Dynamic optimization and adaptive controller design
NASA Astrophysics Data System (ADS)
Inamdar, S. R.
2010-10-01
In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.
Adaptive control design for hysteretic smart systems
NASA Astrophysics Data System (ADS)
Fan, Xiang; Smith, Ralph C.
2009-03-01
Ferroelectric and ferromagnetic actuators are being considered for a range of industrial, aerospace, aeronautic and biomedical applications due to their unique transduction capabilities. However, they also exhibit hysteretic and nonlinear behavior that must be accommodated in models and control designs. If uncompensated, these effects can yield reduced system performance and, in the worst case, can produce unpredictable behavior of the control system. One technique for control design is to approximately linearize the actuator dynamics using an adaptive inverse compensator that is also able to accommodate model uncertainties and error introduced by the inverse algorithm. This paper describes the design of an adaptive inverse control technique based on the homogenized energy model for hysteresis. The resulting inverse filter is incorporated in an L1 control theory to provide a robust control algorithm capable of providing high speed, high accuracy tracking in the presence of actuator hysteresis and nonlinearities. Properties of the control design are illustrated through numerical examples.
Dual adaptive control: Design principles and applications
NASA Technical Reports Server (NTRS)
Mookerjee, Purusottam
1988-01-01
The design of an actively adaptive dual controller based on an approximation of the stochastic dynamic programming equation for a multi-step horizon is presented. A dual controller that can enhance identification of the system while controlling it at the same time is derived for multi-dimensional problems. This dual controller uses sensitivity functions of the expected future cost with respect to the parameter uncertainties. A passively adaptive cautious controller and the actively adaptive dual controller are examined. In many instances, the cautious controller is seen to turn off while the latter avoids the turn-off of the control and the slow convergence of the parameter estimates, characteristic of the cautious controller. The algorithms have been applied to a multi-variable static model which represents a simplified linear version of the relationship between the vibration output and the higher harmonic control input for a helicopter. Monte Carlo comparisons based on parametric and nonparametric statistical analysis indicate the superiority of the dual controller over the baseline controller.
Stable adaptive control using new critic designs
NASA Astrophysics Data System (ADS)
Werbos, Paul J.
1999-03-01
Classical adaptive control proves total-system stability for control of linear plants, but only for plants meeting very restrictive assumptions. Approximate Dynamic Programming (ADP) has the potential, in principle, to ensure stability without such tight restrictions. It also offers nonlinear and neural extensions for optimal control, with empirically supported links to what is seen in the brain. However, the relevant ADP methods in use today--TD, HDP, DHP, GDHP--and the Galerkin-based versions of these all have serious limitations when used here as parallel distributed real-time learning systems; either they do not possess quadratic unconditional stability (to be defined) or they lead to incorrect results in the stochastic case. (ADAC or Q- learning designs do not help.) After explaining these conclusions, this paper describes new ADP designs which overcome these limitations. It also addresses the Generalized Moving Target problem, a common family of static optimization problems, and describes a way to stabilize large-scale economic equilibrium models, such as the old long-term energy mode of DOE.
The design of digital-adaptive controllers for VTOL aircraft
NASA Technical Reports Server (NTRS)
Stengel, R. F.; Broussard, J. R.; Berry, P. W.
1976-01-01
Design procedures for VTOL automatic control systems have been developed and are presented. Using linear-optimal estimation and control techniques as a starting point, digital-adaptive control laws have been designed for the VALT Research Aircraft, a tandem-rotor helicopter which is equipped for fully automatic flight in terminal area operations. These control laws are designed to interface with velocity-command and attitude-command guidance logic, which could be used in short-haul VTOL operations. Developments reported here include new algorithms for designing non-zero-set-point digital regulators, design procedures for rate-limited systems, and algorithms for dynamic control trim setting.
Design of Low Complexity Model Reference Adaptive Controllers
NASA Technical Reports Server (NTRS)
Hanson, Curt; Schaefer, Jacob; Johnson, Marcus; Nguyen, Nhan
2012-01-01
Flight research experiments have demonstrated that adaptive flight controls can be an effective technology for improving aircraft safety in the event of failures or damage. However, the nonlinear, timevarying nature of adaptive algorithms continues to challenge traditional methods for the verification and validation testing of safety-critical flight control systems. Increasingly complex adaptive control theories and designs are emerging, but only make testing challenges more difficult. A potential first step toward the acceptance of adaptive flight controllers by aircraft manufacturers, operators, and certification authorities is a very simple design that operates as an augmentation to a non-adaptive baseline controller. Three such controllers were developed as part of a National Aeronautics and Space Administration flight research experiment to determine the appropriate level of complexity required to restore acceptable handling qualities to an aircraft that has suffered failures or damage. The controllers consist of the same basic design, but incorporate incrementally-increasing levels of complexity. Derivations of the controllers and their adaptive parameter update laws are presented along with details of the controllers implementations.
Adaptive Control Law Design for Model Uncertainty Compensation
1989-06-14
AD-A211 712 WRDC-TR-89-3061 ADAPTIVE CONTROL LAW DESIGN FOR MODEL UNCERTAINTY COMPENSATION J. E. SORRELLS DYNETICS , INC. U 1000 EXPLORER BLVD. L Ell...MONITORING ORGANIZATION Dynetics , Inc. (If applicable) Wright Research and Development Center netics,_ _ I _nc.Flight Dynamics Laboratory, AFSC 6c. ADDRESS...controllers designed using Dynetics innovative aporoach were able to equal or surpass the STR and MRAC controllers in terms of performance robustness
Model-reference adaptive control system design technique
NASA Technical Reports Server (NTRS)
Sutherlin, D. W.; Boland, J. S., III
1973-01-01
This paper considers the model-reference adaptive control problem which has received considerable attention in the literature in the last few years. An adaptive control scheme is proposed which has terms in the Liapunov function used in the design procedure which are not included in previously proposed schemes. The relationship of this new scheme to existing schemes is shown by considering the root-loci of the linearized error equations between plant and model. Finally, a second order example is given which illustrates the difference between the two previously proposed model-reference adaptive methods and the one proposed in this paper.
Design of Adaptive Output Feedback Variable Structure Tracking Controllers
NASA Astrophysics Data System (ADS)
Cheng, Chih-Chiang; Wen, Chih-Chin; Chen, Shih-Pin
Based on the Lyapunov stability theorem, an adaptive output feedback variable structure tracking controller is proposed in this paper for a class of multi-input multi-output (MIMO) dynamic systems with mismatched uncertainties and disturbances. With an adaptive mechanism embedded in the proposed control scheme, the controller will automatically adapt the unknown upper bound of perturbations, so that the information of upper bound of perturbations is not required. Once the controlled system reaches the switching hyperplane, the state tracking errors can be driven into a small bounded region whose size can be adjusted through the design parameter. An application of flight control is given for demonstrating the feasibility of the proposed methodology.
Design of an adaptive controller for a telerobot manipulator
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Zhou, Zhen-Lei
1989-01-01
The design of a joint-space adaptive control scheme is presented for controlling the slave arm motion of a dual-arm telerobot system developed at Goddard Space Flight Center (GSFC) to study telerobotic operations in space. Each slave arm of the dual-arm system is a kinematically redundant manipulator with 7 degrees of freedom (DOF). Using the concept of model reference adaptive control (MRAC) and Lyapunov direct method, an adatation algorithm is derived which adjusts the PD controller gains of the control scheme. The development of the adaptive control scheme assumes that the slave arm motion is non-compliant and slowly-varying. The implementation of the derived control scheme does not need the computation of the manipulator dynamics, which makes the control scheme sufficiently fast for real-time applications. Computer simulation study performed for the 7-DOF slave arm shows that the developed control scheme can efficiently adapt to sudden change in payloads while tracking various test trajectories such as ramp or sinusoids with negligible position errors.
Optimal Pid Controller Design Using Adaptive Vurpso Algorithm
NASA Astrophysics Data System (ADS)
Zirkohi, Majid Moradi
2015-04-01
The purpose of this paper is to improve theVelocity Update Relaxation Particle Swarm Optimization algorithm (VURPSO). The improved algorithm is called Adaptive VURPSO (AVURPSO) algorithm. Then, an optimal design of a Proportional-Integral-Derivative (PID) controller is obtained using the AVURPSO algorithm. An adaptive momentum factor is used to regulate a trade-off between the global and the local exploration abilities in the proposed algorithm. This operation helps the system to reach the optimal solution quickly and saves the computation time. Comparisons on the optimal PID controller design confirm the superiority of AVURPSO algorithm to the optimization algorithms mentioned in this paper namely the VURPSO algorithm, the Ant Colony algorithm, and the conventional approach. Comparisons on the speed of convergence confirm that the proposed algorithm has a faster convergence in a less computation time to yield a global optimum value. The proposed AVURPSO can be used in the diverse areas of optimization problems such as industrial planning, resource allocation, scheduling, decision making, pattern recognition and machine learning. The proposed AVURPSO algorithm is efficiently used to design an optimal PID controller.
Decentralized adaptive control designs and microstrip antennas for smart structures
NASA Astrophysics Data System (ADS)
Khorrami, Farshad; Jain, Sandeep; Das, Nirod K.
1996-05-01
Smart structures lend themselves naturally to a decentralized control design framework, especially with adaptation mechanisms. The main reason being that it is highly undesirable to connect all the sensors and actuators in a large structure to a central processor. It is rather desirable to have local decision-making at each smart patch. Furthermore, this local controllers should be easily `expandable' to `contractible.' This corresponds to the fact that addition/deletion of several smart patches should not require a total redesign of the control system. The decentralized control strategies advocated in this paper are of expandable/contractible type. On another front, we are considering utilization of micro-strip antennas for power transfer to and from smart structures. We have made preliminary contributions in this direction and further developments are underway. These approaches are being pursued for active vibration damping and noise cancellation via piezoelectric ceramics although the methodology is general enough to be applicable to other type of active structures.
Control designs for the Canadian Large Adaptive Radiotelescope concept
NASA Astrophysics Data System (ADS)
Boyer, Alexandre
This thesis is a product of our collaboration with the National Research Council of Canada's astronomy laboratory (Dominion Radio Astrophysical Observatory) to study the control of a new radio-telescope design: the Canadian Large Adaptive Reflector. The first part consists in an identification of a parabolic reflector's direct and inverse kinematics. This reflector is made of multiple triangular sections, each of them supported by hydraulic actuators from the ground. Kinematics resulted in the creation of a trajectory generator to issue commands to the actuators. Second part consists in direct modeling and model identification of a tethered aerostat system, in order to identify the bandwidth of this system. The cable system's purpose is to hold the receiver to the parabolic reflector's focal point. Once the model is validated, robust and LPV (linear parameter-varying) controllers are designed. As the tethered system consists in many cables, the winches reeling cables on the ground affect the whole system dynamics. The model contains parameters varying with the cable lengths. Variations in tether lengths lead to some difficulties in the design of linear robust controllers.
Adaptive filter design using recurrent cerebellar model articulation controller.
Lin, Chih-Min; Chen, Li-Yang; Yeung, Daniel S
2010-07-01
A novel adaptive filter is proposed using a recurrent cerebellar-model-articulation-controller (CMAC). The proposed locally recurrent globally feedforward recurrent CMAC (RCMAC) has favorable properties of small size, good generalization, rapid learning, and dynamic response, thus it is more suitable for high-speed signal processing. To provide fast training, an efficient parameter learning algorithm based on the normalized gradient descent method is presented, in which the learning rates are on-line adapted. Then the Lyapunov function is utilized to derive the conditions of the adaptive learning rates, so the stability of the filtering error can be guaranteed. To demonstrate the performance of the proposed adaptive RCMAC filter, it is applied to a nonlinear channel equalization system and an adaptive noise cancelation system. The advantages of the proposed filter over other adaptive filters are verified through simulations.
Management of Computer-Based Instruction: Design of an Adaptive Control Strategy.
ERIC Educational Resources Information Center
Tennyson, Robert D.; Rothen, Wolfgang
1979-01-01
Theoretical and research literature on learner, program, and adaptive control as forms of instructional management are critiqued in reference to the design of computer-based instruction. An adaptive control strategy using an online, iterative algorithmic model is proposed. (RAO)
Decentralized adaptive control of robot manipulators with robust stabilization design
NASA Technical Reports Server (NTRS)
Yuan, Bau-San; Book, Wayne J.
1988-01-01
Due to geometric nonlinearities and complex dynamics, a decentralized technique for adaptive control for multilink robot arms is attractive. Lyapunov-function theory for stability analysis provides an approach to robust stabilization. Each joint of the arm is treated as a component subsystem. The adaptive controller is made locally stable with servo signals including proportional and integral gains. This results in the bound on the dynamical interactions with other subsystems. A nonlinear controller which stabilizes the system with uniform boundedness is used to improve the robustness properties of the overall system. As a result, the robot tracks the reference trajectories with convergence. This strategy makes computation simple and therefore facilitates real-time implementation.
Design of an adaptive predictive controller for steam generators
NASA Astrophysics Data System (ADS)
Na, Man Gyun; Sim, Young Rok; Lee, Yoon Joon
2003-02-01
The water level control of a nuclear steam generator is very important to secure the sufficient cooling inventory for the nuclear reactor and, at the same time, to prevent the damage of turbine blades. The dynamics of steam generators is very different according to power levels and changes as time goes on. The generalized predictive control method is used to solve an optimization problem for the finite future time steps at current time and to implement only the first control input among the solved optimal control inputs of several time steps. A recursive parameter estimation algorithm estimates on-line the mathematical model of steam generator every time step to generate the linear controller design model. In this work, by combining these generalized predictive control method and recursive parameter estimation algorithm, a new controller is designed to control the water level of nuclear steam generators. It is shown through application to a linear model and a nonlinear model of steam generators that the proposed controller has good performance.
Time domain and frequency domain design techniques for model reference adaptive control systems
NASA Technical Reports Server (NTRS)
Boland, J. S., III
1971-01-01
Some problems associated with the design of model-reference adaptive control systems are considered and solutions to these problems are advanced. The stability of the adapted system is a primary consideration in the development of both the time-domain and the frequency-domain design techniques. Consequentially, the use of Liapunov's direct method forms an integral part of the derivation of the design procedures. The application of sensitivity coefficients to the design of model-reference adaptive control systems is considered. An application of the design techniques is also presented.
Liu, Yan-Jun; Tong, Shaocheng; Chen, C L Philip; Li, Dong-Juan
2016-01-01
This paper studies an adaptive neural control for nonlinear multiple-input multiple-output systems in interconnected form. The studied systems are composed of N subsystems in pure feedback structure and the interconnection terms are contained in every equation of each subsystem. Moreover, the studied systems consider the effects of Prandtl-Ishlinskii (PI) hysteresis model. It is for the first time to study the control problem for such a class of systems. In addition, the proposed scheme removes an important assumption imposed on the previous works that the bounds of the parameters in PI hysteresis are known. The radial basis functions neural networks are employed to approximate unknown functions. The adaptation laws and the controllers are designed by employing the backstepping technique. The closed-loop system can be proven to be stable by using Lyapunov theorem. A simulation example is studied to validate the effectiveness of the scheme.
Adaptive Flight Control Design with Optimal Control Modification on an F-18 Aircraft Model
NASA Technical Reports Server (NTRS)
Burken, John J.; Nguyen, Nhan T.; Griffin, Brian J.
2010-01-01
In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to as the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly; however, a large adaptive gain can lead to high-frequency oscillations which can adversely affect the robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient robustness. A damping term (v) is added in the modification to increase damping as needed. Simulations were conducted on a damaged F-18 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) with both the standard baseline dynamic inversion controller and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model.
Design and simulation of adaptive optics controller based on mixed sensitivity H∞ control
NASA Astrophysics Data System (ADS)
Song, Dingan; Li, Xinyang; Peng, Zhenming
2016-10-01
Optical systems such as telescopes are very complex, and their model usually with the uncertainty. To deal with the uncertainty of adaptive optics system and improve system robust stability, the mixed sensitivity H-infinity control has been introduced to design system controller. In order to testify the validity, wavefront aberration correction capability, as well as the robust stability, has been compared between the mixed sensitivity H-infinity controller and the classic integral controller. The computer simulation results demonstrate that the system with the mixed sensitivity H-infinity controller, while can't guarantee a better correction performance, has greater robust stability than the one with the classic integral controller. That is to say, greater robust stability is achieved at the expense of the correction capability in the system with H-infinity controller. Moreover, the greater the uncertainty is, the more proceeds the mixed sensitivity H-infinity controller will produce. It proves the efficiency of the mixed sensitivity H-infinity controller in dealing with the uncertainty of adaptive optics system.
Rivera, Daniel E.; Pew, Michael D.; Collins, Linda M.
2007-01-01
The goal of this paper is to describe the role that control engineering principles can play in developing and improving the efficacy of adaptive, time-varying interventions. It is demonstrated that adaptive interventions constitute a form of feedback control system in the context of behavioral health. Consequently, drawing from ideas in control engineering has the potential to significantly inform the analysis, design, and implementation of adaptive interventions, leading to improved adherence, better management of limited resources, a reduction of negative effects, and overall more effective interventions. This article illustrates how to express an adaptive intervention in control engineering terms, and how to use this framework in a computer simulation to investigate the anticipated impact of intervention design choices on efficacy. The potential benefits of operationalizing decision rules based on control engineering principles are particularly significant for adaptive interventions that involve multiple components or address co-morbidities, situations that pose significant challenges to conventional clinical practice. PMID:17169503
Rivera, Daniel E; Pew, Michael D; Collins, Linda M
2007-05-01
The goal of this paper is to describe the role that control engineering principles can play in developing and improving the efficacy of adaptive, time-varying interventions. It is demonstrated that adaptive interventions constitute a form of feedback control system in the context of behavioral health. Consequently, drawing from ideas in control engineering has the potential to significantly inform the analysis, design, and implementation of adaptive interventions, leading to improved adherence, better management of limited resources, a reduction of negative effects, and overall more effective interventions. This article illustrates how to express an adaptive intervention in control engineering terms, and how to use this framework in a computer simulation to investigate the anticipated impact of intervention design choices on efficacy. The potential benefits of operationalizing decision rules based on control engineering principles are particularly significant for adaptive interventions that involve multiple components or address co-morbidities, situations that pose significant challenges to conventional clinical practice.
Optimization design of an adaptive CFRC reflector for high order wave-front error control
NASA Astrophysics Data System (ADS)
Lan, Lan; Fang, Houfei; Wu, Ke; Jiang, Shuidong; Zhou, Yang
2017-04-01
The trend in future space high precision reflectors is going towards large aperture, lightweight and actively controlled deformable antennas. An adaptive shape control system for a Carbon Fiber Reinforced Composite (CFRC) reflector is conducted by Piezoelectric Ceramic Transducer (PZT) actuators. This adaptive shape control system has been shown to effectively mitigate common low order wave-front error, but it is inevitably plagued by high order wave-front error control. In order to improve the controllability of the adaptive CFRC reflector control system for high order wave-front error, the design of adaptive CFRC reflector requires optimizing further. According to numerical and experimental results, the print-through error induced by manufacturing and PZT actuators actuation is a type of predominant high order wave-front error. This paper describes a design which some secondary rib elements are embedded within the triangular cells of the primary ribs. These small secondary ribs are designed to support the reflector surface's weak region. Controllability of this new adaptive CFRC reflector control system with small secondary ribs is evaluated by generalized Zernike functions. This new design scheme can reduce high order residual error and suppress the high order wave-front error such as print-through error. Finally, design parameters of the adaptive CFRC reflector control system with small secondary ribs, such as primary rib height, secondary rib height, cut-out height of primary rib, are optimized.
Simple adaptive control system design for a quadrotor with an internal PFC
Mizumoto, Ikuro; Nakamura, Takuto; Kumon, Makoto; Takagi, Taro
2014-12-10
The paper deals with an adaptive control system design problem for a four rotor helicopter or quadrotor. A simple adaptive control design scheme with a parallel feedforward compensator (PFC) in the internal loop of the considered quadrotor will be proposed based on the backstepping strategy. As is well known, the backstepping control strategy is one of the advanced control strategy for nonlinear systems. However, the control algorithm will become complex if the system has higher order relative degrees. We will show that one can skip some design steps of the backstepping method by introducing a PFC in the inner loop of the considered quadrotor, so that the structure of the obtained controller will be simplified and a high gain based adaptive feedback control system will be designed. The effectiveness of the proposed method will be confirmed through numerical simulations.
Backstepping Design of Adaptive Neural Fault-Tolerant Control for MIMO Nonlinear Systems.
Gao, Hui; Song, Yongduan; Wen, Changyun
2016-08-24
In this paper, an adaptive controller is developed for a class of multi-input and multioutput nonlinear systems with neural networks (NNs) used as a modeling tool. It is shown that all the signals in the closed-loop system with the proposed adaptive neural controller are globally uniformly bounded for any external input in L[₀,∞]. In our control design, the upper bound of the NN modeling error and the gains of external disturbance are characterized by unknown upper bounds, which is more rational to establish the stability in the adaptive NN control. Filter-based modification terms are used in the update laws of unknown parameters to improve the transient performance. Finally, fault-tolerant control is developed to accommodate actuator failure. An illustrative example applying the adaptive controller to control a rigid robot arm shows the validation of the proposed controller.
NASA Astrophysics Data System (ADS)
Li, Yongming; Tong, Shaocheng
2016-10-01
In this paper, a fuzzy adaptive switched control approach is proposed for a class of uncertain nonholonomic chained systems with input nonsmooth constraint. In the control design, an auxiliary dynamic system is designed to address the input nonsmooth constraint, and an adaptive switched control strategy is constructed to overcome the uncontrollability problem associated with x0(t0) = 0. By using fuzzy logic systems to tackle unknown nonlinear functions, a fuzzy adaptive control approach is explored based on the adaptive backstepping technique. By constructing the combination approximation technique and using Young's inequality scaling technique, the number of the online learning parameters is reduced to n and the 'explosion of complexity' problem is avoid. It is proved that the proposed method can guarantee that all variables of the closed-loop system converge to a small neighbourhood of zero. Two simulation examples are provided to illustrate the effectiveness of the proposed control approach.
Design of a Model Reference Adaptive Controller for an Unmanned Air Vehicle
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Matsutani, Megumi; Annaswamy, Anuradha M.
2010-01-01
This paper presents the "Adaptive Control Technology for Safe Flight (ACTS)" architecture, which consists of a non-adaptive controller that provides satisfactory performance under nominal flying conditions, and an adaptive controller that provides robustness under off nominal ones. The design and implementation procedures of both controllers are presented. The aim of these procedures, which encompass both theoretical and practical considerations, is to develop a controller suitable for flight. The ACTS architecture is applied to the Generic Transport Model developed by NASA-Langley Research Center. The GTM is a dynamically scaled test model of a transport aircraft for which a flight-test article and a high-fidelity simulation are available. The nominal controller at the core of the ACTS architecture has a multivariable LQR-PI structure while the adaptive one has a direct, model reference structure. The main control surfaces as well as the throttles are used as control inputs. The inclusion of the latter alleviates the pilot s workload by eliminating the need for cancelling the pitch coupling generated by changes in thrust. Furthermore, the independent usage of the throttles by the adaptive controller enables their use for attitude control. Advantages and potential drawbacks of adaptation are demonstrated by performing high fidelity simulations of a flight-validated controller and of its adaptive augmentation.
Robust adaptive self-structuring fuzzy control design for nonaffine, nonlinear systems
NASA Astrophysics Data System (ADS)
Chen, Pin-Cheng; Wang, Chi-Hsu; Lee, Tsu-Tian
2011-01-01
In this article, a robust adaptive self-structuring fuzzy control (RASFC) scheme for the uncertain or ill-defined nonlinear, nonaffine systems is proposed. The RASFC scheme is composed of a robust adaptive controller and a self-structuring fuzzy controller. In the self-structuring fuzzy controller design, a novel self-structuring fuzzy system (SFS) is used to approximate the unknown plant nonlinearity, and the SFS can automatically grow and prune fuzzy rules to realise a compact fuzzy rule base. The robust adaptive controller is designed to achieve an L 2 tracking performance to stabilise the closed-loop system. This L 2 tracking performance can provide a clear expression of tracking error in terms of the sum of lumped uncertainty and external disturbance, which has not been shown in previous works. Finally, five examples are presented to show that the proposed RASFC scheme can achieve favourable tracking performance, yet heavy computational burden is relieved.
Multivariable output feedback robust adaptive tracking control design for a class of delayed systems
NASA Astrophysics Data System (ADS)
Mirkin, Boris; Gutman, Per-Olof
2015-02-01
In this paper, we develop a model reference adaptive control scheme for a class of multi-input multi-output nonlinearly perturbed dynamic systems with unknown time-varying state delays which is also robust with respect to an external disturbance with unknown bounds. The output feedback adaptive control scheme uses feedback actions only, and thus does not require a direct measurement of the command or disturbance signals. A suitable Lyapunov-Krasovskii type functional is introduced to design the adaptation algorithms and to prove stability.
Neural network-based adaptive controller design of robotic manipulators with an observer.
Sun, F; Sun, Z; Woo, P Y
2001-01-01
A neural network (NN)-based adaptive controller with an observer is proposed for the trajectory tracking of robotic manipulators with unknown dynamics nonlinearities. It is assumed that the robotic manipulator has only joint angle position measurements. A linear observer is used to estimate the robot joint angle velocity, while NNs are employed to further improve the control performance of the controlled system through approximating the modified robot dynamics function. The adaptive controller for robots with an observer can guarantee the uniform ultimate bounds of the tracking errors and the observer errors as well as the bounds of the NN weights. For performance comparisons, the conventional adaptive algorithm with an observer using linearity in parameters of the robot dynamics is also developed in the same control framework as the NN approach for online approximating unknown nonlinearities of the robot dynamics. Main theoretical results for designing such an observer-based adaptive controller with the NN approach using multilayer NNs with sigmoidal activation functions, as well as with the conventional adaptive approach using linearity in parameters of the robot dynamics are given. The performance comparisons between the NN approach and the conventional adaptation approach with an observer is carried out to show the advantages of the proposed control approaches through simulation studies.
Combining genetic algorithms and Lyapunov-based adaptation for online design of fuzzy controllers.
Giordano, Vincenzo; Naso, David; Turchiano, Biagio
2006-10-01
This paper proposes a hybrid approach for the design of adaptive fuzzy controllers (FCs) in which two learning algorithms with different characteristics are merged together to obtain an improved method. The approach combines a genetic algorithm (GA), devised to optimize all the configuration parameters of the FC, including the number of membership functions and rules, and a Lyapunov-based adaptation law performing a local tuning of the output singletons of the controller, and guaranteeing the stability of each new controller investigated by the GA. The effectiveness of the proposed method is confirmed using both numerical simulations on a known case study and experiments on a nonlinear hardware benchmark.
NASA Technical Reports Server (NTRS)
Kaufman, H.; Alag, G.
1975-01-01
Simple mechanical linkages have not solved the many control problems associated with high performance aircraft maneuvering throughout a wide flight envelope. One procedure for retaining uniform handling qualities over such an envelope is to implement a digital adaptive controller. Towards such an implementation an explicit adaptive controller which makes direct use of on-line parameter identification, has been developed and applied to both linearized and nonlinear equations of motion for a typical fighter aircraft. This controller is composed of an on-line weighted least squares parameter identifier, a Kalman state filter, and a model following control law designed using single stage performance indices. Simulation experiments with realistic measurement noise indicate that the proposed adaptive system has the potential for on-board implementation.
On Mixed Data and Event Driven Design for Adaptive-Critic-Based Nonlinear $H∞ Control.
Wang, Ding; Mu, Chaoxu; Liu, Derong; Ma, Hongwen
2017-02-01
In this paper, based on the adaptive critic learning technique, the H∞ control for a class of unknown nonlinear dynamic systems is investigated by adopting a mixed data and event driven design approach. The nonlinear H∞ control problem is formulated as a two-player zero-sum differential game and the adaptive critic method is employed to cope with the data-based optimization. The novelty lies in that the data driven learning identifier is combined with the event driven design formulation, in order to develop the adaptive critic controller, thereby accomplishing the nonlinear H∞ control. The event driven optimal control law and the time driven worst case disturbance law are approximated by constructing and tuning a critic neural network. Applying the event driven feedback control, the closed-loop system is built with stability analysis. Simulation studies are conducted to verify the theoretical results and illustrate the control performance. It is significant to observe that the present research provides a new avenue of integrating data-based control and event-triggering mechanism into establishing advanced adaptive critic systems.
NASA Astrophysics Data System (ADS)
Ghasemi-Nejhad, Mehrdad N.
2013-04-01
This paper presents design of smart composite platforms for adaptive trust vector control (TVC) and adaptive laser telescope for satellite applications. To eliminate disturbances, the proposed adaptive TVC and telescope systems will be mounted on two analogous smart composite platform with simultaneous precision positioning (pointing) and vibration suppression (stabilizing), SPPVS, with micro-radian pointing resolution, and then mounted on a satellite in two different locations. The adaptive TVC system provides SPPVS with large tip-tilt to potentially eliminate the gimbals systems. The smart composite telescope will be mounted on a smart composite platform with SPPVS and then mounted on a satellite. The laser communication is intended for the Geosynchronous orbit. The high degree of directionality increases the security of the laser communication signal (as opposed to a diffused RF signal), but also requires sophisticated subsystems for transmission and acquisition. The shorter wavelength of the optical spectrum increases the data transmission rates, but laser systems require large amounts of power, which increases the mass and complexity of the supporting systems. In addition, the laser communication on the Geosynchronous orbit requires an accurate platform with SPPVS capabilities. Therefore, this work also addresses the design of an active composite platform to be used to simultaneously point and stabilize an intersatellite laser communication telescope with micro-radian pointing resolution. The telescope is a Cassegrain receiver that employs two mirrors, one convex (primary) and the other concave (secondary). The distance, as well as the horizontal and axial alignment of the mirrors, must be precisely maintained or else the optical properties of the system will be severely degraded. The alignment will also have to be maintained during thruster firings, which will require vibration suppression capabilities of the system as well. The innovative platform has been
NASA Astrophysics Data System (ADS)
Phu, Do Xuan; Shah, Kruti; Choi, Seung-Bok
2014-06-01
This paper presents a new adaptive fuzzy controller and its implementation for the damping force control of a magnetorheological (MR) fluid damper in order to validate the effectiveness of the control performance. An interval type 2 fuzzy model is built, and then combined with modified adaptive control to achieve the desired damping force. In the formulation of the new adaptive controller, an enhanced iterative algorithm is integrated with the fuzzy model to decrease the time of calculation (D Wu 2013 IEEE Trans. Fuzzy Syst. 21 80-99) and the control algorithm is synthesized based on the {{H}^{\\infty }} tracking technique. In addition, for the verification of good control performance of the proposed controller, a cylindrical MR damper which can be applied to the vibration control of a washing machine is designed and manufactured. For the operating fluid, a recently developed plate-like particle-based MR fluid is used instead of a conventional MR fluid featuring spherical particles. To highlight the control performance of the proposed controller, two existing adaptive fuzzy control algorithms proposed by other researchers are adopted and altered for a comparative study. It is demonstrated from both simulation and experiment that the proposed new adaptive controller shows better performance of damping force control in terms of response time and tracking accuracy than the existing approaches.
On direct model reference adaptive controller design for flexible space structures
NASA Astrophysics Data System (ADS)
Mehiel, Eric Anthony
Direct Model Reference Adaptive Control (DMRAC) and Direct Adaptive Disturbance Rejection (DADR) control methods have recently been developed with control of flexible structures in mind. In this case, the plant model is generally high order since many modes of the structure are needed to faithfully model the response of the structure. DMRAC and DADR control provide a method for adaptively controlling such a high order system and rejecting disturbances from the plant with a much lower order controller. However, DMRAC and DADR theory do not provide many suggestions or guidelines for actually designing and implementing DMRAC and DADR controllers. A procedural design process is proposed where by the engineer can develop a reference model and adaptive gains for the DMRAC and DADR controller. How to modify a non-minimum phase or non-SPR system so that the augmented system is SPR is also considered. By modifying the output matrix of the system with a nonlinear optimization technique, the system can be made SPR. Within this context, two theorems are stated and proved that show when certain types of systems can be made SPR or when the systems are SPR. It is shown that an appropriate choice of output feedback gain for a single mode, SISO system, will always stabilize the system and make the system SPR. Also, it is shown that a multi-mode, MIMO system is SPR when certain conditions are met. In both cases the satisfaction of the SPR conditions are based on the modal characteristics of the plant model. The proposed design procedure and theorems are applied to a known illustrative system, a 2-dimentional aeroelastic wing system, and a 79-state model of a space telescope. Each application of the DMRAC and DADR design procedure elucidate different problems that arise when trying to apply DMRAC and DADR control to a given system. The problems encountered are synthesized as design suggestions for engineers hoping to apply DMRAC and DADR control techniques. Namely, if at all possible
NASA Astrophysics Data System (ADS)
Verrelli, Cristiano Maria
2011-06-01
On the basis of the ideas recently presented in Tomei and Verrelli (Tomei, P., and Verrelli, C.M. (2010), 'Learning Control for Induction Motor Servo Drives with Uncertain Rotor Resistance', International Journal of Control, 83, 1515-1528) and Marino et al. (Marino, R., Tomei, P., and Verrelli, C.M. (2011), 'Robust Adaptive Learning Control for Nonlinear Systems with Extended Matching Unstructured Uncertainties', International Journal of Robust and Nonlinear Control, Early View, doi: 10.1002/rnc.1720), we briefly show how the adaptive learning control design proposed in Liuzzo and Tomei (Liuzzo, S., and Tomei, P. (2009), Global Adaptive Learning Control of Robotic Manipulators by Output Error Feedback, International Journal of Adaptive Control and Signal Processing, 23, 97-109) can be extended to robotic manipulators driven by nonsalient-pole (surface) permanent magnet synchronous motors. Unstructured uncertain dynamics (that is no parameterisation is available for the uncertainties) of the rigid robot with rotational joints are considered as well as uncertainties in stator resistances of the synchronous motors are taken into account. Two solutions with clear stability proofs are presented: a global decentralised control via state feedback and a semi-global control via output feedback. Output tracking of known periodic reference signals and learning of corresponding uncertain input reference signals are achieved. Available results in the literature are thus improved since no simplification concerning negligible electrical motor dynamics is used.
Design of an adaptive controller for dive-plane control of a torpedo-shaped AUV
NASA Astrophysics Data System (ADS)
Cao, Jian; Su, Yumin; Zhao, Jinxin
2011-09-01
Underwater vehicles operating in complex ocean conditions present difficulties in determining accurate dynamic models. To guarantee robustness against parameter uncertainty, an adaptive controller for dive-plane control, based on Lyapunov theory and back-stepping techniques, was proposed. In the closed-loop system, asymptotic tracking of the reference depth and pitch angle trajectories was accomplished. Simulation results were presented which show effective dive-plane control in spite of the uncertainties in the system parameters.
Design of sewage treatment system by applying fuzzy adaptive PID controller
NASA Astrophysics Data System (ADS)
Jin, Liang-Ping; Li, Hong-Chan
2013-03-01
In the sewage treatment system, the dissolved oxygen concentration control, due to its nonlinear, time-varying, large time delay and uncertainty, is difficult to establish the exact mathematical model. While the conventional PID controller only works with good linear not far from its operating point, it is difficult to realize the system control when the operating point far off. In order to solve the above problems, the paper proposed a method which combine fuzzy control with PID methods and designed a fuzzy adaptive PID controller based on S7-300 PLC .It employs fuzzy inference method to achieve the online tuning for PID parameters. The control algorithm by simulation and practical application show that the system has stronger robustness and better adaptability.
Design of adaptive fuzzy wavelet neural sliding mode controller for uncertain nonlinear systems.
Shahriari kahkeshi, Maryam; Sheikholeslam, Farid; Zekri, Maryam
2013-05-01
This paper proposes novel adaptive fuzzy wavelet neural sliding mode controller (AFWN-SMC) for a class of uncertain nonlinear systems. The main contribution of this paper is to design smooth sliding mode control (SMC) for a class of high-order nonlinear systems while the structure of the system is unknown and no prior knowledge about uncertainty is available. The proposed scheme composed of an Adaptive Fuzzy Wavelet Neural Controller (AFWNC) to construct equivalent control term and an Adaptive Proportional-Integral (A-PI) controller for implementing switching term to provide smooth control input. Asymptotical stability of the closed loop system is guaranteed, using the Lyapunov direct method. To show the efficiency of the proposed scheme, some numerical examples are provided. To validate the results obtained by proposed approach, some other methods are adopted from the literature and applied for comparison. Simulation results show superiority and capability of the proposed controller to improve the steady state performance and transient response specifications by using less numbers of fuzzy rules and on-line adaptive parameters in comparison to other methods. Furthermore, control effort has considerably decreased and chattering phenomenon has been completely removed.
Tahoun, A H
2017-01-01
In this paper, the stabilization problem of actuators saturation in uncertain chaotic systems is investigated via an adaptive PID control method. The PID control parameters are auto-tuned adaptively via adaptive control laws. A multi-level augmented error is designed to account for the extra terms appearing due to the use of PID and saturation. The proposed control technique uses both the state-feedback and the output-feedback methodologies. Based on Lyapunov׳s stability theory, new anti-windup adaptive controllers are proposed. Demonstrative examples with MATLAB simulations are studied. The simulation results show the efficiency of the proposed adaptive PID controllers.
Adaptive sliding mode control design for a class of uncertain singularly perturbed nonlinear systems
NASA Astrophysics Data System (ADS)
Lin, Kuo-Jung
2014-02-01
This paper addresses adaptive sliding mode control (ASMC) of uncertain singularly perturbed nonlinear (USPN) systems with guaranteed H∞ control performance. First, we use Takagi-Sugeno (T-S) fuzzy model to construct the USPN systems. Then, the sliding surface can be determined via linear matrix inequality (LMI) design procedure. Second, we propose neural network (NN)-based ASMC design to stabilise the USPN systems. The proposed methods are based on the Lyapunov stability theorem. The adaptive law can reduce the effect of uncertainty. The proposed NN-based ASMC will stabilise the USPN systems for all ɛ ∈ (0, ɛ*]. Simulation result reveals that the proposed NN-based ASMC scheme has better convergence time compared with the fuzzy control scheme (Li, T.-H.S., & Lin, K.J. (2004). Stabilization of singularly perturbed fuzzy systems, IEEE Transactions on Fuzzy Systems, 12, 579-595.).
Carmena, Jose M.
2016-01-01
Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain’s behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user’s motor intention during CLDA—a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to
Shanechi, Maryam M; Orsborn, Amy L; Carmena, Jose M
2016-04-01
Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain's behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user's motor intention during CLDA-a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to parameter
A fuzzy model based adaptive PID controller design for nonlinear and uncertain processes.
Savran, Aydogan; Kahraman, Gokalp
2014-03-01
We develop a novel adaptive tuning method for classical proportional-integral-derivative (PID) controller to control nonlinear processes to adjust PID gains, a problem which is very difficult to overcome in the classical PID controllers. By incorporating classical PID control, which is well-known in industry, to the control of nonlinear processes, we introduce a method which can readily be used by the industry. In this method, controller design does not require a first principal model of the process which is usually very difficult to obtain. Instead, it depends on a fuzzy process model which is constructed from the measured input-output data of the process. A soft limiter is used to impose industrial limits on the control input. The performance of the system is successfully tested on the bioreactor, a highly nonlinear process involving instabilities. Several tests showed the method's success in tracking, robustness to noise, and adaptation properties. We as well compared our system's performance to those of a plant with altered parameters with measurement noise, and obtained less ringing and better tracking. To conclude, we present a novel adaptive control method that is built upon the well-known PID architecture that successfully controls highly nonlinear industrial processes, even under conditions such as strong parameter variations, noise, and instabilities.
A generalizable adaptive brain-machine interface design for control of anesthesia.
Yuxiao Yang; Shanechi, Maryam M
2015-08-01
Brain-machine interfaces (BMIs) for closed-loop control of anesthesia have the potential to automatically monitor and control brain states under anesthesia. Since a variety of anesthetic states are needed in different clinical scenarios, designing a generalizable BMI architecture that can control a wide range of anesthetic states is essential. In addition, drug dynamics are non-stationary over time and could change with the depth of anesthesia. Hence for precise control, a BMI needs to track these non-stationarities online. Here we design a BMI architecture that generalizes to control of various anesthetic states and their associated neural signatures, and is adaptive to time-varying drug dynamics. We provide a systematic approach to build general parametric models that quantify the anesthetic state and describe the drug dynamics. Based on these models, we develop an adaptive closed-loop controller within the framework of stochastic optimal feedback control. This controller tracks the non-stationarities in drug dynamics, achieves tight control in a time-varying environment, and removes the need for an offline system identification session. For robustness, the BMI also ensures small drug infusion rate variations at steady state. We test the BMI architecture for control of two common anesthetic states, i.e., burst suppression in medically-induced coma and unconsciousness in general anesthesia. Using numerical experiments, we find that the BMI generalizes to control of both these anesthetic states; in a time-varying environment, even without initial knowledge of model parameters, the BMI accurately controls these two different anesthetic states, reducing bias and error more than 70 times and 9 times, respectively, compared with a non-adaptive system.
Covariance Matrix Adapted Evolution Strategy Based Design of Mixed H2/H ∞ PID Controller
NASA Astrophysics Data System (ADS)
Willjuice Iruthayarajan, M.; Baskar, S.
This paper discusses the application of the covariance matrix adapted evolution strategy (CMAES) technique to the design of the mixed H2/H ∞ PID controller. The optimal robust PID controller is designed by minimizing the weighted sum of integral squared error (ISE) and balanced robust performance criterion involving robust stability and disturbance attenuation performance subjected to robust stability and disturbance attenuation constraints. In CMAES algorithm, these constraints are effectively handled by penalty parameter-less scheme. In order to test the performance of CMAES algorithm, MIMO distillation column model is considered. For the purpose of comparison, reported intelligent genetic algorithm (IGA) method is used. The statistical performances of combined ISE and balanced robust performance criterion in ten independent simulation runs show that a performance of CMAES is better than IGA method. Robustness test conducted on the system also shows that the robust performance of CMAES designed controller is better than IGA based controller under model uncertainty and external disturbances.
An adaptive-control switching buck regulator - Implementation, analysis, and design
NASA Technical Reports Server (NTRS)
Lee, F. C.; Yu, Y.
1980-01-01
Describing-function techniques and averaging methods have been employed to characterize a multiloop switching buck regulator by three functional blocks: power stage, analog signal processor, and pulse modulator. The model is employed to explore possible forms of pole-zero cancellation and the adaptive nature of the control to filter parameter changes. Analysis-based design guidelines are provided including a suggested additional RC-compensation loop to optimize regulator performances such as stability, audiosusceptibility, output impedance, and load transient response.
Controlling a truck with an adaptive critic temporal difference CMAC design
NASA Technical Reports Server (NTRS)
Shelton, Robert O.; Peterson, James K.
1993-01-01
In this study, CMAC (Cerebellar Model Articulated Controller) neural architectures are shown to be viable for the purposes of real-time learning and control. An adaptive critic temporal difference neurocontrol design has been implemented that learns in real-time how to back up a trailer truck along a fixed straight line trajectory. The truck backer-upper experiment is a standard performance measure in the neural network literature, but previously the training of the controllers was done off-line. With the CMAC neural architectures, it was possible to train the neurocontrollers on-line in real-time on a MS-DOS PC 386.
Controlling a truck with an adaptive critic temporal difference CMAC design
NASA Technical Reports Server (NTRS)
Shelton, Robert O.; Peterson, James K.
1993-01-01
In this study, CMAC (Cerebellar Model Articulated Controller) neural architectures are shown to be viable for the purposes of real-time learning and control. An adaptive critic temporal difference neurocontrol design has been implemented that learns in real-time how to back up a trailer truck along a fixed straight line trajectory. The truck backer-upper experiment is a standard performance measure in the neural network literature, but previously the training of the controllers was done off-line. With the CMAC neural architectures, it was possible to train the neurocontrollers on-line in real-time on a MS-DOS PC 386.
Root locus analysis and design of the adaptation process in active noise control.
Tabatabaei Ardekani, Iman; Abdulla, Waleed H
2012-10-01
This paper applies root locus theory to develop a graphical tool for the analysis and design of adaptive active noise control systems. It is shown that the poles of the adaptation process performed in these systems move on typical trajectories in the z-plane as the adaptation step-size varies. Based on this finding, the dominant root of the adaptation process and its trajectory can be determined. The first contribution of this paper is formulating parameters of the adaptation process root locus. The next contribution is introducing a mechanism for modifying the trajectory of the dominant root in the root locus. This mechanism creates a single open loop zero in the original root locus. It is shown that appropriate localization of this zero can cause the dominant root of the locus to be pushed toward the origin, and thereby the adaptation process becomes faster. The validity of the theoretical findings is confirmed in an experimental setup which is implemented using real-time multi-threading and multi-core processing techniques.
Design of adaptive control systems by means of self-adjusting transversal filters
NASA Technical Reports Server (NTRS)
Merhav, S. J.
1986-01-01
The design of closed-loop adaptive control systems based on nonparametric identification was addressed. Implementation is by self-adjusting Least Mean Square (LMS) transversal filters. The design concept is Model Reference Adaptive Control (MRAC). Major issues are to preserve the linearity of the error equations of each LMS filter, and to prevent estimation bias that is due to process or measurement noise, thus providing necessary conditions for the convergence and stability of the control system. The controlled element is assumed to be asymptotically stable and minimum phase. Because of the nonparametric Finite Impulse Response (FIR) estimates provided by the LMS filters, a-priori information on the plant model is needed only in broad terms. Following a survey of control system configurations and filter design considerations, system implementation is shown here in Single Input Single Output (SISO) format which is readily extendable to multivariable forms. In extensive computer simulation studies the controlled element is represented by a second-order system with widely varying damping, natural frequency, and relative degree.
NASA Astrophysics Data System (ADS)
Li, Yuan; Lv, Hui; Jiao, Dongxiu
2017-03-01
In this study, an adaptive neural network synchronization (NNS) approach, capable of guaranteeing prescribed performance (PP), is designed for non-identical fractional-order chaotic systems (FOCSs). For PP synchronization, we mean that the synchronization error converges to an arbitrary small region of the origin with convergence rate greater than some function given in advance. Neural networks are utilized to estimate unknown nonlinear functions in the closed-loop system. Based on the integer-order Lyapunov stability theorem, a fractional-order adaptive NNS controller is designed, and the PP can be guaranteed. Finally, simulation results are presented to confirm our results.
Physical Constraints on Biological Integral Control Design for Homeostasis and Sensory Adaptation
Ang, Jordan; McMillen, David R.
2013-01-01
Synthetic biology includes an effort to use design-based approaches to create novel controllers, biological systems aimed at regulating the output of other biological processes. The design of such controllers can be guided by results from control theory, including the strategy of integral feedback control, which is central to regulation, sensory adaptation, and long-term robustness. Realization of integral control in a synthetic network is an attractive prospect, but the nature of biochemical networks can make the implementation of even basic control structures challenging. Here we present a study of the general challenges and important constraints that will arise in efforts to engineer biological integral feedback controllers or to analyze existing natural systems. Constraints arise from the need to identify target output values that the combined process-plus-controller system can reach, and to ensure that the controller implements a good approximation of integral feedback control. These constraints depend on mild assumptions about the shape of input-output relationships in the biological components, and thus will apply to a variety of biochemical systems. We summarize our results as a set of variable constraints intended to provide guidance for the design or analysis of a working biological integral feedback controller. PMID:23442873
Physical constraints on biological integral control design for homeostasis and sensory adaptation.
Ang, Jordan; McMillen, David R
2013-01-22
Synthetic biology includes an effort to use design-based approaches to create novel controllers, biological systems aimed at regulating the output of other biological processes. The design of such controllers can be guided by results from control theory, including the strategy of integral feedback control, which is central to regulation, sensory adaptation, and long-term robustness. Realization of integral control in a synthetic network is an attractive prospect, but the nature of biochemical networks can make the implementation of even basic control structures challenging. Here we present a study of the general challenges and important constraints that will arise in efforts to engineer biological integral feedback controllers or to analyze existing natural systems. Constraints arise from the need to identify target output values that the combined process-plus-controller system can reach, and to ensure that the controller implements a good approximation of integral feedback control. These constraints depend on mild assumptions about the shape of input-output relationships in the biological components, and thus will apply to a variety of biochemical systems. We summarize our results as a set of variable constraints intended to provide guidance for the design or analysis of a working biological integral feedback controller.
Design of adaptive fuzzy logic controller based on linguistic-hedge concepts and genetic algorithms.
Liu, B D; Chen, C Y; Tsao, J Y
2001-01-01
In this paper, we propose a novel fuzzy logic controller, called linguistic hedge fuzzy logic controller, to simplify the membership function constructions and the rule developments. The design methodology of linguistic hedge fuzzy logic controller is a hybrid model based on the concepts of the linguistic hedges and the genetic algorithms. The linguistic hedge operators are used to adjust the shape of the system membership functions dynamically, and ran speed up the control result to fit the system demand. The genetic algorithms are adopted to search the optimal linguistic hedge combination in the linguistic hedge module, According to the proposed methodology, the linguistic hedge fuzzy logic controller has the following advantages: 1) it needs only the simple-shape membership functions rather than the carefully designed ones for characterizing the related variables; 2) it is sufficient to adopt a fewer number of rules for inference; 3) the rules are developed intuitionally without heavily depending on the endeavor of experts; 4) the linguistic hedge module associated with the genetic algorithm enables it to be adaptive; 5) it performs better than the conventional fuzzy logic controllers do; and 6) it can be realized with low design complexity and small hardware overhead. Furthermore, the proposed approach has been applied to design three well-known nonlinear systems. The simulation and experimental results demonstrate the effectiveness of this design.
Liu, Yan-Jun; Li, Jing; Tong, Shaocheng; Chen, C L Philip
2016-07-01
In order to stabilize a class of uncertain nonlinear strict-feedback systems with full-state constraints, an adaptive neural network control method is investigated in this paper. The state constraints are frequently emerged in the real-life plants and how to avoid the violation of state constraints is an important task. By introducing a barrier Lyapunov function (BLF) to every step in a backstepping procedure, a novel adaptive backstepping design is well developed to ensure that the full-state constraints are not violated. At the same time, one remarkable feature is that the minimal learning parameters are employed in BLF backstepping design. By making use of Lyapunov analysis, we can prove that all the signals in the closed-loop system are semiglobal uniformly ultimately bounded and the output is well driven to follow the desired output. Finally, a simulation is given to verify the effectiveness of the method.
NASA Astrophysics Data System (ADS)
Gao, Shigen; Dong, Hairong; Lyu, Shihang; Ning, Bin
2016-07-01
This paper studies decentralised neural adaptive control of a class of interconnected nonlinear systems, each subsystem is in the presence of input saturation and external disturbance and has independent system order. Using a novel truncated adaptation design, dynamic surface control technique and minimal-learning-parameters algorithm, the proposed method circumvents the problems of 'explosion of complexity' and 'dimension curse' that exist in the traditional backstepping design. Comparing to the methodology that neural weights are online updated in the controllers, only one scalar needs to be updated in the controllers of each subsystem when dealing with unknown systematic dynamics. Radial basis function neural networks (NNs) are used in the online approximation of unknown systematic dynamics. It is proved using Lyapunov stability theory that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded. The tracking errors of each subsystems, the amplitude of NN approximation residuals and external disturbances can be attenuated to arbitrarily small by tuning proper design parameters. Simulation results are given to demonstrate the effectiveness of the proposed method.
Flight control design using a blend of modern nonlinear adaptive and robust techniques
NASA Astrophysics Data System (ADS)
Yang, Xiaolong
In this dissertation, the modern control techniques of feedback linearization, mu synthesis, and neural network based adaptation are used to design novel control laws for two specific applications: F/A-18 flight control and reusable launch vehicle (an X-33 derivative) entry guidance. For both applications, the performance of the controllers is assessed. As a part of a NASA Dryden program to develop and flight test experimental controllers for an F/A-18 aircraft, a novel method of combining mu synthesis and feedback linearization is developed to design longitudinal and lateral-directional controllers. First of all, the open-loop and closed-loop dynamics of F/A-18 are investigated. The production F/A-18 controller as well as the control distribution mechanism are studied. The open-loop and closed-loop handling qualities of the F/A-18 are evaluated using low order transfer functions. Based on this information, a blend of robust mu synthesis and feedback linearization is used to design controllers for a low dynamic pressure envelope of flight conditions. For both the longitudinal and the lateral-directional axes, a robust linear controller is designed for a trim point in the center of the envelope. Then by including terms to cancel kinematic nonlinearities and variations in the aerodynamic forces and moments over the flight envelope, a complete nonlinear controller is developed. In addition, to compensate for the model uncertainty, linearization error and variations between operating points, neural network based adaptation is added to the designed longitudinal controller. The nonlinear simulations, robustness and handling qualities analysis indicate that the performance is similar to or better than that for the production F/A-18 controllers. When the dynamic pressure is very low, the performance of both the experimental and the production flight controllers is degraded, but Level I handling qualities are still achieved. A new generation of Reusable Launch Vehicles
Design and Flight Tests of an Adaptive Control System Employing Normal-Acceleration Command
NASA Technical Reports Server (NTRS)
McNeill, Water E.; McLean, John D.; Hegarty, Daniel M.; Heinle, Donovan R.
1961-01-01
An adaptive control system employing normal-acceleration command has been designed with the aid of an analog computer and has been flight tested. The design of the system was based on the concept of using a mathematical model in combination with a high gain and a limiter. The study was undertaken to investigate the application of a system of this type to the task of maintaining nearly constant dynamic longitudinal response of a piloted airplane over the flight envelope without relying on air data measurements for gain adjustment. The range of flight conditions investigated was between Mach numbers of 0.36 and 1.15 and altitudes of 10,000 and 40,000 feet. The final adaptive system configuration was derived from analog computer tests, in which the physical airplane control system and much of the control circuitry were included in the loop. The method employed to generate the feedback signals resulted in a model whose characteristics varied somewhat with changes in flight condition. Flight results showed that the system limited the variation in longitudinal natural frequency of the adaptive airplane to about half that of the basic airplane and that, for the subsonic cases, the damping ratio was maintained between 0.56 and 0.69. The system also automatically compensated for the transonic trim change. Objectionable features of the system were an exaggerated sensitivity of pitch attitude to gust disturbances, abnormally large pitch attitude response for a given pilot input at low speeds, and an initial delay in normal-acceleration response to pilot control at all flight conditions. The adaptive system chatter of +/-0.05 to +/-0.10 of elevon at about 9 cycles per second (resulting in a maximum airplane normal-acceleration response of from +/-0.025 g to +/- 0.035 g) was considered by the pilots to be mildly objectionable but tolerable.
NASA Technical Reports Server (NTRS)
Alag, G.; Kaufman, H.
1977-01-01
An explicit adaptive controller, which makes direct use of on-line parameter identification, has been developed and applied to both the linearized and nonlinear equations of motion for the F-8 aircraft. This controller is composed of an on-line weighted least squares parameter identifier, a Kalman state filter, and a real model following control law designed using single-stage performance indices. The corresponding control gains are readily adjustable in accordance with parameter changes to ensure asymptotic stability if the conditions of perfect model following are satisfied, and stability in the sense of boundedness otherwise. Simulation experiments with realistic measurement noise indicate that the controller was effective in compensating for parameter variations and capable of rapid recovery from a set of erroneous initial parameter estimates which defined a set of destabilizing gains.
Design of a biped locomotion controller based on adaptive neuro-fuzzy inference systems
NASA Astrophysics Data System (ADS)
Shieh, M.-Y.; Chang, K.-H.; Lia, Y.-S.
2008-02-01
This paper proposes a method for the design of a biped locomotion controller based on the ANFIS (Adaptive Neuro-Fuzzy Inference System) inverse learning model. In the model developed here, an integrated ANFIS structure is trained to function as the system identifier for the modeling of the inverse dynamics of a biped robot. The parameters resulting from the modeling process are duplicated and integrated as those of the biped locomotion controller to provide favorable control action. As the simulation results show, the proposed controller is able to generate a stable walking cycle for a biped robot. Moreover, the experimental results demonstrate that the performance of the proposed controller is satisfactory under conditions when the robot stands in different postures or moves on a rugged surface.
1987-12-01
difference equation. Both fixed gain and adaptive PI controllers are designed for a plant were the number of outputs are not equal to the number of inputs...demonstrated the effective use of an adaptive controller with PI control laws in a reconfigurable scheme (14). They demonstrated the successful application...outputs so that * CB has full rank and a Proportional plus Integral ( PI ) controller using Porter’s technique could be used. The need for these requirements
Wu, Huai-Ning; Li, Han-Xiong
2009-10-01
In this paper, an adaptive neural network (NN) control with a guaranteed L(infinity)-gain performance is proposed for a class of parabolic partial differential equation (PDE) systems with unknown nonlinearities and persistent bounded disturbances. Initially, Galerkin method is applied to the PDE system to derive a low-order ordinary differential equation (ODE) system that accurately describes the dynamics of the dominant (slow) modes of the PDE system. Subsequently, based on the low-order slow model and the Lyapunov technique, an adaptive modal feedback controller is developed such that the closed-loop slow system is semiglobally input-to-state practically stable (ISpS) with an L(infinity)-gain performance. In the proposed control scheme, a radial basis function (RBF) NN is employed to approximate the unknown term in the derivative of the Lyapunov function due to the unknown system nonlinearities. The outcome of the adaptive L(infinity)-gain control problem is formulated as a linear matrix inequality (LMI) problem. Moreover, by using the existing LMI optimization technique, a suboptimal controller is obtained in the sense of minimizing an upper bound of the L(infinity)-gain, while control constraints are respected. Furthermore, it is shown that the proposed controller can ensure the semiglobal input-to-state practical stability and L(infinity)-gain performance of the closed-loop PDE system. Finally, by applying the developed design method to the temperature profile control of a catalytic rod, the achieved simulation results show the effectiveness of the proposed controller.
Adaptive NN controller design for a class of nonlinear MIMO discrete-time systems.
Liu, Yan-Jun; Tang, Li; Tong, Shaocheng; Chen, C L Philip
2015-05-01
An adaptive neural network tracking control is studied for a class of multiple-input multiple-output (MIMO) nonlinear systems. The studied systems are in discrete-time form and the discretized dead-zone inputs are considered. In addition, the studied MIMO systems are composed of N subsystems, and each subsystem contains unknown functions and external disturbance. Due to the complicated framework of the discrete-time systems, the existence of the dead zone and the noncausal problem in discrete-time, it brings about difficulties for controlling such a class of systems. To overcome the noncausal problem, by defining the coordinate transformations, the studied systems are transformed into a special form, which is suitable for the backstepping design. The radial basis functions NNs are utilized to approximate the unknown functions of the systems. The adaptation laws and the controllers are designed based on the transformed systems. By using the Lyapunov method, it is proved that the closed-loop system is stable in the sense that the semiglobally uniformly ultimately bounded of all the signals and the tracking errors converge to a bounded compact set. The simulation examples and the comparisons with previous approaches are provided to illustrate the effectiveness of the proposed control algorithm.
NASA Technical Reports Server (NTRS)
Tesar, Delbert; Tosunoglu, Sabri; Lin, Shyng-Her
1990-01-01
Research results on general serial robotic manipulators modeled with structural compliances are presented. Two compliant manipulator modeling approaches, distributed and lumped parameter models, are used in this study. System dynamic equations for both compliant models are derived by using the first and second order influence coefficients. Also, the properties of compliant manipulator system dynamics are investigated. One of the properties, which is defined as inaccessibility of vibratory modes, is shown to display a distinct character associated with compliant manipulators. This property indicates the impact of robot geometry on the control of structural oscillations. Example studies are provided to illustrate the physical interpretation of inaccessibility of vibratory modes. Two types of controllers are designed for compliant manipulators modeled by either lumped or distributed parameter techniques. In order to maintain the generality of the results, neither linearization is introduced. Example simulations are given to demonstrate the controller performance. The second type controller is also built for general serial robot arms and is adaptive in nature which can estimate uncertain payload parameters on-line and simultaneously maintain trajectory tracking properties. The relation between manipulator motion tracking capability and convergence of parameter estimation properties is discussed through example case studies. The effect of control input update delays on adaptive controller performance is also studied.
L(sub 1) Adaptive Control Design for NASA AirSTAR Flight Test Vehicle
NASA Technical Reports Server (NTRS)
Gregory, Irene M.; Cao, Chengyu; Hovakimyan, Naira; Zou, Xiaotian
2009-01-01
In this paper we present a new L(sub 1) adaptive control architecture that directly compensates for matched as well as unmatched system uncertainty. To evaluate the L(sub 1) adaptive controller, we take advantage of the flexible research environment with rapid prototyping and testing of control laws in the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. We apply the L(sub 1) adaptive control laws to the subscale turbine powered Generic Transport Model. The presented results are from a full nonlinear simulation of the Generic Transport Model and some preliminary pilot evaluations of the L(sub 1) adaptive control law.
Design of Robust Adaptive Unbalance Response Controllers for Rotors with Magnetic Bearings
NASA Technical Reports Server (NTRS)
Knospe, Carl R.; Tamer, Samir M.; Fedigan, Stephen J.
1996-01-01
Experimental results have recently demonstrated that an adaptive open loop control strategy can be highly effective in the suppression of unbalance induced vibration on rotors supported in active magnetic bearings. This algorithm, however, relies upon a predetermined gain matrix. Typically, this matrix is determined by an optimal control formulation resulting in the choice of the pseudo-inverse of the nominal influence coefficient matrix as the gain matrix. This solution may result in problems with stability and performance robustness since the estimated influence coefficient matrix is not equal to the actual influence coefficient matrix. Recently, analysis tools have been developed to examine the robustness of this control algorithm with respect to structured uncertainty. Herein, these tools are extended to produce a design procedure for determining the adaptive law's gain matrix. The resulting control algorithm has a guaranteed convergence rate and steady state performance in spite of the uncertainty in the rotor system. Several examples are presented which demonstrate the effectiveness of this approach and its advantages over the standard optimal control formulation.
NASA Astrophysics Data System (ADS)
Schnelle, Fabian; Eberhard, Peter
2017-06-01
This paper presents a novel adaptive nonlinear model predictive control design for trajectory tracking of flexible-link manipulators consisting of feedback linearization, linear model predictive control, and unscented Kalman filtering. Reducing the nonlinear system to a linear system by feedback linearization simplifies the optimization problem of the model predictive controller significantly, which, however, is no longer linear in the presence of parameter uncertainties and can potentially lead to an undesired dynamical behaviour. An unscented Kalman filter is used to approximate the dynamics of the prediction model by an online parameter estimation, which leads to an adaptation of the optimization problem in each time step and thus to a better prediction and an improved input action. Finally, a detailed fuzzy-arithmetic analysis is performed in order to quantify the effect of the uncertainties on the control structure and to derive robustness assessments. The control structure is applied to a serial manipulator with two flexible links containing uncertain model parameters and acting in three-dimensional space.
A design of LED adaptive dimming lighting system based on incremental PID controller
NASA Astrophysics Data System (ADS)
He, Xiangyan; Xiao, Zexin; He, Shaojia
2010-11-01
As a new generation energy-saving lighting source, LED is applied widely in various technology and industry fields. The requirement of its adaptive lighting technology is more and more rigorous, especially in the automatic on-line detecting system. In this paper, a closed loop feedback LED adaptive dimming lighting system based on incremental PID controller is designed, which consists of MEGA16 chip as a Micro-controller Unit (MCU), the ambient light sensor BH1750 chip with Inter-Integrated Circuit (I2C), and constant-current driving circuit. A given value of light intensity required for the on-line detecting environment need to be saved to the register of MCU. The optical intensity, detected by BH1750 chip in real time, is converted to digital signal by AD converter of the BH1750 chip, and then transmitted to MEGA16 chip through I2C serial bus. Since the variation law of light intensity in the on-line detecting environment is usually not easy to be established, incremental Proportional-Integral-Differential (PID) algorithm is applied in this system. Control variable obtained by the incremental PID determines duty cycle of Pulse-Width Modulation (PWM). Consequently, LED's forward current is adjusted by PWM, and the luminous intensity of the detection environment is stabilized by self-adaptation. The coefficients of incremental PID are obtained respectively after experiments. Compared with the traditional LED dimming system, it has advantages of anti-interference, simple construction, fast response, and high stability by the use of incremental PID algorithm and BH1750 chip with I2C serial bus. Therefore, it is suitable for the adaptive on-line detecting applications.
Adaptive hierarchical fuzzy controller
Raju, G.V.S.; Jun Zhou
1993-07-01
A methodology for designing adaptive hierarchical fuzzy controllers is presented. In order to evaluate this concept, several suitable performance indices were developed and converted to linguistic fuzzy variables. Based on those variables, a supervisory fuzzy rule set was constructed and used to change the parameters of a hierarchical fuzzy controller to accommodate the variations of system parameters. The proposed algorithm was used in feedwater flow control to a steam generator. Simulation studies are presented that illustrate the effectiveness of the approach
Hybrid feedback feedforward: An efficient design of adaptive neural network control.
Pan, Yongping; Liu, Yiqi; Xu, Bin; Yu, Haoyong
2016-04-01
This paper presents an efficient hybrid feedback feedforward (HFF) adaptive approximation-based control (AAC) strategy for a class of uncertain Euler-Lagrange systems. The control structure includes a proportional-derivative (PD) control term in the feedback loop and a radial-basis-function (RBF) neural network (NN) in the feedforward loop, which mimics the human motor learning control mechanism. At the presence of discontinuous friction, a sigmoid-jump-function NN is incorporated to improve control performance. The major difference of the proposed HFF-AAC design from the traditional feedback AAC (FB-AAC) design is that only desired outputs, rather than both tracking errors and desired outputs, are applied as RBF-NN inputs. Yet, such a slight modification leads to several attractive properties of HFF-AAC, including the convenient choice of an approximation domain, the decrease of the number of RBF-NN inputs, and semiglobal practical asymptotic stability dominated by control gains. Compared with previous HFF-AAC approaches, the proposed approach possesses the following two distinctive features: (i) all above attractive properties are achieved by a much simpler control scheme; (ii) the bounds of plant uncertainties are not required to be known. Consequently, the proposed approach guarantees a minimum configuration of the control structure and a minimum requirement of plant knowledge for the AAC design, which leads to a sharp decrease of implementation cost in terms of hardware selection, algorithm realization and system debugging. Simulation results have demonstrated that the proposed HFF-AAC can perform as good as or even better than the traditional FB-AAC under much simpler control synthesis and much lower computational cost.
Gardner, Andy
2009-01-01
The problem of adaptation is to explain the apparent design of organisms. Darwin solved this problem with the theory of natural selection. However, population geneticists, whose responsibility it is to formalize evolutionary theory, have long neglected the link between natural selection and organismal design. Here, I review the major historical developments in theory of organismal adaptation, clarifying what adaptation is and what it is not, and I point out future avenues for research. PMID:19793739
NASA Astrophysics Data System (ADS)
Hu, Xin-Yu; Zhao, Ming-Fu; Luo, Kai; Luo, Bin-Bin; Ling, Wen-Hao
2008-10-01
Based on visualization test of biotrickling bed, we analyze the dynamicmodel of the purification process, and get the dynamic model on liquid flux and purification efficiency. The adaptive control strategy is applied in the purification process. The simulation test proves that under the same disturbance the adaptive control strategy is more effective than PID.
Online learning control using adaptive critic designs with sparse kernel machines.
Xu, Xin; Hou, Zhongsheng; Lian, Chuanqiang; He, Haibo
2013-05-01
In the past decade, adaptive critic designs (ACDs), including heuristic dynamic programming (HDP), dual heuristic programming (DHP), and their action-dependent ones, have been widely studied to realize online learning control of dynamical systems. However, because neural networks with manually designed features are commonly used to deal with continuous state and action spaces, the generalization capability and learning efficiency of previous ACDs still need to be improved. In this paper, a novel framework of ACDs with sparse kernel machines is presented by integrating kernel methods into the critic of ACDs. To improve the generalization capability as well as the computational efficiency of kernel machines, a sparsification method based on the approximately linear dependence analysis is used. Using the sparse kernel machines, two kernel-based ACD algorithms, that is, kernel HDP (KHDP) and kernel DHP (KDHP), are proposed and their performance is analyzed both theoretically and empirically. Because of the representation learning and generalization capability of sparse kernel machines, KHDP and KDHP can obtain much better performance than previous HDP and DHP with manually designed neural networks. Simulation and experimental results of two nonlinear control problems, that is, a continuous-action inverted pendulum problem and a ball and plate control problem, demonstrate the effectiveness of the proposed kernel ACD methods.
Fast spacecraft adaptive attitude tracking control through immersion and invariance design
NASA Astrophysics Data System (ADS)
Wen, Haowei; Yue, Xiaokui; Li, Peng; Yuan, Jianping
2017-10-01
This paper presents a novel non-certainty-equivalence adaptive control method for the attitude tracking control problem of spacecraft with inertia uncertainties. The proposed immersion and invariance (I&I) based adaptation law provides a more direct and flexible approach to circumvent the limitations of the basic I&I method without employing any filter signal. By virtue of the adaptation high-gain equivalence property derived from the proposed adaptive method, the closed-loop adaptive system with a low adaptation gain could recover the high adaptation gain performance of the filter-based I&I method, and the resulting control torque demands during the initial transient has been significantly reduced. A special feature of this method is that the convergence of the parameter estimation error has been observably improved by utilizing an adaptation gain matrix instead of a single adaptation gain value. Numerical simulations are presented to highlight the various benefits of the proposed method compared with the certainty-equivalence-based control method and filter-based I&I control schemes.
Experimental Investigation on Adaptive Robust Controller Designs Applied to Constrained Manipulators
Nogueira, Samuel L.; Pazelli, Tatiana F. P. A. T.; Siqueira, Adriano A. G.; Terra, Marco H.
2013-01-01
In this paper, two interlaced studies are presented. The first is directed to the design and construction of a dynamic 3D force/moment sensor. The device is applied to provide a feedback signal of forces and moments exerted by the robotic end-effector. This development has become an alternative solution to the existing multi-axis load cell based on static force and moment sensors. The second one shows an experimental investigation on the performance of four different adaptive nonlinear ℋ∞ control methods applied to a constrained manipulator subject to uncertainties in the model and external disturbances. Coordinated position and force control is evaluated. Adaptive procedures are based on neural networks and fuzzy systems applied in two different modeling strategies. The first modeling strategy requires a well-known nominal model for the robot, so that the intelligent systems are applied only to estimate the effects of uncertainties, unmodeled dynamics and external disturbances. The second strategy considers that the robot model is completely unknown and, therefore, intelligent systems are used to estimate these dynamics. A comparative study is conducted based on experimental implementations performed with an actual planar manipulator and with the dynamic force sensor developed for this purpose. PMID:23598503
Nogueira, Samuel L; Pazelli, Tatiana F P A T; Siqueira, Adriano A G; Terra, Marco H
2013-04-18
In this paper, two interlaced studies are presented. The first is directed to the design and construction of a dynamic 3D force/moment sensor. The device is applied to provide a feedback signal of forces and moments exerted by the robotic end-effector. This development has become an alternative solution to the existing multi-axis load cell based on static force and moment sensors. The second one shows an experimental investigation on the performance of four different adaptive nonlinear H∞ control methods applied to a constrained manipulator subject to uncertainties in the model and external disturbances. Coordinated position and force control is evaluated. Adaptive procedures are based on neural networks and fuzzy systems applied in two different modeling strategies. The first modeling strategy requires a well-known nominal model for the robot, so that the intelligent systems are applied only to estimate the effects of uncertainties, unmodeled dynamics and external disturbances. The second strategy considers that the robot model is completely unknown and, therefore, intelligent systems are used to estimate these dynamics. A comparative study is conducted based on experimental implementations performed with an actual planar manipulator and with the dynamic force sensor developed for this purpose.
Adaptive clinical trial design.
Chow, Shein-Chung
2014-01-01
In recent years, the use of adaptive design methods in clinical trials based on accumulated data at interim has received much attention because of its flexibility and efficiency in pharmaceutical/clinical development. In practice, adaptive design may provide the investigators a second chance to modify or redesign the trial while the study is still ongoing. However, it is a concern that a shift in target patient population may occur after significant adaptations are made. In addition, the overall type I error rate may not be preserved. Moreover, the results may not be reliable and hence are difficult to interpret. As indicated by the US Food and Drug Administration draft guidance on adaptive design clinical trials, the adaptive design has to be a prospectively planned opportunity and should be based on information collected within the study, with or without formal statistical hypothesis testing. This article reviews the relative advantages, limitations, and feasibility of commonly considered adaptive designs in clinical trials. Statistical concerns when implementing adaptive designs are also discussed.
A new approach for designing self-organizing systems and application to adaptive control
NASA Technical Reports Server (NTRS)
Ramamoorthy, P. A.; Zhang, Shi; Lin, Yueqing; Huang, Song
1993-01-01
There is tremendous interest in the design of intelligent machines capable of autonomous learning and skillful performance under complex environments. A major task in designing such systems is to make the system plastic and adaptive when presented with new and useful information and stable in response to irrelevant events. A great body of knowledge, based on neuro-physiological concepts, has evolved as a possible solution to this problem. Adaptive resonance theory (ART) is a classical example under this category. The system dynamics of an ART network is described by a set of differential equations with nonlinear functions. An approach for designing self-organizing networks characterized by nonlinear differential equations is proposed.
NASA Astrophysics Data System (ADS)
Luo, Shaohua; Hou, Zhiwei; Zhang, Tao
2016-09-01
This paper addresses chaos suppression of the mechanical centrifugal flywheel governor system with output constraint and fully unknown parameters via adaptive dynamic surface control. To have a certain understanding of chaotic nature of the mechanical centrifugal flywheel governor system and subsequently design its controller, the useful tools like the phase diagrams and corresponding time histories are employed. By using tangent barrier Lyapunov function, a dynamic surface control scheme with neural network and tracking differentiator is developed to transform chaos oscillation into regular motion and the output constraint rule is not broken in whole process. Plugging second-order tracking differentiator into chaos controller tackles the "explosion of complexity" of backstepping and improves the accuracy in contrast with the first-order filter. Meanwhile, Chebyshev neural network with adaptive law whose input only depends on a subset of Chebyshev polynomials is derived to learn the behavior of unknown dynamics. The boundedness of all signals of the closed-loop system is verified in stability analysis. Finally, the results of numerical simulations illustrate effectiveness and exhibit the superior performance of the proposed scheme by comparing with the existing ADSC method.
Pandey, Vinay Kumar; Kar, Indrani; Mahanta, Chitralekha
2017-07-01
In this paper, an adaptive control method using multiple models with second level adaptation is proposed for a class of nonlinear multi-input multi-output (MIMO) coupled systems. Multiple estimation models are used to tune the unknown parameters at the first level. The second level adaptation provides a single parameter vector for the controller. A feedback linearization technique is used to design a state feedback control. The efficacy of the designed controller is validated by conducting real time experiment on a laboratory setup of twin rotor MIMO system (TRMS). The TRMS setup is discussed in detail and the experiments were performed for regulation and tracking problem for pitch and yaw control using different reference signals. An Extended Kalman Filter (EKF) has been used to observe the unavailable states of the TRMS. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles
Eom, Hwisoo; Lee, Sang Hun
2015-01-01
A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC) and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model. PMID:26076406
Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles.
Eom, Hwisoo; Lee, Sang Hun
2015-06-12
A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC) and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model.
Li, Yongming; Sui, Shuai; Tong, Shaocheng
2017-02-01
This paper deals with the problem of adaptive fuzzy output feedback control for a class of stochastic nonlinear switched systems. The controlled system in this paper possesses unmeasured states, completely unknown nonlinear system functions, unmodeled dynamics, and arbitrary switchings. A state observer which does not depend on the switching signal is constructed to tackle the unmeasured states. Fuzzy logic systems are employed to identify the completely unknown nonlinear system functions. Based on the common Lyapunov stability theory and stochastic small-gain theorem, a new robust adaptive fuzzy backstepping stabilization control strategy is developed. The stability of the closed-loop system on input-state-practically stable in probability is proved. The simulation results are given to verify the efficiency of the proposed fuzzy adaptive control scheme.
Li, Yongming; Tong, Shaocheng; Li, Tieshan
2015-10-01
In this paper, a composite adaptive fuzzy output-feedback control approach is proposed for a class of single-input and single-output strict-feedback nonlinear systems with unmeasured states and input saturation. Fuzzy logic systems are utilized to approximate the unknown nonlinear functions, and a fuzzy state observer is designed to estimate the unmeasured states. By utilizing the designed fuzzy state observer, a serial-parallel estimation model is established. Based on adaptive backstepping dynamic surface control technique and utilizing the prediction error between the system states observer model and the serial-parallel estimation model, a new fuzzy controller with the composite parameters adaptive laws are developed. It is proved that all the signals of the closed-loop system are bounded and the system output can follow the given bounded reference signal. A numerical example and simulation comparisons with previous control methods are provided to show the effectiveness of the proposed approach.
2017-03-24
for Design and Control of Adaptive Stochastic Complex Systems John Baillieul∗ Contents 1 Executive Summary 2 2 Introduction and Issues to Be Addressed...6.3 Elementary aspects of function composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6.4 Right and left inverses , partitions...difficult of real-world Systems-of-Systems challenges is the design and operational control of medical treatment networks that support forces operating
A mathematical basis for the design optimization of adaptive trusses in precision control
NASA Technical Reports Server (NTRS)
Das, S. K.; Utku, S.; Chen, G. S.; Wada, B. K.
1991-01-01
Optimal actuator placement schemes are presently studied for cases of adaptive truss precision control and prestressing control, with a view to the maximization of actuator efficiencies. In statically indeterminate truss structures, the optimal placement criteria and techniques differ, depending on whether the primary determinate structure is known. A suboptimal actuator-placement solution to the global optimization problem which combines displacement control and prestressing control is suggested, by combining the separate displacement control and prestressing control optimization results. Attention is given to the results obtained for the illustrative case of a two-bay, three-dimensional precision truss structure.
Adaptive hybrid control of manipulators
NASA Technical Reports Server (NTRS)
Seraji, H.
1987-01-01
Simple methods for the design of adaptive force and position controllers for robot manipulators within the hybrid control architecuture is presented. The force controller is composed of an adaptive PID feedback controller, an auxiliary signal and a force feedforward term, and it achieves tracking of desired force setpoints in the constraint directions. The position controller consists of adaptive feedback and feedforward controllers and an auxiliary signal, and it accomplishes tracking of desired position trajectories in the free directions. The controllers are capable of compensating for dynamic cross-couplings that exist between the position and force control loops in the hybrid control architecture. The adaptive controllers do not require knowledge of the complex dynamic model or parameter values of the manipulator or the environment. The proposed control schemes are computationally fast and suitable for implementation in on-line control with high sampling rates.
Adaptive Filter Design Using Type-2 Fuzzy Cerebellar Model Articulation Controller.
Lin, Chih-Min; Yang, Ming-Shu; Chao, Fei; Hu, Xiao-Min; Zhang, Jun
2016-10-01
This paper aims to propose an efficient network and applies it as an adaptive filter for the signal processing problems. An adaptive filter is proposed using a novel interval type-2 fuzzy cerebellar model articulation controller (T2FCMAC). The T2FCMAC realizes an interval type-2 fuzzy logic system based on the structure of the CMAC. Due to the better ability of handling uncertainties, type-2 fuzzy sets can solve some complicated problems with outstanding effectiveness than type-1 fuzzy sets. In addition, the Lyapunov function is utilized to derive the conditions of the adaptive learning rates, so that the convergence of the filtering error can be guaranteed. In order to demonstrate the performance of the proposed adaptive T2FCMAC filter, it is tested in signal processing applications, including a nonlinear channel equalization system, a time-varying channel equalization system, and an adaptive noise cancellation system. The advantages of the proposed filter over the other adaptive filters are verified through simulations.
ERIC Educational Resources Information Center
Flournoy, Nancy
Designs for sequential sampling procedures that adapt to cumulative information are discussed. A familiar illustration is the play-the-winner rule in which there are two treatments; after a random start, the same treatment is continued as long as each successive subject registers a success. When a failure occurs, the other treatment is used until…
NASA Astrophysics Data System (ADS)
Wang, Yin-He; Luo, Liang; Fan, Yong-Qing; Zhang, Yun; Liu, Xiao-Ping; Zhang, Si-Ying
2014-03-01
Many practical engineering applications require various types of fuzzy logic systems (FLSs) to design adaptive controllers for nonlinear systems with uncertainties. In this article, we will consider a fundamental theoretical question: is it possible to find a unified adaptive control design method suited to various types of FLSs? In order to solve this problem, we will introduce scalers and saturators at the input and output terminals of FLSs to form the extended FLSs (EFLS). The scalers and saturators have adjustable parameters. By designing the updated laws of these parameters and the estimate values of the fuzzy approximate accuracies, stable adaptive fuzzy controllers can be realised for a class of nonlinear systems with unknown homogeneous drift functions and gains. The proposed design method is only dependent on the outputs of EFLS and the above updated laws, thus increasing its adaptability. The fuzzy control scheme introduced in this article is suitable for all fuzzy systems with or without fuzzy rules. Simulations will also be used to show the validity of the method proposed in this article.
Li, Yongming; Tong, Shaocheng
2016-08-25
In this paper, an adaptive fuzzy output constrained control design approach is addressed for multi-input multioutput uncertain stochastic nonlinear systems in nonstrict-feedback form. The nonlinear systems addressed in this paper possess unstructured uncertainties, unknown gain functions and unknown stochastic disturbances. Fuzzy logic systems are utilized to tackle the problem of unknown nonlinear uncertainties. The barrier Lyapunov function technique is employed to solve the output constrained problem. In the framework of backstepping design, an adaptive fuzzy control design scheme is constructed. All the signals in the closed-loop system are proved to be bounded in probability and the system outputs are constrained in a given compact set. Finally, the applicability of the proposed controller is well carried out by a simulation example.
Adaptive nonlinear flight control
NASA Astrophysics Data System (ADS)
Rysdyk, Rolf Theoduor
1998-08-01
Research under supervision of Dr. Calise and Dr. Prasad at the Georgia Institute of Technology, School of Aerospace Engineering. has demonstrated the applicability of an adaptive controller architecture. The architecture successfully combines model inversion control with adaptive neural network (NN) compensation to cancel the inversion error. The tiltrotor aircraft provides a specifically interesting control design challenge. The tiltrotor aircraft is capable of converting from stable responsive fixed wing flight to unstable sluggish hover in helicopter configuration. It is desirable to provide the pilot with consistency in handling qualities through a conversion from fixed wing flight to hover. The linear model inversion architecture was adapted by providing frequency separation in the command filter and the error-dynamics, while not exiting the actuator modes. This design of the architecture provides for a model following setup with guaranteed performance. This in turn allowed for convenient implementation of guaranteed handling qualities. A rigorous proof of boundedness is presented making use of compact sets and the LaSalle-Yoshizawa theorem. The analysis allows for the addition of the e-modification which guarantees boundedness of the NN weights in the absence of persistent excitation. The controller is demonstrated on the Generic Tiltrotor Simulator of Bell-Textron and NASA Ames R.C. The model inversion implementation is robustified with respect to unmodeled input dynamics, by adding dynamic nonlinear damping. A proof of boundedness of signals in the system is included. The effectiveness of the robustification is also demonstrated on the XV-15 tiltrotor. The SHL Perceptron NN provides a more powerful application, based on the universal approximation property of this type of NN. The SHL NN based architecture is also robustified with the dynamic nonlinear damping. A proof of boundedness extends the SHL NN augmentation with robustness to unmodeled actuator
NASA Technical Reports Server (NTRS)
Smith, L. S.; Kopf, E. H., Jr.
1974-01-01
HYPACE provides an adaptable, analog/digital design approach that permits preflight and in-flight accommodation of mission changes, component performance variations, spacecraft changes, etc., through programing. This enabled broad multimission flexibility of application in a cost-effective manner. The HYPACE design, which was demonstrated in breadboard form on a single-axis gas-bearing spacecraft simulation, uses a single control channel to perform the attitude control functions sequentially, thus significantly reducing the number of component parts over hard-wired designs. The success of this effort resulted in the concept being selected for the Mariner/Jupiter/Saturn 1977 spacecraft application.
NASA Technical Reports Server (NTRS)
Smith, L. S.; Kopf, E. H., Jr.
1974-01-01
HYPACE provides an adaptable, analog/digital design approach that permits preflight and in-flight accommodation of mission changes, component performance variations, spacecraft changes, etc., through programing. This enabled broad multimission flexibility of application in a cost-effective manner. The HYPACE design, which was demonstrated in breadboard form on a single-axis gas-bearing spacecraft simulation, uses a single control channel to perform the attitude control functions sequentially, thus significantly reducing the number of component parts over hard-wired designs. The success of this effort resulted in the concept being selected for the Mariner/Jupiter/Saturn 1977 spacecraft application.
NASA Astrophysics Data System (ADS)
Wang, Xudong; Syrmos, Vassilis L.
2004-07-01
In this paper, an adaptive reconfigurable control system based on extended Kalman filter approach and eigenstructure assignments is proposed. System identification is carried out using an extended Kalman filter (EKF) approach. An eigenstructure assignment (EA) technique is applied for reconfigurable feedback control law design to recover the system dynamic performance. The reconfigurable feedforward controllers are designed to achieve the steady-state tracking using input weighting approach. The proposed scheme can identify not only actuator and sensor variations, but also changes in the system structures using the extended Kalman filtering method. The overall design is robust with respect to uncertainties in the state-space matrices of the reconfigured system. To illustrate the effectiveness of the proposed reconfigurable control system design technique, an aircraft longitudinal vertical takeoff and landing (VTOL) control system is used to demonstrate the reconfiguration procedure.
Modular autopilot design and development featuring Bayesian non-parametric adaptive control
NASA Astrophysics Data System (ADS)
Stockton, Jacob
Over the last few decades, Unmanned Aircraft Systems, or UAS, have become a critical part of the defense of our nation and the growth of the aerospace sector. UAS have a great potential for the agricultural industry, first response, and ecological monitoring. However, the wide range of applications require many mission-specific vehicle platforms. These platforms must operate reliably in a range of environments, and in presence of significant uncertainties. The accepted practice for enabling autonomously flying UAS today relies on extensive manual tuning of the UAS autopilot parameters, or time consuming approximate modeling of the dynamics of the UAS. These methods may lead to overly conservative controllers or excessive development times. A comprehensive approach to the development of an adaptive, airframe-independent controller is presented. The control algorithm leverages a nonparametric, Bayesian approach to adaptation, and is used as a cornerstone for the development of a new modular autopilot. Promising simulation results are presented for the adaptive controller, as well as, flight test results for the modular autopilot.
Lee, Ji Min; Park, Sung Hwan; Kim, Jong Shik
2013-01-01
A robust control scheme is proposed for the position control of the electrohydrostatic actuator (EHA) when considering hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities. To reduce overshoot due to a saturation of electric motor and to realize robustness against load disturbance and lumped system uncertainties such as varying parameters and modeling error, this paper proposes an adaptive antiwindup PID sliding mode scheme as a robust position controller for the EHA system. An optimal PID controller and an optimal anti-windup PID controller are also designed to compare control performance. An EHA prototype is developed, carrying out system modeling and parameter identification in designing the position controller. The simply identified linear model serves as the basis for the design of the position controllers, while the robustness of the control systems is compared by experiments. The adaptive anti-windup PID sliding mode controller has been found to have the desired performance and become robust against hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities. PMID:23983640
Lee, Ji Min; Park, Sung Hwan; Kim, Jong Shik
2013-01-01
A robust control scheme is proposed for the position control of the electrohydrostatic actuator (EHA) when considering hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities. To reduce overshoot due to a saturation of electric motor and to realize robustness against load disturbance and lumped system uncertainties such as varying parameters and modeling error, this paper proposes an adaptive antiwindup PID sliding mode scheme as a robust position controller for the EHA system. An optimal PID controller and an optimal anti-windup PID controller are also designed to compare control performance. An EHA prototype is developed, carrying out system modeling and parameter identification in designing the position controller. The simply identified linear model serves as the basis for the design of the position controllers, while the robustness of the control systems is compared by experiments. The adaptive anti-windup PID sliding mode controller has been found to have the desired performance and become robust against hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities.
Slip control design of electric vehicle using indirect Dahlin Adaptive Pid
NASA Astrophysics Data System (ADS)
Fauzi, I. R.; Koko, F.; Kirom, M. R.
2016-11-01
In this paper the problem to be solved is to build a slip control on a wheel that may occur in an electric car wheel. Slip is the difference in vehicle velocity and wheel tangential velocity and to be enlarged when the torque given growing. Slip can be reduced by controlling the torque of the wheel so that the wheel tangential speed does not exceed the vehicle speed. The experiment in this paper is a simulation using MATLAB Simulink and using Adaptive control. The response adaptive PID control more quickly 1.5 s than PID control and can controlled wheel tangential speed close to the vehicle velocity on a dry asphalt, wet asphalt, snow and ice surface sequent at time 2s, 4s, 10s, and 50s. The maximum acceleration of the vehicle (V) on the surface of the dry asphalt, wet asphalt, snow, and ice surface sequent at 8.9 m/s2, 6.2 m/s2, 2.75 m/s2, and 0.34 m/s2.
Design of an adaptive backstepping controller for auto-berthing a cruise ship under wind loads
NASA Astrophysics Data System (ADS)
Park, Jong-Yong; Kim, Nakwan
2014-06-01
The auto-berthing of a ship requires excellent control for safe accomplishment. Crabbing, which is the pure sway motion of a ship without surge velocity, can be used for this purpose. Crabbing is induced by a peculiar operation procedure known as the push-pull mode. When a ship is in the push-pull mode, an interacting force is induced by complex turbulent flow around the ship generated by the propellers and side thrusters. In this paper, three degrees of freedom equations of the motions of crabbing are derived. The equations are used to apply the adaptive backstepping control method to the auto-berthing controller of a cruise ship. The controller is capable of handling the system nonlinearity and uncertainty of the berthing process. A control allocation algorithm for a ship equipped with two propellers and two side thrusters is also developed, the performance of which is validated by simulation of auto-berthing.
Hybrid Adaptive Flight Control with Model Inversion Adaptation
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2011-01-01
This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.
Raul, Pramod R; Pagilla, Prabhakar R
2015-05-01
In this paper, two adaptive Proportional-Integral (PI) control schemes are designed and discussed for control of web tension in Roll-to-Roll (R2R) manufacturing systems. R2R systems are used to transport continuous materials (called webs) on rollers from the unwind roll to the rewind roll. Maintaining web tension at the desired value is critical to many R2R processes such as printing, coating, lamination, etc. Existing fixed gain PI tension control schemes currently used in industrial practice require extensive tuning and do not provide the desired performance for changing operating conditions and material properties. The first adaptive PI scheme utilizes the model reference approach where the controller gains are estimated based on matching of the actual closed-loop tension control systems with an appropriately chosen reference model. The second adaptive PI scheme utilizes the indirect adaptive control approach together with relay feedback technique to automatically initialize the adaptive PI gains. These adaptive tension control schemes can be implemented on any R2R manufacturing system. The key features of the two adaptive schemes is that their designs are simple for practicing engineers, easy to implement in real-time, and automate the tuning process. Extensive experiments are conducted on a large experimental R2R machine which mimics many features of an industrial R2R machine. These experiments include trials with two different polymer webs and a variety of operating conditions. Implementation guidelines are provided for both adaptive schemes. Experimental results comparing the two adaptive schemes and a fixed gain PI tension control scheme used in industrial practice are provided and discussed. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Winner, Hermann; Danner, Bernd; Steinle, Joachim
Mit Adaptive Cruise Control, abgekürzt ACC, wird eine Fahrgeschwindigkeitsregelung bezeichnet, die sich an die Verkehrssituation anpasst. Synonyme Bezeichnungen sind Aktive Geschwindigkeitsregelung, Automatische Distanzregelung oder Abstandsregeltempomat. Im englischen Sprachraum fnden sich die weiteren Bezeichnungen Active Cruise Control, Automatic Cruise Control oder Autonomous Intelligent Cruise Control. Als markengeschützte Bezeichnungen sind Distronic und Automatische Distanz-Regelung (ADR) eingetragen.
Wai, Rong-Jong; Yang, Zhi-Wei
2008-10-01
This paper focuses on the development of adaptive fuzzy neural network control (AFNNC), including indirect and direct frameworks for an n-link robot manipulator, to achieve high-precision position tracking. In general, it is difficult to adopt a model-based design to achieve this control objective due to the uncertainties in practical applications, such as friction forces, external disturbances, and parameter variations. In order to cope with this problem, an indirect AFNNC (IAFNNC) scheme and a direct AFNNC (DAFNNC) strategy are investigated without the requirement of prior system information. In these model-free control topologies, a continuous-time Takagi-Sugeno (T-S) dynamic fuzzy model with online learning ability is constructed to represent the system dynamics of an n-link robot manipulator. In the IAFNNC, an FNN estimator is designed to tune the nonlinear dynamic function vector in fuzzy local models, and then, the estimative vector is used to indirectly develop a stable IAFNNC law. In the DAFNNC, an FNN controller is directly designed to imitate a predetermined model-based stabilizing control law, and then, the stable control performance can be achieved by only using joint position information. All the IAFNNC and DAFNNC laws and the corresponding adaptive tuning algorithms for FNN weights are established in the sense of Lyapunov stability analyses to ensure the stable control performance. Numerical simulations and experimental results of a two-link robot manipulator actuated by dc servomotors are given to verify the effectiveness and robustness of the proposed methodologies. In addition, the superiority of the proposed control schemes is indicated in comparison with proportional-differential control, fuzzy-model-based control, T-S-type FNN control, and robust neural fuzzy network control systems.
NASA Technical Reports Server (NTRS)
Narendra, K. S.; Annaswamy, A. M.
1985-01-01
Several concepts and results in robust adaptive control are are discussed and is organized in three parts. The first part surveys existing algorithms. Different formulations of the problem and theoretical solutions that have been suggested are reviewed here. The second part contains new results related to the role of persistent excitation in robust adaptive systems and the use of hybrid control to improve robustness. In the third part promising new areas for future research are suggested which combine different approaches currently known.
NASA Astrophysics Data System (ADS)
Nath, Bikram; Mondal, Chandan Kumar
2014-08-01
We have designed and optimised a combined laser pulse using optimal control theory-based adaptive simulated annealing technique for selective vibrational excitations and photo-dissociation. Since proper choice of pulses for specific excitation and dissociation phenomena is very difficult, we have designed a linearly combined pulse for such processes and optimised the different parameters involved in those pulses so that we can get an efficient combined pulse. The technique makes us free from choosing any arbitrary type of pulses and makes a ground to check their suitability. We have also emphasised on how we can improve the performance of simulated annealing technique by introducing an adaptive step length of the different variables during the optimisation processes. We have also pointed out on how we can choose the initial temperature for the optimisation process by introducing heating/cooling step to reduce the annealing steps so that the method becomes cost effective.
Liu, Yan-Jun; Tong, Shaocheng
2016-11-01
In this paper, we propose an optimal control scheme-based adaptive neural network design for a class of unknown nonlinear discrete-time systems. The controlled systems are in a block-triangular multi-input-multi-output pure-feedback structure, i.e., there are both state and input couplings and nonaffine functions to be included in every equation of each subsystem. The design objective is to provide a control scheme, which not only guarantees the stability of the systems, but also achieves optimal control performance. The main contribution of this paper is that it is for the first time to achieve the optimal performance for such a class of systems. Owing to the interactions among subsystems, making an optimal control signal is a difficult task. The design ideas are that: 1) the systems are transformed into an output predictor form; 2) for the output predictor, the ideal control signal and the strategic utility function can be approximated by using an action network and a critic network, respectively; and 3) an optimal control signal is constructed with the weight update rules to be designed based on a gradient descent method. The stability of the systems can be proved based on the difference Lyapunov method. Finally, a numerical simulation is given to illustrate the performance of the proposed scheme.
Lin, Chuan-Kai; Wang, Sheng-De
2004-11-01
A new autopilot design for bank-to-turn (BTT) missiles is presented. In the design of autopilot, a ridge Gaussian neural network with local learning capability and fewer tuning parameters than Gaussian neural networks is proposed to model the controlled nonlinear systems. We prove that the proposed ridge Gaussian neural network, which can be a universal approximator, equals the expansions of rotated and scaled Gaussian functions. Although ridge Gaussian neural networks can approximate the nonlinear and complex systems accurately, the small approximation errors may affect the tracking performance significantly. Therefore, by employing the Hinfinity control theory, it is easy to attenuate the effects of the approximation errors of the ridge Gaussian neural networks to a prescribed level. Computer simulation results confirm the effectiveness of the proposed ridge Gaussian neural networks-based autopilot with Hinfinity stabilization.
NASA Astrophysics Data System (ADS)
Phu, Do Xuan; Shin, Do Kyun; Choi, Seung-Bok
2015-08-01
This paper presents a new adaptive fuzzy controller featuring a combination of two different control methodologies: H infinity control technique and sliding mode control. It is known that both controllers are powerful in terms of high performance and robust stability. However, both control methods require an accurate dynamic model to design a state variable based controller in order to maintain their advantages. Thus, in this work a fuzzy control method which does not require an accurate dynamic model is adopted and two control methodologies are integrated to maintain the advantages even in an uncertain environment of the dynamic system. After a brief explanation of the interval type 2 fuzzy logic, a new adaptive fuzzy controller associated with the H infinity control and sliding mode control is formulated on the basis of Lyapunov stability theory. Subsequently, the formulated controller is applied to vibration control of a vehicle seat equipped with magnetorheological fluid damper (MR damper in short). An experimental setup for realization of the proposed controller is established and vibration control performances such as acceleration at the driver’s seat are evaluated. In addition, in order to demonstrate the effectiveness of the proposed controller, a comparative work with two existing controllers is undertaken. It is shown through simulation and experiment that the proposed controller can provide much better vibration control performance than the two existing controllers.
Digital adaptive flight controller development
NASA Technical Reports Server (NTRS)
Kaufman, H.; Alag, G.; Berry, P.; Kotob, S.
1974-01-01
A design study of adaptive control logic suitable for implementation in modern airborne digital flight computers was conducted. Two designs are described for an example aircraft. Each of these designs uses a weighted least squares procedure to identify parameters defining the dynamics of the aircraft. The two designs differ in the way in which control law parameters are determined. One uses the solution of an optimal linear regulator problem to determine these parameters while the other uses a procedure called single stage optimization. Extensive simulation results and analysis leading to the designs are presented.
Rouhollahi, Korosh; Emadi Andani, Mehran; Karbassi, Seyed Mahdi; Izadi, Iman
2017-02-01
Deep brain stimulation (DBS) is an efficient therapy to control movement disorders of Parkinson's tremor. Stimulation of one area of basal ganglia (BG) by DBS with no feedback is the prevalent opinion. Reduction of additional stimulatory signal delivered to the brain is the advantage of using feedback. This results in reduction of side effects caused by the excessive stimulation intensity. In fact, the stimulatory intensity of controllers is decreased proportional to reduction of hand tremor. The objective of this study is to design a new controller structure to decrease three indicators: (i) the hand tremor; (ii) the level of delivered stimulation in disease condition; and (iii) the ratio of the level of delivered stimulation in health condition to disease condition. For this purpose, the authors offer a new closed-loop control structure to stimulate two areas of BG simultaneously. One area (STN: subthalamic nucleus) is stimulated by an adaptive controller with feedback error learning. The other area (GPi: globus pallidus internal) is stimulated by a partial state feedback (PSF) controller. Considering the three indicators, the results show that, stimulating two areas simultaneously leads to better performance compared with stimulating one area only. It is shown that both PSF and adaptive controllers are robust regarding system parameter uncertainties. In addition, a method is proposed to update the parameters of the BG model in real time. As a result, the parameters of the controllers can be updated based on the new parameters of the BG model.
NASA Astrophysics Data System (ADS)
Bu, Xiangwei; Wu, Xiaoyan; He, Guangjun; Huang, Jiaqi
2016-03-01
This paper investigates the design of a novel adaptive neural controller for the longitudinal dynamics of a flexible air-breathing hypersonic vehicle with control input constraints. To reduce the complexity of controller design, the vehicle dynamics is decomposed into the velocity subsystem and the altitude subsystem, respectively. For each subsystem, only one neural network is utilized to approach the lumped unknown function. By employing a minimal-learning parameter method to estimate the norm of ideal weight vectors rather than their elements, there are only two adaptive parameters required for neural approximation. Thus, the computational burden is lower than the ones derived from neural back-stepping schemes. Specially, to deal with the control input constraints, additional systems are exploited to compensate the actuators. Lyapunov synthesis proves that all the closed-loop signals involved are uniformly ultimately bounded. Finally, simulation results show that the adopted compensation scheme can tackle actuator constraint effectively and moreover velocity and altitude can stably track their reference trajectories even when the physical limitations on control inputs are in effect.
Fan, Quan-Yong; Yang, Guang-Hong
2016-01-01
This paper is concerned with the problem of integral sliding-mode control for a class of nonlinear systems with input disturbances and unknown nonlinear terms through the adaptive actor-critic (AC) control method. The main objective is to design a sliding-mode control methodology based on the adaptive dynamic programming (ADP) method, so that the closed-loop system with time-varying disturbances is stable and the nearly optimal performance of the sliding-mode dynamics can be guaranteed. In the first step, a neural network (NN)-based observer and a disturbance observer are designed to approximate the unknown nonlinear terms and estimate the input disturbances, respectively. Based on the NN approximations and disturbance estimations, the discontinuous part of the sliding-mode control is constructed to eliminate the effect of the disturbances and attain the expected equivalent sliding-mode dynamics. Then, the ADP method with AC structure is presented to learn the optimal control for the sliding-mode dynamics online. Reconstructed tuning laws are developed to guarantee the stability of the sliding-mode dynamics and the convergence of the weights of critic and actor NNs. Finally, the simulation results are presented to illustrate the effectiveness of the proposed method.
Liu, Zhi; Wang, Fang; Zhang, Yun; Chen, Xin; Chen, C L Philip
2014-10-01
This paper focuses on an input-to-state practical stability (ISpS) problem of nonlinear systems which possess unmodeled dynamics in the presence of unstructured uncertainties and dynamic disturbances. The dynamic disturbances depend on the states and the measured output of the system, and its assumption conditions are relaxed compared with the common restrictions. Based on an input-driven filter, fuzzy logic systems are directly used to approximate the unknown and desired control signals instead of the unknown nonlinear functions, and an integrated backstepping technique is used to design an adaptive output-feedback controller that ensures robustness with respect to unknown parameters and uncertain nonlinearities. This paper, by applying the ISpS theory and the generalized small-gain approach, shows that the proposed adaptive fuzzy controller guarantees the closed-loop system being semi-globally uniformly ultimately bounded. A main advantage of the proposed controller is that it contains only three adaptive parameters that need to be updated online, no matter how many states there are in the systems. Finally, the effectiveness of the proposed approach is illustrated by two simulation examples.
Predictor-Based Model Reference Adaptive Control
NASA Technical Reports Server (NTRS)
Lavretsky, Eugene; Gadient, Ross; Gregory, Irene M.
2010-01-01
This paper is devoted to the design and analysis of a predictor-based model reference adaptive control. Stable adaptive laws are derived using Lyapunov framework. The proposed architecture is compared with the now classical model reference adaptive control. A simulation example is presented in which numerical evidence indicates that the proposed controller yields improved transient characteristics.
Adaptive Decentralized Control
1985-04-01
computational requirements and response time provide strong incentives for the use of distributed control architectures. The basic focus of our research is on...ADCON (for Adaptive Decentralized CONtrol) comes from the following observations about the current status of control theory . An important aspect of...decentralized control of completely known systems still has many unresolved issues and some basic problems are yet to be answered. Under these conditions
NASA Astrophysics Data System (ADS)
Ghommam, Jawhar; Saad, Maarouf
2014-05-01
In this paper, we investigate new implementable cooperative adaptive backstepping controllers for a group of underactuated autonomous vehicles that are communicating with their local neighbours to track a time-varying virtual leader of which the relative position may only be available to a portion of the team members. At the kinematic cooperative control level of the autonomous underwater vehicle, the virtual cooperative controller is basically designed on a proportional and derivative consensus algorithm presented in Ren (2010), which involves velocity information from local neighbours. In this paper, we propose a new design algorithm based on singular perturbation theory that precludes the use of the neighbours' velocity information in the cooperative design. At the dynamic cooperative control level, calculation of the partial derivatives of some stabilising functions which in turn will contain velocity information from the local neighbours is required. To facilitate the implementation of the cooperative controllers, we propose a command filter approach technique to avoid analytic differentiation of the virtual cooperative control laws. We show how Lyapunov-based techniques and graph theory can be combined together to yield a robust cooperative controller where the uncertain dynamics of the cooperating vehicles and the constraints on the communication topology which contains a directed spanning tree are explicitly taken into account. Simulation results with a dynamic model of underactuated autonomous underwater vehicles moving on the horizontal plane are presented and discussed.
NASA Astrophysics Data System (ADS)
Goodwin, Thomas; Carr, Ryan; Mitra, Atindra K.; Selmic, Rastko R.
2009-05-01
We discuss the development of Position-Adaptive Sensors [1] for purposes for detecting embedded chemical substances in challenging environments. This concept is a generalization of patented Position-Adaptive Radar Concepts developed at AFRL for challenging conditions such as urban environments. For purposes of investigating the detection of chemical substances using multiple MAV (Micro-UAV) platforms, we have designed and implemented an experimental testbed with sample structures such as wooden carts that contain controlled leakage points. Under this general concept, some of the members of a MAV swarm can serve as external position-adaptive "transmitters" by blowing air over the cart and some of the members of a MAV swarm can serve as external position-adaptive "receivers" that are equipped with chemical or biological (chem/bio) sensors that function as "electronic noses". The objective can be defined as improving the particle count of chem/bio concentrations that impinge on a MAV-based position-adaptive sensor that surrounds a chemical repository, such as a cart, via the development of intelligent position-adaptive control algorithms. The overall effect is to improve the detection and false-alarm statistics of the overall system. Within the major sections of this paper, we discuss a number of different aspects of developing our initial MAV-Based Sensor Testbed. This testbed includes blowers to simulate position-adaptive excitations and a MAV from Draganfly Innovations Inc. with stable design modifications to accommodate our chem/bio sensor boom design. We include details with respect to several critical phases of the development effort including development of the wireless sensor network and experimental apparatus, development of the stable sensor boom for the MAV, integration of chem/bio sensors and sensor node onto the MAV and boom, development of position-adaptive control algorithms and initial tests at IDCAST (Institute for the Development and
NASA Astrophysics Data System (ADS)
Yingping, Chen; Zhiqian, Li
2015-05-01
A 5.0-V 2.0-A flyback power supply controller providing constant-voltage (CV) and constant-current (CC) output regulation without the use of an optical coupler is presented. Dual-close-loop control is proposed here due to its better regulation performance of tolerance over process and temperature compared with open loop control used in common. At the same time, the two modes, CC and CV, could switch to each other automatically and smoothly according to the output voltage level not sacrificing the regulation accuracy at the switching phase, which overcomes the drawback of the digital control scheme depending on a hysteresis comparator to change the mode. On-chip compensation using active capacitor multiplier technique is applied to stabilize the voltage loop, eliminate an additional package pin, and save on the die area. The system consumes as little as 100 mW at no-load condition without degrading the transient response performance by utilizing the adaptive switching frequency control mode. The proposed controller has been implemented in a commercial 0.35-μm 40-V BCD process, and the active chip area is 1.5 × 1.0 mm2. The total error of the output voltage due to line and load variations is less than ±1.7%.
Mistry, Pankaj; Dunn, Janet A; Marshall, Andrea
2017-07-18
The application of adaptive design methodology within a clinical trial setting is becoming increasingly popular. However the application of these methods within trials is not being reported as adaptive designs hence making it more difficult to capture the emerging use of these designs. Within this review, we aim to understand how adaptive design methodology is being reported, whether these methods are explicitly stated as an 'adaptive design' or if it has to be inferred and to identify whether these methods are applied prospectively or concurrently. Three databases; Embase, Ovid and PubMed were chosen to conduct the literature search. The inclusion criteria for the review were phase II, phase III and phase II/III randomised controlled trials within the field of Oncology that published trial results in 2015. A variety of search terms related to adaptive designs were used. A total of 734 results were identified, after screening 54 were eligible. Adaptive designs were more commonly applied in phase III confirmatory trials. The majority of the papers performed an interim analysis, which included some sort of stopping criteria. Additionally only two papers explicitly stated the term 'adaptive design' and therefore for most of the papers, it had to be inferred that adaptive methods was applied. Sixty-five applications of adaptive design methods were applied, from which the most common method was an adaptation using group sequential methods. This review indicated that the reporting of adaptive design methodology within clinical trials needs improving. The proposed extension to the current CONSORT 2010 guidelines could help capture adaptive design methods. Furthermore provide an essential aid to those involved with clinical trials.
Ahirwal, M K; Kumar, Anil; Singh, G K
2013-01-01
This paper explores the migration of adaptive filtering with swarm intelligence/evolutionary techniques employed in the field of electroencephalogram/event-related potential noise cancellation or extraction. A new approach is proposed in the form of controlled search space to stabilize the randomness of swarm intelligence techniques especially for the EEG signal. Swarm-based algorithms such as Particles Swarm Optimization, Artificial Bee Colony, and Cuckoo Optimization Algorithm with their variants are implemented to design optimized adaptive noise canceler. The proposed controlled search space technique is tested on each of the swarm intelligence techniques and is found to be more accurate and powerful. Adaptive noise canceler with traditional algorithms such as least-mean-square, normalized least-mean-square, and recursive least-mean-square algorithms are also implemented to compare the results. ERP signals such as simulated visual evoked potential, real visual evoked potential, and real sensorimotor evoked potential are used, due to their physiological importance in various EEG studies. Average computational time and shape measures of evolutionary techniques are observed 8.21E-01 sec and 1.73E-01, respectively. Though, traditional algorithms take negligible time consumption, but are unable to offer good shape preservation of ERP, noticed as average computational time and shape measure difference, 1.41E-02 sec and 2.60E+00, respectively.
Advances in Adaptive Control Methods
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2009-01-01
This poster presentation describes recent advances in adaptive control technology developed by NASA. Optimal Control Modification is a novel adaptive law that can improve performance and robustness of adaptive control systems. A new technique has been developed to provide an analytical method for computing time delay stability margin for adaptive control systems.
Adaptive sequential controller
El-Sharkawi, M.A.; Xing, J.; Butler, N.G.; Rodriguez, A.
1994-11-01
An adaptive sequential controller for controlling a circuit breaker or other switching device to substantially eliminate transients on a distribution line caused by closing and opening the circuit breaker. The device adaptively compensates for changes in the response time of the circuit breaker due to aging and environmental effects. A potential transformer provides a reference signal corresponding to the zero crossing of the voltage waveform, and a phase shift comparator circuit compares the reference signal to the time at which any transient was produced when the circuit breaker closed, producing a signal indicative of the adaptive adjustment that should be made. Similarly, in controlling the opening of the circuit breaker, a current transformer provides a reference signal that is compared against the time at which any transient is detected when the circuit breaker last opened. An adaptive adjustment circuit produces a compensation time that is appropriately modified to account for changes in the circuit breaker response, including the effect of ambient conditions and aging. When next opened or closed, the circuit breaker is activated at an appropriately compensated time, so that it closes when the voltage crosses zero and opens when the current crosses zero, minimizing any transients on the distribution line. Phase angle can be used to control the opening of the circuit breaker relative to the reference signal provided by the potential transformer. 15 figs.
Adaptive sequential controller
El-Sharkawi, Mohamed A.; Xing, Jian; Butler, Nicholas G.; Rodriguez, Alonso
1994-01-01
An adaptive sequential controller (50/50') for controlling a circuit breaker (52) or other switching device to substantially eliminate transients on a distribution line caused by closing and opening the circuit breaker. The device adaptively compensates for changes in the response time of the circuit breaker due to aging and environmental effects. A potential transformer (70) provides a reference signal corresponding to the zero crossing of the voltage waveform, and a phase shift comparator circuit (96) compares the reference signal to the time at which any transient was produced when the circuit breaker closed, producing a signal indicative of the adaptive adjustment that should be made. Similarly, in controlling the opening of the circuit breaker, a current transformer (88) provides a reference signal that is compared against the time at which any transient is detected when the circuit breaker last opened. An adaptive adjustment circuit (102) produces a compensation time that is appropriately modified to account for changes in the circuit breaker response, including the effect of ambient conditions and aging. When next opened or closed, the circuit breaker is activated at an appropriately compensated time, so that it closes when the voltage crosses zero and opens when the current crosses zero, minimizing any transients on the distribution line. Phase angle can be used to control the opening of the circuit breaker relative to the reference signal provided by the potential transformer.
NASA Astrophysics Data System (ADS)
Reif, Konrad
Die adaptive Fahrgeschwindigkeitsregelung (ACC, Adaptive Cruise Control) ist eine Weiterentwicklung der konventionellen Fahrgeschwindigkeitsregelung, die eine konstante Fahrgeschwindigkeit einstellt. ACC überwacht mittels eines Radarsensors den Bereich vor dem Fahrzeug und passt die Geschwindigkeit den Gegebenheiten an. ACC reagiert auf langsamer vorausfahrende oder einscherende Fahrzeuge mit einer Reduzierung der Geschwindigkeit, sodass der vorgeschriebene Mindestabstand zum vorausfahrenden Fahrzeug nicht unterschritten wird. Hierzu greift ACC in Antrieb und Bremse ein. Sobald das vorausfahrende Fahrzeug beschleunigt oder die Spur verlässt, regelt ACC die Geschwindigkeit wieder auf die vorgegebene Sollgeschwindigkeit ein (Bild 1). ACC steht somit für eine Geschwindigkeitsregelung, die sich dem vorausfahrenden Verkehr anpasst.
Adaptive critic designs for discrete-time zero-sum games with application to H(infinity) control.
Al-Tamimi, Asma; Abu-Khalaf, Murad; Lewis, Frank L
2007-02-01
In this correspondence, adaptive critic approximate dynamic programming designs are derived to solve the discrete-time zero-sum game in which the state and action spaces are continuous. This results in a forward-in-time reinforcement learning algorithm that converges to the Nash equilibrium of the corresponding zero-sum game. The results in this correspondence can be thought of as a way to solve the Riccati equation of the well-known discrete-time H(infinity) optimal control problem forward in time. Two schemes are presented, namely: 1) a heuristic dynamic programming and 2) a dual-heuristic dynamic programming, to solve for the value function and the costate of the game, respectively. An H(infinity) autopilot design for an F-16 aircraft is presented to illustrate the results.
Niu, Ben; Liu, Yanjun; Zong, Guangdeng; Han, Zhaoyu; Fu, Jun
2017-01-16
In this paper, a new adaptive approximation-based tracking controller design approach is developed for a class of uncertain nonlinear switched lower-triangular systems with an output constraint using neural networks (NNs). By introducing a novel barrier Lyapunov function (BLF), the constrained switched system is first transformed into a new system without any constraint, which means the control objectives of the both systems are equivalent. Then command filter technique is applied to solve the so-called "explosion of complexity" problem in traditional backstepping procedure, and radial basis function NNs are directly employed to model the unknown nonlinear functions. The designed controller ensures that all the closed-loop variables are ultimately boundedness, while the output limit is not transgressed and the output tracking error can be reduced arbitrarily small. Furthermore, the use of an asymmetric BLF is also explored to handle the case of asymmetric output constraint as a generalization result. Finally, the control performance of the presented control schemes is illustrated via two examples.
Design implementation and control of MRAS error dynamics. [Model-Reference Adaptive System
NASA Technical Reports Server (NTRS)
Colburn, B. K.; Boland, J. S., III
1974-01-01
Use is made of linearized error characteristic equation for model-reference adaptive systems to determine a parameter adjustment rule for obtaining time-invariant error dynamics. Theoretical justification of error stability is given and an illustrative example included to demonstrate the utility of the proposed technique.
ERIC Educational Resources Information Center
Lerman, Paul; Apgar, Dawn Hall; Jordan,Tameeka
2005-01-01
Reviews of research on deinstitutionalization show that investigators have focused primarily on adaptive behavior changes of "movers," while paying minimal attention to "stayers." Analysis of their research also revealed some methodological problems. We assessed 150 movers and 150 stayers in 1994, before deinstitutionalization began in 1997. We…
Nonlinear and adaptive control
NASA Technical Reports Server (NTRS)
Athans, Michael
1989-01-01
The primary thrust of the research was to conduct fundamental research in the theories and methodologies for designing complex high-performance multivariable feedback control systems; and to conduct feasibiltiy studies in application areas of interest to NASA sponsors that point out advantages and shortcomings of available control system design methodologies.
Designing STUD Pulses to control laser-plasma instabilities and adapt to changing plasma conditions
NASA Astrophysics Data System (ADS)
Afeyan, Bedros; Hüller, Stefan
2011-10-01
Designing spike trains of uneven duration and delay, or STUD pulses, for ICF targets in direct and indirect drive and for shock ignition will be explored. Taming stimulated Raman and Brillouin scattering (SRS and SBS) as well as two plasmon decay, and harnessing their hot electron generation properties for fast heating purposes at higher intensities will be explored. Theoretical statistical models capturing the essential physics of STUD pulse propagation, hot spot scrambling and SRS and SBS interaction will be presented. How to control LPI in crossing pairs of beams by staggering or interleaving their STUD pulse profiles when no interaction is desired and overlapping them when energy transfer is desirable, will be demonstrated. Technological advances required to bring about the STUD pulse program including time lenses for psec time scale modulated pulses and psec time scale resolved SRS and SBS detection lasting for nsecs and laser hot spot scrambling plasma cells will be discussed. Work supported by a grant from DOE NNSA SSAA Program and a Phase I SBIR from OFES.
NASA Astrophysics Data System (ADS)
Marzbanrad, Javad; Tahbaz-zadeh Moghaddam, Iman
2016-09-01
The main purpose of this paper is to design a self-tuning control algorithm for an adaptive cruise control (ACC) system that can adapt its behaviour to variations of vehicle dynamics and uncertain road grade. To this aim, short-time linear quadratic form (STLQF) estimation technique is developed so as to track simultaneously the trend of the time-varying parameters of vehicle longitudinal dynamics with a small delay. These parameters are vehicle mass, road grade and aerodynamic drag-area coefficient. Next, the values of estimated parameters are used to tune the throttle and brake control inputs and to regulate the throttle/brake switching logic that governs the throttle and brake switching. The performance of the designed STLQF-based self-tuning control (STLQF-STC) algorithm for ACC system is compared with the conventional method based on fixed control structure regarding the speed/distance tracking control modes. Simulation results show that the proposed control algorithm improves the performance of throttle and brake controllers, providing more comfort while travelling, enhancing driving safety and giving a satisfactory performance in the presence of different payloads and road grade variations.
Robust Adaptive Flight Control Design of Air-breathing Hypersonic Vehicles
2016-12-07
control of an air-breathing hypersonic vehicle in the cruise phase of flight. The first type of controller uses dynamic inversion and the second one is...both controllers is enhanced by augmenting them with a fast disturbance observer. The controller is derived using dynamic inversion technique, by...the controller using dynamic inversion , which is very difficult to achieve in the case of air-breathing hypersonic vehicle. Hence, constrained neuro
ERIS adaptive optics system design
NASA Astrophysics Data System (ADS)
Marchetti, Enrico; Le Louarn, Miska; Soenke, Christian; Fedrigo, Enrico; Madec, Pierre-Yves; Hubin, Norbert
2012-07-01
The Enhanced Resolution Imager and Spectrograph (ERIS) is the next-generation instrument planned for the Very Large Telescope (VLT) and the Adaptive Optics facility (AOF). It is an AO assisted instrument that will make use of the Deformable Secondary Mirror and the new Laser Guide Star Facility (4LGSF), and it is planned for the Cassegrain focus of the telescope UT4. The project is currently in its Phase A awaiting for approval to continue to the next phases. The Adaptive Optics system of ERIS will include two wavefront sensors (WFS) to maximize the coverage of the proposed sciences cases. The first is a high order 40x40 Pyramid WFS (PWFS) for on axis Natural Guide Star (NGS) observations. The second is a high order 40x40 Shack-Hartmann WFS for single Laser Guide Stars (LGS) observations. The PWFS, with appropriate sub-aperture binning, will serve also as low order NGS WFS in support to the LGS mode with a field of view patrolling capability of 2 arcmin diameter. Both WFSs will be equipped with the very low read-out noise CCD220 based camera developed for the AOF. The real-time reconstruction and control is provided by a SPARTA real-time platform adapted to support both WFS modes. In this paper we will present the ERIS AO system in all its main aspects: opto-mechanical design, real-time computer design, control and calibrations strategy. Particular emphasis will be given to the system performance obtained via dedicated numerical simulations.
Flexible beam control using an adaptive truss
NASA Technical Reports Server (NTRS)
Warrington, Thomas J.; Horner, C. Garnett
1990-01-01
To demonstrate the feasibility of adaptive trusses for vibration suppression, a 12-ft-long beam is attached to a single cell of an adaptive truss which has three active battens. With the base of the adaptive truss attached to the laboratory frame, the measured strain of the vibrating beam shows the adaptive truss to be very effective in suppressing vibration when subjected to initial conditions. Control is accomplished by a PC/XT computer that implements an LQR-designed control law.
Adaptive, Integrated Guidance and Control Design for Line-of-Sight Based Formation Flight
2006-08-01
PI ) controller acting on the side acceleration command error and whose output is a...Aeronautics and Astronautics 15 s K K y y I P + 0= comBYa comz BYa PI controller Inverting Controller Augmented...λλλλ &&&ΨΘΦ= state vector : Rhν Ehχ ν & + - + dczν trz& adzν PI Control BYa 0= comBY a 1st order Reference Filter trz zK+ - + - rCz r+= β NN
Nonlinear Robust/Adaptive Controller Design for an Air-Breathing Hypersonic Vehicle Model (Preprint)
2006-12-01
controller for the altitude dynamics is developed using the flight-path angle as a virtual reference input. Finally, the fast angular dynamics with...states [α,Q] ′ is used as a servo-controller (commanded by the pitch moment) to let γ(t) track the required virtual reference command. Since the COM is
Principles And Applications Of Dual Adaptive Control
NASA Technical Reports Server (NTRS)
Mookerjee, Purusottam
1990-01-01
Simulations indicate superiority of dual controller over "cautious" controller. Report discusses principles of design of actively adaptive dual controllers. Focus is upon derivation of control laws for dual controller enhancing identification of parameters of mathematical model of multiple-input/multiple-output system, while controlling it at same time. Tasks of identification and control impose competing requirements.
Adaptive control for accelerators
Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.
1991-01-01
An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.
NASA Astrophysics Data System (ADS)
Souza, Luiz C. G.; Bigot, P.
2016-10-01
One of the most well-known techniques of optimal control is the theory of Linear Quadratic Regulator (LQR). This method was originally applied only to linear systems but has been generalized for non-linear systems: the State Dependent Riccati Equation (SDRE) technique. One of the advantages of SDRE is that the weight matrix selection is the same as in LQR. The difference is that weights are not necessarily constant: they can be state dependent. Then, it gives an additional flexibility to design the control law. Many are applications of SDRE for simulation or real time control but generally SDRE weights are chosen constant so no advantage of this flexibility is taken. This work serves to show through simulation that state dependent weights matrix can improve SDRE control performance. The system is a non-linear flexible rotatory beam. In a brief first part SDRE theory will be explained and the non-linear model detailed. Then, influence of SDRE weight matrix associated with the state Q will be analyzed to get some insight in order to assume a state dependent law. Finally, these laws are tested and compared to constant weight matrix Q. Based on simulation results; one concludes showing the benefits of using an adaptive weight Q rather than a constant one.
NASA Astrophysics Data System (ADS)
Yoshimura, Toshio
2016-02-01
This paper presents the design of an adaptive fuzzy sliding mode control (AFSMC) for uncertain discrete-time nonlinear dynamic systems. The dynamic systems are described by a discrete-time state equation with nonlinear uncertainties, and the uncertainties include the modelling errors and the external disturbances to be unknown but nonlinear with the bounded properties. The states are measured by the restriction of measurement sensors and the contamination with independent measurement noises. The nonlinear uncertainties are approximated by using the fuzzy IF-THEN rules based on the universal approximation theorem, and the approximation error is compensated by adding an adaptive complementary term to the proposed AFSMC. The fuzzy inference approach based on the extended single input rule modules is proposed to reduce the number of the fuzzy IF-THEN rules. The estimates for the un-measurable states and the adjustable parameters are obtained by using the weighted least squares estimator and its simplified one. It is proved that under some conditions the estimation errors will remain in the vicinity of zero as time increases, and the states are ultimately bounded subject to the proposed AFSMC. The effectiveness of the proposed method is indicated through the simulation experiment of a simple numerical system.
Predictor-Based Model Reference Adaptive Control
NASA Technical Reports Server (NTRS)
Lavretsky, Eugene; Gadient, Ross; Gregory, Irene M.
2009-01-01
This paper is devoted to robust, Predictor-based Model Reference Adaptive Control (PMRAC) design. The proposed adaptive system is compared with the now-classical Model Reference Adaptive Control (MRAC) architecture. Simulation examples are presented. Numerical evidence indicates that the proposed PMRAC tracking architecture has better than MRAC transient characteristics. In this paper, we presented a state-predictor based direct adaptive tracking design methodology for multi-input dynamical systems, with partially known dynamics. Efficiency of the design was demonstrated using short period dynamics of an aircraft. Formal proof of the reported PMRAC benefits constitute future research and will be reported elsewhere.
Research in digital adaptive flight controllers
NASA Technical Reports Server (NTRS)
Kaufman, H.
1976-01-01
A design study of adaptive control logic suitable for implementation in modern airborne digital flight computers was conducted. Both explicit controllers which directly utilize parameter identification and implicit controllers which do not require identification were considered. Extensive analytical and simulation efforts resulted in the recommendation of two explicit digital adaptive flight controllers. Interface weighted least squares estimation procedures with control logic were developed using either optimal regulator theory or with control logic based upon single stage performance indices.
NASA Astrophysics Data System (ADS)
Qiao, Wei
Worldwide concern about the environmental problems and a possible energy crisis has led to increasing interest in clean and renewable energy generation. Among various renewable energy sources, wind power is the most rapidly growing one. Therefore, how to provide efficient, reliable, and high-performance wind power generation and distribution has become an important and practical issue in the power industry. In addition, because of the new constraints placed by the environmental and economical factors, the trend of power system planning and operation is toward maximum utilization of the existing infrastructure with tight system operating and stability margins. This trend, together with the increased penetration of renewable energy sources, will bring new challenges to power system operation, control, stability and reliability which require innovative solutions. Flexible ac transmission system (FACTS) devices, through their fast, flexible, and effective control capability, provide one possible solution to these challenges. To fully utilize the capability of individual power system components, e.g., wind turbine generators (WTGs) and FACTS devices, their control systems must be suitably designed with high reliability. Moreover, in order to optimize local as well as system-wide performance and stability of the power system, real-time local and wide-area coordinated control is becoming an important issue. Power systems containing conventional synchronous generators, WTGs, and FACTS devices are large-scale, nonlinear, nonstationary, stochastic and complex systems distributed over large geographic areas. Traditional mathematical tools and system control techniques have limitations to control such complex systems to achieve an optimal performance. Intelligent and bio-inspired techniques, such as swarm intelligence, neural networks, and adaptive critic designs, are emerging as promising alternative technologies for power system control and performance optimization. This
NASA Astrophysics Data System (ADS)
Smith, Nathan Birchard
In this dissertation work, the aim was to garner better mechanistic understanding of how shock wave lithotripsy (SWL) breaks stones in order to guide design improvements to modern electromagnetic (EM) shock wave lithotripters. To accomplish this goal, experimental studies were carefully designed to isolate mechanisms of fragmentation, and models for wave propagation, fragmentation, and stone motion were developed. In the initial study, a representative EM lithotripter was characterized and tested for
NASA Astrophysics Data System (ADS)
Viswanathan, Sasi Prabhakaran
Design, dynamics, control and implementation of a novel spacecraft attitude control actuator called the "Adaptive Singularity-free Control Moment Gyroscope" (ASCMG) is presented in this dissertation. In order to construct a comprehensive attitude dynamics model of a spacecraft with internal actuators, the dynamics of a spacecraft with an ASCMG, is obtained in the framework of geometric mechanics using the principles of variational mechanics. The resulting dynamics is general and complete model, as it relaxes the simplifying assumptions made in prior literature on Control Moment Gyroscopes (CMGs) and it also addresses the adaptive parameters in the dynamics formulation. The simplifying assumptions include perfect axisymmetry of the rotor and gimbal structures, perfect alignment of the centers of mass of the gimbal and the rotor etc. These set of simplifying assumptions imposed on the design and dynamics of CMGs leads to adverse effects on their performance and results in high manufacturing cost. The dynamics so obtained shows the complex nonlinear coupling between the internal degrees of freedom associated with an ASCMG and the spacecraft bus's attitude motion. By default, the general ASCMG cluster can function as a Variable Speed Control Moment Gyroscope, and reduced to function in CMG mode by spinning the rotor at constant speed, and it is shown that even when operated in CMG mode, the cluster can be free from kinematic singularities. This dynamics model is then extended to include the effects of multiple ASCMGs placed in the spacecraft bus, and sufficient conditions for non-singular ASCMG cluster configurations are obtained to operate the cluster both in VSCMG and CMG modes. The general dynamics model of the ASCMG is then reduced to that of conventional VSCMGs and CMGs by imposing the standard set of simplifying assumptions used in prior literature. The adverse effects of the simplifying assumptions that lead to the complexities in conventional CMG design, and
Keck adaptive optics: control subsystem
Brase, J.M.; An, J.; Avicola, K.
1996-03-08
Adaptive optics on the Keck 10 meter telescope will provide an unprecedented level of capability in high resolution ground based astronomical imaging. The system is designed to provide near diffraction limited imaging performance with Strehl {gt} 0.3 n median Keck seeing of r0 = 25 cm, T =10 msec at 500 nm wavelength. The system will be equipped with a 20 watt sodium laser guide star to provide nearly full sky coverage. The wavefront control subsystem is responsible for wavefront sensing and the control of the tip-tilt and deformable mirrors which actively correct atmospheric turbulence. The spatial sampling interval for the wavefront sensor and deformable mirror is de=0.56 m which gives us 349 actuators and 244 subapertures. This paper summarizes the wavefront control system and discusses particular issues in designing a wavefront controller for the Keck telescope.
Adaptable state based control system
NASA Technical Reports Server (NTRS)
Rasmussen, Robert D. (Inventor); Dvorak, Daniel L. (Inventor); Gostelow, Kim P. (Inventor); Starbird, Thomas W. (Inventor); Gat, Erann (Inventor); Chien, Steve Ankuo (Inventor); Keller, Robert M. (Inventor)
2004-01-01
An autonomous controller, comprised of a state knowledge manager, a control executor, hardware proxies and a statistical estimator collaborates with a goal elaborator, with which it shares common models of the behavior of the system and the controller. The elaborator uses the common models to generate from temporally indeterminate sets of goals, executable goals to be executed by the controller. The controller may be updated to operate in a different system or environment than that for which it was originally designed by the replacement of shared statistical models and by the instantiation of a new set of state variable objects derived from a state variable class. The adaptation of the controller does not require substantial modification of the goal elaborator for its application to the new system or environment.
Advanced Adaptive Optics Control Techniques
1979-01-01
Optimal estimation and control methods for high energy laser adaptive optics systems are described. Three system types are examined: Active...the adaptive optics approaches and potential system implementations are recommended.
ERIC Educational Resources Information Center
Kluge, Annette; Sauer, Juergen; Burkolter, Dina; Ritzmann, Sandrina
2010-01-01
Training in process control environments requires operators to be prepared for temporal and adaptive transfer of skill. Three training methods were compared with regard to their effectiveness in supporting transfer: Drill & Practice (D&P), Error Training (ET), and procedure-based and error heuristics training (PHT). Communication…
Adaptive Control of Innate Immunity
Shanker, Anil
2010-01-01
1. Summary The mechanisms by which the immune system responds to an infection or disease depend on a complex interplay between the elements of innate and adaptive immunity. While most of the focus so far has been on the innate instruction of the adaptive immune responses, considerable evidence now suggests an equally important adaptive control of the innate immunity. Several studies yield new insights into how the adaptive immunity by initiating an antigen–specific response can compensate, suppress and activate innate responses at the site of tissue antigen. Here we discuss recent advances in our understanding of the adaptive control of immune effector functions in various pathological and physiological conditions. PMID:20394777
Robust Adaptive Control of Multivariable Nonlinear Systems
2008-11-01
of time-delay margins for unmanned unstable tailless aircraft and aerial refueling autopilot design3, development of vision-based guidance laws...An Adaptive Approach to Nonaffine Control Design for Aircraft Applications, AIAA Journal of Guidance, Control and Dynamics, vol. 18, No. 6, pp. 1770
Designing Genetic Feedback Controllers.
Harris, Andreas W K; Dolan, James A; Kelly, Ciarán L; Anderson, James; Papachristodoulou, Antonis
2015-08-01
By incorporating feedback around systems we wish to manipulate, it is possible to improve their performance and robustness properties to meet pre-specified design objectives. For decades control engineers have been successfully implementing feedback controllers for complex mechanical and electrical systems such as aircraft and sports cars. Natural biological systems use feedback extensively for regulation and adaptation but apart from the most basic designs, there is no systematic framework for designing feedback controllers in Synthetic Biology. In this paper we describe how classical approaches from linear control theory can be used to close the loop. This includes the design of genetic circuits using feedback control and the presentation of a biological phase lag controller.
Adaptive nonlinear control for autonomous ground vehicles
NASA Astrophysics Data System (ADS)
Black, William S.
We present the background and motivation for ground vehicle autonomy, and focus on uses for space-exploration. Using a simple design example of an autonomous ground vehicle we derive the equations of motion. After providing the mathematical background for nonlinear systems and control we present two common methods for exactly linearizing nonlinear systems, feedback linearization and backstepping. We use these in combination with three adaptive control methods: model reference adaptive control, adaptive sliding mode control, and extremum-seeking model reference adaptive control. We show the performances of each combination through several simulation results. We then consider disturbances in the system, and design nonlinear disturbance observers for both single-input-single-output and multi-input-multi-output systems. Finally, we show the performance of these observers with simulation results.
Adaptive control of linearizable systems
NASA Technical Reports Server (NTRS)
Sastry, S. Shankar; Isidori, Alberto
1989-01-01
Initial results are reported regarding the adaptive control of minimum-phase nonlinear systems which are exactly input-output linearizable by state feedback. Parameter adaptation is used as a technique to make robust the exact cancellation of nonlinear terms, which is called for in the linearization technique. The application of the adaptive technique to control of robot manipulators is discussed. Only the continuous-time case is considered; extensions to the discrete-time and sampled-data cases are not obvious.
Adaptive Inner-Loop Rover Control
NASA Technical Reports Server (NTRS)
Kulkarni, Nilesh; Ippolito, Corey; Krishnakumar, Kalmanje; Al-Ali, Khalid M.
2006-01-01
Adaptive control technology is developed for the inner-loop speed and steering control of the MAX Rover. MAX, a CMU developed rover, is a compact low-cost 4-wheel drive, 4-wheel steer (double Ackerman), high-clearance agile durable chassis, outfitted with sensors and electronics that make it ideally suited for supporting research relevant to intelligent teleoperation and as a low-cost autonomous robotic test bed and appliance. The design consists of a feedback linearization based controller with a proportional - integral (PI) feedback that is augmented by an online adaptive neural network. The adaptation law has guaranteed stability properties for safe operation. The control design is retrofit in nature so that it fits inside the outer-loop path planning algorithms. Successful hardware implementation of the controller is illustrated for several scenarios consisting of actuator failures and modeling errors in the nominal design.
Adaptive Torque Control of Variable Speed Wind Turbines
Johnson, K. E.
2004-08-01
The primary focus of this work is a new adaptive controller that is designed to resemble the standard non-adaptive controller used by the wind industry for variable speed wind turbines below rated power. This adaptive controller uses a simple, highly intuitive gain adaptation law designed to seek out the optimal gain for maximizing the turbine's energy capture. It is designed to work even in real, time-varying winds.
On Fractional Model Reference Adaptive Control
Shi, Bao; Dong, Chao
2014-01-01
This paper extends the conventional Model Reference Adaptive Control systems to fractional ones based on the theory of fractional calculus. A control law and an incommensurate fractional adaptation law are designed for the fractional plant and the fractional reference model. The stability and tracking convergence are analyzed using the frequency distributed fractional integrator model and Lyapunov theory. Moreover, numerical simulations of both linear and nonlinear systems are performed to exhibit the viability and effectiveness of the proposed methodology. PMID:24574897
Adaptive Control for Microgravity Vibration Isolation System
NASA Technical Reports Server (NTRS)
Yang, Bong-Jun; Calise, Anthony J.; Craig, James I.; Whorton, Mark S.
2005-01-01
Most active vibration isolation systems that try to a provide quiescent acceleration environment for space science experiments have utilized linear design methods. In this paper, we address adaptive control augmentation of an existing classical controller that employs a high-gain acceleration feedback together with a low-gain position feedback to center the isolated platform. The control design feature includes parametric and dynamic uncertainties because the hardware of the isolation system is built as a payload-level isolator, and the acceleration Sensor exhibits a significant bias. A neural network is incorporated to adaptively compensate for the system uncertainties, and a high-pass filter is introduced to mitigate the effect of the measurement bias. Simulations show that the adaptive control improves the performance of the existing acceleration controller and keep the level of the isolated platform deviation to that of the existing control system.
Aircraft adaptive learning control
NASA Technical Reports Server (NTRS)
Lee, P. S. T.; Vanlandingham, H. F.
1979-01-01
The optimal control theory of stochastic linear systems is discussed in terms of the advantages of distributed-control systems, and the control of randomly-sampled systems. An optimal solution to longitudinal control is derived and applied to the F-8 DFBW aircraft. A randomly-sampled linear process model with additive process and noise is developed.
Adaptive Flight Control Research at NASA
NASA Technical Reports Server (NTRS)
Motter, Mark A.
2008-01-01
A broad overview of current adaptive flight control research efforts at NASA is presented, as well as some more detailed discussion of selected specific approaches. The stated objective of the Integrated Resilient Aircraft Control Project, one of NASA s Aviation Safety programs, is to advance the state-of-the-art of adaptive controls as a design option to provide enhanced stability and maneuverability margins for safe landing in the presence of adverse conditions such as actuator or sensor failures. Under this project, a number of adaptive control approaches are being pursued, including neural networks and multiple models. Validation of all the adaptive control approaches will use not only traditional methods such as simulation, wind tunnel testing and manned flight tests, but will be augmented with recently developed capabilities in unmanned flight testing.
Adaptive clinical trial designs in oncology
Zang, Yong; Lee, J. Jack
2015-01-01
Adaptive designs have become popular in clinical trial and drug development. Unlike traditional trial designs, adaptive designs use accumulating data to modify the ongoing trial without undermining the integrity and validity of the trial. As a result, adaptive designs provide a flexible and effective way to conduct clinical trials. The designs have potential advantages of improving the study power, reducing sample size and total cost, treating more patients with more effective treatments, identifying efficacious drugs for specific subgroups of patients based on their biomarker profiles, and shortening the time for drug development. In this article, we review adaptive designs commonly used in clinical trials and investigate several aspects of the designs, including the dose-finding scheme, interim analysis, adaptive randomization, biomarker-guided randomization, and seamless designs. For illustration, we provide examples of real trials conducted with adaptive designs. We also discuss practical issues from the perspective of using adaptive designs in oncology trials. PMID:25811018
Zhang, Jilie; Zhang, Huaguang; Liu, Zhenwei; Wang, Yingchun
2015-07-01
In this paper, we consider the problem of developing a controller for continuous-time nonlinear systems where the equations governing the system are unknown. Using the measurements, two new online schemes are presented for synthesizing a controller without building or assuming a model for the system, by two new implementation schemes based on adaptive dynamic programming (ADP). To circumvent the requirement of the prior knowledge for systems, a precompensator is introduced to construct an augmented system. The corresponding Hamilton-Jacobi-Bellman (HJB) equation is solved by adaptive dynamic programming, which consists of the least-squared technique, neural network approximator and policy iteration (PI) algorithm. The main idea of our method is to sample the information of state, state derivative and input to update the weighs of neural network by least-squared technique. The update process is implemented in the framework of PI. In this paper, two new implementation schemes are presented. Finally, several examples are given to illustrate the effectiveness of our schemes.
Adaptive Control Of Remote Manipulator
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1989-01-01
Robotic control system causes remote manipulator to follow closely reference trajectory in Cartesian reference frame in work space, without resort to computationally intensive mathematical model of robot dynamics and without knowledge of robot and load parameters. System, derived from linear multivariable theory, uses relatively simple feedforward and feedback controllers with model-reference adaptive control.
Adaptive and Nonlinear Control
1992-02-29
in [22], we also applied the concept of zero dynamics to the problem of exact linearization of a nonlinear control system by dynamic feedback. Exact ...nonlinear systems, although it was well-known that the conditions for exact linearization are very stringent and consequently do not apply to a broad...29th IEEE Conference n Decision and Control, Invited Paper delivered by Dr. Gilliam. Exact Linearization of Zero Dynamics, 29th IEEE Conference on
Adaptive control of an unmanned aerial vehicle
NASA Astrophysics Data System (ADS)
Nguen, V. F.; Putov, A. V.; Nguen, T. T.
2017-01-01
The paper deals with design and comparison of adaptive control systems based on plant state vector and output for unmanned aerial vehicle (UAV) with nonlinearity and uncertainty of parameters of the aircraft incomplete measurability of its state and presence of wind disturbances. The results of computer simulations of flight stabilization processes on the example of the experimental model UAV-70V (Aerospace Academy, Hanoi) with presence of periodic and non-periodic vertical wind disturbances with designed adaptive control systems based on plant state vector with state observer and plant output.
Adaptive control: Myths and realities
NASA Technical Reports Server (NTRS)
Athans, M.; Valavani, L.
1984-01-01
It was found that all currently existing globally stable adaptive algorithms have three basic properties in common: positive realness of the error equation, square-integrability of the parameter adjustment law and, need for sufficient excitation for asymptotic parameter convergence. Of the three, the first property is of primary importance since it satisfies a sufficient condition for stabillity of the overall system, which is a baseline design objective. The second property has been instrumental in the proof of asymptotic error convergence to zero, while the third addresses the issue of parameter convergence. Positive-real error dynamics can be generated only if the relative degree (excess of poles over zeroes) of the process to be controlled is known exactly; this, in turn, implies perfect modeling. This and other assumptions, such as absence of nonminimum phase plant zeros on which the mathematical arguments are based, do not necessarily reflect properties of real systems. As a result, it is natural to inquire what happens to the designs under less than ideal assumptions. The issues arising from violation of the exact modeling assumption which is extremely restrictive in practice and impacts the most important system property, stability, are discussed.
Adaptive Critic Nonlinear Robust Control: A Survey.
Wang, Ding; He, Haibo; Liu, Derong
2017-10-01
Adaptive dynamic programming (ADP) and reinforcement learning are quite relevant to each other when performing intelligent optimization. They are both regarded as promising methods involving important components of evaluation and improvement, at the background of information technology, such as artificial intelligence, big data, and deep learning. Although great progresses have been achieved and surveyed when addressing nonlinear optimal control problems, the research on robustness of ADP-based control strategies under uncertain environment has not been fully summarized. Hence, this survey reviews the recent main results of adaptive-critic-based robust control design of continuous-time nonlinear systems. The ADP-based nonlinear optimal regulation is reviewed, followed by robust stabilization of nonlinear systems with matched uncertainties, guaranteed cost control design of unmatched plants, and decentralized stabilization of interconnected systems. Additionally, further comprehensive discussions are presented, including event-based robust control design, improvement of the critic learning rule, nonlinear H∞ control design, and several notes on future perspectives. By applying the ADP-based optimal and robust control methods to a practical power system and an overhead crane plant, two typical examples are provided to verify the effectiveness of theoretical results. Overall, this survey is beneficial to promote the development of adaptive critic control methods with robustness guarantee and the construction of higher level intelligent systems.
Liu, Lei; Wang, Zhanshan; Zhang, Huaguang
2017-03-02
This paper is concerned with the robust optimal tracking control strategy for a class of nonlinear multi-input multi-output discrete-time systems with unknown uncertainty via adaptive critic design (ACD) scheme. The main purpose is to establish an adaptive actor-critic control method, so that the cost function in the procedure of dealing with uncertainty is minimum and the closed-loop system is stable. Based on the neural network approximator, an action network is applied to generate the optimal control signal and a critic network is used to approximate the cost function, respectively. In contrast to the previous methods, the main features of this paper are: 1) the ACD scheme is integrated into the controllers to cope with the uncertainty and 2) a novel cost function, which is not in quadric form, is proposed so that the total cost in the design procedure is reduced. It is proved that the optimal control signals and the tracking errors are uniformly ultimately bounded even when the uncertainty exists. Finally, a numerical simulation is developed to show the effectiveness of the present approach.
Robust Adaptive Control of Hypnosis During Anesthesia
2007-11-02
1 of 4 ROBUST ADAPTIVE CONTROL OF HYPNOSIS DURING ANESTHESIA Pascal Grieder1, Andrea Gentilini1, Manfred Morari1, Thomas W. Schnider2 1ETH Zentrum...A closed-loop controller for hypnosis was designed and validated on humans at our laboratory. The controller aims at regulat- ing the Bispectral Index...BIS) - a surro- gate measure of hypnosis derived from the electroencephalogram of the patient - with the volatile anesthetic isoflurane administered
A survey of adaptive control technology in robotics
NASA Technical Reports Server (NTRS)
Tosunoglu, S.; Tesar, D.
1987-01-01
Previous work on the adaptive control of robotic systems is reviewed. Although the field is relatively new and does not yet represent a mature discipline, considerable attention has been given to the design of sophisticated robot controllers. Here, adaptive control methods are divided into model reference adaptive systems and self-tuning regulators with further definition of various approaches given in each class. The similarity and distinct features of the designed controllers are delineated and tabulated to enhance comparative review.
Robust Optimal Adaptive Control Method with Large Adaptive Gain
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2009-01-01
In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.
Hardware verification of distributed/adaptive control
NASA Technical Reports Server (NTRS)
Eldred, D. B.; Schaechter, D. B.
1983-01-01
Adaptive control techniques are studied for their future application to the control of large space structures, where uncertain or changing parameters may destabilize standard control system designs. The approach used is to examine an extended Kalman filter estimator, in which the state vector is augmented with the unknown parameters. The associated Riccatti equation is linearized about the case of exact knowledge of the parameters. By assuming that parameter variations occur slowly, the filter complexity is reduced further yet. Simulations on a two degree-of-freedom oscillator demonstrate the parameter-tracking capability of the filter, and an implementation on the JPL Flexible Beam Facility using an incorrect model shows the adaptive filter/optimal control to be stable where a standard Kalman filter/optimal control design is unstable.
Adaptive Modal Identification for Flutter Suppression Control
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Drew, Michael; Swei, Sean S.
2016-01-01
In this paper, we will develop an adaptive modal identification method for identifying the frequencies and damping of a flutter mode based on model-reference adaptive control (MRAC) and least-squares methods. The least-squares parameter estimation will achieve parameter convergence in the presence of persistent excitation whereas the MRAC parameter estimation does not guarantee parameter convergence. Two adaptive flutter suppression control approaches are developed: one based on MRAC and the other based on the least-squares method. The MRAC flutter suppression control is designed as an integral part of the parameter estimation where the feedback signal is used to estimate the modal information. On the other hand, the separation principle of control and estimation is applied to the least-squares method. The least-squares modal identification is used to perform parameter estimation.
Numerical design of an adaptive aileron
NASA Astrophysics Data System (ADS)
Amendola, Gianluca; Dimino, Ignazio; Concilio, Antonio; Magnifico, Marco; Pecora, Rosario
2016-04-01
The study herein described is aimed at investigating the feasibility of an innovative full-scale camber morphing aileron device. In the framework of the "Adaptive Aileron" project, an international cooperation between Italy and Canada, this goal was carried out with the integration of different morphing concepts in a wing-tip prototype. As widely demonstrated in recent European projects such as Clean Sky JTI and SARISTU, wing trailing edge morphing may lead to significant drag reduction (up to 6%) in off-design flight points by adapting chord-wise camber variations in cruise to compensate A/C weight reduction following fuel consumption. Those researches focused on the flap region as the most immediate solution to implement structural adaptations. However, there is also a growing interest in extending morphing functionalities to the aileron region preserving its main functionality in controlling aircraft directional stability. In fact, the external region of the wing seems to be the most effective in producing "lift over drag" improvements by morphing. Thus, the objective of the presented research is to achieve a certain drag reduction in off-design flight points by adapting wing shape and lift distribution following static deflections. In perspective, the developed device could also be used as a load alleviation system to reduce gust effects, augmenting its frequency bandwidth. In this paper, the preliminary design of the adaptive aileron is first presented, assessed on the base of the external aerodynamic loads. The primary structure is made of 5 segmented ribs, distributed along 4 bays, each splitted into three consecutive parts, connected with spanwise stringers. The aileron shape modification is then implemented by means of an actuation system, based on a classical quick-return mechanism, opportunely suited for the presented application. Finite element analyses were assessed for properly sizing the load-bearing structure and actuation systems and for
Simulation analysis of adaptive cruise prediction control
NASA Astrophysics Data System (ADS)
Zhang, Li; Cui, Sheng Min
2017-09-01
Predictive control is suitable for multi-variable and multi-constraint system control.In order to discuss the effect of predictive control on the vehicle longitudinal motion, this paper establishes the expected spacing model by combining variable pitch spacing and the of safety distance strategy. The model predictive control theory and the optimization method based on secondary planning are designed to obtain and track the best expected acceleration trajectory quickly. Simulation models are established including predictive and adaptive fuzzy control. Simulation results show that predictive control can realize the basic function of the system while ensuring the safety. The application of predictive and fuzzy adaptive algorithm in cruise condition indicates that the predictive control effect is better.
Application of Adaptive Autopilot Designs for an Unmanned Aerial Vehicle
NASA Technical Reports Server (NTRS)
Shin, Yoonghyun; Calise, Anthony J.; Motter, Mark A.
2005-01-01
This paper summarizes the application of two adaptive approaches to autopilot design, and presents an evaluation and comparison of the two approaches in simulation for an unmanned aerial vehicle. One approach employs two-stage dynamic inversion and the other employs feedback dynamic inversions based on a command augmentation system. Both are augmented with neural network based adaptive elements. The approaches permit adaptation to both parametric uncertainty and unmodeled dynamics, and incorporate a method that permits adaptation during periods of control saturation. Simulation results for an FQM-117B radio controlled miniature aerial vehicle are presented to illustrate the performance of the neural network based adaptation.
F-8C adaptive flight control laws
NASA Technical Reports Server (NTRS)
Hartmann, G. L.; Harvey, C. A.; Stein, G.; Carlson, D. N.; Hendrick, R. C.
1977-01-01
Three candidate digital adaptive control laws were designed for NASA's F-8C digital flyby wire aircraft. Each design used the same control laws but adjusted the gains with a different adaptative algorithm. The three adaptive concepts were: high-gain limit cycle, Liapunov-stable model tracking, and maximum likelihood estimation. Sensors were restricted to conventional inertial instruments (rate gyros and accelerometers) without use of air-data measurements. Performance, growth potential, and computer requirements were used as criteria for selecting the most promising of these candidates for further refinement. The maximum likelihood concept was selected primarily because it offers the greatest potential for identifying several aircraft parameters and hence for improved control performance in future aircraft application. In terms of identification and gain adjustment accuracy, the MLE design is slightly superior to the other two, but this has no significant effects on the control performance achievable with the F-8C aircraft. The maximum likelihood design is recommended for flight test, and several refinements to that design are proposed.
Adaptive Control of Nonlinear Flexible Systems
1993-01-18
disturbances. The following example illustrates the need for a robust state-feedback law and the sensi- tivity of the exact - linearization based control law... exact linearization , one can bring an input-output approach to a particular case of certainty- equivalence based adaptive control design. We now...are available for this model, exact linearization can be performed. Let C(s) be the compensator that is being used so far in the previous three
Adaptive Control Using Residual Mode Filters Applied to Wind Turbines
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Balas, Mark J.
2011-01-01
Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a model reference direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will augment the adaptive controller using a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. We apply these theoretical results to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine that has minimum phase zeros.
Real Time & Power Efficient Adaptive - Robust Control
NASA Astrophysics Data System (ADS)
Ioan Gliga, Lavinius; Constantin Mihai, Cosmin; Lupu, Ciprian; Popescu, Dumitru
2017-01-01
A design procedure for a control system suited for dynamic variable processes is presented in this paper. The proposed adaptive - robust control strategy considers both adaptive control advantages and robust control benefits. It estimates the degradation of the system’s performances due to the dynamic variation in the process and it then utilizes it to determine when the system must be adapted with a redesign of the robust controller. A single integral criterion is used for the identification of the process, and for the design of the control algorithm, which is expressed in direct form, through a cost function defined in the space of the parameters of both the process and the controller. For the minimization of this nonlinear function, an adequate mathematical programming minimization method is used. The theoretical approach presented in this paper was validated for a closed loop control system, simulated in an application developed in C. Because of the reduced number of operations, this method is suitable for implementation on fast processes. Due to its effectiveness, it increases the idle time of the CPU, thereby saving electrical energy.
NASA Astrophysics Data System (ADS)
Wang, L. M.
2017-09-01
A novel model-free adaptive sliding mode strategy is proposed for a generalized projective synchronization (GPS) between two entirely unknown fractional-order chaotic systems subject to the external disturbances. To solve the difficulties from the little knowledge about the master-slave system and to overcome the bad effects of the external disturbances on the generalized projective synchronization, the radial basis function neural networks are used to approach the packaged unknown master system and the packaged unknown slave system (including the external disturbances). Consequently, based on the slide mode technology and the neural network theory, a model-free adaptive sliding mode controller is designed to guarantee asymptotic stability of the generalized projective synchronization error. The main contribution of this paper is that a control strategy is provided for the generalized projective synchronization between two entirely unknown fractional-order chaotic systems subject to the unknown external disturbances, and the proposed control strategy only requires that the master system has the same fractional orders as the slave system. Moreover, the proposed method allows us to achieve all kinds of generalized projective chaos synchronizations by turning the user-defined parameters onto the desired values. Simulation results show the effectiveness of the proposed method and the robustness of the controlled system.
Designing for Productive Adaptations of Curriculum Interventions
ERIC Educational Resources Information Center
Debarger, Angela Haydel; Choppin, Jeffrey; Beauvineau, Yves; Moorthy, Savitha
2013-01-01
Productive adaptations at the classroom level are evidence-based curriculum adaptations that are responsive to the demands of a particular classroom context and still consistent with the core design principles and intentions of a curriculum intervention. The model of design-based implementation research (DBIR) offers insights into complexities and…
Designing for Productive Adaptations of Curriculum Interventions
ERIC Educational Resources Information Center
Debarger, Angela Haydel; Choppin, Jeffrey; Beauvineau, Yves; Moorthy, Savitha
2013-01-01
Productive adaptations at the classroom level are evidence-based curriculum adaptations that are responsive to the demands of a particular classroom context and still consistent with the core design principles and intentions of a curriculum intervention. The model of design-based implementation research (DBIR) offers insights into complexities and…
Adaptive optical antennas: design and evaluation
NASA Astrophysics Data System (ADS)
Weyrauch, Thomas; Vorontsov, Mikhail A.; Carhart, Gary W.; Simonova, Galina V.; Beresnev, Leonid A.; Polnau, Ernst E.
2007-09-01
We present the design and evaluation of compact adaptive optical antennas with apertures diameters of 16 mm and 100 mm for 5Gbit/s-class free-space optical communication systems. The antennas provide a bi-directional optically transparent link between fiber-optical wavelength-division multiplex systems and allow for mitigation of atmospheric-turbulence induced wavefront phase distortions with adaptive optics components. Beam steering is implemented in the antennas either with mirrors on novel tip/tilt platforms or a fiber-tip positioning system, both enabling operation bandwidths of more than 1 kHz. Bimorph piezoelectric actuated deformable mirrors are used for low-order phase-distortion compensation. An imaging system is integrated in the antennas for coarse pointing and tracking. Beam steering and wavefront control is based on blind maximization of the received signal level using a stochastic parallel gradient descent algorithm. The adaptive optics control architecture allowed the use of feedback signals provided locally within each transceiver system and remotely by the opposite transceiver system via an RF link. First atmospheric compensation results from communication experiments over a 250 m near-ground propagation path are presented.
Direct Adaptive Control Of An Industrial Robot
NASA Technical Reports Server (NTRS)
Seraji, Homayoun; Lee, Thomas; Delpech, Michel
1992-01-01
Decentralized direct adaptive control scheme for six-jointed industrial robot eliminates part of overall computational burden imposed by centralized controller and degrades performance of robot by reducing sampling rate. Control and controller-adaptation laws based on observed performance of manipulator: no need to model dynamics of robot. Adaptive controllers cope with uncertainties and variations in robot and payload.
Robust, Practical Adaptive Control for Launch Vehicles
NASA Technical Reports Server (NTRS)
Orr, Jeb. S.; VanZwieten, Tannen S.
2012-01-01
A modern mechanization of a classical adaptive control concept is presented with an application to launch vehicle attitude control systems. Due to a rigorous flight certification environment, many adaptive control concepts are infeasible when applied to high-risk aerospace systems; methods of stability analysis are either intractable for high complexity models or cannot be reconciled in light of classical requirements. Furthermore, many adaptive techniques appearing in the literature are not suitable for application to conditionally stable systems with complex flexible-body dynamics, as is often the case with launch vehicles. The present technique is a multiplicative forward loop gain adaptive law similar to that used for the NASA X-15 flight research vehicle. In digital implementation with several novel features, it is well-suited to application on aerodynamically unstable launch vehicles with thrust vector control via augmentation of the baseline attitude/attitude-rate feedback control scheme. The approach is compatible with standard design features of autopilots for launch vehicles, including phase stabilization of lateral bending and slosh via linear filters. In addition, the method of assessing flight control stability via classical gain and phase margins is not affected under reasonable assumptions. The algorithm s ability to recover from certain unstable operating regimes can in fact be understood in terms of frequency-domain criteria. Finally, simulation results are presented that confirm the ability of the algorithm to improve performance and robustness in realistic failure scenarios.
Adaptive controller for hyperthermia robot
Kress, R.L.
1997-03-01
This paper describes the development of an adaptive computer control routine for a robotically, deployed focused, ultrasonic hyperthermia cancer treatment system. The control algorithm developed herein uses physiological models of a tumor and the surrounding healthy tissue regions and transient temperature data to estimate the treatment region`s blood perfusion. This estimate is used to vary the specific power profile of a scanned, focused ultrasonic transducer to achieve a temperature distribution as close as possible to an optimal temperature distribution. The controller is evaluated using simulations of diseased tissue and using limited experiments on a scanned, focused ultrasonic treatment system that employs a 5-Degree-of-Freedom (D.O.F.) robot to scan the treatment transducers over a simulated patient. Results of the simulations and experiments indicate that the adaptive control routine improves the temperature distribution over standard classical control algorithms if good (although not exact) knowledge of the treated region is available. Although developed with a scanned, focused ultrasonic robotic treatment system in mind, the control algorithm is applicable to any system with the capability to vary specific power as a function of volume and having an unknown distributed energy sink proportional to temperature elevation (e.g., other robotically deployed hyperthermia treatment methods using different heating modalities).
Adaptive Control of Flexible Structures Using Residual Mode Filters
NASA Technical Reports Server (NTRS)
Balas, Mark J.; Frost, Susan
2010-01-01
Flexible structures containing a large number of modes can benefit from adaptive control techniques which are well suited to applications that have unknown modeling parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend our adaptive control theory to accommodate troublesome modal subsystems of a plant that might inhibit the adaptive controller. In some cases the plant does not satisfy the requirements of Almost Strict Positive Realness. Instead, there maybe be a modal subsystem that inhibits this property. This section will present new results for our adaptive control theory. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for the troublesome modal subsystem, or the Q modes. Here we present the theory for adaptive controllers modified by RMFs, with attention to the issue of disturbances propagating through the Q modes. We apply the theoretical results to a flexible structure example to illustrate the behavior with and without the residual mode filter. We have proposed a modified adaptive controller with a residual mode filter. The RMF is used to accommodate troublesome modes in the system that might otherwise inhibit the adaptive controller, in particular the ASPR condition. This new theory accounts for leakage of the disturbance term into the Q modes. A simple three-mode example shows that the RMF can restore stability to an otherwise unstable adaptively controlled system. This is done without modifying the adaptive controller design.
Drought Adaptation Mechanisms Should Guide Experimental Design.
Gilbert, Matthew E; Medina, Viviana
2016-08-01
The mechanism, or hypothesis, of how a plant might be adapted to drought should strongly influence experimental design. For instance, an experiment testing for water conservation should be distinct from a damage-tolerance evaluation. We define here four new, general mechanisms for plant adaptation to drought such that experiments can be more easily designed based upon the definitions. A series of experimental methods are suggested together with appropriate physiological measurements related to the drought adaptation mechanisms. The suggestion is made that the experimental manipulation should match the rate, length, and severity of soil water deficit (SWD) necessary to test the hypothesized type of drought adaptation mechanism.
TWO PAPERS ON ADAPTIVE INVENTORY CONTROL.
INVENTORY CONTROL , ADAPTIVE SYSTEMS), (*DYNAMIC PROGRAMMING, INVENTORY CONTROL ), OPTIMIZATION, COSTS, RANDOM VARIABLES, SAMPLING, MATHEMATICAL PREDICTION, INVENTORY CONTROL , STOCHASTIC PROCESSES, DECISION THEORY
Adaptive Control with Reference Model Modification
NASA Technical Reports Server (NTRS)
Stepanyan, Vahram; Krishnakumar, Kalmanje
2012-01-01
This paper presents a modification of the conventional model reference adaptive control (MRAC) architecture in order to improve transient performance of the input and output signals of uncertain systems. A simple modification of the reference model is proposed by feeding back the tracking error signal. It is shown that the proposed approach guarantees tracking of the given reference command and the reference control signal (one that would be designed if the system were known) not only asymptotically but also in transient. Moreover, it prevents generation of high frequency oscillations, which are unavoidable in conventional MRAC systems for large adaptation rates. The provided design guideline makes it possible to track a reference commands of any magnitude from any initial position without re-tuning. The benefits of the method are demonstrated with a simulation example
Adaptive Force Control in Compliant Motion
NASA Technical Reports Server (NTRS)
Seraji, H.
1994-01-01
This paper addresses the problem of controlling a manipulator in compliant motion while in contact with an environment having an unknown stiffness. Two classes of solutions are discussed: adaptive admittance control and adaptive compliance control. In both admittance and compliance control schemes, compensator adaptation is used to ensure a stable and uniform system performance.
Adaptive Controller Effects on Pilot Behavior
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Gregory, Irene M.; Hempley, Lucas E.
2014-01-01
Adaptive control provides robustness and resilience for highly uncertain, and potentially unpredictable, flight dynamics characteristic. Some of the recent flight experiences of pilot-in-the-loop with an adaptive controller have exhibited unpredicted interactions. In retrospect, this is not surprising once it is realized that there are now two adaptive controllers interacting, the software adaptive control system and the pilot. An experiment was conducted to categorize these interactions on the pilot with an adaptive controller during control surface failures. One of the objectives of this experiment was to determine how the adaptation time of the controller affects pilots. The pitch and roll errors, and stick input increased for increasing adaptation time and during the segment when the adaptive controller was adapting. Not surprisingly, altitude, cross track and angle deviations, and vertical velocity also increase during the failure and then slowly return to pre-failure levels. Subjects may change their behavior even as an adaptive controller is adapting with additional stick inputs. Therefore, the adaptive controller should adapt as fast as possible to minimize flight track errors. This will minimize undesirable interactions between the pilot and the adaptive controller and maintain maneuvering precision.
Robust adaptive control of MEMS triaxial gyroscope using fuzzy compensator.
Fei, Juntao; Zhou, Jian
2012-12-01
In this paper, a robust adaptive control strategy using a fuzzy compensator for MEMS triaxial gyroscope, which has system nonlinearities, including model uncertainties and external disturbances, is proposed. A fuzzy logic controller that could compensate for the model uncertainties and external disturbances is incorporated into the adaptive control scheme in the Lyapunov framework. The proposed adaptive fuzzy controller can guarantee the convergence and asymptotical stability of the closed-loop system. The proposed adaptive fuzzy control strategy does not depend on accurate mathematical models, which simplifies the design procedure. The innovative development of intelligent control methods incorporated with conventional control for the MEMS gyroscope is derived with the strict theoretical proof of the Lyapunov stability. Numerical simulations are investigated to verify the effectiveness of the proposed adaptive fuzzy control scheme and demonstrate the satisfactory tracking performance and robustness against model uncertainties and external disturbances compared with conventional adaptive control method.
Investigation of the Multiple Model Adaptive Control (MMAC) method for flight control systems
NASA Technical Reports Server (NTRS)
1975-01-01
The application was investigated of control theoretic ideas to the design of flight control systems for the F-8 aircraft. The design of an adaptive control system based upon the so-called multiple model adaptive control (MMAC) method is considered. Progress is reported.
Fractional adaptive control for an automatic voltage regulator.
Aguila-Camacho, Norelys; Duarte-Mermoud, Manuel A
2013-11-01
This paper presents the application of a direct Fractional Order Model Reference Adaptive Controller (FOMRAC) to an Automatic Voltage Regulator (AVR). A direct FOMRAC is a direct Model Reference Adaptive Control (MRAC), whose controller parameters are adjusted using fractional order differential equations. Four realizations of the FOMRAC were designed in this work, each one considering different orders for the plant model. The design procedure consisted of determining the optimal values of the fractional order and the adaptive gains for each adaptive law, using Genetic algorithm optimization. Comparisons were made among the four FOMRAC designs, a fractional order PID (FOPID), a classical PID, and four Integer Order Model Reference Adaptive Controllers (IOMRAC), showing that the FOMRAC can improve the controlled system behavior and its robustness with respect to model uncertainties. Finally, some performance indices are presented here for the controlled schemes, in order to show the advantages and disadvantages of the FOMRAC.
NASA Technical Reports Server (NTRS)
1978-01-01
Information used in the evaluation of design of Solar Control's solar heating and cooling system controller and the Solarstat is given. Some of the information includes system performance specifications, design data brochures, and detailed design drawings.
Adaptive wing and flow control technology
NASA Astrophysics Data System (ADS)
Stanewsky, E.
2001-10-01
The development of the boundary layer and the interaction of the boundary layer with the outer “inviscid” flow field, exacerbated at high speed by the occurrence of shock waves, essentially determine the performance boundaries of high-speed flight. Furthermore, flight and freestream conditions may change considerably during an aircraft mission while the aircraft itself is only designed for multiple but fixed design points thus impairing overall performance. Consequently, flow and boundary layer control and adaptive wing technology may have revolutionary new benefits for take-off, landing and cruise operating conditions for many aircraft by enabling real-time effective geometry optimization relative to the flight conditions. In this paper we will consider various conventional and novel means of boundary layer and flow control applied to moderate-to-large aspect ratio wings, delta wings and bodies with the specific objectives of drag reduction, lift enhancement, separation suppression and the improvement of air-vehicle control effectiveness. In addition, adaptive wing concepts of varying complexity and corresponding aerodynamic performance gains will be discussed, also giving some examples of possible structural realizations. Furthermore, penalties associated with the implementation of control and adaptation mechanisms into actual aircraft will be addressed. Note that the present contribution is rather application oriented.
Adaptive-feedback control algorithm.
Huang, Debin
2006-06-01
This paper is motivated by giving the detailed proofs and some interesting remarks on the results the author obtained in a series of papers [Phys. Rev. Lett. 93, 214101 (2004); Phys. Rev. E 71, 037203 (2005); 69, 067201 (2004)], where an adaptive-feedback algorithm was proposed to effectively stabilize and synchronize chaotic systems. This note proves in detail the strictness of this algorithm from the viewpoint of mathematics, and gives some interesting remarks for its potential applications to chaos control & synchronization. In addition, a significant comment on synchronization-based parameter estimation is given, which shows some techniques proposed in literature less strict and ineffective in some cases.
Designing Adaptive Intensive Interventions Using Methods from Engineering
Lagoa, Constantino M.; Bekiroglu, Korkut; Lanza, Stephanie T.; Murphy, Susan A.
2014-01-01
Objective Adaptive intensive interventions are introduced and new methods from the field of control engineering for use in their design are illustrated. Method A detailed step-by-step explanation of how control engineering methods can be used with intensive longitudinal data to design an adaptive intensive intervention is provided. The methods are evaluated via simulation. Results Simulation results illustrate how the designed adaptive intensive intervention can result in improved outcomes with less treatment by providing treatment only when it is needed. Furthermore, the methods are robust to model misspecification as well as the influence of unobserved causes. Conclusions These new methods can be used to design adaptive interventions that are effective yet reduce participant burden. PMID:25244394
Designing adaptive intensive interventions using methods from engineering.
Lagoa, Constantino M; Bekiroglu, Korkut; Lanza, Stephanie T; Murphy, Susan A
2014-10-01
Adaptive intensive interventions are introduced, and new methods from the field of control engineering for use in their design are illustrated. A detailed step-by-step explanation of how control engineering methods can be used with intensive longitudinal data to design an adaptive intensive intervention is provided. The methods are evaluated via simulation. Simulation results illustrate how the designed adaptive intensive intervention can result in improved outcomes with less treatment by providing treatment only when it is needed. Furthermore, the methods are robust to model misspecification as well as the influence of unobserved causes. These new methods can be used to design adaptive interventions that are effective yet reduce participant burden. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Adaptive Flight Control for Aircraft Safety Enhancements
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Gregory, Irene M.; Joshi, Suresh M.
2008-01-01
This poster presents the current adaptive control research being conducted at NASA ARC and LaRC in support of the Integrated Resilient Aircraft Control (IRAC) project. The technique "Approximate Stability Margin Analysis of Hybrid Direct-Indirect Adaptive Control" has been developed at NASA ARC to address the needs for stability margin metrics for adaptive control that potentially enables future V&V of adaptive systems. The technique "Direct Adaptive Control With Unknown Actuator Failures" is developed at NASA LaRC to deal with unknown actuator failures. The technique "Adaptive Control with Adaptive Pilot Element" is being researched at NASA LaRC to investigate the effects of pilot interactions with adaptive flight control that can have implications of stability and performance.
Adaptive Control Allocation in the Presence of Actuator Failures
NASA Technical Reports Server (NTRS)
Liu, Yu; Crespo, Luis G.
2010-01-01
In this paper, a novel adaptive control allocation framework is proposed. In the adaptive control allocation structure, cooperative actuators are grouped and treated as an equivalent control effector. A state feedback adaptive control signal is designed for the equivalent effector and allocated to the member actuators adaptively. Two adaptive control allocation algorithms are proposed, which guarantee closed-loop stability and asymptotic state tracking in the presence of uncertain loss of effectiveness and constant-magnitude actuator failures. The proposed algorithms can be shown to reduce the controller complexity with proper grouping of the actuators. The proposed adaptive control allocation schemes are applied to two linearized aircraft models, and the simulation results demonstrate the performance of the proposed algorithms.
NASA Astrophysics Data System (ADS)
Dolmatov, E.; Yline, S.; Morkin, O.; Nikiforov, A.; Silakov, D.
2012-11-01
We consider the problems of measuring the vibration of the supporting parts in hydro-turbine manufacturing, for example of the Sayano-Shushenskaya Hydro Power Station (SS HPS). It was explore the concepts of vibration control system (VCS) of hydro units. The analysis of the main types of vibration sensors, as the most important elements of the vibration control system of the hydro units. The main results of comparative tests of sensors that measure absolute vibration are given. It is proposed the optimization of the algorithms VCS of the units, including taking into account the seismic area of the hydropower station.
Discrete-time adaptive control of robot manipulators
NASA Technical Reports Server (NTRS)
Tarokh, M.
1989-01-01
A discrete-time model reference adaptive control scheme is developed for trajectory tracking of robot manipulators. Hyperstability theory is utilized to derive the adaptation laws for the controller gain matrices. It is shown that asymptotic trajectory tracking is achieved despite gross robot parameter variation and uncertainties. The method offers considerable design flexibility and enables the designer to improve the performance of the control system by adjusting free design parameters. The discrete-time adaptation algorithm is extremely simple and is therefore suitable for real-time implementation.
On the adaptive control of a phased array telescope
NASA Astrophysics Data System (ADS)
Jamshidi, M.; Meinhardt, J. A.; Carreras, R. A.; Baciak, M. G.
1989-09-01
An adaptive control philosophy known as model-reference adaptive control based on an 'ideal' behavior of the system called 'reference' system is considered. Software and hardware implementation of a model-reference adaptive control (MRAC) for a phased array telescope is discussed. The overall system configuration is presented and a model description of the system from both mathematical formulations and the MATRIXx SYSTEM-BUILD points of view is analyzed. A unified approach to to adaptive control design algorithm using MATRIXx is introduced. It is noted that a digital position monitor plays a focal point in the hardware realization of the MRAC algorithm.
State of the art in adaptive control of robotic systems
NASA Technical Reports Server (NTRS)
Tosunoglu, Sabri; Tesar, Delbert
1988-01-01
An up-to-date assessment of adaptive control technology as applied to robotics is presented. Although the field is relatively new and does not yet represent a mature discipline, considerable attention for the design of sophisticated robot controllers has occured. In this presentation, adaptive control methods are divided into model reference adaptive systems and self-tuning regulators, with further definition of various approaches given in each class. The similarity and distinct features of the designed controllers are delineated and tabulated to enhance comparative review.
Dual-arm manipulators with adaptive control
NASA Technical Reports Server (NTRS)
Seraji, Homayoun (Inventor)
1991-01-01
The described and improved multi-arm invention of this application presents three strategies for adaptive control of cooperative multi-arm robots which coordinate control over a common load. In the position-position control strategy, the adaptive controllers ensure that the end-effector positions of both arms track desired trajectories in Cartesian space despite unknown time-varying interaction forces exerted through a load. In the position-hybrid control strategy, the adaptive controller of one arm controls end-effector motions in the free directions and applied forces in the constraint directions; while the adaptive controller of the other arm ensures that the end-effector tracks desired position trajectories. In the hybrid-hybrid control strategy, the adaptive controllers ensure that both end-effectors track reference position trajectories while simultaneously applying desired forces on the load. In all three control strategies, the cross-coupling effects between the arms are treated as disturbances which are compensated for by the adaptive controllers while following desired commands in a common frame of reference. The adaptive controllers do not require the complex mathematical model of the arm dynamics or any knowledge of the arm dynamic parameters or the load parameters such as mass and stiffness. Circuits in the adaptive feedback and feedforward controllers are varied by novel adaptation laws.
Nutrient Control Design Manual
The Nutrient Control Design Manual will present an extensive state-of-the-technology review of the engineering design and operation of nitrogen and phosphorous control technologies and techniques applied at municipal wastewater treatment plants (WWTPs). This manual will present ...
Nutrient Control Design Manual
The Nutrient Control Design Manual will present an extensive state-of-the-technology review of the engineering design and operation of nitrogen and phosphorous control technologies and techniques applied at municipal wastewater treatment plants (WWTPs). This manual will present ...
Adaptive neural networks for mobile robotic control
NASA Astrophysics Data System (ADS)
Burnett, Jeff R.; Dagli, Cihan H.
2001-03-01
Movement of a differential drive robot has non-linear dependence on the current position and orientation. A controller must be able to deal with the non-linearity of the plant. The controller must either linearize the plant and deal with special cases, or be non-linear itself. Once the controller is designed, implementation on a real robotic platform presents challenges due to the varying parameters of the plant. Robots of the same model may have different motor frictions. The surface the robot maneuvers on may change e.g. carpet to tile. Batteries will drain, providing less power over time. A feed-forward neural network controller could overcome these challenges. The network could learn the non- linearities of the plant and monitor the error for parameter changes and adapt to them. In this manner, a single controller can be designed for an ideal robot, and then used to populate a multi-robot colony without manually fine tuning the controller for each robot. This paper shall demonstrate such a controller, outlining design in simulation and implementation on Khepera robotic platforms.
Geometric view of adaptive optics control
NASA Astrophysics Data System (ADS)
Wiberg, Donald M.; Max, Claire E.; Gavel, Donald T.
2005-05-01
The objective of an astronomical adaptive optics control system is to minimize the residual wave-front error remaining on the science-object wave fronts after being compensated for atmospheric turbulence and telescope aberrations. Minimizing the mean square wave-front residual maximizes the Strehl ratio and the encircled energy in pointlike images and maximizes the contrast and resolution of extended images. We prove the separation principle of optimal control for application to adaptive optics so as to minimize the mean square wave-front residual. This shows that the residual wave-front error attributable to the control system can be decomposed into three independent terms that can be treated separately in design. The first term depends on the geometry of the wave-front sensor(s), the second term depends on the geometry of the deformable mirror(s), and the third term is a stochastic term that depends on the signal-to-noise ratio. The geometric view comes from understanding that the underlying quantity of interest, the wave-front phase surface, is really an infinite-dimensional vector within a Hilbert space and that this vector space is projected into subspaces we can control and measure by the deformable mirrors and wave-front sensors, respectively. When the control and estimation algorithms are optimal, the residual wave front is in a subspace that is the union of subspaces orthogonal to both of these projections. The method is general in that it applies both to conventional (on-axis, ground-layer conjugate) adaptive optics architectures and to more complicated multi-guide-star- and multiconjugate-layer architectures envisaged for future giant telescopes. We illustrate the approach by using a simple example that has been worked out previously [J. Opt. Soc. Am. A73, 1171 (1983)] for a single-conjugate, static atmosphere case and follow up with a discussion of how it is extendable to general adaptive optics architectures.
Statistical Physics for Adaptive Distributed Control
NASA Technical Reports Server (NTRS)
Wolpert, David H.
2005-01-01
A viewgraph presentation on statistical physics for distributed adaptive control is shown. The topics include: 1) The Golden Rule; 2) Advantages; 3) Roadmap; 4) What is Distributed Control? 5) Review of Information Theory; 6) Iterative Distributed Control; 7) Minimizing L(q) Via Gradient Descent; and 8) Adaptive Distributed Control.
Sellers, David; Friedman, Hannah; Haasl, Tudi; Bourassa, Norman; Piette, Mary Ann
2003-05-01
The ''Control System Design Guide'' (Design Guide) provides methods and recommendations for the control system design process and control point selection and installation. Control systems are often the most problematic system in a building. A good design process that takes into account maintenance, operation, and commissioning can lead to a smoothly operating and efficient building. To this end, the Design Guide provides a toolbox of templates for improving control system design and specification. HVAC designers are the primary audience for the Design Guide. The control design process it presents will help produce well-designed control systems that achieve efficient and robust operation. The spreadsheet examples for control valve schedules, damper schedules, and points lists can streamline the use of the control system design concepts set forth in the Design Guide by providing convenient starting points from which designers can build. Although each reader brings their own unique questions to the text, the Design Guide contains information that designers, commissioning providers, operators, and owners will find useful.
Flight Test Approach to Adaptive Control Research
NASA Technical Reports Server (NTRS)
Pavlock, Kate Maureen; Less, James L.; Larson, David Nils
2011-01-01
The National Aeronautics and Space Administration s Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The validation of adaptive controls has the potential to enhance safety in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.
Adaptive sliding mode control for a class of chaotic systems
NASA Astrophysics Data System (ADS)
Farid, R.; Ibrahim, A.; Zalam, B.
2015-03-01
Chaos control here means to design a controller that is able to mitigating or eliminating the chaos behavior of nonlinear systems that experiencing such phenomenon. In this paper, an Adaptive Sliding Mode Controller (ASMC) is presented based on Lyapunov stability theory. The well known Chua's circuit is chosen to be our case study in this paper. The study shows the effectiveness of the proposed adaptive sliding mode controller.
Adaptive sliding mode control for a class of chaotic systems
Farid, R.; Ibrahim, A.; Zalam, B.
2015-03-30
Chaos control here means to design a controller that is able to mitigating or eliminating the chaos behavior of nonlinear systems that experiencing such phenomenon. In this paper, an Adaptive Sliding Mode Controller (ASMC) is presented based on Lyapunov stability theory. The well known Chua's circuit is chosen to be our case study in this paper. The study shows the effectiveness of the proposed adaptive sliding mode controller.
Genetic Adaptive Control for PZT Actuators
NASA Technical Reports Server (NTRS)
Kim, Jeongwook; Stover, Shelley K.; Madisetti, Vijay K.
1995-01-01
A piezoelectric transducer (PZT) is capable of providing linear motion if controlled correctly and could provide a replacement for traditional heavy and large servo systems using motors. This paper focuses on a genetic model reference adaptive control technique (GMRAC) for a PZT which is moving a mirror where the goal is to keep the mirror velocity constant. Genetic Algorithms (GAs) are an integral part of the GMRAC technique acting as the search engine for an optimal PID controller. Two methods are suggested to control the actuator in this research. The first one is to change the PID parameters and the other is to add an additional reference input in the system. The simulation results of these two methods are compared. Simulated Annealing (SA) is also used to solve the problem. Simulation results of GAs and SA are compared after simulation. GAs show the best result according to the simulation results. The entire model is designed using the Mathworks' Simulink tool.
Adaptive, predictive controller for optimal process control
Brown, S.K.; Baum, C.C.; Bowling, P.S.; Buescher, K.L.; Hanagandi, V.M.; Hinde, R.F. Jr.; Jones, R.D.; Parkinson, W.J.
1995-12-01
One can derive a model for use in a Model Predictive Controller (MPC) from first principles or from experimental data. Until recently, both methods failed for all but the simplest processes. First principles are almost always incomplete and fitting to experimental data fails for dimensions greater than one as well as for non-linear cases. Several authors have suggested the use of a neural network to fit the experimental data to a multi-dimensional and/or non-linear model. Most networks, however, use simple sigmoid functions and backpropagation for fitting. Training of these networks generally requires large amounts of data and, consequently, very long training times. In 1993 we reported on the tuning and optimization of a negative ion source using a special neural network[2]. One of the properties of this network (CNLSnet), a modified radial basis function network, is that it is able to fit data with few basis functions. Another is that its training is linear resulting in guaranteed convergence and rapid training. We found the training to be rapid enough to support real-time control. This work has been extended to incorporate this network into an MPC using the model built by the network for predictive control. This controller has shown some remarkable capabilities in such non-linear applications as continuous stirred exothermic tank reactors and high-purity fractional distillation columns[3]. The controller is able not only to build an appropriate model from operating data but also to thin the network continuously so that the model adapts to changing plant conditions. The controller is discussed as well as its possible use in various of the difficult control problems that face this community.
Adaptive neuro-control for large flexible structures
NASA Astrophysics Data System (ADS)
Krishna Kumar, K.; Montgomery, L.
1992-12-01
Special problems related to control system design for large flexible structures include the inherent low damping, wide range of modal frequencies, unmodeled dynamics, and possibility of system failures. Neuro-control, which combines concepts from artificial neural networks and adaptive control is investigated as a solution to some of these problems. Specifically, the roles of neutro-controllers in learning unmodeled dynamics and adaptive control for system failures are investigated. The neuro-controller synthesis procedure and its capabilities in adaptively controlling the structure are demonstrated using a mathematical model of an existing structure, the advanced control evaluation for systems test article located at NASA/Marshall Space Flight Center. Also, the real-time adaptive capability of neuro-controllers is demonstrated via an experiment utilizing a flexible clamped-free beam equipped with an actuator that uses a bang-bang controller.
Identification and dual adaptive control of a turbojet engine
NASA Technical Reports Server (NTRS)
Merrill, W.; Leininger, G.
1979-01-01
The objective of this paper is to utilize the design methods of modern control theory to realize a dual-adaptive feedback control unit for a highly nonlinear single spool airbreathing turbojet engine. Using a very detailed and accurate simulation of the nonlinear engine as the data source, linear operating point models of unspecified dimension are identified. Feedback control laws are designed at each operating point for a prespecified set of sampling rates using sampled-data output regulator theory. The control system sampling rate is determined by an adaptive sampling algorithm in correspondence with turbojet engine performance. The result is a dual-adaptive control law that is functionally dependent upon the sampling rate selected and environmental operating conditions. Simulation transients demonstrate the utility of the dual-adaptive design to improve on-board computer utilization while maintaining acceptable levels of engine performance.
Adaptive Control: Actual Status and Trends
NASA Technical Reports Server (NTRS)
Landau, I. D.
1985-01-01
Important progress in research and application of Adaptive Control Systems has been achieved in the last ten years. The techniques which are currently used in applications will be reviewed. Theoretical aspects currently under investigation and which are related to the application of adaptive control techniques in various fields will be briefly discussed. Applications in various areas will be briefly reviewed. The use of adaptive techniques for vibrations monitoring and active vibration control will be emphasized.
Adaptive Control Techniques for Large Space Structures
1987-12-23
mission objectives. In particular, uncertainties in both system dynamics and disturbance spectra characterizations (both time varying and stochastic... uncertainty ) significantly limit the performance attainable with fixed gain, fixed architecture controls. Therefore, the use of an adaptive system , where...Theoretical Development: The initial emphasis has been on slow adaptation, since this covers may LSS situations. Later on we will examine fast adaptation. The
Adaptive Controller Adaptation Time and Available Control Authority Effects on Piloting
NASA Technical Reports Server (NTRS)
Trujillo, Anna; Gregory, Irene
2013-01-01
Adaptive control is considered for highly uncertain, and potentially unpredictable, flight dynamics characteristic of adverse conditions. This experiment looked at how adaptive controller adaptation time to recover nominal aircraft dynamics affects pilots and how pilots want information about available control authority transmitted. Results indicate that an adaptive controller that takes three seconds to adapt helped pilots when looking at lateral and longitudinal errors. The controllability ratings improved with the adaptive controller, again the most for the three seconds adaptation time while workload decreased with the adaptive controller. The effects of the displays showing the percentage amount of available safe flight envelope used in the maneuver were dominated by the adaptation time. With the displays, the altitude error increased, controllability slightly decreased, and mental demand increased. Therefore, the displays did require some of the subjects resources but these negatives may be outweighed by pilots having more situation awareness of their aircraft.
Robust adaptive control for Unmanned Aerial Vehicles
NASA Astrophysics Data System (ADS)
Kahveci, Nazli E.
The objective of meeting higher endurance requirements remains a challenging task for any type and size of Unmanned Aerial Vehicles (UAVs). According to recent research studies significant energy savings can be realized through utilization of thermal currents. The navigation strategies followed across thermal regions, however, are based on rather intuitive assessments of remote pilots and lack any systematic path planning approaches. Various methods to enhance the autonomy of UAVs in soaring applications are investigated while seeking guarantees for flight performance improvements. The dynamics of the aircraft, small UAVs in particular, are affected by the environmental conditions, whereas unmodeled dynamics possibly become significant during aggressive flight maneuvers. Besides, the demanded control inputs might have a magnitude range beyond the limits dictated by the control surface actuators. The consequences of ignoring these issues can be catastrophic. Supporting this claim NASA Dryden Flight Research Center reports considerable performance degradation and even loss of stability in autonomous soaring flight tests with the subsequent risk of an aircraft crash. The existing control schemes are concluded to suffer from limited performance. Considering the aircraft dynamics and the thermal characteristics we define a vehicle-specific trajectory optimization problem to achieve increased cross-country speed and extended range of flight. In an environment with geographically dispersed set of thermals of possibly limited lifespan, we identify the similarities to the Vehicle Routing Problem (VRP) and provide both exact and approximate guidance algorithms for the navigation of automated UAVs. An additional stochastic approach is used to quantify the performance losses due to incorrect thermal data while dealing with random gust disturbances and onboard sensor measurement inaccuracies. One of the main contributions of this research is a novel adaptive control design with
Adaptive control of space based robot manipulators
NASA Technical Reports Server (NTRS)
Walker, Michael W.; Wee, Liang-Boon
1991-01-01
For space based robots in which the base is free to move, motion planning and control is complicated by uncertainties in the inertial properties of the manipulator and its load. A new adaptive control method is presented for space based robots which achieves globally stable trajectory tracking in the presence of uncertainties in the inertial parameters of the system. A partition is made of the fifteen degree of freedom system dynamics into two parts: a nine degree of freedom invertible portion and a six degree of freedom noninvertible portion. The controller is then designed to achieve trajectory tracking of the invertible portion of the system. This portion consist of the manipulator joint positions and the orientation of the base. The motion of the noninvertible portion is bounded, but unpredictable. This portion consist of the position of the robot's base and the position of the reaction wheel.
Adaptive Strategies for Materials Design using Uncertainties.
Balachandran, Prasanna V; Xue, Dezhen; Theiler, James; Hogden, John; Lookman, Turab
2016-01-21
We compare several adaptive design strategies using a data set of 223 M2AX family of compounds for which the elastic properties [bulk (B), shear (G), and Young's (E) modulus] have been computed using density functional theory. The design strategies are decomposed into an iterative loop with two main steps: machine learning is used to train a regressor that predicts elastic properties in terms of elementary orbital radii of the individual components of the materials; and a selector uses these predictions and their uncertainties to choose the next material to investigate. The ultimate goal is to obtain a material with desired elastic properties in as few iterations as possible. We examine how the choice of data set size, regressor and selector impact the design. We find that selectors that use information about the prediction uncertainty outperform those that don't. Our work is a step in illustrating how adaptive design tools can guide the search for new materials with desired properties.
Adaptive control based on retrospective cost optimization
NASA Astrophysics Data System (ADS)
Santillo, Mario A.
This dissertation studies adaptive control of multi-input, multi-output, linear, time-invariant, discrete-time systems that are possibly unstable and nonminimum phase. We consider both gradient-based adaptive control as well as retrospective-cost-based adaptive control. Retrospective cost optimization is a measure of performance at the current time based on a past window of data and without assumptions about the command or disturbance signals. In particular, retrospective cost optimization acts as an inner loop to the adaptive control algorithm by modifying the performance variables based on the difference between the actual past control inputs and the recomputed past control inputs based on the current control law. We develop adaptive control algorithms that are effective for systems that are nonminimum phase. We consider discrete-time adaptive control since these control laws can be implemented directly in embedded code without requiring an intermediate discretization step. Furthermore, the adaptive controllers in this dissertation are developed under minimal modeling assumptions. In particular, the adaptive controllers require knowledge of the sign of the high-frequency gain and a sufficient number of Markov parameters to approximate the nonminimum-phase zeros (if any). No additional modeling information is necessary. The adaptive controllers presented in this dissertation are developed for full-state-feedback stabilization, static-output-feedback stabilization, as well as dynamic compensation for stabilization, command following, disturbance rejection, and model reference adaptive control. Lyapunov-based stability and convergence proofs are provided for special cases. We present numerical examples to illustrate the algorithms' effectiveness in handling systems that are unstable and/or nonminimum phase and to provide insight into the modeling information required for controller implementation.
Flexible receiver adapter formal design review
Krieg, S.A.
1995-06-13
This memo summarizes the results of the Formal (90%) Design Review process and meetings held to evaluate the design of the Flexible Receiver Adapters, support platforms, and associated equipment. The equipment is part of the Flexible Receiver System used to remove, transport, and store long length contaminated equipment and components from both the double and single-shell underground storage tanks at the 200 area tank farms.
Adaptive hybrid position/force control of robotic manipulators
NASA Technical Reports Server (NTRS)
Pourboghrat, F.
1987-01-01
The problem of position and force control for the compliant motion of the manipulators is considered. The external force and the position of the end-effector are related by a second order impedance function. The force control problem is then translated into a position control problem. For that, an adaptive controller is designed to achieve the compliant motion. The design uses the Liapunov's direct method to derive the adaptation law. The stability of the process is guaranteed from the Liapunov's stability theory. The controller does not require the knowledge of the system parameters for the implementation, and hence is easy for applications.
Global adaptive control for uncertain nonaffine nonlinear hysteretic systems.
Liu, Yong-Hua; Huang, Liangpei; Xiao, Dongming; Guo, Yong
2015-09-01
In this paper, the global output tracking is investigated for a class of uncertain nonlinear hysteretic systems with nonaffine structures. By combining the solution properties of the hysteresis model with the novel backstepping approach, a robust adaptive control algorithm is developed without constructing a hysteresis inverse. The proposed control scheme is further modified to tackle the bounded disturbances by adaptively estimating their bounds. It is rigorously proven that the designed adaptive controllers can guarantee global stability of the closed-loop system. Two numerical examples are provided to show the effectiveness of the proposed control schemes.
Adaptive integral robust control and application to electromechanical servo systems.
Deng, Wenxiang; Yao, Jianyong
2017-03-01
This paper proposes a continuous adaptive integral robust control with robust integral of the sign of the error (RISE) feedback for a class of uncertain nonlinear systems, in which the RISE feedback gain is adapted online to ensure the robustness against disturbances without the prior bound knowledge of the additive disturbances. In addition, an adaptive compensation integrated with the proposed adaptive RISE feedback term is also constructed to further reduce design conservatism when the system also exists parametric uncertainties. Lyapunov analysis reveals the proposed controllers could guarantee the tracking errors are asymptotically converging to zero with continuous control efforts. To illustrate the high performance nature of the developed controllers, numerical simulations are provided. At the end, an application case of an actual electromechanical servo system driven by motor is also studied, with some specific design consideration, and comparative experimental results are obtained to verify the effectiveness of the proposed controllers.
Adaptive fuzzy sliding-mode controller of uncertain nonlinear systems.
Wu, Tai-Zu; Juang, Yau-Tarng
2008-07-01
This paper deals with the design of adaptive fuzzy sliding-mode controllers for the T-S fuzzy model based on the Lyapunov function. It is shown that the Lyapunov function can be used to establish fuzzy sliding surfaces by solving a set of linear matrix inequalities (LMIs). The design of the fuzzy sliding surfaces and the adaptive fuzzy sliding-mode controllers is proposed. The adaptive mechanism is also used to deal with unknown parameter perturbations and external disturbances. Two examples illustrate the feasibility of the proposed methods.
Modular and Adaptive Control of Sound Processing
NASA Astrophysics Data System (ADS)
van Nort, Douglas
parameters. In this view, desired gestural dynamics and sonic response are achieved through modular construction of mapping layers that are themselves subject to parametric control. Complementing this view of the design process, the work concludes with an approach in which the creation of gestural control/sound dynamics are considered in the low-level of the underlying sound model. The result is an adaptive system that is specialized to noise-based transformations that are particularly relevant in an electroacoustic music context. Taken together, these different approaches to design and evaluation result in a unified framework for creation of an instrumental system. The key point is that this framework addresses the influence that mapping structure and control dynamics have on the perceived feel of the instrument. Each of the results illustrate this using either top-down or bottom-up approaches that consider musical control context, thereby pointing to the greater potential for refined sonic articulation that can be had by combining them in the design process.
Monitoring the Performance of a Neuro-Adaptive Controller
NASA Technical Reports Server (NTRS)
Schumann, Johann; Gupta, Pramod
2004-01-01
Traditional control has proven to be ineffective to deal with catastrophic changes or slow degradation of complex, highly nonlinear systems like aircraft or spacecraft, robotics, or flexible manufacturing systems. Control systems which can adapt toward changes in the plant have been proposed as they offer many advantages (e.g., better performance, controllability of aircraft despite of a damaged wing). In the last few years, use of neural networks in adaptive controllers (neuro-adaptive control) has been studied actively. Neural networks of various architectures have been used successfully for online learning adaptive controllers. In such a typical control architecture, the neural network receives as an input the current deviation between desired and actual plant behavior and, by on-line training, tries to minimize this discrepancy (e.g.; by producing a control augmentation signal). Even though neuro-adaptive controllers offer many advantages, they have not been used in mission- or safety-critical applications, because performance and safety guarantees cannot b e provided at development time-a major prerequisite for safety certification (e.g., by the FAA or NASA). Verification and Validation (V&V) of an adaptive controller requires the development of new analysis techniques which can demonstrate that the control system behaves safely under all operating conditions. Because of the requirement to adapt toward unforeseen changes during operation, i.e., in real time, design-time V&V is not sufficient.
Monitoring the Performance of a Neuro-Adaptive Controller
NASA Technical Reports Server (NTRS)
Schumann, Johann; Gupta, Pramod
2004-01-01
Traditional control has proven to be ineffective to deal with catastrophic changes or slow degradation of complex, highly nonlinear systems like aircraft or spacecraft, robotics, or flexible manufacturing systems. Control systems which can adapt toward changes in the plant have been proposed as they offer many advantages (e.g., better performance, controllability of aircraft despite of a damaged wing). In the last few years, use of neural networks in adaptive controllers (neuro-adaptive control) has been studied actively. Neural networks of various architectures have been used successfully for online learning adaptive controllers. In such a typical control architecture, the neural network receives as an input the current deviation between desired and actual plant behavior and, by on-line training, tries to minimize this discrepancy (e.g.; by producing a control augmentation signal). Even though neuro-adaptive controllers offer many advantages, they have not been used in mission- or safety-critical applications, because performance and safety guarantees cannot b e provided at development time-a major prerequisite for safety certification (e.g., by the FAA or NASA). Verification and Validation (V&V) of an adaptive controller requires the development of new analysis techniques which can demonstrate that the control system behaves safely under all operating conditions. Because of the requirement to adapt toward unforeseen changes during operation, i.e., in real time, design-time V&V is not sufficient.
Recursive Deadbeat Controller Design
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Phan, Minh Q.
1997-01-01
This paper presents a recursive algorithm for a deadbeat predictive controller design. The method combines together the concepts of system identification and deadbeat controller designs. It starts with the multi-step output prediction equation and derives the control force in terms of past input and output time histories. The formulation thus derived satisfies simultaneously system identification and deadbeat controller design requirements. As soon as the coefficient matrices are identified satisfying the output prediction equation, no further work is required to compute the deadbeat control gain matrices. The method can be implemented recursively just as any typical recursive system identification techniques.
Parameter testing for lattice filter based adaptive modal control systems
NASA Technical Reports Server (NTRS)
Sundararajan, N.; Williams, J. P.; Montgomery, R. C.
1983-01-01
For Large Space Structures (LSS), an adaptive control system is highly desirable. The present investigation is concerned with an 'indirect' adaptive control scheme wherein the system order, mode shapes, and modal amplitudes are estimated on-line using an identification scheme based on recursive, least-squares, lattice filters. Using the identified model parameters, a modal control law based on a pole-placement scheme with the objective of vibration suppression is employed. A method is presented for closed loop adaptive control of a flexible free-free beam. The adaptive control scheme consists of a two stage identification scheme working in series and a modal pole placement control scheme. The main conclusion from the current study is that the identified parameters cannot be directly used for controller design purposes.
Parameter testing for lattice filter based adaptive modal control systems
NASA Technical Reports Server (NTRS)
Sundararajan, N.; Williams, J. P.; Montgomery, R. C.
1983-01-01
For Large Space Structures (LSS), an adaptive control system is highly desirable. The present investigation is concerned with an 'indirect' adaptive control scheme wherein the system order, mode shapes, and modal amplitudes are estimated on-line using an identification scheme based on recursive, least-squares, lattice filters. Using the identified model parameters, a modal control law based on a pole-placement scheme with the objective of vibration suppression is employed. A method is presented for closed loop adaptive control of a flexible free-free beam. The adaptive control scheme consists of a two stage identification scheme working in series and a modal pole placement control scheme. The main conclusion from the current study is that the identified parameters cannot be directly used for controller design purposes.
Wavefront Control for Extreme Adaptive Optics
Poyneer, L A
2003-07-16
Current plans for Extreme Adaptive Optics systems place challenging requirements on wave-front control. This paper focuses on control system dynamics, wave-front sensing and wave-front correction device characteristics. It may be necessary to run an ExAO system after a slower, low-order AO system. Running two independent systems can result in very good temporal performance, provided specific design constraints are followed. The spatially-filtered wave-front sensor, which prevents aliasing and improves PSF sensitivity, is summarized. Different models of continuous and segmented deformable mirrors are studied. In a noise-free case, a piston-tip-tilt segmented MEMS device can achieve nearly equivalent performance to a continuous-sheet DM in compensating for a static phase aberration with use of spatial filtering.
Wavefront control for extreme adaptive optics
NASA Astrophysics Data System (ADS)
Poyneer, Lisa A.; Macintosh, Bruce A.
2003-12-01
Current plans for Extreme Adaptive Optics systems place challenging requirements on wave-front control. This paper focuses on control system dynamics, wave-front sensing and wave-front correction device characteristics. It may be necessary to run an ExAO system after a slower, low-order AO system. Running two independent systems can result in very good temporal performance, provided specific design constraints are followed. The spatially-filtered wave-front sensor, which prevents aliasing and improves PSF sensitivity, is summarized. Different models of continuous and segmented deformable mirrors are studied. In a noise-free case, a piston-tip-tilt segmented MEMS device can achieve nearly equivalent performance to a continuous-sheet DM in compensating for a static phase aberration with use of spatial filtering.
Hurley, Jane C; Hollingshead, Kevin E; Todd, Michael; Jarrett, Catherine L; Tucker, Wesley J; Angadi, Siddhartha S
2015-01-01
Background Walking is a widely accepted and frequently targeted health promotion approach to increase physical activity (PA). Interventions to increase PA have produced only small improvements. Stronger and more potent behavioral intervention components are needed to increase time spent in PA, improve cardiometabolic risk markers, and optimize health. Objective Our aim is to present the rationale and methods from the WalkIT Trial, a 4-month factorial randomized controlled trial (RCT) in inactive, overweight/obese adults. The main purpose of the study was to evaluate whether intensive adaptive components result in greater improvements to adults’ PA compared to the static intervention components. Methods Participants enrolled in a 2x2 factorial RCT and were assigned to one of four semi-automated, text message–based walking interventions. Experimental components included adaptive versus static steps/day goals, and immediate versus delayed reinforcement. Principles of percentile shaping and behavioral economics were used to operationalize experimental components. A Fitbit Zip measured the main outcome: participants’ daily physical activity (steps and cadence) over the 4-month duration of the study. Secondary outcomes included self-reported PA, psychosocial outcomes, aerobic fitness, and cardiorespiratory risk factors assessed pre/post in a laboratory setting. Participants were recruited through email listservs and websites affiliated with the university campus, community businesses and local government, social groups, and social media advertising. Results This study has completed data collection as of December 2014, but data cleaning and preliminary analyses are still in progress. We expect to complete analysis of the main outcomes in late 2015 to early 2016. Conclusions The Walking Interventions through Texting (WalkIT) Trial will further the understanding of theory-based intervention components to increase the PA of men and women who are healthy, insufficiently
Hurley, Jane C; Hollingshead, Kevin E; Todd, Michael; Jarrett, Catherine L; Tucker, Wesley J; Angadi, Siddhartha S; Adams, Marc A
2015-09-11
Walking is a widely accepted and frequently targeted health promotion approach to increase physical activity (PA). Interventions to increase PA have produced only small improvements. Stronger and more potent behavioral intervention components are needed to increase time spent in PA, improve cardiometabolic risk markers, and optimize health. Our aim is to present the rationale and methods from the WalkIT Trial, a 4-month factorial randomized controlled trial (RCT) in inactive, overweight/obese adults. The main purpose of the study was to evaluate whether intensive adaptive components result in greater improvements to adults' PA compared to the static intervention components. Participants enrolled in a 2x2 factorial RCT and were assigned to one of four semi-automated, text message-based walking interventions. Experimental components included adaptive versus static steps/day goals, and immediate versus delayed reinforcement. Principles of percentile shaping and behavioral economics were used to operationalize experimental components. A Fitbit Zip measured the main outcome: participants' daily physical activity (steps and cadence) over the 4-month duration of the study. Secondary outcomes included self-reported PA, psychosocial outcomes, aerobic fitness, and cardiorespiratory risk factors assessed pre/post in a laboratory setting. Participants were recruited through email listservs and websites affiliated with the university campus, community businesses and local government, social groups, and social media advertising. This study has completed data collection as of December 2014, but data cleaning and preliminary analyses are still in progress. We expect to complete analysis of the main outcomes in late 2015 to early 2016. The Walking Interventions through Texting (WalkIT) Trial will further the understanding of theory-based intervention components to increase the PA of men and women who are healthy, insufficiently active and are overweight or obese. WalkIT is one of
Identification and dual adaptive control of a turbojet engine
NASA Technical Reports Server (NTRS)
Merrill, W.; Leininger, G.
1979-01-01
The objective of this paper is to utilize the design methods of modern control theory to realize a 'dual-adaptive' feedback control unit for a highly non-linear single spool airbreathing turbojet engine. Using a very detailed and accurate simulation of the non-linear engine as the data source, linear operating point models of unspecified dimension are identified. Feedback control laws are designed at each operating point for a prespecified set of sampling rates using sampled-data output regulator theory. The control system sampling rate is determined by an adaptive sampling algorithm in correspondence with turbojet engine performance. The result is a 'dual-adpative' control law that is functionally dependent upon the sampling rate selected and environmental operating conditions. Simulation transients demonstrate the utility of the dual-adaptive design to improve on-board computer utilization while maintaining acceptable levels of engine performance.
Digital adaptive controllers for VTOL vehicles. Volume 1: Concept evaluation
NASA Technical Reports Server (NTRS)
Hartmann, G. L.; Stein, G.; Pratt, S. G.
1979-01-01
A digital self-adaptive flight control system was developed for flight test in the VTOL approach and landing technology (VALT) research aircraft (a modified CH-47 helicopter). The control laws accept commands from an automatic on-board guidance system. The primary objective of the control laws is to provide good command-following with a minimum cross-axis response. Three attitudes and vertical velocity are separately commanded. Adaptation of the control laws is based on information from rate and attitude gyros and a vertical velocity measurement. The final design resulted from a comparison of two different adaptive concepts--one based on explicit parameter estimates from a real-time maximum-likelihood estimation algorithm, the other based on an implicit model reference adaptive system. The two designs were compared on the basis of performance and complexity.
Flight Approach to Adaptive Control Research
NASA Technical Reports Server (NTRS)
Pavlock, Kate Maureen; Less, James L.; Larson, David Nils
2011-01-01
The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The testbed served as a full-scale vehicle to test and validate adaptive flight control research addressing technical challenges involved with reducing risk to enable safe flight in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.
Flight Approach to Adaptive Control Research
NASA Technical Reports Server (NTRS)
Pavlock, Kate Maureen; Less, James L.; Larson, David Nils
2011-01-01
The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The testbed served as a full-scale vehicle to test and validate adaptive flight control research addressing technical challenges involved with reducing risk to enable safe flight in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.
Zhao, Guoliang; Sun, Kaibiao; Li, Hongxing
2013-01-01
This paper proposes new methodologies for the design of adaptive integral-sliding mode control. A tensor product model transformation based adaptive integral-sliding mode control law with respect to uncertainties and perturbations is studied, while upper bounds on the perturbations and uncertainties are assumed to be unknown. The advantage of proposed controllers consists in having a dynamical adaptive control gain to establish a sliding mode right at the beginning of the process. Gain dynamics ensure a reasonable adaptive gain with respect to the uncertainties. Finally, efficacy of the proposed controller is verified by simulations on an uncertain nonlinear system model.
Zhao, Guoliang; Li, Hongxing
2013-01-01
This paper proposes new methodologies for the design of adaptive integral-sliding mode control. A tensor product model transformation based adaptive integral-sliding mode control law with respect to uncertainties and perturbations is studied, while upper bounds on the perturbations and uncertainties are assumed to be unknown. The advantage of proposed controllers consists in having a dynamical adaptive control gain to establish a sliding mode right at the beginning of the process. Gain dynamics ensure a reasonable adaptive gain with respect to the uncertainties. Finally, efficacy of the proposed controller is verified by simulations on an uncertain nonlinear system model. PMID:24453897
Closing the Certification Gaps in Adaptive Flight Control Software
NASA Technical Reports Server (NTRS)
Jacklin, Stephen A.
2008-01-01
Over the last five decades, extensive research has been performed to design and develop adaptive control systems for aerospace systems and other applications where the capability to change controller behavior at different operating conditions is highly desirable. Although adaptive flight control has been partially implemented through the use of gain-scheduled control, truly adaptive control systems using learning algorithms and on-line system identification methods have not seen commercial deployment. The reason is that the certification process for adaptive flight control software for use in national air space has not yet been decided. The purpose of this paper is to examine the gaps between the state-of-the-art methodologies used to certify conventional (i.e., non-adaptive) flight control system software and what will likely to be needed to satisfy FAA airworthiness requirements. These gaps include the lack of a certification plan or process guide, the need to develop verification and validation tools and methodologies to analyze adaptive controller stability and convergence, as well as the development of metrics to evaluate adaptive controller performance at off-nominal flight conditions. This paper presents the major certification gap areas, a description of the current state of the verification methodologies, and what further research efforts will likely be needed to close the gaps remaining in current certification practices. It is envisioned that closing the gap will require certain advances in simulation methods, comprehensive methods to determine learning algorithm stability and convergence rates, the development of performance metrics for adaptive controllers, the application of formal software assurance methods, the application of on-line software monitoring tools for adaptive controller health assessment, and the development of a certification case for adaptive system safety of flight.
An improved adaptive control for repetitive motion of robots
NASA Technical Reports Server (NTRS)
Pourboghrat, F.
1989-01-01
An adaptive control algorithm is proposed for a class of nonlinear systems, such as robotic manipulators, which is capable of improving its performance in repetitive motions. When the task is repeated, the error between the desired trajectory and that of the system is guaranteed to decrease. The design is based on the combination of a direct adaptive control and a learning process. This method does not require any knowledge of the dynamic parameters of the system.
A Methodology for Investigating Adaptive Postural Control
NASA Technical Reports Server (NTRS)
McDonald, P. V.; Riccio, G. E.
1999-01-01
overt goals. It follows that an essential characteristic of postural behavior is the effective maintenance of the orientation and stability of the sensory and motor "platforms" (e.g., head or shoulders) over variations in the human, the environment and the task. This general skill suggests that individuals should be sensitive to the functional consequences of body configuration and stability. In other words, individuals should perceive the relation between configuration, stability, and performance so that they can adaptively control their interaction with the surroundings. Human-environment interactions constitute robust systems in that individuals can maintain the stability of such interactions over uncertainty about and variations in the dynamics of the interaction. Robust interactions allow individuals to adopt orientations and configurations that are not optimal with respect to purely energetic criteria. Individuals can tolerate variation in postural states, and such variation can serve an important function in adaptive systems. Postural variability generates stimulation which is "textured" by the dynamics of the human-environment system. The texture or structure in stimulation provides information about variation in dynamics, and such information can be sufficient to guide adaption in control strategies. Our method were designed to measure informative patterns of movement variability.
A Methodology for Investigating Adaptive Postural Control
NASA Technical Reports Server (NTRS)
McDonald, P. V.; Riccio, G. E.
1999-01-01
overt goals. It follows that an essential characteristic of postural behavior is the effective maintenance of the orientation and stability of the sensory and motor "platforms" (e.g., head or shoulders) over variations in the human, the environment and the task. This general skill suggests that individuals should be sensitive to the functional consequences of body configuration and stability. In other words, individuals should perceive the relation between configuration, stability, and performance so that they can adaptively control their interaction with the surroundings. Human-environment interactions constitute robust systems in that individuals can maintain the stability of such interactions over uncertainty about and variations in the dynamics of the interaction. Robust interactions allow individuals to adopt orientations and configurations that are not optimal with respect to purely energetic criteria. Individuals can tolerate variation in postural states, and such variation can serve an important function in adaptive systems. Postural variability generates stimulation which is "textured" by the dynamics of the human-environment system. The texture or structure in stimulation provides information about variation in dynamics, and such information can be sufficient to guide adaption in control strategies. Our method were designed to measure informative patterns of movement variability.
Design of scheduling and rate-adaptation algorithms for adaptive HTTP streaming
NASA Astrophysics Data System (ADS)
Hesse, Stephan
2013-09-01
In adaptive HTTP streaming model, the HTTP server stores multiple representations of media content, encoded at different rates. It is the function of a streaming client to select and retrieve segments of appropriate representations to enable continuous media playback under varying network conditions. In this paper we describe design of a control mechanism enabling such a selection and retrieval of media data during streaming session. We also describe the architecture of a streaming client for adaptive HTTP streaming and provide simulation data illustrating the effectiveness of the proposed control mechanism for handling bandwidth fluctuations typical for TCP traffic.
Linear adaptive control of a single-tether system
NASA Technical Reports Server (NTRS)
Greene, M. E.; Carter, J. T.; Walls, J. L.
1992-01-01
A control law for a single-tether orbiting satellite system based on a reduced order linear adaptive control technique is presented. The main advantages of this technique are its design simplicity and the facts that specific system parameters and model linearization are not required when designing the controller. Two controllers are developed: one which uses only tension in the tether as control actuation and one which uses both tension and in-plane thrusters as control actuation. Both a sixth-order nonlinear and an 11th-order bead model of a tethered satellite system are used for simulation purposes, demonstrating the ability of the controller to manage an uncertain system. Retrieval and stationkeeping results using these nonlinear models and the linear adaptive controller demonstrate the feasibility of the method. The robustness of the controller with respect to parameter uncertainties is also demonstrated by changing the nonlinear model and parameters within the model without redesigning the controller.
Adaptive control of nonlinear systems with actuator failures and uncertainties
NASA Astrophysics Data System (ADS)
Tang, Xidong
2005-11-01
Actuator failures have damaging effect on the performance of control systems, leading to undesired system behavior or even instability. Actuator failures are unknown in terms of failure time instants, failure patterns, and failure parameters. For system safety and reliability, the compensation of actuator failures is of both theoretical and practical significance. This dissertation is to further the study of adaptive designs for actuator failure compensation to nonlinear systems. In this dissertation a theoretical framework for adaptive control of nonlinear systems with actuator failures and system uncertainties is established. The contributions are the development of new adaptive nonlinear control schemes to handle unknown actuator failures for convergent tracking performance, the specification of conditions as a guideline for applications and system designs, and the extension of the adaptive nonlinear control theory. In the dissertation, adaptive actuator failure compensation is studied for several classes of nonlinear systems. In particular, adaptive state feedback schemes are developed for feedback linearizable systems and parametric strict-feedback systems. Adaptive output feedback schemes are deigned for output-feedback systems and a class of systems with unknown state-dependent nonlinearities. Furthermore, adaptive designs are addressed for MIMO systems with actuator failures, based on two grouping techniques: fixed grouping and virtual grouping. Theoretical issues such as controller structures, actuation schemes, zero dynamics, observation, grouping conditions, closed-loop stability, and tracking performance are extensively investigated. For each scheme, design conditions are clarified, and detailed stability and performance analysis is presented. A variety of applications including a wing-rock model, twin otter aircraft, hypersonic aircraft, and cooperative multiple manipulators are addressed with simulation results showing the effectiveness of the
The adaptive control system of acetylene generator
NASA Astrophysics Data System (ADS)
Kovaliuk, D. O.; Kovaliuk, Oleg; Burlibay, Aron; Gromaszek, Konrad
2015-12-01
The method of acetylene production in acetylene generator was analyzed. It was found that impossible to provide the desired process characteristics by the PID-controller. The adaptive control system of acetylene generator was developed. The proposed system combines the classic controller and fuzzy subsystem for controller parameters tuning.
Wireless Control of an LC Adaptive Lens
NASA Astrophysics Data System (ADS)
Vdovin, G.; Loktev, M.; Zhang, X.
We consider using liquid crystal adaptive lenses to correct the accommodation loss and higher-order aberrations of the human eye. In this configuration, the adaptive lens is embedded into the eye lens implant and can be controlled through a wireless inductive link. In this work we experimentally demonstrate a wireless control of a liquid crystal adaptive lens in a wide range of its focusing power by using two coupled coils with the primary coil driven from a low-voltage source through a switching control circuit and the secondary coil used to drive the lens.
Chaotic satellite attitude control by adaptive approach
NASA Astrophysics Data System (ADS)
Wei, Wei; Wang, Jing; Zuo, Min; Liu, Zaiwen; Du, Junping
2014-06-01
In this article, chaos control of satellite attitude motion is considered. Adaptive control based on dynamic compensation is utilised to suppress the chaotic behaviour. Control approaches with three control inputs and with only one control input are proposed. Since the adaptive control employed is based on dynamic compensation, faithful model of the system is of no necessity. Sinusoidal disturbance and parameter uncertainties are considered to evaluate the robustness of the closed-loop system. Both of the approaches are confirmed by theoretical and numerical results.
Investigation of the Multiple Method Adaptive Control (MMAC) method for flight control systems
NASA Technical Reports Server (NTRS)
Athans, M.; Baram, Y.; Castanon, D.; Dunn, K. P.; Green, C. S.; Lee, W. H.; Sandell, N. R., Jr.; Willsky, A. S.
1979-01-01
The stochastic adaptive control of the NASA F-8C digital-fly-by-wire aircraft using the multiple model adaptive control (MMAC) method is presented. The selection of the performance criteria for the lateral and the longitudinal dynamics, the design of the Kalman filters for different operating conditions, the identification algorithm associated with the MMAC method, the control system design, and simulation results obtained using the real time simulator of the F-8 aircraft at the NASA Langley Research Center are discussed.
Adaptive Strategies for Materials Design using Uncertainties
Balachandran, Prasanna V.; Xue, Dezhen; Theiler, James; Hogden, John; Lookman, Turab
2016-01-01
We compare several adaptive design strategies using a data set of 223 M2AX family of compounds for which the elastic properties [bulk (B), shear (G), and Young’s (E) modulus] have been computed using density functional theory. The design strategies are decomposed into an iterative loop with two main steps: machine learning is used to train a regressor that predicts elastic properties in terms of elementary orbital radii of the individual components of the materials; and a selector uses these predictions and their uncertainties to choose the next material to investigate. The ultimate goal is to obtain a material with desired elastic properties in as few iterations as possible. We examine how the choice of data set size, regressor and selector impact the design. We find that selectors that use information about the prediction uncertainty outperform those that don’t. Our work is a step in illustrating how adaptive design tools can guide the search for new materials with desired properties. PMID:26792532
Adaptive strategies for materials design using uncertainties
Balachandran, Prasanna V.; Xue, Dezhen; Theiler, James; ...
2016-01-21
Here, we compare several adaptive design strategies using a data set of 223 M2AX family of compounds for which the elastic properties [bulk (B), shear (G), and Young’s (E) modulus] have been computed using density functional theory. The design strategies are decomposed into an iterative loop with two main steps: machine learning is used to train a regressor that predicts elastic properties in terms of elementary orbital radii of the individual components of the materials; and a selector uses these predictions and their uncertainties to choose the next material to investigate. The ultimate goal is to obtain a material withmore » desired elastic properties in as few iterations as possible. We examine how the choice of data set size, regressor and selector impact the design. We find that selectors that use information about the prediction uncertainty outperform those that don’t. Our work is a step in illustrating how adaptive design tools can guide the search for new materials with desired properties.« less
Adaptive strategies for materials design using uncertainties
Balachandran, Prasanna V.; Xue, Dezhen; Theiler, James; Hogden, John; Lookman, Turab
2016-01-21
Here, we compare several adaptive design strategies using a data set of 223 M2AX family of compounds for which the elastic properties [bulk (B), shear (G), and Young’s (E) modulus] have been computed using density functional theory. The design strategies are decomposed into an iterative loop with two main steps: machine learning is used to train a regressor that predicts elastic properties in terms of elementary orbital radii of the individual components of the materials; and a selector uses these predictions and their uncertainties to choose the next material to investigate. The ultimate goal is to obtain a material with desired elastic properties in as few iterations as possible. We examine how the choice of data set size, regressor and selector impact the design. We find that selectors that use information about the prediction uncertainty outperform those that don’t. Our work is a step in illustrating how adaptive design tools can guide the search for new materials with desired properties.
Adaptive Attitude Control of the Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Muse, Jonathan
2010-01-01
An H(sub infinity)-NMA architecture for the Crew Launch Vehicle was developed in a state feedback setting. The minimal complexity adaptive law was shown to improve base line performance relative to a performance metric based on Crew Launch Vehicle design requirements for all most all of the Worst-on-Worst dispersion cases. The adaptive law was able to maintain stability for some dispersions that are unstable with the nominal control law. Due to the nature of the H(sub infinity)-NMA architecture, the augmented adaptive control signal has low bandwidth which is a great benefit for a manned launch vehicle.
Adaptive control for payload launch vibration isolation
NASA Astrophysics Data System (ADS)
Jarosh, Julian R.; Agnes, Gregory S.; Karahalis, Gregory G.
2001-07-01
The Department of Defense has identified launch vibration isolation as a major research interest. Reducing the loads a satellite experiences during launch will greatly enhance the reliability and lifetime and decrease the payload structural mass. DoD space programs stand to benefit significantly from advances in vibration isolation technology. This study explores potential hybrid vibration isolation using adaptive control with a passive isolator. Lyapunov analysis is used to develop the structural adaptive control scheme. Simulink and Matlab simulations investigate these control methodologies on a lumped mass dynamic model of a satellite and its representative launch vehicle. The results are compared to Proportional-Integral-Derivative (PID) control and skyhook damper active control methods. The results of the modeling indicate adaptive control achieves up to a 90 percent reduction in loads on the payload when compared to the conventional active control methods. The adaptive controller compensated for the loads being transmitted to the payload from the rest of the launch vehicle. The current adaptive controller was not able to effectively control the motion of a vibrating subcomponent within the payload or the subcomponent's effect on the overall payload itself.
Wilson, David G [Tijeras, NM; Robinett, III, Rush D.
2012-02-21
A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.
Adaptive Mesh Refinement for Microelectronic Device Design
NASA Technical Reports Server (NTRS)
Cwik, Tom; Lou, John; Norton, Charles
1999-01-01
Finite element and finite volume methods are used in a variety of design simulations when it is necessary to compute fields throughout regions that contain varying materials or geometry. Convergence of the simulation can be assessed by uniformly increasing the mesh density until an observable quantity stabilizes. Depending on the electrical size of the problem, uniform refinement of the mesh may be computationally infeasible due to memory limitations. Similarly, depending on the geometric complexity of the object being modeled, uniform refinement can be inefficient since regions that do not need refinement add to the computational expense. In either case, convergence to the correct (measured) solution is not guaranteed. Adaptive mesh refinement methods attempt to selectively refine the region of the mesh that is estimated to contain proportionally higher solution errors. The refinement may be obtained by decreasing the element size (h-refinement), by increasing the order of the element (p-refinement) or by a combination of the two (h-p refinement). A successful adaptive strategy refines the mesh to produce an accurate solution measured against the correct fields without undue computational expense. This is accomplished by the use of a) reliable a posteriori error estimates, b) hierarchal elements, and c) automatic adaptive mesh generation. Adaptive methods are also useful when problems with multi-scale field variations are encountered. These occur in active electronic devices that have thin doped layers and also when mixed physics is used in the calculation. The mesh needs to be fine at and near the thin layer to capture rapid field or charge variations, but can coarsen away from these layers where field variations smoothen and charge densities are uniform. This poster will present an adaptive mesh refinement package that runs on parallel computers and is applied to specific microelectronic device simulations. Passive sensors that operate in the infrared portion of
Adaptive Mesh Refinement for Microelectronic Device Design
NASA Technical Reports Server (NTRS)
Cwik, Tom; Lou, John; Norton, Charles
1999-01-01
Finite element and finite volume methods are used in a variety of design simulations when it is necessary to compute fields throughout regions that contain varying materials or geometry. Convergence of the simulation can be assessed by uniformly increasing the mesh density until an observable quantity stabilizes. Depending on the electrical size of the problem, uniform refinement of the mesh may be computationally infeasible due to memory limitations. Similarly, depending on the geometric complexity of the object being modeled, uniform refinement can be inefficient since regions that do not need refinement add to the computational expense. In either case, convergence to the correct (measured) solution is not guaranteed. Adaptive mesh refinement methods attempt to selectively refine the region of the mesh that is estimated to contain proportionally higher solution errors. The refinement may be obtained by decreasing the element size (h-refinement), by increasing the order of the element (p-refinement) or by a combination of the two (h-p refinement). A successful adaptive strategy refines the mesh to produce an accurate solution measured against the correct fields without undue computational expense. This is accomplished by the use of a) reliable a posteriori error estimates, b) hierarchal elements, and c) automatic adaptive mesh generation. Adaptive methods are also useful when problems with multi-scale field variations are encountered. These occur in active electronic devices that have thin doped layers and also when mixed physics is used in the calculation. The mesh needs to be fine at and near the thin layer to capture rapid field or charge variations, but can coarsen away from these layers where field variations smoothen and charge densities are uniform. This poster will present an adaptive mesh refinement package that runs on parallel computers and is applied to specific microelectronic device simulations. Passive sensors that operate in the infrared portion of
Decentralized digital adaptive control of robot motion
NASA Technical Reports Server (NTRS)
Tarokh, M.
1990-01-01
A decentralized model reference adaptive scheme is developed for digital control of robot manipulators. The adaptation laws are derived using hyperstability theory, which guarantees asymptotic trajectory tracking despite gross robot parameter variations. The control scheme has a decentralized structure in the sense that each local controller receives only its joint angle measurement to produce its joint torque. The independent joint controllers have simple structures and can be programmed using a very simple and computationally fast algorithm. As a result, the scheme is suitable for real-time motion control.
Nutrient Control Design Manual
The purpose of this EPA design manual is to provide updated, state‐of‐the‐technology design guidance on nitrogen and phosphorus control at municipal Wastewater Treatment Plants (WWTPs). Similar to previous EPA manuals, this manual contains extensive information on the principles ...
Nutrient Control Design Manual
The purpose of this EPA design manual is to provide updated, state‐of‐the‐technology design guidance on nitrogen and phosphorus control at municipal Wastewater Treatment Plants (WWTPs). Similar to previous EPA manuals, this manual contains extensive information on the principles ...
Point estimation in adaptive enrichment designs.
Kunzmann, Kevin; Benner, Laura; Kieser, Meinhard
2017-08-07
Adaptive enrichment designs are an attractive option for clinical trials that aim at demonstrating efficacy of therapies, which may show different benefit for the full patient population and a prespecified subgroup. In these designs, based on interim data, either the subgroup or the full population is selected for further exploration. When selection is based on efficacy data, this introduces bias to the commonly used maximum likelihood estimator. For the situation of two-stage designs with a single prespecified subgroup, we present six alternative estimators and investigate their performance in a simulation study. The most consistent reduction of bias over the range of scenarios considered was achieved by a method combining the uniformly minimum variance conditionally unbiased estimator with a conditional moment estimator. Application of the methods is illustrated by a clinical trial example. Copyright © 2017 John Wiley & Sons, Ltd.
Novel hybrid adaptive controller for manipulation in complex perturbation environments.
Smith, Alex M C; Yang, Chenguang; Ma, Hongbin; Culverhouse, Phil; Cangelosi, Angelo; Burdet, Etienne
2015-01-01
In this paper we present a hybrid control scheme, combining the advantages of task-space and joint-space control. The controller is based on a human-like adaptive design, which minimises both control effort and tracking error. Our novel hybrid adaptive controller has been tested in extensive simulations, in a scenario where a Baxter robot manipulator is affected by external disturbances in the form of interaction with the environment and tool-like end-effector perturbations. The results demonstrated improved performance in the hybrid controller over both of its component parts. In addition, we introduce a novel method for online adaptation of learning parameters, using the fuzzy control formalism to utilise expert knowledge from the experimenter. This mechanism of meta-learning induces further improvement in performance and avoids the need for tuning through trial testing.
Novel Hybrid Adaptive Controller for Manipulation in Complex Perturbation Environments
Smith, Alex M. C.; Yang, Chenguang; Ma, Hongbin; Culverhouse, Phil; Cangelosi, Angelo; Burdet, Etienne
2015-01-01
In this paper we present a hybrid control scheme, combining the advantages of task-space and joint-space control. The controller is based on a human-like adaptive design, which minimises both control effort and tracking error. Our novel hybrid adaptive controller has been tested in extensive simulations, in a scenario where a Baxter robot manipulator is affected by external disturbances in the form of interaction with the environment and tool-like end-effector perturbations. The results demonstrated improved performance in the hybrid controller over both of its component parts. In addition, we introduce a novel method for online adaptation of learning parameters, using the fuzzy control formalism to utilise expert knowledge from the experimenter. This mechanism of meta-learning induces further improvement in performance and avoids the need for tuning through trial testing. PMID:26029916
Adaptive control of closed-circuit anesthesia.
Vishnoi, R; Roy, R J
1991-01-01
Closed-circuit anesthesia (CCA) is more economical and ecologically safer than open circuit anesthesia. However, gas concentrations are more difficult to control. Computer control of CCA has been proposed to facilitate its use. Past efforts have either been limited to the control of anesthetic gas concentrations or apply only to a small group of patients. This paper describes a comprehensive control system applicable to a large class of patients. This system controls the end-tidal oxygen and anesthetic gas concentrations, and the circuit volume. The CCA process was modeled by writing mass balance equations. Simplifying assumptions yielded a bilinear single-input-single-output model for the anesthetic gas concentration and a bilinear multiple-input-multiple-output model for the circuit volume and oxygen concentration. One-step-ahead controllers were used to control these two subsystems. Simulations showed that the control performance was most sensitive to the gas uptakes. Three independent, least-mean-squares estimation schemes were implemented to estimate the uptakes of oxygen, nitrous oxide, and anesthetic gas. These estimates were used in the control law and resulted in explicit adaptive control. The performance of the adaptive controller was compared to that of a fixed controller (with precalculated gas uptakes) in five animal experiments. The adaptive controller performed better than the fixed controller in all cases. The most significant difference was in the anesthetic gas response time 3.6 +/- 0.70 min for adaptive control and 7.04 +/- 5.62 min for fixed control. The adaptive controller was also robust with respect to variations in the system parameters such as the functional residual capacity, leak, deadspace and gas uptakes.(ABSTRACT TRUNCATED AT 250 WORDS)
Robust adaptive tracking control for nonholonomic mobile manipulator with uncertainties.
Peng, Jinzhu; Yu, Jie; Wang, Jie
2014-07-01
In this paper, mobile manipulator is divided into two subsystems, that is, nonholonomic mobile platform subsystem and holonomic manipulator subsystem. First, the kinematic controller of the mobile platform is derived to obtain a desired velocity. Second, regarding the coupling between the two subsystems as disturbances, Lyapunov functions of the two subsystems are designed respectively. Third, a robust adaptive tracking controller is proposed to deal with the unknown upper bounds of parameter uncertainties and disturbances. According to the Lyapunov stability theory, the derived robust adaptive controller guarantees global stability of the closed-loop system, and the tracking errors and adaptive coefficient errors are all bounded. Finally, simulation results show that the proposed robust adaptive tracking controller for nonholonomic mobile manipulator is effective and has good tracking capacity. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
L1 adaptive output-feedback control architectures
NASA Astrophysics Data System (ADS)
Kharisov, Evgeny
This research focuses on development of L 1 adaptive output-feedback control. The objective is to extend the L1 adaptive control framework to a wider class of systems, as well as obtain architectures that afford more straightforward tuning. We start by considering an existing L1 adaptive output-feedback controller for non-strictly positive real systems based on piecewise constant adaptation law. It is shown that L 1 adaptive control architectures achieve decoupling of adaptation from control, which leads to bounded away from zero time-delay and gain margins in the presence of arbitrarily fast adaptation. Computed performance bounds provide quantifiable performance guarantees both for system output and control signal in transient and steady state. A noticeable feature of the L1 adaptive controller is that its output behavior can be made close to the behavior of a linear time-invariant system. In particular, proper design of the lowpass filter can achieve output response, which almost scales for different step reference commands. This property is relevant to applications with human operator in the loop (for example: control augmentation systems of piloted aircraft), since predictability of the system response is necessary for adequate performance of the operator. Next we present applications of the L1 adaptive output-feedback controller in two different fields of engineering: feedback control of human anesthesia, and ascent control of a NASA crew launch vehicle (CLV). The purpose of the feedback controller for anesthesia is to ensure that the patient's level of sedation during surgery follows a prespecified profile. The L1 controller is enabled by anesthesiologist after he/she achieves sufficient patient sedation level by introducing sedatives manually. This problem formulation requires safe switching mechanism, which avoids controller initialization transients. For this purpose, we used an L1 adaptive controller with special output predictor initialization routine
An Optimal Control Modification to Model-Reference Adaptive Control for Fast Adaptation
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Krishnakumar, Kalmanje; Boskovic, Jovan
2008-01-01
This paper presents a method that can achieve fast adaptation for a class of model-reference adaptive control. It is well-known that standard model-reference adaptive control exhibits high-gain control behaviors when a large adaptive gain is used to achieve fast adaptation in order to reduce tracking error rapidly. High gain control creates high-frequency oscillations that can excite unmodeled dynamics and can lead to instability. The fast adaptation approach is based on the minimization of the squares of the tracking error, which is formulated as an optimal control problem. The necessary condition of optimality is used to derive an adaptive law using the gradient method. This adaptive law is shown to result in uniform boundedness of the tracking error by means of the Lyapunov s direct method. Furthermore, this adaptive law allows a large adaptive gain to be used without causing undesired high-gain control effects. The method is shown to be more robust than standard model-reference adaptive control. Simulations demonstrate the effectiveness of the proposed method.
Systems and Methods for Parameter Dependent Riccati Equation Approaches to Adaptive Control
NASA Technical Reports Server (NTRS)
Kim, Kilsoo (Inventor); Yucelen, Tansel (Inventor); Calise, Anthony J. (Inventor)
2015-01-01
Systems and methods for adaptive control are disclosed. The systems and methods can control uncertain dynamic systems. The control system can comprise a controller that employs a parameter dependent Riccati equation. The controller can produce a response that causes the state of the system to remain bounded. The control system can control both minimum phase and non-minimum phase systems. The control system can augment an existing, non-adaptive control design without modifying the gains employed in that design. The control system can also avoid the use of high gains in both the observer design and the adaptive control law.
Stability and Performance Metrics for Adaptive Flight Control
NASA Technical Reports Server (NTRS)
Stepanyan, Vahram; Krishnakumar, Kalmanje; Nguyen, Nhan; VanEykeren, Luarens
2009-01-01
This paper addresses the problem of verifying adaptive control techniques for enabling safe flight in the presence of adverse conditions. Since the adaptive systems are non-linear by design, the existing control verification metrics are not applicable to adaptive controllers. Moreover, these systems are in general highly uncertain. Hence, the system's characteristics cannot be evaluated by relying on the available dynamical models. This necessitates the development of control verification metrics based on the system's input-output information. For this point of view, a set of metrics is introduced that compares the uncertain aircraft's input-output behavior under the action of an adaptive controller to that of a closed-loop linear reference model to be followed by the aircraft. This reference model is constructed for each specific maneuver using the exact aerodynamic and mass properties of the aircraft to meet the stability and performance requirements commonly accepted in flight control. The proposed metrics are unified in the sense that they are model independent and not restricted to any specific adaptive control methods. As an example, we present simulation results for a wing damaged generic transport aircraft with several existing adaptive controllers.
Intelligent Engine Systems: Adaptive Control
NASA Technical Reports Server (NTRS)
Gibson, Nathan
2008-01-01
We have studied the application of the baseline Model Predictive Control (MPC) algorithm to the control of main fuel flow rate (WF36), variable bleed valve (AE24) and variable stator vane (STP25) control of a simulated high-bypass turbofan engine. Using reference trajectories for thrust and turbine inlet temperature (T41) generated by a simulated new engine, we have examined MPC for tracking these two reference outputs while controlling a deteriorated engine. We have examined the results of MPC control for six different transients: two idle-to-takeoff transients at sea level static (SLS) conditions, one takeoff-to-idle transient at SLS, a Bode power command and reverse Bode power command at 20,000 ft/Mach 0.5, and a reverse Bode transient at 35,000 ft/Mach 0.84. For all cases, our primary focus was on the computational effort required by MPC for varying MPC update rates, control horizons, and prediction horizons. We have also considered the effects of these MPC parameters on the performance of the control, with special emphasis on the thrust tracking error, the peak T41, and the sizes of violations of the constraints on the problem, primarily the booster stall margin limit, which for most cases is the lone constraint that is violated with any frequency.
Guidance and Control for Mars Atmospheric Entry: Adaptivity and Robustness
NASA Technical Reports Server (NTRS)
Lu, Wei-Min; Bayard, David S.
1997-01-01
In this paper, we address the atmospheric entry guidance and control problem for Mars precision landing. The guidance and control design is based on the principle of tracking a reference drag versus velocity profile in the entry flight corridor, which is determined by physical constraints of the flight. An integrated adaptive/robust control approach to atmospheric entry guidance and control is introduced to deal with different uncertainties.
NASA Technical Reports Server (NTRS)
Wen, John T.; Kreutz-Delgado, Kenneth; Bayard, David S.
1992-01-01
A new class of joint level control laws for all-revolute robot arms is introduced. The analysis is similar to a recently proposed energy-like Liapunov function approach, except that the closed-loop potential function is shaped in accordance with the underlying joint space topology. This approach gives way to a much simpler analysis and leads to a new class of control designs which guarantee both global asymptotic stability and local exponential stability. When Coulomb and viscous friction and parameter uncertainty are present as model perturbations, a sliding mode-like modification of the control law results in a robustness-enhancing outer loop. Adaptive control is formulated within the same framework. A linear-in-the-parameters formulation is adopted and globally asymptotically stable adaptive control laws are derived by simply replacing unknown model parameters by their estimates (i.e., certainty equivalence adaptation).
Dynamics and Adaptive Control for Stability Recovery of Damaged Aircraft
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Krishnakumar, Kalmanje; Kaneshige, John; Nespeca, Pascal
2006-01-01
This paper presents a recent study of a damaged generic transport model as part of a NASA research project to investigate adaptive control methods for stability recovery of damaged aircraft operating in off-nominal flight conditions under damage and or failures. Aerodynamic modeling of damage effects is performed using an aerodynamic code to assess changes in the stability and control derivatives of a generic transport aircraft. Certain types of damage such as damage to one of the wings or horizontal stabilizers can cause the aircraft to become asymmetric, thus resulting in a coupling between the longitudinal and lateral motions. Flight dynamics for a general asymmetric aircraft is derived to account for changes in the center of gravity that can compromise the stability of the damaged aircraft. An iterative trim analysis for the translational motion is developed to refine the trim procedure by accounting for the effects of the control surface deflection. A hybrid direct-indirect neural network, adaptive flight control is proposed as an adaptive law for stabilizing the rotational motion of the damaged aircraft. The indirect adaptation is designed to estimate the plant dynamics of the damaged aircraft in conjunction with the direct adaptation that computes the control augmentation. Two approaches are presented 1) an adaptive law derived from the Lyapunov stability theory to ensure that the signals are bounded, and 2) a recursive least-square method for parameter identification. A hardware-in-the-loop simulation is conducted and demonstrates the effectiveness of the direct neural network adaptive flight control in the stability recovery of the damaged aircraft. A preliminary simulation of the hybrid adaptive flight control has been performed and initial data have shown the effectiveness of the proposed hybrid approach. Future work will include further investigations and high-fidelity simulations of the proposed hybrid adaptive Bight control approach.
Full Gradient Solution to Adaptive Hybrid Control
NASA Technical Reports Server (NTRS)
Bean, Jacob; Schiller, Noah H.; Fuller, Chris
2016-01-01
This paper focuses on the adaptation mechanisms in adaptive hybrid controllers. Most adaptive hybrid controllers update two filters individually according to the filtered-reference least mean squares (FxLMS) algorithm. Because this algorithm was derived for feedforward control, it does not take into account the presence of a feedback loop in the gradient calculation. This paper provides a derivation of the proper weight vector gradient for hybrid (or feedback) controllers that takes into account the presence of feedback. In this formulation, a single weight vector is updated rather than two individually. An internal model structure is assumed for the feedback part of the controller. The full gradient is equivalent to that used in the standard FxLMS algorithm with the addition of a recursive term that is a function of the modeling error. Some simulations are provided to highlight the advantages of using the full gradient in the weight vector update rather than the approximation.
Full Gradient Solution to Adaptive Hybrid Control
NASA Technical Reports Server (NTRS)
Bean, Jacob; Schiller, Noah H.; Fuller, Chris
2017-01-01
This paper focuses on the adaptation mechanisms in adaptive hybrid controllers. Most adaptive hybrid controllers update two filters individually according to the filtered reference least mean squares (FxLMS) algorithm. Because this algorithm was derived for feedforward control, it does not take into account the presence of a feedback loop in the gradient calculation. This paper provides a derivation of the proper weight vector gradient for hybrid (or feedback) controllers that takes into account the presence of feedback. In this formulation, a single weight vector is updated rather than two individually. An internal model structure is assumed for the feedback part of the controller. The full gradient is equivalent to that used in the standard FxLMS algorithm with the addition of a recursive term that is a function of the modeling error. Some simulations are provided to highlight the advantages of using the full gradient in the weight vector update rather than the approximation.
Adaptive pitch control for load mitigation of wind turbines
NASA Astrophysics Data System (ADS)
Yuan, Yuan; Tang, J.
2015-04-01
In this research, model reference adaptive control is examined for the pitch control of wind turbines that may suffer from reduced life owing to extreme loads and fatigue when operated under a high wind speed. Specifically, we aim at making a trade-off between the maximum energy captured and the load induced. The adaptive controller is designed to track the optimal generator speed and at the same time to mitigate component loads under turbulent wind field and other uncertainties. The proposed algorithm is tested on the NREL offshore 5-MW baseline wind turbine, and its performance is compared with that those of the gain scheduled proportional integral (GSPI) control and the disturbance accommodating control (DAC). The results show that the blade root flapwise load can be reduced at a slight expense of optimal power output. The generator speed regulation under adaptive controller is better than DAC.
Valuation of design adaptability in aerospace systems
NASA Astrophysics Data System (ADS)
Fernandez Martin, Ismael
As more information is brought into early stages of the design, more pressure is put on engineers to produce a reliable, high quality, and financially sustainable product. Unfortunately, requirements established at the beginning of a new project by customers, and the environment that surrounds them, continue to change in some unpredictable ways. The risk of designing a system that may become obsolete during early stages of production is currently tackled by the use of robust design simulation, a method that allows to simultaneously explore a plethora of design alternatives and requirements with the intention of accounting for uncertain factors in the future. Whereas this design technique has proven to be quite an improvement in design methods, under certain conditions, it fails to account for the change of uncertainty over time and the intrinsic value embedded in the system when certain design features are activated. This thesis introduces the concepts of adaptability and real options to manage risk foreseen in the face of uncertainty at early design stages. The method described herein allows decision-makers to foresee the financial impact of their decisions at the design level, as well as the final exposure to risk. In this thesis, cash flow models, traditionally used to obtain the forecast of a project's value over the years, were replaced with surrogate models that are capable of showing fluctuations on value every few days. This allowed a better implementation of real options valuation, optimization, and strategy selection. Through the option analysis model, an optimization exercise allows the user to obtain the best implementation strategy in the face of uncertainty as well as the overall value of the design feature. Here implementation strategy refers to the decision to include a new design feature in the system, after the design has been finalized, but before the end of its production life. The ability to do this in a cost efficient manner after the system
Adaptive enrichment designs for clinical trials.
Simon, Noah; Simon, Richard
2013-09-01
Modern medicine has graduated from broad spectrum treatments to targeted therapeutics. New drugs recognize the recently discovered heterogeneity of many diseases previously considered to be fairly homogeneous. These treatments attack specific genetic pathways which are only dysregulated in some smaller subset of patients with the disease. Often this subset is only rudimentarily understood until well into large-scale clinical trials. As such, standard practice has been to enroll a broad range of patients and run post hoc subset analysis to determine those who may particularly benefit. This unnecessarily exposes many patients to hazardous side effects, and may vastly decrease the efficiency of the trial (especially if only a small subset of patients benefit). In this manuscript, we propose a class of adaptive enrichment designs that allow the eligibility criteria of a trial to be adaptively updated during the trial, restricting entry to patients likely to benefit from the new treatment. We show that our designs both preserve the type 1 error, and in a variety of cases provide a substantial increase in power.
Practical characteristics of adaptive design in phase 2 and 3 clinical trials.
Sato, A; Shimura, M; Gosho, M
2017-08-28
Adaptive design methods are expected to be ethical, reflect real medical practice, increase the likelihood of research and development success and reduce the allocation of patients into ineffective treatment groups by the early termination of clinical trials. However, the comprehensive details regarding which types of clinical trials will include adaptive designs remain unclear. We examined the practical characteristics of adaptive design used in clinical trials. We conducted a literature search of adaptive design clinical trials published from 2012 to 2015 using PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials, with common search terms related to adaptive design. We systematically assessed the types and characteristics of adaptive designs and disease areas employed in the adaptive design trials. Our survey identified 245 adaptive design clinical trials. The number of trials by the publication year increased from 2012 to 2013 and did not greatly change afterwards. The most frequently used adaptive design was group sequential design (n = 222, 90.6%), especially for neoplasm or cardiovascular disease trials. Among the other types of adaptive design, adaptive dose/treatment group selection (n = 21, 8.6%) and adaptive sample-size adjustment (n = 19, 7.8%) were frequently used. The adaptive randomization (n = 8, 3.3%) and adaptive seamless design (n = 6, 2.4%) were less frequent. Adaptive dose/treatment group selection and adaptive sample-size adjustment were frequently used (up to 23%) in "certain infectious and parasitic diseases," "diseases of nervous system," and "mental and behavioural disorders" in comparison with "neoplasms" (<6.6%). For "mental and behavioural disorders," adaptive randomization was used in two trials of eight trials in total (25%). Group sequential design and adaptive sample-size adjustment were used frequently in phase 3 trials or in trials where study phase was not specified, whereas the other types of adaptive
Adaptive Control Strategies for Flexible Robotic Arm
NASA Technical Reports Server (NTRS)
Bialasiewicz, Jan T.
1996-01-01
The control problem of a flexible robotic arm has been investigated. The control strategies that have been developed have a wide application in approaching the general control problem of flexible space structures. The following control strategies have been developed and evaluated: neural self-tuning control algorithm, neural-network-based fuzzy logic control algorithm, and adaptive pole assignment algorithm. All of the above algorithms have been tested through computer simulation. In addition, the hardware implementation of a computer control system that controls the tip position of a flexible arm clamped on a rigid hub mounted directly on the vertical shaft of a dc motor, has been developed. An adaptive pole assignment algorithm has been applied to suppress vibrations of the described physical model of flexible robotic arm and has been successfully tested using this testbed.
Direct adaptive impedance control of manipulators
NASA Technical Reports Server (NTRS)
Colbaugh, R.; Seraji, H.; Glass, K.
1991-01-01
An adaptive scheme for controlling the end-effector impedance of robot manipulators is presented. The proposed control system consists of three subsystems: a simple filter which characterizes the desired dynamic relationship between the end-effector position error and the end-effector/environment contact force, an adaptive controller which produces the Cartesian-space control input required to provide this desired dynamic relationship, and an algorithm for mapping the Cartesian-space control input to a physically realizable joint-space control torque. The controller does not require knowledge of either the structure or the parameter values of the robot dynamics, and it is implemented without calculation of the robot inverse kinematic transformation. As a result, the scheme represents a very general and computationally efficient approach to controlling the impedance of both nonredundant and redundant manipulators. Furthermore, the method can be applied directly to trajectory tracking in free-space motion by removing the impedance filter.
Maritime Adaptive Optics Beam Control
2010-09-01
mantis shrimp for getting me through the home stretch. To all my advisors, mentors, friends, and family—you have my eternal gratitude for helping...the RLS algorithm does in fact converge faster than the LMS algorithm, yet at the same time the LMS algorithm can control significantly better during
L1 adaptive control of flexible spacecraft despite disturbances
NASA Astrophysics Data System (ADS)
Lee, Keum W.; Singh, Sahjendra N.
2012-11-01
The development of an L1 adaptive control system for the control of an orbiting spacecraft with flexible appendages is the subject of this paper. It is assumed that the system parameters are unknown and that disturbance input is acting on the spacecraft. The spacecraft is controlled by a moment producing device located on the central rigid body. Based on the L1 adaptive control theory, a new control law for large angle rotational maneuver of the spacecraft is derived. The control system includes a state predictor for generating the estimates of the unknown parameters for feedback. The control moment is obtained by passing an estimated control signal through a lowpass filter. The controller is synthesized using only the pitch angle and its derivative. In the closed-loop system, the pitch angle is controlled to the target angle and flexible modes are stabilized. The designed control law achieves quantifiable performance bounds by the choice of large adaptation gain. Interestingly, the controller structure is independent of the number of elastic modes retained in the model. Simulation results show that precise rotational maneuver of the spacecraft and vibration suppression in the presence of large parameter uncertainties and disturbance moment are accomplished using the L1 adaptive control law.
2002 Controls Design Challenge
NASA Technical Reports Server (NTRS)
Hess, Ronald A.; Vetter, T. K.; Wells, S. R.
2002-01-01
This document is intended to provide the specifications and requirements for a flight control system design challenge. The response to the challenge will involve documenting whether the particular design has met the stated requirements through analysis and computer simulation. The response should be written in the general format of a technical publication with corresponding length limits, e.g., an approximate maximum length of 45 units, with each full-size figure and double-spaced typewritten page constituting one unit.
Language control in bilinguals: The adaptive control hypothesis.
Green, David W; Abutalebi, Jubin
2013-08-01
Speech comprehension and production are governed by control processes. We explore their nature and dynamics in bilingual speakers with a focus on speech production. Prior research indicates that individuals increase cognitive control in order to achieve a desired goal. In the adaptive control hypothesis we propose a stronger hypothesis: Language control processes themselves adapt to the recurrent demands placed on them by the interactional context. Adapting a control process means changing a parameter or parameters about the way it works (its neural capacity or efficiency) or the way it works in concert, or in cascade, with other control processes (e.g., its connectedness). We distinguish eight control processes (goal maintenance, conflict monitoring, interference suppression, salient cue detection, selective response inhibition, task disengagement, task engagement, opportunistic planning). We consider the demands on these processes imposed by three interactional contexts (single language, dual language, and dense code-switching). We predict adaptive changes in the neural regions and circuits associated with specific control processes. A dual-language context, for example, is predicted to lead to the adaptation of a circuit mediating a cascade of control processes that circumvents a control dilemma. Effective test of the adaptive control hypothesis requires behavioural and neuroimaging work that assesses language control in a range of tasks within the same individual.
Language control in bilinguals: The adaptive control hypothesis
Abutalebi, Jubin
2013-01-01
Speech comprehension and production are governed by control processes. We explore their nature and dynamics in bilingual speakers with a focus on speech production. Prior research indicates that individuals increase cognitive control in order to achieve a desired goal. In the adaptive control hypothesis we propose a stronger hypothesis: Language control processes themselves adapt to the recurrent demands placed on them by the interactional context. Adapting a control process means changing a parameter or parameters about the way it works (its neural capacity or efficiency) or the way it works in concert, or in cascade, with other control processes (e.g., its connectedness). We distinguish eight control processes (goal maintenance, conflict monitoring, interference suppression, salient cue detection, selective response inhibition, task disengagement, task engagement, opportunistic planning). We consider the demands on these processes imposed by three interactional contexts (single language, dual language, and dense code-switching). We predict adaptive changes in the neural regions and circuits associated with specific control processes. A dual-language context, for example, is predicted to lead to the adaptation of a circuit mediating a cascade of control processes that circumvents a control dilemma. Effective test of the adaptive control hypothesis requires behavioural and neuroimaging work that assesses language control in a range of tasks within the same individual. PMID:25077013
An adaptive pattern based nonlinear PID controller.
Segovia, Juan Pablo; Sbarbaro, Daniel; Ceballos, Eric
2004-04-01
This paper presents a nonlinear proportional-integral-derivative (PID) controller, combining a pattern based adaptive algorithm to cope with the problem of tuning the controller, and an associative memory to store the parameters, according to different operating conditions. The simplicity of the algorithm enables its implementation in current programmable logic controller technology. Several real-time experiments, carried out in a pressurized tank, illustrate the performance of the proposed controller.
Adaptive Control Of Large Vibrating, Rotating Structures
NASA Technical Reports Server (NTRS)
Bayard, David S.
1991-01-01
Globally convergent theoretical method provides for adaptive set-point control of orientation of, along with suppression of the vibrations of, large structure. Method utilizes inherent passivity properties of structure to attain mathematical condition essential to adaptive convergence on commanded set point. Maintains stability and convergence in presence of errors in mathematical model of dynamics of structure and actuators. Developed for controlling attitudes of large, somewhat flexible spacecraft, also useful in such terrestrial applications as controlling movable bridges or suppressing earthquake vibrations in bridges, buildings, and other large structures.
Robust and reconfigurable flight control system design
NASA Astrophysics Data System (ADS)
Siwakosit, Wichai
2001-07-01
A reconfigurable flight control system is a control system which can automatically adapt itself to maintain the performance of a damaged aircraft to be as close as possible to that of the normal or undamaged one. This research focuses mainly on Multi-Input, Multi-Output (MIMO) reconfigurable flight control for an aircraft with damaged actuator(s) which may greatly affect the performance and control of the aircraft, and also pose a challenging flight control problem. The foundation of the control system is a baseline controller and an adaptive module which constitutes a reconfigurable part. The baseline controller ensures that the aircraft has acceptable performance and handling qualities throughout the flight envelope. The combination of a Quantitative Feedback Theory (QFT) Pre-Design Technique (PDT) and a Reduced-order, Linear, Dynamic Inversion (RLDI) control strategy yields a flight control system with good tracking performance and handling qualities with no Pilot Induced Oscillation (PIO) tendencies throughout the designated set of flight conditions. In addition, the system is highly immune to large uncertainties in the aircraft dynamics. The modified filtered-ɛ adaptive algorithm is developed and utilized in the adaptive module of the system. This adaptive algorithm performs well with MIMO system with the added advantage of not having to pre-identify the dynamics of the damaged aircraft, provided that the conditions of reconfigurability are met. An example of the proposed control system with the NASA F-18 HARV vehicle model and a damaged actuator demonstrates the effectiveness of the concept.
Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems.
Zhang, Yanjun; Tao, Gang; Chen, Mou
2016-09-01
This paper presents a new study on the adaptive neural network-based control of a class of noncanonical nonlinear systems with large parametric uncertainties. Unlike commonly studied canonical form nonlinear systems whose neural network approximation system models have explicit relative degree structures, which can directly be used to derive parameterized controllers for adaptation, noncanonical form nonlinear systems usually do not have explicit relative degrees, and thus their approximation system models are also in noncanonical forms. It is well-known that the adaptive control of noncanonical form nonlinear systems involves the parameterization of system dynamics. As demonstrated in this paper, it is also the case for noncanonical neural network approximation system models. Effective control of such systems is an open research problem, especially in the presence of uncertain parameters. This paper shows that it is necessary to reparameterize such neural network system models for adaptive control design, and that such reparameterization can be realized using a relative degree formulation, a concept yet to be studied for general neural network system models. This paper then derives the parameterized controllers that guarantee closed-loop stability and asymptotic output tracking for noncanonical form neural network system models. An illustrative example is presented with the simulation results to demonstrate the control design procedure, and to verify the effectiveness of such a new design method.
Adaptive Process Control in Rubber Industry.
Brause, Rüdiger W; Pietruschka, Ulf
1998-01-01
This paper describes the problems and an adaptive solution for process control in rubber industry. We show that the human and economical benefits of an adaptive solution for the approximation of process parameters are very attractive. The modeling of the industrial problem is done by the means of artificial neural networks. For the example of the extrusion of a rubber profile in tire production our method shows good resuits even using only a few training samples.
Adaptive Neural Network Controller for ATM Traffic
1996-12-01
IEEE Communications Magazine (October 1995). 2. Baum, Eric B...Adaptive Control in ATM Networks," IEEE Communications Magazine (October 1995). 9. Evanowsky, John B. "Information for the Warrior," IEEE Communications Magazine (October...Network Applications in ATM," IEEE Communications Magazine (October 1995). 78 16. Imrich, et al. "A counter based congestion control for ATM
Multiprocessor Adaptive Control Of A Dynamic System
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Hyland, David C.
1995-01-01
Architecture for fully autonomous digital electronic control system developed for use in identification and adaptive control of dynamic system. Architecture modular and hierarchical. Combines relatively simple, standardized processing units into complex parallel-processing subsystems. Although architecture based on neural-network concept, processing units themselves not neural networks; processing units implemented by programming of currently available microprocessors.
Touillaud, M; Foucaut, A-M; Berthouze, S E; Reynes, E; Kempf-Lépine, A-S; Carretier, J; Pérol, D; Guillemaut, S; Chabaud, S; Bourne-Branchu, V; Perrier, L; Trédan, O; Fervers, B; Bachmann, P
2013-01-01
Introduction After a diagnosis of localised breast cancer, overweight, obesity and weight gain are negatively associated with prognosis. In contrast, maintaining an optimal weight through a balanced diet combined with regular physical activity appears to be effective protective behaviour against comorbidity or mortality after a breast cancer diagnosis. The primary aim of the Programme pour une Alimentation Saine et une Activité Physique Adaptée pour les patientes atteintes d'un cancer du Sein (PASAPAS) randomised controlled trial is to evaluate the feasibility of implementing an intervention of adapted physical activity (APA) for 6 months concomitant with the prescription of a first line of adjuvant chemotherapy. Secondary aims include assessing the acceptability of the intervention, compliance to the programme, process implementation, patients’ satisfaction, evolution of biological parameters and the medicoeconomic impact of the intervention. Methods and analysis The study population consists of 60 women eligible for adjuvant chemotherapy after a diagnosis of localised invasive breast cancer. They will be recruited during a 2-year inclusion period and randomly allocated between an APA intervention arm and a control arm following a 2:1 ratio. All participants should benefit from personalised dietetic counselling and patients allocated to the intervention arm will be offered an APA programme of two to three weekly sessions of Nordic walking and aerobic fitness. During the 6-month intervention and 6-month follow-up, four assessments will be performed including blood draw, anthropometrics and body composition measurements, and questionnaires about physical activity level, diet, lifestyle factors, psychological criteria, satisfaction with the intervention and medical data. Ethics and dissemination The study was approved by the French Ethics Committee (Comité de Protection des Personnes Sud-Est IV) and the national agencies for biomedical studies and for privacy
Touillaud, M; Foucaut, A-M; Berthouze, S E; Reynes, E; Kempf-Lépine, A-S; Carretier, J; Pérol, D; Guillemaut, S; Chabaud, S; Bourne-Branchu, V; Perrier, L; Trédan, O; Fervers, B; Bachmann, P
2013-10-28
After a diagnosis of localised breast cancer, overweight, obesity and weight gain are negatively associated with prognosis. In contrast, maintaining an optimal weight through a balanced diet combined with regular physical activity appears to be effective protective behaviour against comorbidity or mortality after a breast cancer diagnosis. The primary aim of the Programme pour une Alimentation Saine et une Activité Physique Adaptée pour les patientes atteintes d'un cancer du Sein (PASAPAS) randomised controlled trial is to evaluate the feasibility of implementing an intervention of adapted physical activity (APA) for 6 months concomitant with the prescription of a first line of adjuvant chemotherapy. Secondary aims include assessing the acceptability of the intervention, compliance to the programme, process implementation, patients' satisfaction, evolution of biological parameters and the medicoeconomic impact of the intervention. The study population consists of 60 women eligible for adjuvant chemotherapy after a diagnosis of localised invasive breast cancer. They will be recruited during a 2-year inclusion period and randomly allocated between an APA intervention arm and a control arm following a 2:1 ratio. All participants should benefit from personalised dietetic counselling and patients allocated to the intervention arm will be offered an APA programme of two to three weekly sessions of Nordic walking and aerobic fitness. During the 6-month intervention and 6-month follow-up, four assessments will be performed including blood draw, anthropometrics and body composition measurements, and questionnaires about physical activity level, diet, lifestyle factors, psychological criteria, satisfaction with the intervention and medical data. The study was approved by the French Ethics Committee (Comité de Protection des Personnes Sud-Est IV) and the national agencies for biomedical studies and for privacy. All participants will give written informed consent. The study
Adaptive neuro-control for large flexible structures
NASA Astrophysics Data System (ADS)
Krishankumar, K.; Montgomery, L.
Special problems related to control system design for large flexible structures include the inherent low structural damping, wide range of modal frequencies, unmodeled dynamics, and possibility of system failures. Neuro-control, which combines concepts from artificial neural networks and adaptive control is investigated as a solution to some of these problems. Specifically, the roles of neuro-controllers in learning unmodeled dynamics and adaptive control for system failures are investigated. Satisfying these objectives requires training a neural network model (neuro-model) to simulate the actual structure, and then training a neural network controller (neuro-controller) to minimize structural response resulting from an arbitrary disturbance. The neuro-controller synthesis procedure and its capabilities in adaptively controlling the structure are demonstrated using a mathematical model of an existing structure, the Advanced Control Evaluation for Systems test article located at NASA/Marshall Space Flight Center, Huntsville, Alabama. Also, the real-time adaptive capability of neuro-controllers is demonstrated via an experiment utilizing a flexible clamped-free beam equipped with an actuator that uses a bang-bang controller.
NASA Astrophysics Data System (ADS)
Kim, Hunmo
In the brake systems, it is important to reduce the rear brake pressure in order to secure the safety of the vehicle in braking. So, there was some research that reduced and controlled the rear brake pressure exactly like a L. S. P. V and a E. L. S. P. V. However, the previous research has some weaknesses: the L. S. P. V is a mechanical system and its brake efficiency is lower than the efficiency of E. L. S. P. V. But, the cost of E. L. S. P. V is very higher so its application to the vehicle is very difficult. Additionally, when a fail appears in the circuit which controls the valves, the fail results in some wrong operation of the valves. But, the previous researchers didn't take the effect of fail into account. Hence, the efficiency of them is low and the safety of the vehicle is not confirmed. So, in this paper we develop a new economical pressure modulator that exactly controls brake pressure and confirms the safety of the vehicle in any case using a direct adaptive fuzzy controller.
Algebraic and adaptive learning in neural control systems
NASA Astrophysics Data System (ADS)
Ferrari, Silvia
A systematic approach is developed for designing adaptive and reconfigurable nonlinear control systems that are applicable to plants modeled by ordinary differential equations. The nonlinear controller comprising a network of neural networks is taught using a two-phase learning procedure realized through novel techniques for initialization, on-line training, and adaptive critic design. A critical observation is that the gradients of the functions defined by the neural networks must equal corresponding linear gain matrices at chosen operating points. On-line training is based on a dual heuristic adaptive critic architecture that improves control for large, coupled motions by accounting for actual plant dynamics and nonlinear effects. An action network computes the optimal control law; a critic network predicts the derivative of the cost-to-go with respect to the state. Both networks are algebraically initialized based on prior knowledge of satisfactory pointwise linear controllers and continue to adapt on line during full-scale simulations of the plant. On-line training takes place sequentially over discrete periods of time and involves several numerical procedures. A backpropagating algorithm called Resilient Backpropagation is modified and successfully implemented to meet these objectives, without excessive computational expense. This adaptive controller is as conservative as the linear designs and as effective as a global nonlinear controller. The method is successfully implemented for the full-envelope control of a six-degree-of-freedom aircraft simulation. The results show that the on-line adaptation brings about improved performance with respect to the initialization phase during aircraft maneuvers that involve large-angle and coupled dynamics, and parameter variations.
Method and apparatus for adaptive force and position control of manipulators
NASA Technical Reports Server (NTRS)
Seraji, Homayoun (Inventor)
1989-01-01
The present invention discloses systematic methods and apparatus for the design of real time controllers. Real-time control employs adaptive force/position by use of feedforward and feedback controllers, with the feedforward controller being the inverse of the linearized model of robot dynamics and containing only proportional-double-derivative terms is disclosed. The feedback controller, of the proportional-integral-derivative type, ensures that manipulator joints follow reference trajectories and the feedback controller achieves robust tracking of step-plus-exponential trajectories, all in real time. The adaptive controller includes adaptive force and position control within a hybrid control architecture. The adaptive controller, for force control, achieves tracking of desired force setpoints, and the adaptive position controller accomplishes tracking of desired position trajectories. Circuits in the adaptive feedback and feedforward controllers are varied by adaptation laws.
Adaptive neural control of aeroelastic response
NASA Astrophysics Data System (ADS)
Lichtenwalner, Peter F.; Little, Gerald R.; Scott, Robert C.
1996-05-01
The Adaptive Neural Control of Aeroelastic Response (ANCAR) program is a joint research and development effort conducted by McDonnell Douglas Aerospace (MDA) and the National Aeronautics and Space Administration, Langley Research Center (NASA LaRC) under a Memorandum of Agreement (MOA). The purpose of the MOA is to cooperatively develop the smart structure technologies necessary for alleviating undesirable vibration and aeroelastic response associated with highly flexible structures. Adaptive control can reduce aeroelastic response associated with buffet and atmospheric turbulence, it can increase flutter margins, and it may be able to reduce response associated with nonlinear phenomenon like limit cycle oscillations. By reducing vibration levels and loads, aircraft structures can have lower acquisition cost, reduced maintenance, and extended lifetimes. Phase I of the ANCAR program involved development and demonstration of a neural network-based semi-adaptive flutter suppression system which used a neural network for scheduling control laws as a function of Mach number and dynamic pressure. This controller was tested along with a robust fixed-gain control law in NASA's Transonic Dynamics Tunnel (TDT) utilizing the Benchmark Active Controls Testing (BACT) wing. During Phase II, a fully adaptive on-line learning neural network control system has been developed for flutter suppression which will be tested in 1996. This paper presents the results of Phase I testing as well as the development progress of Phase II.
Adaptive neural control of spacecraft using control moment gyros
NASA Astrophysics Data System (ADS)
Leeghim, Henzeh; Kim, Donghoon
2015-03-01
An adaptive control technique is applied to reorient spacecraft with uncertainty using control moment gyros. A nonlinear quaternion feedback law is chosen as a baseline controller. An additional adaptive control input supported by neural networks can estimate and eliminate unknown terms adaptively. The normalized input neural networks are considered for reliable computation of the adaptive input. To prove the stability of the closed-loop dynamics with the control law, the Lyapunov stability theory is considered. Accordingly, the proposed approach results in the uniform ultimate boundedness in tracking error. For reorientation maneuvers, control moment gyros are utilized with a well-known singularity problem described in this work investigated by predicting one-step ahead singularity index. A momentum vector recovery approach using magnetic torquers is also introduced to evaluate the avoidance strategies indirectly. Finally, the suggested methods are demonstrated by numerical simulation studies.
Adaptive Optics System Design and Operation at Lick Observatory
NASA Astrophysics Data System (ADS)
Olivier, S. S.; Max, C. E.; Avicola, K.; Bissinger, H. D.; Brase, J. M.; Friedman, H. W.; Gavel, D. T.; Salmon, J. T.; Waltjen, K. E.
1993-12-01
An adaptive optics system developed for the 40 inch Nickel and 120 inch Shane telescopes at Lick Observatory is described. The adaptive optics system design is based on a 69 actuator continuous-surface deformable mirror and a Hartmann wavefront sensor equipped with a commercial intensified CCD fast-framing camera. The system has been tested at the Cassegrain focus of the 40 inch Nickel telescope where the subaperture diameter is 12 cm. The subaperture slope and mirror control calculations are performed on a four processor single board computer controlled by a Unix workstation. This configuration is capable of up to 1 KHz frame rates. The optical configuration of the system and its interface to the telescope is described. Details of the control system design, operation, and user interface are given. Initial test results emphasizing control system operations of this adaptive optics system using natural reference stars on the 40 inch Nickel telescope are presented. The initial test results are compared to predictions from analyses and simulations. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
Digital adaptive control laws for the F-8
NASA Technical Reports Server (NTRS)
Hartmann, G. L.; Harvey, C. A.
1976-01-01
NASA is conducting a flight control research program in digital fly-by-wire technology using a modified F-8C aircraft. The first phase of this program used Apollo hardware to demonstrate the practicality of digital fly-by-wire in an actual test vehicle. For the second phase, conventional aircraft sensors and a large floating point digital computer are being utilized to test advanced control laws and redundancy concepts. As part of NASA's research in digital fly-by-wire technology, Honeywell developed digital adaptive flight control laws for flight test in the F-8C. Adaptation of the control laws was to be based on information sensed from conventional aircraft sensors excluding air data. The control laws were constrained to use only existing elevator, rudder, and ailerons as control effectors, each powered by existing actuators. Three adaptive control laws were successfully designed using maximum likelihood estimation, a Liapunov stable model tracker and a self-excited limit cycle concept. The maximum likelihood estimation design was selected as the most promising because of its capability to identify more than surface effectiveness parameters. The adaptive concepts, the control laws and comparisons of predicted performance are described.
Hybrid adaptive control of a dragonfly model
NASA Astrophysics Data System (ADS)
Couceiro, Micael S.; Ferreira, Nuno M. F.; Machado, J. A. Tenreiro
2012-02-01
Dragonflies show unique and superior flight performances than most of other insect species and birds. They are equipped with two pairs of independently controlled wings granting an unmatchable flying performance and robustness. In this paper, it is presented an adaptive scheme controlling a nonlinear model inspired in a dragonfly-like robot. It is proposed a hybrid adaptive ( HA) law for adjusting the parameters analyzing the tracking error. At the current stage of the project it is considered essential the development of computational simulation models based in the dynamics to test whether strategies or algorithms of control, parts of the system (such as different wing configurations, tail) as well as the complete system. The performance analysis proves the superiority of the HA law over the direct adaptive ( DA) method in terms of faster and improved tracking and parameter convergence.
Development of fault tolerant adaptive control laws for aerospace systems
NASA Astrophysics Data System (ADS)
Perez Rocha, Andres E.
The main topic of this dissertation is the design, development and implementation of intelligent adaptive control techniques designed to maintain healthy performance of aerospace systems subjected to malfunctions, external parameter changes and/or unmodeled dynamics. The dissertation is focused on the development of novel adaptive control configurations that rely on non-linear functions that appear in the immune system of living organisms as main source of adaptation. One of the main goals of this dissertation is to demonstrate that these novel adaptive control architectures are able to improve overall performance and protect the system while reducing control effort and maintaining adequate operation outside bounds of nominal design. This research effort explores several phases, ranging from theoretical stability analysis, simulation and hardware implementation on different types of aerospace systems including spacecraft, aircraft and quadrotor vehicles. The results presented in this dissertation are focused on two main adaptivity approaches, the first one is intended for aerospace systems that do not attain large angles and use exact feedback linearization of Euler angle kinematics. A proof of stability is presented by means of the circle Criterion and Lyapunov's direct method. The second approach is intended for aerospace systems that can attain large attitude angles (e.g. space systems in gravity-less environments), the adaptation is incorporated on a baseline architecture that uses partial feedback linearization of quaternions kinematics. In this case, the closed loop stability was analyzed using Lyapunov's direct method and Barbalat's Lemma. It is expected that some results presented in this dissertation can contribute towards the validation and certification of direct adaptive controllers.
Precision of maximum likelihood estimation in adaptive designs.
Graf, Alexandra Christine; Gutjahr, Georg; Brannath, Werner
2016-03-15
There has been increasing interest in trials that allow for design adaptations like sample size reassessment or treatment selection at an interim analysis. Ignoring the adaptive and multiplicity issues in such designs leads to an inflation of the type 1 error rate, and treatment effect estimates based on the maximum likelihood principle become biased. Whereas the methodological issues concerning hypothesis testing are well understood, it is not clear how to deal with parameter estimation in designs were adaptation rules are not fixed in advanced so that, in practice, the maximum likelihood estimate (MLE) is used. It is therefore important to understand the behavior of the MLE in such designs. The investigation of Bias and mean squared error (MSE) is complicated by the fact that the adaptation rules need not be fully specified in advance and, hence, are usually unknown. To investigate Bias and MSE under such circumstances, we search for the sample size reassessment and selection rules that lead to the maximum Bias or maximum MSE. Generally, this leads to an overestimation of Bias and MSE, which can be reduced by imposing realistic constraints on the rules like, for example, a maximum sample size. We consider designs that start with k treatment groups and a common control and where selection of a single treatment and control is performed at the interim analysis with the possibility to reassess each of the sample sizes. We consider the case of unlimited sample size reassessments as well as several realistically restricted sample size reassessment rules. Copyright © 2015 John Wiley & Sons, Ltd.
HIV-1 vaccines and adaptive trial designs.
Corey, Lawrence; Nabel, Gary J; Dieffenbach, Carl; Gilbert, Peter; Haynes, Barton F; Johnston, Margaret; Kublin, James; Lane, H Clifford; Pantaleo, Giuseppe; Picker, Louis J; Fauci, Anthony S
2011-04-20
Developing a vaccine against the human immunodeficiency virus (HIV) poses an exceptional challenge. There are no documented cases of immune-mediated clearance of HIV from an infected individual, and no known correlates of immune protection. Although nonhuman primate models of lentivirus infection have provided valuable data about HIV pathogenesis, such models do not predict HIV vaccine efficacy in humans. The combined lack of a predictive animal model and undefined biomarkers of immune protection against HIV necessitate that vaccines to this pathogen be tested directly in clinical trials. Adaptive clinical trial designs can accelerate vaccine development by rapidly screening out poor vaccines while extending the evaluation of efficacious ones, improving the characterization of promising vaccine candidates and the identification of correlates of immune protection.
Modeling-Error-Driven Performance-Seeking Direct Adaptive Control
NASA Technical Reports Server (NTRS)
Kulkarni, Nilesh V.; Kaneshige, John; Krishnakumar, Kalmanje; Burken, John
2008-01-01
This paper presents a stable discrete-time adaptive law that targets modeling errors in a direct adaptive control framework. The update law was developed in our previous work for the adaptive disturbance rejection application. The approach is based on the philosophy that without modeling errors, the original control design has been tuned to achieve the desired performance. The adaptive control should, therefore, work towards getting this performance even in the face of modeling uncertainties/errors. In this work, the baseline controller uses dynamic inversion with proportional-integral augmentation. Dynamic inversion is carried out using the assumed system model. On-line adaptation of this control law is achieved by providing a parameterized augmentation signal to the dynamic inversion block. The parameters of this augmentation signal are updated to achieve the nominal desired error dynamics. Contrary to the typical Lyapunov-based adaptive approaches that guarantee only stability, the current approach investigates conditions for stability as well as performance. A high-fidelity F-15 model is used to illustrate the overall approach.
Adaptive backstepping slide mode control of pneumatic position servo system
NASA Astrophysics Data System (ADS)
Ren, Haipeng; Fan, Juntao
2016-09-01
With the price decreasing of the pneumatic proportional valve and the high performance micro controller, the simple structure and high tracking performance pneumatic servo system demonstrates more application potential in many fields. However, most existing control methods with high tracking performance need to know the model information and to use pressure sensor. This limits the application of the pneumatic servo system. An adaptive backstepping slide mode control method is proposed for pneumatic position servo system. The proposed method designs adaptive slide mode controller using backstepping design technique. The controller parameter adaptive law is derived from Lyapunov analysis to guarantee the stability of the system. A theorem is testified to show that the state of closed-loop system is uniformly bounded, and the closed-loop system is stable. The advantages of the proposed method include that system dynamic model parameters are not required for the controller design, uncertain parameters bounds are not need, and the bulk and expensive pressure sensor is not needed as well. Experimental results show that the designed controller can achieve better tracking performance, as compared with some existing methods.
Optical and control modeling for adaptive beam-combining experiments
Gruetzner, J.K.; Tucker, S.D.; Neal, D.R.; Bentley, A.E.; Simmons-Potter, K.
1995-08-01
The development of modeling algorithms for adaptive optics systems is important for evaluating both performance and design parameters prior to system construction. Two of the most critical subsystems to be modeled are the binary optic design and the adaptive control system. Since these two are intimately related, it is beneficial to model them simultaneously. Optic modeling techniques have some significant limitations. Diffraction effects directly limit the utility of geometrical ray-tracing models, and transform techniques such as the fast fourier transform can be both cumbersome and memory intensive. The authors have developed a hybrid system incorporating elements of both ray-tracing and fourier transform techniques. In this paper they present an analytical model of wavefront propagation through a binary optic lens system developed and implemented at Sandia. This model is unique in that it solves the transfer function for each portion of a diffractive optic analytically. The overall performance is obtained by a linear superposition of each result. The model has been successfully used in the design of a wide range of binary optics, including an adaptive optic for a beam combining system consisting of an array of rectangular mirrors, each controllable in tip/tilt and piston. Wavefront sensing and the control models for a beam combining system have been integrated and used to predict overall systems performance. Applicability of the model for design purposes is demonstrated with several lens designs through a comparison of model predictions with actual adaptive optics results.
Reconfigurable surface plasmon polariton wave adapter designed by transformation optics.
Arigong, Bayaner; Shao, Jin; Ren, Han; Zheng, Geng; Lutkenhaus, Jeffrey; Kim, HyoungSoo; Lin, Yuankun; Zhang, Hualiang
2012-06-18
In this paper, we propose a reconfigurable surface plasmon polariton (SPP) wave adapter designed by transformation optics, which can control the propagation of SPP waves on un-even surfaces. The proposed plasmonic device is constructed using homogeneously tunable materials (e.g. liquid crystals) so that the corresponding SPP wave transmission can be reconfigured by applying different voltages. Additionally, modified designs optimized for practical fabrication parameters are investigated. Their performance is verified by full-wave simulations. The proposed devices will pave the way towards developing tunable plasmonic devices.
F-8C adaptive control law refinement and software development
NASA Technical Reports Server (NTRS)
Hartmann, G. L.; Stein, G.
1981-01-01
An explicit adaptive control algorithm based on maximum likelihood estimation of parameters was designed. To avoid iterative calculations, the algorithm uses parallel channels of Kalman filters operating at fixed locations in parameter space. This algorithm was implemented in NASA/DFRC's Remotely Augmented Vehicle (RAV) facility. Real-time sensor outputs (rate gyro, accelerometer, surface position) are telemetered to a ground computer which sends new gain values to an on-board system. Ground test data and flight records were used to establish design values of noise statistics and to verify the ground-based adaptive software.
Adaptive Modeling, Engineering Analysis and Design of Advanced Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek; Hsu, Su-Yuen; Mason, Brian H.; Hicks, Mike D.; Jones, William T.; Sleight, David W.; Chun, Julio; Spangler, Jan L.; Kamhawi, Hilmi; Dahl, Jorgen L.
2006-01-01
This paper describes initial progress towards the development and enhancement of a set of software tools for rapid adaptive modeling, and conceptual design of advanced aerospace vehicle concepts. With demanding structural and aerodynamic performance requirements, these high fidelity geometry based modeling tools are essential for rapid and accurate engineering analysis at the early concept development stage. This adaptive modeling tool was used for generating vehicle parametric geometry, outer mold line and detailed internal structural layout of wing, fuselage, skin, spars, ribs, control surfaces, frames, bulkheads, floors, etc., that facilitated rapid finite element analysis, sizing study and weight optimization. The high quality outer mold line enabled rapid aerodynamic analysis in order to provide reliable design data at critical flight conditions. Example application for structural design of a conventional aircraft and a high altitude long endurance vehicle configuration are presented. This work was performed under the Conceptual Design Shop sub-project within the Efficient Aerodynamic Shape and Integration project, under the former Vehicle Systems Program. The project objective was to design and assess unconventional atmospheric vehicle concepts efficiently and confidently. The implementation may also dramatically facilitate physics-based systems analysis for the NASA Fundamental Aeronautics Mission. In addition to providing technology for design and development of unconventional aircraft, the techniques for generation of accurate geometry and internal sub-structure and the automated interface with the high fidelity analysis codes could also be applied towards the design of vehicles for the NASA Exploration and Space Science Mission projects.
NASA Technical Reports Server (NTRS)
Allan, Brian; Owens, Lewis
2010-01-01
In support of the Blended-Wing-Body aircraft concept, a new flow control hybrid vane/jet design has been developed for use in a boundary-layer-ingesting (BLI) offset inlet in transonic flows. This inlet flow control is designed to minimize the engine fan-face distortion levels and the first five Fourier harmonic half amplitudes while maximizing the inlet pressure recovery. This concept represents a potentially enabling technology for quieter and more environmentally friendly transport aircraft. An optimum vane design was found by minimizing the engine fan-face distortion, DC60, and the first five Fourier harmonic half amplitudes, while maximizing the total pressure recovery. The optimal vane design was then used in a BLI inlet wind tunnel experiment at NASA Langley's 0.3-meter transonic cryogenic tunnel. The experimental results demonstrated an 80-percent decrease in DPCPavg, the reduction in the circumferential distortion levels, at an inlet mass flow rate corresponding to the middle of the operational range at the cruise condition. Even though the vanes were designed at a single inlet mass flow rate, they performed very well over the entire inlet mass flow range tested in the wind tunnel experiment with the addition of a small amount of jet flow control. While the circumferential distortion was decreased, the radial distortion on the outer rings at the aerodynamic interface plane (AIP) increased. This was a result of the large boundary layer being distributed from the bottom of the AIP in the baseline case to the outer edges of the AIP when using the vortex generator (VG) vane flow control. Experimental results, as already mentioned, showed an 80-percent reduction of DPCPavg, the circumferential distortion level at the engine fan-face. The hybrid approach leverages strengths of vane and jet flow control devices, increasing inlet performance over a broader operational range with significant reduction in mass flow requirements. Minimal distortion level requirements
Pattern Recognition Control Design
NASA Technical Reports Server (NTRS)
Gambone, Elisabeth A.
2018-01-01
Spacecraft control algorithms must know the expected vehicle response to any command to the available control effectors, such as reaction thrusters or torque devices. Spacecraft control system design approaches have traditionally relied on the estimated vehicle mass properties to determine the desired force and moment, as well as knowledge of the effector performance to efficiently control the spacecraft. A pattern recognition approach was used to investigate the relationship between the control effector commands and spacecraft responses. Instead of supplying the approximated vehicle properties and the thruster performance characteristics, a database of information relating the thruster ring commands and the desired vehicle response was used for closed-loop control. A Monte Carlo simulation data set of the spacecraft dynamic response to effector commands was analyzed to establish the influence a command has on the behavior of the spacecraft. A tool developed at NASA Johnson Space Center to analyze flight dynamics Monte Carlo data sets through pattern recognition methods was used to perform this analysis. Once a comprehensive data set relating spacecraft responses with commands was established, it was used in place of traditional control methods and gains set. This pattern recognition approach was compared with traditional control algorithms to determine the potential benefits and uses.
Pattern Recognition Control Design
NASA Technical Reports Server (NTRS)
Gambone, Elisabeth
2016-01-01
Spacecraft control algorithms must know the expected spacecraft response to any command to the available control effectors, such as reaction thrusters or torque devices. Spacecraft control system design approaches have traditionally relied on the estimated vehicle mass properties to determine the desired force and moment, as well as knowledge of the effector performance to efficiently control the spacecraft. A pattern recognition approach can be used to investigate the relationship between the control effector commands and the spacecraft responses. Instead of supplying the approximated vehicle properties and the effector performance characteristics, a database of information relating the effector commands and the desired vehicle response can be used for closed-loop control. A Monte Carlo simulation data set of the spacecraft dynamic response to effector commands can be analyzed to establish the influence a command has on the behavior of the spacecraft. A tool developed at NASA Johnson Space Center (Ref. 1) to analyze flight dynamics Monte Carlo data sets through pattern recognition methods can be used to perform this analysis. Once a comprehensive data set relating spacecraft responses with commands is established, it can be used in place of traditional control laws and gains set. This pattern recognition approach can be compared with traditional control algorithms to determine the potential benefits and uses.
Evolving Systems and Adaptive Key Component Control
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Balas, Mark J.
2009-01-01
We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. An introduction to Evolving Systems and exploration of the essential topics of the control and stability properties of Evolving Systems is provided. This chapter defines a framework for Evolving Systems, develops theory and control solutions for fundamental characteristics of Evolving Systems, and provides illustrative examples of Evolving Systems and their control with adaptive key component controllers.
Passification based simple adaptive control of quadrotor attitude: Algorithms and testbed results
NASA Astrophysics Data System (ADS)
Tomashevich, Stanislav; Belyavskyi, Andrey; Andrievsky, Boris
2017-01-01
In the paper, the results of the Passification Method with the Implicit Reference Model (IRM) approach are applied for designing the simple adaptive controller for quadrotor attitude. The IRM design technique makes it possible to relax the matching condition, known for habitual MRAC systems, and leads to simple adaptive controllers, ensuring fast tuning the controller gains, high robustness with respect to nonlinearities in the control loop, to the external disturbances and the unmodeled plant dynamics. For experimental evaluation of the adaptive systems performance, the 2DOF laboratory setup has been created. The testbed allows to safely test new control algorithms in the laboratory area with a small space and promptly make changes in cases of failure. The testing results of simple adaptive control of quadrotor attitude are presented, demonstrating efficacy of the applied simple adaptive control method. The experiments demonstrate good performance quality and high adaptation rate of the simple adaptive control system.
Bounded Linear Stability Margin Analysis of Nonlinear Hybrid Adaptive Control
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Boskovic, Jovan D.
2008-01-01
This paper presents a bounded linear stability analysis for a hybrid adaptive control that blends both direct and indirect adaptive control. Stability and convergence of nonlinear adaptive control are analyzed using an approximate linear equivalent system. A stability margin analysis shows that a large adaptive gain can lead to a reduced phase margin. This method can enable metrics-driven adaptive control whereby the adaptive gain is adjusted to meet stability margin requirements.
Nonlinear adaptive filter for closed-loop fire control
NASA Astrophysics Data System (ADS)
Marshall, William C.
1990-09-01
This paper presents an adaptive or self-learning filter design intended for use in real-time closed loop pointing control systems engaging multiple targets. The design approach is based upon use of a performance index (based upon the Mahalanobis generalized distance function) and multiple filters processed in parallel using the same nonlinear measurements as input. Application of performance index criteria to the statistics of individual filter residuals allows the selection of the optimum filter set without the time delays typically encountered and thereby allows the composite filter structure to adapt (or self-learn) to uncertainties in modeling target acceleration capabilities. An advantage of this approach is that it also provides to an operator (or a robotic controller) the confidence level of tracking system performance against a maneuvering target. This information is of interest for deployment of counter-measures (e.g., fire control eventing, alarms, engagement priority, etc) or simply for laboratory system tests of design adequacy.
Adaptive information design for outdoor augmented reality.
Neuhöfer, Jan A; Govaers, Felix; El Mokni, Hichem; Alexander, Thomas
2012-01-01
Augmented Reality focuses on the enrichment of the user's natural field of view by consistent integration of text, symbols and interactive three-dimensional objects in real time. Placing virtual objects directly into the user's view in a natural context empowers highly dynamic applications. On the other hand, this necessitates deliberate choice of information design and density, in particular for deployment in hazardous environments like military combat scenarios. As the amount of information needed is not foreseeable and strongly depends on the individual mission, an appropriate system must offer adequate adaptation capabilities. The paper presents a prototypical, vehicle-mountable Augmented Reality vision system, designed for enhancing situation awareness in stressful urban warfare scenarios. Tracking, as one of the most crucial challenges for outdoor Augmented Reality, is accomplished by means of a Differential-GPS approach while the type of display to attach can be modified, ranging from ocular displays to standard LCD mini-screens. The overall concept also includes envisioning of own troops (blue forces), for which a multi-sensor tracking approach has been chosen. As a main feature, the system allows switching between different information categories, focusing on friendly, hostile, unidentified or neutral data. Results of an empirical study on the superiority of an in-view navigation cue approach conclude the paper.
Adaptive Designs for Randomized Trials in Public Health
Brown, C. Hendricks; Have, Thomas R. Ten; Jo, Booil; Dagne, Getachew; Wyman, Peter A.; Muthén, Bengt; Gibbons, Robert D.
2009-01-01
In this article, we present a discussion of two general ways in which the traditional randomized trial can be modified or adapted in response to the data being collected. We use the term adaptive design to refer to a trial in which characteristics of the study itself, such as the proportion assigned to active intervention versus control, change during the trial in response to data being collected. The term adaptive sequence of trials refers to a decision-making process that fundamentally informs the conceptualization and conduct of each new trial with the results of previous trials. Our discussion below investigates the utility of these two types of adaptations for public health evaluations. Examples are provided to illustrate how adaptation can be used in practice. From these case studies, we discuss whether such evaluations can or should be analyzed as if they were formal randomized trials, and we discuss practical as well as ethical issues arising in the conduct of these new-generation trials. PMID:19296774
Adaptive self-correcting control system
Ellis, S.H.
1984-01-03
A control system for regulating a controlled device or process, such as a turbofan engine, produces independent multiple estimates of one or more controlled variables of the device or process by combining the signals from a plurality of feedback sensors, which provide information related to the controlled variables, in weighted nonordered pairs. The independent multiple estimates of each controlled variable are combined into a weighted average, and individual estimates which differ by more than a specified amount from the weighted average are edited and temporarily removed from consideration. A revised weighted average value of each controlled variable is then produced, and this value is used to limit or control operation of the device or process. Adaptive trim is provided to compensate for changes in the device or process being controlled, such as engine deterioration, by slowly trimming each individual estimate toward the mean, and includes error compensation which constrains the weighted sum of the adaptive trims to equal zero, thereby preventing the adaptive trim from changing the operating level of the device or process. A secondary editing circuit based on a majority rule principle identifies a failed feedback sensor and permanently excludes all individual estimates of the controlled variable based on the failed sensor. Editing boundaries are increased and adaptive trim rate is varied when a transient occurs in the operation of the device or process. Further transient compensation may be required for a system with more severe transient requirements, and this invention includes compensation to selected feedback parameters such as turbine temperature to account for differences between steady state and transient values.
Neural and Fuzzy Adaptive Control of Induction Motor Drives
Bensalem, Y.; Sbita, L.; Abdelkrim, M. N.
2008-06-12
This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller.
Adaptive Control of Nonlinear and Stochastic Systems
1991-01-14
Hernmndez-Lerma and S.I. Marcus, Nonparametric adaptive control of dis- crete time partially observable stochastic systems, Journal of Mathematical Analysis and Applications 137... Journal of Mathematical Analysis and Applications 137 (1989), 485-514. [19] A. Arapostathis and S.I. Marcus, Analysis of an identification algorithm
Adaptive control system for gas producing wells
Fedor, Pashchenko; Sergey, Gulyaev; Alexander, Pashchenko
2015-03-10
Optimal adaptive automatic control system for gas producing wells cluster is proposed intended for solving the problem of stabilization of the output gas pressure in the cluster at conditions of changing gas flow rate and changing parameters of the wells themselves, providing the maximum high resource of hardware elements of automation.
Predictive Control of Speededness in Adaptive Testing
ERIC Educational Resources Information Center
van der Linden, Wim J.
2009-01-01
An adaptive testing method is presented that controls the speededness of a test using predictions of the test takers' response times on the candidate items in the pool. Two different types of predictions are investigated: posterior predictions given the actual response times on the items already administered and posterior predictions that use the…
Predictive Control of Speededness in Adaptive Testing
ERIC Educational Resources Information Center
van der Linden, Wim J.
2009-01-01
An adaptive testing method is presented that controls the speededness of a test using predictions of the test takers' response times on the candidate items in the pool. Two different types of predictions are investigated: posterior predictions given the actual response times on the items already administered and posterior predictions that use the…
Forward Stochastic Nonlinear Adaptive Control Method
NASA Technical Reports Server (NTRS)
Bayard, David S.
1990-01-01
New method of computation for optimal stochastic nonlinear and adaptive control undergoing development. Solves systematically stochastic dynamic programming equations forward in time, using nested-stochastic-approximation technique. Main advantage, simplicity of programming and reduced complexity with clear performance/computation trade-offs.
Can emergency medicine research benefit from adaptive design clinical trials?
Flight, Laura; Julious, Steven A; Goodacre, Steve
2017-04-01
Adaptive design clinical trials use preplanned interim analyses to determine whether studies should be stopped or modified before recruitment is complete. Emergency medicine trials are well suited to these designs as many have a short time to primary outcome relative to the length of recruitment. We hypothesised that the majority of published emergency medicine trials have the potential to use a simple adaptive trial design. We reviewed clinical trials published in three emergency medicine journals between January 2003 and December 2013. We determined the proportion that used an adaptive design as well as the proportion that could have used a simple adaptive design based on the time to primary outcome and length of recruitment. Only 19 of 188 trials included in the review were considered to have used an adaptive trial design. A total of 154/165 trials that were fixed in design had the potential to use an adaptive design. Currently, there seems to be limited uptake in the use of adaptive trial designs in emergency medicine despite their potential benefits to save time and resources. Failing to take advantage of adaptive designs could be costly to patients and research. It is recommended that where practical and logistical considerations allow, adaptive designs should be used for all emergency medicine clinical trials. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Dynamics of adaptive structures: Design through simulations
NASA Technical Reports Server (NTRS)
Park, K. C.; Alexander, S.
1993-01-01
The use of a helical bi-morph actuator/sensor concept by mimicking the change of helical waveform in bacterial flagella is perhaps the first application of bacterial motions (living species) to longitudinal deployment of space structures. However, no dynamical considerations were analyzed to explain the waveform change mechanisms. The objective is to review various deployment concepts from the dynamics point of view and introduce the dynamical considerations from the outset as part of design considerations. Specifically, the impact of the incorporation of the combined static mechanisms and dynamic design considerations on the deployment performance during the reconfiguration stage is studied in terms of improved controllability, maneuvering duration, and joint singularity index. It is shown that intermediate configurations during articulations play an important role for improved joint mechanisms design and overall structural deployability.
Adaptive controllability of omnidirectional vehicle over unpredictable terrain
NASA Astrophysics Data System (ADS)
Cheok, Ka C.; Radovnikovich, Micho; Hudas, Gregory R.; Overholt, James L.; Fleck, Paul
2009-05-01
In this paper, the controllability of a Mecanum omnidirectional vehicle (ODV) is investigated. An adaptive drive controller is developed that guides the ODV over irregular and unpredictable driving surfaces. Using sensor fusion with appropriate filtering, the ODV gets an accurate perception of the conditions it encounters and then adapts to them to robustly control its motion. Current applications of Mecanum ODVs are designed for use on smooth, regular driving surfaces, and don't actively detect the characteristics of disturbances in the terrain. The intention of this work is to take advantage of the mobility of ODVs in environments where they weren't originally intended to be used. The methods proposed in this paper were implemented in hardware on an ODV. Experimental results did not perform as designed due to incorrect assumptions and over-simplification of the system model. Future work will concentrate on developing more robust control schemes to account for the unknown nonlinear dynamics inherent in the system.
An Adaptive Staggered Dose Design for a Normal Endpoint.
Wu, Joseph; Menon, Sandeep; Chang, Mark
2015-01-01
In a clinical trial where several doses are compared to a control, a multi-stage design that combines both the selection of the best dose and the confirmation of this selected dose is desirable. An example is the two-stage drop-the-losers or pick-the-winner design, where inferior doses are dropped after interim analysis. Selection of target dose(s) can be based on ranking of observed effects, hypothesis testing with adjustment for multiplicity, or other criteria at interim stages. A number of methods have been proposed and have made significant gains in trial efficiency. However, many of these designs started off with all doses with equal allocation and did not consider prioritizing the doses using existing dose-response information. We propose an adaptive staggered dose procedure that allows explicit prioritization of doses and applies error spending scheme that favors doses with assumed better responses. This design starts off with only a subset of the doses and adaptively adds new doses depending on interim results. Using simulation, we have shown that this design performs better in terms of increased statistical power than the drop-the-losers design given strong prior information of dose response.
Robust adaptive control of HVDC systems
Reeve, J.; Sultan, M. )
1994-07-01
The transient performance of an HVDC power system is highly dependent on the parameters of the current/voltage regulators of the converter controls. In order to better accommodate changes in system structure or dc operating conditions, this paper introduces a new adaptive control strategy. The advantages of automatic tuning for continuous fine tuning are combined with predetermined gain scheduling in order to achieve robustness for large disturbances. Examples are provided for a digitally simulated back-to-back dc system.
Adaptive feedback control of wall modes in tokamaks
NASA Astrophysics Data System (ADS)
Sun, Zhipeng
The goal of this study is to stabilize the resistive wall modes (RWM) in tokamaks with adaptive stochastic feedback control. This is the first ever attempt at adaptive stochastic feedback optimal control of RWM in tokamaks. Both adaptive optimal state feedback and adaptive output feedback control have been studied. The adaptive optimal state feedback control design successfully stabilizes a slowly time-evolving RWM in a tokamak in a time scale of 4 times the inverse of the growth rate of the RWM. The stabilized system output for the time-invariant model is twice the system noise level. For the time-varying model, it is several times larger than the time-invariant case. The adaptive stochastic output feedback can also stabilize the slowly time-evolving RWM. It can do this in a time about 3 times that of the inverse of the growth rate of the RWM. The stabilized system output is twice as large as that of the state feedback case. In order to avoid the bottleneck encountered in the various sequential computations with big matrices in the feedback algorithms, neural network control has been proposed. It has been used to implement the adaptive stochastic output feedback control. It can stabilize the RWM instability in a time of 3 times the inverse of the growth rate of the RWM. The stabilized wall modes have the steady state output similar to the output feedback case. The developed algorithms, state feedback, output feedback, neural network control, can be readily applied to other plasma instabilities.
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Hashemi, Kelley E.; Yucelen, Tansel; Arabi, Ehsan
2017-01-01
This paper presents a new adaptive control approach that involves a performance optimization objective. The problem is cast as a multi-objective optimal control. The control synthesis involves the design of a performance optimizing controller from a subset of control inputs. The effect of the performance optimizing controller is to introduce an uncertainty into the system that can degrade tracking of the reference model. An adaptive controller from the remaining control inputs is designed to reduce the effect of the uncertainty while maintaining a notion of performance optimization in the adaptive control system.
Adaptive Variable Bias Magnetic Bearing Control
NASA Technical Reports Server (NTRS)
Johnson, Dexter; Brown, Gerald V.; Inman, Daniel J.
1998-01-01
Most magnetic bearing control schemes use a bias current with a superimposed control current to linearize the relationship between the control current and the force it delivers. With the existence of the bias current, even in no load conditions, there is always some power consumption. In aerospace applications, power consumption becomes an important concern. In response to this concern, an alternative magnetic bearing control method, called Adaptive Variable Bias Control (AVBC), has been developed and its performance examined. The AVBC operates primarily as a proportional-derivative controller with a relatively slow, bias current dependent, time-varying gain. The AVBC is shown to reduce electrical power loss, be nominally stable, and provide control performance similar to conventional bias control. Analytical, computer simulation, and experimental results are presented in this paper.
Geometry control in prestressed adaptive space trusses
NASA Astrophysics Data System (ADS)
Sener, Murat; Utku, Senol; Wada, Ben K.
1993-04-01
In this work the actuator placement problem for the precision control in prestressed adaptive space trusses is studied. These structures cannot be statically determinate, implying that the length-adjusting actuators have to work against the existing prestressing forces, and also against the stresses caused by the actuation. This type of difficulties does not exist in statically determinate adaptive trusses where, except for overcoming the friction, the actuators operate under zero axial force, and require almost no energy. The actuator placement problem in statically inderterminate trusses is, therefore, governed seriously by the energy and the strength requirements. The paper provides various methodologies for the actuator placement problem in prestressed space trusses.
Model reference, sliding mode adaptive control for flexible structures
NASA Technical Reports Server (NTRS)
Yurkovich, S.; Ozguner, U.; Al-Abbass, F.
1988-01-01
A decentralized model reference adaptive approach using a variable-structure sliding model control has been developed for the vibration suppression of large flexible structures. Local models are derived based upon the desired damping and response time in a model-following scheme, and variable structure controllers are then designed which employ colocated angular rate and position feedback. Numerical simulations have been performed using NASA's flexible grid experimental apparatus.
Experimental study on direct adaptive control of a PUMA 560 industrial robot
NASA Technical Reports Server (NTRS)
Seraji, H.; Lee, T.; Delpech, M.
1990-01-01
The implementation and experimental validation of a direct adaptive control scheme on a PUMA 560 industrial robot is discussed. The design theory for direct adaptive control of manipulators is outlined and the test facility and software are described. Results are presented from the experiments on the simultaneous control of all of the six joint angles and control of the end-effector position and orientation of the robot. Also, the possible applications of the direct adaptive control scheme are considered.
Active control transport design criteria
NASA Technical Reports Server (NTRS)
Hall, B. M.; Harris, R. B.
1976-01-01
Vehicle design considerations for active control applications to subsonic transports are examined. Active control is defined along with those functions which are considered in the study of design criteria. The FAA regulations governing transport aircraft design are briefly discussed.
Assessing Adaptive Instructional Design Tools and Methods in ADAPT[IT].
ERIC Educational Resources Information Center
Eseryel, Deniz; Spector, J. Michael
ADAPT[IT] (Advanced Design Approach for Personalized Training - Interactive Tools) is a European project within the Information Society Technologies program that is providing design methods and tools to guide a training designer according to the latest cognitive science and standardization principles. ADAPT[IT] addresses users in two significantly…
Adaptive control of Space Station with control moment gyros
NASA Technical Reports Server (NTRS)
Bishop, Robert H.; Paynter, Scott J.; Sunkel, John W.
1992-01-01
An adaptive approach to Space Station attitude control is investigated. The main components of the controller are the parameter identification scheme, the control gain calculation, and the control law. The control law is a full-state feedback space station baseline control law. The control gain calculation is based on linear-quadratic regulator theory with eigenvalues placement in a vertical strip. The parameter identification scheme is a recursive extended Kalman filter that estimates the inertias and also provides an estimate of the unmodeled disturbances due to the aerodynamic torques and to the nonlinear effects. An analysis of the inertia estimation problem suggests that it is possible to estimate Space Station inertias accurately during nominal control moment gyro operations. The closed-loop adaptive control law is shown to be capable of stabilizing the Space Station after large inertia changes. Results are presented for the pitch axis.
Enhanced adaptive fuzzy sliding mode control for uncertain nonlinear systems
NASA Astrophysics Data System (ADS)
Roopaei, Mehdi; Zolghadri, Mansoor; Meshksar, Sina
2009-09-01
In this article, a novel Adaptive Fuzzy Sliding Mode Control (AFSMC) methodology is proposed based on the integration of Sliding Mode Control (SMC) and Adaptive Fuzzy Control (AFC). Making use of the SMC design framework, we propose two fuzzy systems to be used as reaching and equivalent parts of the SMC. In this way, we make use of the fuzzy logic to handle uncertainty/disturbance in the design of the equivalent part and provide a chattering free control for the design of the reaching part. To construct the equivalent control law, an adaptive fuzzy inference engine is used to approximate the unknown parts of the system. To get rid of the chattering, a fuzzy logic model is assigned for reaching control law, which acting like the saturation function technique. The main advantage of our proposed methodology is that the structure of the system is unknown and no knowledge of the bounds of parameters, uncertainties and external disturbance are required in advance. Using Lyapunov stability theory and Barbalat's lemma, the closed-loop system is proved to be stable and convergence properties of the system is assured. Simulation examples are presented to verify the effectiveness of the method. Results are compared with some other methods proposed in the past research.
Active vibration isolation by adaptive proportional control
NASA Astrophysics Data System (ADS)
Liu, Yun-Hui; Wu, Wei-Hao; Chu, Chih-Liang
2013-01-01
An active vibration isolation system that applies proportional controller incorporated with an adaptive filter to reduce the transmission of base excitations to a precision instrument is proposed in this work. The absolute vibration velocity signal acquired from an accelerator and being processed through an integrator is input to the controller as a feedback signal, and the controller output signal drives the voice coil actuator to produce a sky-hook damper force. In practice, the phase response of integrator at low frequency such as 2~5 Hz deviate from the 90 degree which is the exact phase difference between the vibration velocity and acceleration. Therefore, an adaptive filter is used to compensate the phase error in this paper. An analysis of this active vibration isolation system is presented, and model predictions are compared to experimental results. The results show that the proposed method significantly reduces transmissibility at resonance without the penalty of increased transmissibility at higher frequencies.
Adaptive electric field control of epileptic seizures.
Gluckman, B J; Nguyen, H; Weinstein, S L; Schiff, S J
2001-01-15
We describe a novel method of adaptively controlling epileptic seizure-like events in hippocampal brain slices using electric fields. Extracellular neuronal activity is continuously recorded during field application through differential extracellular recording techniques, and the applied electric field strength is continuously updated using a computer-controlled proportional feedback algorithm. This approach appears capable of sustained amelioration of seizure events in this preparation when used with negative feedback. Seizures can be induced or enhanced by using fields of opposite polarity through positive feedback. In negative feedback mode, such findings may offer a novel technology for seizure control. In positive feedback mode, adaptively applied electric fields may offer a more physiological means of neural modulation for prosthetic purposes than previously possible.
Adaptive adjustment of the randomization ratio using historical control data
Hobbs, Brian P.; Carlin, Bradley P.; Sargent, Daniel J.
2013-01-01
Background Prospective trial design often occurs in the presence of “acceptable” [1] historical control data. Typically this data is only utilized for treatment comparison in a posteriori retrospective analysis to estimate population-averaged effects in a random-effects meta-analysis. Purpose We propose and investigate an adaptive trial design in the context of an actual randomized controlled colorectal cancer trial. This trial, originally reported by Goldberg et al. [2], succeeded a similar trial reported by Saltz et al. [3], and used a control therapy identical to that tested (and found beneficial) in the Saltz trial. Methods The proposed trial implements an adaptive randomization procedure for allocating patients aimed at balancing total information (concurrent and historical) among the study arms. This is accomplished by assigning more patients to receive the novel therapy in the absence of strong evidence for heterogeneity among the concurrent and historical controls. Allocation probabilities adapt as a function of the effective historical sample size (EHSS) characterizing relative informativeness defined in the context of a piecewise exponential model for evaluating time to disease progression. Commensurate priors [4] are utilized to assess historical and concurrent heterogeneity at interim analyses and to borrow strength from the historical data in the final analysis. The adaptive trial’s frequentist properties are simulated using the actual patient-level historical control data from the Saltz trial and the actual enrollment dates for patients enrolled into the Goldberg trial. Results Assessing concurrent and historical heterogeneity at interim analyses and balancing total information with the adaptive randomization procedure leads to trials that on average assign more new patients to the novel treatment when the historical controls are unbiased or slightly biased compared to the concurrent controls. Large magnitudes of bias lead to approximately equal
Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems
Xia, Feng; Ma, Longhua; Peng, Chen; Sun, Youxian; Dong, Jinxiang
2008-01-01
There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN. PMID:27879934
Adaptive control strategies for flexible robotic arm
NASA Technical Reports Server (NTRS)
Bialasiewicz, Jan T.
1993-01-01
The motivation of this research came about when a neural network direct adaptive control scheme was applied to control the tip position of a flexible robotic arm. Satisfactory control performance was not attainable due to the inherent non-minimum phase characteristics of the flexible robotic arm tip. Most of the existing neural network control algorithms are based on the direct method and exhibit very high sensitivity if not unstable closed-loop behavior. Therefore a neural self-tuning control (NSTC) algorithm is developed and applied to this problem and showed promising results. Simulation results of the NSTC scheme and the conventional self-tuning (STR) control scheme are used to examine performance factors such as control tracking mean square error, estimation mean square error, transient response, and steady state response.
Self-Tuning Adaptive-Controller Using Online Frequency Identification
NASA Technical Reports Server (NTRS)
Chiang, W. W.; Cannon, R. H., Jr.
1985-01-01
A real time adaptive controller was designed and tested successfully on a fourth order laboratory dynamic system which features very low structural damping and a noncolocated actuator sensor pair. The controller, implemented in a digital minicomputer, consists of a state estimator, a set of state feedback gains, and a frequency locked loop (FLL) for real time parameter identification. The FLL can detect the closed loop natural frequency of the system being controlled, calculate the mismatch between a plant parameter and its counterpart in the state estimator, and correct the estimator parameter in real time. The adaptation algorithm can correct the controller error and stabilize the system for more than 50% variation in the plant natural frequency, compared with a 10% stability margin in frequency variation for a fixed gain controller having the same performance at the nominal plant condition. After it has locked to the correct plant frequency, the adaptive controller works as well as the fixed gain controller does when there is no parameter mismatch. The very rapid convergence of this adaptive system is demonstrated experimentally, and can also be proven with simple root locus methods.
Residual mode filters and adaptive control in large space structures
NASA Technical Reports Server (NTRS)
Davidson, Roger A.; Balas, Mark J.
1989-01-01
One of the most difficult problems in controlling large systems and structures is compensating for the destructive interaction which can occur between the reduced-order model (ROM) of the plant, which is used by the controller, and the unmodeled dynamics of the plant, often called the residual modes. The problem is more significant in the case of large space structures because their naturally light damping and high performance requirements lead to more frequent, destructive residual mode interaction (RMI). Using the design/compensation technique of residual mode filters (RMF's), effective compensation of RMI can be accomplished in a straightforward manner when using linear controllers. The use of RMF's has been shown to be effective for a variety of large structures, including a space-based laser and infinite dimensional systems. However, the dynamics of space structures is often uncertain and may even change over time due to on-orbit erosion from space debris and corrosive chemicals in the upper atmosphere. In this case, adaptive control can be extremely beneficial in meeting the performance requirements of the structure. Adaptive control for large structures is also based on ROM's and so destructive RMI may occur. Unfortunately, adaptive control is inherently nonlinear, and therefore the known results of RMF's cannot be applied. The purpose is to present the results of new research showing the effects of RMI when using adaptive control and the work which will hopefully lead to RMF compensation of this problem.
Some challenges with statistical inference in adaptive designs.
Hung, H M James; Wang, Sue-Jane; Yang, Peiling
2014-01-01
Adaptive designs have generated a great deal of attention to clinical trial communities. The literature contains many statistical methods to deal with added statistical uncertainties concerning the adaptations. Increasingly encountered in regulatory applications are adaptive statistical information designs that allow modification of sample size or related statistical information and adaptive selection designs that allow selection of doses or patient populations during the course of a clinical trial. For adaptive statistical information designs, a few statistical testing methods are mathematically equivalent, as a number of articles have stipulated, but arguably there are large differences in their practical ramifications. We pinpoint some undesirable features of these methods in this work. For adaptive selection designs, the selection based on biomarker data for testing the correlated clinical endpoints may increase statistical uncertainty in terms of type I error probability, and most importantly the increased statistical uncertainty may be impossible to assess.
Designing and Implementing Effective Adapted Physical Education Programs
ERIC Educational Resources Information Center
Kelly, Luke E.
2011-01-01
"Designing and Implementing Effective Adapted Physical Education Programs" was written to assist adapted and general physical educators who are dedicated to ensuring that the physical and motor needs of all their students are addressed in physical education. While it is anticipated that adapted physical educators, where available, will typically…
An adaptive learning control system for aircraft
NASA Technical Reports Server (NTRS)
Mekel, R.; Nachmias, S.
1976-01-01
A learning control system is developed which blends the gain scheduling and adaptive control into a single learning system that has the advantages of both. An important feature of the developed learning control system is its capability to adjust the gain schedule in a prescribed manner to account for changing aircraft operating characteristics. Furthermore, if tests performed by the criteria of the learning system preclude any possible change in the gain schedule, then the overall system becomes an ordinary gain scheduling system. Examples are discussed.
Parallel computations and control of adaptive structures
NASA Technical Reports Server (NTRS)
Park, K. C.; Alvin, Kenneth F.; Belvin, W. Keith; Chong, K. P. (Editor); Liu, S. C. (Editor); Li, J. C. (Editor)
1991-01-01
The equations of motion for structures with adaptive elements for vibration control are presented for parallel computations to be used as a software package for real-time control of flexible space structures. A brief introduction of the state-of-the-art parallel computational capability is also presented. Time marching strategies are developed for an effective use of massive parallel mapping, partitioning, and the necessary arithmetic operations. An example is offered for the simulation of control-structure interaction on a parallel computer and the impact of the approach presented for applications in other disciplines than aerospace industry is assessed.
An adaptive strategy for controlling chaotic system.
Cao, Yi-Jia; Hang, Hong-Xian
2003-01-01
This paper presents an adaptive strategy for controlling chaotic systems. By employing the phase space reconstruction technique in nonlinear dynamical systems theory, the proposed strategy transforms the nonlinear system into canonical form, and employs a nonlinear observer to estimate the uncertainties and disturbances of the nonlinear system, and then establishes a state-error-like feedback law. The developed control scheme allows chaos control in spite of modeling errors and parametric variations. The effectiveness of the proposed approach has been demonstrated through its applications to two well-known chaotic systems: Duffing oscillator and Rössler chaos.
Improvement of Adaptive Cruise Control Performance
NASA Astrophysics Data System (ADS)
Miyata, Shigeharu; Nakagami, Takashi; Kobayashi, Sei; Izumi, Tomoji; Naito, Hisayoshi; Yanou, Akira; Nakamura, Hitomi; Takehara, Shin
2010-12-01
This paper describes the Adaptive Cruise Control system (ACC), a system which reduces the driving burden on the driver. The ACC system primarily supports four driving modes on the road and controls the acceleration and deceleration of the vehicle in order to maintain a set speed or to avoid a crash. This paper proposes more accurate methods of detecting the preceding vehicle by radar while cornering, with consideration for the vehicle sideslip angle, and also of controlling the distance between vehicles. By making full use of the proposed identification logic for preceding vehicles and path estimation logic, an improvement in driving stability was achieved.
Adaptive guidance navigation and control for the Advanced Launch System
NASA Astrophysics Data System (ADS)
Shackelford, J. H., III
The paper presents an Advanced Launch development project called the adaptive guidance, navigation, and control (GNC) project aimed at assisting the Advanced Launch System (ALS) program in achieving its cost and operability goals by defining and demonstrating onboard adaptive algorithms that may reduce or eliminate recurring time-consuming preflight analysis tasks as well as the processes and technologies required for streamlining the preflight design process itself. Two different guidance, navigation, and control systems for the ALS are compared: one scheme would be routed in the classical approach to today's expendable-launch-vehicles autopilot design, while the second scheme would rely on algorithms and sensors that can identify those parameters that change as result of either the mission or payload and modify or update parameters in the controller. Four simple concepts making up the baseline GNC approach are outlined.
Adaptive control of surface finish in automated turning processes
NASA Astrophysics Data System (ADS)
García-Plaza, E.; Núñez, P. J.; Martín, A. R.; Sanz, A.
2012-04-01
The primary aim of this study was to design and develop an on-line control system of finished surfaces in automated machining process by CNC turning. The control system consisted of two basic phases: during the first phase, surface roughness was monitored through cutting force signals; the second phase involved a closed-loop adaptive control system based on data obtained during the monitoring of the cutting process. The system ensures that surfaces roughness is maintained at optimum values by adjusting the feed rate through communication with the PLC of the CNC machine. A monitoring and adaptive control system has been developed that enables the real-time monitoring of surface roughness during CNC turning operations. The system detects and prevents faults in automated turning processes, and applies corrective measures during the cutting process that raise quality and reliability reducing the need for quality control.
Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks
NASA Technical Reports Server (NTRS)
Jorgensen, Charles C.
1997-01-01
A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.
Designing Adaptive Low Dissipative High Order Schemes
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sjoegreen, B.; Parks, John W. (Technical Monitor)
2002-01-01
Proper control of the numerical dissipation/filter to accurately resolve all relevant multiscales of complex flow problems while still maintaining nonlinear stability and efficiency for long-time numerical integrations poses a great challenge to the design of numerical methods. The required type and amount of numerical dissipation/filter are not only physical problem dependent, but also vary from one flow region to another. This is particularly true for unsteady high-speed shock/shear/boundary-layer/turbulence/acoustics interactions and/or combustion problems since the dynamics of the nonlinear effect of these flows are not well-understood. Even with extensive grid refinement, it is of paramount importance to have proper control on the type and amount of numerical dissipation/filter in regions where it is needed.
Adaptive control of a rotating system
NASA Astrophysics Data System (ADS)
Dyniewicz, Bartłomiej; Pręgowska, Agnieszka; Bajer, Czesław I.
2014-02-01
In the present paper, an adaptive control of structural vibrations is presented. Based on earlier research, we claim that the periodical switching on of magneto-rheological controlled dampers results in the reduction of the amplitudes of vibrations more than does their permanent actuation. This statement, when applied to a moving load problem, was mathematically proved in earlier papers. In the present paper we determine the efficiency of such a control applied to a rotating shaft. The earlier mathematical analysis allows us to propose a control strategy. A finite element simulation together with the solution of the control problem shows that the dampers should act only during a short period of the highest displacements of the structure. The same conclusion is found in experimental tests. Although high frequency control with MR dampers is less efficient than in the theoretical investigations, we have found an amplitude reduction in the range of 10-20%.
Adaptive impedance control of redundant manipulators
NASA Technical Reports Server (NTRS)
Colbaugh, R.; Glass, K.; Seraji, H.
1990-01-01
A scheme for controlling the mechanical impedance of the end-effector of a kinematically redundant manipulator is presented. The proposed control system consists of two subsystems: an adaptive impedance controller which generates the Cartesian-space control input F (is a member of Rm) required to provide the desired end-effector impedance characteristics, and an algorithm that maps this control input to the joint torque T (is a member of Rn). The F to T map is constructed so that the robot redundancy is utilized to improve either the kinematic or dynamic performance of the robot. The impedance controller does not require knowledge of the complex robot dynamic model or parameter values for the robot, the payload, or the environment, and is implemented without calculation of the robot inverse kinematic transformation. As a result, the scheme is very general and is computationally efficient for on-line implementation.
Design for an Adaptive Library Catalog.
ERIC Educational Resources Information Center
Buckland, Michael K.; And Others
1992-01-01
Describes OASIS, a prototype adaptive online catalog implemented as a front end to the University of California MELVYL catalog. Topics addressed include the concept of adaptive retrieval systems, strategic search commands, feedback, prototyping using a front-end, the problem of excessive retrieval, commands to limit or increase search results, and…
Adaptive monitoring design for ecosystem management
Paul L. Ringold; Jim Alegria; Raymond L. Czaplewski; Barry S. Mulder; Tim Tolle; Kelly Burnett
1996-01-01
Adaptive management of ecosystems (e.g., Holling 1978, Walters 1986, Everett et al. 1994, Grumbine 1994, Yaffee 1994, Gunderson et al. 1995, Frentz et al. 1995, Montgomery et al. 1995) structures a system in which monitoring iteratively improves the knowledge base and helps refine management plans. This adaptive approach acknowledges that action is necessary or...
Designing and Generating Educational Adaptive Hypermedia Applications
ERIC Educational Resources Information Center
Retalis, Symeon; Papasalouros, Andreas
2005-01-01
Educational Adaptive Hypermedia Applications (EAHA) provide personalized views on the learning content to individual learners. They also offer adaptive sequencing (navigation) over the learning content based on rules that stem from the user model requirements and the instructional strategies. EAHA are gaining the focus of the research community as…
Designing and Generating Educational Adaptive Hypermedia Applications
ERIC Educational Resources Information Center
Retalis, Symeon; Papasalouros, Andreas
2005-01-01
Educational Adaptive Hypermedia Applications (EAHA) provide personalized views on the learning content to individual learners. They also offer adaptive sequencing (navigation) over the learning content based on rules that stem from the user model requirements and the instructional strategies. EAHA are gaining the focus of the research community as…
Adaptation with disturbance attenuation in nonlinear control systems
Basar, T.
1997-12-31
We present an optimization-based adaptive controller design for nonlinear systems exhibiting parametric as well as functional uncertainty. The approach involves the formulation of an appropriate cost functional that places positive weight on deviations from the achievement of desired objectives (such as tracking of a reference trajectory while the system exhibits good transient performance) and negative weight on the energy of the uncertainty. This cost functional also translates into a disturbance attenuation inequality which quantifies the effect of the presence of uncertainty on the desired objective, which in turn yields an interpretation for the optimizing control as one that optimally attenuates the disturbance, viewed as the collection of unknown parameters and unknown signals entering the system dynamics. In addition to this disturbance attenuation property, the controllers obtained also feature adaptation in the sense that they help with identification of the unknown parameters, even though this has not been set as the primary goal of the design. In spite of this adaptation/identification role, the controllers obtained are not of certainty-equivalent type, which means that the identification and the control phases of the design are not decoupled.
Model reference adaptive control of robots
NASA Technical Reports Server (NTRS)
Steinvorth, Rodrigo
1991-01-01
This project presents the results of controlling two types of robots using new Command Generator Tracker (CGT) based Direct Model Reference Adaptive Control (MRAC) algorithms. Two mathematical models were used to represent a single-link, flexible joint arm and a Unimation PUMA 560 arm; and these were then controlled in simulation using different MRAC algorithms. Special attention was given to the performance of the algorithms in the presence of sudden changes in the robot load. Previously used CGT based MRAC algorithms had several problems. The original algorithm that was developed guaranteed asymptotic stability only for almost strictly positive real (ASPR) plants. This condition is very restrictive, since most systems do not satisfy this assumption. Further developments to the algorithm led to an expansion of the number of plants that could be controlled, however, a steady state error was introduced in the response. These problems led to the introduction of some modifications to the algorithms so that they would be able to control a wider class of plants and at the same time would asymptotically track the reference model. This project presents the development of two algorithms that achieve the desired results and simulates the control of the two robots mentioned before. The results of the simulations are satisfactory and show that the problems stated above have been corrected in the new algorithms. In addition, the responses obtained show that the adaptively controlled processes are resistant to sudden changes in the load.
Adaptive trial designs: a review of barriers and opportunities
2012-01-01
Adaptive designs allow planned modifications based on data accumulating within a study. The promise of greater flexibility and efficiency stimulates increasing interest in adaptive designs from clinical, academic, and regulatory parties. When adaptive designs are used properly, efficiencies can include a smaller sample size, a more efficient treatment development process, and an increased chance of correctly answering the clinical question of interest. However, improper adaptations can lead to biased studies. A broad definition of adaptive designs allows for countless variations, which creates confusion as to the statistical validity and practical feasibility of many designs. Determining properties of a particular adaptive design requires careful consideration of the scientific context and statistical assumptions. We first review several adaptive designs that garner the most current interest. We focus on the design principles and research issues that lead to particular designs being appealing or unappealing in particular applications. We separately discuss exploratory and confirmatory stage designs in order to account for the differences in regulatory concerns. We include adaptive seamless designs, which combine stages in a unified approach. We also highlight a number of applied areas, such as comparative effectiveness research, that would benefit from the use of adaptive designs. Finally, we describe a number of current barriers and provide initial suggestions for overcoming them in order to promote wider use of appropriate adaptive designs. Given the breadth of the coverage all mathematical and most implementation details are omitted for the sake of brevity. However, the interested reader will find that we provide current references to focused reviews and original theoretical sources which lead to details of the current state of the art in theory and practice. PMID:22917111
Adaptive control based on retrospective cost optimization
NASA Technical Reports Server (NTRS)
Santillo, Mario A. (Inventor); Bernstein, Dennis S. (Inventor)
2012-01-01
A discrete-time adaptive control law for stabilization, command following, and disturbance rejection that is effective for systems that are unstable, MIMO, and/or nonminimum phase. The adaptive control algorithm includes guidelines concerning the modeling information needed for implementation. This information includes the relative degree, the first nonzero Markov parameter, and the nonminimum-phase zeros. Except when the plant has nonminimum-phase zeros whose absolute value is less than the plant's spectral radius, the required zero information can be approximated by a sufficient number of Markov parameters. No additional information about the poles or zeros need be known. Numerical examples are presented to illustrate the algorithm's effectiveness in handling systems with errors in the required modeling data, unknown latency, sensor noise, and saturation.
Block adaptive rate controlled image data compression
NASA Technical Reports Server (NTRS)
Rice, R. F.; Hilbert, E.; Lee, J.-J.; Schlutsmeyer, A.
1979-01-01
A block adaptive rate controlled (BARC) image data compression algorithm is described. It is noted that in the algorithm's principal rate controlled mode, image lines can be coded at selected rates by combining practical universal noiseless coding techniques with block adaptive adjustments in linear quantization. Compression of any source data at chosen rates of 3.0 bits/sample and above can be expected to yield visual image quality with imperceptible degradation. Exact reconstruction will be obtained if the one-dimensional difference entropy is below the selected compression rate. It is noted that the compressor can also be operated as a floating rate noiseless coder by simply not altering the input data quantization. Here, the universal noiseless coder ensures that the code rate is always close to the entropy. Application of BARC image data compression to the Galileo orbiter mission of Jupiter is considered.
A Comprehensive Robust Adaptive Controller for Gust Load Alleviation
Quagliotti, Fulvia
2014-01-01
The objective of this paper is the implementation and validation of an adaptive controller for aircraft gust load alleviation. The contribution of this paper is the design of a robust controller that guarantees the reduction of the gust loads, even when the nominal conditions change. Some preliminary results are presented, considering the symmetric aileron deflection as control device. The proposed approach is validated on subsonic transport aircraft for different mass and flight conditions. Moreover, if the controller parameters are tuned for a specific gust model, even if the gust frequency changes, no parameter retuning is required. PMID:24688411
Adaptive mechanism-based congestion control for networked systems
NASA Astrophysics Data System (ADS)
Liu, Zhi; Zhang, Yun; Chen, C. L. Philip
2013-03-01
In order to assure the communication quality in network systems with heavy traffic and limited bandwidth, a new ATRED (adaptive thresholds random early detection) congestion control algorithm is proposed for the congestion avoidance and resource management of network systems. Different to the traditional AQM (active queue management) algorithms, the control parameters of ATRED are not configured statically, but dynamically adjusted by the adaptive mechanism. By integrating with the adaptive strategy, ATRED alleviates the tuning difficulty of RED (random early detection) and shows a better control on the queue management, and achieve a more robust performance than RED under varying network conditions. Furthermore, a dynamic transmission control protocol-AQM control system using ATRED controller is introduced for the systematic analysis. It is proved that the stability of the network system can be guaranteed when the adaptive mechanism is finely designed. Simulation studies show the proposed ATRED algorithm achieves a good performance in varying network environments, which is superior to the RED and Gentle-RED algorithm, and providing more reliable service under varying network conditions.
Materials for Adaptive Structural Acoustic Controls
1994-01-31
stannate -11M I f-I ic cmoiin MATERIALS FOR ADAPTIVE STRUCTURAL ACOUSTIC CONTROLS Period February 1, 1993 to January 31, 1994 Annual Report VOLUME I OFFICE... ics 139, 25- 49(1993). 14. Jiang, Q., W. Cao, and L. E. Cross. Electrical Fatigue in Lead Zirconate Titanate Ceramics. J. Am. Ceram. Soc. 77(1), 211...Ceramic Composte Transducer-The Moonie. Ferroelecuics: IM , Gaithersburg, Maryland (August 1993). 21. Tressler, J. F., Q. C. Xu, S. Yoshikawa, K. Uchino
Applications of Neural Networks to Adaptive Control
1989-12-01
DTIC ;- E py 00 NAVAL POSTGRADUATE SCHOOL Monterey, California I.$ RDTIC IELECTE fl THESIS BEG7V°U APPLICATIONS OF NEURAL NETWORKS TO ADAPTIVE CONTROL...Second keader E . Robert Wood, Chairman, Department of Aeronautics and Astronautics Gordoii E . Schacher, Dean of Faculty and Graduate Education ii ABSTRACT...23: Network Dynamic Stability for q(t) . ............................. 55 ix Figure 24: Network Dynamic Stability for e (t
Guidelines help design pneumatic control systems
Curry, R.N.
1981-01-26
The three areas of particular interest to the gas-transmission engineer about pneumatic-instrument-operated control valves are (1) the fail-position probability of a system, (2) the designated action required for each component in the pneumatic circuit, and (3) the schematically defined position of each component. Compared with self-operated control valves, the instrument-operated systems perform many more functions; they can control the flow and the volume or flow-volume combinations, with both pressure override and underride, and will adapt conveniently to remote operation. Schematic diagrams illustrate the numerous system designs possible for pressure-regulation, flow-control, and relief-valve duties.
The stochastic control of the F-8C aircraft using the Multiple Model Adaptive Control (MMAC) method
NASA Technical Reports Server (NTRS)
Athans, M.; Dunn, K. P.; Greene, E. S.; Lee, W. H.; Sandel, N. R., Jr.
1975-01-01
The purpose of this paper is to summarize results obtained for the adaptive control of the F-8C aircraft using the so-called Multiple Model Adaptive Control method. The discussion includes the selection of the performance criteria for both the lateral and the longitudinal dynamics, the design of the Kalman filters for different flight conditions, the 'identification' aspects of the design using hypothesis testing ideas, and the performance of the closed loop adaptive system.
Robust adaptive backstepping control for reentry reusable launch vehicles
NASA Astrophysics Data System (ADS)
Wang, Zhen; Wu, Zhong; Du, Yijiang
2016-09-01
During the reentry process of reusable launch vehicles (RLVs), the large range of flight envelope will not only result in high nonlinearities, strong coupling and fast time-varying characteristics of the attitude dynamics, but also result in great uncertainties in the atmospheric density, aerodynamic coefficients and environmental disturbances, etc. In order to attenuate the effects of these problems on the control performance of the reentry process, a robust adaptive backstepping control (RABC) strategy is proposed for RLV in this paper. This strategy consists of two-loop controllers designed via backstepping method. Both the outer and the inner loop adopt a robust adaptive controller, which can deal with the disturbances and uncertainties by the variable-structure term with the estimation of their bounds. The outer loop can track the desired attitude by the design of virtual control-the desired angular velocity, while the inner one can track the desired angular velocity by the design of control torque. Theoretical analysis indicates that the closed-loop system under the proposed control strategy is globally asymptotically stable. Even if the boundaries of the disturbances and uncertainties are unknown, the attitude can track the desired value accurately. Simulation results of a certain RLV demonstrate the effectiveness of the control strategy.
Adaptive vs. group sequential self-designing trials.
Mehrotra, Devan V; Fan, Xiaoyin
2006-08-01
This is a discussion of the paper. 'Repeated Confidence Intervals in Self-Designing Clinical Trials and Switching between Non-Inferiority and Superinferiority' by Joachim Hartung and Guido Knapp, appearing in this special issue on adaptive designs.
Implementation of Adaptive Digital Controllers on Programmable Logic Devices
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Ormsby, John (Technical Monitor)
2002-01-01
Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing (DSP) functions. Such capability also makes and FPGA a suitable platform for the digital implementation of closed loop controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance in a compact form-factor. Other researchers have presented the notion that a second order digital filter with proportional-integral-derivative (PID) control functionality can be implemented in an FPGA. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSF) devices. Our goal is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. Meeting our goals requires alternative compact implementation of such functionality to withstand the harsh environment encountered on spacecraft. Radiation tolerant FPGA's are a feasible option for reaching these goals.
Implementation of Adaptive Digital Controllers on Programmable Logic Devices
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Ormsby, John (Technical Monitor)
2002-01-01
Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing (DSP) functions. Such capability also makes and FPGA a suitable platform for the digital implementation of closed loop controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance in a compact form-factor. Other researchers have presented the notion that a second order digital filter with proportional-integral-derivative (PID) control functionality can be implemented in an FPGA. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSF) devices. Our goal is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. Meeting our goals requires alternative compact implementation of such functionality to withstand the harsh environment encountered on spacecraft. Radiation tolerant FPGA's are a feasible option for reaching these goals.
Robust design of configurations and parameters of adaptable products
NASA Astrophysics Data System (ADS)
Zhang, Jian; Chen, Yongliang; Xue, Deyi; Gu, Peihua
2014-03-01
An adaptable product can satisfy different customer requirements by changing its configuration and parameter values during the operation stage. Design of adaptable products aims at reducing the environment impact through replacement of multiple different products with single adaptable ones. Due to the complex architecture, multiple functional requirements, and changes of product configurations and parameter values in operation, impact of uncertainties to the functional performance measures needs to be considered in design of adaptable products. In this paper, a robust design approach is introduced to identify the optimal design configuration and parameters of an adaptable product whose functional performance measures are the least sensitive to uncertainties. An adaptable product in this paper is modeled by both configurations and parameters. At the configuration level, methods to model different product configuration candidates in design and different product configuration states in operation to satisfy design requirements are introduced. At the parameter level, four types of product/operating parameters and relations among these parameters are discussed. A two-level optimization approach is developed to identify the optimal design configuration and its parameter values of the adaptable product. A case study is implemented to illustrate the effectiveness of the newly developed robust adaptable design method.
Teacher-Led Design of an Adaptive Learning Environment
ERIC Educational Resources Information Center
Mavroudi, Anna; Hadzilacos, Thanasis; Kalles, Dimitris; Gregoriades, Andreas
2016-01-01
This paper discusses a requirements engineering process that exemplifies teacher-led design in the case of an envisioned system for adaptive learning. Such a design poses various challenges and still remains an open research issue in the field of adaptive learning. Starting from a scenario-based elicitation method, the whole process was highly…
Teacher-Led Design of an Adaptive Learning Environment
ERIC Educational Resources Information Center
Mavroudi, Anna; Hadzilacos, Thanasis; Kalles, Dimitris; Gregoriades, Andreas
2016-01-01
This paper discusses a requirements engineering process that exemplifies teacher-led design in the case of an envisioned system for adaptive learning. Such a design poses various challenges and still remains an open research issue in the field of adaptive learning. Starting from a scenario-based elicitation method, the whole process was highly…
Launch vehicle payload adapter design with vibration isolation features
NASA Astrophysics Data System (ADS)
Thomas, Gareth R.; Fadick, Cynthia M.; Fram, Bryan J.
2005-05-01
Payloads, such as satellites or spacecraft, which are mounted on launch vehicles, are subject to severe vibrations during flight. These vibrations are induced by multiple sources that occur between liftoff and the instant of final separation from the launch vehicle. A direct result of the severe vibrations is that fatigue damage and failure can be incurred by sensitive payload components. For this reason a payload adapter has been designed with special emphasis on its vibration isolation characteristics. The design consists of an annular plate that has top and bottom face sheets separated by radial ribs and close-out rings. These components are manufactured from graphite epoxy composites to ensure a high stiffness to weight ratio. The design is tuned to keep the frequency of the axial mode of vibration of the payload on the flexibility of the adapter to a low value. This is the main strategy adopted for isolating the payload from damaging vibrations in the intermediate to higher frequency range (45Hz-200Hz). A design challenge for this type of adapter is to keep the pitch frequency of the payload above a critical value in order to avoid dynamic interactions with the launch vehicle control system. This high frequency requirement conflicts with the low axial mode frequency requirement and this problem is overcome by innovative tuning of the directional stiffnesses of the composite parts. A second design strategy that is utilized to achieve good isolation characteristics is the use of constrained layer damping. This feature is particularly effective at keeping the responses to a minimum for one of the most important dynamic loading mechanisms. This mechanism consists of the almost-tonal vibratory load associated with the resonant burn condition present in any stage powered by a solid rocket motor. The frequency of such a load typically falls in the 45-75Hz range and this phenomenon drives the low frequency design of the adapter. Detailed finite element analysis is
Adaptive integral dynamic surface control of a hypersonic flight vehicle
NASA Astrophysics Data System (ADS)
Aslam Butt, Waseem; Yan, Lin; Amezquita S., Kendrick
2015-07-01
In this article, non-linear adaptive dynamic surface air speed and flight path angle control designs are presented for the longitudinal dynamics of a flexible hypersonic flight vehicle. The tracking performance of the control design is enhanced by introducing a novel integral term that caters to avoiding a large initial control signal. To ensure feasibility, the design scheme incorporates magnitude and rate constraints on the actuator commands. The uncertain non-linear functions are approximated by an efficient use of the neural networks to reduce the computational load. A detailed stability analysis shows that all closed-loop signals are uniformly ultimately bounded and the ? tracking performance is guaranteed. The robustness of the design scheme is verified through numerical simulations of the flexible flight vehicle model.
Electro-magnetically controlled acoustic metamaterials with adaptive properties.
Malinovsky, Vladimir S; Donskoy, Dimitri M
2012-10-01
A design of actively controlled metamaterial is proposed and discussed. The metamaterial consists of layers of electrically charged nano or micro particles exposed to external magnetic field. The particles are also attached to compliant layers in a way that the designed structure exhibits two resonances: mechanical spring-mass resonance and electro-magnetic cyclotron resonance. It is shown that if the cyclotron frequency is greater than the mechanical resonance frequency, the designed structure could be highly attenuative (40-60 dB) for vibration and sound waves in very broad frequency range even for wavelength much greater than the thickness of the metamaterial. The approach opens up wide range of opportunities for design of adaptively controlled acoustic metamaterials by controlling magnetic field and/or electrical charges.
Adaptive control of an active magnetic bearing with external disturbance.
Dong, Lili; You, Silu
2014-09-01
Adaptive back stepping control (ABC) is originally applied to a linearized model of an active magnetic bearing (AMB) system. Our control goal is to regulate the deviation of the magnetic bearing from its equilibrium position in the presence of an external disturbance and system uncertainties. Two types of ABC methods are developed on the AMB system. One is based on full state feedback, for which displacement, velocity, and current states are assumed available. The other one is adaptive observer based back stepping controller (AOBC) where only displacement output is measurable. An observer is designed for AOBC to estimate velocity and current states of AMB. Lyapunov approach proves the stabilities of both regular ABC and AOBC. Simulation results demonstrate the effectiveness and robustness of two controllers. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Adaptive resonator control techniques for high-power lasers
Freeman, R.H.; Spinhirne, J.M.; Anafi, D.
1981-01-01
Experimental results and interpretations for correcting tilt and astigmatism aberrations using intracavity adaptive optics versus extracavity adaptive optics are presented, along with control algorithm and resonator design considerations when utilizing a multidither COAT control system for astigmatism and tilt correction. It is shown that in a high-power device, PIB (Power-in-the-Bucket) optimization, with the possible added requirement of extracavity beam clean-up to achieve good beam quality, would be a more desirable control algorithm than BQ (beam quality) optimization. Zonal multidither hill-climbing servo COAT techniques applied to tilt correction fail to achieve good correction for large tilt amplitudes when the control loop is closed after tilt is introduced. Therefore, it is suggested that a separate tilt sensor be used to provide error signal for correction of tilt and let the multidither system COAT correct for higher order aberrations
Implementation of Adaptive Digital Controllers on Programmable Logic Devices
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Montenegro, Justino (Technical Monitor)
2002-01-01
Much has been made of the capabilities of Field Programmable Gate Arrays (FPGA's) in the hardware implementation of fast digital signal processing functions. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used Proportional-Integral-Derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a Digital Signal Processor (DSP) device or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using DSP devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, Pulse Width Modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacemap. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive-control algorithm
Implementation of Adaptive Digital Controllers on Programmable Logic Devices
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Monenegro, Justino (Technical Monitor)
2002-01-01
Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used proportional-integral-derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM-based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a DSP (Digital Signal Processor) or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSP) devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. An alternative is required for compact implementation of such functionality to withstand the harsh environment
Alavandar, Srinivasan; Nigam, M J
2009-10-01
Control of an industrial robot includes nonlinearities, uncertainties and external perturbations that should be considered in the design of control laws. In this paper, some new hybrid adaptive neuro-fuzzy control algorithms (ANFIS) have been proposed for manipulator control with uncertainties. These hybrid controllers consist of adaptive neuro-fuzzy controllers and conventional controllers. The outputs of these controllers are applied to produce the final actuation signal based on current position and velocity errors. Numerical simulation using the dynamic model of six DOF puma robot arm with uncertainties shows the effectiveness of the approach in trajectory tracking problems. Performance indices of RMS error, maximum error are used for comparison. It is observed that the hybrid adaptive neuro-fuzzy controllers perform better than only conventional/adaptive controllers and in particular hybrid controller structure consisting of adaptive neuro-fuzzy controller and critically damped inverse dynamics controller.
Applications of active adaptive noise control to jet engines
NASA Technical Reports Server (NTRS)
Shoureshi, Rahmat; Brackney, Larry
1993-01-01
During phase 2 research on the application of active noise control to jet engines, the development of multiple-input/multiple-output (MIMO) active adaptive noise control algorithms and acoustic/controls models for turbofan engines were considered. Specific goals for this research phase included: (1) implementation of a MIMO adaptive minimum variance active noise controller; and (2) turbofan engine model development. A minimum variance control law for adaptive active noise control has been developed, simulated, and implemented for single-input/single-output (SISO) systems. Since acoustic systems tend to be distributed, multiple sensors, and actuators are more appropriate. As such, the SISO minimum variance controller was extended to the MIMO case. Simulation and experimental results are presented. A state-space model of a simplified gas turbine engine is developed using the bond graph technique. The model retains important system behavior, yet is of low enough order to be useful for controller design. Expansion of the model to include multiple stages and spools is also discussed.
Probabilistic DHP adaptive critic for nonlinear stochastic control systems.
Herzallah, Randa
2013-06-01
Following the recently developed algorithms for fully probabilistic control design for general dynamic stochastic systems (Herzallah & Káarnáy, 2011; Kárný, 1996), this paper presents the solution to the probabilistic dual heuristic programming (DHP) adaptive critic method (Herzallah & Káarnáy, 2011) and randomized control algorithm for stochastic nonlinear dynamical systems. The purpose of the randomized control input design is to make the joint probability density function of the closed loop system as close as possible to a predetermined ideal joint probability density function. This paper completes the previous work (Herzallah & Káarnáy, 2011; Kárný, 1996) by formulating and solving the fully probabilistic control design problem on the more general case of nonlinear stochastic discrete time systems. A simulated example is used to demonstrate the use of the algorithm and encouraging results have been obtained.
Distributed control in adaptive optics: deformable mirror and turbulence modeling
NASA Astrophysics Data System (ADS)
Ellenbroek, Rogier; Verhaegen, Michel; Doelman, Niek; Hamelinck, Roger; Rosielle, Nick; Steinbuch, Maarten
2006-06-01
Future large optical telescopes require adaptive optics (AO) systems whose deformable mirrors (DM) have ever more degrees of freedom. This paper describes advances that are made in a project aimed to design a new AO system that is extendible to meet tomorrow's specifications. Advances on the mechanical design are reported in a companion paper [6272-75], whereas this paper discusses the controller design aspects. The numerical complexity of controller designs often used for AO scales with the fourth power in the diameter of the telescope's primary mirror. For future large telescopes this will undoubtedly become a critical aspect. This paper demonstrates the feasibility of solving this issue with a distributed controller design. A distributed framework will be introduced in which each actuator has a separate processor that can communicate with a few direct neighbors. First, the DM will be modeled and shown to be compatible with the framework. Then, adaptive turbulence models that fit the framework will be shown to adequately capture the spatio-temporal behavior of the atmospheric disturbance, constituting a first step towards a distributed optimal control. Finally, the wavefront reconstruction step is fitted into the distributed framework such that the computational complexity for each processor increases only linearly with the telescope diameter.
Neural Control Adaptation to Motor Noise Manipulation
Hasson, Christopher J.; Gelina, Olga; Woo, Garrett
2016-01-01
Antagonistic muscular co-activation can compensate for movement variability induced by motor noise at the expense of increased energetic costs. Greater antagonistic co-activation is commonly observed in older adults, which could be an adaptation to increased motor noise. The present study tested this hypothesis by manipulating motor noise in 12 young subjects while they practiced a goal-directed task using a myoelectric virtual arm, which was controlled by their biceps and triceps muscle activity. Motor noise was increased by increasing the coefficient of variation (CV) of the myoelectric signals. As hypothesized, subjects adapted by increasing antagonistic co-activation, and this was associated with reduced noise-induced performance decrements. A second hypothesis was that a virtual decrease in motor noise, achieved by smoothing the myoelectric signals, would have the opposite effect: co-activation would decrease and motor performance would improve. However, the results showed that a decrease in noise made performance worse instead of better, with no change in co-activation. Overall, these findings suggest that the nervous system adapts to virtual increases in motor noise by increasing antagonistic co-activation, and this preserves motor performance. Reducing noise may have failed to benefit performance due to characteristics of the filtering process itself, e.g., delays are introduced and muscle activity bursts are attenuated. The observed adaptations to increased noise may explain in part why older adults and many patient populations have greater antagonistic co-activation, which could represent an adaptation to increased motor noise, along with a desire for increased joint stability. PMID:26973487
Adaptive limiter control of unimodal population maps.
Franco, Daniel; Hilker, Frank M
2013-11-21
We analyse the adaptive limiter control (ALC) method, which was recently proposed for stabilizing population oscillations and experimentally tested in laboratory populations and metapopulations of Drosophila melanogaster. We thoroughly explain the mechanisms that allow ALC to reduce the magnitude of population fluctuations under certain conditions. In general, ALC is a control strategy with a number of useful properties (e.g. being globally asymptotically stable), but there may be some caveats. The control can be ineffective or even counterproductive at small intensities, and the interventions can be extremely costly at very large intensities. Based on our analytical results, we describe recipes how to choose the control intensity, depending on the range of population sizes we wish to target. In our analysis, we highlight the possible importance of initial transients and classify them into different categories.
Bayesian randomized clinical trials: From fixed to adaptive design.
Yin, Guosheng; Lam, Chi Kin; Shi, Haolun
2017-08-01
Randomized controlled studies are the gold standard for phase III clinical trials. Using α-spending functions to control the overall type I error rate, group sequential methods are well established and have been dominating phase III studies. Bayesian randomized design, on the other hand, can be viewed as a complement instead of competitive approach to the frequentist methods. For the fixed Bayesian design, the hypothesis testing can be cast in the posterior probability or Bayes factor framework, which has a direct link to the frequentist type I error rate. Bayesian group sequential design relies upon Bayesian decision-theoretic approaches based on backward induction, which is often computationally intensive. Compared with the frequentist approaches, Bayesian methods have several advantages. The posterior predictive probability serves as a useful and convenient tool for trial monitoring, and can be updated at any time as the data accrue during the trial. The Bayesian decision-theoretic framework possesses a direct link to the decision making in the practical setting, and can be modeled more realistically to reflect the actual cost-benefit analysis during the drug development process. Other merits include the possibility of hierarchical modeling and the use of informative priors, which would lead to a more comprehensive utilization of information from both historical and longitudinal data. From fixed to adaptive design, we focus on Bayesian randomized controlled clinical trials and make extensive comparisons with frequentist counterparts through numerical studies. Copyright © 2017 Elsevier Inc. All rights reserved.
A Robot Manipulator with Adaptive Fuzzy Controller in Obstacle Avoidance
NASA Astrophysics Data System (ADS)
Sreekumar, Muthuswamy
2016-07-01
Building robots and machines to act within a fuzzy environment is a problem featuring complexity and ambiguity. In order to avoid obstacles, or move away from it, the robot has to perform functions such as obstacle identification, finding the location of the obstacle, its velocity, direction of movement, size, shape, and so on. This paper presents about the design, and implementation of an adaptive fuzzy controller designed for a 3 degree of freedom spherical coordinate robotic manipulator interfaced with a microcontroller and an ultrasonic sensor. Distance between the obstacle and the sensor and its time rate are considered as inputs to the controller and how the manipulator to take diversion from its planned trajectory, in order to avoid collision with the obstacle, is treated as output from the controller. The obstacles are identified as stationary or moving objects and accordingly adaptive self tuning is accomplished with three set of linguistic rules. The prototype of the manipulator has been fabricated and tested for collision avoidance by placing stationary and moving obstacles in its planned trajectory. The performance of the adaptive control algorithm is analyzed in MATLAB by generating 3D fuzzy control surfaces.
Adaptive design clinical trials and trial logistics models in CNS drug development.
Wang, Sue-Jane; Hung, H M James; O'Neill, Robert
2011-02-01
In central nervous system therapeutic areas, there are general concerns with establishing efficacy thought to be sources of high attrition rate in drug development. For instance, efficacy endpoints are often subjective and highly variable. There is a lack of robust or operational biomarkers to substitute for soft endpoints. In addition, animal models are generally poor, unreliable or unpredictive. To increase the probability of success in central nervous system drug development program, adaptive design has been considered as an alternative designs that provides flexibility to the conventional fixed designs and has been viewed to have the potential to improve the efficiency in drug development processes. In addition, successful implementation of an adaptive design trial relies on establishment of a trustworthy logistics model that ensures integrity of the trial conduct. In accordance with the spirit of the U.S. Food and Drug Administration adaptive design draft guidance document recently released, this paper enlists the critical considerations from both methodological aspects and regulatory aspects in reviewing an adaptive design proposal and discusses two general types of adaptations, sample size planning and re-estimation, and two-stage adaptive design. Literature examples of adaptive designs in central nervous system are used to highlight the principles laid out in the U.S. FDA draft guidance. Four logistics models seen in regulatory adaptive design applications are introduced. In general, complex adaptive designs require simulation studies to access the design performance. For an adequate and well-controlled clinical trial, if a Learn-and-Confirm adaptive selection approach is considered, the study-wise type I error rate should be adhered to. However, it is controversial to use the simulated type I error rate to address a strong control of the study-wise type I error rate.
Spacecraft attitude control using direct model reference adaptive control
NASA Astrophysics Data System (ADS)
Harvey, Seth A.
This research began in the summer of 2006. During that summer a method was developed to estimate the gravity gradient as well as the nadir vector of a Plug-and-Play [PNP] satellite. This was done based on the assumptions that there were perturbations in the satellite model that kept the satellite from knowing this information a priori. An indirect adaptive estimation scheme was used to accomplish this goal. However it is impractical to do this for each perturbation in the plant. By the very nature of PNP Satellites, there could be errors in among other things, reaction wheel mounting/orientation, star tracker location/orientation, satellite center of mass (COM), and payload location/orientation. An adaptive scheme to estimate each error is not efficient and ultimately is not the goal. The goal is to accurately control the satellite despite the numerous and possibly large errors inherent in PNP Satellite models. Instead of using indirect adaptive methods to gain precise knowledge of the plant, direct adaptive control methods will be used to overcome the errors of the plant and gain precise control of the satellite. One way of overcoming the inaccuracies of the model is to assume the spacecraft dynamics are largely unknown. A shift in philosophy was then taken from indirect adaptive methods to direct methods. Direct Reference and Model Reference Adaptive Controller [DRAC & DMRAC] are then developed that will precisely and robustly control the attitude of a PNP satellite. The benefits demonstrated by the DMRAC methodologies extend well past plug and play satellites and could be utilized in any space application.
Flight Validation of a Metrics Driven L(sub 1) Adaptive Control
NASA Technical Reports Server (NTRS)
Dobrokhodov, Vladimir; Kitsios, Ioannis; Kaminer, Isaac; Jones, Kevin D.; Xargay, Enric; Hovakimyan, Naira; Cao, Chengyu; Lizarraga, Mariano I.; Gregory, Irene M.
2008-01-01
The paper addresses initial steps involved in the development and flight implementation of new metrics driven L1 adaptive flight control system. The work concentrates on (i) definition of appropriate control driven metrics that account for the control surface failures; (ii) tailoring recently developed L1 adaptive controller to the design of adaptive flight control systems that explicitly address these metrics in the presence of control surface failures and dynamic changes under adverse flight conditions; (iii) development of a flight control system for implementation of the resulting algorithms onboard of small UAV; and (iv) conducting a comprehensive flight test program that demonstrates performance of the developed adaptive control algorithms in the presence of failures. As the initial milestone the paper concentrates on the adaptive flight system setup and initial efforts addressing the ability of a commercial off-the-shelf AP with and without adaptive augmentation to recover from control surface failures.
Adaptive Design of Confirmatory Trials: Advances and Challenges
Lai, Tze Leung; Lavori, Philip W.; Tsang, Ka Wai
2015-01-01
The past decade witnessed major developments in innovative designs of confirmatory clinical trials, and adaptive designs represent the most active area of these developments. We give an overview of the developments and associated statistical methods in several classes of adaptive designs of confirmatory trials. We also discuss their statistical difficulties and implementation challenges, and show how these problems are connected to other branches of mainstream Statistics, which we then apply to resolve the difficulties and bypass the bottlenecks in the development of adaptive designs for the next decade. PMID:26079372
Adaptive control of force microscope cantilever dynamics
NASA Astrophysics Data System (ADS)
Jensen, S. E.; Dougherty, W. M.; Garbini, J. L.; Sidles, J. A.
2007-09-01
Magnetic resonance force microscopy (MRFM) and other emerging scanning probe microscopies entail the detection of attonewton-scale forces. Requisite force sensitivities are achieved through the use of soft force microscope cantilevers as high resonant-Q micromechanical oscillators. In practice, the dynamics of these oscillators are greatly improved by the application of force feedback control computed in real time by a digital signal processor (DSP). Improvements include increased sensitive bandwidth, reduced oscillator ring up/down time, and reduced cantilever thermal vibration amplitude. However, when the cantilever tip and the sample are in close proximity, electrostatic and Casimir tip-sample force gradients can significantly alter the cantilever resonance frequency, foiling fixed-gain narrow-band control schemes. We report an improved, adaptive control algorithm that uses a Hilbert transform technique to continuously measure the vibration frequency of the thermally-excited cantilever and seamlessly adjust the DSP program coefficients. The closed-loop vibration amplitude is typically 0.05 nm. This adaptive algorithm enables narrow-band formally-optimal control over a wide range of resonance frequencies, and preserves the thermally-limited signal to noise ratio (SNR).
Design strategies for irregularly adapting parallel applications
Oliker, Leonid; Biswas, Rupak; Shan, Hongzhang; Sing, Jaswinder Pal
2000-11-01
Achieving scalable performance for dynamic irregular applications is eminently challenging. Traditional message-passing approaches have been making steady progress towards this goal; however, they suffer from complex implementation requirements. The use of a global address space greatly simplifies the programming task, but can degrade the performance of dynamically adapting computations. In this work, we examine two major classes of adaptive applications, under five competing programming methodologies and four leading parallel architectures. Results indicate that it is possible to achieve message-passing performance using shared-memory programming techniques by carefully following the same high level strategies. Adaptive applications have computational work loads and communication patterns which change unpredictably at runtime, requiring dynamic load balancing to achieve scalable performance on parallel machines. Efficient parallel implementations of such adaptive applications are therefore a challenging task. This work examines the implementation of two typical adaptive applications, Dynamic Remeshing and N-Body, across various programming paradigms and architectural platforms. We compare several critical factors of the parallel code development, including performance, programmability, scalability, algorithmic development, and portability.
Direct Model Reference Adaptive Control for a Magnetic Bearing
Durling, Mike
1999-11-01
A Direct Model Reference Adaptive Controller (DMRAC) is applied to a magnetic bearing test stand. The bearing of interest is the MBC 500 Magnetic Bearing System manufactured by Magnetic Moments, LLC. The bearing model is presented in state space form and the system transfer function is measured directly using a closed-loop swept sine technique. Next, the bearing models are used to design a phase-lead controller, notch filter and then a DMRAC. The controllers are tuned in simulations and finally are implemented using a combination of MATLAB, SIMULINK and dSPACE. The results show a successful implementation of a DMRAC on the magnetic bearing hardware.
Control of broadband radiated sound with adaptive structures
NASA Astrophysics Data System (ADS)
Smith, J. P.; Fuller, Chris R.; Burdisso, Ricardo A.
1993-09-01
Active structural acoustic control using adaptive structures has been demonstrated for harmonic disturbances. This paper presents an extension of this work to the attenuation of acoustic radiation from structures subject to broadband disturbances. An adaptive, multi-input multi-output (MIMO), feedforward broadband acoustic control system has been developed based on the least mean squares (LMS) algorithm. The compensators are adaptive finite impulse response (FIR) filters. The control inputs are implemented with piezoelectric ceramic actuators. Both far-field microphones and polyvinylidene fluoride (PVDF) structural sensors designed to observe the efficient acoustic radiating modes are used as error sensors. The disturbance is band-limited zero mean white noise and is implemented with a point force shaker. In the control of harmonically excited systems, satisfactory attenuation is possible with a single-input single-output (SISO) controller. In contrast, for systems excited with broadband disturbances, a MIMO controller is necessary for significant acoustic attenuation. Experimental results for the control of a simply supported plate are presented.
Digital adaptive controllers using second order models with transport lag
NASA Technical Reports Server (NTRS)
Joshi, S.; Kaufman, H.
1975-01-01
Design of a discrete optimal regulator requires the a priori knowledge of a mathematical model for the system of interest. Because a second-order model with transport lag is very amenable to control computations and because this type of model has been used previously to represent certain high order single input-single output processes, an adaptive controller was designed based upon adjustment of controls computed for such a model. An extended Kalman filter was utilized for tracking the model parameters which were subsequently used to update a set of optimal control gains. Favorable results were obtained in applying this procedure to the control of several examples including a ninth order nonlinear process.
NASA Astrophysics Data System (ADS)
Kim, Nakwan
Utilizing the universal approximation property of neural networks, we develop several novel approaches to neural network-based adaptive output feedback control of nonlinear systems, and illustrate these approaches for several flight control applications. In particular, we address the problem of non-affine systems and eliminate the fixed point assumption present in earlier work. All of the stability proofs are carried out in a form that eliminates an algebraic loop in the neural network implementation. An approximate input/output feedback linearizing controller is augmented with a neural network using input/output sequences of the uncertain system. These approaches permit adaptation to both parametric uncertainty and unmodeled dynamics. All physical systems also have control position and rate limits, which may either deteriorate performance or cause instability for a sufficiently high control bandwidth. Here we apply a method for protecting an adaptive process from the effects of input saturation and time delays, known as "pseudo control hedging". This method was originally developed for the state feedback case, and we provide a stability analysis that extends its domain of applicability to the case of output feedback. The approach is illustrated by the design of a pitch-attitude flight control system for a linearized model of an R-50 experimental helicopter, and by the design of a pitch-rate control system for a 58-state model of a flexible aircraft consisting of rigid body dynamics coupled with actuator and flexible modes. A new approach to augmentation of an existing linear controller is introduced. It is especially useful when there is limited information concerning the plant model, and the existing controller. The approach is applied to the design of an adaptive autopilot for a guided munition. Design of a neural network adaptive control that ensures asymptotically stable tracking performance is also addressed.
Adaptive suboptimal second-order sliding mode control for microgrids
NASA Astrophysics Data System (ADS)
Incremona, Gian Paolo; Cucuzzella, Michele; Ferrara, Antonella
2016-09-01
This paper deals with the design of adaptive suboptimal second-order sliding mode (ASSOSM) control laws for grid-connected microgrids. Due to the presence of the inverter, of unpredicted load changes, of switching among different renewable energy sources, and of electrical parameters variations, the microgrid model is usually affected by uncertain terms which are bounded, but with unknown upper bounds. To theoretically frame the control problem, the class of second-order systems in Brunovsky canonical form, characterised by the presence of matched uncertain terms with unknown bounds, is first considered. Four adaptive strategies are designed, analysed and compared to select the most effective ones to be applied to the microgrid case study. In the first two strategies, the control amplitude is continuously adjusted, so as to arrive at dominating the effect of the uncertainty on the controlled system. When a suitable control amplitude is attained, the origin of the state space of the auxiliary system becomes attractive. In the other two strategies, a suitable blend between two components, one mainly working during the reaching phase, the other being the predominant one in a vicinity of the sliding manifold, is generated, so as to reduce the control amplitude in steady state. The microgrid system in a grid-connected operation mode, controlled via the selected ASSOSM control strategies, exhibits appreciable stability properties, as proved theoretically and shown in simulation.
Adaptive backstepping sliding mode control for feedforward uncertain systems
NASA Astrophysics Data System (ADS)
Koshkouei, Ali J.; Burnham, Keith J.
2011-12-01
Output tracking backstepping sliding mode control for feedforward uncertain systems is considered in this article. Feedforward systems are not usually transformable to the parametric semi-strict feedback form, and they may include unmatched uncertainties consisting of disturbances and unmodelled dynamics terms. The backstepping method presented in this article, even without uncertainties differs from that of Ríos-Bolívar and Zinober [Ríos-Bolívar, M. and Zinober, A.S.I. (1999), 'Dynamical Adaptive Sliding Mode Control of Observable Minimum Phase Uncertain Nonlinear Systems', in Variable Structure Systems: Variable Structure Systems, Sliding Mode and Nonlinear Control, eds., K.D. Young and Ü. Özgüner. Ozguner, London, Springer-Verlag, pp. 211-236; Ríos-Bolívar, M., and Zinober, A.S.I. (1997a), 'Dynamical Adaptive Backstepping Control Design via Symbolic Computation', in Proceedings of the 3rd European Control Conference, Brussels]. In this article, the backstepping is not a dynamical method as in Ríos-Bolívar and Zinober (1997a, 1999), since at each step, the control and map input remain intact, and the differentiations of the control are not used. Therefore, the method can be introduced as static backstepping. Two different controllers are designed based upon the backstepping approach with and without sliding mode. The dynamic and static backstepping methods are applied to a gravity-flow/pipeline system to compare two methods.
Direct model reference adaptive control of a flexible robotic manipulator
NASA Technical Reports Server (NTRS)
Meldrum, D. R.
1985-01-01
Quick, precise control of a flexible manipulator in a space environment is essential for future Space Station repair and satellite servicing. Numerous control algorithms have proven successful in controlling rigid manipulators wih colocated sensors and actuators; however, few have been tested on a flexible manipulator with noncolocated sensors and actuators. In this thesis, a model reference adaptive control (MRAC) scheme based on command generator tracker theory is designed for a flexible manipulator. Quicker, more precise tracking results are expected over nonadaptive control laws for this MRAC approach. Equations of motion in modal coordinates are derived for a single-link, flexible manipulator with an actuator at the pinned-end and a sensor at the free end. An MRAC is designed with the objective of controlling the torquing actuator so that the tip position follows a trajectory that is prescribed by the reference model. An appealing feature of this direct MRAC law is that it allows the reference model to have fewer states than the plant itself. Direct adaptive control also adjusts the controller parameters directly with knowledge of only the plant output and input signals.
Adaptive control of a Stewart platform-based manipulator
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Antrazi, Sami S.; Zhou, Zhen-Lei; Campbell, Charles E., Jr.
1993-01-01
A joint-space adaptive control scheme for controlling noncompliant motion of a Stewart platform-based manipulator (SPBM) was implemented in the Hardware Real-Time Emulator at Goddard Space Flight Center. The six-degrees of freedom SPBM uses two platforms and six linear actuators driven by dc motors. The adaptive control scheme is based on proportional-derivative controllers whose gains are adjusted by an adaptation law based on model reference adaptive control and Liapunov direct method. It is concluded that the adaptive control scheme provides superior tracking capability as compared to fixed-gain controllers.
Adaptive control of a Stewart platform-based manipulator
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Antrazi, Sami S.; Zhou, Zhen-Lei; Campbell, Charles E., Jr.
1993-01-01
A joint-space adaptive control scheme for controlling noncompliant motion of a Stewart platform-based manipulator (SPBM) was implemented in the Hardware Real-Time Emulator at Goddard Space Flight Center. The six-degrees of freedom SPBM uses two platforms and six linear actuators driven by dc motors. The adaptive control scheme is based on proportional-derivative controllers whose gains are adjusted by an adaptation law based on model reference adaptive control and Liapunov direct method. It is concluded that the adaptive control scheme provides superior tracking capability as compared to fixed-gain controllers.
Optical design of the adaptive optics laser guide star system
Bissinger, H.
1994-11-15
The design of an adaptive optics package for the 3 meter Lick telescope is presented. This instrument package includes a 69 actuator deformable mirror and a Hartmann type wavefront sensor operating in the visible wavelength; a quadrant detector for the tip-tile sensor and a tip-tilt mirror to stabilize atmospheric first order tip-tile errors. A high speed computer drives the deformable mirror to achieve near diffraction limited imagery. The different optical components and their individual design constraints are described. motorized stages and diagnostics tools are used to operate and maintain alignment throughout observation time from a remote control room. The expected performance are summarized and actual results of astronomical sources are presented.
Fixed gain and adaptive techniques for rotorcraft vibration control
NASA Technical Reports Server (NTRS)
Roy, R. H.; Saberi, H. A.; Walker, R. A.
1985-01-01
The results of an analysis effort performed to demonstrate the feasibility of employing approximate dynamical models and frequency shaped cost functional control law desgin techniques for helicopter vibration suppression are presented. Both fixed gain and adaptive control designs based on linear second order dynamical models were implemented in a detailed Rotor Systems Research Aircraft (RSRA) simulation to validate these active vibration suppression control laws. Approximate models of fuselage flexibility were included in the RSRA simulation in order to more accurately characterize the structural dynamics. The results for both the fixed gain and adaptive approaches are promising and provide a foundation for pursuing further validation in more extensive simulation studies and in wind tunnel and/or flight tests.
Adaptive Control of a Transport Aircraft Using Differential Thrust
NASA Technical Reports Server (NTRS)
Stepanyan, Vahram; Krishnakumar, Kalmanje; Nguyen, Nhan
2009-01-01
The paper presents an adaptive control technique for a damaged large transport aircraft subject to unknown atmospheric disturbances such as wind gust or turbulence. It is assumed that the damage results in vertical tail loss with no rudder authority, which is replaced with a differential thrust input. The proposed technique uses the adaptive prediction based control design in conjunction with the time scale separation principle, based on the singular perturbation theory. The application of later is necessitated by the fact that the engine response to a throttle command is substantially slow that the angular rate dynamics of the aircraft. It is shown that this control technique guarantees the stability of the closed-loop system and the tracking of a given reference model. The simulation example shows the benefits of the approach.
Yang, Cheng-Hsiung; Wu, Cheng-Lin
2014-01-01
An adaptive control scheme is developed to study the generalized adaptive chaos synchronization with uncertain chaotic parameters behavior between two identical chaotic dynamic systems. This generalized adaptive chaos synchronization controller is designed based on Lyapunov stability theory and an analytic expression of the adaptive controller with its update laws of uncertain chaotic parameters is shown. The generalized adaptive synchronization with uncertain parameters between two identical new Lorenz-Stenflo systems is taken as three examples to show the effectiveness of the proposed method. The numerical simulations are shown to verify the results. PMID:25295292
Adaptive Accommodation Control Method for Complex Assembly
NASA Astrophysics Data System (ADS)
Kang, Sungchul; Kim, Munsang; Park, Shinsuk
Robotic systems have been used to automate assembly tasks in manufacturing and in teleoperation. Conventional robotic systems, however, have been ineffective in controlling contact force in multiple contact states of complex assemblythat involves interactions between complex-shaped parts. Unlike robots, humans excel at complex assembly tasks by utilizing their intrinsic impedance, forces and torque sensation, and tactile contact clues. By examining the human behavior in assembling complex parts, this study proposes a novel geometry-independent control method for robotic assembly using adaptive accommodation (or damping) algorithm. Two important conditions for complex assembly, target approachability and bounded contact force, can be met by the proposed control scheme. It generates target approachable motion that leads the object to move closer to a desired target position, while contact force is kept under a predetermined value. Experimental results from complex assembly tests have confirmed the feasibility and applicability of the proposed method.
Asymptotic Linearity of Optimal Control Modification Adaptive Law with Analytical Stability Margins
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2010-01-01
Optimal control modification has been developed to improve robustness to model-reference adaptive control. For systems with linear matched uncertainty, optimal control modification adaptive law can be shown by a singular perturbation argument to possess an outer solution that exhibits a linear asymptotic property. Analytical expressions of phase and time delay margins for the outer solution can be obtained. Using the gradient projection operator, a free design parameter of the adaptive law can be selected to satisfy stability margins.
Fuzzy Adaptive Control for Intelligent Autonomous Space Exploration Problems
NASA Technical Reports Server (NTRS)
Esogbue, Augustine O.
1998-01-01
The principal objective of the research reported here is the re-design, analysis and optimization of our newly developed neural network fuzzy adaptive controller model for complex processes capable of learning fuzzy control rules using process data and improving its control through on-line adaption. The learned improvement is according to a performance objective function that provides evaluative feedback; this performance objective is broadly defined to meet long-range goals over time. Although fuzzy control had proven effective for complex, nonlinear, imprecisely-defined processes for which standard models and controls are either inefficient, impractical or cannot be derived, the state of the art prior to our work showed that procedures for deriving fuzzy control, however, were mostly ad hoc heuristics. The learning ability of neural networks was exploited to systematically derive fuzzy control and permit on-line adaption and in the process optimize control. The operation of neural networks integrates very naturally with fuzzy logic. The neural networks which were designed and tested using simulation software and simulated data, followed by realistic industrial data were reconfigured for application on several platforms as well as for the employment of improved algorithms. The statistical procedures of the learning process were investigated and evaluated with standard statistical procedures (such as ANOVA, graphical analysis of residuals, etc.). The computational advantage of dynamic programming-like methods of optimal control was used to permit on-line fuzzy adaptive control. Tests for the consistency, completeness and interaction of the control rules were applied. Comparisons to other methods and controllers were made so as to identify the major advantages of the resulting controller model. Several specific modifications and extensions were made to the original controller. Additional modifications and explorations have been proposed for further study. Some of
Verifiable Adaptive Control with Analytical Stability Margins by Optimal Control Modification
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2010-01-01
This paper presents a verifiable model-reference adaptive control method based on an optimal control formulation for linear uncertain systems. A predictor model is formulated to enable a parameter estimation of the system parametric uncertainty. The adaptation is based on both the tracking error and predictor error. Using a singular perturbation argument, it can be shown that the closed-loop system tends to a linear time invariant model asymptotically under an assumption of fast adaptation. A stability margin analysis is given to estimate a lower bound of the time delay margin using a matrix measure method. Using this analytical method, the free design parameter n of the optimal control modification adaptive law can be determined to meet a specification of stability margin for verification purposes.
Kalman filter based control for Adaptive Optics
NASA Astrophysics Data System (ADS)
Petit, Cyril; Quiros-Pacheco, Fernando; Conan, Jean-Marc; Kulcsár, Caroline; Raynaud, Henri-François; Fusco, Thierry
2004-12-01
Classical Adaptive Optics suffer from a limitation of the corrected Field Of View. This drawback has lead to the development of MultiConjugated Adaptive Optics. While the first MCAO experimental set-ups are presently under construction, little attention has been paid to the control loop. This is however a key element in the optimization process especially for MCAO systems. Different approaches have been proposed in recent articles for astronomical applications : simple integrator, Optimized Modal Gain Integrator and Kalman filtering. We study here Kalman filtering which seems a very promising solution. Following the work of Brice Leroux, we focus on a frequential characterization of kalman filters, computing a transfer matrix. The result brings much information about their behaviour and allows comparisons with classical controllers. It also appears that straightforward improvements of the system models can lead to static aberrations and vibrations filtering. Simulation results are proposed and analysed thanks to our frequential characterization. Related problems such as model errors, aliasing effect reduction or experimental implementation and testing of Kalman filter control loop on a simplified MCAO experimental set-up could be then discussed.
Adaptive control: Stability, convergence, and robustness
NASA Technical Reports Server (NTRS)
Sastry, Shankar; Bodson, Marc
1989-01-01
The deterministic theory of adaptive control (AC) is presented in an introduction for graduate students and practicing engineers. Chapters are devoted to basic AC approaches, notation and fundamental theorems, the identification problem, model-reference AC, parameter convergence using averaging techniques, and AC robustness. Consideration is given to the use of prior information, the global stability of indirect AC schemes, multivariable AC, linearizing AC for a class of nonlinear systems, AC of linearizable minimum-phase systems, and MIMO systems decouplable by static state feedback.
Adaptive method with intercessory feedback control for an intelligent agent
Goldsmith, Steven Y.
2004-06-22
An adaptive architecture method with feedback control for an intelligent agent provides for adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. An adaptive architecture method with feedback control for multiple intelligent agents provides for coordinating and adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. Re-programming of the adaptive architecture is through a nexus which coordinates reflexive and deliberator components.
Wireless thermal sensor network with adaptive low power design.
Lee, Ho-Yin; Chen, Shih-Lun; Chen, Chiung-An; Huang, Hong-Yi; Luo, Ching-Hsing
2007-01-01
There is an increasing need to develop flexible, reconfigurable, and intelligent low power wireless sensor network (WSN) system for healthcare applications. Technical advancements in micro-sensors, MEMS devices, low power electronics, and radio frequency circuits have enabled the design and development of such highly integrated system. In this paper, we present our proposed wireless thermal sensor network system, which is separated into control and data paths. Both of these paths have their own transmission frequencies. The control path sends the power and function commands from computer to each sensor elements by 2.4GHz RF circuits and the data path transmits measured data by 2.4GHz in sensor layer and 60GHz in higher layers. This hierarchy architecture would make reconfigurable mapping and pipeline applications on WSN possibly, and the average power consumption can be efficiently reduced about 60% by using the adaptive technique.
Parameter Estimation Analysis for Hybrid Adaptive Fault Tolerant Control
NASA Astrophysics Data System (ADS)
Eshak, Peter B.
Research efforts have increased in recent years toward the development of intelligent fault tolerant control laws, which are capable of helping the pilot to safely maintain aircraft control at post failure conditions. Researchers at West Virginia University (WVU) have been actively involved in the development of fault tolerant adaptive control laws in all three major categories: direct, indirect, and hybrid. The first implemented design to provide adaptation was a direct adaptive controller, which used artificial neural networks to generate augmentation commands in order to reduce the modeling error. Indirect adaptive laws were implemented in another controller, which utilized online PID to estimate and update the controller parameter. Finally, a new controller design was introduced, which integrated both direct and indirect control laws. This controller is known as hybrid adaptive controller. This last control design outperformed the two earlier designs in terms of less NNs effort and better tracking quality. The performance of online PID has an important role in the quality of the hybrid controller; therefore, the quality of the estimation will be of a great importance. Unfortunately, PID is not perfect and the online estimation process has some inherited issues; the online PID estimates are primarily affected by delays and biases. In order to ensure updating reliable estimates to the controller, the estimator consumes some time to converge. Moreover, the estimator will often converge to a biased value. This thesis conducts a sensitivity analysis for the estimation issues, delay and bias, and their effect on the tracking quality. In addition, the performance of the hybrid controller as compared to direct adaptive controller is explored. In order to serve this purpose, a simulation environment in MATLAB/SIMULINK has been created. The simulation environment is customized to provide the user with the flexibility to add different combinations of biases and delays to
Tuning of fault tolerant control design parameters.
DeLima, Pedro G; Yen, Gary G
2008-01-01
This paper presents two major contributions in the field of fault tolerant control. First, it gathers points of concern typical to most fault tolerant control applications and translates the chosen performance metrics into a set of six practical design specifications. Second, it proposes initialization and tuning procedures through which a particular fault tolerant control architecture not only can be set to comply with the required specifications, but also can be tuned online to compensate for a total of twelve properties, such as the noise rejection levels for fault detection and diagnosis signals. The proposed design is realized over a powerful architecture that combines the flexibility of adaptive critic designs with the long term memory and learning capabilities of a supervisor. This paper presents a practical design procedure to facilitate the applications of a fundamentally sound fault tolerant control architecture in real-world problems.
Stable adaptive control of a class of continuous-flow bioreactors
Boskovic, J.D.
1996-01-01
A stable adaptive control strategy is suggested for a class of continuous-flow bioreactor processes described by Monod kinetics with two unknown parameters, one of which appears nonlinearly. Similarly, as in the case of the previously reported adaptive controllers, the parameterization of the process model, in conjunction with the adaptive exponential feeding strategy and corresponding adaptive algorithms, results in a stable system in which the convergence of the output errors to zero is guaranteed. In the former, however, two major problems are encountered: (1) both output errors were used to adjust the controller parameters, which may yield unacceptable performance of the resulting adaptive system; (2) conditions under which the process output can assume only positive values are difficult to derive. Hence, a design of a stable adaptive controller is suggested, whose parameters are adjusted using only one of the output errors and that yields acceptable performance of the control system. With this method, conditions under which the process outputs can assume only positive values can be readily derived. These conditions in turn guarantee that the control input saturation at value zero cannot occur. In this context, two adaptive controllers are suggested, such that the resulting adaptive systems are stable and the control objective is met. The adaptive controller design relies on a convenient coordinate transformation, while the proof of stability is based on suitably chosen Lyapunov functions. The performance of the adaptive system is evaluated through computer simulations.
Adaptive design lessons from professional architects
NASA Astrophysics Data System (ADS)
Geiger, Ray W.; Snell, J. T.
1993-09-01
Psychocybernetic systems engineering design conceptualization is mimicking the evolutionary path of habitable environmental design and the professional practice of building architecture, construction, and facilities management. In pursuing better ways to design cellular automata and qualification classifiers in a design process, we have found surprising success in exploring certain more esoteric approaches, e.g., the vision of interdisciplinary artistic discovery in and around creative problem solving. Our evaluation in research into vision and hybrid sensory systems associated with environmental design and human factors has led us to discover very specific connections between the human spirit and quality design. We would like to share those very qualitative and quantitative parameters of engineering design, particularly as it relates to multi-faceted and future oriented design practice. Discussion covers areas of case- based techniques of cognitive ergonomics, natural modeling sources, and an open architectural process of means/goal satisfaction, qualified by natural repetition, gradation, rhythm, contrast, balance, and integrity of process.
Analysis and design of an adaptive lightweight satellite mirror
NASA Astrophysics Data System (ADS)
Duerr, Johannes K.; Honke, Robert; Alberti, Mathias V.; Sippel, Rudolf
2002-07-01
Future scientific space missions based on interferometric optical and infrared astronomical instruments are currently under development in the United States as well as in Europe. These instruments require optical path length accuracy in the order of a few nanometers across structural dimensions of several meters. This puts extreme demands on static and dynamic structural stability. It is expected that actively controlled, adaptive structures will increasingly have to be used for these satellite applications to overcome the limits of passive structural accuracy. Based on the evaluation of different piezo-active concepts presented two years ago analysis and design of an adaptive lightweight satellite mirror primarily made of carbon-fiber reinforced plastic with embedded piezoceramic actuators for shape control is being described. Simulation of global mirror performance takes different wavefront-sensors and controls for several cases of loading into account. In addition extensive finite-element optimization of various structural details has been performed. Local material properties of sub-assemblies or geometry effects at the edges of the structure are investigated with respect to their impact on mirror performance. One important result of the analysis was the lay-out of actuator arrays consisting of specifically designed and custom made piezoceramic actuators. Prototype manufacturing and testing of active sub-components is described in detail. The results obtained served as a basis for a final update of finite-element models. The paper concludes with an outline on manufacturing, testing, and space qualification of the prototype demonstrator of an actively controllable lightweight satellite mirror currently under way. The research work presented in this paper is part of the German industrial research project 'ADAPTRONIK'.
NASA Technical Reports Server (NTRS)
Johnson, C. R., Jr.; Lawrence, D. A.
1981-01-01
The reduced order model problem in distributed parameter systems adaptive identification and control is investigated. A comprehensive examination of real-time centralized adaptive control options for flexible spacecraft is provided.
Adaptive control in the presence of unmodeled dynamics. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Rohrs, C. E.
1982-01-01
Stability and robustness properties of a wide class of adaptive control algorithms in the presence of unmodeled dynamics and output disturbances were investigated. The class of adaptive algorithms considered are those commonly referred to as model reference adaptive control algorithms, self-tuning controllers, and dead beat adaptive controllers, developed for both continuous-time systems and discrete-time systems. A unified analytical approach was developed to examine the class of existing adaptive algorithms. It was discovered that all existing algorithms contain an infinite gain operator in the dynamic system that defines command reference errors and parameter errors; it is argued that such an infinite gain operator appears to be generic to all adaptive algorithms, whether they exhibit explicit or implicit parameter identification. It is concluded that none of the adaptive algorithms considered can be used with confidence in a practical control system design, because instability will set in with a high probability.
Stiffness control of magnetorheological gels for adaptive tunable vibration absorber
NASA Astrophysics Data System (ADS)
Kim, Hyun Kee; Kim, Hye Shin; Kim, Young-Keun
2017-01-01
In this study, a stiffness feedback control system for magnetorheological (MR) gel—a smart material of variable stiffness—is proposed, toward the design of a tunable vibration absorber that can adaptively tune to a time varying disturbance in real time. A PID controller was designed to track the required stiffness of the MR gel by controlling the magnitude of the target external magnetic field pervading the MR gel. This paper proposes a novel magnetic field generator that could produce a variable magnetic field with low energy consumption. The performance of the MR gel stiffness control was validated through experiments that showed the MR gel absorber system could be automatically tuned from 56 Hz to 67 Hz under a field of 100 mT to minimize the vibration of the primary system.
Design, development, and testing of a solid state adaptive rotor
NASA Astrophysics Data System (ADS)
Barrett, Ronald M.; Frye, Phillip; Schliesman, Michael
1998-04-01
This study outlines the design principles, analytical models and testing procedures for a new type of solid state adaptive rotor (SSAR) which was specifically intended for use in mini and micro-unmanned aerial rotorcraft ((mu) UAR). This new SSAR employed a pair of torque-plates which were structurally integrated at the helicopter hub and connected to a two-bladed rotor assembly of 22' (55.9 cm) diameter. These plates were constructed from symmetrically oriented directionally attached piezoelectric actuator elements which were bonded to an aluminum substrate. As the electrical field was changed across the elements, the twist of the plate changed accordingly. Because this new arrangement may be controlled as a function of azimuth, both collective and cyclic commands were available. Unlike earlier designs, this new arrangement used a Hiller servopaddle configuration to achieve flight control. Analytical modeling of the torque- plate performance was accomplished through laminated plate theory and showed good correlation between theory and experiment. Rotor-dynamic models included propeller and aerodynamic moments. Rotor testing showed servopaddle deflection levels in excess of +/- 5.8 degree(s) at rates up to 2.5/rev. Not only is this system effective in achieving flight control, but it is also very simple and lightweight. Indeed, the torque-late, electrical leads and contacts weight 40% less, have a much cleaner hub and replace more than 94 individual components which are found on the conventional flight control system.
Adaptive supervisory control of remote manipulation
NASA Technical Reports Server (NTRS)
Ferrell, W. R.
1977-01-01
The command language by which an operator exerts supervisory control over a general purpose remote manipulator should be designed to accommodate certain characteristics of human performance if there is to be effective communication between the operator and the machine. Some of the ways in which people formulate tasks, use language, learn and make errors are discussed and design implications are drawn. A general approach to command language design is suggested, based on the notion matching the operator's current task schema or context by appropriate program structures or 'frames' in the machine.
Adaptive collaborative control of highly redundant robots
NASA Astrophysics Data System (ADS)
Handelman, David A.
2008-04-01
The agility and adaptability of biological systems are worthwhile goals for next-generation unmanned ground vehicles. Management of the requisite number of degrees of freedom, however, remains a challenge, as does the ability of an operator to transfer behavioral intent from human to robot. This paper reviews American Android research funded by NASA, DARPA, and the U.S. Army that attempts to address these issues. Limb coordination technology, an iterative form of inverse kinematics, provides a fundamental ability to control balance and posture independently in highly redundant systems. Goal positions and orientations of distal points of the robot skeleton, such as the hands and feet of a humanoid robot, become variable constraints, as does center-of-gravity position. Behaviors utilize these goals to synthesize full-body motion. Biped walking, crawling and grasping are illustrated, and behavior parameterization, layering and portability are discussed. Robotic skill acquisition enables a show-and-tell approach to behavior modification. Declarative rules built verbally by an operator in the field define nominal task plans, and neural networks trained with verbal, manual and visual signals provide additional behavior shaping. Anticipated benefits of the resultant adaptive collaborative controller for unmanned ground vehicles include increased robot autonomy, reduced operator workload and reduced operator training and skill requirements.
Adaptive vibration control using a virtual-vibration-absorber controller
NASA Astrophysics Data System (ADS)
Wu, Shang-Teh; Shao, Ying-Jhe
2007-09-01
A control algorithm emulating a dynamic vibration absorber (DVA) is developed for a flexible structure subject to harmonic disturbances of uncertain frequency. The virtual vibration absorber is mathematically equivalent to a passive DVA, but its stiffness, inertia and damping coefficient are adjustable by software. Stiffness of the virtual spring is tuned according to the phase difference between the acceleration of the primary body and the displacement of the virtual mass. The adaptation algorithm consists of a phase detector with a low-pass filter, similar to that found in a phase-locked loop. Both undamped and damped vibration absorbers are developed; the former has the advantage of cleaner vibration neutralization while the latter has a smoother stiffness adaptation. Adaptation rate of the virtual stiffness is analyzed in detail. The effectiveness of the proposed method is confirmed by simulations and real-time experiments.
Optimal adaptive sequential designs for crossover bioequivalence studies.
Xu, Jialin; Audet, Charles; DiLiberti, Charles E; Hauck, Walter W; Montague, Timothy H; Parr, Alan F; Potvin, Diane; Schuirmann, Donald J
2016-01-01
In prior works, this group demonstrated the feasibility of valid adaptive sequential designs for crossover bioequivalence studies. In this paper, we extend the prior work to optimize adaptive sequential designs over a range of geometric mean test/reference ratios (GMRs) of 70-143% within each of two ranges of intra-subject coefficient of variation (10-30% and 30-55%). These designs also introduce a futility decision for stopping the study after the first stage if there is sufficiently low likelihood of meeting bioequivalence criteria if the second stage were completed, as well as an upper limit on total study size. The optimized designs exhibited substantially improved performance characteristics over our previous adaptive sequential designs. Even though the optimized designs avoided undue inflation of type I error and maintained power at ≥ 80%, their average sample sizes were similar to or less than those of conventional single stage designs.
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Kaber, David B.
2006-01-01
This report presents a review of literature on approaches to adaptive and adaptable task/function allocation and adaptive interface technologies for effective human management of complex systems that are likely to be issues for the Next Generation Air Transportation System, and a focus of research under the Aviation Safety Program, Integrated Intelligent Flight Deck Project. Contemporary literature retrieved from an online database search is summarized and integrated. The major topics include the effects of delegation-type, adaptable automation on human performance, workload and situation awareness, the effectiveness of various automation invocation philosophies and strategies to function allocation in adaptive systems, and the role of user modeling in adaptive interface design and the performance implications of adaptive interface technology.
Adaptive fuzzy PID control of hydraulic servo control system for large axial flow compressor
NASA Astrophysics Data System (ADS)
Wang, Yannian; Wu, Peizhi; Liu, Chengtao
2017-09-01
To improve the stability of the large axial compressor, an efficient and special intelligent hydraulic servo control system is designed and implemented. The adaptive fuzzy PID control algorithm is used to control the position of the hydraulic servo cylinder steadily, which overcomes the drawback that the PID parameters should be adjusted based on the different applications. The simulation and the test results show that the system has a better dynamic property and a stable state performance.
A novel adaptive force control method for IPMC manipulation
NASA Astrophysics Data System (ADS)
Hao, Lina; Sun, Zhiyong; Li, Zhi; Su, Yunquan; Gao, Jianchao
2012-07-01
IPMC is a type of electro-active polymer material, also called artificial muscle, which can generate a relatively large deformation under a relatively low input voltage (generally speaking, less than 5 V), and can be implemented in a water environment. Due to these advantages, IPMC can be used in many fields such as biomimetics, service robots, bio-manipulation, etc. Until now, most existing methods for IPMC manipulation are displacement control not directly force control, however, under most conditions, the success rate of manipulations for tiny fragile objects is limited by the contact force, such as using an IPMC gripper to fix cells. Like most EAPs, a creep phenomenon exists in IPMC, of which the generated force will change with time and the creep model will be influenced by the change of the water content or other environmental factors, so a proper force control method is urgently needed. This paper presents a novel adaptive force control method (AIPOF control—adaptive integral periodic output feedback control), based on employing a creep model of which parameters are obtained by using the FRLS on-line identification method. The AIPOF control method can achieve an arbitrary pole configuration as long as the plant is controllable and observable. This paper also designs the POF and IPOF controller to compare their test results. Simulation and experiments of micro-force-tracking tests are carried out, with results confirming that the proposed control method is viable.
Jacobs, Petra; Estrada, Yannine A; Tapia, Maria I; Quevedo Terán, Ana M; Condo Tamayo, Cecilia; Albán García, Mónica; Valenzuela Triviño, Gilda M; Pantin, Hilda; Velazquez, Maria R; Horigian, Viviana E; Alonso, Elizabeth; Prado, Guillermo
2016-03-01
Developing, testing and implementing evidence-based prevention interventions are important in decreasing substance use and sexual risk behavior among adolescents. This process requires research expertise, infrastructure, resources and decades of research testing, which might not always be feasible for low resource countries. Adapting and testing interventions proven to be efficacious in similar cultures might circumvent the time and costs of implementing evidence-based interventions in new settings. This paper describes the two-phase study, including training and development of the research infrastructure in the Ecuadorian university necessary to implement a randomized controlled trial. Familias Unidas is a multilevel parent-centered intervention designed in the U.S. to prevent drug use and sexual risk behaviors in Hispanic adolescents. The current study consisted of Phase 1 feasibility study (n=38) which adapted the intervention and study procedures within a single-site school setting in an area with a high prevalence of drug use and unprotected sexual behavior among adolescents in Ecuador, and Phase 2 randomized controlled trial of the adapted intervention in two public high schools with a target population of families with adolescents from 12 to 14 years old. The trial is currently in Phase 2. Study recruitment was completed with 239 parent-youth dyads enrolling. The intervention phase and the first follow-up assessment have been completed. The second and third follow-up assessments will be completed in 2016. This project has the potential of benefitting a large population of families in areas of Ecuador that are disproportionally affected by drug trafficking and its consequences. MSP-DIS-2015-0055-0, Ministry of Public Health (MSP), Quito, Ecuador. Copyright © 2016 Elsevier Inc. All rights reserved.
Design optimization of system level adaptive optical performance
NASA Astrophysics Data System (ADS)
Michels, Gregory J.; Genberg, Victor L.; Doyle, Keith B.; Bisson, Gary R.
2005-09-01
By linking predictive methods from multiple engineering disciplines, engineers are able to compute more meaningful predictions of a product's performance. By coupling mechanical and optical predictive techniques mechanical design can be performed to optimize optical performance. This paper demonstrates how mechanical design optimization using system level optical performance can be used in the development of the design of a high precision adaptive optical telescope. While mechanical design parameters are treated as the design variables, the objective function is taken to be the adaptively corrected optical imaging performance of an orbiting two-mirror telescope.
Integrated control-structure design
NASA Technical Reports Server (NTRS)
Hunziker, K. Scott; Kraft, Raymond H.; Bossi, Joseph A.
1991-01-01
A new approach for the design and control of flexible space structures is described. The approach integrates the structure and controller design processes thereby providing extra opportunities for avoiding some of the disastrous effects of control-structures interaction and for discovering new, unexpected avenues of future structural design. A control formulation based on Boyd's implementation of Youla parameterization is employed. Control design parameters are coupled with structural design variables to produce a set of integrated-design variables which are selected through optimization-based methodology. A performance index reflecting spacecraft mission goals and constraints is formulated and optimized with respect to the integrated design variables. Initial studies have been concerned with achieving mission requirements with a lighter, more flexible space structure. Details of the formulation of the integrated-design approach are presented and results are given from a study involving the integrated redesign of a flexible geostationary platform.
Multidimensional Adaptive Testing with Optimal Design Criteria for Item Selection
ERIC Educational Resources Information Center
Mulder, Joris; van der Linden, Wim J.
2009-01-01
Several criteria from the optimal design literature are examined for use with item selection in multidimensional adaptive testing. In particular, it is examined what criteria are appropriate for adaptive testing in which all abilities are intentional, some should be considered as a nuisance, or the interest is in the testing of a composite of the…
Prediction and control of chaotic processes using nonlinear adaptive networks
Jones, R.D.; Barnes, C.W.; Flake, G.W.; Lee, K.; Lewis, P.S.; O'Rouke, M.K.; Qian, S.
1990-01-01
We present the theory of nonlinear adaptive networks and discuss a few applications. In particular, we review the theory of feedforward backpropagation networks. We then present the theory of the Connectionist Normalized Linear Spline network in both its feedforward and iterated modes. Also, we briefly discuss the theory of stochastic cellular automata. We then discuss applications to chaotic time series, tidal prediction in Venice lagoon, finite differencing, sonar transient detection, control of nonlinear processes, control of a negative ion source, balancing a double inverted pendulum and design advice for free electron lasers and laser fusion targets.
Discrete model reference adaptive control with an augmented error signal
NASA Technical Reports Server (NTRS)
Ionescu, T.; Monopoli, R.
1975-01-01
A method for designing discrete model reference adaptive control systems when one has access to only the plant's input and output signals is given. Controllers for single-input, single-output, nonlinear, nonautonomous plants are developed via Liapunov's second method. Anticipative values of the plant output are not required, but are replaced by signals easily obtained from a low-pass filter operating on the plant's output. The augmented error signal method is employed, ensuring finally that the normally used error signal also approaches zero asymptotically.
An experimental study of a hybrid adaptive control system
NASA Technical Reports Server (NTRS)
Lizewski, E. F.; Monopoli, R. V.
1974-01-01
A Liapunov type model reference adaptive control system with five adjustable gains is implemented using a PDP-11 digital computer and an EAI 380 analog computer. The plant controlled is a laboratory type dc servo system. It is made to follow closely a second order linear model. The experimental results demonstrate the feasibility of implementing this rather complex design using only a minicomputer and a reasonable number of operational amplifiers. Also, it points out that satisfactory performance can be achieved even when certain assumptions necessary for the theory are not satisfied.
Model reference adaptive control with an augmented error signal
NASA Technical Reports Server (NTRS)
Monopoli, R. V.
1974-01-01
It is shown how globally stable model reference adaptive control systems may be designed when one has access to only the plant's input and output signals. Controllers for single input-single output, nonlinear, nonautonomous plants are developed based on Lyapunov's direct method and the Meyer-Kalman-Yacubovich lemma. Derivatives of the plant output are not required, but are replaced by filtered derivative signals. An augmented error signal replaces the error normally used, which is defined as the difference between the model and plant outputs. However, global stability is assured in the sense that the normally used error signal approaches zero asymptotically.
Model reference adaptive control using only input and output signals
NASA Technical Reports Server (NTRS)
Monopoli, R. V.
1973-01-01
It is shown how globally stable model reference adaptive control systems may be designed using only the plant's input and output signals. Controllers for single input-single output, nonlinear, nonautonomous plants are developed based on Liapunov's direct method and the Meyer-Kalman-Yacubovich lemma. Filtered derivatives of the plant output replace pure derivatives which are normally required in these systems. An augmented error signal replaces the error previously used which is the difference between the model and plant outputs. However, global stability is assured in the sense that this difference approaches zero asymptotically.
Real-time Adaptive Control Using Neural Generalized Predictive Control
NASA Technical Reports Server (NTRS)
Haley, Pam; Soloway, Don; Gold, Brian
1999-01-01
The objective of this paper is to demonstrate the feasibility of a Nonlinear Generalized Predictive Control algorithm by showing real-time adaptive control on a plant with relatively fast time-constants. Generalized Predictive Control has classically been used in process control where linear control laws were formulated for plants with relatively slow time-constants. The plant of interest for this paper is a magnetic levitation device that is nonlinear and open-loop unstable. In this application, the reference model of the plant is a neural network that has an embedded nominal linear model in the network weights. The control based on the linear model provides initial stability at the beginning of network training. In using a neural network the control laws are nonlinear and online adaptation of the model is possible to capture unmodeled or time-varying dynamics. Newton-Raphson is the minimization algorithm. Newton-Raphson requires the calculation of the Hessian, but even with this computational expense the low iteration rate make this a viable algorithm for real-time control.
Adaptive Tracking Control for Robots With an Interneural Computing Scheme.
Tsai, Feng-Sheng; Hsu, Sheng-Yi; Shih, Mau-Hsiang
2017-01-24
Adaptive tracking control of mobile robots requires the ability to follow a trajectory generated by a moving target. The conventional analysis of adaptive tracking uses energy minimization to study the convergence and robustness of the tracking error when the mobile robot follows a desired trajectory. However, in the case that the moving target generates trajectories with uncertainties, a common Lyapunov-like function for energy minimization may be extremely difficult to determine. Here, to solve the adaptive tracking problem with uncertainties, we wish to implement an interneural computing scheme in the design of a mobile robot for behavior-based navigation. The behavior-based navigation adopts an adaptive plan of behavior patterns learning from the uncertainties of the environment. The characteristic feature of the interneural computing scheme is the use of neural path pruning with rewards and punishment interacting with the environment. On this basis, the mobile robot can be exploited to change its coupling weights in paths of neural connections systematically, which can then inhibit or enhance the effect of flow elimination in the dynamics of the evolutionary neural network. Such dynamical flow translation ultimately leads to robust sensory-to-motor transformations adapting to the uncertainties of the environment. A simulation result shows that the mobile robot with the interneural computing scheme can perform fault-tolerant behavior of tracking by maintaining suitable behavior patterns at high frequency levels.
Design, realization and structural testing of a compliant adaptable wing
NASA Astrophysics Data System (ADS)
Molinari, G.; Quack, M.; Arrieta, A. F.; Morari, M.; Ermanni, P.
2015-10-01
This paper presents the design, optimization, realization and testing of a novel wing morphing concept, based on distributed compliance structures, and actuated by piezoelectric elements. The adaptive wing features ribs with a selectively compliant inner structure, numerically optimized to achieve aerodynamically efficient shape changes while simultaneously withstanding aeroelastic loads. The static and dynamic aeroelastic behavior of the wing, and the effect of activating the actuators, is assessed by means of coupled 3D aerodynamic and structural simulations. To demonstrate the capabilities of the proposed morphing concept and optimization procedure, the wings of a model airplane are designed and manufactured according to the presented approach. The goal is to replace conventional ailerons, thus to achieve controllability in roll purely by morphing. The mechanical properties of the manufactured components are characterized experimentally, and used to create a refined and correlated finite element model. The overall stiffness, strength, and actuation capabilities are experimentally tested and successfully compared with the numerical prediction. To counteract the nonlinear hysteretic behavior of the piezoelectric actuators, a closed-loop controller is implemented, and its capability of accurately achieving the desired shape adaptation is evaluated experimentally. Using the correlated finite element model, the aeroelastic behavior of the manufactured wing is simulated, showing that the morphing concept can provide sufficient roll authority to allow controllability of the flight. The additional degrees of freedom offered by morphing can be also used to vary the plane lift coefficient, similarly to conventional flaps. The efficiency improvements offered by this technique are evaluated numerically, and compared to the performance of a rigid wing.
Fuzzy scheduled RTDA controller design.
Srinivasan, K; Anbarasan, K
2013-03-01
In this paper, the design and development of fuzzy scheduled robustness, tracking, disturbance rejection and overall aggressiveness (RTDA) controller design for non-linear processes are discussed. pH process is highly non-linear and the design of good controller for this process is always a challenging one due to large gain variation. Fuzzy scheduled RTDA controller design based on normalized integral square error (N_ISE) performance criteria for pH neutralization process is developed. The applicability of the proposed controller is tested for other different non-linear processes like type I diabetic process and conical tank process. The servo and regulatory performance of fuzzy scheduled RTDA controller design is compared with well-tuned internal model control (IMC) and dynamic matrix control (DMC)-based control schemes. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Stability Analysis of an Adaptive Torque Controller for Variable Speed Wind Turbines: Preprint
Johnson, K. E.; Pao, L. Y.; Balas, M. J.; Kulkarni, V.; Fingersh, L. J.
2004-12-01
Variable speed wind turbines are designed to follow wind speed variations in low winds in order to maximize aerodynamic efficiency. Unfortunately, uncertainty in the aerodynamic parameters may lead to sub-optimal power capture in variable speed turbines. Adaptive generator torque control is one method of eliminating this sub-optimality; however, before adaptive control can become widely used in the wind industry, it must be proven to be safe. This paper analyzes the stability of an adaptive torque control law and the gain adaptation law in use on the Controls Advanced Research Turbine (CART) at the National Renewable Energy Laboratory's National Wind Technology Center.
The Stroke Hyperglycemia Insulin Network Effort (SHINE) trial: an adaptive trial design case study.
Connor, Jason T; Broglio, Kristine R; Durkalski, Valerie; Meurer, William J; Johnston, Karen C
2015-03-04
The 'Adaptive Designs Accelerating Promising Trials into Treatments (ADAPT-IT)' project is a collaborative effort supported by the National Institutes of Health (NIH) and United States Food & Drug Administration (FDA) to explore how adaptive clinical trial design might improve the evaluation of drugs and medical devices. ADAPT-IT uses the National Institute of Neurologic Disorders & Stroke-supported Neurological Emergencies Treatment Trials (NETT) network as a 'laboratory' in which to study the development of adaptive clinical trial designs in the confirmatory setting. The Stroke Hyperglycemia Insulin Network Effort (SHINE) trial was selected for funding by the NIH-NINDS at the start of ADAPT-IT and is currently an ongoing phase III trial of tight glucose control in hyperglycemic acute ischemic stroke patients. Within ADAPT-IT, a Bayesian adaptive Goldilocks trial design alternative was developed. The SHINE design includes response adaptive randomization, a sample size re-estimation, and monitoring for early efficacy and futility according to a group sequential design. The Goldilocks design includes more frequent monitoring for predicted success or futility and a longitudinal model of the primary endpoint. Both trial designs were simulated and compared in terms of their mean sample size and power across a range of treatment effects and success rates for the control group. As simulated, the SHINE design tends to have slightly higher power and the Goldilocks design has a lower mean sample size. Both designs were tuned to have approximately 80% power to detect a difference of 25% versus 32% between control and treatment, respectively. In this scenario, mean sample sizes are 1,114 and 979 for the SHINE and Goldilocks designs, respectively. Two designs were brought forward, and both were evaluated, revised, and improved based on the input of all parties involved in the ADAPT-IT process. However, the SHINE investigators were tasked with choosing only a single design to
Adaptive fuzzy-neural-network control for maglev transportation system.
Wai, Rong-Jong; Lee, Jeng-Dao
2008-01-01
A magnetic-levitation (maglev) transportation system including levitation and propulsion control is a subject of considerable scientific interest because of highly nonlinear and unstable behaviors. In this paper, the dynamic model of a maglev transportation system including levitated electromagnets and a propulsive linear induction motor (LIM) based on the concepts of mechanical geometry and motion dynamics is developed first. Then, a model-based sliding-mode control (SMC) strategy is introduced. In order to alleviate chattering phenomena caused by the inappropriate selection of uncertainty bound, a simple bound estimation algorithm is embedded in the SMC strategy to form an adaptive sliding-mode control (ASMC) scheme. However, this estimation algorithm is always a positive value so that tracking errors introduced by any uncertainty will cause the estimated bound increase even to infinity with time. Therefore, it further designs an adaptive fuzzy-neural-network control (AFNNC) scheme by imitating the SMC strategy for the maglev transportation system. In the model-free AFNNC, online learning algorithms are designed to cope with the problem of chattering phenomena caused by the sign action in SMC design, and to ensure the stability of the controlled system without the requirement of auxiliary compensated controllers despite the existence of uncertainties. The outputs of the AFNNC scheme can be directly supplied to the electromagnets and LIM without complicated control transformations for relaxing strict constrains in conventional model-based control methodologies. The effectiveness of the proposed control schemes for the maglev transportation system is verified by numerical simulations, and the superiority of the AFNNC scheme is indicated in comparison with the SMC and ASMC strategies.
Mental workload dynamics in adaptive interface design
NASA Technical Reports Server (NTRS)
Hancock, Peter A.; Chignell, Mark H.
1988-01-01
In examining the role of time in mental workload, the authors present a different perspective from which to view the problem of assessment. Mental workload is plotted in three dimensions, whose axes represent effective time for action, perceived distance from desired goal state, level of effort required to achieve the time-constrained goal. This representation allows the generation of isodynamic workload contours that incorporate the factors of operator skill and equifinality of effort. An adaptive interface for dynamic task reallocation is described that uses this form of assessment to reconcile the joint aims of stable operator loading and acceptable primary task performance by the total system.
Controller-structure interaction compensation using adaptive residual mode filters
NASA Technical Reports Server (NTRS)
Davidson, Roger A.; Balas, Mark J.
1990-01-01
It is not feasible to construct controllers for large space structures or large scale systems (LSS's) which are of the same order as the structures. The complexity of the dynamics of these systems is such that full knowledge of its behavior cannot by processed by today's controller design methods. The controller for system performance of such a system is therefore based on a much smaller reduced-order model (ROM). Unfortunately, the interaction between the LSS and the ROM-based controller can produce instabilities in the closed-loop system due to the unmodeled dynamics of the LSS. Residual mode filters (RMF's) allow the systematic removal of these instabilities in a matter which does not require a redesign of the controller. In addition RMF's have a strong theoretical basis. As simple first- or second-order filters, the RMF CSI compensation technique is at once modular, simple and highly effective. RMF compensation requires knowledge of the dynamics of the system modes which resulted in the previous closed-loop instabilities (the residual modes), but this information is sometimes known imperfectly. An adaptive, self-tuning RMF design, which compensates for uncertainty in the frequency of the residual mode, has been simulated using continuous-time and discrete-time models of a flexible robot manipulator. Work has also been completed on the discrete-time experimental implementation on the Martin Marietta flexible robot manipulator experiment. This paper will present the results of that work on adaptive, self-tuning RMF's, and will clearly show the advantage of this adaptive compensation technique for controller-structure interaction (CSI) instabilities in actively-controlled LSS's.
FPGA-accelerated adaptive optics wavefront control
NASA Astrophysics Data System (ADS)
Mauch, S.; Reger, J.; Reinlein, C.; Appelfelder, M.; Goy, M.; Beckert, E.; Tünnermann, A.
2014-03-01
The speed of real-time adaptive optical systems is primarily restricted by the data processing hardware and computational aspects. Furthermore, the application of mirror layouts with increasing numbers of actuators reduces the bandwidth (speed) of the system and, thus, the number of applicable control algorithms. This burden turns out a key-impediment for deformable mirrors with continuous mirror surface and highly coupled actuator influence functions. In this regard, specialized hardware is necessary for high performance real-time control applications. Our approach to overcome this challenge is an adaptive optics system based on a Shack-Hartmann wavefront sensor (SHWFS) with a CameraLink interface. The data processing is based on a high performance Intel Core i7 Quadcore hard real-time Linux system. Employing a Xilinx Kintex-7 FPGA, an own developed PCie card is outlined in order to accelerate the analysis of a Shack-Hartmann Wavefront Sensor. A recently developed real-time capable spot detection algorithm evaluates the wavefront. The main features of the presented system are the reduction of latency and the acceleration of computation For example, matrix multiplications which in general are of complexity O(n3 are accelerated by using the DSP48 slices of the field-programmable gate array (FPGA) as well as a novel hardware implementation of the SHWFS algorithm. Further benefits are the Streaming SIMD Extensions (SSE) which intensively use the parallelization capability of the processor for further reducing the latency and increasing the bandwidth of the closed-loop. Due to this approach, up to 64 actuators of a deformable mirror can be handled and controlled without noticeable restriction from computational burdens.
Space Launch System Implementation of Adaptive Augmenting Control
NASA Technical Reports Server (NTRS)
Wall, John H.; Orr, Jeb S.; VanZwieten, Tannen S.
2014-01-01
Given the complex structural dynamics, challenging ascent performance requirements, and rigorous flight certification constraints owing to its manned capability, the NASA Space Launch System (SLS) launch vehicle requires a proven thrust vector control algorithm design with highly optimized parameters to provide stable and high-performance flight. On its development path to Preliminary Design Review (PDR), the SLS flight control system has been challenged by significant vehicle flexibility, aerodynamics, and sloshing propellant. While the design has been able to meet all robust stability criteria, it has done so with little excess margin. Through significant development work, an Adaptive Augmenting Control (AAC) algorithm has been shown to extend the envelope of failures and flight anomalies the SLS control system can accommodate while maintaining a direct link to flight control stability criteria such as classical gain and phase margin. In this paper, the work performed to mature the AAC algorithm as a baseline component of the SLS flight control system is presented. The progress to date has brought the algorithm design to the PDR level of maturity. The algorithm has been extended to augment the full SLS digital 3-axis autopilot, including existing load-relief elements, and the necessary steps for integration with the production flight software prototype have been implemented. Several updates which have been made to the adaptive algorithm to increase its performance, decrease its sensitivity to expected external commands, and safeguard against limitations in the digital implementation are discussed with illustrating results. Monte Carlo simulations and selected stressing case results are also shown to demonstrate the algorithm's ability to increase the robustness of the integrated SLS flight control system.
Space Launch System Implementation of Adaptive Augmenting Control
NASA Technical Reports Server (NTRS)
VanZwieten, Tannen S.; Wall, John H.; Orr, Jeb S.
2014-01-01
Given the complex structural dynamics, challenging ascent performance requirements, and rigorous flight certification constraints owing to its manned capability, the NASA Space Launch System (SLS) launch vehicle requires a proven thrust vector control algorithm design with highly optimized parameters to robustly demonstrate stable and high performance flight. On its development path to preliminary design review (PDR), the stability of the SLS flight control system has been challenged by significant vehicle flexibility, aerodynamics, and sloshing propellant dynamics. While the design has been able to meet all robust stability criteria, it has done so with little excess margin. Through significant development work, an adaptive augmenting control (AAC) algorithm previously presented by Orr and VanZwieten, has been shown to extend the envelope of failures and flight anomalies for which the SLS control system can accommodate while maintaining a direct link to flight control stability criteria (e.g. gain & phase margin). In this paper, the work performed to mature the AAC algorithm as a baseline component of the SLS flight control system is presented. The progress to date has brought the algorithm design to the PDR level of maturity. The algorithm has been extended to augment the SLS digital 3-axis autopilot, including existing load-relief elements, and necessary steps for integration with the production flight software prototype have been implemented. Several updates to the adaptive algorithm to increase its performance, decrease its sensitivity to expected external commands, and safeguard against limitations in the digital implementation are discussed with illustrating results. Monte Carlo simulations and selected stressing case results are shown to demonstrate the algorithm's ability to increase the robustness of the integrated SLS flight control system.
RUPERT closed loop control design.
Balasubramanian, Sivakumar; Wei, Ruihua; He, Jiping
2008-01-01
Rehabilitation robotics is an active area of research in the field of stroke rehabilitation. There is significant potential for improving the current physical rehabilitation methods after stroke through the use of robotic devices. RUPERT is a wearable robotic exoskeleton powered by pneumatic muscle actuators. An adaptive robot control strategy combining a PID-based feedback controller and an Iterative Learning Controller (ILC) is proposed for performing passive reaching tasks. Additionally, a fuzzy rule-base for estimating the learning rate for the ILC is also proposed. The proposed control scheme has the ability to adapt to different subject for performing different reaching tasks. The preliminary results from two able-bodied subjects demonstrate that the proposed controller can provide consistent performance for different subjects performing different reaching tasks.
Adaptive powertrain control for plugin hybrid electric vehicles
Kedar-Dongarkar, Gurunath; Weslati, Feisel
2013-10-15
A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.
Design of force/position controllers for manipulators
NASA Technical Reports Server (NTRS)
Seraji, H.
1987-01-01
The paper presents simple methods for the design of adaptive force and position controllers for robot manipulators within the hybrid control architecture. The force controller is composed of an adaptive PID feedback controller, an auxiliary signal and a force feedforward term, and achieves tracking of desired force setpoints in the constraint directions. The position controller consists of adaptive feedback and feedforward controllers and an auxiliary signal; and accomplishes tracking of desired position trajectories in the free directions. The controllers are capable of compensating for dynamic cross-couplings that exist between the position and force control loops in the hybrid control architecture. The adaptive controllers do not require knowledge of the complex dynamic model or parameter values of the manipulator or the environment. The proposed control schemes are computationally fast and suitable for implementation in on-line control with high sampling rates.
Design of force/position controllers for manipulators
NASA Technical Reports Server (NTRS)
Seraji, H.
1987-01-01
The paper presents simple methods for the design of adaptive force and position controllers for robot manipulators within the hybrid control architecture. The force controller is composed of an adaptive PID feedback controller, an auxiliary signal and a force feedforward term, and achieves tracking of desired force setpoints in the constraint directions. The position controller consists of adaptive feedback and feedforward controllers and an auxiliary signal; and accomplishes tracking of desired position trajectories in the free directions. The controllers are capable of compensating for dynamic cross-couplings that exist between the position and force control loops in the hybrid control architecture. The adaptive controllers do not require knowledge of the complex dynamic model or parameter values of the manipulator or the environment. The proposed control schemes are computationally fast and suitable for implementation in on-line control with high sampling rates.
Driver behaviour with adaptive cruise control.
Stanton, Neville A; Young, Mark S
2005-08-15
This paper reports on the evaluation of adaptive cruise control (ACC) from a psychological perspective. It was anticipated that ACC would have an effect upon the psychology of driving, i.e. make the driver feel like they have less control, reduce the level of trust in the vehicle, make drivers less situationally aware, but workload might be reduced and driving might be less stressful. Drivers were asked to drive in a driving simulator under manual and ACC conditions. Analysis of variance techniques were used to determine the effects of workload (i.e. amount of traffic) and feedback (i.e. degree of information from the ACC system) on the psychological variables measured (i.e. locus of control, trust, workload, stress, mental models and situation awareness). The results showed that: locus of control and trust were unaffected by ACC, whereas situation awareness, workload and stress were reduced by ACC. Ways of improving situation awareness could include cues to help the driver predict vehicle trajectory and identify conflicts.
NASA Technical Reports Server (NTRS)
Mookerjee, P.; Molusis, J. A.; Bar-Shalom, Y.
1985-01-01
An investigation of the properties important for the design of stochastic adaptive controllers for the higher harmonic control of helicopter vibration is presented. Three different model types are considered for the transfer relationship between the helicopter higher harmonic control input and the vibration output: (1) nonlinear; (2) linear with slow time varying coefficients; and (3) linear with constant coefficients. The stochastic controller formulations and solutions are presented for a dual, cautious, and deterministic controller for both linear and nonlinear transfer models. Extensive simulations are performed with the various models and controllers. It is shown that the cautious adaptive controller can sometimes result in unacceptable vibration control. A new second order dual controller is developed which is shown to modify the cautious adaptive controller by adding numerator and denominator correction terms to the cautious control algorithm. The new dual controller is simulated on a simple single-control vibration example and is found to achieve excellent vibration reduction and significantly improves upon the cautious controller.
High-speed train control based on multiple-model adaptive control with second-level adaptation
NASA Astrophysics Data System (ADS)
Zhou, Yonghua; Zhang, Zhenlin
2014-05-01
Speed uplift has become the leading trend for the development of current railway traffic. Ideally, under the high-speed transportation infrastructure, trains run at specified positions with designated speeds at appointed times. In view of the faster adaptation ability of multiple-model adaptive control with second-level adaptation (MMAC-SLA), we propose one type of MMAC-SLA for a class of nonlinear systems such as cascaded vehicles. By using an input decomposition technique, the corresponding stability proof is solved for the proposed MMAC-SLA, which synthesises the control signals from the weighted multiple models. The control strategy is utilised to challenge the position and speed tracking of high-speed trains with uncertain parameters. The simulation results demonstrate that the proposed MMAC-SLA can achieve small tracking errors with moderate in-train forces incurred under the control of flattening input signals with practical enforceability. This study also provides a new idea for the control of in-train forces by tracking the positions and speeds of cars while considering power constraints.
Design of Pel Adaptive DPCM coding based upon image partition
NASA Astrophysics Data System (ADS)
Saitoh, T.; Harashima, H.; Miyakawa, H.
1982-01-01
A Pel Adaptive DPCM coding system based on image partition is developed which possesses coding characteristics superior to those of the Block Adaptive DPCM coding system. This method uses multiple DPCM coding loops and nonhierarchical cluster analysis. It is found that the coding performances of the Pel Adaptive DPCM coding method differ depending on the subject images. The Pel Adaptive DPCM designed using these methods is shown to yield a maximum performance advantage of 2.9 dB for the Girl and Couple images and 1.5 dB for the Aerial image, although no advantage was obtained for the moon image. These results show an improvement over the optimally designed Block Adaptive DPCM coding method proposed by Saito et al. (1981).
Geometry adaptive control of a composite reflector using PZT actuator
NASA Astrophysics Data System (ADS)
Lan, Lan; Jiang, Shuidong; Zhou, Yang; Fang, Houfei; Tan, Shujun; Wu, Zhigang
2015-04-01
Maintaining geometrical high precision for a graphite fiber reinforced composite (GFRC) reflector is a challenging task. Although great efforts have been placed to improve the fabrication precision, geometry adaptive control for a reflector is becoming more and more necessary. This paper studied geometry adaptive control for a GFRC reflector with piezoelectric ceramic transducer (PZT) actuators assembled on the ribs. In order to model the piezoelectric effect in finite element analysis (FEA), a thermal analogy was used in which the temperature was applied to simulate the actuation voltage, and the piezoelectric constant was mimicked by a Coefficient of Thermal Expansion (CTE). PZT actuator's equivalent model was validated by an experiment. The deformations of a triangular GFRC specimen with three PZT actuators were also measured experimentally and compared with that of simulation. This study developed a multidisciplinary analytical model, which includes the composite structure, thermal, thermal deformation and control system, to perform an optimization analysis and design for the adaptive GFRC reflector by considering the free vibration, gravity deformation and geometry controllability.
An adaptive learning control system for large flexible structures
NASA Technical Reports Server (NTRS)
Thau, F. E.
1985-01-01
The objective of the research has been to study the design of adaptive/learning control systems for the control of large flexible structures. In the first activity an adaptive/learning control methodology for flexible space structures was investigated. The approach was based on using a modal model of the flexible structure dynamics and an output-error identification scheme to identify modal parameters. In the second activity, a least-squares identification scheme was proposed for estimating both modal parameters and modal-to-actuator and modal-to-sensor shape functions. The technique was applied to experimental data obtained from the NASA Langley beam experiment. In the third activity, a separable nonlinear least-squares approach was developed for estimating the number of excited modes, shape functions, modal parameters, and modal amplitude and velocity time functions for a flexible structure. In the final research activity, a dual-adaptive control strategy was developed for regulating the modal dynamics and identifying modal parameters of a flexible structure. A min-max approach was used for finding an input to provide modal parameter identification while not exceeding reasonable bounds on modal displacement.
Robust adaptive vibration control of a flexible structure.
Khoshnood, A M; Moradi, H M
2014-07-01
Different types of L1 adaptive control systems show that using robust theories with adaptive control approaches has produced high performance controllers. In this study, a model reference adaptive control scheme considering robust theories is used to propose a practical control system for vibration suppression of a flexible launch vehicle (FLV). In this method, control input of the system is shaped from the dynamic model of the vehicle and components of the control input are adaptively constructed by estimating the undesirable vibration frequencies. Robust stability of the adaptive vibration control system is guaranteed by using the L1 small gain theorem. Simulation results of the robust adaptive vibration control strategy confirm that the effects of vibration on the vehicle performance considerably decrease without the loss of the phase margin of the system. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Clothing adaptations: the occupational therapist and the clothing designer collaborate.
White, L W; Dallas, M J
1977-02-01
An occupational therapist and a clothing designer collaborated in solving the dressing problem of a child with multiple amputations. The dressing problems were identified and solutions for clothing adaptations relating to sleeves, closures, fasteners, fit, and design were incorporated into two test garments. Evaluation of the garments was based on ease in dressing and undressing, the effect on movement and mobility, the construction techniques, and their appearance. A description is given of the pattern adjustments, and considerations for clothing adaptations or selection or both are discussed. These clothing adaptations can be generalized to a wider population of handicapped persons.
Stochastic Adaptive Control and Estimation Enhancement
1989-09-01
total Zu(N-J)’Gj’Q(N)FxIN-1)ou (N-I)I’[ R (N- 1) ’(N I Gil probability theorem to (4.3) yields J*(k.k 3 - min ( Ejx(kl 0(k)x(k) - u(k)’R(klu(k) trQ(N)VI m...Is Independent of Mil), I-k*2 .... N If Dec. 1988. [ Gil N.H. Gholson and R.L. Moose, "ManeuveringM(k.1J Is known, thus Target Tracking Using Adaptive...Control and A(t) =_ J1N X(i,t) is uniformly bounded. Quasi-Variational Inequalities, Gauthier- Villars , . (t9. tER4 , exits 0’ at most a countable
Robust adaptive kinematic control of redundant robots
NASA Technical Reports Server (NTRS)
Tarokh, M.; Zuck, D. D.
1992-01-01
The paper presents a general method for the resolution of redundancy that combines the Jacobian pseudoinverse and augmentation approaches. A direct adaptive control scheme is developed to generate joint angle trajectories for achieving desired end-effector motion as well as additional user defined tasks. The scheme ensures arbitrarily small errors between the desired and the actual motion of the manipulator. Explicit bounds on the errors are established that are directly related to the mismatch between actual and estimated pseudoinverse Jacobian matrix, motion velocity and the controller gain. It is shown that the scheme is tolerant of the mismatch and consequently only infrequent pseudoinverse computations are needed during a typical robot motion. As a result, the scheme is computationally fast, and can be implemented for real-time control of redundant robots. A method is incorporated to cope with the robot singularities allowing the manipulator to get very close or even pass through a singularity while maintaining a good tracking performance and acceptable joint velocities. Computer simulations and experimental results are provided in support of the theoretical developments.
Human factors aspects of control room design
NASA Technical Reports Server (NTRS)
Jenkins, J. P.
1983-01-01
A plan for the design and analysis of a multistation control room is reviewed. It is found that acceptance of the computer based information system by the uses in the control room is mandatory for mission and system success. Criteria to improve computer/user interface include: match of system input/output with user; reliability, compatibility and maintainability; easy to learn and little training needed; self descriptive system; system under user control; transparent language, format and organization; corresponds to user expectations; adaptable to user experience level; fault tolerant; dialog capability user communications needs reflected in flexibility, complexity, power and information load; integrated system; and documentation.
NASA Technical Reports Server (NTRS)
Frisch, Harold P.
1987-01-01
Control-theory design package, Optimal Regulator Algorithms for Control of Linear Systems (ORACLS), developed to aid in design of controllers and optimal filters for systems modeled by linear, time-invariant differential and difference equations. Optimal linear quadratic regulator theory, Linear-Quadratic-Gaussian (LQG) problem, most widely accepted method of determining optimal control policy. Provides for solution to time-in-variant continuous or discrete LQG problems. Attractive to control-system designer providing rigorous tool for dealing with multi-input and multi-output dynamic systems in continuous and discrete form. CDO version written in FORTRAN IV. VAX version written in FORTRAN 77.
Chen, Mou; Ge, Shuzhi Sam; How, Bernard Voon Ee
2010-05-01
In this paper, robust adaptive neural network (NN) control is investigated for a general class of uncertain multiple-input-multiple-output (MIMO) nonlinear systems with unknown control coefficient matrices and input nonlinearities. For nonsymmetric input nonlinearities of saturation and deadzone, variable structure control (VSC) in combination with backstepping and Lyapunov synthesis is proposed for adaptive NN control design with guaranteed stability. In the proposed adaptive NN control, the usual assumption on nonsingularity of NN approximation for unknown control coefficient matrices and boundary assumption between NN approximation error and control input have been eliminated. Command filters are presented to implement physical constraints on the virtual control laws, then the tedious analytic computations of time derivatives of virtual control laws are canceled. It is proved that the proposed robust backstepping control is able to guarantee semiglobal uniform ultimate boundedness of all signals in the closed-loop system. Finally, simulation results are presented to illustrate the effectiveness of the proposed adaptive NN control.
Feedback control of polysilicon etching: Controller design issues
Rauf, S.; Kushner, M.J.
1998-12-31
Feedback control can considerably improve the performance of rf plasma processing reactors. It has been recently demonstrated that plasma simulations can be useful in developing feedback control strategies and controllers. In this paper, the authors extend that work to address issues related to the improvement of controller design, experimental validation, and advanced control strategies for polysilicon etching in inductively coupled plasmas (ICP). The computational tool used in this study, the Virtual Plasma Equipment Model (VPEM), is based on a detailed 2-dimensional hybrid plasma equipment simulation. To validate the control aspects of the VPEM, they simulated a magnetic bucket ICP reactor currently being used for real time feedback control experiments at the University of Wisconsin. Results for the use of capacitively coupled power to control etch rate in real time will be discussed for both PID and PID-feed forward controllers. It has been demonstrated that controllers designed using response surface based techniques can control actuator drifts, compensate for external disturbances and nullify the effect of long term drifts in reactor characteristics. For these controllers to be generally useful, they must be able to handle variances such as sensor noise and process drift. They will discuss and demonstrate design improvements which make the controllers more robust, insensitive to noise and adaptive.
Response-Adaptive Decision-Theoretic Trial Design: Operating Characteristics and Ethics
Lipsky, Ari M.; Lewis, Roger J.
2013-01-01
Adaptive randomization is used in clinical trials to increase statistical efficiency. In addition, some clinicians and researchers believe that using adaptive randomization leads necessarily to more ethical treatment of subjects in a trial. We develop Bayesian, decision-theoretic, clinical trial designs with response-adaptive randomization and a primary goal of estimating treatment effect, and then contrast these designs with designs that also include in their loss function a cost for poor subject outcome. When the loss function did not incorporate a cost for poor subject outcome, the gains in efficiency from response-adaptive randomization were accompanied by ethically concerning subject allocations. Conversely, including a cost for poor subject outcome demonstrated a more acceptable balance between the competing needs in the trial. A subsequent, parallel set of trials designed to control explicitly type I and II error rates showed that much of the improvement achieved through modification of the loss function was essentially negated. Therefore, gains in efficiency from the use of a decision-theoretic, response-adaptive design using adaptive randomization may only be assumed to apply to those goals which are explicitly included in the loss function. Trial goals, including ethical ones, which do not appear in the loss function are ignored and may even be compromised; it is thus inappropriate to assume that all adaptive trials are necessarily more ethical. Controlling type I and II error rates largely negates the benefit of including competing needs in favor of the goal of parameter estimation. PMID:23558674
1999-07-01
This manual outlines the key components that will ensure the safety and performance of these dams, including competent and adequate supervision, careful inspection and control testing. Detailed chapters cover every aspect of foundation and abutment treatment, field organization and responsibility, borrow areas and quarries, earth-fill and rockfill construction, and miscellaneous construction features such as river diversion, stage construction and service bridge pier foundations. Useful appendices contain methods for relating field density data to desired or specified values, field compaction control data, detailed information on instruments used in earth and rockfill dam construction and lists of required and related publications, as well as a bibliography. This detailed and useful manual is an essential information source for engineers and constructors.
Full-Scale Flight Research Testbeds: Adaptive and Intelligent Control
NASA Technical Reports Server (NTRS)
Pahle, Joe W.
2008-01-01
This viewgraph presentation describes the adaptive and intelligent control methods used for aircraft survival. The contents include: 1) Motivation for Adaptive Control; 2) Integrated Resilient Aircraft Control Project; 3) Full-scale Flight Assets in Use for IRAC; 4) NASA NF-15B Tail Number 837; 5) Gen II Direct Adaptive Control Architecture; 6) Limited Authority System; and 7) 837 Flight Experiments. A simulated destabilization failure analysis along with experience and lessons learned are also presented.