-integral-derivative type, ensures that manipulator joints follow reference trajectories and the feedback controller achieves robust tracking of step-plus-exponential trajectories, all in real time. The adaptive controller includes adaptive force and position control within a hybrid control architecture. The adaptive controller, for force control, achieves tracking of desired force setpoints, and the adaptive position controller accomplishes tracking of desired position trajectories. Circuits in the adaptive feedback and feedforward controllers are varied by adaptation laws.
Development of a scalable generic platform for adaptive optics real time control
NASA Astrophysics Data System (ADS)
Surendran, Avinash; Burse, Mahesh P.; Ramaprakash, A. N.; Parihar, Padmakar
2015-06-01
The main objective of the present project is to explore the viability of an adaptive optics control system based exclusively on Field Programmable Gate Arrays (FPGAs), making strong use of their parallel processing capability. In an Adaptive Optics (AO) system, the generation of the Deformable Mirror (DM) control voltages from the Wavefront Sensor (WFS) measurements is usually through the multiplication of the wavefront slopes with a predetermined reconstructor matrix. The ability to access several hundred hard multipliers and memories concurrently in an FPGA allows performance far beyond that of a modern CPU or GPU for tasks with a well-defined structure such as Adaptive Optics control. The target of the current project is to generate a signal for a real time wavefront correction, from the signals coming from a Wavefront Sensor, wherein the system would be flexible to accommodate all the current Wavefront Sensing techniques and also the different methods which are used for wavefront compensation. The system should also accommodate for different data transmission protocols (like Ethernet, USB, IEEE 1394 etc.) for transmitting data to and from the FPGA device, thus providing a more flexible platform for Adaptive Optics control. Preliminary simulation results for the formulation of the platform, and a design of a fully scalable slope computer is presented.
Adaptive Fault-Tolerant Control of Uncertain Nonlinear Large-Scale Systems With Unknown Dead Zone.
Chen, Mou; Tao, Gang
2016-08-01
In this paper, an adaptive neural fault-tolerant control scheme is proposed and analyzed for a class of uncertain nonlinear large-scale systems with unknown dead zone and external disturbances. To tackle the unknown nonlinear interaction functions in the large-scale system, the radial basis function neural network (RBFNN) is employed to approximate them. To further handle the unknown approximation errors and the effects of the unknown dead zone and external disturbances, integrated as the compounded disturbances, the corresponding disturbance observers are developed for their estimations. Based on the outputs of the RBFNN and the disturbance observer, the adaptive neural fault-tolerant control scheme is designed for uncertain nonlinear large-scale systems by using a decentralized backstepping technique. The closed-loop stability of the adaptive control system is rigorously proved via Lyapunov analysis and the satisfactory tracking performance is achieved under the integrated effects of unknown dead zone, actuator fault, and unknown external disturbances. Simulation results of a mass-spring-damper system are given to illustrate the effectiveness of the proposed adaptive neural fault-tolerant control scheme for uncertain nonlinear large-scale systems.
Perko, Z.; Gilli, L.; Lathouwers, D.; Kloosterman, J. L.
2013-07-01
Uncertainty quantification plays an increasingly important role in the nuclear community, especially with the rise of Best Estimate Plus Uncertainty methodologies. Sensitivity analysis, surrogate models, Monte Carlo sampling and several other techniques can be used to propagate input uncertainties. In recent years however polynomial chaos expansion has become a popular alternative providing high accuracy at affordable computational cost. This paper presents such polynomial chaos (PC) methods using adaptive sparse grids and adaptive basis set construction, together with an application to a Gas Cooled Fast Reactor transient. Comparison is made between a new sparse grid algorithm and the traditionally used technique proposed by Gerstner. An adaptive basis construction method is also introduced and is proved to be advantageous both from an accuracy and a computational point of view. As a demonstration the uncertainty quantification of a 50% loss of flow transient in the GFR2400 Gas Cooled Fast Reactor design was performed using the CATHARE code system. The results are compared to direct Monte Carlo sampling and show the superior convergence and high accuracy of the polynomial chaos expansion. Since PC techniques are easy to implement, they can offer an attractive alternative to traditional techniques for the uncertainty quantification of large scale problems. (authors)
Kollmeier, B; Gilkey, R H; Sieben, U K
1988-05-01
Data from a simple tone-in-noise simultaneous masking task were used to evaluate each of two common adaptive staircase rules (a "1 up 2 down" rule and a "1 up 3 down" rule) and the parameter estimation by sequential testing (PEST) technique in combination with each of two psychophysical procedures [a two-alternative forced-choice (2AFC) and a three-alternative forced-choice (3AFC) procedure]. These human data were compared to predictions generated by a mathematical model based on Markov theory. The model predicts that threshold estimates obtained with the adaptive techniques should be equal to those derived with equivalent "fixed signal level" techniques. However, the human data indicate that the adaptive techniques tend to yield lower thresholds. The model predicts that the standard error of a threshold estimate obtained from an adaptive technique will decrease and approach zero as the number of trials used to compute the estimate increases. The human data show greater variability than predicted and approach a nonzero value as the number of trials increases. The predictions of the model suggest that the commonly used combination of the 2AFC procedure and the 1 up 2 down rule is the least efficient method of estimating a threshold and that the 3AFC procedure in combination with the 1 up 3 down rule is the most efficient method. The human data are less consistent, but generally show the combination of the 2AFC procedure and the 1 up 2 down rule to be one of the least efficient methods. Possible explanations for the differences between the model's predictions and the human data, as well as suggestions for laboratory practice, are discussed. PMID:3403801
Direct model reference adaptive control of robotic arms
NASA Technical Reports Server (NTRS)
Kaufman, Howard; Swift, David C.; Cummings, Steven T.; Shankey, Jeffrey R.
1993-01-01
The results of controlling A PUMA 560 Robotic Manipulator and the NASA shuttle Remote Manipulator System (RMS) using a Command Generator Tracker (CGT) based Model Reference Adaptive Controller (DMRAC) are presented. Initially, the DMRAC algorithm was run in simulation using a detailed dynamic model of the PUMA 560. The algorithm was tuned on the simulation and then used to control the manipulator using minimum jerk trajectories as the desired reference inputs. The ability to track a trajectory in the presence of load changes was also investigated in the simulation. Satisfactory performance was achieved in both simulation and on the actual robot. The obtained responses showed that the algorithm was robust in the presence of sudden load changes. Because these results indicate that the DMRAC algorithm can indeed be successfully applied to the control of robotic manipulators, additional testing was performed to validate the applicability of DMRAC to simulated dynamics of the shuttle RMS.
Adaptive control of a vibratory angle measuring gyroscope.
Park, Sungsu
2010-01-01
This paper presents an adaptive control algorithm for realizing a vibratory angle measuring gyroscope so that rotation angle can be directly measured without integration of angular rate, thus eliminating the accumulation of numerical integration errors. The proposed control algorithm uses a trajectory following approach and the reference trajectory is generated by an ideal angle measuring gyroscope driven by the estimate of angular rate and the auxiliary sinusoidal input so that the persistent excitation condition is satisfied. The developed control algorithm can compensate for all types of fabrication imperfections such as coupled damping and stiffness, and mismatched stiffness and un-equal damping term in an on-line fashion. The simulation results show the feasibility and effectiveness of the developed control algorithm that is capable of directly measuring rotation angle without the integration of angular rate.
Decentralized adaptive control designs and microstrip antennas for smart structures
NASA Astrophysics Data System (ADS)
Khorrami, Farshad; Jain, Sandeep; Das, Nirod K.
1996-05-01
Smart structures lend themselves naturally to a decentralized control design framework, especially with adaptation mechanisms. The main reason being that it is highly undesirable to connect all the sensors and actuators in a large structure to a central processor. It is rather desirable to have local decision-making at each smart patch. Furthermore, this local controllers should be easily `expandable' to `contractible.' This corresponds to the fact that addition/deletion of several smart patches should not require a total redesign of the control system. The decentralized control strategies advocated in this paper are of expandable/contractible type. On another front, we are considering utilization of micro-strip antennas for power transfer to and from smart structures. We have made preliminary contributions in this direction and further developments are underway. These approaches are being pursued for active vibration damping and noise cancellation via piezoelectric ceramics although the methodology is general enough to be applicable to other type of active structures.
Direct model reference adaptive control of robotic arms
NASA Astrophysics Data System (ADS)
Kaufman, Howard; Swift, David C.; Cummings, Steven T.; Shankey, Jeffrey R.
1993-12-01
The results of controlling A PUMA 560 Robotic Manipulator and the NASA shuttle Remote Manipulator System (RMS) using a Command Generator Tracker (CGT) based Model Reference Adaptive Controller (DMRAC) are presented. Initially, the DMRAC algorithm was run in simulation using a detailed dynamic model of the PUMA 560. The algorithm was tuned on the simulation and then used to control the manipulator using minimum jerk trajectories as the desired reference inputs. The ability to track a trajectory in the presence of load changes was also investigated in the simulation. Satisfactory performance was achieved in both simulation and on the actual robot. The obtained responses showed that the algorithm was robust in the presence of sudden load changes. Because these results indicate that the DMRAC algorithm can indeed be successfully applied to the control of robotic manipulators, additional testing was performed to validate the applicability of DMRAC to simulated dynamics of the shuttle RMS.
Techniques for designing rotorcraft control systems
NASA Technical Reports Server (NTRS)
Yudilevitch, Gil; Levine, William S.
1994-01-01
Over the last two and a half years we have been demonstrating a new methodology for the design of rotorcraft flight control systems (FCS) to meet handling qualities requirements. This method is based on multicriterion optimization as implemented in the optimization package CONSOL-OPTCAD (C-O). This package has been developed at the Institute for Systems Research (ISR) at the University of Maryland at College Park. This design methodology has been applied to the design of a FCS for the UH-60A helicopter in hover having the ADOCS control structure. The controller parameters have been optimized to meet the ADS-33C specifications. Furthermore, using this approach, an optimal (minimum control energy) controller has been obtained and trade-off studies have been performed.
L∞-gain adaptive fuzzy fault accommodation control design for nonlinear time-delay systems.
Wu, Huai-Ning; Qiang, Xiao-Hong; Guo, Lei
2011-06-01
In this paper, an adaptive fuzzy fault accommodation (FA) control design with a guaranteed L(∞)-gain performance is developed for a class of nonlinear time-delay systems with persistent bounded disturbances. Using the Lyapunov technique and the Razumikhin-type lemma, the existence condition of the L(∞) -gain adaptive fuzzy FA controllers is provided in terms of linear matrix inequalities (LMIs). In the proposed FA scheme, a fuzzy logic system is employed to approximate the unknown term in the derivative of the Lyapunov function due to the unknown fault function; a continuous-state feedback control strategy is adopted for the control design to avoid the undesirable chattering phenomenon. The resulting FA controllers can ensure that every response of the closed-loop system is uniformly ultimately bounded with a guaranteed L(∞)-gain performance in the presence of a fault. Moreover, by the existing LMI optimization technique, a suboptimal controller is obtained in the sense of minimizing an upper bound of the L(∞)-gain. Finally, the achieved simulation results on the FA control of a continuous stirred tank reactor (CSTR) show the effectiveness of the proposed design procedure.
Robust adaptive neural control for a class of uncertain MIMO nonlinear systems
NASA Astrophysics Data System (ADS)
Wang, Chenliang; Lin, Yan
2015-08-01
In this paper, a novel robust adaptive neural control scheme is proposed for a class of uncertain multi-input multi-output nonlinear systems. The proposed scheme has the following main features: (1) a kind of Hurwitz condition is introduced to handle the state-dependent control gain matrix and some assumptions in existing schemes are relaxed; (2) by introducing a novel matrix normalisation technique, it is shown that all bound restrictions imposed on the control gain matrix in existing schemes can be removed; (3) the singularity problem is avoided without any extra effort, which makes the control law quite simple. Besides, with the aid of the minimal learning parameter technique, only one parameter needs to be updated online regardless of the system input-output dimension and the number of neural network nodes. Simulation results are presented to illustrate the effectiveness of the proposed scheme.
NASA Astrophysics Data System (ADS)
Cheng, Jie; Qian, Zhaogang; Irani, Keki B.; Etemad, Hossein; Elta, Michael E.
1991-03-01
To meet the ever-increasing demand of the rapidly-growing semiconductor manufacturing industry it is critical to have a comprehensive methodology integrating techniques for process optimization real-time monitoring and adaptive process control. To this end we have accomplished an integrated knowledge-based approach combining latest expert system technology machine learning method and traditional statistical process control (SPC) techniques. This knowledge-based approach is advantageous in that it makes it possible for the task of process optimization and adaptive control to be performed consistently and predictably. Furthermore this approach can be used to construct high-level and qualitative description of processes and thus make the process behavior easy to monitor predict and control. Two software packages RIST (Rule Induction and Statistical Testing) and KARSM (Knowledge Acquisition from Response Surface Methodology) have been developed and incorporated with two commercially available packages G2 (real-time expert system) and ULTRAMAX (a tool for sequential process optimization).
An adaptive spoiler to control the transonic shock
NASA Astrophysics Data System (ADS)
Bein, Th; Hanselka, H.; Breitbach, E.
2000-04-01
Market research predicts, for the aircraft industry, a large growth in the number of passengers as well as the airfreight rate with the result of this leading to increased competition for the European aircraft industry, the efficiency of new aircraft has to be improved drastically. One approach, among others, is the aerodynamic optimization of the wing. The fixed wing is designed optimally only for one flight condition. This flight condition is described by the parameters altitude, mach number and aircraft weight, all of which permanently vary during the mission of the aircraft. Therefore, the aircraft is just periodically near to the chosen design point. To compensate for this major disadvantage, an `adaptive wing' for optimal adaptation and variation of the profile geometry to the actual flight conditions will be developed. Daimler-Benz Aerospace Airbus, Daimler-Benz Research and the German Aerospace Center (DLR) are working as project partners on concepts for a variable camber and a local spoiler bump. In this paper a structural concept developed by the DLR for the adaptive spoiler will be presented. The concept is designed under the aspect of adaptive structural systems and requires a high integration of actuators, sensor and controllers in the structure. Special aspects of the design will be discussed and the first results, analytical, numerical as well as experimental, will be presented. Part of the concept design is also the development of new actuators optimized for the specific problem. A new actuator concept for the adaptive spoiler based on a cylindrical tube and activated either by pressure or multifunctional materials (e.g. shape memory alloys) will additionally be shown.
The reduced order model problem in distributed parameter systems adaptive identification and control
NASA Technical Reports Server (NTRS)
Johnson, C. R., Jr.
1980-01-01
The research concerning the reduced order model problem in distributed parameter systems is reported. The adaptive control strategy was chosen for investigation in the annular momentum control device. It is noted, that if there is no observation spill over, and no model errors, an indirect adaptive control strategy can be globally stable. Recent publications concerning adaptive control are included.
Vasile, Gabriel; Trouvé, Emmanuel; Ciuc, Mihai; Buzuloiu, Vasile
2004-08-01
A new method for filtering the coherence map issued from synthetic aperture radar (SAR) interferometric data is presented. For each pixel of the interferogram, an adaptive neighborhood is determined by a region-growing technique driven by the information provided by the amplitude images. Then pixels in the derived adaptive neighborhood are complex averaged to yield the filtered value of the coherence, after a phase-compensation step is performed. An extension of the algorithm is proposed for polarimetric interferometric SAR images. The proposed method has been applied to both European Remote Sensing (ERS) satellite SAR images and airborne high-resolution polarimetric interferometric SAR images. Both subjective and objective performance analysis, including coherence edge detection, shows that the proposed method provides better results than the standard phase-compensated fixed multilook filter and the Lee adaptive coherence filter.
Verifiable Adaptive Control with Analytical Stability Margins by Optimal Control Modification
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2010-01-01
This paper presents a verifiable model-reference adaptive control method based on an optimal control formulation for linear uncertain systems. A predictor model is formulated to enable a parameter estimation of the system parametric uncertainty. The adaptation is based on both the tracking error and predictor error. Using a singular perturbation argument, it can be shown that the closed-loop system tends to a linear time invariant model asymptotically under an assumption of fast adaptation. A stability margin analysis is given to estimate a lower bound of the time delay margin using a matrix measure method. Using this analytical method, the free design parameter n of the optimal control modification adaptive law can be determined to meet a specification of stability margin for verification purposes.
Control Systems with Normalized and Covariance Adaptation by Optimal Control Modification
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T. (Inventor); Burken, John J. (Inventor); Hanson, Curtis E. (Inventor)
2016-01-01
Disclosed is a novel adaptive control method and system called optimal control modification with normalization and covariance adjustment. The invention addresses specifically to current challenges with adaptive control in these areas: 1) persistent excitation, 2) complex nonlinear input-output mapping, 3) large inputs and persistent learning, and 4) the lack of stability analysis tools for certification. The invention has been subject to many simulations and flight testing. The results substantiate the effectiveness of the invention and demonstrate the technical feasibility for use in modern aircraft flight control systems.
NASA Astrophysics Data System (ADS)
Mousavi, Seyyed Hossein; Noroozi, Navid; Safavi, Ali Akbar; Ebadat, Afrooz
2011-09-01
This paper proposes an observer based self-structuring robust adaptive fuzzy wave-net (FWN) controller for a class of nonlinear uncertain multi-input multi-output systems. The control signal is comprised of two parts. The first part arises from an adaptive fuzzy wave-net based controller that approximates the system structural uncertainties. The second part comes from a robust H∞ based controller that is used to attenuate the effect of function approximation error and disturbance. Moreover, a new self structuring algorithm is proposed to determine the location of basis functions. Simulation results are provided for a two DOF robot to show the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Zhang, Feng; Duan, Guangren
2013-05-01
This paper handles the integrated translation and rotation tracking control problem of a rigid spacecraft with unknown mass property, actuator misalignment and control saturation. In view of the system natural coupling, the coupled translational and rotational dynamics of the spacecraft is developed, where a thruster configuration with installation misalignment is taken into account. By using anti-windup technique and backstepping philosophy, a robust adaptive integrated control scheme is proposed such that the spacecraft is able to track the command position and attitude signals in the presence of external disturbance, unknown mass property, thruster misalignment and control saturation. Within the Lyapunov framework, the uniformly ultimate boundedness of the system states is guaranteed. In particular, given the nominal case, the asymptotic convergence of the system states can be further ensured by the proposed control scheme. Finally, numerical simulation demonstrates the effect of the designed control strategy.
Controls on Extreme Droughts and Adaptation Strategies in Semiarid Regions
NASA Astrophysics Data System (ADS)
Scanlon, B. R.; Cook, C.; Fernando, D. N.; LeBlanc, M.
2012-12-01
Increasing vulnerability to droughts with reduced per capita water storage, particularly in semiarid regions, underscores the need for predictive understanding of drought controls and development of adaptation strategies for water resources management. In this study we evaluate causes of major droughts in southwest and southcentral US (California and Texas) and southeast Australia (Murray Darling Basin). Impacts of climate cycles (ENSO, PDO, AMO, NAO, IOD) and atmospheric circulation on drought initiation and persistence are examined. Effects of drought on surface water reservoir storage, groundwater storage, irrigation, and crop production are compared. Adaptation strategies being evaluated include water transfers among sectors, particularly from irrigated agriculture to other groups, increasing storage using managed aquifer recharge, water reuse, and development of new water sources (e.g. seawater desalination). It is critical to develop a broad portfolio of water sources to increase resilience to future droughts.
Grid and basis adaptive polynomial chaos techniques for sensitivity and uncertainty analysis
Perkó, Zoltán Gilli, Luca Lathouwers, Danny Kloosterman, Jan Leen
2014-03-01
The demand for accurate and computationally affordable sensitivity and uncertainty techniques is constantly on the rise and has become especially pressing in the nuclear field with the shift to Best Estimate Plus Uncertainty methodologies in the licensing of nuclear installations. Besides traditional, already well developed methods – such as first order perturbation theory or Monte Carlo sampling – Polynomial Chaos Expansion (PCE) has been given a growing emphasis in recent years due to its simple application and good performance. This paper presents new developments of the research done at TU Delft on such Polynomial Chaos (PC) techniques. Our work is focused on the Non-Intrusive Spectral Projection (NISP) approach and adaptive methods for building the PCE of responses of interest. Recent efforts resulted in a new adaptive sparse grid algorithm designed for estimating the PC coefficients. The algorithm is based on Gerstner's procedure for calculating multi-dimensional integrals but proves to be computationally significantly cheaper, while at the same it retains a similar accuracy as the original method. More importantly the issue of basis adaptivity has been investigated and two techniques have been implemented for constructing the sparse PCE of quantities of interest. Not using the traditional full PC basis set leads to further reduction in computational time since the high order grids necessary for accurately estimating the near zero expansion coefficients of polynomial basis vectors not needed in the PCE can be excluded from the calculation. Moreover the sparse PC representation of the response is easier to handle when used for sensitivity analysis or uncertainty propagation due to the smaller number of basis vectors. The developed grid and basis adaptive methods have been implemented in Matlab as the Fully Adaptive Non-Intrusive Spectral Projection (FANISP) algorithm and were tested on four analytical problems. These show consistent good performance both
A new adaptive configuration of PID type fuzzy logic controller.
Fereidouni, Alireza; Masoum, Mohammad A S; Moghbel, Moayed
2015-05-01
In this paper, an adaptive configuration for PID type fuzzy logic controller (FLC) is proposed to improve the performances of both conventional PID (C-PID) controller and conventional PID type FLC (C-PID-FLC). The proposed configuration is called adaptive because its output scaling factors (SFs) are dynamically tuned while the controller is functioning. The initial values of SFs are calculated based on its well-tuned counterpart while the proceeding values are generated using a proposed stochastic hybrid bacterial foraging particle swarm optimization (h-BF-PSO) algorithm. The performance of the proposed configuration is evaluated through extensive simulations for different operating conditions (changes in reference, load disturbance and noise signals). The results reveal that the proposed scheme performs significantly better over the C-PID controller and the C-PID-FLC in terms of several performance indices (integral absolute error (IAE), integral-of-time-multiplied absolute error (ITAE) and integral-of-time-multiplied squared error (ITSE)), overshoot and settling time for plants with and without dead time.
de Paula, Andréia Bolzan; Duque, Cristiane; Correr-Sobrinho, Lourenço; Puppin-Rontani, Regina M
2008-01-01
This study evaluated the compressive strength and marginal adaptation of composite onlays using indirect and direct techniques after thermal and mechanical cycling. Onlay standardized cavities were prepared in 50 permanent molars and restored with Z-250 resin composite using indirect (IRT) or direct (DRT) restorative techniques. The restorations were either submitted or not submitted to thermal (500 cycles, 5 degrees to 55 degrees C) and mechanical cycling (50,000 cycles, 50N). The teeth were distributed to five groups (n=10): G1-IRT/cycling; G2-IRT/no cycling; G3-DRT/cycling; G4-DRT/no cycling and G5 (control group)-sound teeth. All prepared teeth were stored in 100% relative humidity at 37 degrees C for 24 hours, followed by finishing with Sof-Lex discs. A caries detector solution was applied on the tooth-restoration interface of all teeth for five seconds, followed by washing and drying. Four digital photographs were taken of each tooth surface. The extent of gaps was measured using standard software (Image Tool 3.0). All groups were submitted to compression testing in a universal testing machine (INSTRON) at a crosshead speed of 1 mm/minute until failure. The compressive strength (CS) and marginal adaptation data were submitted to ANOVA and Tukey test (p<0.05). For both evaluation criteria (compressive strength and marginal adaptation), there were no statistically significant differences among the restorative techniques. Deterioration over time was observed for both types of restorations. However, the prevalence of catastrophic fractures increased among direct restorations. The application of thermal/mechanical cycling only influenced marginal adaptation.
Luo, Biao; Wu, Huai-Ning; Li, Han-Xiong
2015-04-01
Highly dissipative nonlinear partial differential equations (PDEs) are widely employed to describe the system dynamics of industrial spatially distributed processes (SDPs). In this paper, we consider the optimal control problem of the general highly dissipative SDPs, and propose an adaptive optimal control approach based on neuro-dynamic programming (NDP). Initially, Karhunen-Loève decomposition is employed to compute empirical eigenfunctions (EEFs) of the SDP based on the method of snapshots. These EEFs together with singular perturbation technique are then used to obtain a finite-dimensional slow subsystem of ordinary differential equations that accurately describes the dominant dynamics of the PDE system. Subsequently, the optimal control problem is reformulated on the basis of the slow subsystem, which is further converted to solve a Hamilton-Jacobi-Bellman (HJB) equation. HJB equation is a nonlinear PDE that has proven to be impossible to solve analytically. Thus, an adaptive optimal control method is developed via NDP that solves the HJB equation online using neural network (NN) for approximating the value function; and an online NN weight tuning law is proposed without requiring an initial stabilizing control policy. Moreover, by involving the NN estimation error, we prove that the original closed-loop PDE system with the adaptive optimal control policy is semiglobally uniformly ultimately bounded. Finally, the developed method is tested on a nonlinear diffusion-convection-reaction process and applied to a temperature cooling fin of high-speed aerospace vehicle, and the achieved results show its effectiveness.
Luo, Biao; Wu, Huai-Ning; Li, Han-Xiong
2015-04-01
Highly dissipative nonlinear partial differential equations (PDEs) are widely employed to describe the system dynamics of industrial spatially distributed processes (SDPs). In this paper, we consider the optimal control problem of the general highly dissipative SDPs, and propose an adaptive optimal control approach based on neuro-dynamic programming (NDP). Initially, Karhunen-Loève decomposition is employed to compute empirical eigenfunctions (EEFs) of the SDP based on the method of snapshots. These EEFs together with singular perturbation technique are then used to obtain a finite-dimensional slow subsystem of ordinary differential equations that accurately describes the dominant dynamics of the PDE system. Subsequently, the optimal control problem is reformulated on the basis of the slow subsystem, which is further converted to solve a Hamilton-Jacobi-Bellman (HJB) equation. HJB equation is a nonlinear PDE that has proven to be impossible to solve analytically. Thus, an adaptive optimal control method is developed via NDP that solves the HJB equation online using neural network (NN) for approximating the value function; and an online NN weight tuning law is proposed without requiring an initial stabilizing control policy. Moreover, by involving the NN estimation error, we prove that the original closed-loop PDE system with the adaptive optimal control policy is semiglobally uniformly ultimately bounded. Finally, the developed method is tested on a nonlinear diffusion-convection-reaction process and applied to a temperature cooling fin of high-speed aerospace vehicle, and the achieved results show its effectiveness. PMID:25794375
An adaptive SK technique and its application for fault detection of rolling element bearings
NASA Astrophysics Data System (ADS)
Wang, Yanxue; Liang, Ming
2011-07-01
In this paper, we propose an adaptive spectral kurtosis (SK) technique for the fault detection of rolling element bearings. The primary contribution is adaptive determination of the bandwidth and center frequency. This is implemented with successive attempts to right-expand a given window along the frequency axis by merging it with its subsequent neighboring windows. Influence of the parameters such as the initial window function, bandwidth and window overlap on the merged windows as well as how to choose those parameters in practical applications are explored. Based on simulated experiments, it can be found that the proposed technique can further enhance the SK-based method as compared to the kurtogram approach. The effectiveness of the proposed method in fault detection of the rolling element bearings is validated using experimental signals.
Cebral, Juan R; Löhner, Rainald
2005-04-01
The simulation of blood flow past endovascular devices such as coils and stents is a challenging problem due to the complex geometry of the devices. Traditional unstructured grid computational fluid dynamics relies on the generation of finite element grids that conform to the boundary of the computational domain. However, the generation of such grids for patient-specific modeling of cerebral aneurysm treatment with coils or stents is extremely difficult and time consuming. This paper describes the application of an adaptive grid embedding technique previously developed for complex fluid structure interaction problems to the simulation of endovascular devices. A hybrid approach is used: the vessel walls are treated with body conforming grids and the endovascular devices with an adaptive mesh embedding technique. This methodology fits naturally in the framework of image-based computational fluid dynamics and opens the door for exploration of different therapeutic options and personalization of endovascular procedures. PMID:15822805
Space Launch System Implementation of Adaptive Augmenting Control
NASA Technical Reports Server (NTRS)
Wall, John H.; Orr, Jeb S.; VanZwieten, Tannen S.
2014-01-01
Given the complex structural dynamics, challenging ascent performance requirements, and rigorous flight certification constraints owing to its manned capability, the NASA Space Launch System (SLS) launch vehicle requires a proven thrust vector control algorithm design with highly optimized parameters to provide stable and high-performance flight. On its development path to Preliminary Design Review (PDR), the SLS flight control system has been challenged by significant vehicle flexibility, aerodynamics, and sloshing propellant. While the design has been able to meet all robust stability criteria, it has done so with little excess margin. Through significant development work, an Adaptive Augmenting Control (AAC) algorithm has been shown to extend the envelope of failures and flight anomalies the SLS control system can accommodate while maintaining a direct link to flight control stability criteria such as classical gain and phase margin. In this paper, the work performed to mature the AAC algorithm as a baseline component of the SLS flight control system is presented. The progress to date has brought the algorithm design to the PDR level of maturity. The algorithm has been extended to augment the full SLS digital 3-axis autopilot, including existing load-relief elements, and the necessary steps for integration with the production flight software prototype have been implemented. Several updates which have been made to the adaptive algorithm to increase its performance, decrease its sensitivity to expected external commands, and safeguard against limitations in the digital implementation are discussed with illustrating results. Monte Carlo simulations and selected stressing case results are also shown to demonstrate the algorithm's ability to increase the robustness of the integrated SLS flight control system.
Space Launch System Implementation of Adaptive Augmenting Control
NASA Technical Reports Server (NTRS)
VanZwieten, Tannen S.; Wall, John H.; Orr, Jeb S.
2014-01-01
Given the complex structural dynamics, challenging ascent performance requirements, and rigorous flight certification constraints owing to its manned capability, the NASA Space Launch System (SLS) launch vehicle requires a proven thrust vector control algorithm design with highly optimized parameters to robustly demonstrate stable and high performance flight. On its development path to preliminary design review (PDR), the stability of the SLS flight control system has been challenged by significant vehicle flexibility, aerodynamics, and sloshing propellant dynamics. While the design has been able to meet all robust stability criteria, it has done so with little excess margin. Through significant development work, an adaptive augmenting control (AAC) algorithm previously presented by Orr and VanZwieten, has been shown to extend the envelope of failures and flight anomalies for which the SLS control system can accommodate while maintaining a direct link to flight control stability criteria (e.g. gain & phase margin). In this paper, the work performed to mature the AAC algorithm as a baseline component of the SLS flight control system is presented. The progress to date has brought the algorithm design to the PDR level of maturity. The algorithm has been extended to augment the SLS digital 3-axis autopilot, including existing load-relief elements, and necessary steps for integration with the production flight software prototype have been implemented. Several updates to the adaptive algorithm to increase its performance, decrease its sensitivity to expected external commands, and safeguard against limitations in the digital implementation are discussed with illustrating results. Monte Carlo simulations and selected stressing case results are shown to demonstrate the algorithm's ability to increase the robustness of the integrated SLS flight control system.
Engelhart, Denise; Schouten, Alfred C; Aarts, Ronald G K M; van der Kooij, Herman
2015-11-01
The ankles and hips play an important role in maintaining standing balance and the coordination between joints adapts with task and conditions, like the disturbance magnitude and type, and changes with age. Assessment of multi-joint coordination requires the application of multiple continuous and independent disturbances and closed loop system identification techniques (CLSIT). This paper presents a novel device, the double inverted pendulum perturbator (DIPP), which can apply disturbing forces at the hip level and between the shoulder blades. In addition to the disturbances, the device can provide force fields to study adaptation of multi-joint coordination. The performance of the DIPP and a novel CLSIT was assessed by identifying a system with known mechanical properties and model simulations. A double inverted pendulum was successfully identified, while force fields were able to keep the pendulum upright. The estimated dynamics were similar as the theoretical derived dynamics. The DIPP has a sufficient bandwidth of 7 Hz to identify multi-joint coordination dynamics. An experiment with human subjects where a stabilizing force field was rendered at the hip (1500 N/m), showed that subjects adapt by lowering their control actions around the ankles. The stiffness from upper and lower segment motion to ankle torque dropped with 30% and 48%, respectively. Our methods allow to study (pathological) changes in multi-joint coordination as well as adaptive capacity to maintain standing balance. PMID:25423654
Engelhart, Denise; Schouten, Alfred C; Aarts, Ronald G K M; van der Kooij, Herman
2015-11-01
The ankles and hips play an important role in maintaining standing balance and the coordination between joints adapts with task and conditions, like the disturbance magnitude and type, and changes with age. Assessment of multi-joint coordination requires the application of multiple continuous and independent disturbances and closed loop system identification techniques (CLSIT). This paper presents a novel device, the double inverted pendulum perturbator (DIPP), which can apply disturbing forces at the hip level and between the shoulder blades. In addition to the disturbances, the device can provide force fields to study adaptation of multi-joint coordination. The performance of the DIPP and a novel CLSIT was assessed by identifying a system with known mechanical properties and model simulations. A double inverted pendulum was successfully identified, while force fields were able to keep the pendulum upright. The estimated dynamics were similar as the theoretical derived dynamics. The DIPP has a sufficient bandwidth of 7 Hz to identify multi-joint coordination dynamics. An experiment with human subjects where a stabilizing force field was rendered at the hip (1500 N/m), showed that subjects adapt by lowering their control actions around the ankles. The stiffness from upper and lower segment motion to ankle torque dropped with 30% and 48%, respectively. Our methods allow to study (pathological) changes in multi-joint coordination as well as adaptive capacity to maintain standing balance.
Nonlinear Adaptive Flight Control for the X-38 Reentry Vehicle
NASA Astrophysics Data System (ADS)
Wallner, E. M.; Well, K. H.
The paper is concerned with designing an attitude control system for the X-38 vehicle for the hypersonic and supersonic region. The design goals are i) good tracking performance such that the vehicle will follow the guidance commands, ii) robust stability and performance in view of uncertain aerodynamic parameters, iii) cross-airframe capability of the control architecture in order to minimize redesign efforts in view of vehicle modifications which might occur during the development process. These goals have been achieved by selecting an inversion based control system design procedure combined with a CMAC neural net for adaptation of the linear PID controller parameters in view of the uncertainties. It is shown that the application of dynamic inversion requires a redefinition of the controlled variables in order to adequately stabilize the closed-loop system. The need for output-redefinition lies in the fact that only two bodyflaps are available for control, which limits the number of controlled variables to two. Simulation results are given to show the efficacy of the control approach.
Psychophysiological Control of Acognitive Task Using Adaptive Automation
NASA Technical Reports Server (NTRS)
Freeman, Frederick; Pope, Alan T. (Technical Monitor)
2001-01-01
The major focus of the present proposal was to examine psychophysiological variables related to hazardous states of awareness induced by monitoring automated systems. With the increased use of automation in today's work environment, people's roles in the work place are being redefined from that of active participant to one of passive monitor. Although the introduction of automated systems has a number of benefits, there are also a number of disadvantages regarding worker performance. Byrne and Parasuraman have argued for the use of psychophysiological measures in the development and the implementation of adaptive automation. While both performance based and model based adaptive automation have been studied, the use of psychophysiological measures, especially EEG, offers the advantage of real time evaluation of the state of the subject. The current study used the closed-loop system, developed at NASA-Langley Research Center, to control the state of awareness of subjects while they performed a cognitive vigilance task. Previous research in our laboratory, supported by NASA, has demonstrated that, in an adaptive automation, closed-loop environment, subjects perform a tracking task better under a negative than a positive, feedback condition. In addition, this condition produces less subjective workload and larger P300 event related potentials to auditory stimuli presented in a concurrent oddball task. We have also recently shown that the closed-loop system used to control the level of automation in a tracking task can also be used to control the event rate of stimuli in a vigilance monitoring task. By changing the event rate based on the subject's index of arousal, we have been able to produce improved monitoring, relative to various control groups. We have demonstrated in our initial closed-loop experiments with the the vigilance paradigm that using a negative feedback contingency (i.e. increasing event rates when the EEG index is low and decreasing event rates when
Kopec, D; Shagas, G; Reinharth, D; Tamang, S
2004-01-01
The use and development of software in the medical field offers tremendous opportunities for making health care delivery more efficient, more effective, and less error-prone. We discuss and explore the use of clinical pathways analysis with Adaptive Bayesian Networks and Data Mining Techniques to perform such analyses. The computation of "lift" (a measure of completed pathways improvement potential) leads us to optimism regarding the potential for this approach.
Crowder, S.V.; Eshleman, L.
1998-08-01
In many manufacturing environments such as the nuclear weapons complex, emphasis has shifted from the regular production and delivery of large orders to infrequent small orders. However, the challenge to maintain the same high quality and reliability standards white building much smaller lot sizes remains. To meet this challenge, specific areas need more attention, including fast and on-target process start-up, low volume statistical process control, process characterization with small experiments, and estimating reliability given few actual performance tests of the product. In this paper the authors address the issue of low volume statistical process control. They investigate an adaptive filtering approach to process monitoring with a relatively short time series of autocorrelated data. The emphasis is on estimation and minimization of mean squared error rather than the traditional hypothesis testing and run length analyses associated with process control charting. The authors develop an adaptive filtering technique that assumes initial process parameters are unknown, and updates the parameters as more data become available. Using simulation techniques, they study the data requirements (the length of a time series of autocorrelated data) necessary to adequately estimate process parameters. They show that far fewer data values are needed than is typically recommended for process control applications. And they demonstrate the techniques with a case study from the nuclear weapons manufacturing complex.
CROWDER, STEPHEN V.
1999-09-01
In many manufacturing environments such as the nuclear weapons complex, emphasis has shifted from the regular production and delivery of large orders to infrequent small orders. However, the challenge to maintain the same high quality and reliability standards while building much smaller lot sizes remains. To meet this challenge, specific areas need more attention, including fast and on-target process start-up, low volume statistical process control, process characterization with small experiments, and estimating reliability given few actual performance tests of the product. In this paper we address the issue of low volume statistical process control. We investigate an adaptive filtering approach to process monitoring with a relatively short time series of autocorrelated data. The emphasis is on estimation and minimization of mean squared error rather than the traditional hypothesis testing and run length analyses associated with process control charting. We develop an adaptive filtering technique that assumes initial process parameters are unknown, and updates the parameters as more data become available. Using simulation techniques, we study the data requirements (the length of a time series of autocorrelated data) necessary to adequately estimate process parameters. We show that far fewer data values are needed than is typically recommended for process control applications. We also demonstrate the techniques with a case study from the nuclear weapons manufacturing complex.
Functional Based Adaptive and Fuzzy Sliding Controller for Non-Autonomous Active Suspension System
NASA Astrophysics Data System (ADS)
Huang, Shiuh-Jer; Chen, Hung-Yi
In this paper, an adaptive sliding controller is developed for controlling a vehicle active suspension system. The functional approximation technique is employed to substitute the unknown non-autonomous functions of the suspension system and release the model-based requirement of sliding mode control algorithm. In order to improve the control performance and reduce the implementation problem, a fuzzy strategy with online learning ability is added to compensate the functional approximation error. The update laws of the functional approximation coefficients and the fuzzy tuning parameters are derived from the Lyapunov theorem to guarantee the system stability. The proposed controller is implemented on a quarter-car hydraulic actuating active suspension system test-rig. The experimental results show that the proposed controller suppresses the oscillation amplitude of the suspension system effectively.
NASA Astrophysics Data System (ADS)
Man, Yongchao; Liu, Yungang
2016-05-01
This paper addresses the global adaptive stabilisation via switching and learning strategies for a class of uncertain nonlinear systems. Remarkably, the systems in question simultaneously have unknown control directions, unknown input disturbance and unknown growth rate, which makes the problem in question challenging to solve and essentially different from those in the existing literature. To solve the problem, an adaptive scheme via switching and learning is proposed by skilfully integrating the techniques of backstepping design, adaptive learning and adaptive switching. One key point in the design scheme is the introduction of the learning mechanism, in order to compensate the unknown input disturbance, and the other one is the design of the switching mechanism, through tuning the design parameters online to deal with the unknown control directions, unknown bound and period of input disturbance and unknown growth rate. The designed controller guarantees that all the signals of the resulting closed-loop systems are bounded, and furthermore, the closed-loop system states globally converge to zero.
Adaptive fuzzy sliding mode control scheme for uncertain systems
NASA Astrophysics Data System (ADS)
Noroozi, Navid; Roopaei, Mehdi; Jahromi, M. Zolghadri
2009-11-01
Most physical systems inherently contain nonlinearities which are commonly unknown to the system designer. Therefore, in modeling and analysis of such dynamic systems, one needs to handle unknown nonlinearities and/or uncertain parameters. This paper proposes a new adaptive tracking fuzzy sliding mode controller for a class of nonlinear systems in the presence of uncertainties and external disturbances. The main contribution of the proposed method is that the structure of the controlled system is partially unknown and does not require the bounds of uncertainty and disturbance of the system to be known; meanwhile, the chattering phenomenon that frequently appears in the conventional variable structure systems is also eliminated without deteriorating the system robustness. The performance of the proposed approach is evaluated for two well-known benchmark problems. The simulation results illustrate the effectiveness of our proposed controller.
Adaptive integral dynamic surface control of a hypersonic flight vehicle
NASA Astrophysics Data System (ADS)
Aslam Butt, Waseem; Yan, Lin; Amezquita S., Kendrick
2015-07-01
In this article, non-linear adaptive dynamic surface air speed and flight path angle control designs are presented for the longitudinal dynamics of a flexible hypersonic flight vehicle. The tracking performance of the control design is enhanced by introducing a novel integral term that caters to avoiding a large initial control signal. To ensure feasibility, the design scheme incorporates magnitude and rate constraints on the actuator commands. The uncertain non-linear functions are approximated by an efficient use of the neural networks to reduce the computational load. A detailed stability analysis shows that all closed-loop signals are uniformly ultimately bounded and the ? tracking performance is guaranteed. The robustness of the design scheme is verified through numerical simulations of the flexible flight vehicle model.
Active Inference, homeostatic regulation and adaptive behavioural control
Pezzulo, Giovanni; Rigoli, Francesco; Friston, Karl
2015-01-01
We review a theory of homeostatic regulation and adaptive behavioural control within the Active Inference framework. Our aim is to connect two research streams that are usually considered independently; namely, Active Inference and associative learning theories of animal behaviour. The former uses a probabilistic (Bayesian) formulation of perception and action, while the latter calls on multiple (Pavlovian, habitual, goal-directed) processes for homeostatic and behavioural control. We offer a synthesis these classical processes and cast them as successive hierarchical contextualisations of sensorimotor constructs, using the generative models that underpin Active Inference. This dissolves any apparent mechanistic distinction between the optimization processes that mediate classical control or learning. Furthermore, we generalize the scope of Active Inference by emphasizing interoceptive inference and homeostatic regulation. The ensuing homeostatic (or allostatic) perspective provides an intuitive explanation for how priors act as drives or goals to enslave action, and emphasises the embodied nature of inference. PMID:26365173
Active Inference, homeostatic regulation and adaptive behavioural control.
Pezzulo, Giovanni; Rigoli, Francesco; Friston, Karl
2015-11-01
We review a theory of homeostatic regulation and adaptive behavioural control within the Active Inference framework. Our aim is to connect two research streams that are usually considered independently; namely, Active Inference and associative learning theories of animal behaviour. The former uses a probabilistic (Bayesian) formulation of perception and action, while the latter calls on multiple (Pavlovian, habitual, goal-directed) processes for homeostatic and behavioural control. We offer a synthesis these classical processes and cast them as successive hierarchical contextualisations of sensorimotor constructs, using the generative models that underpin Active Inference. This dissolves any apparent mechanistic distinction between the optimization processes that mediate classical control or learning. Furthermore, we generalize the scope of Active Inference by emphasizing interoceptive inference and homeostatic regulation. The ensuing homeostatic (or allostatic) perspective provides an intuitive explanation for how priors act as drives or goals to enslave action, and emphasises the embodied nature of inference. PMID:26365173
Jiang, Jiefeng; Beck, Jeffrey; Heller, Katherine; Egner, Tobias
2015-01-01
The anterior cingulate and lateral prefrontal cortices have been implicated in implementing context-appropriate attentional control, but the learning mechanisms underlying our ability to flexibly adapt the control settings to changing environments remain poorly understood. Here we show that human adjustments to varying control demands are captured by a reinforcement learner with a flexible, volatility-driven learning rate. Using model-based functional magnetic resonance imaging, we demonstrate that volatility of control demand is estimated by the anterior insula, which in turn optimizes the prediction of forthcoming demand in the caudate nucleus. The caudate's prediction of control demand subsequently guides the implementation of proactive and reactive attentional control in dorsal anterior cingulate and dorsolateral prefrontal cortices. These data enhance our understanding of the neuro-computational mechanisms of adaptive behaviour by connecting the classic cingulate-prefrontal cognitive control network to a subcortical control-learning mechanism that infers future demands by flexibly integrating remote and recent past experiences. PMID:26391305
Cost averaging techniques for robust control of flexible structural systems
NASA Technical Reports Server (NTRS)
Hagood, Nesbitt W.; Crawley, Edward F.
1991-01-01
Viewgraphs on cost averaging techniques for robust control of flexible structural systems are presented. Topics covered include: modeling of parameterized systems; average cost analysis; reduction of parameterized systems; and static and dynamic controller synthesis.
Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei
2015-01-01
Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper. PMID:25784928
Lin, Hui; Gao, Jian; Mei, Qing; He, Yunbo; Liu, Junxiu; Wang, Xingjin
2016-04-01
It is a challenge for any optical method to measure objects with a large range of reflectivity variation across the surface. Image saturation results in incorrect intensities in captured fringe pattern images, leading to phase and measurement errors. This paper presents a new adaptive digital fringe projection technique which avoids image saturation and has a high signal to noise ratio (SNR) in the three-dimensional (3-D) shape measurement of objects that has a large range of reflectivity variation across the surface. Compared to previous high dynamic range 3-D scan methods using many exposures and fringe pattern projections, which consumes a lot of time, the proposed technique uses only two preliminary steps of fringe pattern projection and image capture to generate the adapted fringe patterns, by adaptively adjusting the pixel-wise intensity of the projected fringe patterns based on the saturated pixels in the captured images of the surface being measured. For the bright regions due to high surface reflectivity and high illumination by the ambient light and surfaces interreflections, the projected intensity is reduced just to be low enough to avoid image saturation. Simultaneously, the maximum intensity of 255 is used for those dark regions with low surface reflectivity to maintain high SNR. Our experiments demonstrate that the proposed technique can achieve higher 3-D measurement accuracy across a surface with a large range of reflectivity variation. PMID:27137056
Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei
2015-01-01
Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper.
Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei
2015-01-01
Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper. PMID:25784928
An Autonomous Self-Aware and Adaptive Fault Tolerant Routing Technique for Wireless Sensor Networks
Abba, Sani; Lee, Jeong-A
2015-01-01
We propose an autonomous self-aware and adaptive fault-tolerant routing technique (ASAART) for wireless sensor networks. We address the limitations of self-healing routing (SHR) and self-selective routing (SSR) techniques for routing sensor data. We also examine the integration of autonomic self-aware and adaptive fault detection and resiliency techniques for route formation and route repair to provide resilience to errors and failures. We achieved this by using a combined continuous and slotted prioritized transmission back-off delay to obtain local and global network state information, as well as multiple random functions for attaining faster routing convergence and reliable route repair despite transient and permanent node failure rates and efficient adaptation to instantaneous network topology changes. The results of simulations based on a comparison of the ASAART with the SHR and SSR protocols for five different simulated scenarios in the presence of transient and permanent node failure rates exhibit a greater resiliency to errors and failure and better routing performance in terms of the number of successfully delivered network packets, end-to-end delay, delivered MAC layer packets, packet error rate, as well as efficient energy conservation in a highly congested, faulty, and scalable sensor network. PMID:26295236
Damage control resuscitation: history, theory and technique
Ball, Chad G.
2014-01-01
Damage control resuscitation (DCR) represents the natural evolution of the initial concept of damage control surgery. It currently includes early blood product transfusion, immediate arrest and/or temporization of ongoing hemorrhage (i.e., temporary intravascular shunts and/or balloon tamponade) as well as restoration of blood volume and physiologic/hematologic stability. As a result, DCR addresses the early coagulopathy of trauma, avoids massive crystalloid resuscitation and leaves the peritoneal cavity open when a patient approaches physiologic exhaustion without improvement. This concept also applies to severe injuries within anatomical transition zones as well as extremities. This review will discuss each of these concepts in detail. PMID:24461267
Adaptive-passive vibration control systems for industrial applications
NASA Astrophysics Data System (ADS)
Mayer, D.; Pfeiffer, T.; Vrbata, J.; Melz, T.
2015-04-01
Tuned vibration absorbers have become common for passive vibration reduction in many industrial applications. Lightly damped absorbers (also called neutralizers) can be used to suppress narrowband disturbances by tuning them to the excitation frequency. If the resonance is adapted in-operation, the performance of those devices can be significantly enhanced, or inertial mass can be decreased. However, the integration of actuators, sensors and control electronics into the system raises new design challenges. In this work, the development of adaptive-passive systems for vibration reduction at an industrial scale is presented. As an example, vibration reduction of a ship engine was studied in a full scale test. Simulations were used to study the feasibility and evaluate the system concept at an early stage. Several ways to adjust the resonance of the neutralizer were evaluated, including piezoelectric actuation and common mechatronic drives. Prototypes were implemented and tested. Since vibration absorbers suffer from high dynamic loads, reliability tests were used to assess the long-term behavior under operational conditions and to improve the components. It was proved that the adaptive systems are capable to withstand the mechanical loads in an industrial application. Also a control strategy had to be implemented in order to track the excitation frequency. The most mature concepts were integrated into the full scale test. An imbalance exciter was used to simulate the engine vibrations at a realistic level experimentally. The neutralizers were tested at varying excitation frequencies to evaluate the tracking capabilities of the control system. It was proved that a significant vibration reduction is possible.