Science.gov

Sample records for adaptive critic neural

  1. Adaptive Critic Neural Network-Based Terminal Area Energy Management and Approach and Landing Guidance

    NASA Technical Reports Server (NTRS)

    Grantham, Katie

    2003-01-01

    Reusable Launch Vehicles (RLVs) have different mission requirements than the Space Shuttle, which is used for benchmark guidance design. Therefore, alternative Terminal Area Energy Management (TAEM) and Approach and Landing (A/L) Guidance schemes can be examined in the interest of cost reduction. A neural network based solution for a finite horizon trajectory optimization problem is presented in this paper. In this approach the optimal trajectory of the vehicle is produced by adaptive critic based neural networks, which were trained off-line to maintain a gradual glideslope.

  2. Adaptive critic neural network-based object grasping control using a three-finger gripper.

    PubMed

    Jagannathan, S; Galan, Gustavo

    2004-03-01

    Grasping of objects has been a challenging task for robots. The complex grasping task can be defined as object contact control and manipulation subtasks. In this paper, object contact control subtask is defined as the ability to follow a trajectory accurately by the fingers of a gripper. The object manipulation subtask is defined in terms of maintaining a predefined applied force by the fingers on the object. A sophisticated controller is necessary since the process of grasping an object without a priori knowledge of the object's size, texture, softness, gripper, and contact dynamics is rather difficult. Moreover, the object has to be secured accurately and considerably fast without damaging it. Since the gripper, contact dynamics, and the object properties are not typically known beforehand, an adaptive critic neural network (NN)-based hybrid position/force control scheme is introduced. The feedforward action generating NN in the adaptive critic NN controller compensates the nonlinear gripper and contact dynamics. The learning of the action generating NN is performed on-line based on a critic NN output signal. The controller ensures that a three-finger gripper tracks a desired trajectory while applying desired forces on the object for manipulation. Novel NN weight tuning updates are derived for the action generating and critic NNs so that Lyapunov-based stability analysis can be shown. Simulation results demonstrate that the proposed scheme successfully allows fingers of a gripper to secure objects without the knowledge of the underlying gripper and contact dynamics of the object compared to conventional schemes.

  3. Critical branching neural networks.

    PubMed

    Kello, Christopher T

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical branching and, in doing so, simulates observed scaling laws as pervasive to neural and behavioral activity. These scaling laws are related to neural and cognitive functions, in that critical branching is shown to yield spiking activity with maximal memory and encoding capacities when analyzed using reservoir computing techniques. The model is also shown to account for findings of pervasive 1/f scaling in speech and cued response behaviors that are difficult to explain by isolable causes. Issues and questions raised by the model and its results are discussed from the perspectives of physics, neuroscience, computer and information sciences, and psychological and cognitive sciences.

  4. Adaptive critics for dynamic optimization.

    PubMed

    Kulkarni, Raghavendra V; Venayagamoorthy, Ganesh Kumar

    2010-06-01

    A novel action-dependent adaptive critic design (ACD) is developed for dynamic optimization. The proposed combination of a particle swarm optimization-based actor and a neural network critic is demonstrated through dynamic sleep scheduling of wireless sensor motes for wildlife monitoring. The objective of the sleep scheduler is to dynamically adapt the sleep duration to node's battery capacity and movement pattern of animals in its environment in order to obtain snapshots of the animal on its trajectory uniformly. Simulation results show that the sleep time of the node determined by the actor critic yields superior quality of sensory data acquisition and enhanced node longevity. PMID:20223635

  5. Generalized Adaptive Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1993-01-01

    Mathematical model of supervised learning by artificial neural network provides for simultaneous adjustments of both temperatures of neurons and synaptic weights, and includes feedback as well as feedforward synaptic connections. Extension of mathematical model described in "Adaptive Neurons For Artificial Neural Networks" (NPO-17803). Dynamics of neural network represented in new model by less-restrictive continuous formalism.

  6. Integrated control of wind farms, FACTS devices and the power network using neural networks and adaptive critic designs

    NASA Astrophysics Data System (ADS)

    Qiao, Wei

    Worldwide concern about the environmental problems and a possible energy crisis has led to increasing interest in clean and renewable energy generation. Among various renewable energy sources, wind power is the most rapidly growing one. Therefore, how to provide efficient, reliable, and high-performance wind power generation and distribution has become an important and practical issue in the power industry. In addition, because of the new constraints placed by the environmental and economical factors, the trend of power system planning and operation is toward maximum utilization of the existing infrastructure with tight system operating and stability margins. This trend, together with the increased penetration of renewable energy sources, will bring new challenges to power system operation, control, stability and reliability which require innovative solutions. Flexible ac transmission system (FACTS) devices, through their fast, flexible, and effective control capability, provide one possible solution to these challenges. To fully utilize the capability of individual power system components, e.g., wind turbine generators (WTGs) and FACTS devices, their control systems must be suitably designed with high reliability. Moreover, in order to optimize local as well as system-wide performance and stability of the power system, real-time local and wide-area coordinated control is becoming an important issue. Power systems containing conventional synchronous generators, WTGs, and FACTS devices are large-scale, nonlinear, nonstationary, stochastic and complex systems distributed over large geographic areas. Traditional mathematical tools and system control techniques have limitations to control such complex systems to achieve an optimal performance. Intelligent and bio-inspired techniques, such as swarm intelligence, neural networks, and adaptive critic designs, are emerging as promising alternative technologies for power system control and performance optimization. This

  7. Critical Branching Neural Networks

    ERIC Educational Resources Information Center

    Kello, Christopher T.

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…

  8. An Adaptive Critic Approach to Reference Model Adaptation

    NASA Technical Reports Server (NTRS)

    Krishnakumar, K.; Limes, G.; Gundy-Burlet, K.; Bryant, D.

    2003-01-01

    Neural networks have been successfully used for implementing control architectures for different applications. In this work, we examine a neural network augmented adaptive critic as a Level 2 intelligent controller for a C- 17 aircraft. This intelligent control architecture utilizes an adaptive critic to tune the parameters of a reference model, which is then used to define the angular rate command for a Level 1 intelligent controller. The present architecture is implemented on a high-fidelity non-linear model of a C-17 aircraft. The goal of this research is to improve the performance of the C-17 under degraded conditions such as control failures and battle damage. Pilot ratings using a motion based simulation facility are included in this paper. The benefits of using an adaptive critic are documented using time response comparisons for severe damage situations.

  9. The Criticality Hypothesis in Neural Systems

    NASA Astrophysics Data System (ADS)

    Karimipanah, Yahya

    There is mounting evidence that neural networks of the cerebral cortex exhibit scale invariant dynamics. At the larger scale, fMRI recordings have shown evidence for spatiotemporal long range correlations. On the other hand, at the smaller scales this scale invariance is marked by the power law distribution of the size and duration of spontaneous bursts of activity, which are referred as neuronal avalanches. The existence of such avalanches has been confirmed by several studies in vitro and in vivo, among different species and across multiple scales, from spatial scale of MEG and EEG down to single cell resolution. This prevalent scale free nature of cortical activity suggests the hypothesis that the cortex resides at a critical state between two phases of order (short-lasting activity) and disorder (long-lasting activity). In addition, it has been shown, both theoretically and experimentally, that being at criticality brings about certain functional advantages for information processing. However, despite the plenty of evidence and plausibility of the neural criticality hypothesis, still very little is known on how the brain may leverage such criticality to facilitate neural coding. Moreover, the emergent functions that may arise from critical dynamics is poorly understood. In the first part of this thesis, we review several pieces of evidence for the neural criticality hypothesis at different scales, as well as some of the most popular theories of self-organized criticality (SOC). Thereafter, we will focus on the most prominent evidence from small scales, namely neuronal avalanches. We will explore the effect of adaptation and how it can maintain scale free dynamics even at the presence of external stimuli. Using calcium imaging we also experimentally demonstrate the existence of scale free activity at the cellular resolution in vivo. Moreover, by exploring the subsampling issue in neural data, we will find some fundamental constraints of the conventional methods

  10. Intrinsic adaptation in autonomous recurrent neural networks.

    PubMed

    Marković, Dimitrije; Gros, Claudius

    2012-02-01

    A massively recurrent neural network responds on one side to input stimuli and is autonomously active, on the other side, in the absence of sensory inputs. Stimuli and information processing depend crucially on the quality of the autonomous-state dynamics of the ongoing neural activity. This default neural activity may be dynamically structured in time and space, showing regular, synchronized, bursting, or chaotic activity patterns. We study the influence of nonsynaptic plasticity on the default dynamical state of recurrent neural networks. The nonsynaptic adaption considered acts on intrinsic neural parameters, such as the threshold and the gain, and is driven by the optimization of the information entropy. We observe, in the presence of the intrinsic adaptation processes, three distinct and globally attracting dynamical regimes: a regular synchronized, an overall chaotic, and an intermittent bursting regime. The intermittent bursting regime is characterized by intervals of regular flows, which are quite insensitive to external stimuli, interceded by chaotic bursts that respond sensitively to input signals. We discuss these findings in the context of self-organized information processing and critical brain dynamics. PMID:22091667

  11. Neural nets for adaptive filtering and adaptive pattern recognition

    SciTech Connect

    Widrow, B.; Winter, R.

    1988-03-01

    The fields of adaptive signal processing and adaptive neural networks have been developing independently but have that adaptive linear combiner (ALC) in common. With its inputs connected to a tapped delay line, the ALC becomes a key component of an adaptive filter. With its output connected to a quantizer, the ALC becomes an adaptive threshold element of adaptive neuron. Adaptive threshold elements, on the other hand, are the building blocks of neural networks. Today neural nets are the focus of widespread research interest. Areas of investigation include pattern recognition and trainable logic. Neural network systems have not yet had the commercial impact of adaptive filtering. The commonality of the ALC to adaptive signal processing and adaptive neural networks suggests the two fields have much to share with each other. This article describes practical applications of the ALC in signal processing and pattern recognition.

  12. Criticality Maximizes Complexity in Neural Tissue

    PubMed Central

    Timme, Nicholas M.; Marshall, Najja J.; Bennett, Nicholas; Ripp, Monica; Lautzenhiser, Edward; Beggs, John M.

    2016-01-01

    The analysis of neural systems leverages tools from many different fields. Drawing on techniques from the study of critical phenomena in statistical mechanics, several studies have reported signatures of criticality in neural systems, including power-law distributions, shape collapses, and optimized quantities under tuning. Independently, neural complexity—an information theoretic measure—has been introduced in an effort to quantify the strength of correlations across multiple scales in a neural system. This measure represents an important tool in complex systems research because it allows for the quantification of the complexity of a neural system. In this analysis, we studied the relationships between neural complexity and criticality in neural culture data. We analyzed neural avalanches in 435 recordings from dissociated hippocampal cultures produced from rats, as well as neural avalanches from a cortical branching model. We utilized recently developed maximum likelihood estimation power-law fitting methods that account for doubly truncated power-laws, an automated shape collapse algorithm, and neural complexity and branching ratio calculation methods that account for sub-sampling, all of which are implemented in the freely available Neural Complexity and Criticality MATLAB toolbox. We found evidence that neural systems operate at or near a critical point and that neural complexity is optimized in these neural systems at or near the critical point. Surprisingly, we found evidence that complexity in neural systems is dependent upon avalanche profiles and neuron firing rate, but not precise spiking relationships between neurons. In order to facilitate future research, we made all of the culture data utilized in this analysis freely available online. PMID:27729870

  13. Adaptive-clustering optical neural net.

    PubMed

    Casasent, D P; Barnard, E

    1990-06-10

    Pattern recognition techniques (for clustering and linear discriminant function selection) are combined with neural net methods (that provide an automated method to combine linear discriminant functions into piecewise linear discriminant surfaces). The resulting adaptive-clustering neural net is suitable for optical implementation and has certain desirable properties in comparison with other neural nets. Simulation results are provided.

  14. Continuous-time adaptive critics.

    PubMed

    Hanselmann, Thomas; Noakes, Lyle; Zaknich, Anthony

    2007-05-01

    A continuous-time formulation of an adaptive critic design (ACD) is investigated. Connections to the discrete case are made, where backpropagation through time (BPTT) and real-time recurrent learning (RTRL) are prevalent. Practical benefits are that this framework fits in well with plant descriptions given by differential equations and that any standard integration routine with adaptive step-size does an adaptive sampling for free. A second-order actor adaptation using Newton's method is established for fast actor convergence for a general plant and critic. Also, a fast critic update for concurrent actor-critic training is introduced to immediately apply necessary adjustments of critic parameters induced by actor updates to keep the Bellman optimality correct to first-order approximation after actor changes. Thus, critic and actor updates may be performed at the same time until some substantial error build up in the Bellman optimality or temporal difference equation, when a traditional critic training needs to be performed and then another interval of concurrent actor-critic training may resume. PMID:17526332

  15. Criticality of Adaptive Control Dynamics

    NASA Astrophysics Data System (ADS)

    Patzelt, Felix; Pawelzik, Klaus

    2011-12-01

    We show, that stabilization of a dynamical system can annihilate observable information about its structure. This mechanism induces critical points as attractors in locally adaptive control. It also reveals, that previously reported criticality in simple controllers is caused by adaptation and not by other controller details. We apply these results to a real-system example: human balancing behavior. A model of predictive adaptive closed-loop control subject to some realistic constraints is introduced and shown to reproduce experimental observations in unprecedented detail. Our results suggests, that observed error distributions in between the Lévy and Gaussian regimes may reflect a nearly optimal compromise between the elimination of random local trends and rare large errors.

  16. Learning and adaptation in fuzzy neural systems

    NASA Astrophysics Data System (ADS)

    Gupta, Madan M.

    1992-03-01

    In recent years, an increasing number of researchers have become involved in the subject of fuzzy neural networks in the hope of combining the reasoning strength of fuzzy logic and the learning and adaptation power of neural networks. This provides a more powerful tool for fuzzy information processing and for exploring the functioning of human brains. In this paper, an attempt has been made to establish some basic models for fuzzy neurons. First, several possible fuzzy neuron models are proposed. Second, synaptic and somatic learning and adaptation mechanisms are proposed. Finally, the possibility of applying nonfuzzy neural networks approaches to fuzzy systems is also described.

  17. Verification and Validation Methodology of Real-Time Adaptive Neural Networks for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Gupta, Pramod; Loparo, Kenneth; Mackall, Dale; Schumann, Johann; Soares, Fola

    2004-01-01

    Recent research has shown that adaptive neural based control systems are very effective in restoring stability and control of an aircraft in the presence of damage or failures. The application of an adaptive neural network with a flight critical control system requires a thorough and proven process to ensure safe and proper flight operation. Unique testing tools have been developed as part of a process to perform verification and validation (V&V) of real time adaptive neural networks used in recent adaptive flight control system, to evaluate the performance of the on line trained neural networks. The tools will help in certification from FAA and will help in the successful deployment of neural network based adaptive controllers in safety-critical applications. The process to perform verification and validation is evaluated against a typical neural adaptive controller and the results are discussed.

  18. Neural network with dynamically adaptable neurons

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul (Inventor)

    1994-01-01

    This invention is an adaptive neuron for use in neural network processors. The adaptive neuron participates in the supervised learning phase of operation on a co-equal basis with the synapse matrix elements by adaptively changing its gain in a similar manner to the change of weights in the synapse IO elements. In this manner, training time is decreased by as much as three orders of magnitude.

  19. Optimal Control Problem of Feeding Adaptations of Daphnia and Neural Network Simulation

    NASA Astrophysics Data System (ADS)

    Kmet', Tibor; Kmet'ov, Mria

    2010-09-01

    A neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints and open final time. The optimal control problem is transcribed into nonlinear programming problem, which is implemented with adaptive critic neural network [9] and recurrent neural network for solving nonlinear proprojection equations [10]. The proposed simulation methods is illustrated by the optimal control problem of feeding adaptation of filter feeders of Daphnia. Results show that adaptive critic based systematic approach and neural network solving of nonlinear equations hold promise for obtaining the optimal control with control and state constraints and open final time.

  20. Adaptive Neurotechnology for Making Neural Circuits Functional .

    NASA Astrophysics Data System (ADS)

    Jung, Ranu

    2008-03-01

    Two of the most important trends in recent technological developments are that technology is increasingly integrated with biological systems and that it is increasingly adaptive in its capabilities. Neuroprosthetic systems that provide lost sensorimotor function after a neural disability offer a platform to investigate this interplay between biological and engineered systems. Adaptive neurotechnology (hardware and software) could be designed to be biomimetic, guided by the physical and programmatic constraints observed in biological systems, and allow for real-time learning, stability, and error correction. An example will present biomimetic neural-network hardware that can be interfaced with the isolated spinal cord of a lower vertebrate to allow phase-locked real-time neural control. Another will present adaptive neural network control algorithms for functional electrical stimulation of the peripheral nervous system to provide desired movements of paralyzed limbs in rodents or people. Ultimately, the frontier lies in being able to utilize the adaptive neurotechnology to promote neuroplasticity in the living system on a long-time scale under co-adaptive conditions.

  1. Adaptive neural control of aeroelastic response

    NASA Astrophysics Data System (ADS)

    Lichtenwalner, Peter F.; Little, Gerald R.; Scott, Robert C.

    1996-05-01

    The Adaptive Neural Control of Aeroelastic Response (ANCAR) program is a joint research and development effort conducted by McDonnell Douglas Aerospace (MDA) and the National Aeronautics and Space Administration, Langley Research Center (NASA LaRC) under a Memorandum of Agreement (MOA). The purpose of the MOA is to cooperatively develop the smart structure technologies necessary for alleviating undesirable vibration and aeroelastic response associated with highly flexible structures. Adaptive control can reduce aeroelastic response associated with buffet and atmospheric turbulence, it can increase flutter margins, and it may be able to reduce response associated with nonlinear phenomenon like limit cycle oscillations. By reducing vibration levels and loads, aircraft structures can have lower acquisition cost, reduced maintenance, and extended lifetimes. Phase I of the ANCAR program involved development and demonstration of a neural network-based semi-adaptive flutter suppression system which used a neural network for scheduling control laws as a function of Mach number and dynamic pressure. This controller was tested along with a robust fixed-gain control law in NASA's Transonic Dynamics Tunnel (TDT) utilizing the Benchmark Active Controls Testing (BACT) wing. During Phase II, a fully adaptive on-line learning neural network control system has been developed for flutter suppression which will be tested in 1996. This paper presents the results of Phase I testing as well as the development progress of Phase II.

  2. Adaptive holographic implementation of a neural network

    NASA Astrophysics Data System (ADS)

    Downie, John D.; Hine, Butler P., III; Reid, Max B.

    1990-07-01

    A holographic implementation for neural networks is proposed and demonstrated as an alternative to the optical matrix-vector multiplier architecture. In comparison, the holographic architecture makes more efficient use of the system space-bandwidth product for certain types of neural networks. The principal network component is a thermoplastic hologram, used to provide both interconnection weights and beam redirection. Given the updatable nature of this type of hologram, adaptivity or network learning is possible in the optical system. Two networks with fixed weights are experimentally implemented and verified, and for one of these examples we demonstrate the advantage of the holographic implementation with respect to the matrix-vector processor.

  3. Adaptive Neural Networks for Automatic Negotiation

    SciTech Connect

    Sakas, D. P.; Vlachos, D. S.; Simos, T. E.

    2007-12-26

    The use of fuzzy logic and fuzzy neural networks has been found effective for the modelling of the uncertain relations between the parameters of a negotiation procedure. The problem with these configurations is that they are static, that is, any new knowledge from theory or experiment lead to the construction of entirely new models. To overcome this difficulty, we apply in this work, an adaptive neural topology to model the negotiation process. Finally a simple simulation is carried in order to test the new method.

  4. Critical Neural Substrates for Correcting Unexpected Trajectory Errors and Learning from Them

    ERIC Educational Resources Information Center

    Mutha, Pratik K.; Sainburg, Robert L.; Haaland, Kathleen Y.

    2011-01-01

    Our proficiency at any skill is critically dependent on the ability to monitor our performance, correct errors and adapt subsequent movements so that errors are avoided in the future. In this study, we aimed to dissociate the neural substrates critical for correcting unexpected trajectory errors and learning to adapt future movements based on…

  5. Neural Adaptation Effects in Conceptual Processing

    PubMed Central

    Marino, Barbara F. M.; Borghi, Anna M.; Gemmi, Luca; Cacciari, Cristina; Riggio, Lucia

    2015-01-01

    We investigated the conceptual processing of nouns referring to objects characterized by a highly typical color and orientation. We used a go/no-go task in which we asked participants to categorize each noun as referring or not to natural entities (e.g., animals) after a selective adaptation of color-edge neurons in the posterior LV4 region of the visual cortex was induced by means of a McCollough effect procedure. This manipulation affected categorization: the green-vertical adaptation led to slower responses than the green-horizontal adaptation, regardless of the specific color and orientation of the to-be-categorized noun. This result suggests that the conceptual processing of natural entities may entail the activation of modality-specific neural channels with weights proportional to the reliability of the signals produced by these channels during actual perception. This finding is discussed with reference to the debate about the grounded cognition view. PMID:26264031

  6. Adaptive computation algorithm for RBF neural network.

    PubMed

    Han, Hong-Gui; Qiao, Jun-Fei

    2012-02-01

    A novel learning algorithm is proposed for nonlinear modelling and identification using radial basis function neural networks. The proposed method simplifies neural network training through the use of an adaptive computation algorithm (ACA). In addition, the convergence of the ACA is analyzed by the Lyapunov criterion. The proposed algorithm offers two important advantages. First, the model performance can be significantly improved through ACA, and the modelling error is uniformly ultimately bounded. Secondly, the proposed ACA can reduce computational cost and accelerate the training speed. The proposed method is then employed to model classical nonlinear system with limit cycle and to identify nonlinear dynamic system, exhibiting the effectiveness of the proposed algorithm. Computational complexity analysis and simulation results demonstrate its effectiveness.

  7. Adaptive Filtering Using Recurrent Neural Networks

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Menon, Sunil K.; Atiya, Amir F.

    2005-01-01

    A method for adaptive (or, optionally, nonadaptive) filtering has been developed for estimating the states of complex process systems (e.g., chemical plants, factories, or manufacturing processes at some level of abstraction) from time series of measurements of system inputs and outputs. The method is based partly on the fundamental principles of the Kalman filter and partly on the use of recurrent neural networks. The standard Kalman filter involves an assumption of linearity of the mathematical model used to describe a process system. The extended Kalman filter accommodates a nonlinear process model but still requires linearization about the state estimate. Both the standard and extended Kalman filters involve the often unrealistic assumption that process and measurement noise are zero-mean, Gaussian, and white. In contrast, the present method does not involve any assumptions of linearity of process models or of the nature of process noise; on the contrary, few (if any) assumptions are made about process models, noise models, or the parameters of such models. In this regard, the method can be characterized as one of nonlinear, nonparametric filtering. The method exploits the unique ability of neural networks to approximate nonlinear functions. In a given case, the process model is limited mainly by limitations of the approximation ability of the neural networks chosen for that case. Moreover, despite the lack of assumptions regarding process noise, the method yields minimum- variance filters. In that they do not require statistical models of noise, the neural- network-based state filters of this method are comparable to conventional nonlinear least-squares estimators.

  8. Adaptive pattern recognition and neural networks

    SciTech Connect

    Pao, Yohhan.

    1989-01-01

    The application of neural-network computers to pattern-recognition tasks is discussed in an introduction for advanced students. Chapters are devoted to the nature of the pattern-recognition task, the Bayesian approach to the estimation of class membership, the fuzzy-set approach, patterns with nonnumeric feature values, learning discriminants and the generalized perceptron, recognition and recall on the basis of partial cues, associative memories, self-organizing nets, the functional-link net, fuzzy logic in the linking of symbolic and subsymbolic processing, and adaptive pattern recognition and its applications. Also included are C-language programs for (1) a generalized delta-rule net for supervised learning and (2) unsupervised learning based on the discovery of clustered structure. 183 refs.

  9. Adaptive neural network motion control of manipulators with experimental evaluations.

    PubMed

    Puga-Guzmán, S; Moreno-Valenzuela, J; Santibáñez, V

    2014-01-01

    A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller. PMID:24574910

  10. Adaptive Neural Network Motion Control of Manipulators with Experimental Evaluations

    PubMed Central

    Puga-Guzmán, S.; Moreno-Valenzuela, J.; Santibáñez, V.

    2014-01-01

    A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller. PMID:24574910

  11. Adaptive neural network motion control of manipulators with experimental evaluations.

    PubMed

    Puga-Guzmán, S; Moreno-Valenzuela, J; Santibáñez, V

    2014-01-01

    A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller.

  12. Adaptation tunes cortical dynamics to a critical regime during vision

    NASA Astrophysics Data System (ADS)

    Shew, Woodrow; Clawson, Wesley; Pobst, Jeff; Karimipanah, Yahya; Wright, Nathaniel; Wessel, Ralf; Shew Lab Team; Wessel Lab Team

    2015-03-01

    A long-standing hypothesis at the interface of physics and neuroscience is that neural networks self-organize to the critical point of a phase transition, thereby optimizing aspects of sensory information processing. This idea is partially supported by strong evidence for critical dynamics observed in the cerebral cortex, but has not been tested in systems with significant sensory input. Thus, the foundations of this hypothesis - the self-organization process and how it manifests during strong sensory input - remain unstudied experimentally. Here we report microelectrode array measurements from visual cortex of turtles during visual stimulation of the retina. We show experimentally and in a computational model that strong sensory input initially elicits cortical network dynamics that are not critical, but adaptive changes in the network rapidly tune the system to criticality. This conclusion is based on observations of multifaceted scaling laws predicted to occur at criticality. Our findings establish sensory adaptation as a self-organizing mechanism which maintains criticality in visual cortex during sensory information processing. Supported by NSF CRCNS Grant 1308174.

  13. Adaptive optimization and control using neural networks

    SciTech Connect

    Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.

    1993-10-22

    Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.

  14. Neural and Fuzzy Adaptive Control of Induction Motor Drives

    NASA Astrophysics Data System (ADS)

    Bensalem, Y.; Sbita, L.; Abdelkrim, M. N.

    2008-06-01

    This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller.

  15. Neural and Fuzzy Adaptive Control of Induction Motor Drives

    SciTech Connect

    Bensalem, Y.; Sbita, L.; Abdelkrim, M. N.

    2008-06-12

    This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller.

  16. Adaptive Neurons For Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1990-01-01

    Training time decreases dramatically. In improved mathematical model of neural-network processor, temperature of neurons (in addition to connection strengths, also called weights, of synapses) varied during supervised-learning phase of operation according to mathematical formalism and not heuristic rule. Evidence that biological neural networks also process information at neuronal level.

  17. Criticality and Adaptivity in Enzymatic Networks.

    PubMed

    Steiner, Paul J; Williams, Ruth J; Hasty, Jeff; Tsimring, Lev S

    2016-09-01

    The contrast between the stochasticity of biochemical networks and the regularity of cellular behavior suggests that biological networks generate robust behavior from noisy constituents. Identifying the mechanisms that confer this ability on biological networks is essential to understanding cells. Here we show that queueing for a limited shared resource in broad classes of enzymatic networks in certain conditions leads to a critical state characterized by strong and long-ranged correlations between molecular species. An enzymatic network reaches this critical state when the input flux of its substrate is balanced by the maximum processing capacity of the network. We then consider enzymatic networks with adaptation, when the limiting resource (enzyme or cofactor) is produced in proportion to the demand for it. We show that the critical state becomes an attractor for these networks, which points toward the onset of self-organized criticality. We suggest that the adaptive queueing motif that leads to significant correlations between multiple species may be widespread in biological systems. PMID:27602735

  18. Criticality and Adaptivity in Enzymatic Networks.

    PubMed

    Steiner, Paul J; Williams, Ruth J; Hasty, Jeff; Tsimring, Lev S

    2016-09-01

    The contrast between the stochasticity of biochemical networks and the regularity of cellular behavior suggests that biological networks generate robust behavior from noisy constituents. Identifying the mechanisms that confer this ability on biological networks is essential to understanding cells. Here we show that queueing for a limited shared resource in broad classes of enzymatic networks in certain conditions leads to a critical state characterized by strong and long-ranged correlations between molecular species. An enzymatic network reaches this critical state when the input flux of its substrate is balanced by the maximum processing capacity of the network. We then consider enzymatic networks with adaptation, when the limiting resource (enzyme or cofactor) is produced in proportion to the demand for it. We show that the critical state becomes an attractor for these networks, which points toward the onset of self-organized criticality. We suggest that the adaptive queueing motif that leads to significant correlations between multiple species may be widespread in biological systems.

  19. Synaptic plasticity enables adaptive self-tuning critical networks.

    PubMed

    Stepp, Nigel; Plenz, Dietmar; Srinivasa, Narayan

    2015-01-01

    During rest, the mammalian cortex displays spontaneous neural activity. Spiking of single neurons during rest has been described as irregular and asynchronous. In contrast, recent in vivo and in vitro population measures of spontaneous activity, using the LFP, EEG, MEG or fMRI suggest that the default state of the cortex is critical, manifested by spontaneous, scale-invariant, cascades of activity known as neuronal avalanches. Criticality keeps a network poised for optimal information processing, but this view seems to be difficult to reconcile with apparently irregular single neuron spiking. Here, we simulate a 10,000 neuron, deterministic, plastic network of spiking neurons. We show that a combination of short- and long-term synaptic plasticity enables these networks to exhibit criticality in the face of intrinsic, i.e. self-sustained, asynchronous spiking. Brief external perturbations lead to adaptive, long-term modification of intrinsic network connectivity through long-term excitatory plasticity, whereas long-term inhibitory plasticity enables rapid self-tuning of the network back to a critical state. The critical state is characterized by a branching parameter oscillating around unity, a critical exponent close to -3/2 and a long tail distribution of a self-similarity parameter between 0.5 and 1. PMID:25590427

  20. Synaptic Plasticity Enables Adaptive Self-Tuning Critical Networks

    PubMed Central

    Stepp, Nigel; Plenz, Dietmar; Srinivasa, Narayan

    2015-01-01

    During rest, the mammalian cortex displays spontaneous neural activity. Spiking of single neurons during rest has been described as irregular and asynchronous. In contrast, recent in vivo and in vitro population measures of spontaneous activity, using the LFP, EEG, MEG or fMRI suggest that the default state of the cortex is critical, manifested by spontaneous, scale-invariant, cascades of activity known as neuronal avalanches. Criticality keeps a network poised for optimal information processing, but this view seems to be difficult to reconcile with apparently irregular single neuron spiking. Here, we simulate a 10,000 neuron, deterministic, plastic network of spiking neurons. We show that a combination of short- and long-term synaptic plasticity enables these networks to exhibit criticality in the face of intrinsic, i.e. self-sustained, asynchronous spiking. Brief external perturbations lead to adaptive, long-term modification of intrinsic network connectivity through long-term excitatory plasticity, whereas long-term inhibitory plasticity enables rapid self-tuning of the network back to a critical state. The critical state is characterized by a branching parameter oscillating around unity, a critical exponent close to -3/2 and a long tail distribution of a self-similarity parameter between 0.5 and 1. PMID:25590427

  1. Emotional facial expressions reduce neural adaptation to face identity.

    PubMed

    Gerlicher, Anna M V; van Loon, Anouk M; Scholte, H Steven; Lamme, Victor A F; van der Leij, Andries R

    2014-05-01

    In human social interactions, facial emotional expressions are a crucial source of information. Repeatedly presented information typically leads to an adaptation of neural responses. However, processing seems sustained with emotional facial expressions. Therefore, we tested whether sustained processing of emotional expressions, especially threat-related expressions, would attenuate neural adaptation. Neutral and emotional expressions (happy, mixed and fearful) of same and different identity were presented at 3 Hz. We used electroencephalography to record the evoked steady-state visual potentials (ssVEP) and tested to what extent the ssVEP amplitude adapts to the same when compared with different face identities. We found adaptation to the identity of a neutral face. However, for emotional faces, adaptation was reduced, decreasing linearly with negative valence, with the least adaptation to fearful expressions. This short and straightforward method may prove to be a valuable new tool in the study of emotional processing.

  2. Emotional facial expressions reduce neural adaptation to face identity.

    PubMed

    Gerlicher, Anna M V; van Loon, Anouk M; Scholte, H Steven; Lamme, Victor A F; van der Leij, Andries R

    2014-05-01

    In human social interactions, facial emotional expressions are a crucial source of information. Repeatedly presented information typically leads to an adaptation of neural responses. However, processing seems sustained with emotional facial expressions. Therefore, we tested whether sustained processing of emotional expressions, especially threat-related expressions, would attenuate neural adaptation. Neutral and emotional expressions (happy, mixed and fearful) of same and different identity were presented at 3 Hz. We used electroencephalography to record the evoked steady-state visual potentials (ssVEP) and tested to what extent the ssVEP amplitude adapts to the same when compared with different face identities. We found adaptation to the identity of a neutral face. However, for emotional faces, adaptation was reduced, decreasing linearly with negative valence, with the least adaptation to fearful expressions. This short and straightforward method may prove to be a valuable new tool in the study of emotional processing. PMID:23512931

  3. Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems.

    PubMed

    Zhang, Yanjun; Tao, Gang; Chen, Mou

    2016-09-01

    This paper presents a new study on the adaptive neural network-based control of a class of noncanonical nonlinear systems with large parametric uncertainties. Unlike commonly studied canonical form nonlinear systems whose neural network approximation system models have explicit relative degree structures, which can directly be used to derive parameterized controllers for adaptation, noncanonical form nonlinear systems usually do not have explicit relative degrees, and thus their approximation system models are also in noncanonical forms. It is well-known that the adaptive control of noncanonical form nonlinear systems involves the parameterization of system dynamics. As demonstrated in this paper, it is also the case for noncanonical neural network approximation system models. Effective control of such systems is an open research problem, especially in the presence of uncertain parameters. This paper shows that it is necessary to reparameterize such neural network system models for adaptive control design, and that such reparameterization can be realized using a relative degree formulation, a concept yet to be studied for general neural network system models. This paper then derives the parameterized controllers that guarantee closed-loop stability and asymptotic output tracking for noncanonical form neural network system models. An illustrative example is presented with the simulation results to demonstrate the control design procedure, and to verify the effectiveness of such a new design method.

  4. Adaptive Optimization of Aircraft Engine Performance Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Long, Theresa W.

    1995-01-01

    Preliminary results are presented on the development of an adaptive neural network based control algorithm to enhance aircraft engine performance. This work builds upon a previous National Aeronautics and Space Administration (NASA) effort known as Performance Seeking Control (PSC). PSC is an adaptive control algorithm which contains a model of the aircraft's propulsion system which is updated on-line to match the operation of the aircraft's actual propulsion system. Information from the on-line model is used to adapt the control system during flight to allow optimal operation of the aircraft's propulsion system (inlet, engine, and nozzle) to improve aircraft engine performance without compromising reliability or operability. Performance Seeking Control has been shown to yield reductions in fuel flow, increases in thrust, and reductions in engine fan turbine inlet temperature. The neural network based adaptive control, like PSC, will contain a model of the propulsion system which will be used to calculate optimal control commands on-line. Hopes are that it will be able to provide some additional benefits above and beyond those of PSC. The PSC algorithm is computationally intensive, it is valid only at near steady-state flight conditions, and it has no way to adapt or learn on-line. These issues are being addressed in the development of the optimal neural controller. Specialized neural network processing hardware is being developed to run the software, the algorithm will be valid at steady-state and transient conditions, and will take advantage of the on-line learning capability of neural networks. Future plans include testing the neural network software and hardware prototype against an aircraft engine simulation. In this paper, the proposed neural network software and hardware is described and preliminary neural network training results are presented.

  5. Avalanches in Self-Organized Critical Neural Networks: A Minimal Model for the Neural SOC Universality Class

    PubMed Central

    Rybarsch, Matthias; Bornholdt, Stefan

    2014-01-01

    The brain keeps its overall dynamics in a corridor of intermediate activity and it has been a long standing question what possible mechanism could achieve this task. Mechanisms from the field of statistical physics have long been suggesting that this homeostasis of brain activity could occur even without a central regulator, via self-organization on the level of neurons and their interactions, alone. Such physical mechanisms from the class of self-organized criticality exhibit characteristic dynamical signatures, similar to seismic activity related to earthquakes. Measurements of cortex rest activity showed first signs of dynamical signatures potentially pointing to self-organized critical dynamics in the brain. Indeed, recent more accurate measurements allowed for a detailed comparison with scaling theory of non-equilibrium critical phenomena, proving the existence of criticality in cortex dynamics. We here compare this new evaluation of cortex activity data to the predictions of the earliest physics spin model of self-organized critical neural networks. We find that the model matches with the recent experimental data and its interpretation in terms of dynamical signatures for criticality in the brain. The combination of signatures for criticality, power law distributions of avalanche sizes and durations, as well as a specific scaling relationship between anomalous exponents, defines a universality class characteristic of the particular critical phenomenon observed in the neural experiments. Thus the model is a candidate for a minimal model of a self-organized critical adaptive network for the universality class of neural criticality. As a prototype model, it provides the background for models that may include more biological details, yet share the same universality class characteristic of the homeostasis of activity in the brain. PMID:24743324

  6. Avalanches in self-organized critical neural networks: a minimal model for the neural SOC universality class.

    PubMed

    Rybarsch, Matthias; Bornholdt, Stefan

    2014-01-01

    The brain keeps its overall dynamics in a corridor of intermediate activity and it has been a long standing question what possible mechanism could achieve this task. Mechanisms from the field of statistical physics have long been suggesting that this homeostasis of brain activity could occur even without a central regulator, via self-organization on the level of neurons and their interactions, alone. Such physical mechanisms from the class of self-organized criticality exhibit characteristic dynamical signatures, similar to seismic activity related to earthquakes. Measurements of cortex rest activity showed first signs of dynamical signatures potentially pointing to self-organized critical dynamics in the brain. Indeed, recent more accurate measurements allowed for a detailed comparison with scaling theory of non-equilibrium critical phenomena, proving the existence of criticality in cortex dynamics. We here compare this new evaluation of cortex activity data to the predictions of the earliest physics spin model of self-organized critical neural networks. We find that the model matches with the recent experimental data and its interpretation in terms of dynamical signatures for criticality in the brain. The combination of signatures for criticality, power law distributions of avalanche sizes and durations, as well as a specific scaling relationship between anomalous exponents, defines a universality class characteristic of the particular critical phenomenon observed in the neural experiments. Thus the model is a candidate for a minimal model of a self-organized critical adaptive network for the universality class of neural criticality. As a prototype model, it provides the background for models that may include more biological details, yet share the same universality class characteristic of the homeostasis of activity in the brain.

  7. Adaptive Synaptogenesis Constructs Neural Codes That Benefit Discrimination

    PubMed Central

    Thomas, Blake T.; Blalock, Davis W.; Levy, William B.

    2015-01-01

    Intelligent organisms face a variety of tasks requiring the acquisition of expertise within a specific domain, including the ability to discriminate between a large number of similar patterns. From an energy-efficiency perspective, effective discrimination requires a prudent allocation of neural resources with more frequent patterns and their variants being represented with greater precision. In this work, we demonstrate a biologically plausible means of constructing a single-layer neural network that adaptively (i.e., without supervision) meets this criterion. Specifically, the adaptive algorithm includes synaptogenesis, synaptic shedding, and bi-directional synaptic weight modification to produce a network with outputs (i.e. neural codes) that represent input patterns proportional to the frequency of related patterns. In addition to pattern frequency, the correlational structure of the input environment also affects allocation of neural resources. The combined synaptic modification mechanisms provide an explanation of neuron allocation in the case of self-taught experts. PMID:26176744

  8. Study on adaptive BTT reentry speed depletion guidance law based on BP neural network

    NASA Astrophysics Data System (ADS)

    Zheng, Zongzhun; Wang, Yongji; Wu, Hao

    2007-11-01

    Reentry guidance is one of the key technologies in hypersonic vehicle research field. In addition to the constraints on its final position coordinates, the vehicle must also impact the target from a specified direction with high precision. And therefore the adaptability of guidance law is critical to control the velocity of hypersonic vehicle and firing accuracy properly in different surroundings of large airspace. In this paper, a new adaptive guidance strategy based on Back Propagation (BP) neural network for the reentry mission of a generic hypersonic vehicle is presented. Depending on the nicer self-learn ability of BP neural network, the guidance law considers the influence of biggish mis-modeling of aerodynamics, structure error and other initial disturbances on the flight capability of vehicle. Consequently, terminal position accuracy and velocity are guaranteed, while many constraints are satisfied. Numerical simulation results clearly bring out the fact that the proposed reentry guidance law based on BP neural network is rational and effective.

  9. Increasing autonomy of precision spacecraft using neural network adaptive control

    NASA Astrophysics Data System (ADS)

    Denoyer, Keith K.; Ninneman, R. Rory

    1999-01-01

    In recent years, there has been a significant interest in the use of adaptive methods for controlling structures in high precision aerospace applications. This is because adaptive methods offer the potential to autonomously adjust to system characteristics different from those modeled or seen in qualification testing. This is especially true of spacecraft, which are generally tested in a 1-g environment. Despite extensive research, it remains extremely difficult to predict on-orbit 0-g behavior. In addition, system dynamics often tend to be time varying. This can take the form of slow changes due to degradation of materials and aging of the spacecraft or sudden failures such as the loss of a sensor or actuator. These events become increasingly likely as spacecraft become more and more complex. By decreasing modeling and testing requirements, lowering operations and maintenance activities that require human intervention, and increasing reliability, adaptive methods have the potential to significantly reduce cost and increase performance of these systems. One class of adaptive control methods are those which utilize artificial neural networks. The use of neural networks has become increasingly mature in a number of areas such as image processing and speech recognition. However, despite a number of publications on the subject, very few instances exist where neural networks have actually been used in control and in particular, structural control applications. The United States Air Force Research Laboratory (AFRL) is currently engaged in advancing adaptive neural control technologies for application to precision space systems. This paper gives an overview of several past and current ground and space based adaptive neural control experiments.

  10. Adaptive neural network for image enhancement

    NASA Astrophysics Data System (ADS)

    Perl, Dan; Marsland, T. A.

    1992-09-01

    ANNIE is a neural network that removes noise and sharpens edges in digital images. For noise removal, ANNIE makes a weighted average of the values of the pixels over a certain neighborhood. For edge sharpening, ANNIE detects edges and applies a correction around them. Although averaging is a simple operation and needs only a two-layer neural network, detecting edges is more complex and demands several hidden layers. Based on Marr's theory of natural vision, the edge detection method uses zero-crossings in the image filtered by the ∇2G operator (where ∇2 is the Laplacian operator and G stands for a two- dimensional Gaussian distribution), and uses two channels with different spatial frequencies. Edge detectors are tuned for vertical and horizontal orientations. Lateral inhibition implemented through one-step recursion achieves both edge relaxation and correlation of the two channels. Training by means of the quickprop algorithm determines the shapes of the weighted averaging filter and the edge correction filters, and the rules for edge relaxation and channel interaction. ANNIE uses pairs of pictures as training patterns: one picture is a reference for the output of the network and the same picture deteriorated by noise and/or blur is the input of the network.

  11. Dynamic Adaptive Neural Network Arrays: A Neuromorphic Architecture

    SciTech Connect

    Disney, Adam; Reynolds, John

    2015-01-01

    Dynamic Adaptive Neural Network Array (DANNA) is a neuromorphic hardware implementation. It differs from most other neuromorphic projects in that it allows for programmability of structure, and it is trained or designed using evolutionary optimization. This paper describes the DANNA structure, how DANNA is trained using evolutionary optimization, and an application of DANNA to a very simple classification task.

  12. Adaptation algorithms for 2-D feedforward neural networks.

    PubMed

    Kaczorek, T

    1995-01-01

    The generalized weight adaptation algorithms presented by J.G. Kuschewski et al. (1993) and by S.H. Zak and H.J. Sira-Ramirez (1990) are extended for 2-D madaline and 2-D two-layer feedforward neural nets (FNNs).

  13. Diminished neural adaptation during implicit learning in autism.

    PubMed

    Schipul, Sarah E; Just, Marcel Adam

    2016-01-15

    Neuroimaging studies have shown evidence of disrupted neural adaptation during learning in individuals with autism spectrum disorder (ASD) in several types of tasks, potentially stemming from frontal-posterior cortical underconnectivity (Schipul et al., 2012). The aim of the current study was to examine neural adaptations in an implicit learning task that entails participation of frontal and posterior regions. Sixteen high-functioning adults with ASD and sixteen neurotypical control participants were trained on and performed an implicit dot pattern prototype learning task in a functional magnetic resonance imaging (fMRI) session. During the preliminary exposure to the type of implicit prototype learning task later to be used in the scanner, the ASD participants took longer than the neurotypical group to learn the task, demonstrating altered implicit learning in ASD. After equating task structure learning, the two groups' brain activation differed during their learning of a new prototype in the subsequent scanning session. The main findings indicated that neural adaptations in a distributed task network were reduced in the ASD group, relative to the neurotypical group, and were related to ASD symptom severity. Functional connectivity was reduced and did not change as much during learning for the ASD group, and was related to ASD symptom severity. These findings suggest that individuals with ASD show altered neural adaptations during learning, as seen in both activation and functional connectivity measures. This finding suggests why many real-world implicit learning situations may pose special challenges for ASD.

  14. Real-Time Adaptive Color Segmentation by Neural Networks

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.

    2004-01-01

    Artificial neural networks that would utilize the cascade error projection (CEP) algorithm have been proposed as means of autonomous, real-time, adaptive color segmentation of images that change with time. In the original intended application, such a neural network would be used to analyze digitized color video images of terrain on a remote planet as viewed from an uninhabited spacecraft approaching the planet. During descent toward the surface of the planet, information on the segmentation of the images into differently colored areas would be updated adaptively in real time to capture changes in contrast, brightness, and resolution, all in an effort to identify a safe and scientifically productive landing site and provide control feedback to steer the spacecraft toward that site. Potential terrestrial applications include monitoring images of crops to detect insect invasions and monitoring of buildings and other facilities to detect intruders. The CEP algorithm is reliable and is well suited to implementation in very-large-scale integrated (VLSI) circuitry. It was chosen over other neural-network learning algorithms because it is better suited to realtime learning: It provides a self-evolving neural-network structure, requires fewer iterations to converge and is more tolerant to low resolution (that is, fewer bits) in the quantization of neural-network synaptic weights. Consequently, a CEP neural network learns relatively quickly, and the circuitry needed to implement it is relatively simple. Like other neural networks, a CEP neural network includes an input layer, hidden units, and output units (see figure). As in other neural networks, a CEP network is presented with a succession of input training patterns, giving rise to a set of outputs that are compared with the desired outputs. Also as in other neural networks, the synaptic weights are updated iteratively in an effort to bring the outputs closer to target values. A distinctive feature of the CEP neural

  15. Neural Control Adaptation to Motor Noise Manipulation.

    PubMed

    Hasson, Christopher J; Gelina, Olga; Woo, Garrett

    2016-01-01

    Antagonistic muscular co-activation can compensate for movement variability induced by motor noise at the expense of increased energetic costs. Greater antagonistic co-activation is commonly observed in older adults, which could be an adaptation to increased motor noise. The present study tested this hypothesis by manipulating motor noise in 12 young subjects while they practiced a goal-directed task using a myoelectric virtual arm, which was controlled by their biceps and triceps muscle activity. Motor noise was increased by increasing the coefficient of variation (CV) of the myoelectric signals. As hypothesized, subjects adapted by increasing antagonistic co-activation, and this was associated with reduced noise-induced performance decrements. A second hypothesis was that a virtual decrease in motor noise, achieved by smoothing the myoelectric signals, would have the opposite effect: co-activation would decrease and motor performance would improve. However, the results showed that a decrease in noise made performance worse instead of better, with no change in co-activation. Overall, these findings suggest that the nervous system adapts to virtual increases in motor noise by increasing antagonistic co-activation, and this preserves motor performance. Reducing noise may have failed to benefit performance due to characteristics of the filtering process itself, e.g., delays are introduced and muscle activity bursts are attenuated. The observed adaptations to increased noise may explain in part why older adults and many patient populations have greater antagonistic co-activation, which could represent an adaptation to increased motor noise, along with a desire for increased joint stability. PMID:26973487

  16. Neural Control Adaptation to Motor Noise Manipulation

    PubMed Central

    Hasson, Christopher J.; Gelina, Olga; Woo, Garrett

    2016-01-01

    Antagonistic muscular co-activation can compensate for movement variability induced by motor noise at the expense of increased energetic costs. Greater antagonistic co-activation is commonly observed in older adults, which could be an adaptation to increased motor noise. The present study tested this hypothesis by manipulating motor noise in 12 young subjects while they practiced a goal-directed task using a myoelectric virtual arm, which was controlled by their biceps and triceps muscle activity. Motor noise was increased by increasing the coefficient of variation (CV) of the myoelectric signals. As hypothesized, subjects adapted by increasing antagonistic co-activation, and this was associated with reduced noise-induced performance decrements. A second hypothesis was that a virtual decrease in motor noise, achieved by smoothing the myoelectric signals, would have the opposite effect: co-activation would decrease and motor performance would improve. However, the results showed that a decrease in noise made performance worse instead of better, with no change in co-activation. Overall, these findings suggest that the nervous system adapts to virtual increases in motor noise by increasing antagonistic co-activation, and this preserves motor performance. Reducing noise may have failed to benefit performance due to characteristics of the filtering process itself, e.g., delays are introduced and muscle activity bursts are attenuated. The observed adaptations to increased noise may explain in part why older adults and many patient populations have greater antagonistic co-activation, which could represent an adaptation to increased motor noise, along with a desire for increased joint stability. PMID:26973487

  17. Altered temporal dynamics of neural adaptation in the aging human auditory cortex.

    PubMed

    Herrmann, Björn; Henry, Molly J; Johnsrude, Ingrid S; Obleser, Jonas

    2016-09-01

    Neural response adaptation plays an important role in perception and cognition. Here, we used electroencephalography to investigate how aging affects the temporal dynamics of neural adaptation in human auditory cortex. Younger (18-31 years) and older (51-70 years) normal hearing adults listened to tone sequences with varying onset-to-onset intervals. Our results show long-lasting neural adaptation such that the response to a particular tone is a nonlinear function of the extended temporal history of sound events. Most important, aging is associated with multiple changes in auditory cortex; older adults exhibit larger and less variable response magnitudes, a larger dynamic response range, and a reduced sensitivity to temporal context. Computational modeling suggests that reduced adaptation recovery times underlie these changes in the aging auditory cortex and that the extended temporal stimulation has less influence on the neural response to the current sound in older compared with younger individuals. Our human electroencephalography results critically narrow the gap to animal electrophysiology work suggesting a compensatory release from cortical inhibition accompanying hearing loss and aging. PMID:27459921

  18. Neural responses to maternal criticism in healthy youth.

    PubMed

    Lee, Kyung Hwa; Siegle, Greg J; Dahl, Ronald E; Hooley, Jill M; Silk, Jennifer S

    2015-07-01

    Parental criticism can have positive and negative effects on children's and adolescents' behavior; yet, it is unclear how youth react to, understand and process parental criticism. We proposed that youth would engage three sets of neural processes in response to parental criticism including the following: (i) activating emotional reactions, (ii) regulating those reactions and (iii) social cognitive processing (e.g. understanding the parent's mental state). To examine neural processes associated with both emotional and social processing of parental criticism in personally relevant and ecologically valid social contexts, typically developing youth were scanned while they listened to their mother providing critical, praising and neutral statements. In response to maternal criticism, youth showed increased brain activity in affective networks (e.g. subcortical-limbic regions including lentiform nucleus and posterior insula), but decreased activity in cognitive control networks (e.g. dorsolateral prefrontal cortex and caudal anterior cingulate cortex) and social cognitive networks (e.g. temporoparietal junction and posterior cingulate cortex/precuneus). These results suggest that youth may respond to maternal criticism with increased emotional reactivity but decreased cognitive control and social cognitive processing. A better understanding of children's responses to parental criticism may provide insights into the ways that parental feedback can be modified to be more helpful to behavior and development in youth.

  19. Neural responses to maternal criticism in healthy youth

    PubMed Central

    Siegle, Greg J.; Dahl, Ronald E.; Hooley, Jill M.; Silk, Jennifer S.

    2015-01-01

    Parental criticism can have positive and negative effects on children’s and adolescents’ behavior; yet, it is unclear how youth react to, understand and process parental criticism. We proposed that youth would engage three sets of neural processes in response to parental criticism including the following: (i) activating emotional reactions, (ii) regulating those reactions and (iii) social cognitive processing (e.g. understanding the parent’s mental state). To examine neural processes associated with both emotional and social processing of parental criticism in personally relevant and ecologically valid social contexts, typically developing youth were scanned while they listened to their mother providing critical, praising and neutral statements. In response to maternal criticism, youth showed increased brain activity in affective networks (e.g. subcortical–limbic regions including lentiform nucleus and posterior insula), but decreased activity in cognitive control networks (e.g. dorsolateral prefrontal cortex and caudal anterior cingulate cortex) and social cognitive networks (e.g. temporoparietal junction and posterior cingulate cortex/precuneus). These results suggest that youth may respond to maternal criticism with increased emotional reactivity but decreased cognitive control and social cognitive processing. A better understanding of children’s responses to parental criticism may provide insights into the ways that parental feedback can be modified to be more helpful to behavior and development in youth. PMID:25338632

  20. Percolation transition in active neural networks with adaptive geometry

    NASA Astrophysics Data System (ADS)

    Iudin, F. D.; Iudin, D. I.; Kazantsev, V. B.

    2015-02-01

    A mathematical model has been proposed for a neural network whose morphological structure varies dynamically depending on activity. This is the property of the so-called structural plasticity typical of developed neural systems of a brain. It has been shown that the spontaneous generation and propagation of a signal in such networks correspond to a percolation transition and the appearance of the connectivity component covering the entire system. Furthermore, adaptive change in the geometric structure of a network results in the clustering of cells and in the reduction of the effective percolation threshold, which corresponds to experimental neurobiological observations.

  1. Adaptive NUC algorithm for uncooled IRFPA based on neural networks

    NASA Astrophysics Data System (ADS)

    Liu, Ziji; Jiang, Yadong; Lv, Jian; Zhu, Hongbin

    2010-10-01

    With developments in uncooled infrared plane array (UFPA) technology, many new advanced uncooled infrared sensors are used in defensive weapons, scientific research, industry and commercial applications. A major difference in imaging techniques between infrared IRFPA imaging system and a visible CCD camera is that, IRFPA need nonuniformity correction and dead pixel compensation, we usually called it infrared image pre-processing. Two-point or multi-point correction algorithms based on calibration commonly used may correct the non-uniformity of IRFPAs, but they are limited by pixel linearity and instability. Therefore, adaptive non-uniformity correction techniques are developed. Two of these adaptive non-uniformity correction algorithms are mostly discussed, one is based on temporal high-pass filter, and another is based on neural network. In this paper, a new NUC algorithm based on improved neural networks is introduced, and involves the compare result between improved neural networks and other adaptive correction techniques. A lot of different will discussed in different angle, like correction effects, calculation efficiency, hardware implementation and so on. According to the result and discussion, it could be concluding that the adaptive algorithm offers improved performance compared to traditional calibration mode techniques. This new algorithm not only provides better sensitivity, but also increases the system dynamic range. As the sensor application expended, it will be very useful in future infrared imaging systems.

  2. Probabilistic dual heuristic programming-based adaptive critic

    NASA Astrophysics Data System (ADS)

    Herzallah, Randa

    2010-02-01

    Adaptive critic (AC) methods have common roots as generalisations of dynamic programming for neural reinforcement learning approaches. Since they approximate the dynamic programming solutions, they are potentially suitable for learning in noisy, non-linear and non-stationary environments. In this study, a novel probabilistic dual heuristic programming (DHP)-based AC controller is proposed. Distinct to current approaches, the proposed probabilistic (DHP) AC method takes uncertainties of forward model and inverse controller into consideration. Therefore, it is suitable for deterministic and stochastic control problems characterised by functional uncertainty. Theoretical development of the proposed method is validated by analytically evaluating the correct value of the cost function which satisfies the Bellman equation in a linear quadratic control problem. The target value of the probabilistic critic network is then calculated and shown to be equal to the analytically derived correct value. Full derivation of the Riccati solution for this non-standard stochastic linear quadratic control problem is also provided. Moreover, the performance of the proposed probabilistic controller is demonstrated on linear and non-linear control examples.

  3. Neural controller for adaptive movements with unforeseen payloads

    NASA Technical Reports Server (NTRS)

    Kuperstein, Michael; Wang, Jyhpyng

    1990-01-01

    A theory and computer simulation of a neural controller that learns to move and position a link carrying an unforeseen payload accurately are presented. The neural controller learns adaptive dynamic control from its own experience. It does not use information about link mass, link length, or direction of gravity, and it uses only indirect uncalibrated information about payload and actuator limits. Its average positioning accuracy across a large range of payloads after learning is 3 percent of the positioning range. This neural controller can be used as a basis for coordinating any number of sensory inputs with limbs of any number of joints. The feedforward nature of control allows parallel implementation in real time across multiple joints.

  4. A spiking neural network model of an actor-critic learning agent.

    PubMed

    Potjans, Wiebke; Morrison, Abigail; Diesmann, Markus

    2009-02-01

    The ability to adapt behavior to maximize reward as a result of interactions with the environment is crucial for the survival of any higher organism. In the framework of reinforcement learning, temporal-difference learning algorithms provide an effective strategy for such goal-directed adaptation, but it is unclear to what extent these algorithms are compatible with neural computation. In this article, we present a spiking neural network model that implements actor-critic temporal-difference learning by combining local plasticity rules with a global reward signal. The network is capable of solving a nontrivial gridworld task with sparse rewards. We derive a quantitative mapping of plasticity parameters and synaptic weights to the corresponding variables in the standard algorithmic formulation and demonstrate that the network learns with a similar speed to its discrete time counterpart and attains the same equilibrium performance. PMID:19196231

  5. Neural control of chronic stress adaptation

    PubMed Central

    Herman, James P.

    2013-01-01

    Stress initiates adaptive processes that allow the organism to physiologically cope with prolonged or intermittent exposure to real or perceived threats. A major component of this response is repeated activation of glucocorticoid secretion by the hypothalamo-pituitary-adrenocortical (HPA) axis, which promotes redistribution of energy in a wide range of organ systems, including the brain. Prolonged or cumulative increases in glucocorticoid secretion can reduce benefits afforded by enhanced stress reactivity and eventually become maladaptive. The long-term impact of stress is kept in check by the process of habituation, which reduces HPA axis responses upon repeated exposure to homotypic stressors and likely limits deleterious actions of prolonged glucocorticoid secretion. Habituation is regulated by limbic stress-regulatory sites, and is at least in part glucocorticoid feedback-dependent. Chronic stress also sensitizes reactivity to new stimuli. While sensitization may be important in maintaining response flexibility in response to new threats, it may also add to the cumulative impact of glucocorticoids on the brain and body. Finally, unpredictable or severe stress exposure may cause long-term and lasting dysregulation of the HPA axis, likely due to altered limbic control of stress effector pathways. Stress-related disorders, such as depression and PTSD, are accompanied by glucocorticoid imbalances and structural/ functional alterations in limbic circuits that resemble those seen following chronic stress, suggesting that inappropriate processing of stressful information may be part of the pathological process. PMID:23964212

  6. Adaptive nonlinear control of missiles using neural networks

    NASA Astrophysics Data System (ADS)

    McFarland, Michael Bryan

    Research has shown that neural networks can be used to improve upon approximate dynamic inversion for control of uncertain nonlinear systems. In one architecture, the neural network adaptively cancels inversion errors through on-line learning. Such learning is accomplished by a simple weight update rule derived from Lyapunov theory, thus assuring stability of the closed-loop system. In this research, previous results using linear-in-parameters neural networks were reformulated in the context of a more general class of composite nonlinear systems, and the control scheme was shown to possess important similarities and major differences with established methods of adaptive control. The neural-adaptive nonlinear control methodology in question has been used to design an autopilot for an anti-air missile with enhanced agile maneuvering capability, and simulation results indicate that this approach is a feasible one. There are, however, certain difficulties associated with choosing the proper network architecture which make it difficult to achieve the rapid learning required in this application. Accordingly, this technique has been further extended to incorporate the important class of feedforward neural networks with a single hidden layer. These neural networks feature well-known approximation capabilities and provide an effective, although nonlinear, parameterization of the adaptive control problem. Numerical results from a six-degree-of-freedom nonlinear agile anti-air missile simulation demonstrate the effectiveness of the autopilot design based on multilayer networks. Previous work in this area has implicitly assumed precise knowledge of the plant order, and made no allowances for unmodeled dynamics. This thesis describes an approach to the problem of controlling a class of nonlinear systems in the face of both unknown nonlinearities and unmodeled dynamics. The proposed methodology is similar to robust adaptive control techniques derived for control of linear

  7. Neural Basis of Adaptive Response Time Adjustment during Saccade Countermanding

    PubMed Central

    Pouget, Pierre; Logan, Gordon D.; Palmeri, Thomas J.; Boucher, Leanne; Paré, Martin; Schall, Jeffrey D.

    2011-01-01

    Humans and macaque monkeys adjust their response time adaptively in stop signal (countermanding) tasks, responding slower after stop-signal trials than after control trials with no stop signal. We investigated the neural mechanism underlying this adaptive response time adjustment in macaque monkeys performing a saccade countermanding task. Earlier research showed that movements are initiated when the random accumulation of presaccadic movement-related activity reaches a fixed threshold. We found that a systematic delay in response time after stop signal trials was accomplished not through a change of threshold, baseline, or accumulation rate, but instead through a change in the time when activity first began to accumulate. The neurons underlying movement initiation have been identified with mathematical accumulator models of response time performance. Therefore, this new result provides surprising new insights into the neural instantiation of stochastic accumulator models and the mechanisms through which executive control can be exerted. PMID:21880921

  8. Variable Neural Adaptive Robust Control: A Switched System Approach

    SciTech Connect

    Lian, Jianming; Hu, Jianghai; Zak, Stanislaw H.

    2015-05-01

    Variable neural adaptive robust control strategies are proposed for the output tracking control of a class of multi-input multi-output uncertain systems. The controllers incorporate a variable-structure radial basis function (RBF) network as the self-organizing approximator for unknown system dynamics. The variable-structure RBF network solves the problem of structure determination associated with fixed-structure RBF networks. It can determine the network structure on-line dynamically by adding or removing radial basis functions according to the tracking performance. The structure variation is taken into account in the stability analysis of the closed-loop system using a switched system approach with the aid of the piecewise quadratic Lyapunov function. The performance of the proposed variable neural adaptive robust controllers is illustrated with simulations.

  9. Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines

    PubMed Central

    Manoonpong, Poramate; Parlitz, Ulrich; Wörgötter, Florentin

    2013-01-01

    Living creatures, like walking animals, have found fascinating solutions for the problem of locomotion control. Their movements show the impression of elegance including versatile, energy-efficient, and adaptable locomotion. During the last few decades, roboticists have tried to imitate such natural properties with artificial legged locomotion systems by using different approaches including machine learning algorithms, classical engineering control techniques, and biologically-inspired control mechanisms. However, their levels of performance are still far from the natural ones. By contrast, animal locomotion mechanisms seem to largely depend not only on central mechanisms (central pattern generators, CPGs) and sensory feedback (afferent-based control) but also on internal forward models (efference copies). They are used to a different degree in different animals. Generally, CPGs organize basic rhythmic motions which are shaped by sensory feedback while internal models are used for sensory prediction and state estimations. According to this concept, we present here adaptive neural locomotion control consisting of a CPG mechanism with neuromodulation and local leg control mechanisms based on sensory feedback and adaptive neural forward models with efference copies. This neural closed-loop controller enables a walking machine to perform a multitude of different walking patterns including insect-like leg movements and gaits as well as energy-efficient locomotion. In addition, the forward models allow the machine to autonomously adapt its locomotion to deal with a change of terrain, losing of ground contact during stance phase, stepping on or hitting an obstacle during swing phase, leg damage, and even to promote cockroach-like climbing behavior. Thus, the results presented here show that the employed embodied neural closed-loop system can be a powerful way for developing robust and adaptable machines. PMID:23408775

  10. Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines.

    PubMed

    Manoonpong, Poramate; Parlitz, Ulrich; Wörgötter, Florentin

    2013-01-01

    Living creatures, like walking animals, have found fascinating solutions for the problem of locomotion control. Their movements show the impression of elegance including versatile, energy-efficient, and adaptable locomotion. During the last few decades, roboticists have tried to imitate such natural properties with artificial legged locomotion systems by using different approaches including machine learning algorithms, classical engineering control techniques, and biologically-inspired control mechanisms. However, their levels of performance are still far from the natural ones. By contrast, animal locomotion mechanisms seem to largely depend not only on central mechanisms (central pattern generators, CPGs) and sensory feedback (afferent-based control) but also on internal forward models (efference copies). They are used to a different degree in different animals. Generally, CPGs organize basic rhythmic motions which are shaped by sensory feedback while internal models are used for sensory prediction and state estimations. According to this concept, we present here adaptive neural locomotion control consisting of a CPG mechanism with neuromodulation and local leg control mechanisms based on sensory feedback and adaptive neural forward models with efference copies. This neural closed-loop controller enables a walking machine to perform a multitude of different walking patterns including insect-like leg movements and gaits as well as energy-efficient locomotion. In addition, the forward models allow the machine to autonomously adapt its locomotion to deal with a change of terrain, losing of ground contact during stance phase, stepping on or hitting an obstacle during swing phase, leg damage, and even to promote cockroach-like climbing behavior. Thus, the results presented here show that the employed embodied neural closed-loop system can be a powerful way for developing robust and adaptable machines. PMID:23408775

  11. Adaptive conventional power system stabilizer based on artificial neural network

    SciTech Connect

    Kothari, M.L.; Segal, R.; Ghodki, B.K.

    1995-12-31

    This paper deals with an artificial neural network (ANN) based adaptive conventional power system stabilizer (PSS). The ANN comprises an input layer, a hidden layer and an output layer. The input vector to the ANN comprises real power (P) and reactive power (Q), while the output vector comprises optimum PSS parameters. A systematic approach for generating training set covering wide range of operating conditions, is presented. The ANN has been trained using back-propagation training algorithm. Investigations reveal that the dynamic performance of ANN based adaptive conventional PSS is quite insensitive to wide variations in loading conditions.

  12. Critical Thinking, Developmental Learning, and Adaptive Flexibility in Organizational Leaders.

    ERIC Educational Resources Information Center

    Duchesne, Robert E., Jr.

    A study examined how developmental learning and adaptive flexibility relate to critical thinking though a survey of 119 organizational leaders (of 341) who had attended a 5-day Leadership Development Program. A questionnaire adapted from the Center for Creative Leadership's Job Challenge Profile measured developmental learning, the Adaptive Style…

  13. Patterns of interval correlations in neural oscillators with adaptation

    PubMed Central

    Schwalger, Tilo; Lindner, Benjamin

    2013-01-01

    Neural firing is often subject to negative feedback by adaptation currents. These currents can induce strong correlations among the time intervals between spikes. Here we study analytically the interval correlations of a broad class of noisy neural oscillators with spike-triggered adaptation of arbitrary strength and time scale. Our weak-noise theory provides a general relation between the correlations and the phase-response curve (PRC) of the oscillator, proves anti-correlations between neighboring intervals for adapting neurons with type I PRC and identifies a single order parameter that determines the qualitative pattern of correlations. Monotonically decaying or oscillating correlation structures can be related to qualitatively different voltage traces after spiking, which can be explained by the phase plane geometry. At high firing rates, the long-term variability of the spike train associated with the cumulative interval correlations becomes small, independent of model details. Our results are verified by comparison with stochastic simulations of the exponential, leaky, and generalized integrate-and-fire models with adaptation. PMID:24348372

  14. Complex Environmental Data Modelling Using Adaptive General Regression Neural Networks

    NASA Astrophysics Data System (ADS)

    Kanevski, Mikhail

    2015-04-01

    The research deals with an adaptation and application of Adaptive General Regression Neural Networks (GRNN) to high dimensional environmental data. GRNN [1,2,3] are efficient modelling tools both for spatial and temporal data and are based on nonparametric kernel methods closely related to classical Nadaraya-Watson estimator. Adaptive GRNN, using anisotropic kernels, can be also applied for features selection tasks when working with high dimensional data [1,3]. In the present research Adaptive GRNN are used to study geospatial data predictability and relevant feature selection using both simulated and real data case studies. The original raw data were either three dimensional monthly precipitation data or monthly wind speeds embedded into 13 dimensional space constructed by geographical coordinates and geo-features calculated from digital elevation model. GRNN were applied in two different ways: 1) adaptive GRNN with the resulting list of features ordered according to their relevancy; and 2) adaptive GRNN applied to evaluate all possible models N [in case of wind fields N=(2^13 -1)=8191] and rank them according to the cross-validation error. In both cases training were carried out applying leave-one-out procedure. An important result of the study is that the set of the most relevant features depends on the month (strong seasonal effect) and year. The predictabilities of precipitation and wind field patterns, estimated using the cross-validation and testing errors of raw and shuffled data, were studied in detail. The results of both approaches were qualitatively and quantitatively compared. In conclusion, Adaptive GRNN with their ability to select features and efficient modelling of complex high dimensional data can be widely used in automatic/on-line mapping and as an integrated part of environmental decision support systems. 1. Kanevski M., Pozdnoukhov A., Timonin V. Machine Learning for Spatial Environmental Data. Theory, applications and software. EPFL Press

  15. Design of an adaptive neural network based power system stabilizer.

    PubMed

    Liu, Wenxin; Venayagamoorthy, Ganesh K; Wunsch, Donald C

    2003-01-01

    Power system stabilizers (PSS) are used to generate supplementary control signals for the excitation system in order to damp the low frequency power system oscillations. To overcome the drawbacks of conventional PSS (CPSS), numerous techniques have been proposed in the literature. Based on the analysis of existing techniques, this paper presents an indirect adaptive neural network based power system stabilizer (IDNC) design. The proposed IDNC consists of a neuro-controller, which is used to generate a supplementary control signal to the excitation system, and a neuro-identifier, which is used to model the dynamics of the power system and to adapt the neuro-controller parameters. The proposed method has the features of a simple structure, adaptivity and fast response. The proposed IDNC is evaluated on a single machine infinite bus power system under different operating conditions and disturbances to demonstrate its effectiveness and robustness. PMID:12850048

  16. Adaptive model predictive process control using neural networks

    DOEpatents

    Buescher, Kevin L.; Baum, Christopher C.; Jones, Roger D.

    1997-01-01

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data.

  17. Adaptive model predictive process control using neural networks

    DOEpatents

    Buescher, K.L.; Baum, C.C.; Jones, R.D.

    1997-08-19

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.

  18. Neural Network Based Intrusion Detection System for Critical Infrastructures

    SciTech Connect

    Todd Vollmer; Ondrej Linda; Milos Manic

    2009-07-01

    Resiliency and security in control systems such as SCADA and Nuclear plant’s in today’s world of hackers and malware are a relevant concern. Computer systems used within critical infrastructures to control physical functions are not immune to the threat of cyber attacks and may be potentially vulnerable. Tailoring an intrusion detection system to the specifics of critical infrastructures can significantly improve the security of such systems. The IDS-NNM – Intrusion Detection System using Neural Network based Modeling, is presented in this paper. The main contributions of this work are: 1) the use and analyses of real network data (data recorded from an existing critical infrastructure); 2) the development of a specific window based feature extraction technique; 3) the construction of training dataset using randomly generated intrusion vectors; 4) the use of a combination of two neural network learning algorithms – the Error-Back Propagation and Levenberg-Marquardt, for normal behavior modeling. The presented algorithm was evaluated on previously unseen network data. The IDS-NNM algorithm proved to be capable of capturing all intrusion attempts presented in the network communication while not generating any false alerts.

  19. Modeling neural adaptation in the frog auditory system

    NASA Astrophysics Data System (ADS)

    Wotton, Janine; McArthur, Kimberly; Bohara, Amit; Ferragamo, Michael; Megela Simmons, Andrea

    2005-09-01

    Extracellular recordings from the auditory midbrain, Torus semicircularis, of the leopard frog reveal a wide diversity of tuning patterns. Some cells seem to be well suited for time-based coding of signal envelope, and others for rate-based coding of signal frequency. Adaptation for ongoing stimuli plays a significant role in shaping the frequency-dependent response rate at different levels of the frog auditory system. Anuran auditory-nerve fibers are unusual in that they reveal frequency-dependent adaptation [A. L. Megela, J. Acoust. Soc. Am. 75, 1155-1162 (1984)], and therefore provide rate-based input. In order to examine the influence of these peripheral inputs on central responses, three layers of auditory neurons were modeled to examine short-term neural adaptation to pure tones and complex signals. The response of each neuron was simulated with a leaky integrate and fire model, and adaptation was implemented by means of an increasing threshold. Auditory-nerve fibers, dorsal medullary nucleus neurons, and toral cells were simulated and connected in three ascending layers. Modifying the adaptation properties of the peripheral fibers dramatically alters the response at the midbrain. [Work supported by NOHR to M.J.F.; Gustavus Presidential Scholarship to K.McA.; NIH DC05257 to A.M.S.

  20. Adaptive critic learning techniques for engine torque and air-fuel ratio control.

    PubMed

    Liu, Derong; Javaherian, Hossein; Kovalenko, Olesia; Huang, Ting

    2008-08-01

    A new approach for engine calibration and control is proposed. In this paper, we present our research results on the implementation of adaptive critic designs for self-learning control of automotive engines. A class of adaptive critic designs that can be classified as (model-free) action-dependent heuristic dynamic programming is used in this research project. The goals of the present learning control design for automotive engines include improved performance, reduced emissions, and maintained optimum performance under various operating conditions. Using the data from a test vehicle with a V8 engine, we developed a neural network model of the engine and neural network controllers based on the idea of approximate dynamic programming to achieve optimal control. We have developed and simulated self-learning neural network controllers for both engine torque (TRQ) and exhaust air-fuel ratio (AFR) control. The goal of TRQ control and AFR control is to track the commanded values. For both control problems, excellent neural network controller transient performance has been achieved.

  1. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  2. Adaptive neural-network-based control of robotic manipulators

    NASA Astrophysics Data System (ADS)

    Mitchell, Kyle; Dagli, Cihan H.

    2001-03-01

    Robotic manipulators are beginning to be seen doing more tasks in our environment. Classical controls engineers have long known how to control these automated hands. They have failed to address the continued control of these devices after parts of the control infrastructure have failed. A failed motor or actuator in a manipulator decreases its range of motion and changes its control structure. Most failures however do not render the manipulator useless. This paper will discuss the use of a neural network to actively update the controller design as portions of a manipulator fail. Actuators can become stuck and later free themselves. Motors can lose range of motion or stop completely. Connecting arms can become bent or entangled. Results will be presented on the ability to maintain functionality through a variety of failure modes. The neural network is constructed and tested in a Matlab environment. This allows testing of several neural network techniques such as back propagation and temporal processing without the need to continually reconfigure target hardware. In this paper we will demonstrate that a modified ensemble of back propagation experts can be trained to control a robotic manipulator without the need to calculate the inverse kinematics equations. Further individual experts can be retrained online to allow for adaptive control through changing dynamics. This allows for manipulators to remain in service through failures in the manipulator infrastructure without the need for human intervention into control equations.

  3. Real-time Adaptive Control Using Neural Generalized Predictive Control

    NASA Technical Reports Server (NTRS)

    Haley, Pam; Soloway, Don; Gold, Brian

    1999-01-01

    The objective of this paper is to demonstrate the feasibility of a Nonlinear Generalized Predictive Control algorithm by showing real-time adaptive control on a plant with relatively fast time-constants. Generalized Predictive Control has classically been used in process control where linear control laws were formulated for plants with relatively slow time-constants. The plant of interest for this paper is a magnetic levitation device that is nonlinear and open-loop unstable. In this application, the reference model of the plant is a neural network that has an embedded nominal linear model in the network weights. The control based on the linear model provides initial stability at the beginning of network training. In using a neural network the control laws are nonlinear and online adaptation of the model is possible to capture unmodeled or time-varying dynamics. Newton-Raphson is the minimization algorithm. Newton-Raphson requires the calculation of the Hessian, but even with this computational expense the low iteration rate make this a viable algorithm for real-time control.

  4. Development vs. behavior: a role for neural adaptation in evolution?

    PubMed

    Ghysen, Alain; Dambly-Chaudière, Christine

    2016-01-01

    We examine the evolution of sensory organ patterning in the lateral line system of fish. Based on recent studies of how this system develops in zebrafish, and on comparative analyses between zebrafish and tuna, we argue that the evolution of lateral line patterns is mostly determined by variations in the underlying developmental processes, independent of any selective pressure. Yet the development of major developmental innovations is so directly linked to their exploitation that it is hard not to think of them as selected for, i.e., adaptive. We propose that adaptation resides mostly in how the nervous system adjusts to new morphologies to make them functional, i.e., that species are neurally adapted to whatever morphology is provided to them by their own developmental program. We show that recent data on behavioral differences between cave forms (blind) and surface forms (eyed) of the mexican fish Astyanax fasciatus support this view, and we propose that this species might provide a unique opportunity to assess the nature of adaptation and of selection in animal evolution. PMID:27389980

  5. Neural-network-observer-based optimal control for unknown nonlinear systems using adaptive dynamic programming

    NASA Astrophysics Data System (ADS)

    Liu, Derong; Huang, Yuzhu; Wang, Ding; Wei, Qinglai

    2013-09-01

    In this paper, an observer-based optimal control scheme is developed for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. First, a neural-network (NN) observer is designed to estimate system states. Then, based on the observed states, a neuro-controller is constructed via ADP method to obtain the optimal control. In this design, two NN structures are used: a three-layer NN is used to construct the observer which can be applied to systems with higher degrees of nonlinearity and without a priori knowledge of system dynamics, and a critic NN is employed to approximate the value function. The optimal control law is computed using the critic NN and the observer NN. Uniform ultimate boundedness of the closed-loop system is guaranteed. The actor, critic, and observer structures are all implemented in real-time, continuously and simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.

  6. On the Emergent Properties of Recurrent Neural Networks at Criticality

    NASA Astrophysics Data System (ADS)

    Karimipanah, Yahya; Ma, Zhengyu; Wessel, Ralf

    Irregular spiking is a widespread phenomenon in neuronal activities in vivo. In addition, it has been shown that the firing rate variability decreases after the onset of external stimuli. Since these are known as two universal features of cortical activity, it is natural to ask whether there is a universal mechanism underlying such phenomena. Independently, there has been mounting evidence that superficial layers of cortex operate near a second-order phase transition (critical point), which is manifested in the form of scale free activity. However, despite the strong evidence for such a criticality hypothesis, it is still very little known on how it can be leveraged to facilitate neural coding. As the decline in response variability is regarded as an essential mechanism to enhance coding efficiency, we asked whether the criticality hypothesis could bridge between scale free activity and other ubiquitous features of cortical activity. Using a simple binary probabilistic model, we show that irregular spiking and decline in response variability, both arise as emergent properties of a recurrent network poised at criticality. Our results provide us with a unified explanation for the ubiquity of these two features, without a need to exploit any further mechanism.

  7. An integrated architecture of adaptive neural network control for dynamic systems

    SciTech Connect

    Ke, Liu; Tokar, R.; Mcvey, B.

    1994-07-01

    In this study, an integrated neural network control architecture for nonlinear dynamic systems is presented. Most of the recent emphasis in the neural network control field has no error feedback as the control input which rises the adaptation problem. The integrated architecture in this paper combines feed forward control and error feedback adaptive control using neural networks. The paper reveals the different internal functionality of these two kinds of neural network controllers for certain input styles, e.g., state feedback and error feedback. Feed forward neural network controllers with state feedback establish fixed control mappings which can not adapt when model uncertainties present. With error feedbacks, neural network controllers learn the slopes or the gains respecting to the error feedbacks, which are error driven adaptive control systems. The results demonstrate that the two kinds of control scheme can be combined to realize their individual advantages. Testing with disturbances added to the plant shows good tracking and adaptation.

  8. Neural network approach to continuous-time direct adaptive optimal control for partially unknown nonlinear systems.

    PubMed

    Vrabie, Draguna; Lewis, Frank

    2009-04-01

    In this paper we present in a continuous-time framework an online approach to direct adaptive optimal control with infinite horizon cost for nonlinear systems. The algorithm converges online to the optimal control solution without knowledge of the internal system dynamics. Closed-loop dynamic stability is guaranteed throughout. The algorithm is based on a reinforcement learning scheme, namely Policy Iterations, and makes use of neural networks, in an Actor/Critic structure, to parametrically represent the control policy and the performance of the control system. The two neural networks are trained to express the optimal controller and optimal cost function which describes the infinite horizon control performance. Convergence of the algorithm is proven under the realistic assumption that the two neural networks do not provide perfect representations for the nonlinear control and cost functions. The result is a hybrid control structure which involves a continuous-time controller and a supervisory adaptation structure which operates based on data sampled from the plant and from the continuous-time performance dynamics. Such control structure is unlike any standard form of controllers previously seen in the literature. Simulation results, obtained considering two second-order nonlinear systems, are provided.

  9. Neural network approach to continuous-time direct adaptive optimal control for partially unknown nonlinear systems.

    PubMed

    Vrabie, Draguna; Lewis, Frank

    2009-04-01

    In this paper we present in a continuous-time framework an online approach to direct adaptive optimal control with infinite horizon cost for nonlinear systems. The algorithm converges online to the optimal control solution without knowledge of the internal system dynamics. Closed-loop dynamic stability is guaranteed throughout. The algorithm is based on a reinforcement learning scheme, namely Policy Iterations, and makes use of neural networks, in an Actor/Critic structure, to parametrically represent the control policy and the performance of the control system. The two neural networks are trained to express the optimal controller and optimal cost function which describes the infinite horizon control performance. Convergence of the algorithm is proven under the realistic assumption that the two neural networks do not provide perfect representations for the nonlinear control and cost functions. The result is a hybrid control structure which involves a continuous-time controller and a supervisory adaptation structure which operates based on data sampled from the plant and from the continuous-time performance dynamics. Such control structure is unlike any standard form of controllers previously seen in the literature. Simulation results, obtained considering two second-order nonlinear systems, are provided. PMID:19362449

  10. Task-specific neural adaptations to isoinertial resistance training.

    PubMed

    Buckthorpe, M; Erskine, R M; Fletcher, G; Folland, J P

    2015-10-01

    This study aimed to delineate the contribution of adaptations in agonist, antagonist, and stabilizer muscle activation to changes in isometric and isoinertial lifting strength after short-term isoinertial resistance training (RT). Following familiarization, 45 men (23.2 ± 2.8 years) performed maximal isometric and isoinertial strength tests of the elbow flexors of their dominant arms before and after 3 weeks of isoinertial RT. During these tasks, surface electromyography (EMG) amplitude was recorded from the agonist (biceps brachii short and long heads), antagonist (triceps brachii lateral head), and stabilizer (anterior deltoid, pectoralis major) muscles and normalized to either Mmax (agonists) or to maximum EMG during relevant reference tasks (antagonist, stabilizers). After training, there was more than a twofold greater increase in training task-specific isoinertial than isometric strength (17% vs 7%). There were also task-specific adaptations in agonist EMG, with greater increases during the isoinertial than isometric strength task [analysis of variance (ANOVA), training × task, P = 0.005]. A novel finding of this study was that training increased stabilizer muscle activation during all the elbow flexion strength tasks (P < 0.001), although these were not task-specific training effects. RT elicited specific neural adaptations to the training task that appeared to explain the greater increase in isoinertial than isometric strength.

  11. Nonlinear adaptive trajectory tracking using dynamic neural networks.

    PubMed

    Poznyak, A S; Yu, W; Sanchez, E N; Perez, J P

    1999-01-01

    In this paper the adaptive nonlinear identification and trajectory tracking are discussed via dynamic neural networks. By means of a Lyapunov-like analysis we determine stability conditions for the identification error. Then we analyze the trajectory tracking error by a local optimal controller. An algebraic Riccati equation and a differential one are used for the identification and the tracking error analysis. As our main original contributions, we establish two theorems: the first one gives a bound for the identification error and the second one establishes a bound for the tracking error. We illustrate the effectiveness of these results by two examples: the second-order relay system with multiple isolated equilibrium points and the chaotic system given by Duffing equation. PMID:18252641

  12. A recurrent neural network for adaptive beamforming and array correction.

    PubMed

    Che, Hangjun; Li, Chuandong; He, Xing; Huang, Tingwen

    2016-08-01

    In this paper, a recurrent neural network (RNN) is proposed for solving adaptive beamforming problem. In order to minimize sidelobe interference, the problem is described as a convex optimization problem based on linear array model. RNN is designed to optimize system's weight values in the feasible region which is derived from arrays' state and plane wave's information. The new algorithm is proven to be stable and converge to optimal solution in the sense of Lyapunov. So as to verify new algorithm's performance, we apply it to beamforming under array mismatch situation. Comparing with other optimization algorithms, simulations suggest that RNN has strong ability to search for exact solutions under the condition of large scale constraints.

  13. Adaptive neural coding: from biological to behavioral decision-making

    PubMed Central

    Louie, Kenway; Glimcher, Paul W.; Webb, Ryan

    2015-01-01

    Empirical decision-making in diverse species deviates from the predictions of normative choice theory, but why such suboptimal behavior occurs is unknown. Here, we propose that deviations from optimality arise from biological decision mechanisms that have evolved to maximize choice performance within intrinsic biophysical constraints. Sensory processing utilizes specific computations such as divisive normalization to maximize information coding in constrained neural circuits, and recent evidence suggests that analogous computations operate in decision-related brain areas. These adaptive computations implement a relative value code that may explain the characteristic context-dependent nature of behavioral violations of classical normative theory. Examining decision-making at the computational level thus provides a crucial link between the architecture of biological decision circuits and the form of empirical choice behavior. PMID:26722666

  14. Adaptive evolutionary artificial neural networks for pattern classification.

    PubMed

    Oong, Tatt Hee; Isa, Nor Ashidi Mat

    2011-11-01

    This paper presents a new evolutionary approach called the hybrid evolutionary artificial neural network (HEANN) for simultaneously evolving an artificial neural networks (ANNs) topology and weights. Evolutionary algorithms (EAs) with strong global search capabilities are likely to provide the most promising region. However, they are less efficient in fine-tuning the search space locally. HEANN emphasizes the balancing of the global search and local search for the evolutionary process by adapting the mutation probability and the step size of the weight perturbation. This is distinguishable from most previous studies that incorporate EA to search for network topology and gradient learning for weight updating. Four benchmark functions were used to test the evolutionary framework of HEANN. In addition, HEANN was tested on seven classification benchmark problems from the UCI machine learning repository. Experimental results show the superior performance of HEANN in fine-tuning the network complexity within a small number of generations while preserving the generalization capability compared with other algorithms. PMID:21968733

  15. A Tool for Verification and Validation of Neural Network Based Adaptive Controllers for High Assurance Systems

    NASA Technical Reports Server (NTRS)

    Gupta, Pramod; Schumann, Johann

    2004-01-01

    High reliability of mission- and safety-critical software systems has been identified by NASA as a high-priority technology challenge. We present an approach for the performance analysis of a neural network (NN) in an advanced adaptive control system. This problem is important in the context of safety-critical applications that require certification, such as flight software in aircraft. We have developed a tool to measure the performance of the NN during operation by calculating a confidence interval (error bar) around the NN's output. Our tool can be used during pre-deployment verification as well as monitoring the network performance during operation. The tool has been implemented in Simulink and simulation results on a F-15 aircraft are presented.

  16. Adaptive optimal control of unknown constrained-input systems using policy iteration and neural networks.

    PubMed

    Modares, Hamidreza; Lewis, Frank L; Naghibi-Sistani, Mohammad-Bagher

    2013-10-01

    This paper presents an online policy iteration (PI) algorithm to learn the continuous-time optimal control solution for unknown constrained-input systems. The proposed PI algorithm is implemented on an actor-critic structure where two neural networks (NNs) are tuned online and simultaneously to generate the optimal bounded control policy. The requirement of complete knowledge of the system dynamics is obviated by employing a novel NN identifier in conjunction with the actor and critic NNs. It is shown how the identifier weights estimation error affects the convergence of the critic NN. A novel learning rule is developed to guarantee that the identifier weights converge to small neighborhoods of their ideal values exponentially fast. To provide an easy-to-check persistence of excitation condition, the experience replay technique is used. That is, recorded past experiences are used simultaneously with current data for the adaptation of the identifier weights. Stability of the whole system consisting of the actor, critic, system state, and system identifier is guaranteed while all three networks undergo adaptation. Convergence to a near-optimal control law is also shown. The effectiveness of the proposed method is illustrated with a simulation example. PMID:24808590

  17. Neural adaptation and behavioral measures of temporal processing and speech perception in cochlear implant recipients.

    PubMed

    Zhang, Fawen; Benson, Chelsea; Murphy, Dora; Boian, Melissa; Scott, Michael; Keith, Robert; Xiang, Jing; Abbas, Paul

    2013-01-01

    The objective was to determine if one of the neural temporal features, neural adaptation, can account for the across-subject variability in behavioral measures of temporal processing and speech perception performance in cochlear implant (CI) recipients. Neural adaptation is the phenomenon in which neural responses are the strongest at the beginning of the stimulus and decline following stimulus repetition (e.g., stimulus trains). It is unclear how this temporal property of neural responses relates to psychophysical measures of temporal processing (e.g., gap detection) or speech perception. The adaptation of the electrical compound action potential (ECAP) was obtained using 1000 pulses per second (pps) biphasic pulse trains presented directly to the electrode. The adaptation of the late auditory evoked potential (LAEP) was obtained using a sequence of 1-kHz tone bursts presented acoustically, through the cochlear implant. Behavioral temporal processing was measured using the Random Gap Detection Test at the most comfortable listening level. Consonant nucleus consonant (CNC) word and AzBio sentences were also tested. The results showed that both ECAP and LAEP display adaptive patterns, with a substantial across-subject variability in the amount of adaptation. No correlations between the amount of neural adaptation and gap detection thresholds (GDTs) or speech perception scores were found. The correlations between the degree of neural adaptation and demographic factors showed that CI users having more LAEP adaptation were likely to be those implanted at a younger age than CI users with less LAEP adaptation. The results suggested that neural adaptation, at least this feature alone, cannot account for the across-subject variability in temporal processing ability in the CI users. However, the finding that the LAEP adaptive pattern was less prominent in the CI group compared to the normal hearing group may suggest the important role of normal adaptation pattern at the

  18. Neural Adaptation and Behavioral Measures of Temporal Processing and Speech Perception in Cochlear Implant Recipients

    PubMed Central

    Zhang, Fawen; Benson, Chelsea; Murphy, Dora; Boian, Melissa; Scott, Michael; Keith, Robert; Xiang, Jing; Abbas, Paul

    2013-01-01

    The objective was to determine if one of the neural temporal features, neural adaptation, can account for the across-subject variability in behavioral measures of temporal processing and speech perception performance in cochlear implant (CI) recipients. Neural adaptation is the phenomenon in which neural responses are the strongest at the beginning of the stimulus and decline following stimulus repetition (e.g., stimulus trains). It is unclear how this temporal property of neural responses relates to psychophysical measures of temporal processing (e.g., gap detection) or speech perception. The adaptation of the electrical compound action potential (ECAP) was obtained using 1000 pulses per second (pps) biphasic pulse trains presented directly to the electrode. The adaptation of the late auditory evoked potential (LAEP) was obtained using a sequence of 1-kHz tone bursts presented acoustically, through the cochlear implant. Behavioral temporal processing was measured using the Random Gap Detection Test at the most comfortable listening level. Consonant nucleus consonant (CNC) word and AzBio sentences were also tested. The results showed that both ECAP and LAEP display adaptive patterns, with a substantial across-subject variability in the amount of adaptation. No correlations between the amount of neural adaptation and gap detection thresholds (GDTs) or speech perception scores were found. The correlations between the degree of neural adaptation and demographic factors showed that CI users having more LAEP adaptation were likely to be those implanted at a younger age than CI users with less LAEP adaptation. The results suggested that neural adaptation, at least this feature alone, cannot account for the across-subject variability in temporal processing ability in the CI users. However, the finding that the LAEP adaptive pattern was less prominent in the CI group compared to the normal hearing group may suggest the important role of normal adaptation pattern at the

  19. Beyond adaptive-critic creative learning for intelligent mobile robots

    NASA Astrophysics Data System (ADS)

    Liao, Xiaoqun; Cao, Ming; Hall, Ernest L.

    2001-10-01

    Intelligent industrial and mobile robots may be considered proven technology in structured environments. Teach programming and supervised learning methods permit solutions to a variety of applications. However, we believe that to extend the operation of these machines to more unstructured environments requires a new learning method. Both unsupervised learning and reinforcement learning are potential candidates for these new tasks. The adaptive critic method has been shown to provide useful approximations or even optimal control policies to non-linear systems. The purpose of this paper is to explore the use of new learning methods that goes beyond the adaptive critic method for unstructured environments. The adaptive critic is a form of reinforcement learning. A critic element provides only high level grading corrections to a cognition module that controls the action module. In the proposed system the critic's grades are modeled and forecasted, so that an anticipated set of sub-grades are available to the cognition model. The forecasting grades are interpolated and are available on the time scale needed by the action model. The success of the system is highly dependent on the accuracy of the forecasted grades and adaptability of the action module. Examples from the guidance of a mobile robot are provided to illustrate the method for simple line following and for the more complex navigation and control in an unstructured environment. The theory presented that is beyond the adaptive critic may be called creative theory. Creative theory is a form of learning that models the highest level of human learning - imagination. The application of the creative theory appears to not only be to mobile robots but also to many other forms of human endeavor such as educational learning and business forecasting. Reinforcement learning such as the adaptive critic may be applied to known problems to aid in the discovery of their solutions. The significance of creative theory is that it

  20. The overlap of neural selectivity between faces and words: evidences from the N170 adaptation effect.

    PubMed

    Cao, Xiaohua; Jiang, Bei; Gaspar, Carl; Li, Chao

    2014-09-01

    Faces and words both evoke an N170, a strong electrophysiological response that is often used as a marker for the early stages of expert pattern perception. We examine the relationship of neural selectivity between faces and words by using a novel application of cross-category adaptation to the N170. We report a strong asymmetry between N170 adaptation induced by faces and by words. This is the first electrophysiological result showing that neural selectivity to faces encompasses neural selectivity to words and suggests that the N170 response to faces constitutes a neural marker for versatile representations of familiar visual patterns.

  1. Investigating the neural correlates of psychopathy: a critical review

    PubMed Central

    Koenigs, M; Baskin-Sommers, A; Zeier, J; Newman, JP

    2011-01-01

    In recent years, an increasing number of neuroimaging studies have sought to identify the brain anomalies associated with psychopathy. The results of such studies could have significant implications for the clinical and legal management of psychopaths, as well as for neurobiological models of human social behavior. In this article, we provide a critical review of structural and functional neuroimaging studies of psychopathy. In particular, we emphasize the considerable variability in results across studies, and focus our discussion on three methodological issues that could contribute to the observed heterogeneity in study data: (1) the use of between-group analyses (psychopaths vs non-psychopaths) as well as correlational analyses (normal variation in ‘psychopathic’ traits), (2) discrepancies in the criteria used to classify subjects as psychopaths and (3) consideration of psychopathic subtypes. The available evidence suggests that each of these issues could have a substantial effect on the reliability of imaging data. We propose several strategies for resolving these methodological issues in future studies, with the goal of fostering further progress in the identification of the neural correlates of psychopathy. PMID:21135855

  2. Adaptive Weibull Multiplicative Model and Multilayer Perceptron neural networks for dark-spot detection from SAR imagery.

    PubMed

    Taravat, Alireza; Oppelt, Natascha

    2014-12-02

    Oil spills represent a major threat to ocean ecosystems and their environmental status. Previous studies have shown that Synthetic Aperture Radar (SAR), as its recording is independent of clouds and weather, can be effectively used for the detection and classification of oil spills. Dark formation detection is the first and critical stage in oil-spill detection procedures. In this paper, a novel approach for automated dark-spot detection in SAR imagery is presented. A new approach from the combination of adaptive Weibull Multiplicative Model (WMM) and MultiLayer Perceptron (MLP) neural networks is proposed to differentiate between dark spots and the background. The results have been compared with the results of a model combining non-adaptive WMM and pulse coupled neural networks. The presented approach overcomes the non-adaptive WMM filter setting parameters by developing an adaptive WMM model which is a step ahead towards a full automatic dark spot detection. The proposed approach was tested on 60 ENVISAT and ERS2 images which contained dark spots. For the overall dataset, an average accuracy of 94.65% was obtained. Our experimental results demonstrate that the proposed approach is very robust and effective where the non-adaptive WMM & pulse coupled neural network (PCNN) model generates poor accuracies.

  3. Adaptive Weibull Multiplicative Model and Multilayer Perceptron Neural Networks for Dark-Spot Detection from SAR Imagery

    PubMed Central

    Taravat, Alireza; Oppelt, Natascha

    2014-01-01

    Oil spills represent a major threat to ocean ecosystems and their environmental status. Previous studies have shown that Synthetic Aperture Radar (SAR), as its recording is independent of clouds and weather, can be effectively used for the detection and classification of oil spills. Dark formation detection is the first and critical stage in oil-spill detection procedures. In this paper, a novel approach for automated dark-spot detection in SAR imagery is presented. A new approach from the combination of adaptive Weibull Multiplicative Model (WMM) and MultiLayer Perceptron (MLP) neural networks is proposed to differentiate between dark spots and the background. The results have been compared with the results of a model combining non-adaptive WMM and pulse coupled neural networks. The presented approach overcomes the non-adaptive WMM filter setting parameters by developing an adaptive WMM model which is a step ahead towards a full automatic dark spot detection. The proposed approach was tested on 60 ENVISAT and ERS2 images which contained dark spots. For the overall dataset, an average accuracy of 94.65% was obtained. Our experimental results demonstrate that the proposed approach is very robust and effective where the non-adaptive WMM & pulse coupled neural network (PCNN) model generates poor accuracies. PMID:25474376

  4. Fuzzy controlled neural network for sensor fusion with adaptability to sensor failure

    NASA Astrophysics Data System (ADS)

    Chen, Judy; Kostrzewski, Andrew A.; Kim, Dai Hyun; Savant, Gajendra D.; Kim, Jeongdal; Vasiliev, Anatoly A.

    1997-10-01

    Artificial neural networks have proven to be powerful tools for sensor fusion, but they are not adaptable to sensor failure in a sensor suite. Physical Optics Corporation (POC) presents a new sensor fusion algorithm, applying fuzzy logic to give a neural network real-time adaptability to compensate for faulty sensors. Identifying data that originates from malfunctioning sensors, and excluding it from sensor fusion, allows the fuzzy neural network to achieve better results. A fuzzy logic-based functionality evaluator detects malfunctioning sensors in real time. A separate neural network is trained for each potential sensor failure situation. Since the number of possible sensor failure situations is large, the large number of neural networks is then fuzzified into a small number of fuzzy neural networks. Experimental results show the feasibility of the proposed approach -- the system correctly recognized airplane models in a computer simulation.

  5. AgRP Neural Circuits Mediate Adaptive Behaviors in the Starved State

    PubMed Central

    Padilla, Stephanie L.; Qiu, Jian; Soden, Marta E.; Sanz, Elisenda; Nestor, Casey C; Barker, Forrest D.; Quintana, Albert; Zweifel, Larry S.; Rønnekleiv, Oline K.; Kelly, Martin J.; Palmiter, Richard D.

    2016-01-01

    In the face of starvation animals will engage in high-risk behaviors that would normally be considered maladaptive. Starving rodents for example will forage in areas that are more susceptible to predators and will also modulate aggressive behavior within a territory of limited or depleted nutrients. The neural basis of these adaptive behaviors likely involves circuits that link innate feeding, aggression, and fear. Hypothalamic AgRP neurons are critically important for driving feeding and project axons to brain regions implicated in aggression and fear. Using circuit-mapping techniques, we define a disynaptic network originating from a subset of AgRP neurons that project to the medial nucleus of the amygdala and then to the principle bed nucleus of the stria terminalis, which plays a role in suppressing territorial aggression and reducing contextual fear. We propose that AgRP neurons serve as a master switch capable of coordinating behavioral decisions relative to internal state and environmental cues. PMID:27019015

  6. Using Neural Net Technology To Enhance the Efficiency of a Computer Adaptive Testing Application.

    ERIC Educational Resources Information Center

    Van Nelson, C.; Henriksen, Larry W.

    The potential for computer adaptive testing (CAT) has been well documented. In order to improve the efficiency of this process, it may be possible to utilize a neural network, or more specifically, a back propagation neural network. The paper asserts that in order to accomplish this end, it must be shown that grouping examinees by ability as…

  7. Adaptive Control Law Development for Failure Compensation Using Neural Networks on a NASA F-15 Aircraft

    NASA Technical Reports Server (NTRS)

    Burken, John J.

    2005-01-01

    This viewgraph presentation covers the following topics: 1) Brief explanation of Generation II Flight Program; 2) Motivation for Neural Network Adaptive Systems; 3) Past/ Current/ Future IFCS programs; 4) Dynamic Inverse Controller with Explicit Model; 5) Types of Neural Networks Investigated; and 6) Brief example

  8. Adaptation to different noninvasive ventilation masks in critically ill patients*

    PubMed Central

    da Silva, Renata Matos; Timenetsky, Karina Tavares; Neves, Renata Cristina Miranda; Shigemichi, Liane Hirano; Kanda, Sandra Sayuri; Maekawa, Carla; Silva, Eliezer; Eid, Raquel Afonso Caserta

    2013-01-01

    OBJECTIVE: To identify which noninvasive ventilation (NIV) masks are most commonly used and the problems related to the adaptation to such masks in critically ill patients admitted to a hospital in the city of São Paulo, Brazil. METHODS: An observational study involving patients ≥ 18 years of age admitted to intensive care units and submitted to NIV. The reason for NIV use, type of mask, NIV regimen, adaptation to the mask, and reasons for non-adaptation to the mask were investigated. RESULTS: We evaluated 245 patients, with a median age of 82 years. Acute respiratory failure was the most common reason for NIV use (in 71.3%). Total face masks were the most commonly used (in 74.7%), followed by full face masks and near-total face masks (in 24.5% and 0.8%, respectively). Intermittent NIV was used in 82.4% of the patients. Adequate adaptation to the mask was found in 76% of the patients. Masks had to be replaced by another type of mask in 24% of the patients. Adequate adaptation to total face masks and full face masks was found in 75.5% and 80.0% of the patients, respectively. Non-adaptation occurred in the 2 patients using near-total facial masks. The most common reason for non-adaptation was the shape of the face, in 30.5% of the patients. CONCLUSIONS: In our sample, acute respiratory failure was the most common reason for NIV use, and total face masks were the most commonly used. The most common reason for non-adaptation to the mask was the shape of the face, which was resolved by changing the type of mask employed. PMID:24068269

  9. Neural correlates of priming and adaptation in familiar face perception.

    PubMed

    Walther, Christian; Schweinberger, Stefan R; Kaiser, Daniel; Kovács, Gyula

    2013-01-01

    Priming (PR) and adaptation-related aftereffects (AEs) are two phenomena when recent perceptual experiences alter face perception. While AEs are often reflected in contrastive perceptual biases, PR typically leads to behavioural facilitation. Previous research suggests that both phenomena modulate broadly similar components of the event-related potentials (ERPs). To disentangle the underlying neural mechanisms of PR and AE, we induced both effects within the same subjects and paradigm. We presented pairs of stimuli, where the first (S1) was a famous face (identity A, B or C), a morph between two famous faces (50/50% A/B), or a Fourier phase randomized face (as a control stimulus matched for low-level visual information) and the second (S2) was a face drawn from morph continua between identity A and B. Participants' performance in matching S2s to either A or B revealed contrastive aftereffects for ambiguous S2 faces, which were more likely perceived as identity B following the presentation of A and vice versa. Unambiguous S2 faces, however, showed PR, with significantly shorter response times, as well as higher classification performance, for identity-congruent than for incongruent S1-S2 pairs. Analyses of the simultaneously recorded ERPs revealed clear categorical adaptation at around 155-205 msec post-stimulus onset. We also found amplitude modulations for unambiguous S2 faces following identity-congruent S1 faces, related to PR, starting at 90 msec and being the most pronounced at around 205-255 msec. For ambiguous S2 faces, we also observed an ERP effect at around 205-255 msec that was correlated with behavioural AEs. Our results show that face PR and AEs are present simultaneously within a single paradigm, depending on the ambiguity of S2 faces and/or on the similarity of S1 and S2, and suggest that exclusive mechanisms might underlie both PR and AEs and that object-category and identity processing might run in parallel during face processing. PMID:23021070

  10. Adaptive neural control for a class of perturbed strict-feedback nonlinear time-delay systems.

    PubMed

    Wang, Min; Chen, Bing; Shi, Peng

    2008-06-01

    This paper proposes a novel adaptive neural control scheme for a class of perturbed strict-feedback nonlinear time-delay systems with unknown virtual control coefficients. Based on the radial basis function neural network online approximation capability, an adaptive neural controller is presented by combining the backstepping approach and Lyapunov-Krasovskii functionals. The proposed controller guarantees the semiglobal boundedness of all the signals in the closed-loop system and contains minimal learning parameters. Finally, three simulation examples are given to demonstrate the effectiveness and applicability of the proposed scheme.

  11. Genetic algorithm based adaptive neural network ensemble and its application in predicting carbon flux

    USGS Publications Warehouse

    Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.

    2007-01-01

    To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.

  12. An adaptive neural swarm approach for intrusion defense in ad hoc networks

    NASA Astrophysics Data System (ADS)

    Cannady, James

    2011-06-01

    Wireless sensor networks (WSN) and mobile ad hoc networks (MANET) are being increasingly deployed in critical applications due to the flexibility and extensibility of the technology. While these networks possess numerous advantages over traditional wireless systems in dynamic environments they are still vulnerable to many of the same types of host-based and distributed attacks common to those systems. Unfortunately, the limited power and bandwidth available in WSNs and MANETs, combined with the dynamic connectivity that is a defining characteristic of the technology, makes it extremely difficult to utilize traditional intrusion detection techniques. This paper describes an approach to accurately and efficiently detect potentially damaging activity in WSNs and MANETs. It enables the network as a whole to recognize attacks, anomalies, and potential vulnerabilities in a distributive manner that reflects the autonomic processes of biological systems. Each component of the network recognizes activity in its local environment and then contributes to the overall situational awareness of the entire system. The approach utilizes agent-based swarm intelligence to adaptively identify potential data sources on each node and on adjacent nodes throughout the network. The swarm agents then self-organize into modular neural networks that utilize a reinforcement learning algorithm to identify relevant behavior patterns in the data without supervision. Once the modular neural networks have established interconnectivity both locally and with neighboring nodes the analysis of events within the network can be conducted collectively in real-time. The approach has been shown to be extremely effective in identifying distributed network attacks.

  13. A study of interceptor attitude control based on adaptive wavelet neural networks

    NASA Astrophysics Data System (ADS)

    Li, Da; Wang, Qing-chao

    2005-12-01

    This paper engages to study the 3-DOF attitude control problem of the kinetic interceptor. When the kinetic interceptor enters into terminal guidance it has to maneuver with large angles. The characteristic of interceptor attitude system is nonlinearity, strong-coupling and MIMO. A kind of inverse control approach based on adaptive wavelet neural networks was proposed in this paper. Instead of using one complex neural network as the controller, the nonlinear dynamics of the interceptor can be approximated by three independent subsystems applying exact feedback-linearization firstly, and then controllers for each subsystem are designed using adaptive wavelet neural networks respectively. This method avoids computing a large amount of the weights and bias in one massive neural network and the control parameters can be adaptive changed online. Simulation results betray that the proposed controller performs remarkably well.

  14. The insula: a critical neural substrate for craving and drug seeking under conflict and risk

    PubMed Central

    Naqvi, Nasir H.; Gaznick, Natassia; Tranel, Daniel; Bechara, Antoine

    2014-01-01

    Drug addiction is characterized by the inability to control drug use when it results in negative consequences or conflicts with more adaptive goals. Our previous work showed that damage to the insula disrupted addiction to cigarette smoking—the first time that the insula was shown to be a critical neural substrate for addiction. Here, we review those findings, as well as more recent studies that corroborate and extend them, demonstrating the role of the insula in (1) incentive motivational processes that drive addictive behavior, (2) control processes that moderate or inhibit addictive behavior, and (3) interoceptive processes that represent bodily states associated with drug use. We then describe a theoretical framework that attempts to integrate these seemingly disparate findings. In this framework, the insula functions in the recall of interoceptive drug effects during craving and drug seeking under specific conditions where drug taking is perceived as risky and/or where there is conflict between drug taking and more adaptive goals. We describe this framework in an evolutionary context and discuss its implications for understanding the mechanisms of behavior change in addiction treatments. PMID:24690001

  15. A biomimetic adaptive algorithm and low-power architecture for implantable neural decoders.

    PubMed

    Rapoport, Benjamin I; Wattanapanitch, Woradorn; Penagos, Hector L; Musallam, Sam; Andersen, Richard A; Sarpeshkar, Rahul

    2009-01-01

    Algorithmically and energetically efficient computational architectures that operate in real time are essential for clinically useful neural prosthetic devices. Such devices decode raw neural data to obtain direct control signals for external devices. They can also perform data compression and vastly reduce the bandwidth and consequently power expended in wireless transmission of raw data from implantable brain-machine interfaces. We describe a biomimetic algorithm and micropower analog circuit architecture for decoding neural cell ensemble signals. The decoding algorithm implements a continuous-time artificial neural network, using a bank of adaptive linear filters with kernels that emulate synaptic dynamics. The filters transform neural signal inputs into control-parameter outputs, and can be tuned automatically in an on-line learning process. We provide experimental validation of our system using neural data from thalamic head-direction cells in an awake behaving rat.

  16. A Biomimetic Adaptive Algorithm and Low-Power Architecture for Implantable Neural Decoders

    PubMed Central

    Rapoport, Benjamin I.; Wattanapanitch, Woradorn; Penagos, Hector L.; Musallam, Sam; Andersen, Richard A.; Sarpeshkar, Rahul

    2010-01-01

    Algorithmically and energetically efficient computational architectures that operate in real time are essential for clinically useful neural prosthetic devices. Such devices decode raw neural data to obtain direct control signals for external devices. They can also perform data compression and vastly reduce the bandwidth and consequently power expended in wireless transmission of raw data from implantable brain-machine interfaces. We describe a biomimetic algorithm and micropower analog circuit architecture for decoding neural cell ensemble signals. The decoding algorithm implements a continuous-time artificial neural network, using a bank of adaptive linear filters with kernels that emulate synaptic dynamics. The filters transform neural signal inputs into control-parameter outputs, and can be tuned automatically in an on-line learning process. We provide experimental validation of our system using neural data from thalamic head-direction cells in an awake behaving rat. PMID:19964345

  17. Adaptive artificial neural network for autonomous robot control

    NASA Technical Reports Server (NTRS)

    Arras, Michael K.; Protzel, Peter W.; Palumbo, Daniel L.

    1992-01-01

    The topics are presented in viewgraph form and include: neural network controller for robot arm positioning with visual feedback; initial training of the arm; automatic recovery from cumulative fault scenarios; and error reduction by iterative fine movements.

  18. Identification and Control of Aircrafts using Multiple Models and Adaptive Critics

    NASA Technical Reports Server (NTRS)

    Principe, Jose C.

    2007-01-01

    nutshell, the states of the reservoir of recurrent processing elements implement a projection space, where the desired response is optimally projected. This architecture trades training efficiency by a large increase in the dimension of the recurrent layer. However, the power of the recurrent neural networks can be brought to bear on practical difficult problems. Our goal was to implement an adaptive critic architecture implementing Bellman s approach to optimal control. However, we could only characterize the ESN performance as a critic in value function evaluation, which is just one of the pieces of the overall adaptive critic controller. The results were very convincing, and the simplicity of the implementation was unparalleled.

  19. Criticality as a Set-Point for Adaptive Behavior in Neuromorphic Hardware

    PubMed Central

    Srinivasa, Narayan; Stepp, Nigel D.; Cruz-Albrecht, Jose

    2015-01-01

    Neuromorphic hardware are designed by drawing inspiration from biology to overcome limitations of current computer architectures while forging the development of a new class of autonomous systems that can exhibit adaptive behaviors. Several designs in the recent past are capable of emulating large scale networks but avoid complexity in network dynamics by minimizing the number of dynamic variables that are supported and tunable in hardware. We believe that this is due to the lack of a clear understanding of how to design self-tuning complex systems. It has been widely demonstrated that criticality appears to be the default state of the brain and manifests in the form of spontaneous scale-invariant cascades of neural activity. Experiment, theory and recent models have shown that neuronal networks at criticality demonstrate optimal information transfer, learning and information processing capabilities that affect behavior. In this perspective article, we argue that understanding how large scale neuromorphic electronics can be designed to enable emergent adaptive behavior will require an understanding of how networks emulated by such hardware can self-tune local parameters to maintain criticality as a set-point. We believe that such capability will enable the design of truly scalable intelligent systems using neuromorphic hardware that embrace complexity in network dynamics rather than avoiding it. PMID:26648839

  20. Criticality as a Set-Point for Adaptive Behavior in Neuromorphic Hardware.

    PubMed

    Srinivasa, Narayan; Stepp, Nigel D; Cruz-Albrecht, Jose

    2015-01-01

    Neuromorphic hardware are designed by drawing inspiration from biology to overcome limitations of current computer architectures while forging the development of a new class of autonomous systems that can exhibit adaptive behaviors. Several designs in the recent past are capable of emulating large scale networks but avoid complexity in network dynamics by minimizing the number of dynamic variables that are supported and tunable in hardware. We believe that this is due to the lack of a clear understanding of how to design self-tuning complex systems. It has been widely demonstrated that criticality appears to be the default state of the brain and manifests in the form of spontaneous scale-invariant cascades of neural activity. Experiment, theory and recent models have shown that neuronal networks at criticality demonstrate optimal information transfer, learning and information processing capabilities that affect behavior. In this perspective article, we argue that understanding how large scale neuromorphic electronics can be designed to enable emergent adaptive behavior will require an understanding of how networks emulated by such hardware can self-tune local parameters to maintain criticality as a set-point. We believe that such capability will enable the design of truly scalable intelligent systems using neuromorphic hardware that embrace complexity in network dynamics rather than avoiding it. PMID:26648839

  1. Adaptive neural control for a class of nonlinearly parametric time-delay systems.

    PubMed

    Ho, Daniel W C; Li, Junmin; Niu, Yugang

    2005-05-01

    In this paper, an adaptive neural controller for a class of time-delay nonlinear systems with unknown nonlinearities is proposed. Based on a wavelet neural network (WNN) online approximation model, a state feedback adaptive controller is obtained by constructing a novel integral-type Lyapunov-Krasovskii functional, which also efficiently overcomes the controller singularity problem. It is shown that the proposed method guarantees the semiglobal boundedness of all signals in the adaptive closed-loop systems. An example is provided to illustrate the application of the approach.

  2. Establishing a Dynamic Self-Adaptation Learning Algorithm of the BP Neural Network and Its Applications

    NASA Astrophysics Data System (ADS)

    Li, Xiaofeng; Xiang, Suying; Zhu, Pengfei; Wu, Min

    2015-12-01

    In order to avoid the inherent deficiencies of the traditional BP neural network, such as slow convergence speed, that easily leading to local minima, poor generalization ability and difficulty in determining the network structure, the dynamic self-adaptive learning algorithm of the BP neural network is put forward to improve the function of the BP neural network. The new algorithm combines the merit of principal component analysis, particle swarm optimization, correlation analysis and self-adaptive model, hence can effectively solve the problems of selecting structural parameters, initial connection weights and thresholds and learning rates of the BP neural network. This new algorithm not only reduces the human intervention, optimizes the topological structures of BP neural networks and improves the network generalization ability, but also accelerates the convergence speed of a network, avoids trapping into local minima, and enhances network adaptation ability and prediction ability. The dynamic self-adaptive learning algorithm of the BP neural network is used to forecast the total retail sale of consumer goods of Sichuan Province, China. Empirical results indicate that the new algorithm is superior to the traditional BP network algorithm in predicting accuracy and time consumption, which shows the feasibility and effectiveness of the new algorithm.

  3. Shifted encoding strategy in retinal luminance adaptation: from firing rate to neural correlation.

    PubMed

    Xiao, Lei; Zhang, Mingsha; Xing, Dajun; Liang, Pei-Ji; Wu, Si

    2013-10-01

    Neuronal responses to prolonged stimulation attenuate over time. Here, we ask a fundamental question: is adaptation a simple process for the neural system during which sustained input is ignored, or is it actually part of a strategy for the neural system to adjust its encoding properties dynamically? After simultaneously recording the activities of a group of bullfrog's retinal ganglion cells (dimming detectors) in response to sustained dimming stimulation, we applied a combination of information analysis approaches to explore the time-dependent nature of information encoding during the adaptation. We found that at the early stage of the adaptation, the stimulus information was mainly encoded in firing rates, whereas at the late stage of the adaptation, it was more encoded in neural correlations. Such a transition in encoding properties is not a simple consequence of the attenuation of neuronal firing rates, but rather involves an active change in the neural correlation strengths, suggesting that it is a strategy adopted by the neural system for functional purposes. Our results reveal that in encoding a prolonged stimulation, the neural system may utilize concerted, but less active, firings of neurons to encode information.

  4. Artificial frame filling using adaptive neural fuzzy inference system for particle image velocimetry dataset

    NASA Astrophysics Data System (ADS)

    Akdemir, Bayram; Doǧan, Sercan; Aksoy, Muharrem H.; Canli, Eyüp; Özgören, Muammer

    2015-03-01

    Liquid behaviors are very important for many areas especially for Mechanical Engineering. Fast camera is a way to observe and search the liquid behaviors. Camera traces the dust or colored markers travelling in the liquid and takes many pictures in a second as possible as. Every image has large data structure due to resolution. For fast liquid velocity, there is not easy to evaluate or make a fluent frame after the taken images. Artificial intelligence has much popularity in science to solve the nonlinear problems. Adaptive neural fuzzy inference system is a common artificial intelligence in literature. Any particle velocity in a liquid has two dimension speed and its derivatives. Adaptive Neural Fuzzy Inference System has been used to create an artificial frame between previous and post frames as offline. Adaptive neural fuzzy inference system uses velocities and vorticities to create a crossing point vector between previous and post points. In this study, Adaptive Neural Fuzzy Inference System has been used to fill virtual frames among the real frames in order to improve image continuity. So this evaluation makes the images much understandable at chaotic or vorticity points. After executed adaptive neural fuzzy inference system, the image dataset increase two times and has a sequence as virtual and real, respectively. The obtained success is evaluated using R2 testing and mean squared error. R2 testing has a statistical importance about similarity and 0.82, 0.81, 0.85 and 0.8 were obtained for velocities and derivatives, respectively.

  5. Critical avalanches and subsampling in map-based neural networks coupled with noisy synapses.

    PubMed

    Girardi-Schappo, M; Kinouchi, O; Tragtenberg, M H R

    2013-08-01

    Many different kinds of noise are experimentally observed in the brain. Among them, we study a model of noisy chemical synapse and obtain critical avalanches for the spatiotemporal activity of the neural network. Neurons and synapses are modeled by dynamical maps. We discuss the relevant neuronal and synaptic properties to achieve the critical state. We verify that networks of functionally excitable neurons with fast synapses present power-law avalanches, due to rebound spiking dynamics. We also discuss the measuring of neuronal avalanches by subsampling our data, shedding light on the experimental search for self-organized criticality in neural networks.

  6. Critical behavior of large maximally informative neural populations

    NASA Astrophysics Data System (ADS)

    Berkowitz, John; Sharpee, Tatyana

    We consider maximally informative encoding of scalar signals by neural populations. In a small time window, neural responses are binary, with spiking probability that follows a sigmoidal tuning curve. The width of the tuning curve represents effective noise in neural transmission. Previous analyses of this problem for relatively small numbers of neurons with identical noise parameters indicated the presence of multiple bifurcations that occurred with decreasing noise value. For very high noise values, maximal information is achieved when all neurons have the same threshold values. With decreasing noise, the threshold values split into two or more groups via a series of bifurcations, until finally each neuron has a different threshold. Analyzing this problem in the large N limit, we found instead that there is a single phase transition from redundant coding to coding based on distributed thresholds. The order parameter of this transition is the threshold standard deviation across the population; differences in noise parameter from the mean are analogous to local magnetic fields. Near the bifurcation point, information transmitted follows a Landau expansion. We use this expansion to quantify the scaling of the order parameter with noise and effective magnetic field. NSF CAREER Award IIS-1254123, NSF Ideas Lab Collaborative Research IOS 1556388.

  7. Robust adaptive backstepping neural networks control for spacecraft rendezvous and docking with input saturation.

    PubMed

    Xia, Kewei; Huo, Wei

    2016-05-01

    This paper presents a robust adaptive neural networks control strategy for spacecraft rendezvous and docking with the coupled position and attitude dynamics under input saturation. Backstepping technique is applied to design a relative attitude controller and a relative position controller, respectively. The dynamics uncertainties are approximated by radial basis function neural networks (RBFNNs). A novel switching controller consists of an adaptive neural networks controller dominating in its active region combined with an extra robust controller to avoid invalidation of the RBFNNs destroying stability of the system outside the neural active region. An auxiliary signal is introduced to compensate the input saturation with anti-windup technique, and a command filter is employed to approximate derivative of the virtual control in the backstepping procedure. Globally uniformly ultimately bounded of the relative states is proved via Lyapunov theory. Simulation example demonstrates effectiveness of the proposed control scheme.

  8. Robust adaptive backstepping neural networks control for spacecraft rendezvous and docking with input saturation.

    PubMed

    Xia, Kewei; Huo, Wei

    2016-05-01

    This paper presents a robust adaptive neural networks control strategy for spacecraft rendezvous and docking with the coupled position and attitude dynamics under input saturation. Backstepping technique is applied to design a relative attitude controller and a relative position controller, respectively. The dynamics uncertainties are approximated by radial basis function neural networks (RBFNNs). A novel switching controller consists of an adaptive neural networks controller dominating in its active region combined with an extra robust controller to avoid invalidation of the RBFNNs destroying stability of the system outside the neural active region. An auxiliary signal is introduced to compensate the input saturation with anti-windup technique, and a command filter is employed to approximate derivative of the virtual control in the backstepping procedure. Globally uniformly ultimately bounded of the relative states is proved via Lyapunov theory. Simulation example demonstrates effectiveness of the proposed control scheme. PMID:26892402

  9. Cumulative history quantifies the role of neural adaptation in multistable perception.

    PubMed

    Pastukhov, Alexander; Braun, Jochen

    2011-09-19

    Neural adaptation plays an important role in multistable perception, but its effects are difficult to discern in sequences of perceptual reversals. Investigating the multistable appearance of kinetic depth and binocular rivalry displays, we introduce cumulative history as a novel statistical measure of adaptive state. We show that cumulative history-an integral of past perceptual states, weighted toward the most recent states-significantly and consistently correlates with future dominance durations: the larger the cumulative history measure, the shorter are future dominance times, revealing a robust effect of neural adaptation. The characteristic time scale of cumulative history, which may be computed by Monte Carlo methods, correlates with average dominance durations, as expected for a measure of neural adaptation. When the cumulative histories of two competing percepts are balanced, perceptual reversals take longer and their outcome becomes random, demonstrating that perceptual reversals are fluctuation-driven in the absence of adaptational bias. Our findings quantify the role of neural adaptation in multistable perception, which accounts for approximately 10% of the variability of reversal timing.

  10. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot.

    PubMed

    Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin; Manoonpong, Poramate

    2015-01-01

    Walking animals, like insects, with little neural computing can effectively perform complex behaviors. For example, they can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking robot is a challenging task. Thus, in this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking robot. The turning information is transmitted as descending steering signals to the neural locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations. The adaptation also enables the robot to effectively escape from sharp corners or deadlocks. Using backbone joint control embedded in the the locomotion control allows the robot to climb over small obstacles

  11. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot.

    PubMed

    Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin; Manoonpong, Poramate

    2015-01-01

    Walking animals, like insects, with little neural computing can effectively perform complex behaviors. For example, they can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking robot is a challenging task. Thus, in this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking robot. The turning information is transmitted as descending steering signals to the neural locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations. The adaptation also enables the robot to effectively escape from sharp corners or deadlocks. Using backbone joint control embedded in the the locomotion control allows the robot to climb over small obstacles

  12. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot

    PubMed Central

    Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin; Manoonpong, Poramate

    2015-01-01

    Walking animals, like insects, with little neural computing can effectively perform complex behaviors. For example, they can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking robot is a challenging task. Thus, in this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking robot. The turning information is transmitted as descending steering signals to the neural locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations. The adaptation also enables the robot to effectively escape from sharp corners or deadlocks. Using backbone joint control embedded in the the locomotion control allows the robot to climb over small obstacles

  13. Vocal learning in elephants: neural bases and adaptive context.

    PubMed

    Stoeger, Angela S; Manger, Paul

    2014-10-01

    In the last decade clear evidence has accumulated that elephants are capable of vocal production learning. Examples of vocal imitation are documented in African (Loxodonta africana) and Asian (Elephas maximus) elephants, but little is known about the function of vocal learning within the natural communication systems of either species. We are also just starting to identify the neural basis of elephant vocalizations. The African elephant diencephalon and brainstem possess specializations related to aspects of neural information processing in the motor system (affecting the timing and learning of trunk movements) and the auditory and vocalization system. Comparative interdisciplinary (from behavioral to neuroanatomical) studies are strongly warranted to increase our understanding of both vocal learning and vocal behavior in elephants.

  14. Vocal learning in elephants: neural bases and adaptive context

    PubMed Central

    Stoeger, Angela S; Manger, Paul

    2014-01-01

    In the last decade clear evidence has accumulated that elephants are capable of vocal production learning. Examples of vocal imitation are documented in African (Loxodonta africana) and Asian (Elephas maximus) elephants, but little is known about the function of vocal learning within the natural communication systems of either species. We are also just starting to identify the neural basis of elephant vocalizations. The African elephant diencephalon and brainstem possess specializations related to aspects of neural information processing in the motor system (affecting the timing and learning of trunk movements) and the auditory and vocalization system. Comparative interdisciplinary (from behavioral to neuroanatomical) studies are strongly warranted to increase our understanding of both vocal learning and vocal behavior in elephants. PMID:25062469

  15. Vocal learning in elephants: neural bases and adaptive context.

    PubMed

    Stoeger, Angela S; Manger, Paul

    2014-10-01

    In the last decade clear evidence has accumulated that elephants are capable of vocal production learning. Examples of vocal imitation are documented in African (Loxodonta africana) and Asian (Elephas maximus) elephants, but little is known about the function of vocal learning within the natural communication systems of either species. We are also just starting to identify the neural basis of elephant vocalizations. The African elephant diencephalon and brainstem possess specializations related to aspects of neural information processing in the motor system (affecting the timing and learning of trunk movements) and the auditory and vocalization system. Comparative interdisciplinary (from behavioral to neuroanatomical) studies are strongly warranted to increase our understanding of both vocal learning and vocal behavior in elephants. PMID:25062469

  16. Lithofacies identification using multiple adaptive resonance theory neural networks and group decision expert system

    USGS Publications Warehouse

    Chang, H.-C.; Kopaska-Merkel, D. C.; Chen, H.-C.; Rocky, Durrans S.

    2000-01-01

    Lithofacies identification supplies qualitative information about rocks. Lithofacies represent rock textures and are important components of hydrocarbon reservoir description. Traditional techniques of lithofacies identification from core data are costly and different geologists may provide different interpretations. In this paper, we present a low-cost intelligent system consisting of three adaptive resonance theory neural networks and a rule-based expert system to consistently and objectively identify lithofacies from well-log data. The input data are altered into different forms representing different perspectives of observation of lithofacies. Each form of input is processed by a different adaptive resonance theory neural network. Among these three adaptive resonance theory neural networks, one neural network processes the raw continuous data, another processes categorial data, and the third processes fuzzy-set data. Outputs from these three networks are then combined by the expert system using fuzzy inference to determine to which facies the input data should be assigned. Rules are prioritized to emphasize the importance of firing order. This new approach combines the learning ability of neural networks, the adaptability of fuzzy logic, and the expertise of geologists to infer facies of the rocks. This approach is applied to the Appleton Field, an oil field located in Escambia County, Alabama. The hybrid intelligence system predicts lithofacies identity from log data with 87.6% accuracy. This prediction is more accurate than those of single adaptive resonance theory networks, 79.3%, 68.0% and 66.0%, using raw, fuzzy-set, and categorical data, respectively, and by an error-backpropagation neural network, 57.3%. (C) 2000 Published by Elsevier Science Ltd. All rights reserved.

  17. Neural adaptation in the generation of rhythmic behavior.

    PubMed

    Pearson, K G

    2000-01-01

    Motor systems can adapt rapidly to changes in external conditions and to switching of internal goals. They can also adapt slowly in response to training, alterations in the mechanics of the system, and any changes in the system resulting from injury. This article reviews the mechanisms underlying short- and long-term adaptation in rhythmic motor systems. The neuronal networks underlying the generation of rhythmic motor patterns (central pattern generators; CPGs) are extremely flexible. Neuromodulators, central commands, and afferent signals all influence the pattern produced by a CPG by altering the cellular and synaptic properties of individual neurons and the coupling between different populations of neurons. This flexibility allows the generation of a variety of motor patterns appropriate for the mechanical requirements of different forms of a behavior. The matching of motor output to mechanical requirements depends on the capacity of pattern-generating networks to adapt to slow changes in body mechanics and persistent errors in performance. Afferent feedback from body and limb proprioceptors likely plays an important role in driving these long-term adaptive processes.

  18. Identification and adaptive neural network control of a DC motor system with dead-zone characteristics.

    PubMed

    Peng, Jinzhu; Dubay, Rickey

    2011-10-01

    In this paper, an adaptive control approach based on the neural networks is presented to control a DC motor system with dead-zone characteristics (DZC), where two neural networks are proposed to formulate the traditional identification and control approaches. First, a Wiener-type neural network (WNN) is proposed to identify the motor DZC, which formulates the Wiener model with a linear dynamic block in cascade with a nonlinear static gain. Second, a feedforward neural network is proposed to formulate the traditional PID controller, termed as PID-type neural network (PIDNN), which is then used to control and compensate for the DZC. In this way, the DC motor system with DZC is identified by the WNN identifier, which provides model information to the PIDNN controller in order to make it adaptive. Back-propagation algorithms are used to train both neural networks. Also, stability and convergence analysis are conducted using the Lyapunov theorem. Finally, experiments on the DC motor system demonstrated accurate identification and good compensation for dead-zone with improved control performance over the conventional PID control.

  19. Self-organized criticality as a fundamental property of neural systems

    PubMed Central

    Hesse, Janina; Gross, Thilo

    2014-01-01

    The neural criticality hypothesis states that the brain may be poised in a critical state at a boundary between different types of dynamics. Theoretical and experimental studies show that critical systems often exhibit optimal computational properties, suggesting the possibility that criticality has been evolutionarily selected as a useful trait for our nervous system. Evidence for criticality has been found in cell cultures, brain slices, and anesthetized animals. Yet, inconsistent results were reported for recordings in awake animals and humans, and current results point to open questions about the exact nature and mechanism of criticality, as well as its functional role. Therefore, the criticality hypothesis has remained a controversial proposition. Here, we provide an account of the mathematical and physical foundations of criticality. In the light of this conceptual framework, we then review and discuss recent experimental studies with the aim of identifying important next steps to be taken and connections to other fields that should be explored. PMID:25294989

  20. Automated implementation of rule-based expert systems with neural networks for time-critical applications

    NASA Technical Reports Server (NTRS)

    Ramamoorthy, P. A.; Huang, Song; Govind, Girish

    1991-01-01

    In fault diagnosis, control and real-time monitoring, both timing and accuracy are critical for operators or machines to reach proper solutions or appropriate actions. Expert systems are becoming more popular in the manufacturing community for dealing with such problems. In recent years, neural networks have revived and their applications have spread to many areas of science and engineering. A method of using neural networks to implement rule-based expert systems for time-critical applications is discussed here. This method can convert a given rule-based system into a neural network with fixed weights and thresholds. The rules governing the translation are presented along with some examples. We also present the results of automated machine implementation of such networks from the given rule-base. This significantly simplifies the translation process to neural network expert systems from conventional rule-based systems. Results comparing the performance of the proposed approach based on neural networks vs. the classical approach are given. The possibility of very large scale integration (VLSI) realization of such neural network expert systems is also discussed.

  1. Electrical stimulation superimposed on voluntary training can limit sensory integration in neural adaptations.

    PubMed

    Paillard, Thierry

    2012-01-01

    P. Bezerra, S. Zhou, Z. Crowley, A. Davie, and R. Baglin (2011) suggested that the neural mechanisms responsible for steadiness improvement relate in particular to the discharge behavior of motor units and the practice and learning of skills rather than the strength gain after electromyostimulation superimposed over voluntary training. However, the afferent inputs are determining in control of the force level produced and thus contribute to ensure muscle steadiness. Hence, it is possible that electromyostimulation interferes in neurophysiological afference integration and prevents neural adaptations that enable improvement of the control of force (and then muscle steadiness) to occur. Therefore, the neural adaptations induced by electromyostimulation superimposed onto voluntary training should also be researched in relation to the sensory pathways.

  2. Adaptive Neural Star Tracker Calibration for Precision Spacecraft Pointing and Tracking

    NASA Technical Reports Server (NTRS)

    Bayard, David S.

    1996-01-01

    The Star Tracker is an essential sensor for precision pointing and tracking in most 3-axis stabilized spacecraft. In the interest (of) improving pointing performance by taking advantage of dramatic increases in flight computer power and memory anticipated over the next decade, this paper investigates the use of a neural net for adaptive in-flight calibration of the Star Tracker.

  3. The neural oscillations of conflict adaptation in the human frontal region.

    PubMed

    Tang, Dandan; Hu, Li; Chen, Antao

    2013-07-01

    Incongruency between print color and the semantic meaning of a word in a classical Stroop task activates the human conflict monitoring system and triggers a behavioral conflict. Conflict adaptation has been suggested to mediate the cortical processing of neural oscillations in such a conflict situation. However, the basic mechanisms that underlie the influence of conflict adaptation on the changes of neural oscillations are not clear. In the present study, electroencephalography (EEG) data were recorded from sixteen healthy human participants while they were performing a color-word Stroop task within a novel look-to-do transition design that included two response modalities. In the 'look' condition, participants were informed to look at the color of presented words but no responses were required; in the 'do' condition, they were informed to make arranged responses to the color of presented words. Behaviorally, a reliable conflict adaptation was observed. Time-frequency analysis revealed that (1) in the 'look' condition, theta-band activity in the left- and right-frontal regions reflected a conflict-related process at a response inhibition level; and (2) in the 'do' condition, both theta-band activity in the left-frontal region and alpha-band activity in the left-, right-, and centro-frontal regions reflected a process of conflict control, which triggered neural and behavioral adaptation. Taken together, these results suggest that there are frontal mechanisms involving neural oscillations that can mediate response inhibition processes and control behavioral conflict.

  4. An Application Specific Instruction Set Processor (ASIP) for Adaptive Filters in Neural Prosthetics.

    PubMed

    Xin, Yao; Li, Will X Y; Zhang, Zhaorui; Cheung, Ray C C; Song, Dong; Berger, Theodore W

    2015-01-01

    Neural coding is an essential process for neuroprosthetic design, in which adaptive filters have been widely utilized. In a practical application, it is needed to switch between different filters, which could be based on continuous observations or point process, when the neuron models, conditions, or system requirements have changed. As candidates of coding chip for neural prostheses, low-power general purpose processors are not computationally efficient especially for large scale neural population coding. Application specific integrated circuits (ASICs) do not have flexibility to switch between different adaptive filters while the cost for design and fabrication is formidable. In this research work, we explore an application specific instruction set processor (ASIP) for adaptive filters in neural decoding activity. The proposed architecture focuses on efficient computation for the most time-consuming matrix/vector operations among commonly used adaptive filters, being able to provide both flexibility and throughput. Evaluation and implementation results are provided to demonstrate that the proposed ASIP design is area-efficient while being competitive to commercial CPUs in computational performance.

  5. An Application Specific Instruction Set Processor (ASIP) for Adaptive Filters in Neural Prosthetics.

    PubMed

    Xin, Yao; Li, Will X Y; Zhang, Zhaorui; Cheung, Ray C C; Song, Dong; Berger, Theodore W

    2015-01-01

    Neural coding is an essential process for neuroprosthetic design, in which adaptive filters have been widely utilized. In a practical application, it is needed to switch between different filters, which could be based on continuous observations or point process, when the neuron models, conditions, or system requirements have changed. As candidates of coding chip for neural prostheses, low-power general purpose processors are not computationally efficient especially for large scale neural population coding. Application specific integrated circuits (ASICs) do not have flexibility to switch between different adaptive filters while the cost for design and fabrication is formidable. In this research work, we explore an application specific instruction set processor (ASIP) for adaptive filters in neural decoding activity. The proposed architecture focuses on efficient computation for the most time-consuming matrix/vector operations among commonly used adaptive filters, being able to provide both flexibility and throughput. Evaluation and implementation results are provided to demonstrate that the proposed ASIP design is area-efficient while being competitive to commercial CPUs in computational performance. PMID:26451817

  6. Distinguishing Conjoint and Independent Neural Tuning for Stimulus Features With fMRI Adaptation

    PubMed Central

    Drucker, Daniel M.; Kerr, Wesley Thomas; Aguirre, Geoffrey Karl

    2009-01-01

    A central focus of cognitive neuroscience is identification of the neural codes that represent stimulus dimensions. One common theme is the study of whether dimensions, such as color and shape, are encoded independently by separate pools of neurons or are represented by neurons conjointly tuned for both properties. We describe an application of functional magnetic resonance imaging (fMRI) adaptation to distinguish between independent and conjoint neural representations of dimensions by examining the neural signal evoked by changes in one versus two stimulus dimensions and considering the metric of two-dimension additivity. We describe how a continuous carry-over paradigm may be used to efficiently estimate this metric. The assumptions of the method are examined as are optimizations. Finally, we demonstrate that the method produces the expected result for fMRI data collected from ventral occipitotemporal cortex while subjects viewed sets of shapes predicted to be represented by conjoint or independent neural tuning. PMID:19357342

  7. Manipulator adaptive control by neural networks in an orange picking robot.

    PubMed

    Cavalieri, S; Plebe, A

    1996-12-01

    The paper focuses on the use of neural networks for process identification in an orange-picking robot adaptive control system. The results that will be shown in the paper refer to a study carried out under the European Community ESPRIT project "CONNY", dealing with the application of neural networks to robotics. The aim of the research is to verify the possibility of integrating a neural identification module in a traditional system to control the movement of the manipulators of the robot. The paper illustrates integration of neural identification in the existing orange-picking robot control system, highlighting the improvement of performance obtainable. Although the proposal refers to a specific robot, it can be applied to any system with the same dynamic features. PMID:9113534

  8. Improved methods in neural network-based adaptive output feedback control, with applications to flight control

    NASA Astrophysics Data System (ADS)

    Kim, Nakwan

    Utilizing the universal approximation property of neural networks, we develop several novel approaches to neural network-based adaptive output feedback control of nonlinear systems, and illustrate these approaches for several flight control applications. In particular, we address the problem of non-affine systems and eliminate the fixed point assumption present in earlier work. All of the stability proofs are carried out in a form that eliminates an algebraic loop in the neural network implementation. An approximate input/output feedback linearizing controller is augmented with a neural network using input/output sequences of the uncertain system. These approaches permit adaptation to both parametric uncertainty and unmodeled dynamics. All physical systems also have control position and rate limits, which may either deteriorate performance or cause instability for a sufficiently high control bandwidth. Here we apply a method for protecting an adaptive process from the effects of input saturation and time delays, known as "pseudo control hedging". This method was originally developed for the state feedback case, and we provide a stability analysis that extends its domain of applicability to the case of output feedback. The approach is illustrated by the design of a pitch-attitude flight control system for a linearized model of an R-50 experimental helicopter, and by the design of a pitch-rate control system for a 58-state model of a flexible aircraft consisting of rigid body dynamics coupled with actuator and flexible modes. A new approach to augmentation of an existing linear controller is introduced. It is especially useful when there is limited information concerning the plant model, and the existing controller. The approach is applied to the design of an adaptive autopilot for a guided munition. Design of a neural network adaptive control that ensures asymptotically stable tracking performance is also addressed.

  9. Adaptive neural models of queuing and timing in fluent action.

    PubMed

    Bullock, Daniel

    2004-09-01

    In biological cognition, specialized representations and associated control processes solve the temporal problems inherent in skilled action. Recent data and neural circuit models highlight three distinct levels of temporal structure: sequence preparation, velocity scaling, and state-sensitive timing. Short sequences of actions are prepared collectively in prefrontal cortex, then queued for performance by a cyclic competitive process that operates on a parallel analog representation. Successful acts like ball-catching depend on coordinated scaling of effector velocities, and velocity scaling, mediated by the basal ganglia, may be coupled to perceived time-to-contact. Making acts accurate at high speeds requires state-sensitive and precisely timed activations of muscle forces in patterns that accelerate and decelerate the effectors. The cerebellum may provide a maximally efficient representational basis for learning to generate such timed activation patterns.

  10. Application of neural adaptive power system stabilizer in a multi-machine power system

    SciTech Connect

    Shamsollahi, P.; Malik, O.P.

    1999-09-01

    Application of a neural adaptive power system stabilizer (NAPSS) to a five-machine power system is described in this paper. The proposed NAPSS comprises two subnetworks. The adaptive neuro-identifier (ANI) to dynamically identify the non-linear plant, and the adaptive neuro-controller (ANC) to damp output oscillations. The back-propagation training method is used on-line to train these subnetworks. The effectiveness of the proposed NAPSS in damping both local and inter-area modes of oscillations and its self-coordination ability are demonstrated.

  11. Physiological and Neural Adaptations to Eccentric Exercise: Mechanisms and Considerations for Training

    PubMed Central

    Hedayatpour, Nosratollah; Falla, Deborah

    2015-01-01

    Eccentric exercise is characterized by initial unfavorable effects such as subcellular muscle damage, pain, reduced fiber excitability, and initial muscle weakness. However, stretch combined with overload, as in eccentric contractions, is an effective stimulus for inducing physiological and neural adaptations to training. Eccentric exercise-induced adaptations include muscle hypertrophy, increased cortical activity, and changes in motor unit behavior, all of which contribute to improved muscle function. In this brief review, neuromuscular adaptations to different forms of exercise are reviewed, the positive training effects of eccentric exercise are presented, and the implications for training are considered. PMID:26543850

  12. Physiological and Neural Adaptations to Eccentric Exercise: Mechanisms and Considerations for Training.

    PubMed

    Hedayatpour, Nosratollah; Falla, Deborah

    2015-01-01

    Eccentric exercise is characterized by initial unfavorable effects such as subcellular muscle damage, pain, reduced fiber excitability, and initial muscle weakness. However, stretch combined with overload, as in eccentric contractions, is an effective stimulus for inducing physiological and neural adaptations to training. Eccentric exercise-induced adaptations include muscle hypertrophy, increased cortical activity, and changes in motor unit behavior, all of which contribute to improved muscle function. In this brief review, neuromuscular adaptations to different forms of exercise are reviewed, the positive training effects of eccentric exercise are presented, and the implications for training are considered.

  13. Practical experiences with an adaptive neural network short-term load forecasting system

    SciTech Connect

    Mohammed, O.; Park, D.; Merchant, R.; Dinh, T.; Tong, C.; Azeem, A.; Farah, J.; Drake, C.

    1995-02-01

    An adaptive neural network based short-term electric load forecasting system is presented. The system is developed and implemented for Florida Power and Light Company (FPL). Practical experiences with the system are discussed. The system accounts for seasonal and daily characteristics, as well as abnormal conditions such as cold fronts, heat waves, holidays and other conditions. It is capable of forecasting load with a lead time of one hour to seven days. The adaptive mechanism is used to train the neural networks when on-line. The results indicate that the load forecasting system presented gives robust and more accurate forecasts and allows greater adaptability to sudden climatic changes compared with statistical methods. The system is portable and can be modified to suit the requirements of other utility companies.

  14. Unipolar terminal-attractor based neural associative memory with adaptive threshold

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor); Barhen, Jacob (Inventor); Farhat, Nabil H. (Inventor); Wu, Chwan-Hwa (Inventor)

    1993-01-01

    A unipolar terminal-attractor based neural associative memory (TABAM) system with adaptive threshold for perfect convergence is presented. By adaptively setting the threshold values for the dynamic iteration for the unipolar binary neuron states with terminal-attractors for the purpose of reducing the spurious states in a Hopfield neural network for associative memory and using the inner product approach, perfect convergence and correct retrieval is achieved. Simulation is completed with a small number of stored states (M) and a small number of neurons (N) but a large M/N ratio. An experiment with optical exclusive-OR logic operation using LCTV SLMs shows the feasibility of optoelectronic implementation of the models. A complete inner-product TABAM is implemented using a PC for calculation of adaptive threshold values to achieve a unipolar TABAM (UIT) in the case where there is no crosstalk, and a crosstalk model (CRIT) in the case where crosstalk corrupts the desired state.

  15. Unipolar Terminal-Attractor Based Neural Associative Memory with Adaptive Threshold

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor); Barhen, Jacob (Inventor); Farhat, Nabil H. (Inventor); Wu, Chwan-Hwa (Inventor)

    1996-01-01

    A unipolar terminal-attractor based neural associative memory (TABAM) system with adaptive threshold for perfect convergence is presented. By adaptively setting the threshold values for the dynamic iteration for the unipolar binary neuron states with terminal-attractors for the purpose of reducing the spurious states in a Hopfield neural network for associative memory and using the inner-product approach, perfect convergence and correct retrieval is achieved. Simulation is completed with a small number of stored states (M) and a small number of neurons (N) but a large M/N ratio. An experiment with optical exclusive-OR logic operation using LCTV SLMs shows the feasibility of optoelectronic implementation of the models. A complete inner-product TABAM is implemented using a PC for calculation of adaptive threshold values to achieve a unipolar TABAM (UIT) in the case where there is no crosstalk, and a crosstalk model (CRIT) in the case where crosstalk corrupts the desired state.

  16. A neural learning classifier system with self-adaptive constructivism for mobile robot control.

    PubMed

    Hurst, Jacob; Bull, Larry

    2006-01-01

    For artificial entities to achieve true autonomy and display complex lifelike behavior, they will need to exploit appropriate adaptable learning algorithms. In this context adaptability implies flexibility guided by the environment at any given time and an open-ended ability to learn appropriate behaviors. This article examines the use of constructivism-inspired mechanisms within a neural learning classifier system architecture that exploits parameter self-adaptation as an approach to realize such behavior. The system uses a rule structure in which each rule is represented by an artificial neural network. It is shown that appropriate internal rule complexity emerges during learning at a rate controlled by the learner and that the structure indicates underlying features of the task. Results are presented in simulated mazes before moving to a mobile robot platform.

  17. Neural Adaptation across Viewpoint and Exemplar in Fusiform Cortex

    ERIC Educational Resources Information Center

    Harvey, Denise Y.; Burgund, E. Darcy

    2012-01-01

    The visual system has the remarkable ability to generalize across different viewpoints and exemplars to recognize abstract categories of objects, and to discriminate between different viewpoints and exemplars to recognize specific instances of particular objects. Behavioral experiments indicate the critical role of the right hemisphere in…

  18. Adaptive Control Using Neural Network Augmentation for a Modified F-15 Aircraft

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Williams-Hayes, Peggy; Karneshige, J. T.; Stachowiak, Susan J.

    2006-01-01

    Description of the performance of a simplified dynamic inversion controller with neural network augmentation follows. Simulation studies focus on the results with and without neural network adaptation through the use of an F-15 aircraft simulator that has been modified to include canards. Simulated control law performance with a surface failure, in addition to an aerodynamic failure, is presented. The aircraft, with adaptation, attempts to minimize the inertial cross-coupling effect of the failure (a control derivative anomaly associated with a jammed control surface). The dynamic inversion controller calculates necessary surface commands to achieve desired rates. The dynamic inversion controller uses approximate short period and roll axis dynamics. The yaw axis controller is a sideslip rate command system. Methods are described to reduce the cross-coupling effect and maintain adequate tracking errors for control surface failures. The aerodynamic failure destabilizes the pitching moment due to angle of attack. The results show that control of the aircraft with the neural networks is easier (more damped) than without the neural networks. Simulation results show neural network augmentation of the controller improves performance with aerodynamic and control surface failures in terms of tracking error and cross-coupling reduction.

  19. Mapping the dimensionality, density and topology of data: the growing adaptive neural gas.

    PubMed

    Cselényi, Zsolt

    2005-05-01

    Self-organized maps are commonly applied for tasks of cluster analysis, vector quantization or interpolation. The artificial neural network model introduced in this paper is a hybrid model of the growing neural gas model introduced by Fritzke (Fritzke, in Advances in Neural Information Processing Systems 7, MIT Press, Cambridge MA, 1995) and the adaptive resolution clustering modification for self-organized maps proposed by Firenze (Firenze et al., in International Conference on Artificial Neural Networks, Springer-Verlag, London, 1994). The hybrid model is capable of mapping the distribution, dimensionality and topology of the input data. It has a local performance measure that enables the network to terminate growing in areas of the input space that is mapped by units reaching a performance goal. Therefore the network can accurately map clusters of data appearing on different scales of density. The capabilities of the algorithm are tested using simulated datasets with similar spatial spread but different local density distributions, and a simulated multivariate MR dataset of an anatomical human brain phantom with mild multiple sclerosis lesions. These tests demonstrate the advantages of the model compared to the growing neural gas algorithm when adaptive mapping of areas with low sample density is desirable. PMID:15848269

  20. Integration of Online Parameter Identification and Neural Network for In-Flight Adaptive Control

    NASA Technical Reports Server (NTRS)

    Hageman, Jacob J.; Smith, Mark S.; Stachowiak, Susan

    2003-01-01

    An indirect adaptive system has been constructed for robust control of an aircraft with uncertain aerodynamic characteristics. This system consists of a multilayer perceptron pre-trained neural network, online stability and control derivative identification, a dynamic cell structure online learning neural network, and a model following control system based on the stochastic optimal feedforward and feedback technique. The pre-trained neural network and model following control system have been flight-tested, but the online parameter identification and online learning neural network are new additions used for in-flight adaptation of the control system model. A description of the modification and integration of these two stand-alone software packages into the complete system in preparation for initial flight tests is presented. Open-loop results using both simulation and flight data, as well as closed-loop performance of the complete system in a nonlinear, six-degree-of-freedom, flight validated simulation, are analyzed. Results show that this online learning system, in contrast to the nonlearning system, has the ability to adapt to changes in aerodynamic characteristics in a real-time, closed-loop, piloted simulation, resulting in improved flying qualities.

  1. Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques

    NASA Astrophysics Data System (ADS)

    Lohani, A. K.; Kumar, Rakesh; Singh, R. D.

    2012-06-01

    SummaryTime series modeling is necessary for the planning and management of reservoirs. More recently, the soft computing techniques have been used in hydrological modeling and forecasting. In this study, the potential of artificial neural networks and neuro-fuzzy system in monthly reservoir inflow forecasting are examined by developing and comparing monthly reservoir inflow prediction models, based on autoregressive (AR), artificial neural networks (ANNs) and adaptive neural-based fuzzy inference system (ANFIS). To take care the effect of monthly periodicity in the flow data, cyclic terms are also included in the ANN and ANFIS models. Working with time series flow data of the Sutlej River at Bhakra Dam, India, several ANN and adaptive neuro-fuzzy models are trained with different input vectors. To evaluate the performance of the selected ANN and adaptive neural fuzzy inference system (ANFIS) models, comparison is made with the autoregressive (AR) models. The ANFIS model trained with the input data vector including previous inflows and cyclic terms of monthly periodicity has shown a significant improvement in the forecast accuracy in comparison with the ANFIS models trained with the input vectors considering only previous inflows. In all cases ANFIS gives more accurate forecast than the AR and ANN models. The proposed ANFIS model coupled with the cyclic terms is shown to provide better representation of the monthly inflow forecasting for planning and operation of reservoir.

  2. The specificity of neural responses to music and their relation to voice processing: an fMRI-adaptation study.

    PubMed

    Armony, Jorge L; Aubé, William; Angulo-Perkins, Arafat; Peretz, Isabelle; Concha, Luis

    2015-04-23

    Several studies have identified, using functional magnetic resonance imaging (fMRI), a region within the superior temporal gyrus that preferentially responds to musical stimuli. However, in most cases, significant responses to other complex stimuli, particularly human voice, were also observed. Thus, it remains unknown if the same neurons respond to both stimulus types, albeit with different strengths, or whether the responses observed with fMRI are generated by distinct, overlapping neural populations. To address this question, we conducted an fMRI experiment in which short music excerpts and human vocalizations were presented in a pseudo-random order. Critically, we performed an adaptation-based analysis in which responses to the stimuli were analyzed taking into account the category of the preceding stimulus. Our results confirm the presence of a region in the anterior STG that responds more strongly to music than voice. Moreover, we found a music-specific adaptation effect in this area, consistent with the existence of music-preferred neurons. Lack of differences between musicians and non-musicians argues against an expertise effect. These findings provide further support for neural separability between music and speech within the temporal lobe.

  3. Learning about stress: neural, endocrine and behavioral adaptations.

    PubMed

    McCarty, Richard

    2016-09-01

    In this review, nonassociative learning is advanced as an organizing principle to draw together findings from both sympathetic-adrenal medullary and hypothalamic-pituitary-adrenocortical (HPA) axis responses to chronic intermittent exposure to a variety of stressors. Studies of habituation, facilitation and sensitization of stress effector systems are reviewed and linked to an animal's prior experience with a given stressor, the intensity of the stressor and the appraisal by the animal of its ability to mobilize physiological systems to adapt to the stressor. Brain pathways that regulate physiological and behavioral responses to stress are discussed, especially in light of their regulation of nonassociative processes in chronic intermittent stress. These findings may have special relevance to various psychiatric diseases, including depression and post-traumatic stress disorder (PTSD). PMID:27294884

  4. Learning about stress: neural, endocrine and behavioral adaptations.

    PubMed

    McCarty, Richard

    2016-09-01

    In this review, nonassociative learning is advanced as an organizing principle to draw together findings from both sympathetic-adrenal medullary and hypothalamic-pituitary-adrenocortical (HPA) axis responses to chronic intermittent exposure to a variety of stressors. Studies of habituation, facilitation and sensitization of stress effector systems are reviewed and linked to an animal's prior experience with a given stressor, the intensity of the stressor and the appraisal by the animal of its ability to mobilize physiological systems to adapt to the stressor. Brain pathways that regulate physiological and behavioral responses to stress are discussed, especially in light of their regulation of nonassociative processes in chronic intermittent stress. These findings may have special relevance to various psychiatric diseases, including depression and post-traumatic stress disorder (PTSD).

  5. Adaptive neural network nonlinear control for BTT missile based on the differential geometry method

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Wang, Yongji; Xu, Jiangsheng

    2007-11-01

    A new nonlinear control strategy incorporated the differential geometry method with adaptive neural networks is presented for the nonlinear coupling system of Bank-to-Turn missile in reentry phase. The basic control law is designed using the differential geometry feedback linearization method, and the online learning neural networks are used to compensate the system errors due to aerodynamic parameter errors and external disturbance in view of the arbitrary nonlinear mapping and rapid online learning ability for multi-layer neural networks. The online weights and thresholds tuning rules are deduced according to the tracking error performance functions by Levenberg-Marquardt algorithm, which will make the learning process faster and more stable. The six degree of freedom simulation results show that the attitude angles can track the desired trajectory precisely. It means that the proposed strategy effectively enhance the stability, the tracking performance and the robustness of the control system.

  6. An adaptive training method for optimal interpolative neural nets.

    PubMed

    Liu, T Z; Yen, C W

    1997-04-01

    In contrast to conventional multilayered feedforward networks which are typically trained by iterative gradient search methods, an optimal interpolative (OI) net can be trained by a noniterative least squares algorithm called RLS-OI. The basic idea of RLS-OI is to use a subset of the training set, whose inputs are called subprototypes, to constrain the OI net solution. A subset of these subprototypes, called prototypes, is then chosen as the parameter vectors of the activation functions of the OI net to satisfy the subprototype constraints in the least squares (LS) sense. By dynamically increasing the numbers of subprototypes and prototypes, RLS-OI evolves the OI net from scratch to the extent sufficient to solve a given classification problem. To improve the performance of RLS-OI, this paper addresses two important problems in OI net training: the selection of the subprototypes and the selection of the prototypes. By choosing subprototypes from poorly classified regions, this paper proposes a new subprototype selection method which is adaptive to the changing classification performance of the growing OI net. This paper also proposes a new prototype selection criterion to reduce the complexity of the OI net. For the same training accuracy, simulation results demonstrate that the proposed approach produces smaller OI net than the RLS-OI algorithm. Experimental results also show that the proposed approach is less sensitive to the variation of the training set than RLS-OI.

  7. Adaptations of motor neural structures' activity to lapses in attention.

    PubMed

    Derosière, Gérard; Billot, Maxime; Ward, E Tomas; Perrey, Stéphane

    2015-01-01

    Sustained attention is fundamental for cognition and when impaired, impacts negatively on important contemporary living skills. Degradation in sustained attention is characterized by the time-on-task (TOT) effect, which manifests as a gradual increase in reaction time (RT). The TOT effect is accompanied by changes in relative brain activity patterns in attention-related areas, most noticeably in the prefrontal cortex (PFC) and the right parietal areas. However, activity changes in task-relevant motor structures have not been confirmed to date. This article describes an investigation of such motor-related activity changes as measured with 1) the time course of corticospinal excitability (CSE) through single-pulse transcranial magnetic stimulation; and 2) the changes in activity of premotor (PMC), primary motor (M1), PFC, and right parietal areas by means of near-infrared spectroscopy, during a sustained attention RT task exhibiting the TOT effect. Our results corroborate established findings such as a significant increase (P < 0.05) in lateral prefrontal and right parietal areas activity after the emergence of the TOT effect but also reveal adaptations in the form of motor activity changes--in particular, a significant increase in CSE (P < 0.01) and in primary motor area (M1) activity (P < 0.05).

  8. Training-specific functional, neural, and hypertrophic adaptations to explosive- vs. sustained-contraction strength training.

    PubMed

    Balshaw, Thomas G; Massey, Garry J; Maden-Wilkinson, Thomas M; Tillin, Neale A; Folland, Jonathan P

    2016-06-01

    Training specificity is considered important for strength training, although the functional and underpinning physiological adaptations to different types of training, including brief explosive contractions, are poorly understood. This study compared the effects of 12 wk of explosive-contraction (ECT, n = 13) vs. sustained-contraction (SCT, n = 16) strength training vs. control (n = 14) on the functional, neural, hypertrophic, and intrinsic contractile characteristics of healthy young men. Training involved 40 isometric knee extension repetitions (3 times/wk): contracting as fast and hard as possible for ∼1 s (ECT) or gradually increasing to 75% of maximum voluntary torque (MVT) before holding for 3 s (SCT). Torque and electromyography during maximum and explosive contractions, torque during evoked octet contractions, and total quadriceps muscle volume (QUADSVOL) were quantified pre and post training. MVT increased more after SCT than ECT [23 vs. 17%; effect size (ES) = 0.69], with similar increases in neural drive, but greater QUADSVOL changes after SCT (8.1 vs. 2.6%; ES = 0.74). ECT improved explosive torque at all time points (17-34%; 0.54 ≤ ES ≤ 0.76) because of increased neural drive (17-28%), whereas only late-phase explosive torque (150 ms, 12%; ES = 1.48) and corresponding neural drive (18%) increased after SCT. Changes in evoked torque indicated slowing of the contractile properties of the muscle-tendon unit after both training interventions. These results showed training-specific functional changes that appeared to be due to distinct neural and hypertrophic adaptations. ECT produced a wider range of functional adaptations than SCT, and given the lesser demands of ECT, this type of training provides a highly efficient means of increasing function.

  9. Video-image-based neural network guidance system with adaptive view-angles for autonomous vehicles

    NASA Astrophysics Data System (ADS)

    Luebbers, Paul G.; Pandya, Abhijit S.

    1991-08-01

    This paper describes the guidance function of an autonomous vehicle based on a neural network controller using video images with adaptive view angles for sensory input. The guidance function for an autonomous vehicle provides the low-level control required for maintaining the autonomous vehicle on a prescribed trajectory. Neural networks possess unique properties such as the ability to perform sensor fusion, the ability to learn, and fault tolerant architectures, qualities which are desirable for autonomous vehicle applications. To demonstrate the feasibility of using neural networks in this type of an application, an Intelledex 405 robot fitted with a video camera and vision system was used to model an autonomous vehicle with a limited range of motion. In addition to fixed-angle video images, a set of images using adaptively varied view angles based on speed are used as the input to the neural network controller. It was shown that the neural network was able to control the autonomous vehicle model along a path composed of path segments unlike the exemplars with which it was trained. This system was designed to assess only the guidance system, and it was assumed that other functions employed in autonomous vehicle control systems (mission planning, navigation, and obstacle avoidance) are to be implemented separately and are providing a desired path to the guidance system. The desired path trajectory is presented to the robot in the form of a two-dimensional path, with centerline, that is to be followed. A video camera and associated vision system provides video image data as control feedback to the guidance system. The neural network controller uses Gaussian curves for the output vector to facilitate interpolation and generalization of the output space.

  10. Adapting the Critical Thinking Assessment Test for Palestinian Universities

    ERIC Educational Resources Information Center

    Basha, Sami; Drane, Denise; Light, Gregory

    2016-01-01

    Critical thinking is a key learning outcome for Palestinian students. However, there are no validated critical thinking tests in Arabic. Suitability of the US developed Critical Thinking Assessment Test (CAT) for use in Palestine was assessed. The test was piloted with university students in English (n = 30) and 4 questions were piloted in Arabic…

  11. A single network adaptive critic (SNAC) architecture for optimal control synthesis for a class of nonlinear systems.

    PubMed

    Padhi, Radhakant; Unnikrishnan, Nishant; Wang, Xiaohua; Balakrishnan, S N

    2006-12-01

    Even though dynamic programming offers an optimal control solution in a state feedback form, the method is overwhelmed by computational and storage requirements. Approximate dynamic programming implemented with an Adaptive Critic (AC) neural network structure has evolved as a powerful alternative technique that obviates the need for excessive computations and storage requirements in solving optimal control problems. In this paper, an improvement to the AC architecture, called the "Single Network Adaptive Critic (SNAC)" is presented. This approach is applicable to a wide class of nonlinear systems where the optimal control (stationary) equation can be explicitly expressed in terms of the state and costate variables. The selection of this terminology is guided by the fact that it eliminates the use of one neural network (namely the action network) that is part of a typical dual network AC setup. As a consequence, the SNAC architecture offers three potential advantages: a simpler architecture, lesser computational load and elimination of the approximation error associated with the eliminated network. In order to demonstrate these benefits and the control synthesis technique using SNAC, two problems have been solved with the AC and SNAC approaches and their computational performances are compared. One of these problems is a real-life Micro-Electro-Mechanical-system (MEMS) problem, which demonstrates that the SNAC technique is applicable to complex engineering systems.

  12. BOLD coherence reveals segregated functional neural interactions when adapting to distinct torque perturbations

    PubMed Central

    Tunik, Eugene; Schmitt, Paul J.; Grafton, Scott T.

    2007-01-01

    In the natural world, we experience and adapt to multiple extrinsic perturbations. This poses a challenge to neural circuits in discriminating between different context-appropriate responses. Using event-related fMRI, we characterized the neural dynamics involved in this process by randomly delivering a position- or velocity-dependent torque perturbation to subjects’ arms during a target capture task. Each perturbation was color-cued during movement preparation to provide contextual information. Though trajectories differed between perturbations, subjects significantly reduced error under both conditions. This was paralleled by reduced BOLD signal in the right dentate nucleus, the left sensorimotor cortex, and the left intraparietal sulcus. Trials included ‘NoGo’ conditions to dissociate activity related to preparation from execution and adaptation. Subsequent analysis identified perturbation-specific neural processes underlying preparation (‘NoGo’) and adaptation (‘Go’) early and late into learning. Between-perturbation comparisons of BOLD magnitude revealed negligible differences for both preparation and adaptation trials. However, a network-level analysis of BOLD coherence revealed that by late learning, response preparation (‘NoGo’) was attributed to a relative focusing of coherence within cortical and basal ganglia networks in both perturbation conditions, demonstrating a common network interaction for establishing arbitrary visuomotor associations. Conversely, late-learning adaptation (‘Go’) was attributed to a focusing of BOLD coherence between a cortical-basal ganglia network in the viscous condition and between a cortical-cerebellar network in the positional condition. Our findings demonstrate that trial-to-trial acquisition of two distinct adaptive responses is attributed not to anatomically segregated regions, but to differential functional interactions within common sensorimotor circuits. PMID:17202232

  13. Self-organized adaptation of a simple neural circuit enables complex robot behaviour

    NASA Astrophysics Data System (ADS)

    Steingrube, Silke; Timme, Marc; Wörgötter, Florentin; Manoonpong, Poramate

    2010-03-01

    Controlling sensori-motor systems in higher animals or complex robots is a challenging combinatorial problem, because many sensory signals need to be simultaneously coordinated into a broad behavioural spectrum. To rapidly interact with the environment, this control needs to be fast and adaptive. Present robotic solutions operate with limited autonomy and are mostly restricted to few behavioural patterns. Here we introduce chaos control as a new strategy to generate complex behaviour of an autonomous robot. In the presented system, 18 sensors drive 18 motors by means of a simple neural control circuit, thereby generating 11 basic behavioural patterns (for example, orienting, taxis, self-protection and various gaits) and their combinations. The control signal quickly and reversibly adapts to new situations and also enables learning and synaptic long-term storage of behaviourally useful motor responses. Thus, such neural control provides a powerful yet simple way to self-organize versatile behaviours in autonomous agents with many degrees of freedom.

  14. Adaptive neural control for an uncertain robotic manipulator with joint space constraints

    NASA Astrophysics Data System (ADS)

    Tang, Zhong-Liang; Ge, Shuzhi Sam; Tee, Keng Peng; He, Wei

    2016-07-01

    In this paper, adaptive neural tracking control is proposed for a robotic manipulator with uncertainties in both manipulator dynamics and joint actuator dynamics. The manipulator joints are subject to inequality constraints, i.e., the joint angles are required to remain in some compact sets. Integral barrier Lyapunov functionals (iBLFs) are employed to address the joint space constraints directly without performing an additional mapping to the error space. Neural networks (NNs) are utilised to compensate for the unknown robot dynamics and external force. Adapting parameters are developed to estimate the unknown bounds on NN approximations. By the Lyapunov synthesis, the proposed control can guarantee the semi-global uniform ultimate boundedness of the closed-loop system, and the practical tracking of joint reference trajectory is achieved without the violation of predefined joint space constraints. Simulation results are given to validate the effectiveness of the proposed control scheme.

  15. Specific neural correlates of successful learning and adaptation during social exchanges

    PubMed Central

    Fiorentini, Chiara; Kessler, Esther; Boyd, Harriet; Roberts, Fiona; Skuse, David H.

    2013-01-01

    Cooperation and betrayal are universal features of social interactions, and knowing who to trust is vital in human society. Previous studies have identified brain regions engaged by decision making during social encounters, but the mechanisms supporting modification of future behaviour by utilizing social experience are not well characterized. Using functional magnetic resonance imaging (fMRI), we show that cooperation and betrayal during social exchanges elicit specific patterns of neural activity associated with future behaviour. Unanticipated cooperation leads to greater behavioural adaptation than unexpected betrayal, and is signalled by specific neural responses in the striatum and midbrain. Neural responses to betrayal and willingness to trust novel partners both decrease as the number of individuals encountered during repeated social encounters increases. We propose that, as social groups increase in size, uncooperative or untrustworthy behaviour becomes progressively less surprising, with cooperation becoming increasingly important as a stimulus for social learning. Effects on reputation of non-trusting decisions may also act to drive pro-social behaviour. Our findings characterize the dynamic neural processes underlying social adaptation, and suggest that the brain is optimized to cooperate with trustworthy partners, rather than avoiding those who might betray us. PMID:22956669

  16. An intelligent computational algorithm based on neural network for spatial data mining in adaptability evaluation

    NASA Astrophysics Data System (ADS)

    Miao, Zuohua; Xu, Hong; Chen, Yong; Zeng, Xiangyang

    2009-10-01

    Back-propagation neural network model (BPNN) is an intelligent computational model based on stylebook learning. This model is different from traditional adaptability symbolic logic reasoning method based on knowledge and rules. At the same time, BPNN model has shortcoming such as: slowly convergence speed and partial minimum. During the process of adaptability evaluation, the factors were diverse, complicated and uncertain, so an effectual model should adopt the technique of data mining method and fuzzy logical technology. In this paper, the author ameliorated the backpropagation of BPNN and applied fuzzy logical theory for dynamic inference of fuzzy rules. Authors also give detail description on training and experiment process of the novel model.

  17. Adaptive recurrent neural network control of uncertain constrained nonholonomic mobile manipulators

    NASA Astrophysics Data System (ADS)

    Wang, Z. P.; Zhou, T.; Mao, Y.; Chen, Q. J.

    2014-02-01

    In this article, motion/force control problem of a class of constrained mobile manipulators with unknown dynamics is considered. The system is subject to both holonomic and nonholonomic constraints. An adaptive recurrent neural network controller is proposed to deal with the unmodelled system dynamics. The proposed control strategy guarantees that the system motion asymptotically converges to the desired manifold while the constraint force remains bounded. In addition, an adaptive method is proposed to identify the contact surface. Simulation studies are carried out to verify the validation of the proposed approach.

  18. Adaptive Synchronization of Memristor-Based Neural Networks with Time-Varying Delays.

    PubMed

    Wang, Leimin; Shen, Yi; Yin, Quan; Zhang, Guodong

    2015-09-01

    In this paper, adaptive synchronization of memristor-based neural networks (MNNs) with time-varying delays is investigated. The dynamical analysis here employs results from the theory of differential equations with discontinuous right-hand sides as introduced by Filippov. Sufficient conditions for the global synchronization of MNNs are established with a general adaptive controller. The update gain of the controller can be adjusted to control the synchronization speed. The obtained results complement and improve the previously known results. Finally, numerical simulations are carried out to demonstrate the effectiveness of the obtained results.

  19. Adaptive Synchronization of Memristor-Based Neural Networks with Time-Varying Delays.

    PubMed

    Wang, Leimin; Shen, Yi; Yin, Quan; Zhang, Guodong

    2015-09-01

    In this paper, adaptive synchronization of memristor-based neural networks (MNNs) with time-varying delays is investigated. The dynamical analysis here employs results from the theory of differential equations with discontinuous right-hand sides as introduced by Filippov. Sufficient conditions for the global synchronization of MNNs are established with a general adaptive controller. The update gain of the controller can be adjusted to control the synchronization speed. The obtained results complement and improve the previously known results. Finally, numerical simulations are carried out to demonstrate the effectiveness of the obtained results. PMID:25389244

  20. Application of adaptive and neural network computational techniques to Traffic Volume and Classification Monitoring

    SciTech Connect

    Mead, W.C.; Fisher, H.N.; Jones, R.D.; Bisset, K.R.; Lee, L.A.

    1993-09-01

    We are developing a Traffic Volume and Classification Monitoring (TVCM) system based on adaptive and neural network computational techniques. The value of neutral networks in this application lies in their ability to learn from data and to form a mapping of arbitrary topology. The piezoelectric strip and magnetic loop sensors typically used for TVCM provide signals that are complicated and variable, and that correspond in indirect ways with the desired FWHA 13-class classification system. Further, the wide variety of vehicle configurations adds to the complexity of the classification task. Our goal is to provide a TVCM system featuring high accuracy, adaptability to wide sensor and envirorunental variations, and continuous fault detection. We have instrumented an experimental TVCM site, developed PC-based on-line data acquisition software, collected a large database of vehicles` signals together with accurate ground truth determination, and analyzed the data off-line with a neural net classification system that can distinguish between class 2 (automobiles) and class 3 (utility vehicles) with better than 90% accuracy. The neural network used, called the Connectionist Hyperprism Classification (CHC) network, features simple basis functions; rapid, linear training algorithms for basis function amplitudes and widths; and basis function elimination that enhances network speed and accuracy. Work is in progress to extend the system to other classes, to quantify the system`s adaptability, and to develop automatic fault detection techniques.

  1. Neuroplasticity beyond Sounds: Neural Adaptations Following Long-Term Musical Aesthetic Experiences

    PubMed Central

    Reybrouck, Mark; Brattico, Elvira

    2015-01-01

    Capitalizing from neuroscience knowledge on how individuals are affected by the sound environment, we propose to adopt a cybernetic and ecological point of view on the musical aesthetic experience, which includes subprocesses, such as feature extraction and integration, early affective reactions and motor actions, style mastering and conceptualization, emotion and proprioception, evaluation and preference. In this perspective, the role of the listener/composer/performer is seen as that of an active “agent” coping in highly individual ways with the sounds. The findings concerning the neural adaptations in musicians, following long-term exposure to music, are then reviewed by keeping in mind the distinct subprocesses of a musical aesthetic experience. We conclude that these neural adaptations can be conceived of as the immediate and lifelong interactions with multisensorial stimuli (having a predominant auditory component), which result in lasting changes of the internal state of the “agent”. In a continuous loop, these changes affect, in turn, the subprocesses involved in a musical aesthetic experience, towards the final goal of achieving better perceptual, motor and proprioceptive responses to the immediate demands of the sounding environment. The resulting neural adaptations in musicians closely depend on the duration of the interactions, the starting age, the involvement of attention, the amount of motor practice and the musical genre played. PMID:25807006

  2. Neuroplasticity beyond Sounds: Neural Adaptations Following Long-Term Musical Aesthetic Experiences.

    PubMed

    Reybrouck, Mark; Brattico, Elvira

    2015-01-01

    Capitalizing from neuroscience knowledge on how individuals are affected by the sound environment, we propose to adopt a cybernetic and ecological point of view on the musical aesthetic experience, which includes subprocesses, such as feature extraction and integration, early affective reactions and motor actions, style mastering and conceptualization, emotion and proprioception, evaluation and preference. In this perspective, the role of the listener/composer/performer is seen as that of an active "agent" coping in highly individual ways with the sounds. The findings concerning the neural adaptations in musicians, following long-term exposure to music, are then reviewed by keeping in mind the distinct subprocesses of a musical aesthetic experience. We conclude that these neural adaptations can be conceived of as the immediate and lifelong interactions with multisensorial stimuli (having a predominant auditory component), which result in lasting changes of the internal state of the "agent". In a continuous loop, these changes affect, in turn, the subprocesses involved in a musical aesthetic experience, towards the final goal of achieving better perceptual, motor and proprioceptive responses to the immediate demands of the sounding environment. The resulting neural adaptations in musicians closely depend on the duration of the interactions, the starting age, the involvement of attention, the amount of motor practice and the musical genre played. PMID:25807006

  3. Functional identification of biological neural networks using reservoir adaptation for point processes.

    PubMed

    Gürel, Tayfun; Rotter, Stefan; Egert, Ulrich

    2010-08-01

    The complexity of biological neural networks does not allow to directly relate their biophysical properties to the dynamics of their electrical activity. We present a reservoir computing approach for functionally identifying a biological neural network, i.e. for building an artificial system that is functionally equivalent to the reference biological network. Employing feed-forward and recurrent networks with fading memory, i.e. reservoirs, we propose a point process based learning algorithm to train the internal parameters of the reservoir and the connectivity between the reservoir and the memoryless readout neurons. Specifically, the model is an Echo State Network (ESN) with leaky integrator neurons, whose individual leakage time constants are also adapted. The proposed ESN algorithm learns a predictive model of stimulus-response relations in in vitro and simulated networks, i.e. it models their response dynamics. Receiver Operating Characteristic (ROC) curve analysis indicates that these ESNs can imitate the response signal of a reference biological network. Reservoir adaptation improved the performance of an ESN over readout-only training methods in many cases. This also held for adaptive feed-forward reservoirs, which had no recurrent dynamics. We demonstrate the predictive power of these ESNs on various tasks with cultured and simulated biological neural networks.

  4. Fault Analysis of Space Station DC Power Systems-Using Neural Network Adaptive Wavelets to Detect Faults

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Wang, Yanchun; Dolce, James L.

    1997-01-01

    This paper describes the application of neural network adaptive wavelets for fault diagnosis of space station power system. The method combines wavelet transform with neural network by incorporating daughter wavelets into weights. Therefore, the wavelet transform and neural network training procedure become one stage, which avoids the complex computation of wavelet parameters and makes the procedure more straightforward. The simulation results show that the proposed method is very efficient for the identification of fault locations.

  5. Adaptive critic design for computer intrusion detection system

    NASA Astrophysics Data System (ADS)

    Novokhodko, Alexander; Wunsch, Donald C., II; Dagli, Cihan H.

    2001-03-01

    This paper summarizes ongoing research. A neural network is used to detect a computer system intrusion basing on data from the system audit trail generated by Solaris Basic Security Module. The data have been provided by Lincoln Labs, MIT. The system alerts the human operator, when it encounters suspicious activity logged in the audit trail. To reduce the false alarm rate and accommodate the temporal indefiniteness of moment of attack a reinforcement learning approach is chosen to train the network.

  6. Finite-horizon control-constrained nonlinear optimal control using single network adaptive critics.

    PubMed

    Heydari, Ali; Balakrishnan, Sivasubramanya N

    2013-01-01

    To synthesize fixed-final-time control-constrained optimal controllers for discrete-time nonlinear control-affine systems, a single neural network (NN)-based controller called the Finite-horizon Single Network Adaptive Critic is developed in this paper. Inputs to the NN are the current system states and the time-to-go, and the network outputs are the costates that are used to compute optimal feedback control. Control constraints are handled through a nonquadratic cost function. Convergence proofs of: 1) the reinforcement learning-based training method to the optimal solution; 2) the training error; and 3) the network weights are provided. The resulting controller is shown to solve the associated time-varying Hamilton-Jacobi-Bellman equation and provide the fixed-final-time optimal solution. Performance of the new synthesis technique is demonstrated through different examples including an attitude control problem wherein a rigid spacecraft performs a finite-time attitude maneuver subject to control bounds. The new formulation has great potential for implementation since it consists of only one NN with single set of weights and it provides comprehensive feedback solutions online, though it is trained offline.

  7. Finite-horizon control-constrained nonlinear optimal control using single network adaptive critics.

    PubMed

    Heydari, Ali; Balakrishnan, Sivasubramanya N

    2013-01-01

    To synthesize fixed-final-time control-constrained optimal controllers for discrete-time nonlinear control-affine systems, a single neural network (NN)-based controller called the Finite-horizon Single Network Adaptive Critic is developed in this paper. Inputs to the NN are the current system states and the time-to-go, and the network outputs are the costates that are used to compute optimal feedback control. Control constraints are handled through a nonquadratic cost function. Convergence proofs of: 1) the reinforcement learning-based training method to the optimal solution; 2) the training error; and 3) the network weights are provided. The resulting controller is shown to solve the associated time-varying Hamilton-Jacobi-Bellman equation and provide the fixed-final-time optimal solution. Performance of the new synthesis technique is demonstrated through different examples including an attitude control problem wherein a rigid spacecraft performs a finite-time attitude maneuver subject to control bounds. The new formulation has great potential for implementation since it consists of only one NN with single set of weights and it provides comprehensive feedback solutions online, though it is trained offline. PMID:24808214

  8. Adapting Entry-Level Engineering Courses to Emphasize Critical Thinking

    ERIC Educational Resources Information Center

    Hagerty, D. Joseph; Rockaway, Thomas D.

    2012-01-01

    The University of Louisville recently developed a Quality Enhancement Plan (QEP) to improve undergraduate instruction across all disciplines as part of its ongoing accreditation requirements. Central elements of the plan are emphasis on critical thinking; integration of critical thinking throughout the curriculum; service learning for…

  9. fMRI-Adaptation Evidence of Overlapping Neural Representations for Objects Related in Function or Manipulation

    PubMed Central

    Yee, Eiling; Drucker, Daniel M.; Thompson-Schill, Sharon L.

    2010-01-01

    Sensorimotor-based theories of semantic memory contend that semantic information about an object is represented in the neural substrate invoked when we perceive or interact with it. We used fMRI adaptation to test this prediction, measuring brain activation as participants read pairs of words. Pairs shared function (flashlight–lantern), shape (marble–grape), both (pencil–pen), were unrelated (saucer–needle), or were identical (drill–drill). We observed adaptation for pairs with both function and shape similarity in left premotor cortex. Further, degree of function similarity was correlated with adaptation in three regions: two in the left temporal lobe (left medial temporal lobe, left middle temporal gyrus), which has been hypothesized to play a role in mutimodal integration, and one in left superior frontal gyrus. We also found that degree of manipulation (i.e., action) and function similarity were both correlated with adaptation in two regions: left premotor cortex and left intraparietal sulcus (involved in guiding actions). Additional considerations suggest that the adaptation in these two regions was driven by manipulation similarity alone; thus, these results imply that manipulation information about objects is encoded in brain regions involved in performing or guiding actions. Unexpectedly, these same two regions showed increased activation (rather than adaptation) for objects similar in shape. Overall, we found evidence (in the form of adaptation) that objects that share semantic features have overlapping representations. Further, the particular regions of overlap provide support for the existence of both sensorimotor and amodal/multimodal representations. PMID:20034582

  10. Design of adaptive fuzzy wavelet neural sliding mode controller for uncertain nonlinear systems.

    PubMed

    Shahriari kahkeshi, Maryam; Sheikholeslam, Farid; Zekri, Maryam

    2013-05-01

    This paper proposes novel adaptive fuzzy wavelet neural sliding mode controller (AFWN-SMC) for a class of uncertain nonlinear systems. The main contribution of this paper is to design smooth sliding mode control (SMC) for a class of high-order nonlinear systems while the structure of the system is unknown and no prior knowledge about uncertainty is available. The proposed scheme composed of an Adaptive Fuzzy Wavelet Neural Controller (AFWNC) to construct equivalent control term and an Adaptive Proportional-Integral (A-PI) controller for implementing switching term to provide smooth control input. Asymptotical stability of the closed loop system is guaranteed, using the Lyapunov direct method. To show the efficiency of the proposed scheme, some numerical examples are provided. To validate the results obtained by proposed approach, some other methods are adopted from the literature and applied for comparison. Simulation results show superiority and capability of the proposed controller to improve the steady state performance and transient response specifications by using less numbers of fuzzy rules and on-line adaptive parameters in comparison to other methods. Furthermore, control effort has considerably decreased and chattering phenomenon has been completely removed.

  11. SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos.

    PubMed

    Wu, Mary Y; Ramel, Marie-Christine; Howell, Michael; Hill, Caroline S

    2011-01-01

    Bone morphogenetic protein (BMP) gradients provide positional information to direct cell fate specification, such as patterning of the vertebrate ectoderm into neural, neural crest, and epidermal tissues, with precise borders segregating these domains. However, little is known about how BMP activity is regulated spatially and temporally during vertebrate development to contribute to embryonic patterning, and more specifically to neural crest formation. Through a large-scale in vivo functional screen in Xenopus for neural crest fate, we identified an essential regulator of BMP activity, SNW1. SNW1 is a nuclear protein known to regulate gene expression. Using antisense morpholinos to deplete SNW1 protein in both Xenopus and zebrafish embryos, we demonstrate that dorsally expressed SNW1 is required for neural crest specification, and this is independent of mesoderm formation and gastrulation morphogenetic movements. By exploiting a combination of immunostaining for phosphorylated Smad1 in Xenopus embryos and a BMP-dependent reporter transgenic zebrafish line, we show that SNW1 regulates a specific domain of BMP activity in the dorsal ectoderm at the neural plate border at post-gastrula stages. We use double in situ hybridizations and immunofluorescence to show how this domain of BMP activity is spatially positioned relative to the neural crest domain and that of SNW1 expression. Further in vivo and in vitro assays using cell culture and tissue explants allow us to conclude that SNW1 acts upstream of the BMP receptors. Finally, we show that the requirement of SNW1 for neural crest specification is through its ability to regulate BMP activity, as we demonstrate that targeted overexpression of BMP to the neural plate border is sufficient to restore neural crest formation in Xenopus SNW1 morphants. We conclude that through its ability to regulate a specific domain of BMP activity in the vertebrate embryo, SNW1 is a critical regulator of neural plate border formation and

  12. Learning from adaptive neural network output feedback control of a unicycle-type mobile robot.

    PubMed

    Zeng, Wei; Wang, Qinghui; Liu, Fenglin; Wang, Ying

    2016-03-01

    This paper studies learning from adaptive neural network (NN) output feedback control of nonholonomic unicycle-type mobile robots. The major difficulties are caused by the unknown robot system dynamics and the unmeasurable states. To overcome these difficulties, a new adaptive control scheme is proposed including designing a new adaptive NN output feedback controller and two high-gain observers. It is shown that the stability of the closed-loop robot system and the convergence of tracking errors are guaranteed. The unknown robot system dynamics can be approximated by radial basis function NNs. When repeating same or similar control tasks, the learned knowledge can be recalled and reused to achieve guaranteed stability and better control performance, thereby avoiding the tremendous repeated training process of NNs. PMID:26830003

  13. Learning from adaptive neural network output feedback control of a unicycle-type mobile robot.

    PubMed

    Zeng, Wei; Wang, Qinghui; Liu, Fenglin; Wang, Ying

    2016-03-01

    This paper studies learning from adaptive neural network (NN) output feedback control of nonholonomic unicycle-type mobile robots. The major difficulties are caused by the unknown robot system dynamics and the unmeasurable states. To overcome these difficulties, a new adaptive control scheme is proposed including designing a new adaptive NN output feedback controller and two high-gain observers. It is shown that the stability of the closed-loop robot system and the convergence of tracking errors are guaranteed. The unknown robot system dynamics can be approximated by radial basis function NNs. When repeating same or similar control tasks, the learned knowledge can be recalled and reused to achieve guaranteed stability and better control performance, thereby avoiding the tremendous repeated training process of NNs.

  14. Protein Secondary Structure Prediction Using Local Adaptive Techniques in Training Neural Networks

    NASA Astrophysics Data System (ADS)

    Aik, Lim Eng; Zainuddin, Zarita; Joseph, Annie

    2008-01-01

    One of the most significant problems in computer molecular biology today is how to predict a protein's three-dimensional structure from its one-dimensional amino acid sequence or generally call the protein folding problem and difficult to determine the corresponding protein functions. Thus, this paper involves protein secondary structure prediction using neural network in order to solve the protein folding problem. The neural network used for protein secondary structure prediction is multilayer perceptron (MLP) of the feed-forward variety. The training set are taken from the protein data bank which are 120 proteins while 60 testing set is the proteins which were chosen randomly from the protein data bank. Multiple sequence alignment (MSA) is used to get the protein similar sequence and Position Specific Scoring matrix (PSSM) is used for network input. The training process of the neural network involves local adaptive techniques. Local adaptive techniques used in this paper comprises Learning rate by sign changes, SuperSAB, Quickprop and RPROP. From the simulation, the performance for learning rate by Rprop and Quickprop are superior to all other algorithms with respect to the convergence time. However, the best result was obtained using Rprop algorithm.

  15. Adaptive statistic tracking control based on two-step neural networks with time delays.

    PubMed

    Yi, Yang; Guo, Lei; Wang, Hong

    2009-03-01

    This paper presents a new type of control framework for dynamical stochastic systems, called statistic tracking control (STC). The system considered is general and non-Gaussian and the tracking objective is the statistical information of a given target probability density function (pdf), rather than a deterministic signal. The control aims at making the statistical information of the output pdfs to follow those of a target pdf. For such a control framework, a variable structure adaptive tracking control strategy is first established using two-step neural network models. Following the B-spline neural network approximation to the integrated performance function, the concerned problem is transferred into the tracking of given weights. The dynamic neural network (DNN) is employed to identify the unknown nonlinear dynamics between the control input and the weights related to the integrated function. To achieve the required control objective, an adaptive controller based on the proposed DNN is developed so as to track a reference trajectory. Stability analysis for both the identification and tracking errors is developed via the use of Lyapunov stability criterion. Simulations are given to demonstrate the efficiency of the proposed approach. PMID:19179249

  16. Adaptive Neural Control of Pure-Feedback Nonlinear Time-Delay Systems via Dynamic Surface Technique.

    PubMed

    Min Wang; Xiaoping Liu; Peng Shi

    2011-12-01

    This paper is concerned with robust stabilization problem for a class of nonaffine pure-feedback systems with unknown time-delay functions and perturbed uncertainties. Novel continuous packaged functions are introduced in advance to remove unknown nonlinear terms deduced from perturbed uncertainties and unknown time-delay functions, which avoids the functions with control law to be approximated by radial basis function (RBF) neural networks. This technique combining implicit function and mean value theorems overcomes the difficulty in controlling the nonaffine pure-feedback systems. Dynamic surface control (DSC) is used to avoid "the explosion of complexity" in the backstepping design. Design difficulties from unknown time-delay functions are overcome using the function separation technique, the Lyapunov-Krasovskii functionals, and the desirable property of hyperbolic tangent functions. RBF neural networks are employed to approximate desired virtual controls and desired practical control. Under the proposed adaptive neural DSC, the number of adaptive parameters required is reduced significantly, and semiglobal uniform ultimate boundedness of all of the signals in the closed-loop system is guaranteed. Simulation studies are given to demonstrate the effectiveness of the proposed design scheme.

  17. Truncated adaptation design for decentralised neural dynamic surface control of interconnected nonlinear systems under input saturation

    NASA Astrophysics Data System (ADS)

    Gao, Shigen; Dong, Hairong; Lyu, Shihang; Ning, Bin

    2016-07-01

    This paper studies decentralised neural adaptive control of a class of interconnected nonlinear systems, each subsystem is in the presence of input saturation and external disturbance and has independent system order. Using a novel truncated adaptation design, dynamic surface control technique and minimal-learning-parameters algorithm, the proposed method circumvents the problems of 'explosion of complexity' and 'dimension curse' that exist in the traditional backstepping design. Comparing to the methodology that neural weights are online updated in the controllers, only one scalar needs to be updated in the controllers of each subsystem when dealing with unknown systematic dynamics. Radial basis function neural networks (NNs) are used in the online approximation of unknown systematic dynamics. It is proved using Lyapunov stability theory that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded. The tracking errors of each subsystems, the amplitude of NN approximation residuals and external disturbances can be attenuated to arbitrarily small by tuning proper design parameters. Simulation results are given to demonstrate the effectiveness of the proposed method.

  18. Neural adaptation to thin and fat bodies in the fusiform body area and middle occipital gyrus: an fMRI adaptation study.

    PubMed

    Hummel, Dennis; Rudolf, Anne K; Brandi, Marie-Luise; Untch, Karl-Heinz; Grabhorn, Ralph; Hampel, Harald; Mohr, Harald M

    2013-12-01

    Visual perception can be strongly biased due to exposure to specific stimuli in the environment, often causing neural adaptation and visual aftereffects. In this study, we investigated whether adaptation to certain body shapes biases the perception of the own body shape. Furthermore, we aimed to evoke neural adaptation to certain body shapes. Participants completed a behavioral experiment (n = 14) to rate manipulated pictures of their own bodies after adaptation to demonstratively thin or fat pictures of their own bodies. The same stimuli were used in a second experiment (n = 16) using functional magnetic resonance imaging (fMRI) adaptation. In the behavioral experiment, after adapting to a thin picture of the own body participants also judged a thinner than actual body picture to be the most realistic and vice versa, resembling a typical aftereffect. The fusiform body area (FBA) and the right middle occipital gyrus (rMOG) show neural adaptation to specific body shapes while the extrastriate body area (EBA) bilaterally does not. The rMOG cluster is highly selective for bodies and perhaps body parts. The findings of the behavioral experiment support the existence of a perceptual body shape aftereffect, resulting from a specific adaptation to thin and fat pictures of one's own body. The fMRI results imply that body shape adaptation occurs in the FBA and the rMOG. The role of the EBA in body shape processing remains unclear. The results are also discussed in the light of clinical body image disturbances.

  19. Adaptive critic autopilot design of bank-to-turn missiles using fuzzy basis function networks.

    PubMed

    Lin, Chuan-Kai

    2005-04-01

    A new adaptive critic autopilot design for bank-to-turn missiles is presented. In this paper, the architecture of adaptive critic learning scheme contains a fuzzy-basis-function-network based associative search element (ASE), which is employed to approximate nonlinear and complex functions of bank-to-turn missiles, and an adaptive critic element (ACE) generating the reinforcement signal to tune the associative search element. In the design of the adaptive critic autopilot, the control law receives signals from a fixed gain controller, an ASE and an adaptive robust element, which can eliminate approximation errors and disturbances. Traditional adaptive critic reinforcement learning is the problem faced by an agent that must learn behavior through trial-and-error interactions with a dynamic environment, however, the proposed tuning algorithm can significantly shorten the learning time by online tuning all parameters of fuzzy basis functions and weights of ASE and ACE. Moreover, the weight updating law derived from the Lyapunov stability theory is capable of guaranteeing both tracking performance and stability. Computer simulation results confirm the effectiveness of the proposed adaptive critic autopilot.

  20. Adaptive and Adaptable Automation Design: A Critical Review of the Literature and Recommendations for Future Research

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Kaber, David B.

    2006-01-01

    This report presents a review of literature on approaches to adaptive and adaptable task/function allocation and adaptive interface technologies for effective human management of complex systems that are likely to be issues for the Next Generation Air Transportation System, and a focus of research under the Aviation Safety Program, Integrated Intelligent Flight Deck Project. Contemporary literature retrieved from an online database search is summarized and integrated. The major topics include the effects of delegation-type, adaptable automation on human performance, workload and situation awareness, the effectiveness of various automation invocation philosophies and strategies to function allocation in adaptive systems, and the role of user modeling in adaptive interface design and the performance implications of adaptive interface technology.

  1. Adaptive Threshold Neural Spike Detector Using Stationary Wavelet Transform in CMOS.

    PubMed

    Yang, Yuning; Boling, C Sam; Kamboh, Awais M; Mason, Andrew J

    2015-11-01

    Spike detection is an essential first step in the analysis of neural recordings. Detection at the frontend eases the bandwidth requirement for wireless data transfer of multichannel recordings to extra-cranial processing units. In this work, a low power digital integrated spike detector based on the lifting stationary wavelet transform is presented and developed. By monitoring the standard deviation of wavelet coefficients, the proposed detector can adaptively set a threshold value online for each channel independently without requiring user intervention. A prototype 16-channel spike detector was designed and tested in an FPGA. The method enables spike detection with nearly 90% accuracy even when the signal-to-noise ratio is as low as 2. The design was mapped to 130 nm CMOS technology and shown to occupy 0.014 mm(2) of area and dissipate 1.7 μW of power per channel, making it suitable for implantable multichannel neural recording systems. PMID:25955990

  2. Multi-layer holographic bifurcative neural network system for real-time adaptive EOS data analysis

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Huang, K. S.; Diep, J.

    1993-01-01

    Optical data processing techniques have the inherent advantage of high data throughout, low weight and low power requirements. These features are particularly desirable for onboard spacecraft in-situ real-time data analysis and data compression applications. the proposed multi-layer optical holographic neural net pattern recognition technique will utilize the nonlinear photorefractive devices for real-time adaptive learning to classify input data content and recognize unexpected features. Information can be stored either in analog or digital form in a nonlinear photofractive device. The recording can be accomplished in time scales ranging from milliseconds to microseconds. When a system consisting of these devices is organized in a multi-layer structure, a feedforward neural net with bifurcating data classification capability is formed. The interdisciplinary research will involve the collaboration with top digital computer architecture experts at the University of Southern California.

  3. Adaptive Threshold Neural Spike Detector Using Stationary Wavelet Transform in CMOS.

    PubMed

    Yang, Yuning; Boling, C Sam; Kamboh, Awais M; Mason, Andrew J

    2015-11-01

    Spike detection is an essential first step in the analysis of neural recordings. Detection at the frontend eases the bandwidth requirement for wireless data transfer of multichannel recordings to extra-cranial processing units. In this work, a low power digital integrated spike detector based on the lifting stationary wavelet transform is presented and developed. By monitoring the standard deviation of wavelet coefficients, the proposed detector can adaptively set a threshold value online for each channel independently without requiring user intervention. A prototype 16-channel spike detector was designed and tested in an FPGA. The method enables spike detection with nearly 90% accuracy even when the signal-to-noise ratio is as low as 2. The design was mapped to 130 nm CMOS technology and shown to occupy 0.014 mm(2) of area and dissipate 1.7 μW of power per channel, making it suitable for implantable multichannel neural recording systems.

  4. Immature visual neural system in children reflected by contrast sensitivity with adaptive optics correction

    PubMed Central

    Liu, Rong; Zhou, Jiawei; Zhao, Haoxin; Dai, Yun; Zhang, Yudong; Tang, Yong; Zhou, Yifeng

    2014-01-01

    This study aimed to explore the neural development status of the visual system of children (around 8 years old) using contrast sensitivity. We achieved this by eliminating the influence of higher order aberrations (HOAs) with adaptive optics correction. We measured HOAs, modulation transfer functions (MTFs) and contrast sensitivity functions (CSFs) of six children and five adults with both corrected and uncorrected HOAs. We found that when HOAs were corrected, children and adults both showed improvements in MTF and CSF. However, the CSF of children was still lower than the adult level, indicating the difference in contrast sensitivity between groups cannot be explained by differences in optical factors. Further study showed that the difference between the groups also could not be explained by differences in non-visual factors. With these results we concluded that the neural systems underlying vision in children of around 8 years old are still immature in contrast sensitivity. PMID:24732728

  5. Robust adaptive neural control for a class of uncertain MIMO nonlinear systems

    NASA Astrophysics Data System (ADS)

    Wang, Chenliang; Lin, Yan

    2015-08-01

    In this paper, a novel robust adaptive neural control scheme is proposed for a class of uncertain multi-input multi-output nonlinear systems. The proposed scheme has the following main features: (1) a kind of Hurwitz condition is introduced to handle the state-dependent control gain matrix and some assumptions in existing schemes are relaxed; (2) by introducing a novel matrix normalisation technique, it is shown that all bound restrictions imposed on the control gain matrix in existing schemes can be removed; (3) the singularity problem is avoided without any extra effort, which makes the control law quite simple. Besides, with the aid of the minimal learning parameter technique, only one parameter needs to be updated online regardless of the system input-output dimension and the number of neural network nodes. Simulation results are presented to illustrate the effectiveness of the proposed scheme.

  6. Adaptive neural network control of unknown nonlinear affine systems with input deadzone and output constraint.

    PubMed

    He, Wei; Dong, Yiting; Sun, Changyin

    2015-09-01

    In this paper, we aim to solve the control problem of nonlinear affine systems, under the condition of the input deadzone and output constraint with the external unknown disturbance. To eliminate the effects of the input deadzone, a Radial Basis Function Neural Network (RBFNN) is introduced to compensate for the negative impact of input deadzone. Meanwhile, we design a barrier Lyapunov function to ensure that the output parameters are restricted. In support of the barrier Lyapunov method, we build an adaptive neural network controller based on state feedback and output feedback methods. The stability of the closed-loop system is proven via the Lyapunov method and the performance of the expected effects is verified in simulation.

  7. Neural adaptation in pSTS correlates with perceptual aftereffects to biological motion and with autistic traits.

    PubMed

    Thurman, Steven M; van Boxtel, Jeroen J A; Monti, Martin M; Chiang, Jeffrey N; Lu, Hongjing

    2016-08-01

    The adaptive nature of biological motion perception has been documented in behavioral studies, with research showing that prolonged viewing of an action can bias judgments of subsequent actions towards the opposite of its attributes. However, the neural mechanisms underlying action adaptation aftereffects remain unknown. We examined adaptation-induced changes in brain responses to an ambiguous action after adapting to walking or running actions within two bilateral regions of interest: 1) human middle temporal area (hMT+), a lower-level motion-sensitive region of cortex, and 2) posterior superior temporal sulcus (pSTS), a higher-level action-selective area. We found a significant correlation between neural adaptation strength in right pSTS and perceptual aftereffects to biological motion measured behaviorally, but not in hMT+. The magnitude of neural adaptation in right pSTS was also strongly correlated with individual differences in the degree of autistic traits. Participants with more autistic traits exhibited less adaptation-induced modulations of brain responses in right pSTS and correspondingly weaker perceptual aftereffects. These results suggest a direct link between perceptual aftereffects and adaptation of neural populations in right pSTS after prolonged viewing of a biological motion stimulus, and highlight the potential importance of this brain region for understanding differences in social-cognitive processing along the autistic spectrum.

  8. Peaking-Free Output-Feedback Adaptive Neural Control Under a Nonseparation Principle.

    PubMed

    Pan, Yongping; Sun, Tairen; Yu, Haoyong

    2015-12-01

    High-gain observers have been extensively applied to construct output-feedback adaptive neural control (ANC) for a class of feedback linearizable uncertain nonlinear systems under a nonlinear separation principle. Yet due to static-gain and linear properties, high-gain observers are usually subject to peaking responses and noise sensitivity. Existing adaptive neural network (NN) observers cannot effectively relax the limitations of high-gain observers. This paper presents an output-feedback indirect ANC strategy under a nonseparation principle, where a hybrid estimation scheme that integrates an adaptive NN observer with state variable filters is proposed to estimate plant states. By applying a single Lyapunov function candidate to the entire system, it is proved that the closed-loop system achieves practical asymptotic stability under a relatively low observer gain dominated by controller parameters. Our approach can completely avoid peaking responses without control saturation while keeping favourable noise rejection ability. Simulation results have shown effectiveness and superiority of this approach.

  9. Redistribution of neural phase coherence reflects establishment of feedforward map in speech motor adaptation.

    PubMed

    Sengupta, Ranit; Nasir, Sazzad M

    2015-04-01

    Despite recent progress in our understanding of sensorimotor integration in speech learning, a comprehensive framework to investigate its neural basis is lacking at behaviorally relevant timescales. Structural and functional imaging studies in humans have helped us identify brain networks that support speech but fail to capture the precise spatiotemporal coordination within the networks that takes place during speech learning. Here we use neuronal oscillations to investigate interactions within speech motor networks in a paradigm of speech motor adaptation under altered feedback with continuous recording of EEG in which subjects adapted to the real-time auditory perturbation of a target vowel sound. As subjects adapted to the task, concurrent changes were observed in the theta-gamma phase coherence during speech planning at several distinct scalp regions that is consistent with the establishment of a feedforward map. In particular, there was an increase in coherence over the central region and a decrease over the fronto-temporal regions, revealing a redistribution of coherence over an interacting network of brain regions that could be a general feature of error-based motor learning in general. Our findings have implications for understanding the neural basis of speech motor learning and could elucidate how transient breakdown of neuronal communication within speech networks relates to speech disorders.

  10. Adaptive nonlinear polynomial neural networks for control of boundary layer/structural interaction

    NASA Technical Reports Server (NTRS)

    Parker, B. Eugene, Jr.; Cellucci, Richard L.; Abbott, Dean W.; Barron, Roger L.; Jordan, Paul R., III; Poor, H. Vincent

    1993-01-01

    The acoustic pressures developed in a boundary layer can interact with an aircraft panel to induce significant vibration in the panel. Such vibration is undesirable due to the aerodynamic drag and structure-borne cabin noises that result. The overall objective of this work is to develop effective and practical feedback control strategies for actively reducing this flow-induced structural vibration. This report describes the results of initial evaluations using polynomial, neural network-based, feedback control to reduce flow induced vibration in aircraft panels due to turbulent boundary layer/structural interaction. Computer simulations are used to develop and analyze feedback control strategies to reduce vibration in a beam as a first step. The key differences between this work and that going on elsewhere are as follows: that turbulent and transitional boundary layers represent broadband excitation and thus present a more complex stochastic control scenario than that of narrow band (e.g., laminar boundary layer) excitation; and secondly, that the proposed controller structures are adaptive nonlinear infinite impulse response (IIR) polynomial neural network, as opposed to the traditional adaptive linear finite impulse response (FIR) filters used in most studies to date. The controllers implemented in this study achieved vibration attenuation of 27 to 60 dB depending on the type of boundary layer established by laminar, turbulent, and intermittent laminar-to-turbulent transitional flows. Application of multi-input, multi-output, adaptive, nonlinear feedback control of vibration in aircraft panels based on polynomial neural networks appears to be feasible today. Plans are outlined for Phase 2 of this study, which will include extending the theoretical investigation conducted in Phase 2 and verifying the results in a series of laboratory experiments involving both bum and plate models.

  11. Adaptive nonlinear polynomial neural networks for control of boundary layer/structural interaction

    NASA Astrophysics Data System (ADS)

    Parker, B. Eugene, Jr.; Cellucci, Richard L.; Abbott, Dean W.; Barron, Roger L.; Jordan, Paul R., III; Poor, H. Vincent

    1993-12-01

    The acoustic pressures developed in a boundary layer can interact with an aircraft panel to induce significant vibration in the panel. Such vibration is undesirable due to the aerodynamic drag and structure-borne cabin noises that result. The overall objective of this work is to develop effective and practical feedback control strategies for actively reducing this flow-induced structural vibration. This report describes the results of initial evaluations using polynomial, neural network-based, feedback control to reduce flow induced vibration in aircraft panels due to turbulent boundary layer/structural interaction. Computer simulations are used to develop and analyze feedback control strategies to reduce vibration in a beam as a first step. The key differences between this work and that going on elsewhere are as follows: that turbulent and transitional boundary layers represent broadband excitation and thus present a more complex stochastic control scenario than that of narrow band (e.g., laminar boundary layer) excitation; and secondly, that the proposed controller structures are adaptive nonlinear infinite impulse response (IIR) polynomial neural network, as opposed to the traditional adaptive linear finite impulse response (FIR) filters used in most studies to date. The controllers implemented in this study achieved vibration attenuation of 27 to 60 dB depending on the type of boundary layer established by laminar, turbulent, and intermittent laminar-to-turbulent transitional flows. Application of multi-input, multi-output, adaptive, nonlinear feedback control of vibration in aircraft panels based on polynomial neural networks appears to be feasible today. Plans are outlined for Phase 2 of this study, which will include extending the theoretical investigation conducted in Phase 2 and verifying the results in a series of laboratory experiments involving both bum and plate models.

  12. Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients.

    PubMed

    Ge, Shuzhi Sam; Hong, Fan; Lee, Tong Heng

    2004-02-01

    In this paper, adaptive neural control is presented for a class of strict-feedback nonlinear systems with unknown time delays. The proposed design method does not require a priori knowledge of the signs of the unknown virtual control coefficients. The unknown time delays are compensated for using appropriate Lyapunov-Krasovskii functionals in the design. It is proved that the proposed backstepping design method is able to guarantee semiglobal uniformly ultimately boundedness of all the signals in the closed-loop. In addition, the output of the system is proven to converge to a small neighborhood of the origin. Simulation results are provided to show the effectiveness of the proposed approach.

  13. Flight envelope protection of aircraft using adaptive neural network and online linearisation

    NASA Astrophysics Data System (ADS)

    Shin, Hohyun; Kim, Youdan

    2016-03-01

    Flight envelope protection algorithm is proposed to improve the safety of an aircraft. Flight envelope protection systems find the control inputs to prevent an aircraft from exceeding structure/aerodynamic limits and maximum control surface deflections. The future values of state variables are predicted using the current states and control inputs based on linearised aircraft model. To apply the envelope protection algorithm for the wide envelope of the aircraft, online linearisation is adopted. Finally, the flight envelope protection system is designed using adaptive neural network and least-squares method. Numerical simulations are conducted to verify the performance of the proposed scheme.

  14. Crop classification by forward neural network with adaptive chaotic particle swarm optimization.

    PubMed

    Zhang, Yudong; Wu, Lenan

    2011-01-01

    This paper proposes a hybrid crop classifier for polarimetric synthetic aperture radar (SAR) images. The feature sets consisted of span image, the H/A/α decomposition, and the gray-level co-occurrence matrix (GLCM) based texture features. Then, the features were reduced by principle component analysis (PCA). Finally, a two-hidden-layer forward neural network (NN) was constructed and trained by adaptive chaotic particle swarm optimization (ACPSO). K-fold cross validation was employed to enhance generation. The experimental results on Flevoland sites demonstrate the superiority of ACPSO to back-propagation (BP), adaptive BP (ABP), momentum BP (MBP), Particle Swarm Optimization (PSO), and Resilient back-propagation (RPROP) methods. Moreover, the computation time for each pixel is only 1.08 × 10(-7) s.

  15. An alternative approach for adaptive real-time control using a nonparametric neural network

    SciTech Connect

    Alves da Silva, A.P.; Nascimento, P.C.; Lambert-Torres, G.; Borges da Silva, L.E.

    1995-12-31

    This paper presents a nonparametric Artificial Neural Network (ANN) model for adaptive control of nonlinear systems. The proposed ANN, Functional Polynomial Network (FPN), mixes the concept of orthogonal basis functions with the idea of polynomial networks. A combination of orthogonal functions can be used to produce a desired mapping. However, there is no way besides trial and error to choose which orthogonal functions should be selected. Polynomial nets can be used for function approximation, but, it is not easy to set the order of the activation function. The combination of the two concepts produces a very powerful ANN model due to the automatic input selection capability of the polynomial networks. The proposed FPN has been tested for speed control of a DC motor. The results have been compared with the ones provided by an indirect adaptive control scheme based on multilayer perceptrons trained by backpropagation.

  16. Short term load forecasting using a self-supervised adaptive neural network

    SciTech Connect

    Yoo, H.; Pimmel, R.L.

    1999-05-01

    The authors developed a self-supervised adaptive neural network to perform short term load forecasts (STLF) for a large power system covering a wide service area with several heavy load centers. They used the self-supervised network to extract correlational features from temperature and load data. In using data from the calendar year 1993 as a test case, they found a 0.90 percent error for hour-ahead forecasting and 1.92 percent error for day-ahead forecasting. These levels of error compare favorably with those obtained by other techniques. The algorithm ran in a couple of minutes on a PC containing an Intel Pentium -- 120 MHz CPU. Since the algorithm included searching the historical database, training the network, and actually performing the forecasts, this approach provides a real-time, portable, and adaptable STLF.

  17. Modeling the behavioral substrates of associate learning and memory - Adaptive neural models

    NASA Technical Reports Server (NTRS)

    Lee, Chuen-Chien

    1991-01-01

    Three adaptive single-neuron models based on neural analogies of behavior modification episodes are proposed, which attempt to bridge the gap between psychology and neurophysiology. The proposed models capture the predictive nature of Pavlovian conditioning, which is essential to the theory of adaptive/learning systems. The models learn to anticipate the occurrence of a conditioned response before the presence of a reinforcing stimulus when training is complete. Furthermore, each model can find the most nonredundant and earliest predictor of reinforcement. The behavior of the models accounts for several aspects of basic animal learning phenomena in Pavlovian conditioning beyond previous related models. Computer simulations show how well the models fit empirical data from various animal learning paradigms.

  18. A Neural Network Approach to Intention Modeling for User-Adapted Conversational Agents

    PubMed Central

    Griol, David

    2016-01-01

    Spoken dialogue systems have been proposed to enable a more natural and intuitive interaction with the environment and human-computer interfaces. In this contribution, we present a framework based on neural networks that allows modeling of the user's intention during the dialogue and uses this prediction to dynamically adapt the dialogue model of the system taking into consideration the user's needs and preferences. We have evaluated our proposal to develop a user-adapted spoken dialogue system that facilitates tourist information and services and provide a detailed discussion of the positive influence of our proposal in the success of the interaction, the information and services provided, and the quality perceived by the users. PMID:26819592

  19. Neural avalanches at the critical point between replay and non-replay of spatiotemporal patterns.

    PubMed

    Scarpetta, Silvia; de Candia, Antonio

    2013-01-01

    We model spontaneous cortical activity with a network of coupled spiking units, in which multiple spatio-temporal patterns are stored as dynamical attractors. We introduce an order parameter, which measures the overlap (similarity) between the activity of the network and the stored patterns. We find that, depending on the excitability of the network, different working regimes are possible. For high excitability, the dynamical attractors are stable, and a collective activity that replays one of the stored patterns emerges spontaneously, while for low excitability, no replay is induced. Between these two regimes, there is a critical region in which the dynamical attractors are unstable, and intermittent short replays are induced by noise. At the critical spiking threshold, the order parameter goes from zero to one, and its fluctuations are maximized, as expected for a phase transition (and as observed in recent experimental results in the brain). Notably, in this critical region, the avalanche size and duration distributions follow power laws. Critical exponents are consistent with a scaling relationship observed recently in neural avalanches measurements. In conclusion, our simple model suggests that avalanche power laws in cortical spontaneous activity may be the effect of a network at the critical point between the replay and non-replay of spatio-temporal patterns.

  20. Optimal system size for complex dynamics in random neural networks near criticality

    SciTech Connect

    Wainrib, Gilles; García del Molino, Luis Carlos

    2013-12-15

    In this article, we consider a model of dynamical agents coupled through a random connectivity matrix, as introduced by Sompolinsky et al. [Phys. Rev. Lett. 61(3), 259–262 (1988)] in the context of random neural networks. When system size is infinite, it is known that increasing the disorder parameter induces a phase transition leading to chaotic dynamics. We observe and investigate here a novel phenomenon in the sub-critical regime for finite size systems: the probability of observing complex dynamics is maximal for an intermediate system size when the disorder is close enough to criticality. We give a more general explanation of this type of system size resonance in the framework of extreme values theory for eigenvalues of random matrices.

  1. Fault tolerance of artificial neural networks with applications in critical systems

    NASA Technical Reports Server (NTRS)

    Protzel, Peter W.; Palumbo, Daniel L.; Arras, Michael K.

    1992-01-01

    This paper investigates the fault tolerance characteristics of time continuous recurrent artificial neural networks (ANN) that can be used to solve optimization problems. The principle of operations and performance of these networks are first illustrated by using well-known model problems like the traveling salesman problem and the assignment problem. The ANNs are then subjected to 13 simultaneous 'stuck at 1' or 'stuck at 0' faults for network sizes of up to 900 'neurons'. The effects of these faults is demonstrated and the cause for the observed fault tolerance is discussed. An application is presented in which a network performs a critical task for a real-time distributed processing system by generating new task allocations during the reconfiguration of the system. The performance degradation of the ANN under the presence of faults is investigated by large-scale simulations, and the potential benefits of delegating a critical task to a fault tolerant network are discussed.

  2. Distributed Adaptive Coordinated Control of Multi-Manipulator Systems Using Neural Networks

    NASA Astrophysics Data System (ADS)

    Hou, Zeng-Guang; Cheng, Long; Tan, Min; Wang, Xu

    On many occasions, all the manipulators in the multi-manipulator system need to achieve the same joint configuration to fulfill certain coordination tasks. In this chapter, a distributed adaptive approach is proposed for solving this coordination problem based on the leader-follower strategy. The proposed algorithm is distributed because the controller for each follower manipulator is solely based on the information of connected neighbor manipulators, and the joint value of leader manipulator is only accessible to partial follower manipulators. The uncertain term in the manipulator's dynamics is considered in the controller design, and it is approximated by the adaptive neural network scheme. The neural network weight matrix is adjusted on-line by the projection method, and the pre-training phase is no longer required. Effects of approximation error and external disturbances are counteracted by employing the robustness signal. According to the theoretical analysis, all the joints of follower manipulators can be regulated into an arbitrary small neighborhood of the value of leader's joint. Finally, simulation results are given to demonstrate the satisfactory performance of the proposed method.

  3. Predicting neutron diffusion eigenvalues with a query-based adaptive neural architecture.

    PubMed

    Lysenko, M G; Wong, H I; Maldonado, G I

    1999-01-01

    A query-based approach for adaptively retraining and restructuring a two-hidden-layer artificial neural network (ANN) has been developed for the speedy prediction of the fundamental mode eigenvalue of the neutron diffusion equation, a standard nuclear reactor core design calculation which normally requires the iterative solution of a large-scale system of nonlinear partial differential equations (PDE's). The approach developed focuses primarily upon the adaptive selection of training and cross-validation data and on artificial neural-network (ANN) architecture adjustments, with the objective of improving the accuracy and generalization properties of ANN-based neutron diffusion eigenvalue predictions. For illustration, the performance of a "bare bones" feedforward multilayer perceptron (MLP) is upgraded through a variety of techniques; namely, nonrandom initial training set selection, adjoint function input weighting, teacher-student membership and equivalence queries for generation of appropriate training data, and a dynamic node architecture (DNA) implementation. The global methodology is flexible in that it can "wrap around" any specific training algorithm selected for the static calculations (i.e., training iterations with a fixed training set and architecture). Finally, the improvements obtained are carefully contrasted against past works reported in the literature.

  4. Low-complexity nonlinear adaptive filter based on a pipelined bilinear recurrent neural network.

    PubMed

    Zhao, Haiquan; Zeng, Xiangping; He, Zhengyou

    2011-09-01

    To reduce the computational complexity of the bilinear recurrent neural network (BLRNN), a novel low-complexity nonlinear adaptive filter with a pipelined bilinear recurrent neural network (PBLRNN) is presented in this paper. The PBLRNN, inheriting the modular architectures of the pipelined RNN proposed by Haykin and Li, comprises a number of BLRNN modules that are cascaded in a chained form. Each module is implemented by a small-scale BLRNN with internal dynamics. Since those modules of the PBLRNN can be performed simultaneously in a pipelined parallelism fashion, it would result in a significant improvement of computational efficiency. Moreover, due to nesting module, the performance of the PBLRNN can be further improved. To suit for the modular architectures, a modified adaptive amplitude real-time recurrent learning algorithm is derived on the gradient descent approach. Extensive simulations are carried out to evaluate the performance of the PBLRNN on nonlinear system identification, nonlinear channel equalization, and chaotic time series prediction. Experimental results show that the PBLRNN provides considerably better performance compared to the single BLRNN and RNN models.

  5. Short-term training for explosive strength causes neural and mechanical adaptations.

    PubMed

    Tillin, Neale A; Pain, Matthew T G; Folland, Jonathan P

    2012-05-01

    This study investigated the neural and peripheral adaptations to short-term training for explosive force production. Ten men trained the knee extensors with unilateral explosive isometric contractions (1 s 'fast and hard') for 4 weeks. Before and after training, force was recorded at 50-ms intervals from force onset (F(50), F(100) and F(150)) during both voluntary and involuntary (supramaximal evoked octet; eight pulses at 300 Hz) explosive isometric contractions. Neural drive during the explosive voluntary contractions was measured with the ratio of voluntary/octet force, and average EMG normalized to the peak-to-peak M-wave of the three superficial quadriceps. Maximal voluntary force (MVF) was also measured, and ultrasonic images of the vastus lateralis were recorded during ramped contractions to assess muscle-tendon unit stiffness between 50 and 90% MVF. There was an increase in voluntary F(50) (+54%), F(100) (+15%) and F(150) (+14%) and in octet F(50) (+7%) and F(100) (+10%). Voluntary F(100) and F(150), and octet F(50) and F(100) increased proportionally with MVF (+11%). However, the increase in voluntary F(50) was +37% even after normalization to MVF, and coincided with a 42% increase in both voluntary/octet force and agonist-normalized EMG over the first 50 ms. Muscle-tendon unit stiffness between 50 and 90% MVF also increased. In conclusion, enhanced agonist neural drive and MVF accounted for improved explosive voluntary force production in the early and late phases of the contraction, respectively. The increases in explosive octet force and muscle-tendon unit stiffness provide novel evidence of peripheral adaptations within merely 4 weeks of training for explosive force production.

  6. [Automated recognition of quasars based on adaptive radial basis function neural networks].

    PubMed

    Zhao, Mei-Fang; Luo, A-Li; Wu, Fu-Chao; Hu, Zhan-Yi

    2006-02-01

    Recognizing and certifying quasars through the research on spectra is an important method in the field of astronomy. This paper presents a novel adaptive method for the automated recognition of quasars based on the radial basis function neural networks (RBFN). The proposed method is composed of the following three parts: (1) The feature space is reduced by the PCA (the principal component analysis) on the normalized input spectra; (2) An adaptive RBFN is constructed and trained in this reduced space. At first, the K-means clustering is used for the initialization, then based on the sum of squares errors and a gradient descent optimization technique, the number of neurons in the hidden layer is adaptively increased to improve the recognition performance; (3) The quasar spectra recognition is effectively carried out by the above trained RBFN. The author's proposed adaptive RBFN is shown to be able to not only overcome the difficulty of selecting the number of neurons in hidden layer of the traditional RBFN algorithm, but also increase the stability and accuracy of recognition of quasars. Besides, the proposed method is particularly useful for automatic voluminous spectra processing produced from a large-scale sky survey project, such as our LAMOST, due to its efficiency.

  7. Stability of bumps in piecewise smooth neural fields with nonlinear adaptation

    NASA Astrophysics Data System (ADS)

    Kilpatrick, Zachary P.; Bressloff, Paul C.

    2010-06-01

    We study the linear stability of stationary bumps in piecewise smooth neural fields with local negative feedback in the form of synaptic depression or spike frequency adaptation. The continuum dynamics is described in terms of a nonlocal integrodifferential equation, in which the integral kernel represents the spatial distribution of synaptic weights between populations of neurons whose mean firing rate is taken to be a Heaviside function of local activity. Discontinuities in the adaptation variable associated with a bump solution means that bump stability cannot be analyzed by constructing the Evans function for a network with a sigmoidal gain function and then taking the high-gain limit. In the case of synaptic depression, we show that linear stability can be formulated in terms of solutions to a system of pseudo-linear equations. We thus establish that sufficiently strong synaptic depression can destabilize a bump that is stable in the absence of depression. These instabilities are dominated by shift perturbations that evolve into traveling pulses. In the case of spike frequency adaptation, we show that for a wide class of perturbations the activity and adaptation variables decouple in the linear regime, thus allowing us to explicitly determine stability in terms of the spectrum of a smooth linear operator. We find that bumps are always unstable with respect to this class of perturbations, and destabilization of a bump can result in either a traveling pulse or a spatially localized breather.

  8. Adaptive Actor-Critic Design-Based Integral Sliding-Mode Control for Partially Unknown Nonlinear Systems With Input Disturbances.

    PubMed

    Fan, Quan-Yong; Yang, Guang-Hong

    2016-01-01

    This paper is concerned with the problem of integral sliding-mode control for a class of nonlinear systems with input disturbances and unknown nonlinear terms through the adaptive actor-critic (AC) control method. The main objective is to design a sliding-mode control methodology based on the adaptive dynamic programming (ADP) method, so that the closed-loop system with time-varying disturbances is stable and the nearly optimal performance of the sliding-mode dynamics can be guaranteed. In the first step, a neural network (NN)-based observer and a disturbance observer are designed to approximate the unknown nonlinear terms and estimate the input disturbances, respectively. Based on the NN approximations and disturbance estimations, the discontinuous part of the sliding-mode control is constructed to eliminate the effect of the disturbances and attain the expected equivalent sliding-mode dynamics. Then, the ADP method with AC structure is presented to learn the optimal control for the sliding-mode dynamics online. Reconstructed tuning laws are developed to guarantee the stability of the sliding-mode dynamics and the convergence of the weights of critic and actor NNs. Finally, the simulation results are presented to illustrate the effectiveness of the proposed method.

  9. Adaptive Actor-Critic Design-Based Integral Sliding-Mode Control for Partially Unknown Nonlinear Systems With Input Disturbances.

    PubMed

    Fan, Quan-Yong; Yang, Guang-Hong

    2016-01-01

    This paper is concerned with the problem of integral sliding-mode control for a class of nonlinear systems with input disturbances and unknown nonlinear terms through the adaptive actor-critic (AC) control method. The main objective is to design a sliding-mode control methodology based on the adaptive dynamic programming (ADP) method, so that the closed-loop system with time-varying disturbances is stable and the nearly optimal performance of the sliding-mode dynamics can be guaranteed. In the first step, a neural network (NN)-based observer and a disturbance observer are designed to approximate the unknown nonlinear terms and estimate the input disturbances, respectively. Based on the NN approximations and disturbance estimations, the discontinuous part of the sliding-mode control is constructed to eliminate the effect of the disturbances and attain the expected equivalent sliding-mode dynamics. Then, the ADP method with AC structure is presented to learn the optimal control for the sliding-mode dynamics online. Reconstructed tuning laws are developed to guarantee the stability of the sliding-mode dynamics and the convergence of the weights of critic and actor NNs. Finally, the simulation results are presented to illustrate the effectiveness of the proposed method. PMID:26357411

  10. The adaptive bleaching hypothesis: experimental tests of critical assumptions.

    PubMed

    Kinzie, R A; Takayama, M; Santos, S R; Coffroth, M A

    2001-02-01

    Coral bleaching, the loss of color due to loss of symbiotic zooxanthellae or their pigment, appears to be increasing in intensity and geographic extent, perhaps related to increasing sea surface temperatures. The adaptive bleaching hypothesis (ABH) posits that when environmental circumstances change, the loss of one or more kinds of zooxanthellae is rapidly, sometimes unnoticeably, followed by formation of a new symbiotic consortium with different zooxanthellae that are more suited to the new conditions in the host's habitat. Fundamental assumptions of the ABH include (1) different types of zooxanthellae respond differently to environmental conditions, specifically temperature, and (2) bleached adults can secondarily acquire zooxanthellae from the environment. We present simple tests of these assumptions and show that (1) genetically different strains of zooxanthellae exhibit different responses to elevated temperature, (2) bleached adult hosts can acquire algal symbionts with an apparently dose-dependent relationship between the concentration of zooxanthellae and the rate of establishment of the symbiosis, (3) and finally, bleached adult hosts can acquire symbionts from the water column.

  11. Neural-Based Adaptive Output-Feedback Control for a Class of Nonstrict-Feedback Stochastic Nonlinear Systems.

    PubMed

    Wang, Huanqing; Liu, Kefu; Liu, Xiaoping; Chen, Bing; Lin, Chong

    2015-09-01

    In this paper, we consider the problem of observer-based adaptive neural output-feedback control for a class of stochastic nonlinear systems with nonstrict-feedback structure. To overcome the design difficulty from the nonstrict-feedback structure, a variable separation approach is introduced by using the monotonically increasing property of system bounding functions. On the basis of the state observer, and by combining the adaptive backstepping technique with radial basis function neural networks' universal approximation capability, an adaptive neural output feedback control algorithm is presented. It is shown that the proposed controller can guarantee that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded in the sense of mean quartic value. Simulation results are provided to show the effectiveness of the proposed control scheme.

  12. Effects of adaptation on neural coding by primary sensory interneurons in the cricket cercal system.

    PubMed

    Clague, H; Theunissen, F; Miller, J P

    1997-01-01

    . These changes could be accounted for largely by a change in neural sensitivity. The effect of adaptation on the coding of stimulus power was examined by measuring the response curves to steps in stimulus power before and after exposure to an adapting stimulus. Adaptation caused a loss of information about the mean stimulus power but did not cause any improvement in the coding of changes in stimulus power. The unadapted response of the cells did not show any saturation even at the highest powers used in these experiments.

  13. Remembering forward: Neural correlates of memory and prediction in human motor adaptation

    PubMed Central

    Scheidt, Robert A; Zimbelman, Janice L; Salowitz, Nicole M G; Suminski, Aaron J; Mosier, Kristine M; Houk, James; Simo, Lucia

    2011-01-01

    We used functional MR imaging (FMRI), a robotic manipulandum and systems identification techniques to examine neural correlates of predictive compensation for spring-like loads during goal-directed wrist movements in neurologically-intact humans. Although load changed unpredictably from one trial to the next, subjects nevertheless used sensorimotor memories from recent movements to predict and compensate upcoming loads. Prediction enabled subjects to adapt performance so that the task was accomplished with minimum effort. Population analyses of functional images revealed a distributed, bilateral network of cortical and subcortical activity supporting predictive load compensation during visual target capture. Cortical regions - including prefrontal, parietal and hippocampal cortices - exhibited trial-by-trial fluctuations in BOLD signal consistent with the storage and recall of sensorimotor memories or “states” important for spatial working memory. Bilateral activations in associative regions of the striatum demonstrated temporal correlation with the magnitude of kinematic performance error (a signal that could drive reward-optimizing reinforcement learning and the prospective scaling of previously learned motor programs). BOLD signal correlations with load prediction were observed in the cerebellar cortex and red nuclei (consistent with the idea that these structures generate adaptive fusimotor signals facilitating cancellation of expected proprioceptive feedback, as required for conditional feedback adjustments to ongoing motor commands and feedback error learning). Analysis of single subject images revealed that predictive activity was at least as likely to be observed in more than one of these neural systems as in just one. We conclude therefore that motor adaptation is mediated by predictive compensations supported by multiple, distributed, cortical and subcortical structures. PMID:21840405

  14. Distributed recurrent neural forward models with synaptic adaptation and CPG-based control for complex behaviors of walking robots.

    PubMed

    Dasgupta, Sakyasingha; Goldschmidt, Dennis; Wörgötter, Florentin; Manoonpong, Poramate

    2015-01-01

    Walking animals, like stick insects, cockroaches or ants, demonstrate a fascinating range of locomotive abilities and complex behaviors. The locomotive behaviors can consist of a variety of walking patterns along with adaptation that allow the animals to deal with changes in environmental conditions, like uneven terrains, gaps, obstacles etc. Biological study has revealed that such complex behaviors are a result of a combination of biomechanics and neural mechanism thus representing the true nature of embodied interactions. While the biomechanics helps maintain flexibility and sustain a variety of movements, the neural mechanisms generate movements while making appropriate predictions crucial for achieving adaptation. Such predictions or planning ahead can be achieved by way of internal models that are grounded in the overall behavior of the animal. Inspired by these findings, we present here, an artificial bio-inspired walking system which effectively combines biomechanics (in terms of the body and leg structures) with the underlying neural mechanisms. The neural mechanisms consist of (1) central pattern generator based control for generating basic rhythmic patterns and coordinated movements, (2) distributed (at each leg) recurrent neural network based adaptive forward models with efference copies as internal models for sensory predictions and instantaneous state estimations, and (3) searching and elevation control for adapting the movement of an individual leg to deal with different environmental conditions. Using simulations we show that this bio-inspired approach with adaptive internal models allows the walking robot to perform complex locomotive behaviors as observed in insects, including walking on undulated terrains, crossing large gaps, leg damage adaptations, as well as climbing over high obstacles. Furthermore, we demonstrate that the newly developed recurrent network based approach to online forward models outperforms the adaptive neuron forward models

  15. Distributed recurrent neural forward models with synaptic adaptation and CPG-based control for complex behaviors of walking robots

    PubMed Central

    Dasgupta, Sakyasingha; Goldschmidt, Dennis; Wörgötter, Florentin; Manoonpong, Poramate

    2015-01-01

    Walking animals, like stick insects, cockroaches or ants, demonstrate a fascinating range of locomotive abilities and complex behaviors. The locomotive behaviors can consist of a variety of walking patterns along with adaptation that allow the animals to deal with changes in environmental conditions, like uneven terrains, gaps, obstacles etc. Biological study has revealed that such complex behaviors are a result of a combination of biomechanics and neural mechanism thus representing the true nature of embodied interactions. While the biomechanics helps maintain flexibility and sustain a variety of movements, the neural mechanisms generate movements while making appropriate predictions crucial for achieving adaptation. Such predictions or planning ahead can be achieved by way of internal models that are grounded in the overall behavior of the animal. Inspired by these findings, we present here, an artificial bio-inspired walking system which effectively combines biomechanics (in terms of the body and leg structures) with the underlying neural mechanisms. The neural mechanisms consist of (1) central pattern generator based control for generating basic rhythmic patterns and coordinated movements, (2) distributed (at each leg) recurrent neural network based adaptive forward models with efference copies as internal models for sensory predictions and instantaneous state estimations, and (3) searching and elevation control for adapting the movement of an individual leg to deal with different environmental conditions. Using simulations we show that this bio-inspired approach with adaptive internal models allows the walking robot to perform complex locomotive behaviors as observed in insects, including walking on undulated terrains, crossing large gaps, leg damage adaptations, as well as climbing over high obstacles. Furthermore, we demonstrate that the newly developed recurrent network based approach to online forward models outperforms the adaptive neuron forward models

  16. Dynamic recurrent neural networks for stable adaptive control of wing rock motion

    NASA Astrophysics Data System (ADS)

    Kooi, Steven Boon-Lam

    Wing rock is a self-sustaining limit cycle oscillation (LCO) which occurs as the result of nonlinear coupling between the dynamic response of the aircraft and the unsteady aerodynamic forces. In this thesis, dynamic recurrent RBF (Radial Basis Function) network control methodology is proposed to control the wing rock motion. The concept based on the properties of the Presiach hysteresis model is used in the design of dynamic neural networks. The structure and memory mechanism in the Preisach model is analogous to the parallel connectivity and memory formation in the RBF neural networks. The proposed dynamic recurrent neural network has a feature for adding or pruning the neurons in the hidden layer according to the growth criteria based on the properties of ensemble average memory formation of the Preisach model. The recurrent feature of the RBF network deals with the dynamic nonlinearities and endowed temporal memories of the hysteresis model. The control of wing rock is a tracking problem, the trajectory starts from non-zero initial conditions and it tends to zero as time goes to infinity. In the proposed neural control structure, the recurrent dynamic RBF network performs identification process in order to approximate the unknown non-linearities of the physical system based on the input-output data obtained from the wing rock phenomenon. The design of the RBF networks together with the network controllers are carried out in discrete time domain. The recurrent RBF networks employ two separate adaptation schemes where the RBF's centre and width are adjusted by the Extended Kalman Filter in order to give a minimum networks size, while the outer networks layer weights are updated using the algorithm derived from Lyapunov stability analysis for the stable closed loop control. The issue of the robustness of the recurrent RBF networks is also addressed. The effectiveness of the proposed dynamic recurrent neural control methodology is demonstrated through simulations to

  17. Intelligent adaptive nonlinear flight control for a high performance aircraft with neural networks.

    PubMed

    Savran, Aydogan; Tasaltin, Ramazan; Becerikli, Yasar

    2006-04-01

    This paper describes the development of a neural network (NN) based adaptive flight control system for a high performance aircraft. The main contribution of this work is that the proposed control system is able to compensate the system uncertainties, adapt to the changes in flight conditions, and accommodate the system failures. The underlying study can be considered in two phases. The objective of the first phase is to model the dynamic behavior of a nonlinear F-16 model using NNs. Therefore a NN-based adaptive identification model is developed for three angular rates of the aircraft. An on-line training procedure is developed to adapt the changes in the system dynamics and improve the identification accuracy. In this procedure, a first-in first-out stack is used to store a certain history of the input-output data. The training is performed over the whole data in the stack at every stage. To speed up the convergence rate and enhance the accuracy for achieving the on-line learning, the Levenberg-Marquardt optimization method with a trust region approach is adapted to train the NNs. The objective of the second phase is to develop intelligent flight controllers. A NN-based adaptive PID control scheme that is composed of an emulator NN, an estimator NN, and a discrete time PID controller is developed. The emulator NN is used to calculate the system Jacobian required to train the estimator NN. The estimator NN, which is trained on-line by propagating the output error through the emulator, is used to adjust the PID gains. The NN-based adaptive PID control system is applied to control three angular rates of the nonlinear F-16 model. The body-axis pitch, roll, and yaw rates are fed back via the PID controllers to the elevator, aileron, and rudder actuators, respectively. The resulting control system has learning, adaptation, and fault-tolerant abilities. It avoids the storage and interpolation requirements for the too many controller parameters of a typical flight control

  18. Intelligent adaptive nonlinear flight control for a high performance aircraft with neural networks.

    PubMed

    Savran, Aydogan; Tasaltin, Ramazan; Becerikli, Yasar

    2006-04-01

    This paper describes the development of a neural network (NN) based adaptive flight control system for a high performance aircraft. The main contribution of this work is that the proposed control system is able to compensate the system uncertainties, adapt to the changes in flight conditions, and accommodate the system failures. The underlying study can be considered in two phases. The objective of the first phase is to model the dynamic behavior of a nonlinear F-16 model using NNs. Therefore a NN-based adaptive identification model is developed for three angular rates of the aircraft. An on-line training procedure is developed to adapt the changes in the system dynamics and improve the identification accuracy. In this procedure, a first-in first-out stack is used to store a certain history of the input-output data. The training is performed over the whole data in the stack at every stage. To speed up the convergence rate and enhance the accuracy for achieving the on-line learning, the Levenberg-Marquardt optimization method with a trust region approach is adapted to train the NNs. The objective of the second phase is to develop intelligent flight controllers. A NN-based adaptive PID control scheme that is composed of an emulator NN, an estimator NN, and a discrete time PID controller is developed. The emulator NN is used to calculate the system Jacobian required to train the estimator NN. The estimator NN, which is trained on-line by propagating the output error through the emulator, is used to adjust the PID gains. The NN-based adaptive PID control system is applied to control three angular rates of the nonlinear F-16 model. The body-axis pitch, roll, and yaw rates are fed back via the PID controllers to the elevator, aileron, and rudder actuators, respectively. The resulting control system has learning, adaptation, and fault-tolerant abilities. It avoids the storage and interpolation requirements for the too many controller parameters of a typical flight control

  19. An efficient fully unsupervised video object segmentation scheme using an adaptive neural-network classifier architecture.

    PubMed

    Doulamis, A; Doulamis, N; Ntalianis, K; Kollias, S

    2003-01-01

    In this paper, an unsupervised video object (VO) segmentation and tracking algorithm is proposed based on an adaptable neural-network architecture. The proposed scheme comprises: 1) a VO tracking module and 2) an initial VO estimation module. Object tracking is handled as a classification problem and implemented through an adaptive network classifier, which provides better results compared to conventional motion-based tracking algorithms. Network adaptation is accomplished through an efficient and cost effective weight updating algorithm, providing a minimum degradation of the previous network knowledge and taking into account the current content conditions. A retraining set is constructed and used for this purpose based on initial VO estimation results. Two different scenarios are investigated. The first concerns extraction of human entities in video conferencing applications, while the second exploits depth information to identify generic VOs in stereoscopic video sequences. Human face/ body detection based on Gaussian distributions is accomplished in the first scenario, while segmentation fusion is obtained using color and depth information in the second scenario. A decision mechanism is also incorporated to detect time instances for weight updating. Experimental results and comparisons indicate the good performance of the proposed scheme even in sequences with complicated content (object bending, occlusion).

  20. An adaptive workspace hypothesis about the neural correlates of consciousness: insights from neuroscience and meditation studies.

    PubMed

    Raffone, Antonino; Srinivasan, Narayanan

    2009-01-01

    While enormous progress has been made to identify neural correlates of consciousness (NCC), crucial NCC aspects are still very controversial. A major hurdle is the lack of an adequate definition and characterization of different aspects of conscious experience and also its relationship to attention and metacognitive processes like monitoring. In this paper, we therefore attempt to develop a unitary theoretical framework for NCC, with an interdependent characterization of endogenous attention, access consciousness, phenomenal awareness, metacognitive consciousness, and a non-referential form of unified consciousness. We advance an adaptive workspace hypothesis about the NCC based on the global workspace model emphasizing transient resonant neurodynamics and prefrontal cortex function, as well as meditation-related characterizations of conscious experiences. In this hypothesis, transient dynamic links within an adaptive coding net in prefrontal cortex, especially in anterior prefrontal cortex, and between it and the rest of the brain, in terms of ongoing intrinsic and long-range signal exchanges, flexibly regulate the interplay between endogenous attention, access consciousness, phenomenal awareness, and metacognitive consciousness processes. Such processes are established in terms of complementary aspects of an ongoing transition between context-sensitive global workspace assemblies, modulated moment-to-moment by body and environment states. Brain regions associated to momentary interoceptive and exteroceptive self-awareness, or first-person experiential perspective as emphasized in open monitoring meditation, play an important modulatory role in adaptive workspace transitions.

  1. An adaptive recurrent-neural-network motion controller for X-Y table in CNC machine.

    PubMed

    Lin, Faa-Jeng; Shieh, Hsin-Jang; Shieh, Po-Huang; Shen, Po-Hung

    2006-04-01

    In this paper, an adaptive recurrent-neural-network (ARNN) motion control system for a biaxial motion mechanism driven by two field-oriented control permanent magnet synchronous motors (PMSMs) in the computer numerical control (CNC) machine is proposed. In the proposed ARNN control system, a RNN with accurate approximation capability is employed to approximate an unknown dynamic function, and the adaptive learning algorithms that can learn the parameters of the RNN on line are derived using Lyapunov stability theorem. Moreover, a robust controller is proposed to confront the uncertainties including approximation error, optimal parameter vectors, higher-order terms in Taylor series, external disturbances, cross-coupled interference and friction torque of the system. To relax the requirement for the value of lumped uncertainty in the robust controller, an adaptive lumped uncertainty estimation law is investigated. Using the proposed control, the position tracking performance is substantially improved and the robustness to uncertainties including cross-coupled interference and friction torque can be obtained as well. Finally, some experimental results of the tracking of various reference contours demonstrate the validity of the proposed design for practical applications. PMID:16602590

  2. Insulin concentration is critical in culturing human neural stem cells and neurons.

    PubMed

    Rhee, Y-H; Choi, M; Lee, H-S; Park, C-H; Kim, S-M; Yi, S-H; Oh, S-M; Cha, H-J; Chang, M-Y; Lee, S-H

    2013-08-08

    Cell culture of human-derived neural stem cells (NSCs) is a useful tool that contributes to our understanding of human brain development and allows for the development of therapies for intractable human brain disorders. Human NSC (hNSC) cultures, however, are not commonly used, mainly because of difficulty with consistently maintaining the cells in a healthy state. In this study, we show that hNSC cultures, unlike NSCs of rodent origins, are extremely sensitive to insulin, an indispensable culture supplement, and that the previously reported difficulty in culturing hNSCs is likely because of a lack of understanding of this relationship. Like other neural cell cultures, insulin is required for hNSC growth, as withdrawal of insulin supplementation results in massive cell death and delayed cell growth. However, severe apoptotic cell death was also detected in insulin concentrations optimized to rodent NSC cultures. Thus, healthy hNSC cultures were only produced in a narrow range of relatively low insulin concentrations. Insulin-mediated cell death manifested not only in all human NSCs tested, regardless of origin, but also in differentiated human neurons. The underlying cell death mechanism at high insulin concentrations was similar to insulin resistance, where cells became less responsive to insulin, resulting in a reduction in the activation of the PI3K/Akt pathway critical to cell survival signaling.

  3. The role of shared neural activations, mirror neurons, and morality in empathy--a critical comment.

    PubMed

    Lamm, Claus; Majdandžić, Jasminka

    2015-01-01

    In the last decade, the phenomenon of empathy has received widespread attention by the field of social neuroscience. This has provided fresh insights for theoretical models of empathy, and substantially influenced the academic and public conceptions about this complex social skill. The present paper highlights three key issues which are often linked to empathy, but which at the same time might obscure our understanding of it. These issues are: (1) shared neural activations and whether these can be interpreted as evidence for simulation accounts of empathy; (2) the causal link of empathy to our presumed mirror neuron system; and (3) the question whether increasing empathy will result in better moral decisions and behaviors. The aim of our review is to provide the basis for critically evaluating our current understanding of empathy, and its public reception, and to inspire new research directions.

  4. A simplified adaptive neural network prescribed performance controller for uncertain MIMO feedback linearizable systems.

    PubMed

    Theodorakopoulos, Achilles; Rovithakis, George A

    2015-03-01

    In this paper, the problem of deriving a continuous, state-feedback controller for a class of multiinput multioutput feedback linearizable systems is considered with special emphasis on controller simplification and reduction of the overall design complexity with respect to the current state of the art. The proposed scheme achieves prescribed bounds on the transient and steady-state performance of the output tracking errors despite the uncertainty in system nonlinearities. Contrary to the current state of the art, however, only a single neural network is utilized to approximate a scalar function that partly incorporates the system nonlinearities. Furthermore, the loss of model controllability problem, typically introduced owing to approximation model singularities, is avoided without attaching additional complexity to the control or adaptive law. Simulations are performed to verify and clarify the theoretical findings.

  5. Self: an adaptive pressure arising from self-organization, chaotic dynamics, and neural Darwinism.

    PubMed

    Bruzzo, Angela Alessia; Vimal, Ram Lakhan Pandey

    2007-12-01

    In this article, we establish a model to delineate the emergence of "self" in the brain making recourse to the theory of chaos. Self is considered as the subjective experience of a subject. As essential ingredients of subjective experiences, our model includes wakefulness, re-entry, attention, memory, and proto-experiences. The stability as stated by chaos theory can potentially describe the non-linear function of "self" as sensitive to initial conditions and can characterize it as underlying order from apparently random signals. Self-similarity is discussed as a latent menace of a pathological confusion between "self" and "others". Our test hypothesis is that (1) consciousness might have emerged and evolved from a primordial potential or proto-experience in matter, such as the physical attractions and repulsions experienced by electrons, and (2) "self" arises from chaotic dynamics, self-organization and selective mechanisms during ontogenesis, while emerging post-ontogenically as an adaptive pressure driven by both volume and synaptic-neural transmission and influencing the functional connectivity of neural nets (structure).

  6. Circuit Design and Simulation of AN Augmented Adaptive Resonance Theory (aart) Neural Network.

    NASA Astrophysics Data System (ADS)

    Ho, Ching-Sung

    This dissertation presents circuit implementations for an binary-input adaptive resonance theory neural network architecture, called the augmented ART-1 neural network (AART1-NN). The AART1-NN is a modification of the popular ART1-NN, developed by Carpenter and Grossberg, and it exhibits the same behavior as the ART1-NN. The AART1-NN is a real -time model, and has the ability to classify an arbitrary set of binary input patterns into different clusters. The design of the AART1-NN circuit is based on a set of coupled nonlinear differential equations that constitute the AART1 -NN model. Various ways are examined to implement an efficient and practical AART1-NN in electronic hardware. They include designing circuits of AART1-NN by means of discrete electronic components, such as operational amplifiers, capacitors, and resistors, digital VLSI circuit, and mixed analog/digital VLSI circuit. The implemented circuit prototypes are verified using the PSpice circuit simulator, running on Sun workstations. Results obtained from PSpice circuit simulations are also compared with results obtained by solving the coupled differential equations numerically. The prototype systems developed in this work can be used as building blocks for larger AART1-NN architectures, as well as for other types of ART architectures that involve the AART1-NN model.

  7. Analog circuit design and implementation of an adaptive resonance theory (ART) neural network architecture

    NASA Astrophysics Data System (ADS)

    Ho, Ching S.; Liou, Juin J.; Georgiopoulos, Michael; Heileman, Gregory L.; Christodoulou, Christos G.

    1993-09-01

    This paper presents an analog circuit implementation for an adaptive resonance theory neural network architecture, called the augmented ART-1 neural network (AART1-NN). The AART1-NN is a modification of the popular ART1-NN, developed by Carpenter and Grossberg, and it exhibits the same behavior as the ART1-NN. The AART1-NN is a real-time model, and has the ability to classify an arbitrary set of binary input patterns into different clusters. The design of the AART1-NN model. The circuit is implemented by utilizing analog electronic components, such as, operational amplifiers, transistors, capacitors, and resistors. The implemented circuit is verified using the PSpice circuit simulator, running on Sun workstations. Results obtained from the PSpice circuit simulation compare favorably with simulation results produced by solving the differential equations numerically. The prototype system developed here can be used as a building block for larger AART1-NN architectures, as well as for other types of ART architectures that involve the AART1-NN model.

  8. Adaptive neural control of nonlinear MIMO systems with time-varying output constraints.

    PubMed

    Meng, Wenchao; Yang, Qinmin; Sun, Youxian

    2015-05-01

    In this paper, adaptive neural control is investigated for a class of unknown multiple-input multiple-output nonlinear systems with time-varying asymmetric output constraints. To ensure constraint satisfaction, we employ a system transformation technique to transform the original constrained (in the sense of the output restrictions) system into an equivalent unconstrained one, whose stability is sufficient to solve the output constraint problem. It is shown that output tracking is achieved without violation of the output constraint. More specifically, we can shape the system performance arbitrarily on transient and steady-state stages with the output evolving in predefined time-varying boundaries all the time. A single neural network, whose weights are tuned online, is used in our design to approximate the unknown functions in the system dynamics, while the singularity problem of the control coefficient matrix is avoided without assumption on the prior knowledge of control input's bound. All the signals in the closed-loop system are proved to be semiglobally uniformly ultimately bounded via Lyapunov synthesis. Finally, the merits of the proposed controller are verified in the simulation environment.

  9. Fast response and high sensitivity to microsaccades in a cascading-adaptation neural network with short-term synaptic depression

    NASA Astrophysics Data System (ADS)

    Yuan, Wu-Jie; Zhou, Jian-Fang; Zhou, Changsong

    2016-04-01

    Microsaccades are very small eye movements during fixation. Experimentally, they have been found to play an important role in visual information processing. However, neural responses induced by microsaccades are not yet well understood and are rarely studied theoretically. Here we propose a network model with a cascading adaptation including both retinal adaptation and short-term depression (STD) at thalamocortical synapses. In the neural network model, we compare the microsaccade-induced neural responses in the presence of STD and those without STD. It is found that the cascading with STD can give rise to faster and sharper responses to microsaccades. Moreover, STD can enhance response effectiveness and sensitivity to microsaccadic spatiotemporal changes, suggesting improved detection of small eye movements (or moving visual objects). We also explore the mechanism of the response properties in the model. Our studies strongly indicate that STD plays an important role in neural responses to microsaccades. Our model considers simultaneously retinal adaptation and STD at thalamocortical synapses in the study of microsaccade-induced neural activity, and may be useful for further investigation of the functional roles of microsaccades in visual information processing.

  10. Fast response and high sensitivity to microsaccades in a cascading-adaptation neural network with short-term synaptic depression.

    PubMed

    Yuan, Wu-Jie; Zhou, Jian-Fang; Zhou, Changsong

    2016-04-01

    Microsaccades are very small eye movements during fixation. Experimentally, they have been found to play an important role in visual information processing. However, neural responses induced by microsaccades are not yet well understood and are rarely studied theoretically. Here we propose a network model with a cascading adaptation including both retinal adaptation and short-term depression (STD) at thalamocortical synapses. In the neural network model, we compare the microsaccade-induced neural responses in the presence of STD and those without STD. It is found that the cascading with STD can give rise to faster and sharper responses to microsaccades. Moreover, STD can enhance response effectiveness and sensitivity to microsaccadic spatiotemporal changes, suggesting improved detection of small eye movements (or moving visual objects). We also explore the mechanism of the response properties in the model. Our studies strongly indicate that STD plays an important role in neural responses to microsaccades. Our model considers simultaneously retinal adaptation and STD at thalamocortical synapses in the study of microsaccade-induced neural activity, and may be useful for further investigation of the functional roles of microsaccades in visual information processing. PMID:27176307

  11. Spike frequency adaptation is a possible mechanism for control of attractor preference in auto-associative neural networks

    NASA Astrophysics Data System (ADS)

    Roach, James; Sander, Leonard; Zochowski, Michal

    Auto-associative memory is the ability to retrieve a pattern from a small fraction of the pattern and is an important function of neural networks. Within this context, memories that are stored within the synaptic strengths of networks act as dynamical attractors for network firing patterns. In networks with many encoded memories, some attractors will be stronger than others. This presents the problem of how networks switch between attractors depending on the situation. We suggest that regulation of neuronal spike-frequency adaptation (SFA) provides a universal mechanism for network-wide attractor selectivity. Here we demonstrate in a Hopfield type attractor network that neurons minimal SFA will reliably activate in the pattern corresponding to a local attractor and that a moderate increase in SFA leads to the network to converge to the strongest attractor state. Furthermore, we show that on long time scales SFA allows for temporal sequences of activation to emerge. Finally, using a model of cholinergic modulation within the cortex we argue that dynamic regulation of attractor preference by SFA could be critical for the role of acetylcholine in attention or for arousal states in general. This work was supported by: NSF Graduate Research Fellowship Program under Grant No. DGE 1256260 (JPR), NSF CMMI 1029388 (MRZ) and NSF PoLS 1058034 (MRZ & LMS).

  12. Adaptive neural tracking control of a class of MIMO pure-feedback time-delay nonlinear systems with input saturation

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Yue, Dong; Yuan, Deming

    2016-11-01

    Considering interconnections among subsystems, we propose an adaptive neural tracking control scheme for a class of multiple-input-multiple-output (MIMO) non-affine pure-feedback time-delay nonlinear systems with input saturation. Neural networks (NNs) are employed to approximate unknown functions in the design procedure, and the separation technology is introduced here to tackle the problem induced from unknown time-delay items. The adaptive neural tracking control scheme is constructed by combining Lyapunov-Krasovskii functionals, NNs, the auxiliary system, the implicit function theory and the mean value theorem along with the dynamic surface control technique. Also, it is proven that the strategy guarantees tracking errors converge to a small neighbourhood around the origin by appropriate choice of design parameters and all signals in the closed-loop system uniformly ultimately bounded. Numerical simulation results are presented to demonstrate the effectiveness of the proposed control strategy.

  13. Stochastic Oscillation in Self-Organized Critical States of Small Systems: Sensitive Resting State in Neural Systems

    NASA Astrophysics Data System (ADS)

    Wang, Sheng-Jun; Ouyang, Guang; Guang, Jing; Zhang, Mingsha; Wong, K. Y. Michael; Zhou, Changsong

    2016-01-01

    Self-organized critical states (SOCs) and stochastic oscillations (SOs) are simultaneously observed in neural systems, which appears to be theoretically contradictory since SOCs are characterized by scale-free avalanche sizes but oscillations indicate typical scales. Here, we show that SOs can emerge in SOCs of small size systems due to temporal correlation between large avalanches at the finite-size cutoff, resulting from the accumulation-release process in SOCs. In contrast, the critical branching process without accumulation-release dynamics cannot exhibit oscillations. The reconciliation of SOCs and SOs is demonstrated both in the sandpile model and robustly in biologically plausible neuronal networks. The oscillations can be suppressed if external inputs eliminate the prominent slow accumulation process, providing a potential explanation of the widely studied Berger effect or event-related desynchronization in neural response. The features of neural oscillations and suppression are confirmed during task processing in monkey eye-movement experiments. Our results suggest that finite-size, columnar neural circuits may play an important role in generating neural oscillations around the critical states, potentially enabling functional advantages of both SOCs and oscillations for sensitive response to transient stimuli.

  14. Stochastic Oscillation in Self-Organized Critical States of Small Systems: Sensitive Resting State in Neural Systems.

    PubMed

    Wang, Sheng-Jun; Ouyang, Guang; Guang, Jing; Zhang, Mingsha; Wong, K Y Michael; Zhou, Changsong

    2016-01-01

    Self-organized critical states (SOCs) and stochastic oscillations (SOs) are simultaneously observed in neural systems, which appears to be theoretically contradictory since SOCs are characterized by scale-free avalanche sizes but oscillations indicate typical scales. Here, we show that SOs can emerge in SOCs of small size systems due to temporal correlation between large avalanches at the finite-size cutoff, resulting from the accumulation-release process in SOCs. In contrast, the critical branching process without accumulation-release dynamics cannot exhibit oscillations. The reconciliation of SOCs and SOs is demonstrated both in the sandpile model and robustly in biologically plausible neuronal networks. The oscillations can be suppressed if external inputs eliminate the prominent slow accumulation process, providing a potential explanation of the widely studied Berger effect or event-related desynchronization in neural response. The features of neural oscillations and suppression are confirmed during task processing in monkey eye-movement experiments. Our results suggest that finite-size, columnar neural circuits may play an important role in generating neural oscillations around the critical states, potentially enabling functional advantages of both SOCs and oscillations for sensitive response to transient stimuli. PMID:26799044

  15. An Online Adaptive Learning Environment for Critical-Thinking-Infused English Literacy Instruction

    ERIC Educational Resources Information Center

    Yang, Ya-Ting Carolyn; Gamble, Jeffrey Hugh; Hung, Yu-Wan; Lin, Tzu-Yun

    2014-01-01

    Critical thinking (CT) and English literacy are two essential 21st century competencies that are a priority for teaching and learning in an increasingly digital learning environment. Taking advantage of innovations in educational technology, this study empirically investigates the effectiveness of CT-infused adaptive English literacy instruction…

  16. Implications of movement-related cortical potential for understanding neural adaptations in muscle strength tasks

    PubMed Central

    2014-01-01

    This systematic review aims to provide information about the implications of the movement-related cortical potential (MRCP) in acute and chronic responses to the counter resistance training. The structuring of the methods of this study followed the proposals of the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses). It was performed an electronically search in Pubmed/Medline and ISI Web of Knowledge data bases, from 1987 to 2013, besides the manual search in the selected references. The following terms were used: Bereitschaftspotential, MRCP, strength and force. The logical operator “AND” was used to combine descriptors and terms used to search publications. At the end, 11 studies attended all the eligibility criteria and the results demonstrated that the behavior of MRCP is altered because of different factors such as: force level, rate of force development, fatigue induced by exercise, and the specific phase of muscular action, leading to an increase in the amplitude in eccentric actions compared to concentric actions, in acute effects. The long-term adaptations demonstrated that the counter resistance training provokes an attenuation in the amplitude in areas related to the movement, which may be caused by neural adaptation occurred in the motor cortex. PMID:24602228

  17. Adaptive neural network tracking control of MIMO nonlinear systems with unknown dead zones and control directions.

    PubMed

    Zhang, Tianping; Ge, Shuzhi Sam

    2009-03-01

    In this paper, adaptive neural network (NN) tracking control is investigated for a class of uncertain multiple-input-multiple-output (MIMO) nonlinear systems in triangular control structure with unknown nonsymmetric dead zones and control directions. The design is based on the principle of sliding mode control and the use of Nussbaum-type functions in solving the problem of the completely unknown control directions. It is shown that the dead-zone output can be represented as a simple linear system with a static time-varying gain and bounded disturbance by introducing characteristic function. By utilizing the integral-type Lyapunov function and introducing an adaptive compensation term for the upper bound of the optimal approximation error and the dead-zone disturbance, the closed-loop control system is proved to be semiglobally uniformly ultimately bounded, with tracking errors converging to zero under the condition that the slopes of unknown dead zones are equal. Simulation results demonstrate the effectiveness of the approach.

  18. Implications of movement-related cortical potential for understanding neural adaptations in muscle strength tasks.

    PubMed

    Lattari, Eduardo; Arias-Carrión, Oscar; Monteiro-Junior, Renato Sobral; Mello Portugal, Eduardo Matta; Paes, Flávia; Menéndez-González, Manuel; Silva, Adriana Cardoso; Nardi, Antonio Egidio; Machado, Sergio

    2014-01-01

    This systematic review aims to provide information about the implications of the movement-related cortical potential (MRCP) in acute and chronic responses to the counter resistance training. The structuring of the methods of this study followed the proposals of the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses). It was performed an electronically search in Pubmed/Medline and ISI Web of Knowledge data bases, from 1987 to 2013, besides the manual search in the selected references. The following terms were used: Bereitschaftspotential, MRCP, strength and force. The logical operator "AND" was used to combine descriptors and terms used to search publications. At the end, 11 studies attended all the eligibility criteria and the results demonstrated that the behavior of MRCP is altered because of different factors such as: force level, rate of force development, fatigue induced by exercise, and the specific phase of muscular action, leading to an increase in the amplitude in eccentric actions compared to concentric actions, in acute effects. The long-term adaptations demonstrated that the counter resistance training provokes an attenuation in the amplitude in areas related to the movement, which may be caused by neural adaptation occurred in the motor cortex. PMID:24602228

  19. Direct adaptive iterative learning control of nonlinear systems using an output-recurrent fuzzy neural network.

    PubMed

    Wang, Ying-Chung; Chien, Chiang-Ju; Teng, Ching-Cheng

    2004-06-01

    In this paper, a direct adaptive iterative learning control (DAILC) based on a new output-recurrent fuzzy neural network (ORFNN) is presented for a class of repeatable nonlinear systems with unknown nonlinearities and variable initial resetting errors. In order to overcome the design difficulty due to initial state errors at the beginning of each iteration, a concept of time-varying boundary layer is employed to construct an error equation. The learning controller is then designed by using the given ORFNN to approximate an optimal equivalent controller. Some auxiliary control components are applied to eliminate approximation error and ensure learning convergence. Since the optimal ORFNN parameters for a best approximation are generally unavailable, an adaptive algorithm with projection mechanism is derived to update all the consequent, premise, and recurrent parameters during iteration processes. Only one network is required to design the ORFNN-based DAILC and the plant nonlinearities, especially the nonlinear input gain, are allowed to be totally unknown. Based on a Lyapunov-like analysis, we show that all adjustable parameters and internal signals remain bounded for all iterations. Furthermore, the norm of state tracking error vector will asymptotically converge to a tunable residual set as iteration goes to infinity. Finally, iterative learning control of two nonlinear systems, inverted pendulum system and Chua's chaotic circuit, are performed to verify the tracking performance of the proposed learning scheme.

  20. Reducing interferences in wireless communication systems by mobile agents with recurrent neural networks-based adaptive channel equalization

    NASA Astrophysics Data System (ADS)

    Beritelli, Francesco; Capizzi, Giacomo; Lo Sciuto, Grazia; Napoli, Christian; Tramontana, Emiliano; Woźniak, Marcin

    2015-09-01

    Solving channel equalization problem in communication systems is based on adaptive filtering algorithms. Today, Mobile Agents (MAs) with Recurrent Neural Networks (RNNs) can be also adopted for effective interference reduction in modern wireless communication systems (WCSs). In this paper MAs with RNNs are proposed as novel computing algorithms for reducing interferences in WCSs performing an adaptive channel equalization. The method to provide it is so called MAs-RNNs. We perform the implementation of this new paradigm for interferences reduction. Simulations results and evaluations demonstrates the effectiveness of this approach and as better transmission performance in wireless communication network can be achieved by using the MAs-RNNs based adaptive filtering algorithm.

  1. Failure of adaptive self-organized criticality during epileptic seizure attacks.

    PubMed

    Meisel, Christian; Storch, Alexander; Hallmeyer-Elgner, Susanne; Bullmore, Ed; Gross, Thilo

    2012-01-01

    Critical dynamics are assumed to be an attractive mode for normal brain functioning as information processing and computational capabilities are found to be optimal in the critical state. Recent experimental observations of neuronal activity patterns following power-law distributions, a hallmark of systems at a critical state, have led to the hypothesis that human brain dynamics could be poised at a phase transition between ordered and disordered activity. A so far unresolved question concerns the medical significance of critical brain activity and how it relates to pathological conditions. Using data from invasive electroencephalogram recordings from humans we show that during epileptic seizure attacks neuronal activity patterns deviate from the normally observed power-law distribution characterizing critical dynamics. The comparison of these observations to results from a computational model exhibiting self-organized criticality (SOC) based on adaptive networks allows further insights into the underlying dynamics. Together these results suggest that brain dynamics deviates from criticality during seizures caused by the failure of adaptive SOC.

  2. Learning from adaptive neural dynamic surface control of strict-feedback systems.

    PubMed

    Wang, Min; Wang, Cong

    2015-06-01

    Learning plays an essential role in autonomous control systems. However, how to achieve learning in the nonstationary environment for nonlinear systems is a challenging problem. In this paper, we present learning method for a class of n th-order strict-feedback systems by adaptive dynamic surface control (DSC) technology, which achieves the human-like ability of learning by doing and doing with learned knowledge. To achieve the learning, this paper first proposes stable adaptive DSC with auxiliary first-order filters, which ensures the boundedness of all the signals in the closed-loop system and the convergence of tracking errors in a finite time. With the help of DSC, the derivative of the filter output variable is used as the neural network (NN) input instead of traditional intermediate variables. As a result, the proposed adaptive DSC method reduces greatly the dimension of NN inputs, especially for high-order systems. After the stable DSC design, we decompose the stable closed-loop system into a series of linear time-varying perturbed subsystems. Using a recursive design, the recurrent property of NN input variables is easily verified since the complexity is overcome using DSC. Subsequently, the partial persistent excitation condition of the radial basis function NN is satisfied. By combining a state transformation, accurate approximations of the closed-loop system dynamics are recursively achieved in a local region along recurrent orbits. Then, the learning control method using the learned knowledge is proposed to achieve the closed-loop stability and the improved control performance. Simulation studies are performed to demonstrate the proposed scheme can not only reuse the learned knowledge to achieve the better control performance with the faster tracking convergence rate and the smaller tracking error but also greatly alleviate the computational burden because of reducing the number and complexity of NN input variables.

  3. A neural learning approach for adaptive image restoration using a fuzzy model-based network architecture.

    PubMed

    Wong, H S; Guan, L

    2001-01-01

    We address the problem of adaptive regularization in image restoration by adopting a neural-network learning approach. Instead of explicitly specifying the local regularization parameter values, they are regarded as network weights which are then modified through the supply of appropriate training examples. The desired response of the network is in the form of a gray level value estimate of the current pixel using weighted order statistic (WOS) filter. However, instead of replacing the previous value with this estimate, this is used to modify the network weights, or equivalently, the regularization parameters such that the restored gray level value produced by the network is closer to this desired response. In this way, the single WOS estimation scheme can allow appropriate parameter values to emerge under different noise conditions, rather than requiring their explicit selection in each occasion. In addition, we also consider the separate regularization of edges and textures due to their different noise masking capabilities. This in turn requires discriminating between these two feature types. Due to the inability of conventional local variance measures to distinguish these two high variance features, we propose the new edge-texture characterization (ETC) measure which performs this discrimination based on a scalar value only. This is then incorporated into a fuzzified form of the previous neural network which determines the degree of membership of each high variance pixel in two fuzzy sets, the EDGE and TEXTURE fuzzy sets, from the local ETC value, and then evaluates the appropriate regularization parameter by appropriately combining these two membership function values.

  4. Adaptive pattern recognition by mini-max neural networks as a part of an intelligent processor

    NASA Technical Reports Server (NTRS)

    Szu, Harold H.

    1990-01-01

    In this decade and progressing into 21st Century, NASA will have missions including Space Station and the Earth related Planet Sciences. To support these missions, a high degree of sophistication in machine automation and an increasing amount of data processing throughput rate are necessary. Meeting these challenges requires intelligent machines, designed to support the necessary automations in a remote space and hazardous environment. There are two approaches to designing these intelligent machines. One of these is the knowledge-based expert system approach, namely AI. The other is a non-rule approach based on parallel and distributed computing for adaptive fault-tolerances, namely Neural or Natural Intelligence (NI). The union of AI and NI is the solution to the problem stated above. The NI segment of this unit extracts features automatically by applying Cauchy simulated annealing to a mini-max cost energy function. The feature discovered by NI can then be passed to the AI system for future processing, and vice versa. This passing increases reliability, for AI can follow the NI formulated algorithm exactly, and can provide the context knowledge base as the constraints of neurocomputing. The mini-max cost function that solves the unknown feature can furthermore give us a top-down architectural design of neural networks by means of Taylor series expansion of the cost function. A typical mini-max cost function consists of the sample variance of each class in the numerator, and separation of the center of each class in the denominator. Thus, when the total cost energy is minimized, the conflicting goals of intraclass clustering and interclass segregation are achieved simultaneously.

  5. Neuroplasticity in dynamic neural networks comprised of neurons attached to adaptive base plate.

    PubMed

    Joghataie, Abdolreza; Shafiei Dizaji, Mehrdad

    2016-03-01

    In this paper, a learning algorithm is developed for Dynamic Plastic Continuous Neural Networks (DPCNNs) to improve their learning of highly nonlinear time dependent problems. A DPCNN is comprised of a base medium, which is nonlinear and plastic, and a number of neurons that are attached to the base by wire-like connections similar to perceptrons. The information is distributed within DPCNNs gradually and through wave propagation mechanism. While a DPCNN is adaptive due to its connection weights, the material properties of its base medium can also be adjusted to improve its learning. The material of the medium is plastic and can contribute to memorizing the history of input-response similar to neuroplasticity in natural brain. The results obtained from numerical simulation of DPCNNs have been encouraging. Nonlinear plastic finite element modeling has been used for numerical simulation of dynamic behavior and wave propagation in the medium. Two significant differences of DPCNNs with other types of neural networks are that: (1) there is a medium to which the neurons are attached where the medium can contribute to the learning, (2) the input layer is not made of nodes but it is an edge terminal which is capable of receiving a continuous function over the input edge, though it is discretized in the finite element model. A DPCNN is reduced to a perceptron if the medium is removed and the neurons are connected to each other only by wires. Continuity of the input lets the discretization of data take place intrinsically within the DPCNN instead of being applied by the user.

  6. Adaptive attitude controller for a satellite based on neural network in the presence of unknown external disturbances and actuator faults

    NASA Astrophysics Data System (ADS)

    Fazlyab, Ali Reza; Fani Saberi, Farhad; Kabganian, Mansour

    2016-01-01

    In this paper, an adaptive attitude control algorithm is developed based on neural network for a satellite. The proposed attitude control is based on nonlinear modified Rodrigues parameters feedback control in the presence of unknown terms like external disturbances and actuator faults. In order to eliminate the effect of the uncertainties, a multilayer neural network with a new learning rule will be designed appropriately. In this method, asymptotic stability of the proposed algorithm has been proven in the presence of unknown terms based on Lyapunov stability theorem. Finally, the performance of the designed attitude controller is investigated by simulations.

  7. Entry Abort Determination Using Non-Adaptive Neural Networks for Mars Precision Landers

    NASA Technical Reports Server (NTRS)

    Graybeal, Sarah R.; Kranzusch, Kara M.

    2005-01-01

    The 2009 Mars Science Laboratory (MSL) will attempt the first precision landing on Mars using a modified version of the Apollo Earth entry guidance program. The guidance routine, Entry Terminal Point Controller (ETPC), commands the deployment of a supersonic parachute after converging the range to the landing target. For very dispersed cases, ETPC may not converge the range to the target and safely command parachute deployment within Mach number and dynamic pressure constraints. A full-lift up abort can save 85% of these failed trajectories while abandoning the precision landing objective. Though current MSL requirements do not call for an abort capability, an autonomous abort capability may be desired, for this mission or future Mars precision landers, to make the vehicle more robust. The application of artificial neural networks (NNs) as an abort determination technique was evaluated by personnel at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC). In order to implement an abort, a failed trajectory needs to be recognized in real time. Abort determination is dependent upon several trajectory parameters whose relationships to vehicle survival are not well understood, and yet the lander must be trained to recognize unsafe situations. Artificial neural networks (NNs) provide a way to model these parameters and can provide MSL with the artificial intelligence necessary to independently declare an abort. Using the 2009 Mars Science Laboratory (MSL) mission as a case study, a non-adaptive NN was designed, trained and tested using Monte Carlo simulations of MSL descent and incorporated into ETPC. Neural network theory, the development history of the MSL NN, and initial testing with severe dust storm entry trajectory cases are discussed in Reference 1 and will not be repeated here. That analysis demonstrated that NNs are capable of recognizing failed descent trajectories and can significantly increase the survivability of MSL for very

  8. Identifier-based adaptive neural dynamic surface control for uncertain DC-DC buck converter system with input constraint

    NASA Astrophysics Data System (ADS)

    Chen, Qiang; Ren, Xuemei; Oliver, Jesus Angel

    2012-04-01

    In this paper, an identifier-based adaptive neural dynamic surface control (IANDSC) is proposed for the uncertain DC-DC buck converter system with input constraint. Based on the analysis of the effect of input constraint in the buck converter, the neural network compensator is employed to ensure the controller output within the permissible range. Subsequently, the constrained adaptive control scheme combined with the neural network compensator is developed for the buck converter with uncertain load current. In this scheme, a newly presented finite-time identifier is utilized to accelerate the parameter tuning process and to heighten the accuracy of parameter estimation. By utilizing the adaptive dynamic surface control (ADSC) technique, the problem of "explosion of complexity" inherently in the traditional adaptive backstepping design can be overcome. The proposed control law can guarantee the uniformly ultimate boundedness of all signals in the closed-loop system via Lyapunov synthesis. Numerical simulations are provided to illustrate the effectiveness of the proposed control method.

  9. An adaptive recurrent neural-network controller using a stabilization matrix and predictive inputs to solve a tracking problem under disturbances.

    PubMed

    Fairbank, Michael; Li, Shuhui; Fu, Xingang; Alonso, Eduardo; Wunsch, Donald

    2014-01-01

    We present a recurrent neural-network (RNN) controller designed to solve the tracking problem for control systems. We demonstrate that a major difficulty in training any RNN is the problem of exploding gradients, and we propose a solution to this in the case of tracking problems, by introducing a stabilization matrix and by using carefully constrained context units. This solution allows us to achieve consistently lower training errors, and hence allows us to more easily introduce adaptive capabilities. The resulting RNN is one that has been trained off-line to be rapidly adaptive to changing plant conditions and changing tracking targets. The case study we use is a renewable-energy generator application; that of producing an efficient controller for a three-phase grid-connected converter. The controller we produce can cope with the random variation of system parameters and fluctuating grid voltages. It produces tracking control with almost instantaneous response to changing reference states, and virtually zero oscillation. This compares very favorably to the classical proportional integrator (PI) controllers, which we show produce a much slower response and settling time. In addition, the RNN we propose exhibits better learning stability and convergence properties, and can exhibit faster adaptation, than has been achieved with adaptive critic designs.

  10. The co-adaptive neural network approach to the Euclidean Travelling Salesman Problem.

    PubMed

    Cochrane, E M; Beasley, J E

    2003-12-01

    In this paper we consider the Euclidean Travelling Salesman Problem (ETSP). This is the problem of finding the shortest tour around a number of cities where the cities correspond to points in the Euclidean plane and the distances between cities are given by the usual Euclidean distance metric. We present a review of the literature with respect to neural network (NN) approaches for the ETSP, and the computational results that have been reported. Based upon this review we highlight two areas that are, in our judgement, currently neglected/lacking in the literature. These are: failure to make significant use of publicly available ETSP test problems in computational work, failure to address co-operation between neurons. Drawing upon our literature survey this paper presents a new Self-Organising NN approach, called the Co-Adaptive Net, which involves not just unsupervised learning to train neurons, but also allows neurons to co-operate and compete amongst themselves depending on their situation. Our Co-Adaptive Net algorithm also includes a number of algorithmic mechanisms that, based upon our literature review, we consider to have contributed to the computational success of previous algorithms. Results for 91 publicly available standard ETSP's are presented in this paper. The largest of these problems involves 85,900 cities. This paper presents: the most extensive computational evaluation of any NN approach on publicly available ETSP test problems that has been made to date in the literature, a NN approach that performs better, with respect to solution quality and/or computation time, than other NN approaches given previously in the literature. Drawing upon computational results produced as a result of the DIMACS TSP Challenge, we highlight the fact that none of the current NN approaches for the ETSP can compete with state of the art Operations Research heuristics. We discuss why we consider continuing to study and develop NN approaches for the ETSP to be of value.

  11. An indirect adaptive neural control of a visual-based quadrotor robot for pursuing a moving target.

    PubMed

    Shirzadeh, Masoud; Amirkhani, Abdollah; Jalali, Aliakbar; Mosavi, Mohammad R

    2015-11-01

    This paper aims to use a visual-based control mechanism to control a quadrotor type aerial robot which is in pursuit of a moving target. The nonlinear nature of a quadrotor, on the one hand, and the difficulty of obtaining an exact model for it, on the other hand, constitute two serious challenges in designing a controller for this UAV. A potential solution for such problems is the use of intelligent control methods such as those that rely on artificial neural networks and other similar approaches. In addition to the two mentioned problems, another problem that emerges due to the moving nature of a target is the uncertainty that exists in the target image. By employing an artificial neural network with a Radial Basis Function (RBF) an indirect adaptive neural controller has been designed for a quadrotor robot in search of a moving target. The results of the simulation for different paths show that the quadrotor has efficiently tracked the moving target.

  12. Adaptive neural control for cooperative path following of marine surface vehicles: state and output feedback

    NASA Astrophysics Data System (ADS)

    Wang, H.; Wang, D.; Peng, Z. H.

    2016-01-01

    This paper addresses the cooperative path-following problem of multiple marine surface vehicles subject to dynamical uncertainties and ocean disturbances induced by unknown wind, wave and ocean current. The control design falls neatly into two parts. One is to steer individual marine surface vehicle to track a predefined path and the other is to synchronise the along-path speed and path variables under the constraints of an underlying communication network. Within these two formulations, a robust adaptive path-following controller is first designed for individual vehicles based on backstepping and neural network techniques. Then, a decentralised synchronisation control law is derived by means of consensus on along-path speed and path variables based on graph theory. The distinct feature of this design lies in that synchronised path following can be reached for any undirected connected communication graphs without accurate knowledge of the model. This result is further extended to the output feedback case, where an observer-based cooperative path-following controller is developed without measuring the velocity of each vehicle. For both designs, rigorous theoretical analysis demonstrate that all signals in the closed-loop system are semi-global uniformly ultimately bounded. Simulation results validate the performance and robustness improvement of the proposed strategy.

  13. Pedestrian tracking and navigation using an adaptive knowledge system based on neural networks

    NASA Astrophysics Data System (ADS)

    Grejner-Brzezinska, Dorota A.; Toth, Charles; Moafipoor, Shahram

    2007-11-01

    The primary objective of the research presented here is to develop theoretical foundations and implementation algorithms, which integrate the Global Positioning System (GPS), micro-electromechanical inertial measurement unit (MEMS IMU), digital barometer, electronic compass, and human pedometry to provide navigation and tracking of military and rescue ground personnel. This paper discusses the design, implementation and the performance analyses of the personal navigator prototype, with a special emphasis on dead-reckoning (DR) navigation supported by the human locomotion model. The adaptive knowledge system, based on the Artificial Neural Networks (ANN), is implemented to support this functionality. The knowledge system is trained during the GPS signal reception and is used to support navigation under GPS-denied conditions. The human locomotion parameters, step frequency (SF) and step length (SL), are extracted from GPS-timed impact switches (step frequency) and GPS/IMU data (step length), respectively, during the system calibration period. SL is correlated with several data types, such as acceleration, acceleration variation, SF, terrain slope, etc. that constitute the input parameters to the ANN-based knowledge system. The ANN-predicted SL, together with the heading information from the compass and gyro, support DR navigation. The current target accuracy of the system is 3-5 m CEP (circular error probable) 50%.

  14. Learning from experience: event-related potential correlates of reward processing, neural adaptation, and behavioral choice.

    PubMed

    Walsh, Matthew M; Anderson, John R

    2012-09-01

    To behave adaptively, we must learn from the consequences of our actions. Studies using event-related potentials (ERPs) have been informative with respect to the question of how such learning occurs. These studies have revealed a frontocentral negativity termed the feedback-related negativity (FRN) that appears after negative feedback. According to one prominent theory, the FRN tracks the difference between the values of actual and expected outcomes, or reward prediction errors. As such, the FRN provides a tool for studying reward valuation and decision making. We begin this review by examining the neural significance of the FRN. We then examine its functional significance. To understand the cognitive processes that occur when the FRN is generated, we explore variables that influence its appearance and amplitude. Specifically, we evaluate four hypotheses: (1) the FRN encodes a quantitative reward prediction error; (2) the FRN is evoked by outcomes and by stimuli that predict outcomes; (3) the FRN and behavior change with experience; and (4) the system that produces the FRN is maximally engaged by volitional actions.

  15. A Time-Critical Adaptive Approach for Visualizing Natural Scenes on Different Devices

    PubMed Central

    Dong, Tianyang; Liu, Siyuan; Xia, Jiajia; Fan, Jing; Zhang, Ling

    2015-01-01

    To automatically adapt to various hardware and software environments on different devices, this paper presents a time-critical adaptive approach for visualizing natural scenes. In this method, a simplified expression of a tree model is used for different devices. The best rendering scheme is intelligently selected to generate a particular scene by estimating the rendering time of trees based on their visual importance. Therefore, this approach can ensure the reality of natural scenes while maintaining a constant frame rate for their interactive display. To verify its effectiveness and flexibility, this method is applied in different devices, such as a desktop computer, laptop, iPad and smart phone. Applications show that the method proposed in this paper can not only adapt to devices with different computing abilities and system resources very well but can also achieve rather good visual realism and a constant frame rate for natural scenes. PMID:25723177

  16. Robust adaptive control for a class of uncertain non-affine nonlinear systems using affine-type neural networks

    NASA Astrophysics Data System (ADS)

    Zhao, Shitie; Gao, Xianwen

    2016-08-01

    A robust adaptive control is proposed for a class of single-input single-output non-affine nonlinear systems. In order to approximate the unknown nonlinear function, a novel affine-type neural network is used, and then to compensate the approximation error and external disturbance a robust control term is employed. By Lyapunov stability analysis for the closed-loop system, it is proved that tracking errors asymptotically converge to zero. Moreover, an observer is designed to estimate the system states because all the states may not be available for measurements. Furthermore, the adaptation laws of neural networks and the robust controller are given out based on the Lyapunov stability theory. Finally, two simulation examples are presented to demonstrate the effectiveness of the proposed control method.

  17. Adaptive discrete-time controller design with neural network for hypersonic flight vehicle via back-stepping

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Sun, Fuchun; Yang, Chenguang; Gao, Daoxiang; Ren, Jianxin

    2011-09-01

    In this article, the adaptive neural controller in discrete time is investigated for the longitudinal dynamics of a generic hypersonic flight vehicle. The dynamics are decomposed into the altitude subsystem and the velocity subsystem. The altitude subsystem is transformed into the strict-feedback form from which the discrete-time model is derived by the first-order Taylor expansion. The virtual control is designed with nominal feedback and neural network (NN) approximation via back-stepping. Meanwhile, one adaptive NN controller is designed for the velocity subsystem. To avoid the circular construction problem in the practical control, the design of coefficients adopts the upper bound instead of the nominal value. Under the proposed controller, the semiglobal uniform ultimate boundedness stability is guaranteed. The square and step responses are presented in the simulation studies to show the effectiveness of the proposed control approach.

  18. Novel adaptive neural control design for a constrained flexible air-breathing hypersonic vehicle based on actuator compensation

    NASA Astrophysics Data System (ADS)

    Bu, Xiangwei; Wu, Xiaoyan; He, Guangjun; Huang, Jiaqi

    2016-03-01

    This paper investigates the design of a novel adaptive neural controller for the longitudinal dynamics of a flexible air-breathing hypersonic vehicle with control input constraints. To reduce the complexity of controller design, the vehicle dynamics is decomposed into the velocity subsystem and the altitude subsystem, respectively. For each subsystem, only one neural network is utilized to approach the lumped unknown function. By employing a minimal-learning parameter method to estimate the norm of ideal weight vectors rather than their elements, there are only two adaptive parameters required for neural approximation. Thus, the computational burden is lower than the ones derived from neural back-stepping schemes. Specially, to deal with the control input constraints, additional systems are exploited to compensate the actuators. Lyapunov synthesis proves that all the closed-loop signals involved are uniformly ultimately bounded. Finally, simulation results show that the adopted compensation scheme can tackle actuator constraint effectively and moreover velocity and altitude can stably track their reference trajectories even when the physical limitations on control inputs are in effect.

  19. Knowledge-based adaptive neural control of drum level in a boiler system

    NASA Astrophysics Data System (ADS)

    Tripathi, Nishith; Tran, Michael; VanLandingham, Hugh

    1995-11-01

    A boiler system is an integral component of a thermal power plant, and control of the water level in the drum of the boiler system is a critical operational consideration. For the drum level control, a 3-element proportional-integral-derivative (PID) control is a popular conventional approach. This scheme works satisfactorily in the absence of any process disturbances. However, when there are significant process disturbances, the 3-element PID control scheme does not perform well because of lack of knowledge of proper controller gains to cope with such disturbances. Inevitably over time and use, PID controllers get detuned. Hence, there is good motivation to investigate alternatives to this control scheme. Multivariable control of drum boiler systems has been studied by many researchers. However, these approaches assume some process model equations (to a more or less extent) to design a controller. This paper presents a model-free approach in the sense that no plant equations are assumed. Only data is used to gain knowledge about the process, and the performance of the existing PID control scheme is observed. Based on this process knowledge, an intelligent control technique is developed, (artificial) neural network control (NNC). The technique proposed in this paper was tested on a process simulator. This paper shows that an intelligent control scheme such as NNC gives better performance in rejecting process disturbances when compared to 3-element PID control scheme.

  20. Adaptation of the Critical Care Family Need Inventory to the Turkish population and its psychometric properties.

    PubMed

    Büyükçoban, Sibel; Çiçeklioğlu, Meltem; Demiral Yılmaz, Nilüfer; Civaner, M Murat

    2015-01-01

    In the complex environment of intensive care units, needs of patients' relatives might be seen as the lowest priority. On the other hand, because of their patients' critical and often uncertain conditions, stress levels of relatives are quite high. This study aims to adapt the Critical Care Family Need Inventory, which assesses the needs of patients' relatives, for use with the Turkish-speaking population and to assess psychometric properties of the resulting inventory. The study was conducted in a state hospital with the participation of 191 critical care patient relatives. Content validity was assessed by expert opinions, and construct validity was examined by exploratory factor analysis (EFA). Cronbach's alpha coefficient was used to determine internal consistency. The translated inventory has a content validity ratio higher than the minimum acceptable level. Its construct validity was established by the EFA. Cronbach's alpha coefficient for the entire scale was 0.93 and higher than 0.80 for subscales, thus demonstrating the translated version's reliability. The Turkish adaptation appropriately reflects all dimensions of needs in the original CCFNI, and its psychometric properties were acceptable. The revised tool could be useful for helping critical care healthcare workers provide services in a holistic approach and for policymakers to improve quality of service. PMID:26357593

  1. Pedagogical Challenges and Possibilities: Adapting Critical Literacy in EFL College Writing Using a Video-Authoring Project

    ERIC Educational Resources Information Center

    Park, Sunyoung

    2010-01-01

    This thesis is a critical action research to explore the pedagogical challenges and possibilities by adapting a critical literacy in an EFL college writing class supported by a video-authoring project. Mainly, it focuses on three parts of the study; 1) How will develop the theoretical notions of a critical literacy in an EFL classroom, in…

  2. Distribution of language-related Cntnap2 protein in neural circuits critical for vocal learning

    PubMed Central

    Condro, Michael C.; White, Stephanie A.

    2013-01-01

    Variants of the contactin associated protein-like 2 (Cntnap2) gene are risk factors for language-related disorders including autism spectrum disorder, specific language impairment, and stuttering. Songbirds are useful models for study of human speech disorders due to their shared capacity for vocal learning, which relies on similar cortico-basal ganglia circuitry and genetic factors. Here, we investigate Cntnap2 protein expression in the brain of the zebra finch, a songbird species in which males, but not females, learn their courtship songs. We hypothesize that Cntnap2 has overlapping functions in vocal learning species, and expect to find protein expression in song-related areas of the zebra finch brain. We further expect that the distribution of this membrane-bound protein may not completely mirror its mRNA distribution due to the distinct subcellular localization of the two molecular species. We find that Cntnap2 protein is enriched in several song control regions relative to surrounding tissues, particularly within the adult male, but not female, robust nucleus of the arcopallium (RA), a cortical song control region analogous to human layer 5 primary motor cortex. The onset of this sexually dimorphic expression coincides with the onset of sensorimotor learning in developing males. Enrichment in male RA appears due to expression in projection neurons within the nucleus, as well as to additional expression in nerve terminals of cortical projections to RA from the lateral magnocellular nucleus of the nidopallium. Cntnap2 protein expression in zebra finch brain supports the hypothesis that this molecule affects neural connectivity critical for vocal learning across taxonomic classes. PMID:23818387

  3. An adaptable neural-network model for recursive nonlinear traffic prediction and modeling of MPEG video sources.

    PubMed

    Doulamis, A D; Doulamis, N D; Kollias, S D

    2003-01-01

    Multimedia services and especially digital video is expected to be the major traffic component transmitted over communication networks [such as internet protocol (IP)-based networks]. For this reason, traffic characterization and modeling of such services are required for an efficient network operation. The generated models can be used as traffic rate predictors, during the network operation phase (online traffic modeling), or as video generators for estimating the network resources, during the network design phase (offline traffic modeling). In this paper, an adaptable neural-network architecture is proposed covering both cases. The scheme is based on an efficient recursive weight estimation algorithm, which adapts the network response to current conditions. In particular, the algorithm updates the network weights so that 1) the network output, after the adaptation, is approximately equal to current bit rates (current traffic statistics) and 2) a minimal degradation over the obtained network knowledge is provided. It can be shown that the proposed adaptable neural-network architecture simulates a recursive nonlinear autoregressive model (RNAR) similar to the notation used in the linear case. The algorithm presents low computational complexity and high efficiency in tracking traffic rates in contrast to conventional retraining schemes. Furthermore, for the problem of offline traffic modeling, a novel correlation mechanism is proposed for capturing the burstness of the actual MPEG video traffic. The performance of the model is evaluated using several real-life MPEG coded video sources of long duration and compared with other linear/nonlinear techniques used for both cases. The results indicate that the proposed adaptable neural-network architecture presents better performance than other examined techniques.

  4. An Adaptive Landscape Classification Procedure using Geoinformatics and Artificial Neural Networks

    SciTech Connect

    Coleman, Andre Michael

    2008-06-01

    The Adaptive Landscape Classification Procedure (ALCP), which links the advanced geospatial analysis capabilities of Geographic Information Systems (GISs) and Artificial Neural Networks (ANNs) and particularly Self-Organizing Maps (SOMs), is proposed as a method for establishing and reducing complex data relationships. Its adaptive and evolutionary capability is evaluated for situations where varying types of data can be combined to address different prediction and/or management needs such as hydrologic response, water quality, aquatic habitat, groundwater recharge, land use, instrumentation placement, and forecast scenarios. The research presented here documents and presents favorable results of a procedure that aims to be a powerful and flexible spatial data classifier that fuses the strengths of geoinformatics and the intelligence of SOMs to provide data patterns and spatial information for environmental managers and researchers. This research shows how evaluation and analysis of spatial and/or temporal patterns in the landscape can provide insight into complex ecological, hydrological, climatic, and other natural and anthropogenic-influenced processes. Certainly, environmental management and research within heterogeneous watersheds provide challenges for consistent evaluation and understanding of system functions. For instance, watersheds over a range of scales are likely to exhibit varying levels of diversity in their characteristics of climate, hydrology, physiography, ecology, and anthropogenic influence. Furthermore, it has become evident that understanding and analyzing these diverse systems can be difficult not only because of varying natural characteristics, but also because of the availability, quality, and variability of spatial and temporal data. Developments in geospatial technologies, however, are providing a wide range of relevant data, and in many cases, at a high temporal and spatial resolution. Such data resources can take the form of high

  5. Neural Adaptations Associated with Interlimb Transfer in a Ballistic Wrist Flexion Task.

    PubMed

    Ruddy, Kathy L; Rudolf, Anne K; Kalkman, Barbara; King, Maedbh; Daffertshofer, Andreas; Carroll, Timothy J; Carson, Richard G

    2016-01-01

    Cross education is the process whereby training of one limb gives rise to increases in the subsequent performance of its opposite counterpart. The execution of many unilateral tasks is associated with increased excitability of corticospinal projections from primary motor cortex (M1) to the opposite limb. It has been proposed that these effects are causally related. Our aim was to establish whether changes in corticospinal excitability (CSE) arising from prior training of the opposite limb determine levels of interlimb transfer. We used three vision conditions shown previously to modulate the excitability of corticospinal projections to the inactive (right) limb during wrist flexion movements performed by the training (left) limb. These were: (1) mirrored visual feedback of the training limb; (2) no visual feedback of either limb; and (3) visual feedback of the inactive limb. Training comprised 300 discrete, ballistic wrist flexion movements executed as rapidly as possible. Performance of the right limb on the same task was assessed prior to, at the mid point of, and following left limb training. There was no evidence that variations in the excitability of corticospinal projections (assessed by transcranial magnetic stimulation (TMS)) to the inactive limb were associated with, or predictive of, the extent of interlimb transfer that was expressed. There were however associations between alterations in muscle activation dynamics observed for the untrained limb, and the degree of positive transfer that arose from training of the opposite limb. The results suggest that the acute adaptations that mediate the bilateral performance gains realized through unilateral practice of this ballistic wrist flexion task are mediated by neural elements other than those within M1 that are recruited at rest by single-pulse TMS.

  6. Neural Adaptations Associated with Interlimb Transfer in a Ballistic Wrist Flexion Task.

    PubMed

    Ruddy, Kathy L; Rudolf, Anne K; Kalkman, Barbara; King, Maedbh; Daffertshofer, Andreas; Carroll, Timothy J; Carson, Richard G

    2016-01-01

    Cross education is the process whereby training of one limb gives rise to increases in the subsequent performance of its opposite counterpart. The execution of many unilateral tasks is associated with increased excitability of corticospinal projections from primary motor cortex (M1) to the opposite limb. It has been proposed that these effects are causally related. Our aim was to establish whether changes in corticospinal excitability (CSE) arising from prior training of the opposite limb determine levels of interlimb transfer. We used three vision conditions shown previously to modulate the excitability of corticospinal projections to the inactive (right) limb during wrist flexion movements performed by the training (left) limb. These were: (1) mirrored visual feedback of the training limb; (2) no visual feedback of either limb; and (3) visual feedback of the inactive limb. Training comprised 300 discrete, ballistic wrist flexion movements executed as rapidly as possible. Performance of the right limb on the same task was assessed prior to, at the mid point of, and following left limb training. There was no evidence that variations in the excitability of corticospinal projections (assessed by transcranial magnetic stimulation (TMS)) to the inactive limb were associated with, or predictive of, the extent of interlimb transfer that was expressed. There were however associations between alterations in muscle activation dynamics observed for the untrained limb, and the degree of positive transfer that arose from training of the opposite limb. The results suggest that the acute adaptations that mediate the bilateral performance gains realized through unilateral practice of this ballistic wrist flexion task are mediated by neural elements other than those within M1 that are recruited at rest by single-pulse TMS. PMID:27199722

  7. Using Multivariate Adaptive Regression Spline and Artificial Neural Network to Simulate Urbanization in Mumbai, India

    NASA Astrophysics Data System (ADS)

    Ahmadlou, M.; Delavar, M. R.; Tayyebi, A.; Shafizadeh-Moghadam, H.

    2015-12-01

    Land use change (LUC) models used for modelling urban growth are different in structure and performance. Local models divide the data into separate subsets and fit distinct models on each of the subsets. Non-parametric models are data driven and usually do not have a fixed model structure or model structure is unknown before the modelling process. On the other hand, global models perform modelling using all the available data. In addition, parametric models have a fixed structure before the modelling process and they are model driven. Since few studies have compared local non-parametric models with global parametric models, this study compares a local non-parametric model called multivariate adaptive regression spline (MARS), and a global parametric model called artificial neural network (ANN) to simulate urbanization in Mumbai, India. Both models determine the relationship between a dependent variable and multiple independent variables. We used receiver operating characteristic (ROC) to compare the power of the both models for simulating urbanization. Landsat images of 1991 (TM) and 2010 (ETM+) were used for modelling the urbanization process. The drivers considered for urbanization in this area were distance to urban areas, urban density, distance to roads, distance to water, distance to forest, distance to railway, distance to central business district, number of agricultural cells in a 7 by 7 neighbourhoods, and slope in 1991. The results showed that the area under the ROC curve for MARS and ANN was 94.77% and 95.36%, respectively. Thus, ANN performed slightly better than MARS to simulate urban areas in Mumbai, India.

  8. Hybrid feedback feedforward: An efficient design of adaptive neural network control.

    PubMed

    Pan, Yongping; Liu, Yiqi; Xu, Bin; Yu, Haoyong

    2016-04-01

    This paper presents an efficient hybrid feedback feedforward (HFF) adaptive approximation-based control (AAC) strategy for a class of uncertain Euler-Lagrange systems. The control structure includes a proportional-derivative (PD) control term in the feedback loop and a radial-basis-function (RBF) neural network (NN) in the feedforward loop, which mimics the human motor learning control mechanism. At the presence of discontinuous friction, a sigmoid-jump-function NN is incorporated to improve control performance. The major difference of the proposed HFF-AAC design from the traditional feedback AAC (FB-AAC) design is that only desired outputs, rather than both tracking errors and desired outputs, are applied as RBF-NN inputs. Yet, such a slight modification leads to several attractive properties of HFF-AAC, including the convenient choice of an approximation domain, the decrease of the number of RBF-NN inputs, and semiglobal practical asymptotic stability dominated by control gains. Compared with previous HFF-AAC approaches, the proposed approach possesses the following two distinctive features: (i) all above attractive properties are achieved by a much simpler control scheme; (ii) the bounds of plant uncertainties are not required to be known. Consequently, the proposed approach guarantees a minimum configuration of the control structure and a minimum requirement of plant knowledge for the AAC design, which leads to a sharp decrease of implementation cost in terms of hardware selection, algorithm realization and system debugging. Simulation results have demonstrated that the proposed HFF-AAC can perform as good as or even better than the traditional FB-AAC under much simpler control synthesis and much lower computational cost. PMID:26890657

  9. Neural Adaptations Associated with Interlimb Transfer in a Ballistic Wrist Flexion Task

    PubMed Central

    Ruddy, Kathy L.; Rudolf, Anne K.; Kalkman, Barbara; King, Maedbh; Daffertshofer, Andreas; Carroll, Timothy J.; Carson, Richard G.

    2016-01-01

    Cross education is the process whereby training of one limb gives rise to increases in the subsequent performance of its opposite counterpart. The execution of many unilateral tasks is associated with increased excitability of corticospinal projections from primary motor cortex (M1) to the opposite limb. It has been proposed that these effects are causally related. Our aim was to establish whether changes in corticospinal excitability (CSE) arising from prior training of the opposite limb determine levels of interlimb transfer. We used three vision conditions shown previously to modulate the excitability of corticospinal projections to the inactive (right) limb during wrist flexion movements performed by the training (left) limb. These were: (1) mirrored visual feedback of the training limb; (2) no visual feedback of either limb; and (3) visual feedback of the inactive limb. Training comprised 300 discrete, ballistic wrist flexion movements executed as rapidly as possible. Performance of the right limb on the same task was assessed prior to, at the mid point of, and following left limb training. There was no evidence that variations in the excitability of corticospinal projections (assessed by transcranial magnetic stimulation (TMS)) to the inactive limb were associated with, or predictive of, the extent of interlimb transfer that was expressed. There were however associations between alterations in muscle activation dynamics observed for the untrained limb, and the degree of positive transfer that arose from training of the opposite limb. The results suggest that the acute adaptations that mediate the bilateral performance gains realized through unilateral practice of this ballistic wrist flexion task are mediated by neural elements other than those within M1 that are recruited at rest by single-pulse TMS. PMID:27199722

  10. Critical Incident Stress Management (CISM) in complex systems: cultural adaptation and safety impacts in healthcare.

    PubMed

    Müller-Leonhardt, Alice; Mitchell, Shannon G; Vogt, Joachim; Schürmann, Tim

    2014-07-01

    In complex systems, such as hospitals or air traffic control operations, critical incidents (CIs) are unavoidable. These incidents can not only become critical for victims but also for professionals working at the "sharp end" who may have to deal with critical incident stress (CIS) reactions that may be severe and impede emotional, physical, cognitive and social functioning. These CIS reactions may occur not only under exceptional conditions but also during every-day work and become an important safety issue. In contrast to air traffic management (ATM) operations in Europe, which have readily adopted critical incident stress management (CISM), most hospitals have not yet implemented comprehensive peer support programs. This survey was conducted in 2010 at the only European general hospital setting which implemented CISM program since 2004. The aim of the article is to describe possible contribution of CISM in hospital settings framed from the perspective of organizational safety and individual health for healthcare professionals. Findings affirm that daily work related incidents also can become critical for healthcare professionals. Program efficiency appears to be influenced by the professional culture, as well as organizational structure and policies. Overall, findings demonstrate that the adaptation of the CISM program in general hospitals takes time but, once established, it may serve as a mechanism for changing professional culture, thereby permitting the framing of even small incidents or near misses as an opportunity to provide valuable feedback to the system.

  11. Transfer of ballistic motor skill between bilateral and unilateral contexts in young and older adults: neural adaptations and behavioral implications.

    PubMed

    Hinder, Mark R; Carroll, Timothy J; Summers, Jeffery J

    2013-06-01

    Bilateral movement rehabilitation is gaining popularity as an approach to improve the recovery not only of bimanual function but also of unilateral motor tasks. While the neural mechanisms mediating the transfer of bilateral training gains into unimanual contexts are not fully understood, converging evidence from behavioral, neurophysiological, and imaging studies suggests that bimanual movements are not simply the superposition of unimanual tasks undertaken with both (upper) limbs. Here we investigated the neural responses in both hemispheres to bilateral ballistic motor training and the extent to which performance improvements transferred to a unimanual task. Since aging influences interhemispheric interactions during movement production, both young (n = 9; mean age 19.4 yr; 6 women, 3 men) and older (n = 9; 66.3 yr; 7 women, 2 men) adults practiced a bilateral motor task requiring simultaneous "fast-as-possible" abductions of their left and right index fingers. Changes in bilateral and unilateral performance, and in corticospinal excitability and intracortical inhibition, were assessed. Strong transfer was observed between bimanual and unimanual contexts for both age groups. However, in contrast to previous reports of substantial bilateral cortical adaptations following unilateral training, increases in corticospinal excitability following bilateral training were not statistically reliable, and a release of intracortical inhibition was only observed for older adults. The results indicate that the neural mechanisms of motor learning for bilateral ballistic tasks differ from those that underlie unimanual ballistic performance improvement but that aging results in a greater overlap of the neural mechanisms mediating bilateral and unilateral ballistic motor performance.

  12. Adaptation of the phase of the human linear vestibulo-ocular reflex (LVOR) and effects on the oculomotor neural integrator

    NASA Technical Reports Server (NTRS)

    Hegemann, S.; Shelhamer, M.; Kramer, P. D.; Zee, D. S.

    2000-01-01

    The phase of the translational linear VOR (LVOR) can be adaptively modified by exposure to a visual-vestibular mismatch. We extend here our earlier work on LVOR phase adaptation, and discuss the role of the oculomotor neural integrator. Ten subjects were oscillated laterally at 0.5 Hz, 0.3 g peak acceleration, while sitting upright on a linear sled. LVOR was assessed before and after adaptation with subjects tracking the remembered location of a target at 1 m in the dark. Phase and gain were measured by fitting sine waves to the desaccaded eye movements, and comparing sled and eye position. To adapt LVOR phase, the subject viewed a computer-generated stereoscopic visual display, at a virtual distance of 1 m, that moved so as to require either a phase lead or a phase lag of 53 deg. Adaptation lasted 20 min, during which subjects were oscillated at 0.5 Hz/0.3 g. Four of five subjects produced an adaptive change in the lag condition (range 4-45 deg), and each of five produced a change in the lead condition (range 19-56 deg), as requested. Changes in drift on eccentric gaze suggest that the oculomotor velocity-to-position integrator may be involved in the phase changes.

  13. Williams Syndrome Transcription Factor is critical for neural crest cell function in Xenopus laevis

    PubMed Central

    Barnett, Chris; Yazgan, Oya; Kuo, Hui-Ching; Malakar, Sreepurna; Thomas, Trevor; Fitzgerald, Amanda; Harbour, Billy; Henry, Jonathan J.; Krebs, Jocelyn E.

    2012-01-01

    Williams Syndrome Transcription Factor (WSTF) is one of ~25 haplodeficient genes in patients with the complex developmental disorder Williams Syndrome (WS). WS results in visual/spatial processing defects, cognitive impairment, unique behavioral phenotypes, characteristic “elfin” facial features, low muscle tone and heart defects. WSTF exists in several chromatin remodeling complexes and has roles in transcription, replication, and repair. Chromatin remodeling is essential during embryogenesis, but WSTF’s role in vertebrate development is poorly characterized. To investigate the developmental role of WSTF, we knocked down WSTF in Xenopus laevis embryos using a morpholino that targets WSTF mRNA. BMP4 shows markedly increased and spatially aberrant expression in WSTF-deficient embryos, while SHH, MRF4, PAX2, EPHA4 and SOX2 expression are severely reduced, coupled with defects in a number of developing embryonic structures and organs. WSTF-deficient embryos display defects in anterior neural development. Induction of the neural crest, measured by expression of the neural crest-specific genes SNAIL and SLUG, is unaffected by WSTF depletion. However, at subsequent stages WSTF knockdown results in a severe defect in neural crest migration and/or maintenance. Consistent with a maintenance defect, WSTF knockdowns display a specific pattern of increased apoptosis at the tailbud stage in regions corresponding to the path of cranial neural crest migration. Our work is the first to describe a role for WSTF in proper neural crest function, and suggests that neural crest defects resulting from WSTF haploinsufficiency may be a major contributor to the pathoembryology of WS. PMID:22691402

  14. Self-Adaptive Prediction of Cloud Resource Demands Using Ensemble Model and Subtractive-Fuzzy Clustering Based Fuzzy Neural Network

    PubMed Central

    Chen, Zhijia; Zhu, Yuanchang; Di, Yanqiang; Feng, Shaochong

    2015-01-01

    In IaaS (infrastructure as a service) cloud environment, users are provisioned with virtual machines (VMs). To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN). We analyze the characters of user preferences and demands. Then the architecture of the prediction model is constructed. We adopt some base predictors to compose the ensemble model. Then the structure and learning algorithm of fuzzy neural network is researched. To obtain the number of fuzzy rules and the initial value of the premise and consequent parameters, this paper proposes the fuzzy c-means combined with subtractive clustering algorithm, that is, the subtractive-fuzzy clustering. Finally, we adopt different criteria to evaluate the proposed method. The experiment results show that the method is accurate and effective in predicting the resource demands. PMID:25691896

  15. Self-adaptive prediction of cloud resource demands using ensemble model and subtractive-fuzzy clustering based fuzzy neural network.

    PubMed

    Chen, Zhijia; Zhu, Yuanchang; Di, Yanqiang; Feng, Shaochong

    2015-01-01

    In IaaS (infrastructure as a service) cloud environment, users are provisioned with virtual machines (VMs). To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN). We analyze the characters of user preferences and demands. Then the architecture of the prediction model is constructed. We adopt some base predictors to compose the ensemble model. Then the structure and learning algorithm of fuzzy neural network is researched. To obtain the number of fuzzy rules and the initial value of the premise and consequent parameters, this paper proposes the fuzzy c-means combined with subtractive clustering algorithm, that is, the subtractive-fuzzy clustering. Finally, we adopt different criteria to evaluate the proposed method. The experiment results show that the method is accurate and effective in predicting the resource demands. PMID:25691896

  16. Intelligent detection of hypoglycemic episodes in children with type 1 diabetes using adaptive neural-fuzzy inference system.

    PubMed

    San, Phyo Phyo; Ling, Sai Ho; Nguyen, Hung T

    2012-01-01

    Hypoglycemia, or low blood glucose, is the most common complication experienced by Type 1 diabetes mellitus (T1DM) patients. It is dangerous and can result in unconsciousness, seizures and even death. The most common physiological parameter to be effected from hypoglycemic reaction are heart rate (HR) and correct QT interval (QTc) of the electrocardiogram (ECG) signal. Based on physiological parameters, an intelligent diagnostics system, using the hybrid approach of adaptive neural fuzzy inference system (ANFIS), is developed to recognize the presence of hypoglycemia. The proposed ANFIS is characterized by adaptive neural network capabilities and the fuzzy inference system. To optimize the membership functions and adaptive network parameters, a global learning optimization algorithm called hybrid particle swarm optimization with wavelet mutation (HPSOWM) is used. For clinical study, 15 children with Type 1 diabetes volunteered for an overnight study. All the real data sets are collected from the Department of Health, Government of Western Australia. Several experiments were conducted with 5 patients each, for a training set (184 data points), a validation set (192 data points) and a testing set (153 data points), which are randomly selected. The effectiveness of the proposed detection method is found to be satisfactory by giving better sensitivity, 79.09% and acceptable specificity, 51.82%. PMID:23367375

  17. Adaptive Position/Attitude Tracking Control of Aerial Robot With Unknown Inertial Matrix Based on a New Robust Neural Identifier.

    PubMed

    Lai, Guanyu; Liu, Zhi; Zhang, Yun; Chen, C L Philip

    2016-01-01

    This paper presents a novel adaptive controller for controlling an autonomous helicopter with unknown inertial matrix to asymptotically track the desired trajectory. To identify the unknown inertial matrix included in the attitude dynamic model, this paper proposes a new structural identifier that differs from those previously proposed in that it additionally contains a neural networks (NNs) mechanism and a robust adaptive mechanism, respectively. Using the NNs to compensate the unknown aerodynamic forces online and the robust adaptive mechanism to cancel the combination of the overlarge NNs compensation error and the external disturbances, the new robust neural identifier exhibits a better identification performance in the complex flight environment. Moreover, an optimized algorithm is included in the NNs mechanism to alleviate the burdensome online computation. By the strict Lyapunov argument, the asymptotic convergence of the inertial matrix identification error, position tracking error, and attitude tracking error to arbitrarily small neighborhood of the origin is proved. The simulation and implementation results are provided to evaluate the performance of the proposed controller. PMID:25794402

  18. The Adaptation of East Asian Masters Students to Western Norms of Critical Thinking and Argumentation in the UK

    ERIC Educational Resources Information Center

    Durkin, Kathy

    2008-01-01

    The paper explores the adaptation experiences of East Asian masters students in the UK in dealing with western academic norms of critical thinking and debate. Through in-depth interviewing, students' perceptions of their learning experiences were explored, and stages in this adaptation process were identified, with various entry and exit routes.…

  19. An FPGA Implementation of a Polychronous Spiking Neural Network with Delay Adaptation

    PubMed Central

    Wang, Runchun; Cohen, Gregory; Stiefel, Klaus M.; Hamilton, Tara Julia; Tapson, Jonathan; van Schaik, André

    2013-01-01

    We present an FPGA implementation of a re-configurable, polychronous spiking neural network with a large capacity for spatial-temporal patterns. The proposed neural network generates delay paths de novo, so that only connections that actually appear in the training patterns will be created. This allows the proposed network to use all the axons (variables) to store information. Spike Timing Dependent Delay Plasticity is used to fine-tune and add dynamics to the network. We use a time multiplexing approach allowing us to achieve 4096 (4k) neurons and up to 1.15 million programmable delay axons on a Virtex 6 FPGA. Test results show that the proposed neural network is capable of successfully recalling more than 95% of all spikes for 96% of the stored patterns. The tests also show that the neural network is robust to noise from random input spikes. PMID:23408739

  20. An FPGA Implementation of a Polychronous Spiking Neural Network with Delay Adaptation.

    PubMed

    Wang, Runchun; Cohen, Gregory; Stiefel, Klaus M; Hamilton, Tara Julia; Tapson, Jonathan; van Schaik, André

    2013-01-01

    We present an FPGA implementation of a re-configurable, polychronous spiking neural network with a large capacity for spatial-temporal patterns. The proposed neural network generates delay paths de novo, so that only connections that actually appear in the training patterns will be created. This allows the proposed network to use all the axons (variables) to store information. Spike Timing Dependent Delay Plasticity is used to fine-tune and add dynamics to the network. We use a time multiplexing approach allowing us to achieve 4096 (4k) neurons and up to 1.15 million programmable delay axons on a Virtex 6 FPGA. Test results show that the proposed neural network is capable of successfully recalling more than 95% of all spikes for 96% of the stored patterns. The tests also show that the neural network is robust to noise from random input spikes.

  1. An adaptive drug delivery design using neural networks for effective treatment of infectious diseases: a simulation study.

    PubMed

    Padhi, Radhakant; Bhardhwaj, Jayender R

    2009-06-01

    An adaptive drug delivery design is presented in this paper using neural networks for effective treatment of infectious diseases. The generic mathematical model used describes the coupled evolution of concentration of pathogens, plasma cells, antibodies and a numerical value that indicates the relative characteristic of a damaged organ due to the disease under the influence of external drugs. From a system theoretic point of view, the external drugs can be interpreted as control inputs, which can be designed based on control theoretic concepts. In this study, assuming a set of nominal parameters in the mathematical model, first a nonlinear controller (drug administration) is designed based on the principle of dynamic inversion. This nominal drug administration plan was found to be effective in curing "nominal model patients" (patients whose immunological dynamics conform to the mathematical model used for the control design exactly. However, it was found to be ineffective in curing "realistic model patients" (patients whose immunological dynamics may have off-nominal parameter values and possibly unwanted inputs) in general. Hence, to make the drug delivery dosage design more effective for realistic model patients, a model-following adaptive control design is carried out next by taking the help of neural networks, that are trained online. Simulation studies indicate that the adaptive controller proposed in this paper holds promise in killing the invading pathogens and healing the damaged organ even in the presence of parameter uncertainties and continued pathogen attack. Note that the computational requirements for computing the control are very minimal and all associated computations (including the training of neural networks) can be carried out online. However it assumes that the required diagnosis process can be carried out at a sufficient faster rate so that all the states are available for control computation.

  2. Global Squeeze: Assessing Climate-Critical Resource Constraints for Coastal Climate Adaptation

    NASA Astrophysics Data System (ADS)

    Chase, N. T.; Becker, A.; Schwegler, B.; Fischer, M.

    2014-12-01

    The projected impacts of climate change in the coastal zone will require local planning and local resources to adapt to increasing risks of social, environmental, and economic consequences from extreme events. This means that, for the first time in human history, aggregated local demands could outpace global supply of certain "climate-critical resources." For example, construction materials such as sand and gravel, steel, and cement may be needed to fortify many coastal locations at roughly the same point in time if decision makers begin to construct new storm barriers or elevate coastal lands. Where might adaptation bottlenecks occur? Can the world produce enough cement to armour the world's seaports as flood risks increase due to sea-level rise and more intense storms? Just how many coastal engineers would multiple such projects require? Understanding such global implications of adaptation requires global datasets—such as bathymetry, coastal topography, local sea-level rise and storm surge projections, and construction resource production capacity—that are currently unavailable at a resolution appropriate for a global-scale analysis. Our research group has identified numerous gaps in available data necessary to make such estimates on both the supply and demand sides of this equation. This presentation examines the emerging need and current availability of these types of datasets and argues for new coordinated efforts to develop and share such data.

  3. Complex ordering in spin networks: Critical role of adaptation rate for dynamically evolving interactions

    NASA Astrophysics Data System (ADS)

    Pathak, Anand; Sinha, Sitabhra

    2015-09-01

    Many complex systems can be represented as networks of dynamical elements whose states evolve in response to interactions with neighboring elements, noise and external stimuli. The collective behavior of such systems can exhibit remarkable ordering phenomena such as chimera order corresponding to coexistence of ordered and disordered regions. Often, the interactions in such systems can also evolve over time responding to changes in the dynamical states of the elements. Link adaptation inspired by Hebbian learning, the dominant paradigm for neuronal plasticity, has been earlier shown to result in structural balance by removing any initial frustration in a system that arises through conflicting interactions. Here we show that the rate of the adaptive dynamics for the interactions is crucial in deciding the emergence of different ordering behavior (including chimera) and frustration in networks of Ising spins. In particular, we observe that small changes in the link adaptation rate about a critical value result in the system exhibiting radically different energy landscapes, viz., smooth landscape corresponding to balanced systems seen for fast learning, and rugged landscapes corresponding to frustrated systems seen for slow learning.

  4. A Critical Period for Postnatal Adaptive Plasticity in a Model of Motor Axon Miswiring

    PubMed Central

    Castiblanco-Urbina, Maria A.; Winzeck, Stefan; Sundermeier, Julia; Theis, Fabian J.; Fouad, Karim; Huber, Andrea B.

    2015-01-01

    The correct wiring of neuronal circuits is of crucial importance for precise neuromuscular functionality. Therefore, guidance cues provide tight spatiotemporal control of axon growth and guidance. Mice lacking the guidance cue Semaphorin 3F (Sema3F) display very specific axon wiring deficits of motor neurons in the medial aspect of the lateral motor column (LMCm). While these deficits have been investigated extensively during embryonic development, it remained unclear how Sema3F mutant mice cope with these errors postnatally. We therefore investigated whether these animals provide a suitable model for the exploration of adaptive plasticity in a system of miswired neuronal circuitry. We show that the embryonically developed wiring deficits in Sema3F mutants persist until adulthood. As a consequence, these mutants display impairments in motor coordination that improve during normal postnatal development, but never reach wildtype levels. These improvements in motor coordination were boosted to wildtype levels by housing the animals in an enriched environment starting at birth. In contrast, a delayed start of enriched environment housing, at 4 weeks after birth, did not similarly affect motor performance of Sema3F mutants. These results, which are corroborated by neuroanatomical analyses, suggest a critical period for adaptive plasticity in neuromuscular circuitry. Interestingly, the formation of perineuronal nets, which are known to close the critical period for plastic changes in other systems, was not altered between the different housing groups. However, we found significant changes in the number of excitatory synapses on limb innervating motor neurons. Thus, we propose that during the early postnatal phase, when perineuronal nets have not yet been formed around spinal motor neurons, housing in enriched environment conditions induces adaptive plasticity in the motor system by the formation of additional synaptic contacts, in order to compensate for coordination

  5. Adaptive Q-S (lag, anticipated, and complete) time-varying synchronization and parameters identification of uncertain delayed neural networks

    NASA Astrophysics Data System (ADS)

    Yu, Wenwu; Cao, Jinde

    2006-06-01

    In this paper, a new type of generalized Q-S (lag, anticipated, and complete) time-varying synchronization is defined. Adaptive Q-S (lag, anticipated, and complete) time-varying synchronization and parameters identification of uncertain delayed neural networks have been considered, where the delays are multiple time-varying delays. A novel control method is given by using the Lyapunov functional method. With this new and effective method, parameters identification and Q-S (lag, anticipated, and complete) time-varying synchronization can be achieved simultaneously. Simulation results are given to justify the theoretical analysis in this paper.

  6. Forecasting of the critical frequency of the ionosphere F2 layer by the method of artificial neural networks

    NASA Astrophysics Data System (ADS)

    Barkhatov, N. A.; Revunov, S. E.; Uryadov, V. P.

    2004-12-01

    An algorithm of forecasting of the ionosphere F2 layer critical frequency for time intervals: 1, 2, 3, 12, and 24 hours was developed on the basis of the technology of artificial neural networks (ANN). The experimental search for a valid training array and architecture of ANN was performed. The solar wind parameters, interplanetary magnetic field, and geomagnetic disturbance indexes were additionally used in the forecasting. This made it possible to improve its effectiveness. The practical importance of the performed work is in the application of its results for efficient correction of the ionosphere model for an improvement of the ionosphere shortwave radio communication.

  7. Neural responses to maternal praise and criticism: Relationship to depression and anxiety symptoms in high-risk adolescent girls

    PubMed Central

    Aupperle, Robin L.; Morris, Amanda S.; Silk, Jennifer S.; Criss, Michael M.; Judah, Matt R.; Eagleton, Sally G.; Kirlic, Namik; Byrd-Craven, Jennifer; Phillips, Raquel; Alvarez, Ruben P.

    2016-01-01

    Background The parent-child relationship may be an important factor in the development of adolescent depressive and anxious symptoms. In adults, depressive symptoms relate to increased amygdala and attenuated prefrontal activation to maternal criticism. The current pilot study examined how depressive and anxiety symptoms in a high-risk adolescent population relate to neural responses to maternal feedback. Given previous research relating oxytocin to maternal behavior, we conducted exploratory analyses using oxytocin receptor (OXTR) genotype. Methods Eighteen females (ages 12–16) listened to maternal praise, neutral, and critical statements during functional magnetic resonance imaging. Participants completed the Mood and Feelings Questionnaire and the Screen for Child Anxiety Related Emotional Disorders. The OXTR single nucleotide polymorphism, rs53576, was genotyped. Linear mixed models were used to identify symptom or allele (GG, AA/AG) by condition (critical, neutral, praise) interaction effects on brain activation. Results Greater symptoms related to greater right amygdala activation for criticism and reduced activation to praise. For left amygdala, greater symptoms related to reduced activation to both conditions. Anxiety symptoms related to differences in superior medial PFC activation patterns. Parental OXTR AA/AG allele related to reduced activation to criticism and greater activation to praise within the right amygdala. Conclusions Results support a relationship between anxiety and depressive symptoms and prefrontal-amygdala responses to maternal feedback. The lateralization of amygdala findings suggests separate neural targets for interventions reducing reactivity to negative feedback or increasing salience of positive feedback. Exploratory analyses suggest that parents' OXTR genetic profile influences parent-child interactions and related adolescent brain responses. PMID:27158587

  8. Ontogenetic influence on neural spine bifurcation in Diplodocoidea (Dinosauria: Sauropoda): a critical phylogenetic character.

    PubMed

    Woodruff, D Cary; Fowler, Denver W

    2012-07-01

    Within Diplodocoidea (Dinosauria: Sauropoda), phylogenetic position of the three subclades Rebbachisauridae, Dicraeosauridae, and Diplodocidae is strongly influenced by a relatively small number of characters. Neural spine bifurcation, especially within the cervical vertebrae, is considered to be a derived character, with taxa that lack this feature regarded as relatively basal. Our analysis of dorsal and cervical vertebrae from small-sized diplodocoids (representing at least 18 individuals) reveals that neural spine bifurcation is less well developed or absent in smaller specimens. New preparation of the roughly 200-cm long diplodocid juvenile Sauriermuseum Aathal 0009 reveals simple nonbifurcated cervical neural spines, strongly reminiscent of more basal sauropods such as Omeisaurus. An identical pattern of ontogenetically linked bifurcation has also been observed in several specimens of the basal macronarian Camarasaurus, suggesting that this is characteristic of several clades of Sauropoda. We suggest that neural spine bifurcation performs a biomechanical function related to horizontal positioning of the neck that may become significant only at the onset of a larger body size, hence, its apparent absence or weaker development in smaller specimens. These results have significant implications for the taxonomy and phylogenetic position of taxa described from specimens of small body size. On the basis of shallow bifurcation of its cervical and dorsal neural spines, the small diplodocid Suuwassea is more parsimoniously interpreted as an immature specimen of an already recognized diplodocid taxon. Our findings emphasize the view that nonmature dinosaurs often exhibit morphologies more similar to their ancestral state and may therefore occupy a more basal position in phylogenetic analyses than would mature specimens of the same species. In light of this, we stress the need for phylogenetic reanalysis of sauropod clades where vital characters may be ontogenetically

  9. An indirect adaptive neural control of a visual-based quadrotor robot for pursuing a moving target.

    PubMed

    Shirzadeh, Masoud; Amirkhani, Abdollah; Jalali, Aliakbar; Mosavi, Mohammad R

    2015-11-01

    This paper aims to use a visual-based control mechanism to control a quadrotor type aerial robot which is in pursuit of a moving target. The nonlinear nature of a quadrotor, on the one hand, and the difficulty of obtaining an exact model for it, on the other hand, constitute two serious challenges in designing a controller for this UAV. A potential solution for such problems is the use of intelligent control methods such as those that rely on artificial neural networks and other similar approaches. In addition to the two mentioned problems, another problem that emerges due to the moving nature of a target is the uncertainty that exists in the target image. By employing an artificial neural network with a Radial Basis Function (RBF) an indirect adaptive neural controller has been designed for a quadrotor robot in search of a moving target. The results of the simulation for different paths show that the quadrotor has efficiently tracked the moving target. PMID:26521725

  10. Prediction of the Wrist Joint Position During a Postural Tremor Using Neural Oscillators and an Adaptive Controller.

    PubMed

    Kobravi, Hamid Reza; Ali, Sara Hemmati; Vatandoust, Masood; Marvi, Rasoul

    2016-01-01

    The prediction of the joint angle position, especially during tremor bursts, can be useful for detecting, tracking, and forecasting tremors. Thus, this research proposes a new model for predicting the wrist joint position during rhythmic bursts and inter-burst intervals. Since a tremor is an approximately rhythmic and roughly sinusoidal movement, neural oscillators have been selected to underlie the proposed model. Two neural oscillators were adopted. Electromyogram (EMG) signals were recorded from the extensor carpi radialis and flexor carpi radialis muscles concurrent with the joint angle signals of a stroke subject in an arm constant-posture. The output frequency of each oscillator was equal to the frequency corresponding to the maximum value of power spectrum related to the rhythmic wrist joint angle signals which had been recorded during a postural tremor. The phase shift between the outputs of the two oscillators was equal to the phase shift between the muscle activation of the wrist flexor and extensor muscles. The difference between the two oscillators' output signals was considered the main pattern. Along with a proportional compensator, an adaptive neural controller has adjusted the amplitude of the main pattern in such a way so as to minimize the wrist joint prediction error during a stroke patient's tremor burst and a healthy subject's generated artificial tremor. In regard to the range of wrist joint movement during the observed rhythmic motions, a calculated prediction error is deemed acceptable. PMID:27186540

  11. Prediction of the Wrist Joint Position During a Postural Tremor Using Neural Oscillators and an Adaptive Controller

    PubMed Central

    Kobravi, Hamid Reza; Ali, Sara Hemmati; Vatandoust, Masood; Marvi, Rasoul

    2016-01-01

    The prediction of the joint angle position, especially during tremor bursts, can be useful for detecting, tracking, and forecasting tremors. Thus, this research proposes a new model for predicting the wrist joint position during rhythmic bursts and inter-burst intervals. Since a tremor is an approximately rhythmic and roughly sinusoidal movement, neural oscillators have been selected to underlie the proposed model. Two neural oscillators were adopted. Electromyogram (EMG) signals were recorded from the extensor carpi radialis and flexor carpi radialis muscles concurrent with the joint angle signals of a stroke subject in an arm constant-posture. The output frequency of each oscillator was equal to the frequency corresponding to the maximum value of power spectrum related to the rhythmic wrist joint angle signals which had been recorded during a postural tremor. The phase shift between the outputs of the two oscillators was equal to the phase shift between the muscle activation of the wrist flexor and extensor muscles. The difference between the two oscillators’ output signals was considered the main pattern. Along with a proportional compensator, an adaptive neural controller has adjusted the amplitude of the main pattern in such a way so as to minimize the wrist joint prediction error during a stroke patient's tremor burst and a healthy subject's generated artificial tremor. In regard to the range of wrist joint movement during the observed rhythmic motions, a calculated prediction error is deemed acceptable. PMID:27186540

  12. An adaptive PID like controller using mix locally recurrent neural network for robotic manipulator with variable payload.

    PubMed

    Sharma, Richa; Kumar, Vikas; Gaur, Prerna; Mittal, A P

    2016-05-01

    Being complex, non-linear and coupled system, the robotic manipulator cannot be effectively controlled using classical proportional-integral-derivative (PID) controller. To enhance the effectiveness of the conventional PID controller for the nonlinear and uncertain systems, gains of the PID controller should be conservatively tuned and should adapt to the process parameter variations. In this work, a mix locally recurrent neural network (MLRNN) architecture is investigated to mimic a conventional PID controller which consists of at most three hidden nodes which act as proportional, integral and derivative node. The gains of the mix locally recurrent neural network based PID (MLRNNPID) controller scheme are initialized with a newly developed cuckoo search algorithm (CSA) based optimization method rather than assuming randomly. A sequential learning based least square algorithm is then investigated for the on-line adaptation of the gains of MLRNNPID controller. The performance of the proposed controller scheme is tested against the plant parameters uncertainties and external disturbances for both links of the two link robotic manipulator with variable payload (TL-RMWVP). The stability of the proposed controller is analyzed using Lyapunov stability criteria. A performance comparison is carried out among MLRNNPID controller, CSA optimized NNPID (OPTNNPID) controller and CSA optimized conventional PID (OPTPID) controller in order to establish the effectiveness of the MLRNNPID controller. PMID:26920088

  13. An adaptive PID like controller using mix locally recurrent neural network for robotic manipulator with variable payload.

    PubMed

    Sharma, Richa; Kumar, Vikas; Gaur, Prerna; Mittal, A P

    2016-05-01

    Being complex, non-linear and coupled system, the robotic manipulator cannot be effectively controlled using classical proportional-integral-derivative (PID) controller. To enhance the effectiveness of the conventional PID controller for the nonlinear and uncertain systems, gains of the PID controller should be conservatively tuned and should adapt to the process parameter variations. In this work, a mix locally recurrent neural network (MLRNN) architecture is investigated to mimic a conventional PID controller which consists of at most three hidden nodes which act as proportional, integral and derivative node. The gains of the mix locally recurrent neural network based PID (MLRNNPID) controller scheme are initialized with a newly developed cuckoo search algorithm (CSA) based optimization method rather than assuming randomly. A sequential learning based least square algorithm is then investigated for the on-line adaptation of the gains of MLRNNPID controller. The performance of the proposed controller scheme is tested against the plant parameters uncertainties and external disturbances for both links of the two link robotic manipulator with variable payload (TL-RMWVP). The stability of the proposed controller is analyzed using Lyapunov stability criteria. A performance comparison is carried out among MLRNNPID controller, CSA optimized NNPID (OPTNNPID) controller and CSA optimized conventional PID (OPTPID) controller in order to establish the effectiveness of the MLRNNPID controller.

  14. Adaptive neural network output feedback control for stochastic nonlinear systems with unknown dead-zone and unmodeled dynamics.

    PubMed

    Tong, Shaocheng; Wang, Tong; Li, Yongming; Zhang, Huaguang

    2014-06-01

    This paper discusses the problem of adaptive neural network output feedback control for a class of stochastic nonlinear strict-feedback systems. The concerned systems have certain characteristics, such as unknown nonlinear uncertainties, unknown dead-zones, unmodeled dynamics and without the direct measurements of state variables. In this paper, the neural networks (NNs) are employed to approximate the unknown nonlinear uncertainties, and then by representing the dead-zone as a time-varying system with a bounded disturbance. An NN state observer is designed to estimate the unmeasured states. Based on both backstepping design technique and a stochastic small-gain theorem, a robust adaptive NN output feedback control scheme is developed. It is proved that all the variables involved in the closed-loop system are input-state-practically stable in probability, and also have robustness to the unmodeled dynamics. Meanwhile, the observer errors and the output of the system can be regulated to a small neighborhood of the origin by selecting appropriate design parameters. Simulation examples are also provided to illustrate the effectiveness of the proposed approach.

  15. Cognitive flexibility in adolescence: Neural and behavioral mechanisms of reward prediction error processing in adaptive decision making during development

    PubMed Central

    Hauser, Tobias U.; Iannaccone, Reto; Walitza, Susanne; Brandeis, Daniel; Brem, Silvia

    2015-01-01

    Adolescence is associated with quickly changing environmental demands which require excellent adaptive skills and high cognitive flexibility. Feedback-guided adaptive learning and cognitive flexibility are driven by reward prediction error (RPE) signals, which indicate the accuracy of expectations and can be estimated using computational models. Despite the importance of cognitive flexibility during adolescence, only little is known about how RPE processing in cognitive flexibility deviates between adolescence and adulthood. In this study, we investigated the developmental aspects of cognitive flexibility by means of computational models and functional magnetic resonance imaging (fMRI). We compared the neural and behavioral correlates of cognitive flexibility in healthy adolescents (12–16 years) to adults performing a probabilistic reversal learning task. Using a modified risk-sensitive reinforcement learning model, we found that adolescents learned faster from negative RPEs than adults. The fMRI analysis revealed that within the RPE network, the adolescents had a significantly altered RPE-response in the anterior insula. This effect seemed to be mainly driven by increased responses to negative prediction errors. In summary, our findings indicate that decision making in adolescence goes beyond merely increased reward-seeking behavior and provides a developmental perspective to the behavioral and neural mechanisms underlying cognitive flexibility in the context of reinforcement learning. PMID:25234119

  16. Adaptive automation, trust, and self-confidence in fault management of time-critical tasks.

    PubMed

    Moray, N; Inagaki, T; Itoh, M

    2000-03-01

    An experiment on adaptive automation is described. Reliability of automated fault diagnosis, mode of fault management (manual vs. automated), and fault dynamics affect variables including root mean square error, avoidance of accidents and false shutdowns, subjective trust in the system, and operator self-confidence. Results are discussed in relation to levels of automation, models of trust and self-confidence, and theories of human-machine function allocation. Trust in automation but not self-confidence was strongly affected by automation reliability. Operators controlled a continuous process with difficulty only while performing fault management but could prevent unnecessary shutdowns. Final authority for decisions and action must be allocated to automation in time-critical situations.

  17. Chaos control of the brushless direct current motor using adaptive dynamic surface control based on neural network with the minimum weights

    SciTech Connect

    Luo, Shaohua; Wu, Songli; Gao, Ruizhen

    2015-07-15

    This paper investigates chaos control for the brushless DC motor (BLDCM) system by adaptive dynamic surface approach based on neural network with the minimum weights. The BLDCM system contains parameter perturbation, chaotic behavior, and uncertainty. With the help of radial basis function (RBF) neural network to approximate the unknown nonlinear functions, the adaptive law is established to overcome uncertainty of the control gain. By introducing the RBF neural network and adaptive technology into the dynamic surface control design, a robust chaos control scheme is developed. It is proved that the proposed control approach can guarantee that all signals in the closed-loop system are globally uniformly bounded, and the tracking error converges to a small neighborhood of the origin. Simulation results are provided to show that the proposed approach works well in suppressing chaos and parameter perturbation.

  18. Neural Time Course of Conflict Adaptation Effects on the Stroop Task

    ERIC Educational Resources Information Center

    Larson, Michael J.; Kaufman, David A. S.; Perlstein, William M.

    2009-01-01

    Cognitive control theory suggests conflict effects are reduced following high- relative to low-conflict trials. Such reactive adjustments in control, frequently termed "conflict adaptation effects," indicate a dynamic interplay between regulative and evaluative components of cognitive control necessary for adaptable goal-directed behavior. The…

  19. Feed Forward Neural Network and Optimal Control Problem with Control and State Constraints

    SciTech Connect

    Kmet', Tibor; Kmet'ova, Maria

    2009-09-09

    A feed forward neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints. The paper extends adaptive critic neural network architecture proposed by [5] to the optimal control problems with control and state constraints. The optimal control problem is transcribed into a nonlinear programming problem which is implemented with adaptive critic neural network. The proposed simulation method is illustrated by the optimal control problem of nitrogen transformation cycle model. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.

  20. Adaptive probabilistic neural networks for pattern classification in time-varying environment.

    PubMed

    Rutkowski, Leszek

    2004-07-01

    In this paper, we propose a new class of probabilistic neural networks (PNNs) working in nonstationary environment. The novelty is summarized as follows: 1) We formulate the problem of pattern classification in nonstationary environment as the prediction problem and design a probabilistic neural network to classify patterns having time-varying probability distributions. We note that the problem of pattern classification in the nonstationary case is closely connected with the problem of prediction because on the basis of a learning sequence of the length n, a pattern in the moment n + k, k > or = 1 should be classified. 2) We present, for the first time in literature, definitions of optimality of PNNs in time-varying environment. Moreover, we prove that our PNNs asymptotically approach the Bayes-optimal (time-varying) decision surface. 3) We investigate the speed of convergence of constructed PNNs. 4) We design in detail PNNs based on Parzen kernels and multivariate Hermite series.

  1. Neural adaptive control of nonlinear multivariable systems with application to a class of inverted pendulums.

    PubMed

    He, Shouling

    2002-10-01

    In this paper multilayer neural networks (MNNs) are used to control the balancing of a class of inverted pendulums. Unlike normal inverted pendulums, the pendulum discussed here has two degrees of rotational freedom and the base-point moves randomly in three-dimensional space. The goal is to apply control torques to keep the pendulum in a prescribed position in spite of the random movement at the base-point. Since the inclusion of the base-point motion leads to a non-autonomous dynamic system with time-varying parametric excitation, the design of the control system is a challenging task. A feedback control algorithm is proposed that utilizes a set of neural networks to compensate for the effect of the system's nonlinearities. The weight parameters of neural networks updated on-line, according to a learning algorithm that guarantees the Lyapunov stability of the control system. Furthermore, since the base-point movement is considered unmeasurable, a neural inverse model is employed to estimate it from only measured state variables. The estimate is then utilized within the main control algorithm to produce compensating control signals. The examination of the proposed control system, through simulations, demonstrates the promise of the methodology and exhibits positive aspects, which cannot be achieved by the previously developed techniques on the same problem. These aspects include fast, yet well-maintained damped responses with reasonable control torques and no requirement for knowledge of the model or the model parameters. The work presented here can benefit practical problems such as the study of stable locomotion of human upper body and bipedal robots.

  2. Creating a New Model for Mainstreaming Climate Change Adaptation for Critical Infrastructure: The New York City Climate Change Adaptation Task Force and the NYC Panel on Climate Change

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.; Solecki, W. D.; Freed, A. M.

    2008-12-01

    The New York City Climate Change Adaptation Task Force, launched in August 2008, aims to secure the city's critical infrastructure against rising seas, higher temperatures and fluctuating water supplies projected to result from climate change. The Climate Change Adaptation Task Force is part of PlaNYC, the city's long- term sustainability plan, and is composed of over 30 city and state agencies, public authorities and companies that operate the region's roads, bridges, tunnels, mass transit, and water, sewer, energy and telecommunications systems - all with critical infrastructure identified as vulnerable. It is one of the most comprehensive adaptation efforts yet launched by an urban region. To guide the effort, Mayor Michael Bloomberg has formed the New York City Panel on Climate Change (NPCC), modeled on the Intergovernmental Panel on Climate Change (IPCC). Experts on the panel include climatologists, sea-level rise specialists, adaptation experts, and engineers, as well as representatives from the insurance and legal sectors. The NPCC is developing planning tools for use by the Task Force members that provide information about climate risks, adaptation and risk assessment, prioritization frameworks, and climate protection levels. The advisory panel is supplying climate change projections, helping to identify at- risk infrastructure, and assisting the Task Force in developing adaptation strategies and guidelines for design of new structures. The NPCC will also publish an assessment report in 2009 that will serve as the foundation for climate change adaptation in the New York City region, similar to the IPCC reports. Issues that the Climate Change Adaptation Task Force and the NPCC are addressing include decision- making under climate change uncertainty, effective ways for expert knowledge to be incorporated into public actions, and strategies for maintaining consistent and effective attention to long-term climate change even as municipal governments cycle

  3. Neural representations for the generation of inventive conceptions inspired by adaptive feature optimization of biological species.

    PubMed

    Zhang, Hao; Liu, Jia; Zhang, Qinglin

    2014-01-01

    Inventive conceptions amount to creative ideas for designing devices that are both original and useful. The generation of inventive conceptions is a key element of the inventive process. However, neural mechanisms of the inventive process remain poorly understood. Here we employed functional feature association tasks and event-related functional magnetic resonance imaging (MRI) to investigate neural substrates for the generation of inventive conceptions. The functional MRI (fMRI) data revealed significant activations at Brodmann area (BA) 47 in the left inferior frontal gyrus and at BA 18 in the left lingual gyrus, when participants performed biological functional feature association tasks compared with non-biological functional feature association tasks. Our results suggest that the left inferior frontal gyrus (BA 47) is associated with novelty-based representations formed by the generation and selection of semantic relatedness, and the left lingual gyrus (BA 18) is involved in relevant visual imagery in processing of semantic relatedness. The findings might shed light on neural mechanisms underlying the inventive process. PMID:23582377

  4. Adaptive dynamic inversion robust control for BTT missile based on wavelet neural network

    NASA Astrophysics Data System (ADS)

    Li, Chuanfeng; Wang, Yongji; Deng, Zhixiang; Wu, Hao

    2009-10-01

    A new nonlinear control strategy incorporated the dynamic inversion method with wavelet neural networks is presented for the nonlinear coupling system of Bank-to-Turn(BTT) missile in reentry phase. The basic control law is designed by using the dynamic inversion feedback linearization method, and the online learning wavelet neural network is used to compensate the inversion error due to aerodynamic parameter errors, modeling imprecise and external disturbance in view of the time-frequency localization properties of wavelet transform. Weights adjusting laws are derived according to Lyapunov stability theory, which can guarantee the boundedness of all signals in the whole system. Furthermore, robust stability of the closed-loop system under this tracking law is proved. Finally, the six degree-of-freedom(6DOF) simulation results have shown that the attitude angles can track the anticipant command precisely under the circumstances of existing external disturbance and in the presence of parameter uncertainty. It means that the dependence on model by dynamic inversion method is reduced and the robustness of control system is enhanced by using wavelet neural network(WNN) to reconstruct inversion error on-line.

  5. Closed loop adaptive control of spectrum-producing step using neural networks

    DOEpatents

    Fu, C.Y.

    1998-11-24

    Characteristics of the plasma in a plasma-based manufacturing process step are monitored directly and in real time by observing the spectrum which it produces. An artificial neural network analyzes the plasma spectrum and generates control signals to control one or more of the process input parameters in response to any deviation of the spectrum beyond a narrow range. In an embodiment, a plasma reaction chamber forms a plasma in response to input parameters such as gas flow, pressure and power. The chamber includes a window through which the electromagnetic spectrum produced by a plasma in the chamber, just above the subject surface, may be viewed. The spectrum is conducted to an optical spectrometer which measures the intensity of the incoming optical spectrum at different wavelengths. The output of optical spectrometer is provided to an analyzer which produces a plurality of error signals, each indicating whether a respective one of the input parameters to the chamber is to be increased or decreased. The microcontroller provides signals to control respective controls, but these lines are intercepted and first added to the error signals, before being provided to the controls for the chamber. The analyzer can include a neural network and an optional spectrum preprocessor to reduce background noise, as well as a comparator which compares the parameter values predicted by the neural network with a set of desired values provided by the microcontroller. 7 figs.

  6. Closed loop adaptive control of spectrum-producing step using neural networks

    DOEpatents

    Fu, Chi Yung

    1998-01-01

    Characteristics of the plasma in a plasma-based manufacturing process step are monitored directly and in real time by observing the spectrum which it produces. An artificial neural network analyzes the plasma spectrum and generates control signals to control one or more of the process input parameters in response to any deviation of the spectrum beyond a narrow range. In an embodiment, a plasma reaction chamber forms a plasma in response to input parameters such as gas flow, pressure and power. The chamber includes a window through which the electromagnetic spectrum produced by a plasma in the chamber, just above the subject surface, may be viewed. The spectrum is conducted to an optical spectrometer which measures the intensity of the incoming optical spectrum at different wavelengths. The output of optical spectrometer is provided to an analyzer which produces a plurality of error signals, each indicating whether a respective one of the input parameters to the chamber is to be increased or decreased. The microcontroller provides signals to control respective controls, but these lines are intercepted and first added to the error signals, before being provided to the controls for the chamber. The analyzer can include a neural network and an optional spectrum preprocessor to reduce background noise, as well as a comparator which compares the parameter values predicted by the neural network with a set of desired values provided by the microcontroller.

  7. Adaptive optical radial basis function neural network for handwritten digit recognition

    NASA Astrophysics Data System (ADS)

    Foor, Wesley E.; Neifeld, Mark A.

    1994-06-01

    An adaptive optical radial basis function classifier for handwritten digit recognition is experimentally demonstrated. We describe a spatially- multiplexed system incorporating on-line adaptation of weights and basis function widths to provide robustness to optical system imperfections and system noise. The optical system computes the Euclidean distances between a 100-dimensional input and 198 stored reference patterns in parallel using dual vector-matrix multipliers. For this experimental software is used to perform the on-line learning of the weights and basis function widths. An experimental recognition rate of 86.7% correct out of 300 testing samples is achieved with the adaptive training versus 52.3% correct for non-adaptive training. The experimental results from the optical system are compared with data from a computer model of the system in order to identify noise sources and indicate possible improvements for system performance.

  8. Neural processing of criticism and positive comments from relatives in individuals with schizotypal personality traits.

    PubMed

    Premkumar, Preethi; Williams, Steven C R; Lythgoe, David; Andrew, Christopher; Kuipers, Elizabeth; Kumari, Veena

    2013-02-01

    OBJECTIVES. High negative expressed emotion by family members towards schizophrenia patients increases the risk of subsequent relapse. The study aimed to determine whether individuals with high schizotypy (HS) and low schizotypy (LS) would differ in activation of brain areas involved in cognitive control when listening to relative criticism. METHODS. Twelve HS and 12 LS individuals listened to relative's critical, positive and neutral comments about them while undergoing functional MRI. Activation maps in the two groups during the comments were compared using SPM5. RESULTS. The left superior frontal and middle frontal gyri and bilateral posterior cingulate cortex were activated during criticism, compared to neutral comments, across all participants. While there were no group differences in brain activity for criticism versus neutral comments, the HS group, who had lower current mood relative to the LS group, activated to a lesser extent the thalamus, insula, putamen and brain stem during positive, compared to neutral, comments. CONCLUSIONS. Listening to relative criticism in healthy individuals engages brain areas for cognitive control of negative emotion and self-referential processing. However, HS individuals may have an attenuated ability to respond to rewarding aspects of positive comments due to their lower current mood. PMID:21936768

  9. Beyond laterality: a critical assessment of research on the neural basis of metaphor.

    PubMed

    Schmidt, Gwenda L; Kranjec, Alexander; Cardillo, Eileen R; Chatterjee, Anjan

    2010-01-01

    Metaphors are a fundamental aspect of human cognition. The major neuropsychological hypothesis that metaphoric processing relies primarily on the right hemisphere is not confirmed consistently. We propose ways to advance our understanding of the neuropsychology of metaphor that go beyond simple laterality. Neuropsychological studies need to more carefully control confounding lexical and sentential factors, and consider the role of different parts of speech as they are extended metaphorically. They need to incorporate recent theoretical frameworks such as the career of metaphor theory, and address factors such as novelty. We also advocate the use of new methods such as voxel-based lesion-symptom mapping, which permits precise and formal tests of hypotheses correlating behavior with lesions sites. Finally, we outline a plausible model for the neural basis of metaphor. (JINS, 2009, 16, 1-5.).

  10. TET enzymes and DNA hydroxymethylation in neural development and function - how critical are they?

    PubMed

    Santiago, Mafalda; Antunes, Claudia; Guedes, Marta; Sousa, Nuno; Marques, C Joana

    2014-11-01

    Epigenetic modifications of the genome play important roles in controlling gene transcription thus regulating several molecular and cellular processes. A novel epigenetic modification - 5-hydroxymethylcytosine (5hmC) - has been recently described and attracted a lot of attention due to its possible involvement in the active DNA demethylation mechanism. TET enzymes are dioxygenases capable of oxidizing the methyl group of 5-methylcytosines (5mC) and thus converting 5mC into 5hmC. Although most of the work on TET enzymes and 5hmC has been carried out in embryonic stem (ES) cells, the highest levels of 5hmC occur in the brain and in neurons, pointing to a role for this epigenetic modification in the control of neuronal differentiation, neural plasticity and brain functions. Here we review the most recent advances on the role of TET enzymes and DNA hydroxymethylation in neuronal differentiation and function.

  11. Neural processing of visual information under interocular suppression: a critical review.

    PubMed

    Sterzer, Philipp; Stein, Timo; Ludwig, Karin; Rothkirch, Marcus; Hesselmann, Guido

    2014-01-01

    When dissimilar stimuli are presented to the two eyes, only one stimulus dominates at a time while the other stimulus is invisible due to interocular suppression. When both stimuli are equally potent in competing for awareness, perception alternates spontaneously between the two stimuli, a phenomenon called binocular rivalry. However, when one stimulus is much stronger, e.g., due to higher contrast, the weaker stimulus can be suppressed for prolonged periods of time. A technique that has recently become very popular for the investigation of unconscious visual processing is continuous flash suppression (CFS): High-contrast dynamic patterns shown to one eye can render a low-contrast stimulus shown to the other eye invisible for up to minutes. Studies using CFS have produced new insights but also controversies regarding the types of visual information that can be processed unconsciously as well as the neural sites and the relevance of such unconscious processing. Here, we review the current state of knowledge in regard to neural processing of interocularly suppressed information. Focusing on recent neuroimaging findings, we discuss whether and to what degree such suppressed visual information is processed at early and more advanced levels of the visual processing hierarchy. We review controversial findings related to the influence of attention on early visual processing under interocular suppression, the putative differential roles of dorsal and ventral areas in unconscious object processing, and evidence suggesting privileged unconscious processing of emotional and other socially relevant information. On a more general note, we discuss methodological and conceptual issues, from practical issues of how unawareness of a stimulus is assessed to the overarching question of what constitutes an adequate operational definition of unawareness. Finally, we propose approaches for future research to resolve current controversies in this exciting research area. PMID:24904469

  12. Adaptive neural control for dual-arm coordination of humanoid robot with unknown nonlinearities in output mechanism.

    PubMed

    Liu, Zhi; Chen, Ci; Zhang, Yun; Chen, C L P

    2015-03-01

    To achieve an excellent dual-arm coordination of the humanoid robot, it is essential to deal with the nonlinearities existing in the system dynamics. The literatures so far on the humanoid robot control have a common assumption that the problem of output hysteresis could be ignored. However, in the practical applications, the output hysteresis is widely spread; and its existing limits the motion/force performances of the robotic system. In this paper, an adaptive neural control scheme, which takes the unknown output hysteresis and computational efficiency into account, is presented and investigated. In the controller design, the prior knowledge of system dynamics is assumed to be unknown. The motion error is guaranteed to converge to a small neighborhood of the origin by Lyapunov's stability theory. Simultaneously, the internal force is kept bounded and its error can be made arbitrarily small.

  13. Adaptive neural control for dual-arm coordination of humanoid robot with unknown nonlinearities in output mechanism.

    PubMed

    Liu, Zhi; Chen, Ci; Zhang, Yun; Chen, C L P

    2015-03-01

    To achieve an excellent dual-arm coordination of the humanoid robot, it is essential to deal with the nonlinearities existing in the system dynamics. The literatures so far on the humanoid robot control have a common assumption that the problem of output hysteresis could be ignored. However, in the practical applications, the output hysteresis is widely spread; and its existing limits the motion/force performances of the robotic system. In this paper, an adaptive neural control scheme, which takes the unknown output hysteresis and computational efficiency into account, is presented and investigated. In the controller design, the prior knowledge of system dynamics is assumed to be unknown. The motion error is guaranteed to converge to a small neighborhood of the origin by Lyapunov's stability theory. Simultaneously, the internal force is kept bounded and its error can be made arbitrarily small. PMID:24968367

  14. A Nonsynonymous Mutation in the Transcriptional Regulator lbh Is Associated with Cichlid Craniofacial Adaptation and Neural Crest Cell Development

    PubMed Central

    Powder, Kara E.; Cousin, Hélène; McLinden, Gretchen P.; Craig Albertson, R.

    2014-01-01

    Since the time of Darwin, biologists have sought to understand the origins and maintenance of life’s diversity of form. However, the nature of the exact DNA mutations and molecular mechanisms that result in morphological differences between species remains unclear. Here, we characterize a nonsynonymous mutation in a transcriptional coactivator, limb bud and heart homolog (lbh), which is associated with adaptive variation in the lower jaw of cichlid fishes. Using both zebrafish and Xenopus, we demonstrate that lbh mediates migration of cranial neural crest cells, the cellular source of the craniofacial skeleton. A single amino acid change that is alternatively fixed in cichlids with differing facial morphologies results in discrete shifts in migration patterns of this multipotent cell type that are consistent with both embryological and adult craniofacial phenotypes. Among animals, this polymorphism in lbh represents a rare example of a coding change that is associated with continuous morphological variation. This work offers novel insights into the development and evolution of the craniofacial skeleton, underscores the evolutionary potential of neural crest cells, and extends our understanding of the genetic nature of mutations that underlie divergence in complex phenotypes. PMID:25234704

  15. Novel neural network model combining radial basis function, competitive Hebbian learning rule, and fuzzy simplified adaptive resonance theory

    NASA Astrophysics Data System (ADS)

    Baraldi, Andrea; Parmiggiani, Flavio

    1997-10-01

    In the first part of this paper a new on-line fully self- organizing artificial neural network model (FSONN), pursuing dynamic generation and removal of neurons and synaptic links, is proposed. The model combines properties of the self- organizing map (SOM), fuzzy c-means (FCM), growing neural gas (GNG) and fuzzy simplified adaptive resonance theory (Fuzzy SART) algorithms. In the second part of the paper experimental results are provided and discussed. Our conclusion is that the proposed connectionist model features several interesting properties, such as the following: (1) the system requires no a priori knowledge of the dimension, size and/or adjacency structure of the network; (2) with respect to other connectionist models found in the literature, the system can be employed successfully in: (a) a vector quantization; (b) density function estimation; and (c) structure detection in input data to be mapped topologically correctly onto an output lattice pursuing dimensionality reduction; and (3) the system is computationally efficient, its processing time increasing linearly with the number of neurons and synaptic links.

  16. Novel image fusion method based on adaptive pulse coupled neural network and discrete multi-parameter fractional random transform

    NASA Astrophysics Data System (ADS)

    Lang, Jun; Hao, Zhengchao

    2014-01-01

    In this paper, we first propose the discrete multi-parameter fractional random transform (DMPFRNT), which can make the spectrum distributed randomly and uniformly. Then we introduce this new spectrum transform into the image fusion field and present a new approach for the remote sensing image fusion, which utilizes both adaptive pulse coupled neural network (PCNN) and the discrete multi-parameter fractional random transform in order to meet the requirements of both high spatial resolution and low spectral distortion. In the proposed scheme, the multi-spectral (MS) and panchromatic (Pan) images are converted into the discrete multi-parameter fractional random transform domains, respectively. In DMPFRNT spectrum domain, high amplitude spectrum (HAS) and low amplitude spectrum (LAS) components carry different informations of original images. We take full advantage of the synchronization pulse issuance characteristics of PCNN to extract the HAS and LAS components properly, and give us the PCNN ignition mapping images which can be used to determine the fusion parameters. In the fusion process, local standard deviation of the amplitude spectrum is chosen as the link strength of pulse coupled neural network. Numerical simulations are performed to demonstrate that the proposed method is more reliable and superior than several existing methods based on Hue Saturation Intensity representation, Principal Component Analysis, the discrete fractional random transform etc.

  17. High-order tracking differentiator based adaptive neural control of a flexible air-breathing hypersonic vehicle subject to actuators constraints.

    PubMed

    Bu, Xiangwei; Wu, Xiaoyan; Tian, Mingyan; Huang, Jiaqi; Zhang, Rui; Ma, Zhen

    2015-09-01

    In this paper, an adaptive neural controller is exploited for a constrained flexible air-breathing hypersonic vehicle (FAHV) based on high-order tracking differentiator (HTD). By utilizing functional decomposition methodology, the dynamic model is reasonably decomposed into the respective velocity subsystem and altitude subsystem. For the velocity subsystem, a dynamic inversion based neural controller is constructed. By introducing the HTD to adaptively estimate the newly defined states generated in the process of model transformation, a novel neural based altitude controller that is quite simpler than the ones derived from back-stepping is addressed based on the normal output-feedback form instead of the strict-feedback formulation. Based on minimal-learning parameter scheme, only two neural networks with two adaptive parameters are needed for neural approximation. Especially, a novel auxiliary system is explored to deal with the problem of control inputs constraints. Finally, simulation results are presented to test the effectiveness of the proposed control strategy in the presence of system uncertainties and actuators constraints.

  18. Automated detection of semagram-laden images using adaptive neural networks

    NASA Astrophysics Data System (ADS)

    Cerkez, Paul S.; Cannady, James D.

    2010-04-01

    Digital steganography has been used extensively for electronic copyright stamping, but also for criminal or covert activities. While a variety of techniques exist for detecting steganography the identification of semagrams, messages transmitted visually in a non-textual format remain elusive. The work that will be presented describes the creation of a novel application which uses hierarchical neural network architectures to detect the likely presence of a semagram message in an image. The application was used to detect semagrams containing Morse Code messages with over 80% accuracy. These preliminary results indicate a significant advance in the detection of complex semagram patterns.

  19. The neural dynamics of somatosensory processing and adaptation across childhood: a high-density electrical mapping study.

    PubMed

    Uppal, Neha; Foxe, John J; Butler, John S; Acluche, Frantzy; Molholm, Sophie

    2016-03-01

    Young children are often hyperreactive to somatosensory inputs hardly noticed by adults, as exemplified by irritation to seams or labels in clothing. The neurodevelopmental mechanisms underlying changes in sensory reactivity are not well understood. Based on the idea that neurodevelopmental changes in somatosensory processing and/or changes in sensory adaptation might underlie developmental differences in somatosensory reactivity, high-density electroencephalography was used to examine how the nervous system responds and adapts to repeated vibrotactile stimulation over childhood. Participants aged 6-18 yr old were presented with 50-ms vibrotactile stimuli to the right wrist over the median nerve at 5 blocked interstimulus intervals (ranging from ∼7 to ∼1 stimulus per second). Somatosensory evoked potentials (SEPs) revealed three major phases of activation within the first 200 ms, with scalp topographies suggestive of neural generators in contralateral somatosensory cortex. Although overall SEPs were highly similar for younger, middle, and older age groups (6.1-9.8, 10.0-12.9, and 13.0-17.8 yr old), there were significant age-related amplitude differences in initial and later phases of the SEP. In contrast, robust adaptation effects for fast vs. slow presentation rates were observed that did not differ as a function of age. A greater amplitude response in the later portion of the SEP was observed for the youngest group and may be related to developmental changes in responsivity to somatosensory stimuli. These data suggest the protracted development of the somatosensory system over childhood, whereas adaptation, as assayed in this study, is largely in place by ∼7 yr of age. PMID:26763781

  20. Adaptive, optical, radial basis function neural network for handwritten digit recognition

    NASA Astrophysics Data System (ADS)

    Foor, Wesley E.; Neifeld, Mark A.

    1995-11-01

    An adaptive, optical, radial basis function classifier for handwritten digit recognition is experimentally demonstrated. We describe a spatially multiplexed system that incorporates an on-line adaptation of weights and basis function widths to provide robustness to optical system imperfections and system noise. The optical system computes the Euclidean distances between a 100-dimensional input vector and 198 stored reference patterns in parallel by using dual vector-matrix multipliers and a contrast-reversing spatial light modulator. Software is used to emulate an electronic chip that performs the on-line learning of the weights and basis function widths. An experimental recognition rate of 92.7% correct out of 300 testing samples is achieved with the adaptive training, versus 31.0% correct for nonadaptive training. We compare the experimental results with a detailed computer model of the system in order to analyze the influence of various noise sources on the system performance.

  1. Adaptive distance protection of double-circuit lines using artificial neural networks

    SciTech Connect

    Jongepier, A.G.; Sluis, L. van der

    1997-01-01

    Because of the zero sequence mutual coupling of parallel circuits, the distance calculation performed by a ground distance relay is incorrect. This error is influenced by the actual power system condition. Although accounted for by using a large safety margin in the zone boundaries, unexpected overreach can still occur and the operation speed is decreased. Adaptive protection offers an approach to compensate for the influence of the variable power system conditions. By adapting the relay settings to the actual power system condition, the relay will respond more accurately to power system faults. The selectivity of the protection system is increased, as is the power system reliability. In this paper, an adaptive distance relaying concept is presented. In order to minimize the required communication, local measurements are used to estimate the entire power system condition. An artificial neutral network is used to estimate the actual power system condition and to calculate the appropriate tripping impedance.

  2. Oscillatory dynamics in an attractor neural network with firing rate adaptation

    NASA Astrophysics Data System (ADS)

    Rathore, S.; Bush, D.; Latham, P.; Burgess, N.

    2013-01-01

    We develop a framework for generating oscillations in ring attractor networks with firing rate adaptation. We show the relationship between the frequency of rotation around the ring of the shifting bump of activity, the adaptation variable and other model parameters using perturbation theory. The analytic solutions are validated against simulations of such networks. Further preliminary findings indicate that the frequency of these networks can be simply controlled using an external stimulus. The mechanism developed here could potentially be used for temporal coding of position through interference of oscillators of different frequencies.

  3. Online training course on critical appraisal for nurses: adaptation and assessment

    PubMed Central

    2014-01-01

    Background Research is an essential activity for improving quality and efficiency in healthcare. The objective of this study was to train nurses from the public Basque Health Service (Osakidetza) in critical appraisal, promoting continuous training and the use of research in clinical practice. Methods This was a prospective pre-post test study. The InfoCritique course on critical appraisal was translated and adapted. A sample of 50 nurses and 3 tutors was recruited. Educational strategies and assessment instruments were established for the course. A course website was created that contained contact details of the teaching team and coordinator, as well as a course handbook and videos introducing the course. Assessment comprised the administration of questionnaires before and after the course, in order to explore the main intervention outcomes: knowledge acquired and self-learning readiness. Satisfaction was also measured at the end of the course. Results Of the 50 health professionals recruited, 3 did not complete the course for personal or work-related reasons. The mean score on the pre-course knowledge questionnaire was 70.5 out of 100, with a standard deviation of 11.96. In general, participants’ performance on the knowledge questionnaire improved after the course, as reflected in the notable increase of the mean score, to 86.6, with a standard deviation of 10.00. Further, analyses confirmed statistically significant differences between pre- and post-course results (p < 0.001). With regard to self-learning readiness, after the course, participants reported a greater readiness and ability for self-directed learning. Lastly, in terms of level of satisfaction with the course, the mean score was 7 out of 10. Conclusions Participants significantly improved their knowledge score and self-directed learning readiness after the educational intervention, and they were overall satisfied with the course. For the health system and nursing professionals, this type of

  4. Safe, Advanced, Adaptable Isolation System Eliminates the Need for Critical Lifts

    NASA Technical Reports Server (NTRS)

    Ginn, Starr

    2011-01-01

    The Starr Soft Support isolation system incorporates an automatically reconfigurable aircraft jack into NASA's existing 1-Hertz isolators. This enables an aircraft to float in mid-air without the need for a critical lift during ground vibration testing (GVT), significantly reducing testing risk, time, and costs. Currently incorporating the most advanced technology available, the 60,000-poundcapacity (27-metric-ton) isolation system is used for weight and measurement tests, control-surface free-play tests, and structural mode interaction tests without the need for any major reconfiguration, often saving days of time and significantly reducing labor costs. The Starr Soft Support isolation system consists of an aircraft-jacking device with three jacking points, each of which has an individual motor and accommodates up to 20,000 pounds (9 metric tons) for a total 60,000-pound (27-metric-ton) capacity. The system can be transported to the aircraft by forklift and placed at its jacking points using a pallet jack. The motors power the electric actuators, raising the aircraft above the ground until the landing gear can retract. Inflatable isolators then deploy, enabling the aircraft to float in mid-air, simulating a 1-Hertz free-free boundary condition. Inflatable isolators have been in use at NASA for years, enabling aircraft to literally float unsupported for highly accurate GVT. These isolators must be placed underneath the aircraft for this to occur. Traditionally, this is achieved by a critical lift a high-risk procedure in which a crane and flexible cord system are used to lift the aircraft. In contrast, the Starr Soft Support isolation system eliminates the need for critical lift by integrating the inflatable isolators into an aircraft jacking system. The system maintains vertical and horizontal isolating capabilities. The aircraft can be rolled onto the system, jacked up, and then the isolators can be inflated and positioned without any personnel needing to work

  5. Back-propagation neural network adaptive control of a continuous wastewater treatment process

    SciTech Connect

    Syu, J.J.; Chen, B.C.

    1998-09-01

    Wastewater treatment processes and technology have been investigated for several decades and have almost been completed up to date. In this study, a chemical method was applied to treat the wastewater. Instead of real wastewater, benzoic acid and water were mixed as the wastewater since different concentrations of dissolved benzoic acid could result in different chemical oxygen demands (COD). Hydrogen peroxide and ferrous chloride were both added to treat the wastewater in order to meet the standards of 1998 environmental regulation in Taiwan. pH was found to be a major factor affecting the coagulation condition of the suspended particles during the treatment process. Back-propagation neural network was applied, and the purpose of the control was to provide the minimum amount of reagents to reach the required COD. The pump rates for adding hydrogen peroxide and ferrous chloride were controlled. The neural network was of a time-delayed mode, and its structure was properly determined, with the only output node being the predicted H{sub 2}O{sub 2}. The concentration of the added reagents was compared as well.

  6. Neural Substrates Related to Motor Memory with Multiple Timescales in Sensorimotor Adaptation

    PubMed Central

    Lv, Jinchi; Schweighofer, Nicolas; Imamizu, Hiroshi

    2015-01-01

    Recent computational and behavioral studies suggest that motor adaptation results from the update of multiple memories with different timescales. Here, we designed a model-based functional magnetic resonance imaging (fMRI) experiment in which subjects adapted to two opposing visuomotor rotations. A computational model of motor adaptation with multiple memories was fitted to the behavioral data to generate time-varying regressors of brain activity. We identified regional specificity to timescales: in particular, the activity in the inferior parietal region and in the anterior-medial cerebellum was associated with memories for intermediate and long timescales, respectively. A sparse singular value decomposition analysis of variability in specificities to timescales over the brain identified four components, two fast, one middle, and one slow, each associated with different brain networks. Finally, a multivariate decoding analysis showed that activity patterns in the anterior-medial cerebellum progressively represented the two rotations. Our results support the existence of brain regions associated with multiple timescales in adaptation and a role of the cerebellum in storing multiple internal models. PMID:26645916

  7. Mind your errors: evidence for a neural mechanism linking growth mind-set to adaptive posterror adjustments.

    PubMed

    Moser, Jason S; Schroder, Hans S; Heeter, Carrie; Moran, Tim P; Lee, Yu-Hao

    2011-12-01

    How well people bounce back from mistakes depends on their beliefs about learning and intelligence. For individuals with a growth mind-set, who believe intelligence develops through effort, mistakes are seen as opportunities to learn and improve. For individuals with a fixed mind-set, who believe intelligence is a stable characteristic, mistakes indicate lack of ability. We examined performance-monitoring event-related potentials (ERPs) to probe the neural mechanisms underlying these different reactions to mistakes. Findings revealed that a growth mind-set was associated with enhancement of the error positivity component (Pe), which reflects awareness of and allocation of attention to mistakes. More growth-minded individuals also showed superior accuracy after mistakes compared with individuals endorsing a more fixed mind-set. It is critical to note that Pe amplitude mediated the relationship between mind-set and posterror accuracy. These results suggest that neural mechanisms indexing on-line awareness of and attention to mistakes are intimately involved in growth-minded individuals' ability to rebound from mistakes.

  8. Neural correlates of the age-related changes in motor sequence learning and motor adaptation in older adults.

    PubMed

    King, Bradley R; Fogel, Stuart M; Albouy, Geneviève; Doyon, Julien

    2013-01-01

    As the world's population ages, a deeper understanding of the relationship between aging and motor learning will become increasingly relevant in basic research and applied settings. In this context, this review aims to address the effects of age on motor sequence learning (MSL) and motor adaptation (MA) with respect to behavioral, neurological, and neuroimaging findings. Previous behavioral research investigating the influence of aging on motor learning has consistently reported the following results. First, the initial acquisition of motor sequences is not altered, except under conditions of increased task complexity. Second, older adults demonstrate deficits in motor sequence memory consolidation. And, third, although older adults demonstrate deficits during the exposure phase of MA paradigms, the aftereffects following removal of the sensorimotor perturbation are similar to young adults, suggesting that the adaptive ability of older adults is relatively intact. This paper will review the potential neural underpinnings of these behavioral results, with a particular emphasis on the influence of age-related dysfunctions in the cortico-striatal system on motor learning.

  9. Improving pattern discovery and visualization of SAGE data through poisson-based self-adaptive neural networks.

    PubMed

    Zheng, Huiru; Wang, Haiying; Azuaje, Francisco

    2008-07-01

    Serial analysis of gene expression (SAGE) allows a detailed, simultaneous analysis of thousands of genes without the need for prior, complete gene sequence information. However, due to its inherent complexity and the lack of complete structural and function knowledge, mining vast collections of SAGE data to extract useful knowledge poses great challenges to traditional analytical techniques. Moreover, SAGE data are characterized by a specific statistical model that has not been incorporated into traditional data analysis techniques. The analysis of SAGE data requires advanced, intelligent computational techniques, which consider the underlying biology and the statistical nature of SAGE data. By addressing the statistical properties demonstrated by SAGE data, this paper presents a new self-adaptive neural network, Poisson-based growing self-organizing map (PGSOM), which implements novel weight adaptation and neuron growing strategies. An empirical study of key dynamic mechanisms of PGSOM is presented. It was tested on three datasets, including synthetic and experimental SAGE data. The results indicate that, in comparison to traditional techniques, the PGSOM offers significant advantages in the context of pattern discovery and visualization in SAGE data. The pattern discovery and visualization platform discussed in this paper can be applied to other problem domains where the data are better approximated by a Poisson distribution.

  10. Neural response in vestibular organ of Helix aspersa to centrifugation and re-adaptation to normal gravity.

    PubMed

    Popova, Yekaterina; Boyle, Richard

    2015-07-01

    Gravity plays a key role in shaping the vestibular sensitivity (VS) of terrestrial organisms. We studied VS changes in the statocyst of the gastropod Helix aspersa immediately after 4-, 16-, and 32-day exposures to a 1.4G hypergravic field or following a 7-day recovery period. In the same animals we measured latencies of behavioral "negative gravitaxis" responses to a head-down pitch before and after centrifugation and found significant delays after 16- and 32-day runs. In an isolated neural preparation we recorded the electrophysiological responses of the statocyst nerve to static tilt (±19°) and sinusoids (±12°; 0.1 Hz). Spike sorting software was used to separate individual sensory cells' patterns out of a common trace. In correspondence with behavior we observed a VS decrease in animals after 16- (p < 0.05) and 32-day (p < 0.01) centrifugations. These findings reveal the capability of statoreceptors to adjust their sensitivity in response to a prolonged change in the force of gravity. Interestingly, background discharge rate increased after 16 and 32 days in hypergravity and continued to rise through the recovery period. This result indicates that adaptive mechanisms to novel gravity levels were long lasting, and re-adaptation from hypergravity is a more complex process than just "return to normal".

  11. Neural network-based optimal adaptive output feedback control of a helicopter UAV.

    PubMed

    Nodland, David; Zargarzadeh, Hassan; Jagannathan, Sarangapani

    2013-07-01

    Helicopter unmanned aerial vehicles (UAVs) are widely used for both military and civilian operations. Because the helicopter UAVs are underactuated nonlinear mechanical systems, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via an output feedback for trajectory tracking of a helicopter UAV, using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic and dynamic controllers and an NN observer. The online approximator-based dynamic controller learns the infinite-horizon Hamilton-Jacobi-Bellman equation in continuous time and calculates the corresponding optimal control input by minimizing a cost function, forward-in-time, without using the value and policy iterations. Optimal tracking is accomplished by using a single NN utilized for the cost function approximation. The overall closed-loop system stability is demonstrated using Lyapunov analysis. Finally, simulation results are provided to demonstrate the effectiveness of the proposed control design for trajectory tracking.

  12. Automatic spike detection based on adaptive template matching for extracellular neural recordings.

    PubMed

    Kim, Sunghan; McNames, James

    2007-09-30

    Recordings of extracellular neural activity are used in many clinical applications and scientific studies. In most cases, these signals are analyzed as a point process, and a spike detection algorithm is required to estimate the times at which action potentials occurred. Recordings from high-density microelectrode arrays (MEAs) and low-impedance microelectrodes often have a low signal-to-noise ratio (SNR<10) and contain action potentials from more than one neuron. We describe a new detection algorithm based on template matching that only requires the user to specify the minimum and maximum firing rates of the neurons. The algorithm iteratively estimates the morphology of the most prominent action potentials. It is able to achieve a sensitivity of >90% with a false positive rate of <5Hz in recordings with an estimated SNR=3, and it performs better than an optimal threshold detector in recordings with an estimated SNR>2.5.

  13. Neural network-based adaptive consensus tracking control for multi-agent systems under actuator faults

    NASA Astrophysics Data System (ADS)

    Zhao, Lin; Jia, Yingmin

    2016-06-01

    In this paper, a distributed output feedback consensus tracking control scheme is proposed for second-order multi-agent systems in the presence of uncertain nonlinear dynamics, external disturbances, input constraints, and partial loss of control effectiveness. The proposed controllers incorporate reduced-order filters to account for the unmeasured states, and the neural networks technique is implemented to approximate the uncertain nonlinear dynamics in the synthesis of control algorithms. In order to compensate the partial loss of actuator effectiveness faults, fault-tolerant parts are included in controllers. Using the Lyapunov approach and graph theory, it is proved that the controllers guarantee a group of agents that simultaneously track a common time-varying state of leader, even when the state of leader is available only to a subset of the members of a group. Simulation results are provided to demonstrate the effectiveness of the proposed consensus tracking method.

  14. Automated detection of semagram-laden images using adaptive neural networks

    NASA Astrophysics Data System (ADS)

    Cerkez, Paul S.; Cannady, James D.

    2012-04-01

    Digital steganography is gaining wide acceptance in the world of electronic copyright stamping. Digital media that are easy to steal, such as graphics, photos and audio files, are being tagged with both visible and invisible copyright stamps (known as digital watermarking). However, these same techniques can also be used to hide communications between actors in criminal or covert activities. An inherent difficulty in detecting steganography is overcoming the variety of methods for hiding a message and the multitude of choices of available media. Another problem in steganography defense is the issue of detection speed since the encoded data is frequently time-sensitive. When a message is visually transmitted in a non-textual format (i.e., in an image) it is referred to as a semagram. Semagrams are relatively easy to create, but very difficult to detect. While steganography can often be identified by detecting digital modifications to an image's structure, an image-based semagram is more difficult because the message is the image itself. The work presented describes the creation of a novel, computer-based application, which uses hybrid hierarchical neural network architecture to detect the likely presence of a semagram message in an image. The prototype system was used to detect semagrams containing Morse Code messages. Based on the results of these experiments our approach provides a significant advance in the detection of complex semagram patterns. Specific results of the experiments and the potential practical applications of the neural network-based technology are discussed. This presentation provides the final results of our research experiments.

  15. Behavioral and neural Darwinism: selectionist function and mechanism in adaptive behavior dynamics.

    PubMed

    McDowell, J J

    2010-05-01

    An evolutionary theory of behavior dynamics and a theory of neuronal group selection share a common selectionist framework. The theory of behavior dynamics instantiates abstractly the idea that behavior is selected by its consequences. It implements Darwinian principles of selection, reproduction, and mutation to generate adaptive behavior in virtual organisms. The behavior generated by the theory has been shown to be quantitatively indistinguishable from that of live organisms. The theory of neuronal group selection suggests a mechanism whereby the abstract principles of the evolutionary theory may be implemented in the nervous systems of biological organisms. According to this theory, groups of neurons subserving behavior may be selected by synaptic modifications that occur when the consequences of behavior activate value systems in the brain. Together, these theories constitute a framework for a comprehensive account of adaptive behavior that extends from brain function to the behavior of whole organisms in quantitative detail.

  16. Stress, sex and neural adaptation to a changing environment: mechanisms of neuronal remodeling

    PubMed Central

    McEwen, Bruce S.

    2010-01-01

    The adult brain is much more resilient and adaptable than previously believed, and adaptive structural plasticity involves growth and shrinkage of dendritic trees, turnover of synapses and limited amounts of neurogenesis in the forebrain, especially the dentate gyrus of the hippocampal formation. Stress and sex hormones help to mediate adaptive structural plasticity, which has been extensively investigated in hippocampus and to a lesser extent in prefrontal cortex and amygdala, all brain regions that are involved in cognitive and emotional functions. Stress and sex hormones exert their effects on brain structural remodeling through both classical genomic as well as non-genomic mechanisms, and they do so in collaboration with neurotransmitters and other intra- and extracellular mediators. This review will illustrate the actions of estrogen on synapse formation in the hippocampus and the process of stress-induced remodelling of dendrites and synapses in the hippocampus, amygdala and prefrontal cortex. The influence of early developmental epigenetic events, such as early life stress and brain sexual differentiation, is noted along with the interactions between sex hormones and the effects of stress on the brain. Because hormones influence brain structure and function and because hormone secretion is governed by the brain, applied molecular neuroscience techniques can begin to reveal the role of hormones in brain-related disorders and the treatment of these diseases. A better understanding of hormone-brain interactions should promote more flexible approaches to the treatment of psychiatric disorders, as well as their prevention through both behavioral and pharmaceutical interventions. PMID:20840167

  17. How Play Makes for a More Adaptable Brain: A Comparative and Neural Perspective

    ERIC Educational Resources Information Center

    Pellis, Sergio M.; Pellis, Vivien C.; Himmler, Brett T.

    2014-01-01

    Studies of rats and some primates show that rough-and-tumble play among juveniles improves social competence, cognition, and emotional regulation later in life. Most critically, such play makes animals better able to respond to unexpected situations. But not all animals engage in play, and not all animals that play appear to gain these benefits.…

  18. Neural Architectures for Control

    NASA Technical Reports Server (NTRS)

    Peterson, James K.

    1991-01-01

    The cerebellar model articulated controller (CMAC) neural architectures are shown to be viable for the purposes of real-time learning and control. Software tools for the exploration of CMAC performance are developed for three hardware platforms, the MacIntosh, the IBM PC, and the SUN workstation. All algorithm development was done using the C programming language. These software tools were then used to implement an adaptive critic neuro-control design that learns in real-time how to back up a trailer truck. The truck backer-upper experiment is a standard performance measure in the neural network literature, but previously the training of the controllers was done off-line. With the CMAC neural architectures, it was possible to train the neuro-controllers on-line in real-time on a MS-DOS PC 386. CMAC neural architectures are also used in conjunction with a hierarchical planning approach to find collision-free paths over 2-D analog valued obstacle fields. The method constructs a coarse resolution version of the original problem and then finds the corresponding coarse optimal path using multipass dynamic programming. CMAC artificial neural architectures are used to estimate the analog transition costs that dynamic programming requires. The CMAC architectures are trained in real-time for each obstacle field presented. The coarse optimal path is then used as a baseline for the construction of a fine scale optimal path through the original obstacle array. These results are a very good indication of the potential power of the neural architectures in control design. In order to reach as wide an audience as possible, we have run a seminar on neuro-control that has met once per week since 20 May 1991. This seminar has thoroughly discussed the CMAC architecture, relevant portions of classical control, back propagation through time, and adaptive critic designs.

  19. Adaptor identity modulates adaptation effects in familiar face identification and their neural correlates.

    PubMed

    Walther, Christian; Schweinberger, Stefan R; Kovács, Gyula

    2013-01-01

    Adaptation-related aftereffects (AEs) show how face perception can be altered by recent perceptual experiences. Along with contrastive behavioural biases, modulations of the early event-related potentials (ERPs) were typically reported on categorical levels. Nevertheless, the role of the adaptor stimulus per se for face identity-specific AEs is not completely understood and was therefore investigated in the present study. Participants were adapted to faces (S1s) varying systematically on a morphing continuum between pairs of famous identities (identities A and B), or to Fourier phase-randomized faces, and had to match the subsequently presented ambiguous faces (S2s; 50/50% identity A/B) to one of the respective original faces. We found that S1s identical with or near to the original identities led to strong contrastive biases with more identity B responses following A adaptation and vice versa. In addition, the closer S1s were to the 50/50% S2 on the morphing continuum, the smaller the magnitude of the AE was. The relation between S1s and AE was, however, not linear. Additionally, stronger AEs were accompanied by faster reaction times. Analyses of the simultaneously recorded ERPs revealed categorical adaptation effects starting at 100 ms post-stimulus onset, that were most pronounced at around 125-240 ms for occipito-temporal sites over both hemispheres. S1-specific amplitude modulations were found at around 300-400 ms. Response-specific analyses of ERPs showed reduced voltages starting at around 125 ms when the S1 biased perception in a contrastive way as compared to when it did not. Our results suggest that face identity AEs do not only depend on physical differences between S1 and S2, but also on perceptual factors, such as the ambiguity of S1. Furthermore, short-term plasticity of face identity processing might work in parallel to object-category processing, and is reflected in the first 400 ms of the ERP.

  20. Adaptor Identity Modulates Adaptation Effects in Familiar Face Identification and Their Neural Correlates

    PubMed Central

    Walther, Christian; Schweinberger, Stefan R.; Kovács, Gyula

    2013-01-01

    Adaptation-related aftereffects (AEs) show how face perception can be altered by recent perceptual experiences. Along with contrastive behavioural biases, modulations of the early event-related potentials (ERPs) were typically reported on categorical levels. Nevertheless, the role of the adaptor stimulus per se for face identity-specific AEs is not completely understood and was therefore investigated in the present study. Participants were adapted to faces (S1s) varying systematically on a morphing continuum between pairs of famous identities (identities A and B), or to Fourier phase-randomized faces, and had to match the subsequently presented ambiguous faces (S2s; 50/50% identity A/B) to one of the respective original faces. We found that S1s identical with or near to the original identities led to strong contrastive biases with more identity B responses following A adaptation and vice versa. In addition, the closer S1s were to the 50/50% S2 on the morphing continuum, the smaller the magnitude of the AE was. The relation between S1s and AE was, however, not linear. Additionally, stronger AEs were accompanied by faster reaction times. Analyses of the simultaneously recorded ERPs revealed categorical adaptation effects starting at 100 ms post-stimulus onset, that were most pronounced at around 125–240 ms for occipito-temporal sites over both hemispheres. S1-specific amplitude modulations were found at around 300–400 ms. Response-specific analyses of ERPs showed reduced voltages starting at around 125 ms when the S1 biased perception in a contrastive way as compared to when it did not. Our results suggest that face identity AEs do not only depend on physical differences between S1 and S2, but also on perceptual factors, such as the ambiguity of S1. Furthermore, short-term plasticity of face identity processing might work in parallel to object-category processing, and is reflected in the first 400 ms of the ERP. PMID:23990908

  1. Adaptive control of uncertain nonaffine nonlinear systems with input saturation using neural networks.

    PubMed

    Esfandiari, Kasra; Abdollahi, Farzaneh; Talebi, Heidar Ali

    2015-10-01

    This paper presents a tracking control methodology for a class of uncertain nonlinear systems subject to input saturation constraint and external disturbances. Unlike most previous approaches on saturated systems, which assumed affine nonlinear systems, in this paper, tracking control problem is solved for uncertain nonaffine nonlinear systems with input saturation. To deal with the saturation constraint, an auxiliary system is constructed and a modified tracking error is defined. Then, by employing implicit function theorem, mean value theorem, and modified tracking error, updating rules are derived based on the well-known back-propagation (BP) algorithm, which has been proven to be the most relevant updating rule to control problems. However, most of the previous approaches on BP algorithm suffer from lack of stability analysis. By injecting a damping term to the standard BP algorithm, uniformly ultimately boundedness of all the signals of the closed-loop system is ensured via Lyapunov's direct method. Furthermore, the presented approach employs nonlinear in parameter neural networks. Hence, the proposed scheme is applicable to systems with higher degrees of nonlinearity. Using a high-gain observer to reconstruct the states of the system, an output feedback controller is also presented. Finally, the simulation results performed on a Duffing-Holmes chaotic system, a generalized pendulum-type system, and a numerical system are presented to demonstrate the effectiveness of the suggested state and output feedback control schemes. PMID:25532213

  2. Neural network-based optimal adaptive output feedback control of a helicopter UAV.

    PubMed

    Nodland, David; Zargarzadeh, Hassan; Jagannathan, Sarangapani

    2013-07-01

    Helicopter unmanned aerial vehicles (UAVs) are widely used for both military and civilian operations. Because the helicopter UAVs are underactuated nonlinear mechanical systems, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via an output feedback for trajectory tracking of a helicopter UAV, using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic and dynamic controllers and an NN observer. The online approximator-based dynamic controller learns the infinite-horizon Hamilton-Jacobi-Bellman equation in continuous time and calculates the corresponding optimal control input by minimizing a cost function, forward-in-time, without using the value and policy iterations. Optimal tracking is accomplished by using a single NN utilized for the cost function approximation. The overall closed-loop system stability is demonstrated using Lyapunov analysis. Finally, simulation results are provided to demonstrate the effectiveness of the proposed control design for trajectory tracking. PMID:24808521

  3. Evaluation of Neural Response Telemetry (NRT™) with focus on long-term rate adaptation over a wide range of stimulation rates.

    PubMed

    Huarte, Alicia; Ramos, Angel; Morera, Constantino; Garcia-Ibáñez, Luis; Battmer, Rolf; Dillier, Norbert; Wesarg, Thomas; Müller-Deile, Joachim; Hey, Mattias; Offeciers, Erwin; von Wallenberg, Ernst; Coudert, Chrystelle; Killian, Matthijs

    2014-05-01

    Custom Sound EP™ (CSEP) is an advanced flexible software tool dedicated to recording of electrically evoked compound action potentials (ECAPs) in Nucleus® recipients using Neural Response Telemetry™ (NRT™). European multi-centre studies of the Freedom™ cochlear implant system confirmed that CSEP offers tools to effectively record ECAP thresholds, amplitude growth functions, recovery functions, spread of excitation functions, and rate adaptation functions and an automated algorithm (AutoNRT™) to measure threshold profiles. This paper reports on rate adaptation measurements. Rate adaptation of ECAP amplitudes can successfully be measured up to rates of 495 pulses per second (pps) by repeating conventional ECAP measurements and over a wide range of rates up to 8000 pps using the masked response extraction technique. Rate adaptation did not show a predictable relationship with speech perception and coding strategy channel rate preference. The masked response extraction method offers opportunities to study long-term rate adaptation with well-defined and controlled stimulation paradigms. PMID:24559068

  4. Toolbox or Adjustable Spanner? A Critical Comparison of Two Metaphors for Adaptive Decision Making

    ERIC Educational Resources Information Center

    Söllner, Anke; Bröder, Arndt

    2016-01-01

    For multiattribute decision tasks, different metaphors exist that describe the process of decision making and its adaptation to diverse problems and situations. Multiple strategy models (MSMs) assume that decision makers choose adaptively from a set of different strategies (toolbox metaphor), whereas evidence accumulation models (EAMs) hold that a…

  5. Task-oriented quality assessment and adaptation in real-time mission critical video streaming applications

    NASA Astrophysics Data System (ADS)

    Nightingale, James; Wang, Qi; Grecos, Christos

    2015-02-01

    In recent years video traffic has become the dominant application on the Internet with global year-on-year increases in video-oriented consumer services. Driven by improved bandwidth in both mobile and fixed networks, steadily reducing hardware costs and the development of new technologies, many existing and new classes of commercial and industrial video applications are now being upgraded or emerging. Some of the use cases for these applications include areas such as public and private security monitoring for loss prevention or intruder detection, industrial process monitoring and critical infrastructure monitoring. The use of video is becoming commonplace in defence, security, commercial, industrial, educational and health contexts. Towards optimal performances, the design or optimisation in each of these applications should be context aware and task oriented with the characteristics of the video stream (frame rate, spatial resolution, bandwidth etc.) chosen to match the use case requirements. For example, in the security domain, a task-oriented consideration may be that higher resolution video would be required to identify an intruder than to simply detect his presence. Whilst in the same case, contextual factors such as the requirement to transmit over a resource-limited wireless link, may impose constraints on the selection of optimum task-oriented parameters. This paper presents a novel, conceptually simple and easily implemented method of assessing video quality relative to its suitability for a particular task and dynamically adapting videos streams during transmission to ensure that the task can be successfully completed. Firstly we defined two principle classes of tasks: recognition tasks and event detection tasks. These task classes are further subdivided into a set of task-related profiles, each of which is associated with a set of taskoriented attributes (minimum spatial resolution, minimum frame rate etc.). For example, in the detection class

  6. Dynamics of on-off neural firing patterns and stochastic effects near a sub-critical Hopf bifurcation.

    PubMed

    Huaguang, Gu; Zhiguo, Zhao; Bing, Jia; Shenggen, Chen

    2015-01-01

    On-off firing patterns, in which repetition of clusters of spikes are interspersed with epochs of subthreshold oscillations or quiescent states, have been observed in various nervous systems, but the dynamics of this event remain unclear. Here, we report that on-off firing patterns observed in three experimental models (rat sciatic nerve subject to chronic constrictive injury, rat CA1 pyramidal neuron, and rabbit blood pressure baroreceptor) appeared as an alternation between quiescent state and burst containing multiple period-1 spikes over time. Burst and quiescent state had various durations. The interspike interval (ISI) series of on-off firing pattern was suggested as stochastic using nonlinear prediction and autocorrelation function. The resting state was changed to a period-1 firing pattern via on-off firing pattern as the potassium concentration, static pressure, or depolarization current was changed. During the changing process, the burst duration of on-off firing pattern increased and the duration of the quiescent state decreased. Bistability of a limit cycle corresponding to period-1 firing and a focus corresponding to resting state was simulated near a sub-critical Hopf bifurcation point in the deterministic Morris-Lecar (ML) model. In the stochastic ML model, noise-induced transitions between the coexisting regimes formed an on-off firing pattern, which closely matched that observed in the experiment. In addition, noise-induced exponential change in the escape rate from the focus, and noise-induced coherence resonance were identified. The distinctions between the on-off firing pattern and stochastic firing patterns generated near three other types of bifurcations of equilibrium points, as well as other viewpoints on the dynamics of on-off firing pattern, are discussed. The results not only identify the on-off firing pattern as noise-induced stochastic firing pattern near a sub-critical Hopf bifurcation point, but also offer practical indicators to

  7. Dynamics of On-Off Neural Firing Patterns and Stochastic Effects near a Sub-Critical Hopf Bifurcation

    PubMed Central

    Huaguang, Gu; Zhiguo, Zhao; Bing, Jia; Shenggen, Chen

    2015-01-01

    On-off firing patterns, in which repetition of clusters of spikes are interspersed with epochs of subthreshold oscillations or quiescent states, have been observed in various nervous systems, but the dynamics of this event remain unclear. Here, we report that on-off firing patterns observed in three experimental models (rat sciatic nerve subject to chronic constrictive injury, rat CA1 pyramidal neuron, and rabbit blood pressure baroreceptor) appeared as an alternation between quiescent state and burst containing multiple period-1 spikes over time. Burst and quiescent state had various durations. The interspike interval (ISI) series of on-off firing pattern was suggested as stochastic using nonlinear prediction and autocorrelation function. The resting state was changed to a period-1 firing pattern via on-off firing pattern as the potassium concentration, static pressure, or depolarization current was changed. During the changing process, the burst duration of on-off firing pattern increased and the duration of the quiescent state decreased. Bistability of a limit cycle corresponding to period-1 firing and a focus corresponding to resting state was simulated near a sub-critical Hopf bifurcation point in the deterministic Morris—Lecar (ML) model. In the stochastic ML model, noise-induced transitions between the coexisting regimes formed an on-off firing pattern, which closely matched that observed in the experiment. In addition, noise-induced exponential change in the escape rate from the focus, and noise-induced coherence resonance were identified. The distinctions between the on-off firing pattern and stochastic firing patterns generated near three other types of bifurcations of equilibrium points, as well as other viewpoints on the dynamics of on-off firing pattern, are discussed. The results not only identify the on-off firing pattern as noise-induced stochastic firing pattern near a sub-critical Hopf bifurcation point, but also offer practical indicators to

  8. Wnt3a is critical for endothelial progenitor cell-mediated neural stem cell proliferation and differentiation

    PubMed Central

    Du, Yibin; Zhang, Shuo; Yu, Tao; Du, Gongwen; Zhang, Hui; Yin, Zongsheng

    2016-01-01

    The present study aimed to determine whether co-culture with bone marrow-derived endothelial progenitor cells (EPCs) affects the proliferation and differentiation of spinal cord-derived neural stem cells (NSCs), and to investigate the underlying mechanism. The proliferation and differentiation of the NSCs were evaluated by an MTT cell proliferation and cytotoxicity assay, and immunofluorescence, respectively. The number of neurospheres and the number of β-tubulin III-positive cells were detected by microscopy. The wingless-type MMTV integration site family, member 3a (Wnt3a)/β-catenin signaling pathway was analyzed by western blot analysis and reverse transcription-quantitative polymerase chain reaction to elucidate the possible mechanisms of EPC-mediated NSC proliferation and differentiation. The results revealed that co-culture with EPCs significantly induced NSC proliferation and differentiation. In addition, co-culture with EPCs markedly induced the expression levels of Wnt3a and β-catenin and inhibited the phosphorylation of glycogen synthase kinase 3β (GSK-3β). By contrast, Wnt3a knockdown using a short hairpin RNA plasmid in the EPCs reduced EPC-mediated NSC proliferation and differentiation, accompanied by inhibition of the EPC-mediated expression of β-catenin, and its phosphorylation and activation of GSK-3β. Taken together, the findings of the present study demonstrated that Wnt3a was critical for EPC-mediated NSC proliferation and differentiation. PMID:27484039

  9. Neural adaptation and perceptual learning using a portable real-time cochlear implant simulator in natural environments.

    PubMed

    Smalt, Christopher J; Talavage, Thomas M; Pisoni, David B; Svirsky, Mario A

    2011-01-01

    A portable real-time speech processor that implements an acoustic simulation model of a cochlear implant (CI) has been developed on the Apple iPhone / iPod Touch to permit testing and experimentation under extended exposure in real-world environments. This simulator allows for both a variable number of noise band channels and electrode insertion depth. Utilizing this portable CI simulator, we tested perceptual learning in normal hearing listeners by measuring word and sentence comprehension behaviorally before and after 2 weeks of exposure. To evaluate changes in neural activation related to adaptation to transformed speech, fMRI was also conducted. Differences in brain activation after training occurred in the inferior frontal gyrus and areas related to language processing. A 15-20% improvement in word and sentence comprehension of cochlear implant simulated speech was also observed. These results demonstrate the effectiveness of a portable CI simulator as a research tool and provide new information about the physiological changes that accompany perceptual learning of degraded auditory input. PMID:22254517

  10. Recurrent-Neural-Network-Based Multivariable Adaptive Control for a Class of Nonlinear Dynamic Systems With Time-Varying Delay.

    PubMed

    Hwang, Chih-Lyang; Jan, Chau

    2016-02-01

    At the beginning, an approximate nonlinear autoregressive moving average (NARMA) model is employed to represent a class of multivariable nonlinear dynamic systems with time-varying delay. It is known that the disadvantages of robust control for the NARMA model are as follows: 1) suitable control parameters for larger time delay are more sensitive to achieving desirable performance; 2) it only deals with bounded uncertainty; and 3) the nominal NARMA model must be learned in advance. Due to the dynamic feature of the NARMA model, a recurrent neural network (RNN) is online applied to learn it. However, the system performance becomes deteriorated due to the poor learning of the larger variation of system vector functions. In this situation, a simple network is employed to compensate the upper bound of the residue caused by the linear parameterization of the approximation error of RNN. An e -modification learning law with a projection for weight matrix is applied to guarantee its boundedness without persistent excitation. Under suitable conditions, the semiglobally ultimately bounded tracking with the boundedness of estimated weight matrix is obtained by the proposed RNN-based multivariable adaptive control. Finally, simulations are presented to verify the effectiveness and robustness of the proposed control.

  11. Modeling Pb (II) adsorption from aqueous solution by ostrich bone ash using adaptive neural-based fuzzy inference system.

    PubMed

    Amiri, Mohammad J; Abedi-Koupai, Jahangir; Eslamian, Sayed S; Mousavi, Sayed F; Hasheminejad, Hasti

    2013-01-01

    To evaluate the performance of Adaptive Neural-Based Fuzzy Inference System (ANFIS) model in estimating the efficiency of Pb (II) ions removal from aqueous solution by ostrich bone ash, a batch experiment was conducted. Five operational parameters including adsorbent dosage (C(s)), initial concentration of Pb (II) ions (C(o)), initial pH, temperature (T) and contact time (t) were taken as the input data and the adsorption efficiency (AE) of bone ash as the output. Based on the 31 different structures, 5 ANFIS models were tested against the measured adsorption efficiency to assess the accuracy of each model. The results showed that ANFIS5, which used all input parameters, was the most accurate (RMSE = 2.65 and R(2) = 0.95) and ANFIS1, which used only the contact time input, was the worst (RMSE = 14.56 and R(2) = 0.46). In ranking the models, ANFIS4, ANFIS3 and ANFIS2 ranked second, third and fourth, respectively. The sensitivity analysis revealed that the estimated AE is more sensitive to the contact time, followed by pH, initial concentration of Pb (II) ions, adsorbent dosage, and temperature. The results showed that all ANFIS models overestimated the AE. In general, this study confirmed the capabilities of ANFIS model as an effective tool for estimation of AE. PMID:23383640

  12. Adaptational changes in the neural control of cardiorespiratory function in a confined environment: The CNEC#3 experiment

    NASA Astrophysics Data System (ADS)

    Pagani, M.; Iellamo, F.; Lucini, D.; Pizzinelli, P.; Castrucci, F.; Peruzzi, G.; Malliani, A.

    The goal of the study was to characterize the changes in neurovegetative control of the circulation, attending the presumed physiological and psychological stress originated by the isolation and confinement typical of the living condition of space stations, as simulated in a ground based unit, using time and frequency domain analysis. As a secondary goal we sought to verify the implementation of real time data acquisition, for off line spectral analisys of R-R interval, systolic arterial pressure (by Finapres) and respiration (by PVF2 piezoelectric sensors). We addressed the cardiorespiratory and neurovegetative responses to standardized, simple Stressors (active standing, dynamic and static handgrip) on the EXEMSI 92 crew, before, during and after the isolation period. On average the appropriate excitatory responses (to stand, dynamic and static handgrip) were elicited also in isolation and confinement. Active standing and small masses muscular exercises are easy to be performed in a confined and isolated environment and provide a valuable tool for investigating the adaptational changes in neural control mechanisms. The possibility there exists of using this time and frequency domain approach to monitor the level of performance and well being of the space crew in (quasi) real time.

  13. A Unified Approach to Adaptive Neural Control for Nonlinear Discrete-Time Systems With Nonlinear Dead-Zone Input.

    PubMed

    Liu, Yan-Jun; Gao, Ying; Tong, Shaocheng; Chen, C L Philip

    2016-01-01

    In this paper, an effective adaptive control approach is constructed to stabilize a class of nonlinear discrete-time systems, which contain unknown functions, unknown dead-zone input, and unknown control direction. Different from linear dead zone, the dead zone, in this paper, is a kind of nonlinear dead zone. To overcome the noncausal problem, which leads to the control scheme infeasible, the systems can be transformed into a m -step-ahead predictor. Due to nonlinear dead-zone appearance, the transformed predictor still contains the nonaffine function. In addition, it is assumed that the gain function of dead-zone input and the control direction are unknown. These conditions bring about the difficulties and the complicacy in the controller design. Thus, the implicit function theorem is applied to deal with nonaffine dead-zone appearance, the problem caused by the unknown control direction can be resolved through applying the discrete Nussbaum gain, and the neural networks are used to approximate the unknown function. Based on the Lyapunov theory, all the signals of the resulting closed-loop system are proved to be semiglobal uniformly ultimately bounded. Moreover, the tracking error is proved to be regulated to a small neighborhood around zero. The feasibility of the proposed approach is demonstrated by a simulation example.

  14. Prediction of matching condition for a microstrip subsystem using artificial neural network and adaptive neuro-fuzzy inference system

    NASA Astrophysics Data System (ADS)

    Salehi, Mohammad Reza; Noori, Leila; Abiri, Ebrahim

    2016-11-01

    In this paper, a subsystem consisting of a microstrip bandpass filter and a microstrip low noise amplifier (LNA) is designed for WLAN applications. The proposed filter has a small implementation area (49 mm2), small insertion loss (0.08 dB) and wide fractional bandwidth (FBW) (61%). To design the proposed LNA, the compact microstrip cells, an field effect transistor, and only a lumped capacitor are used. It has a low supply voltage and a low return loss (-40 dB) at the operation frequency. The matching condition of the proposed subsystem is predicted using subsystem analysis, artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). To design the proposed filter, the transmission matrix of the proposed resonator is obtained and analysed. The performance of the proposed ANN and ANFIS models is tested using the numerical data by four performance measures, namely the correlation coefficient (CC), the mean absolute error (MAE), the average percentage error (APE) and the root mean square error (RMSE). The obtained results show that these models are in good agreement with the numerical data, and a small error between the predicted values and numerical solution is obtained.

  15. When the sense of smell meets emotion: anxiety-state-dependent olfactory processing and neural circuitry adaptation.

    PubMed

    Krusemark, Elizabeth A; Novak, Lucas R; Gitelman, Darren R; Li, Wen

    2013-09-25

    Phylogenetically the most ancient sense, olfaction is characterized by a unique intimacy with the emotion system. However, mechanisms underlying olfaction-emotion interaction remain unclear, especially in an ever-changing environment and dynamic internal milieu. Perturbing the internal state with anxiety induction in human subjects, we interrogated emotion-state-dependent olfactory processing in a functional magnetic resonance imaging (fMRI) study. Following anxiety induction, initially neutral odors become unpleasant and take longer to detect, accompanied by augmented response to these odors in the olfactory (anterior piriform and orbitofrontal) cortices and emotion-relevant pregenual anterior cingulate cortex. In parallel, the olfactory sensory relay adapts with increased anxiety, incorporating amygdala as an integral step via strengthened (afferent or efferent) connections between amygdala and all levels of the olfactory cortical hierarchy. This anxiety-state-dependent neural circuitry thus enables cumulative infusion of limbic affective information throughout the olfactory sensory progression, thereby driving affectively charged olfactory perception. These findings could constitute an olfactory etiology model of emotional disorders, as exaggerated emotion-olfaction interaction in negative mood states turns innocuous odors aversive, fueling anxiety and depression with rising ambient sensory stress.

  16. A Unified Approach to Adaptive Neural Control for Nonlinear Discrete-Time Systems With Nonlinear Dead-Zone Input.

    PubMed

    Liu, Yan-Jun; Gao, Ying; Tong, Shaocheng; Chen, C L Philip

    2016-01-01

    In this paper, an effective adaptive control approach is constructed to stabilize a class of nonlinear discrete-time systems, which contain unknown functions, unknown dead-zone input, and unknown control direction. Different from linear dead zone, the dead zone, in this paper, is a kind of nonlinear dead zone. To overcome the noncausal problem, which leads to the control scheme infeasible, the systems can be transformed into a m -step-ahead predictor. Due to nonlinear dead-zone appearance, the transformed predictor still contains the nonaffine function. In addition, it is assumed that the gain function of dead-zone input and the control direction are unknown. These conditions bring about the difficulties and the complicacy in the controller design. Thus, the implicit function theorem is applied to deal with nonaffine dead-zone appearance, the problem caused by the unknown control direction can be resolved through applying the discrete Nussbaum gain, and the neural networks are used to approximate the unknown function. Based on the Lyapunov theory, all the signals of the resulting closed-loop system are proved to be semiglobal uniformly ultimately bounded. Moreover, the tracking error is proved to be regulated to a small neighborhood around zero. The feasibility of the proposed approach is demonstrated by a simulation example. PMID:26353383

  17. Neural Mechanisms Behind Identification of Leptokurtic Noise and Adaptive Behavioral Response.

    PubMed

    d'Acremont, Mathieu; Bossaerts, Peter

    2016-04-01

    Large-scale human interaction through, for example, financial markets causes ceaseless random changes in outcome variability, producing frequent and salient outliers that render the outcome distribution more peaked than the Gaussian distribution, and with longer tails. Here, we study how humans cope with this evolutionary novel leptokurtic noise, focusing on the neurobiological mechanisms that allow the brain, 1) to recognize the outliers as noise and 2) to regulate the control necessary for adaptive response. We used functional magnetic resonance imaging, while participants tracked a target whose movements were affected by leptokurtic noise. After initial overreaction and insufficient subsequent correction, participants improved performance significantly. Yet, persistently long reaction times pointed to continued need for vigilance and control. We ran a contrasting treatment where outliers reflected permanent moves of the target, as in traditional mean-shift paradigms. Importantly, outliers were equally frequent and salient. There, control was superior and reaction time was faster. We present a novel reinforcement learning model that fits observed choices better than the Bayes-optimal model. Only anterior insula discriminated between the 2 types of outliers. In both treatments, outliers initially activated an extensive bottom-up attention and belief network, followed by sustained engagement of the fronto-parietal control network.

  18. Neural Mechanisms Behind Identification of Leptokurtic Noise and Adaptive Behavioral Response

    PubMed Central

    d'Acremont, Mathieu; Bossaerts, Peter

    2016-01-01

    Large-scale human interaction through, for example, financial markets causes ceaseless random changes in outcome variability, producing frequent and salient outliers that render the outcome distribution more peaked than the Gaussian distribution, and with longer tails. Here, we study how humans cope with this evolutionary novel leptokurtic noise, focusing on the neurobiological mechanisms that allow the brain, 1) to recognize the outliers as noise and 2) to regulate the control necessary for adaptive response. We used functional magnetic resonance imaging, while participants tracked a target whose movements were affected by leptokurtic noise. After initial overreaction and insufficient subsequent correction, participants improved performance significantly. Yet, persistently long reaction times pointed to continued need for vigilance and control. We ran a contrasting treatment where outliers reflected permanent moves of the target, as in traditional mean-shift paradigms. Importantly, outliers were equally frequent and salient. There, control was superior and reaction time was faster. We present a novel reinforcement learning model that fits observed choices better than the Bayes-optimal model. Only anterior insula discriminated between the 2 types of outliers. In both treatments, outliers initially activated an extensive bottom-up attention and belief network, followed by sustained engagement of the fronto-parietal control network. PMID:26850528

  19. Adaptive peripheral immune response increases proliferation of neural precursor cells in the adult hippocampus.

    PubMed

    Wolf, Susanne A; Steiner, Barbara; Wengner, Antje; Lipp, Martin; Kammertoens, Thomas; Kempermann, Gerd

    2009-09-01

    To understand the link between peripheral immune activation and neuronal precursor biology, we investigated the effect of T-cell activation on adult hippocampal neurogenesis in female C57Bl/6 mice. A peripheral adaptive immune response triggered by adjuvant-induced rheumatoid arthritis (2 microg/microl methylated BSA) or staphylococcus enterotoxin B (EC(50) of 0.25 microg/ml per 20 g body weight) was associated with a transient increase in hippocampal precursor cell proliferation and neurogenesis as assessed by immunohistochemistry and confocal microscopy. Both treatments were paralleled by an increase in corticosterone levels in the hippocampus 1- to 2-fold over the physiological amount measured by quantitative radioimmunoassay. In contrast, intraperitoneal administration of the innate immune response activator lipopolysaccaride (EC(50) of 0.5 microg/ml per 20 g body weight) led to a chronic 5-fold increase of hippocampal glucocorticoid levels and a decrease of adult neurogenesis. In vitro exposure of murine neuronal progenitor cells to corticosterone triggered either cell death at high (1.5 nM) or proliferation at low (0.25 nM) concentrations. This effect could be blocked using a viral vector system expressing a transdomain of the glucocorticoid receptor. We suggest an evolutionary relevant communication route for the brain to respond to environmental stressors like inflammation mediated by glucocorticoid levels in the hippocampus.

  20. Time course of muscular, neural and tendinous adaptations to 23 day unilateral lower-limb suspension in young men.

    PubMed

    de Boer, Maarten D; Maganaris, Constantinos N; Seynnes, Olivier R; Rennie, Michael J; Narici, Marco V

    2007-09-15

    Muscles and tendons are highly adaptive to changes in chronic loading, though little is known about the adaptative time course. We tested the hypothesis that, in response to unilateral lower limb suspension (ULLS), the magnitude of tendon mechanical adaptations would match or exceed those of skeletal muscle. Seventeen men (1.79 +/- 0.05 m, 76.6 +/- 10.3 kg, 22.3 +/- 3.8 years) underwent ULLS for 23 days (n = 9) or acted as controls (n = 8). Knee extensor (KE) torque, voluntary activation (VA), cross-sectional area (CSA) (by magnetic resonance imaging), vastus lateralis fascicle length (L(f)) and pennation angle (), patellar tendon stiffness and Young's modulus (by ultrasonography) were measured before, during and at the end of ULLS. After 14 and 23 days (i) KE torque decreased by 14.8 +/- 5.5% (P < 0.001) and 21.0 +/- 7.1% (P < 0.001), respectively; (ii) VA did not change; (iii) KE CSA decreased by 5.2 +/- 0.7% (P < 0.001) and 10.0 +/- 2.0% (P < 0.001), respectively; L(f) decreased by 5.9% (n.s.) and 7.7% (P < 0.05), respectively, and by 3.2% (P < 0.05) and 7.6% (P < 0.01); (iv) tendon stiffness decreased by 9.8 +/- 8.2% (P < 0.05) and 29.3 +/- 11.5% (P < 0.005), respectively, and Young's modulus by 9.2 +/- 8.2% (P < 0.05) and 30.1 +/- 11.9% (P < 0.01), respectively, with no changes in the controls. Hence, ULLS induces rapid losses of KE muscle size, architecture and function, but not in neural drive. Significant deterioration in tendon mechanical properties also occurs within 2 weeks, exacerbating in the third week of ULLS. Rehabilitation to limit muscle and tendon deterioration should probably start within 2 weeks of unloading.

  1. Adapting Critical Incident Stress Management to the Schools: A Multi-Agency Approach

    ERIC Educational Resources Information Center

    Tortorici, Joanne; Johnson, Luna Kendall

    2004-01-01

    The need for school-appropriate applications of critical incident stress management (CISM) is noted in the literature on school crisis response. This paper presents preliminary data suggesting a School Crisis Response Team's (SCRT) usage and team needs. The SCRT was dispatched for a variety of critical incidents. Self-dispatch, followed by…

  2. The Adaptation of Four Year Undergraduate Colleges to Current Fiscal and Enrollment Pressures: An Exploration of Critical Event Cycles at Seventeen Campuses. ASHE 1983 Annual Meeting Paper.

    ERIC Educational Resources Information Center

    Finkelstein, Martin; Farrar, David

    The results of analyzing institutional change profiles for 17 four-year undergraduate colleges are discussed. Using critical event cycles as a unit of analysis, attention was focused on distinctive patterns of institutional adaptation. Based on site visits, a list of 33 critical events at the 17 campuses was developed, from which 13 critical event…

  3. Neural-adaptive control of single-master-multiple-slaves teleoperation for coordinated multiple mobile manipulators with time-varying communication delays and input uncertainties.

    PubMed

    Li, Zhijun; Su, Chun-Yi

    2013-09-01

    In this paper, adaptive neural network control is investigated for single-master-multiple-slaves teleoperation in consideration of time delays and input dead-zone uncertainties for multiple mobile manipulators carrying a common object in a cooperative manner. Firstly, concise dynamics of teleoperation systems consisting of a single master robot, multiple coordinated slave robots, and the object are developed in the task space. To handle asymmetric time-varying delays in communication channels and unknown asymmetric input dead zones, the nonlinear dynamics of the teleoperation system are transformed into two subsystems through feedback linearization: local master or slave dynamics including the unknown input dead zones and delayed dynamics for the purpose of synchronization. Then, a model reference neural network control strategy based on linear matrix inequalities (LMI) and adaptive techniques is proposed. The developed control approach ensures that the defined tracking errors converge to zero whereas the coordination internal force errors remain bounded and can be made arbitrarily small. Throughout this paper, stability analysis is performed via explicit Lyapunov techniques under specific LMI conditions. The proposed adaptive neural network control scheme is robust against motion disturbances, parametric uncertainties, time-varying delays, and input dead zones, which is validated by simulation studies.

  4. Neural-adaptive control of single-master-multiple-slaves teleoperation for coordinated multiple mobile manipulators with time-varying communication delays and input uncertainties.

    PubMed

    Li, Zhijun; Su, Chun-Yi

    2013-09-01

    In this paper, adaptive neural network control is investigated for single-master-multiple-slaves teleoperation in consideration of time delays and input dead-zone uncertainties for multiple mobile manipulators carrying a common object in a cooperative manner. Firstly, concise dynamics of teleoperation systems consisting of a single master robot, multiple coordinated slave robots, and the object are developed in the task space. To handle asymmetric time-varying delays in communication channels and unknown asymmetric input dead zones, the nonlinear dynamics of the teleoperation system are transformed into two subsystems through feedback linearization: local master or slave dynamics including the unknown input dead zones and delayed dynamics for the purpose of synchronization. Then, a model reference neural network control strategy based on linear matrix inequalities (LMI) and adaptive techniques is proposed. The developed control approach ensures that the defined tracking errors converge to zero whereas the coordination internal force errors remain bounded and can be made arbitrarily small. Throughout this paper, stability analysis is performed via explicit Lyapunov techniques under specific LMI conditions. The proposed adaptive neural network control scheme is robust against motion disturbances, parametric uncertainties, time-varying delays, and input dead zones, which is validated by simulation studies. PMID:24808577

  5. MOZ-mediated repression of p16(INK) (4) (a) is critical for the self-renewal of neural and hematopoietic stem cells.

    PubMed

    Perez-Campo, Flor M; Costa, Guilherme; Lie-A-Ling, Michael; Stifani, Stefano; Kouskoff, Valerie; Lacaud, Georges

    2014-06-01

    Although inhibition of p16(INK4a) expression is critical to preserve the proliferative capacity of stem cells, the molecular mechanisms responsible for silencing p16(INK4a) expression remain poorly characterized. Here, we show that the histone acetyltransferase (HAT) monocytic leukemia zinc finger protein (MOZ) controls the proliferation of both hematopoietic and neural stem cells by modulating the transcriptional repression of p16(INK4a) . In the absence of the HAT activity of MOZ, expression of p16(INK4a) is upregulated in progenitor and stem cells, inducing an early entrance into replicative senescence. Genetic deletion of p16(INK4a) reverses the proliferative defect in both Moz(HAT) (-) (/) (-) hematopoietic and neural progenitors. Our results suggest a critical requirement for MOZ HAT activity to silence p16(INK4a) expression and to protect stem cells from early entrance into replicative senescence. PMID:24307508

  6. Defining the critical material attributes of lactose monohydrate in carrier based dry powder inhaler formulations using artificial neural networks.

    PubMed

    Kinnunen, Hanne; Hebbink, Gerald; Peters, Harry; Shur, Jagdeep; Price, Robert

    2014-08-01

    The study aimed to establish a function-based relationship between the physical and bulk properties of pre-blended mixtures of fine and coarse lactose grades with the in vitro performance of an adhesive active pharmaceutical ingredient (API). Different grades of micronised and milled lactose (Lactohale (LH) LH300, LH230, LH210 and Sorbolac 400) were pre-blended with coarse grades of lactose (LH100, LH206 and Respitose SV010) at concentrations of 2.5, 5, 10 and 20 wt.%. The bulk and rheological properties and particle size distributions were characterised. The pre-blends were formulated with micronised budesonide and in vitro performance in a Cyclohaler device tested using a next-generation impactor (NGI) at 90 l/min. Correlations between the lactose properties and in vitro performance were established using linear regression and artificial neural network (ANN) analyses. The addition of milled and micronised lactose fines with the coarse lactose had a significant influence on physical and rheological properties of the bulk lactose. Formulations of the different pre-blends with budesonide directly influenced in vitro performance attributes including fine particle fraction, mass median aerodynamic diameter and pre-separator deposition. While linear regression suggested a number of physical and bulk properties may influence in vitro performance, ANN analysis suggested the critical parameters in describing in vitro deposition patterns were the relative concentrations of lactose fines % < 4.5 μm and % < 15 μm. These data suggest that, for an adhesive API, the proportion of fine particles below % < 4.5 μm and % < 15 μm could be used in rational dry powder inhaler formulation design. PMID:24831088

  7. Cooperation, competition and the emergence of criticality in communities of adaptive systems

    NASA Astrophysics Data System (ADS)

    Hidalgo, Jorge; Grilli, Jacopo; Suweis, Samir; Maritan, Amos; Muñoz, Miguel A.

    2016-03-01

    The hypothesis that living systems can benefit from operating at the vicinity of critical points has gained momentum in recent years. Criticality may confer an optimal balance between too ordered and exceedingly noisy states. Here we present a model, based on information theory and statistical mechanics, illustrating how and why a community of agents aimed at understanding and communicating with each other converges to a globally coherent state in which all individuals are close to an internal critical state, i.e. at the borderline between order and disorder. We study—both analytically and computationally—the circumstances under which criticality is the best possible outcome of the dynamical process, confirming the convergence to critical points under very generic conditions. Finally, we analyze the effect of cooperation (agents trying to enhance not only their fitness, but also that of other individuals) and competition (agents trying to improve their own fitness and to diminish those of competitors) within our setting. The conclusion is that, while competition fosters criticality, cooperation hinders it and can lead to more ordered or more disordered consensual outcomes.

  8. Adaptation to the edge of chaos and critical scaling in self-adjusting dynamical systems

    NASA Astrophysics Data System (ADS)

    Melby, Paul Christian

    We present a mechanism for adaptation in dynamical systems. Systems which have this mechanism are called self-adjusting systems. The control parameters in a self-adjusting system are slowly varying, rather than constant. The dynamics of the control parameters are governed by a low-pass filtered feedback from the dynamical variables. We apply this model to several systems, numerically, analytically, and experimentally, and examine the behavior of the control parameters. We observe a high probability of finding the parameter at the boundary between periodicity and chaos. We therefore find that self-adjusting systems adapt to the edge of chaos. In addition, we find that noise in the system drives the parameter away from the edge of chaos on very long timescales so that chaos is suppressed in the system. We show that, with the presence of noise, the parameter can re-enter the chaotic regime. This is called a chaotic outbreak in the system and we find that the distribution of outbreaks is a power-law with the duration of the outbreak. We then study the robustness of adaptation to the edge of chaos by examining the effect of a control force being applied to the parameter. We find the behavior to be very robust, except for very large control forces. Finally, we look at systems of coupled maps and show that, adaptation to the edge of chaos occurs in systems of higher dimensions, as well.

  9. Critically Adaptive Pedagogical Relations: The Relevance for Educational Policy and Practice

    ERIC Educational Resources Information Center

    Griffiths, Morwenna

    2013-01-01

    In this article Morwenna Griffiths argues that teacher education policies should be predicated on a proper and full understanding of pedagogical relations as contingent, responsive, and adaptive over the course of a career. Griffiths uses the example of the recent report on teacher education in Scotland, by Graham Donaldson, to argue that for all…

  10. Effect of a combination of whole-body vibration and low resistance jump training on neural adaptation.

    PubMed

    Wang, Hsing-Kuo; Un, Chi-Pang; Lin, Kwan-Hwa; Chang, En-Chung; Shiang, Tzyy-Yuang; Su, Sheng-Chu

    2014-01-01

    This study investigated and compared the effects of an eight-week program of whole body vibration combined with counter-movement jumping (WBV + CMJ) or counter-movement jumping (CMJ) alone on players. Twenty-four men's volleyball players of league A or B were randomized to the WBV + CMJ or CMJ groups (n = 12 and 12; mean [SD] age of 21.4 [2.2] and 21.7 [2.2] y; height of 175.6 [4.6] and 177.6 [3.9] cm; and weight, 69.9 [12.8] and 70.5 [10.7] kg, respectively). The pre- and post-training values of the following measurements were compared: H-reflex, first volitional (V)-wave, rate of electromyography rise (RER) in the triceps surae and absolute rate of force development (RFD) in plantarflexion and vertical jump height. After training, the WBV + CMJ group exhibited increases in H reflexes (p = 0.029 and <0.001); V-wave (p < 0.001); RER (p = 0.003 and <0.001); jump height (p < 0.001); and RFD (p = 0.006 and <0.001). The post-training values of V wave (p = 0.006) and RFD at 0-50 (p = 0.009) and 0-200 ms (p = 0.008) in the WBV + CMJ group were greater than those in the CMJ group. This study shows that a combination of WBV and power exercise could impact neural adaptation and leads to greater fast force capacity than power exercise alone in male players.

  11. The role of cognitive appraisal in adaptation to traumatic stress in adults with serious mental illness: a critical review.

    PubMed

    Sherrer, Margaret V

    2011-07-01

    A compelling body of literature suggests that negative appraisal may be associated with adverse reactions to traumatic stress. However, very few studies have examined how appraisal influences posttraumatic adaptation in people with serious mental illness (SMI) despite evidence of disproportionately high prevalence rates of trauma exposure and Posttraumatic Stress Disorder (PTSD) in this population. The purpose of this article is to provide a critical analysis of the theoretical and empirical literature on cognitive appraisal and psychological adaptation to traumatic stress with a specific focus on individuals diagnosed with SMI. It will be argued that appraisal is a key correlate that may partially account for higher rates of PTSD in people diagnosed with major mood and schizophrenia-spectrum disorders, meriting special consideration for future research.

  12. Translation, adaptation, and validation of the behavioral pain scale and the critical-care pain observational tools in Taiwan

    PubMed Central

    Hsiung, Nai-Huan; Yang, Yen; Lee, Ming Shinn; Dalal, Koustuv; Smith, Graeme D

    2016-01-01

    This study describes the cultural adaptation and testing of the behavioral pain scale (BPS) and the critical-care pain observation tools (CPOT) for pain assessment in Taiwan. The cross-cultural adaptation followed the steps of translation, including forward translation, back-translation, evaluation of the translations by a committee of experts, adjustments, and then piloting of the prefinal versions of the BPS and the CPOT. A content validity index was used to assess content validities of the BPS and the CPOT, with 0.80 preset as the level that would be regarded as acceptable. The principal investigator then made adjustments when the content validity index was <0.80. The pilot test was performed with a sample of ten purposively selected patients by 2 medical staff from a medical care center in Taiwan. The BPS and the CPOT are adequate instruments for the assessment of pain levels in patients who cannot communicate due to sedation and ventilation treatments.

  13. Translation, adaptation, and validation of the behavioral pain scale and the critical-care pain observational tools in Taiwan

    PubMed Central

    Hsiung, Nai-Huan; Yang, Yen; Lee, Ming Shinn; Dalal, Koustuv; Smith, Graeme D

    2016-01-01

    This study describes the cultural adaptation and testing of the behavioral pain scale (BPS) and the critical-care pain observation tools (CPOT) for pain assessment in Taiwan. The cross-cultural adaptation followed the steps of translation, including forward translation, back-translation, evaluation of the translations by a committee of experts, adjustments, and then piloting of the prefinal versions of the BPS and the CPOT. A content validity index was used to assess content validities of the BPS and the CPOT, with 0.80 preset as the level that would be regarded as acceptable. The principal investigator then made adjustments when the content validity index was <0.80. The pilot test was performed with a sample of ten purposively selected patients by 2 medical staff from a medical care center in Taiwan. The BPS and the CPOT are adequate instruments for the assessment of pain levels in patients who cannot communicate due to sedation and ventilation treatments. PMID:27695360

  14. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  15. Adapting, Not Adopting: Barriers Affecting Teaching for Critical Thinking at Two Rwandan Universities

    ERIC Educational Resources Information Center

    Schendel, Rebecca

    2016-01-01

    A recent study of student learning at three of Rwanda's most prestigious public universities has suggested that Rwandan students are not improving in their critical thinking ability during their time at university. This article reports on a series of faculty-level case studies, which were conducted at two of the participating institutions in order…

  16. Mapping the Dynamic Network Interactions Underpinning Cognition: A cTBS-fMRI Study of the Flexible Adaptive Neural System for Semantics

    PubMed Central

    Jung, JeYoung; Lambon Ralph, Matthew A.

    2016-01-01

    Higher cognitive function reflects the interaction of a network of multiple brain regions. Previous investigations have plotted out these networks using functional or structural connectivity approaches. While these map the topography of the regions involved, they do not explore the key aspect of this neuroscience principle—namely that the regions interact in a dynamic fashion. Here, we achieved this aim with respect to semantic memory. Although converging evidence implicates the anterior temporal lobes (ATLs), bilaterally, as a crucial component in semantic representation, the underlying neural interplay between the ATLs remains unclear. By combining continuous theta-burst stimulation (cTBS) with functional magnetic resonance imaging (fMRI), we perturbed the left ventrolateral ATL (vATL) and investigated acute changes in neural activity and effective connectivity of the semantic system. cTBS resulted in decreased activity at the target region and compensatory, increased activity at the contralateral vATL. In addition, there were task-specific increases in effective connectivity between the vATLs, reflecting an increased facilitatory intrinsic connectivity from the right to left vATL. Our results suggest that semantic representation is founded on a flexible, adaptive bilateral neural system and reveals an adaptive plasticity-based mechanism that might support functional recovery after unilateral damage in neurological patients. PMID:27242027

  17. Observer-based adaptive fuzzy-neural control for a class of uncertain nonlinear systems with unknown dead-zone input.

    PubMed

    Liu, Yan-Jun; Zhou, Ning

    2010-10-01

    Based on the universal approximation property of the fuzzy-neural networks, an adaptive fuzzy-neural observer design algorithm is studied for a class of nonlinear SISO systems with both a completely unknown function and an unknown dead-zone input. The fuzzy-neural networks are used to approximate the unknown nonlinear function. Because it is assumed that the system states are unmeasured, an observer needs to be designed to estimate those unmeasured states. In the previous works with the observer design based on the universal approximator, when the dead-zone input appears it is ignored and the stability of the closed-loop system will be affected. In this paper, the proposed algorithm overcomes the affections of dead-zone input for the stability of the systems. Moreover, the dead-zone parameters are assumed to be unknown and will be adjusted adaptively as well as the sign function being introduced to compensate the dead-zone. With the aid of the Lyapunov analysis method, the stability of the closed-loop system is proven. A simulation example is provided to illustrate the feasibility of the control algorithm presented in this paper.

  18. The congruency sequence effect 3.0: a critical test of conflict adaptation.

    PubMed

    Duthoo, Wout; Abrahamse, Elger L; Braem, Senne; Boehler, C Nico; Notebaert, Wim

    2014-01-01

    Over the last two decades, the congruency sequence effect (CSE) -the finding of a reduced congruency effect following incongruent trials in conflict tasks- has played a central role in advancing research on cognitive control. According to the influential conflict-monitoring account, the CSE reflects adjustments in selective attention that enhance task focus when needed, often termed conflict adaptation. However, this dominant interpretation of the CSE has been called into question by several alternative accounts that stress the role of episodic memory processes: feature binding and (stimulus-response) contingency learning. To evaluate the notion of conflict adaptation in accounting for the CSE, we construed versions of three widely used experimental paradigms (the colour-word Stroop, picture-word Stroop and flanker task) that effectively control for feature binding and contingency learning. Results revealed that a CSE can emerge in all three tasks. This strongly suggests a contribution of attentional control to the CSE and highlights the potential of these unprecedentedly clean paradigms for further examining cognitive control.

  19. Auditory midbrain laminar structure appears adapted to f0 extraction: further evidence and implications of the double critical bandwidth.

    PubMed

    Braun, M

    1999-03-01

    The psychoacoustic 'critical bandwidth' (CB), e.g. approximately 2.6 semitones (= 0.22 octave) at 1.5-3 kHz, is known from many spectral integration phenomena. Cat data suggest that it is represented in the inferior colliculus (IC) (Ehret and Merzenich, 1985, Science 227, 1245-1247), where it is consistently related to the fibrodendritic laminae (Schreiner and Langner, 1997, Nature 388, 383-386). The recent discovery of the CB and the double CB (2CB) in the statistics of frequency spacing of spontaneous otoacoustic emissions (Braun, 1997. Hear. Res. 114, 197-203) has initiated further investigations of the novel phenomenon of 2CB. Meta-analysis of psychoacoustic valuation studies of pure-tone intervals again revealed the effects of CB and 2CB. Valuations showed a significant stepwise change with interval size: 2CB indifferent. Scrutiny of cat and human data indicated that for both species, at least in the midspectrum (1-3 kHz in humans), the tonotopic ranges within single IC laminae and the tonotopic distances between neighboring laminae may equal 1 CB (distances to second next laminae being 2CB). This unique architecture would provide the most economical neural convergence of period information from pairs of adjacent harmonic partials 3-6 of complex sound. The resulting summed postsynaptic potentials would thus contain a beat frequency equaling f0 of sound input and being detectable by the known neural behavior of characteristic periodicity response. PMID:10190753

  20. A new method based on Adaptive Discrete Wavelet Entropy Energy and Neural Network Classifier (ADWEENN) for recognition of urine cells from microscopic images independent of rotation and scaling.

    PubMed

    Avci, Derya; Leblebicioglu, Mehmet Kemal; Poyraz, Mustafa; Dogantekin, Esin

    2014-02-01

    So far, analysis and classification of urine cells number has become an important topic for medical diagnosis of some diseases. Therefore, in this study, we suggest a new technique based on Adaptive Discrete Wavelet Entropy Energy and Neural Network Classifier (ADWEENN) for Recognition of Urine Cells from Microscopic Images Independent of Rotation and Scaling. Some digital image processing methods such as noise reduction, contrast enhancement, segmentation, and morphological process are used for feature extraction stage of this ADWEENN in this study. Nowadays, the image processing and pattern recognition topics have come into prominence. The image processing concludes operation and design of systems that recognize patterns in data sets. In the past years, very difficulty in classification of microscopic images was the deficiency of enough methods to characterize. Lately, it is seen that, multi-resolution image analysis methods such as Gabor filters, discrete wavelet decompositions are superior to other classic methods for analysis of these microscopic images. In this study, the structure of the ADWEENN method composes of four stages. These are preprocessing stage, feature extraction stage, classification stage and testing stage. The Discrete Wavelet Transform (DWT) and adaptive wavelet entropy and energy is used for adaptive feature extraction in feature extraction stage to strengthen the premium features of the Artificial Neural Network (ANN) classifier in this study. Efficiency of the developed ADWEENN method was tested showing that an avarage of 97.58% recognition succes was obtained.

  1. The association of physical activity to neural adaptability during visuo-spatial processing in healthy elderly adults: A multiscale entropy analysis.

    PubMed

    Wang, Chun-Hao; Tsai, Chia-Liang; Tseng, Philip; Yang, Albert C; Lo, Men-Tzung; Peng, Chung-Kang; Wang, Hsin-Yi; Muggleton, Neil G; Juan, Chi-Hung; Liang, Wei-Kuang

    2014-10-29

    Physical activity has been shown to benefit brain and cognition in late adulthood. However, this effect is still unexplored in terms of brain signal complexity, which reflects the level of neural adaptability and efficiency during cognitive processing that cannot be acquired via averaged neuroelectric signals. Here we employed multiscale entropy analysis (MSE) of electroencephalography (EEG), a new approach that conveys important information related to the temporal dynamics of brain signal complexity across multiple time scales, to reveal the association of physical activity with neural adaptability and efficiency in elderly adults. A between-subjects design that included 24 participants (aged 66.63±1.31years; female=12) with high physical activity and 24 age- and gender-matched low physical activity participants (aged 67.29±1.20years) was conducted to examine differences related to physical activity in performance and MSE of EEG signals during a visuo-spatial cognition task. We observed that physically active elderly adults had better accuracy on both visuo-spatial attention and working memory conditions relative to their sedentary counterparts. Additionally, these physically active elderly adults displayed greater MSE values at larger time scales at the Fz electrode in both attention and memory conditions. The results suggest that physical activity may be beneficial for adaptability of brain systems in tasks involving visuo-spatial information. MSE thus might be a promising approach to test the effects of the benefits of exercise on cognition.

  2. Increased Intraregional Synchronized Neural Activity in Adult Brain After Prolonged Adaptation to High-Altitude Hypoxia: A Resting-State fMRI Study.

    PubMed

    Chen, Ji; Fan, Cunxiu; Li, Jinqiang; Han, Qiaoqing; Lin, Jianzhong; Yang, Tianhe; Zhang, Jiaxing

    2016-03-01

    The human brain is intrinsically plastic such that its functional architecture can be reorganized in response to environmental pressures and physiological changes. However, it remains unclear whether a compensatory modification of spontaneous neural activity occurs in adult brain during prolonged high-altitude (HA) adaptation. In this study, we obtained resting-state functional magnetic resonance (MR) images in 16 adults who have immigrated to Qinghai-Tibet Plateau (2300-4400 m) for 2 years and in 16 age-matched sea level (SL) controls. A validated regional homogeneity (Reho) method was employed to investigate the local synchronization of resting-state functional magnetic resonance imaging (fMRI) signals. Seed connectivity analysis was carried out subsequently. Cognitive and physiological assessments were made and correlated with the image metrics. Compared with SL controls, global mean Reho was significantly increased in HA immigrants as well as a regional increase in the right inferolateral sensorimotor cortex. Furthermore, mean z-Reho value extracted within the inferolateral sensorimotor area showed trend-level significant inverse correlation with memory search reaction time in HA immigrants. These observations, for the first time, provide evidence of adult brain resilience of spontaneous neural activity after long-term HA exposure without inherited and developmental effects. Resting-state fMRI could yield valuable information for central mechanisms underlying respiratory and cognitive compensations in adults during prolonged environmentally hypoxic adaptation, paving the way for future HA-adaptive training.

  3. Intelligent neural network and fuzzy logic control of industrial and power systems

    NASA Astrophysics Data System (ADS)

    Kuljaca, Ognjen

    The main role played by neural network and fuzzy logic intelligent control algorithms today is to identify and compensate unknown nonlinear system dynamics. There are a number of methods developed, but often the stability analysis of neural network and fuzzy control systems was not provided. This work will meet those problems for the several algorithms. Some more complicated control algorithms included backstepping and adaptive critics will be designed. Nonlinear fuzzy control with nonadaptive fuzzy controllers is also analyzed. An experimental method for determining describing function of SISO fuzzy controller is given. The adaptive neural network tracking controller for an autonomous underwater vehicle is analyzed. A novel stability proof is provided. The implementation of the backstepping neural network controller for the coupled motor drives is described. Analysis and synthesis of adaptive critic neural network control is also provided in the work. Novel tuning laws for the system with action generating neural network and adaptive fuzzy critic are given. Stability proofs are derived for all those control methods. It is shown how these control algorithms and approaches can be used in practical engineering control. Stability proofs are given. Adaptive fuzzy logic control is analyzed. Simulation study is conducted to analyze the behavior of the adaptive fuzzy system on the different environment changes. A novel stability proof for adaptive fuzzy logic systems is given. Also, adaptive elastic fuzzy logic control architecture is described and analyzed. A novel membership function is used for elastic fuzzy logic system. The stability proof is proffered. Adaptive elastic fuzzy logic control is compared with the adaptive nonelastic fuzzy logic control. The work described in this dissertation serves as foundation on which analysis of particular representative industrial systems will be conducted. Also, it gives a good starting point for analysis of learning abilities of

  4. Adaptive stochastic cellular automata: Applications

    NASA Astrophysics Data System (ADS)

    Qian, S.; Lee, Y. C.; Jones, R. D.; Barnes, C. W.; Flake, G. W.; O'Rourke, M. K.; Lee, K.; Chen, H. H.; Sun, G. Z.; Zhang, Y. Q.; Chen, D.; Giles, C. L.

    1990-09-01

    The stochastic learning cellular automata model has been applied to the problem of controlling unstable systems. Two example unstable systems studied are controlled by an adaptive stochastic cellular automata algorithm with an adaptive critic. The reinforcement learning algorithm and the architecture of the stochastic CA controller are presented. Learning to balance a single pole is discussed in detail. Balancing an inverted double pendulum highlights the power of the stochastic CA approach. The stochastic CA model is compared to conventional adaptive control and artificial neural network approaches.

  5. Adaptive neural network backstepping control for a class of uncertain fractional-order chaotic systems with unknown backlash-like hysteresis

    NASA Astrophysics Data System (ADS)

    Wu, Yimin; Lv, Hui

    2016-08-01

    In this paper, we consider the control problem of a class of uncertain fractional-order chaotic systems preceded by unknown backlash-like hysteresis nonlinearities based on backstepping control algorithm. We model the hysteresis by using a differential equation. Based on the fractional Lyapunov stability criterion and the backstepping algorithm procedures, an adaptive neural network controller is driven. No knowledge of the upper bound of the disturbance and system uncertainty is required in our controller, and the asymptotical convergence of the tracking error can be guaranteed. Finally, we give two simulation examples to confirm our theoretical results.

  6. Critical phenomena at a first-order phase transition in a lattice of glow lamps: Experimental findings and analogy to neural activity

    NASA Astrophysics Data System (ADS)

    Minati, Ludovico; de Candia, Antonio; Scarpetta, Silvia

    2016-07-01

    Networks of non-linear electronic oscillators have shown potential as physical models of neural dynamics. However, two properties of brain activity, namely, criticality and metastability, remain under-investigated with this approach. Here, we present a simple circuit that exhibits both phenomena. The apparatus consists of a two-dimensional square lattice of capacitively coupled glow (neon) lamps. The dynamics of lamp breakdown (flash) events are controlled by a DC voltage globally connected to all nodes via fixed resistors. Depending on this parameter, two phases having distinct event rate and degree of spatiotemporal order are observed. The transition between them is hysteretic, thus a first-order one, and it is possible to enter a metastability region, wherein, approaching a spinodal point, critical phenomena emerge. Avalanches of events occur according to power-law distributions having exponents ≈3/2 for size and ≈2 for duration, and fractal structure is evident as power-law scaling of the Fano factor. These critical exponents overlap observations in biological neural networks; hence, this circuit may have value as building block to realize corresponding physical models.

  7. Critical phenomena at a first-order phase transition in a lattice of glow lamps: Experimental findings and analogy to neural activity.

    PubMed

    Minati, Ludovico; de Candia, Antonio; Scarpetta, Silvia

    2016-07-01

    Networks of non-linear electronic oscillators have shown potential as physical models of neural dynamics. However, two properties of brain activity, namely, criticality and metastability, remain under-investigated with this approach. Here, we present a simple circuit that exhibits both phenomena. The apparatus consists of a two-dimensional square lattice of capacitively coupled glow (neon) lamps. The dynamics of lamp breakdown (flash) events are controlled by a DC voltage globally connected to all nodes via fixed resistors. Depending on this parameter, two phases having distinct event rate and degree of spatiotemporal order are observed. The transition between them is hysteretic, thus a first-order one, and it is possible to enter a metastability region, wherein, approaching a spinodal point, critical phenomena emerge. Avalanches of events occur according to power-law distributions having exponents ≈3/2 for size and ≈2 for duration, and fractal structure is evident as power-law scaling of the Fano factor. These critical exponents overlap observations in biological neural networks; hence, this circuit may have value as building block to realize corresponding physical models.

  8. Critical phenomena at a first-order phase transition in a lattice of glow lamps: Experimental findings and analogy to neural activity.

    PubMed

    Minati, Ludovico; de Candia, Antonio; Scarpetta, Silvia

    2016-07-01

    Networks of non-linear electronic oscillators have shown potential as physical models of neural dynamics. However, two properties of brain activity, namely, criticality and metastability, remain under-investigated with this approach. Here, we present a simple circuit that exhibits both phenomena. The apparatus consists of a two-dimensional square lattice of capacitively coupled glow (neon) lamps. The dynamics of lamp breakdown (flash) events are controlled by a DC voltage globally connected to all nodes via fixed resistors. Depending on this parameter, two phases having distinct event rate and degree of spatiotemporal order are observed. The transition between them is hysteretic, thus a first-order one, and it is possible to enter a metastability region, wherein, approaching a spinodal point, critical phenomena emerge. Avalanches of events occur according to power-law distributions having exponents ≈3/2 for size and ≈2 for duration, and fractal structure is evident as power-law scaling of the Fano factor. These critical exponents overlap observations in biological neural networks; hence, this circuit may have value as building block to realize corresponding physical models. PMID:27475063

  9. Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion.

    PubMed

    Zhang, Ji; Fan, Jing; Venneti, Sriram; Cross, Justin R; Takagi, Toshimitsu; Bhinder, Bhavneet; Djaballah, Hakim; Kanai, Masayuki; Cheng, Emily H; Judkins, Alexander R; Pawel, Bruce; Baggs, Julie; Cherry, Sara; Rabinowitz, Joshua D; Thompson, Craig B

    2014-10-23

    Many cancer cells consume large quantities of glutamine to maintain TCA cycle anaplerosis and support cell survival. It was therefore surprising when RNAi screening revealed that suppression of citrate synthase (CS), the first TCA cycle enzyme, prevented glutamine-withdrawal-induced apoptosis. CS suppression reduced TCA cycle activity and diverted oxaloacetate, the substrate of CS, into production of the nonessential amino acids aspartate and asparagine. We found that asparagine was necessary and sufficient to suppress glutamine-withdrawal-induced apoptosis without restoring the levels of other nonessential amino acids or TCA cycle intermediates. In complete medium, tumor cells exhibiting high rates of glutamine consumption underwent rapid apoptosis when glutamine-dependent asparagine synthesis was suppressed, and expression of asparagine synthetase was statistically correlated with poor prognosis in human tumors. Coupled with the success of L-asparaginase as a therapy for childhood leukemia, the data suggest that intracellular asparagine is a critical suppressor of apoptosis in many human tumors.

  10. Adaptive critic designs for discrete-time zero-sum games with application to H(infinity) control.

    PubMed

    Al-Tamimi, Asma; Abu-Khalaf, Murad; Lewis, Frank L

    2007-02-01

    In this correspondence, adaptive critic approximate dynamic programming designs are derived to solve the discrete-time zero-sum game in which the state and action spaces are continuous. This results in a forward-in-time reinforcement learning algorithm that converges to the Nash equilibrium of the corresponding zero-sum game. The results in this correspondence can be thought of as a way to solve the Riccati equation of the well-known discrete-time H(infinity) optimal control problem forward in time. Two schemes are presented, namely: 1) a heuristic dynamic programming and 2) a dual-heuristic dynamic programming, to solve for the value function and the costate of the game, respectively. An H(infinity) autopilot design for an F-16 aircraft is presented to illustrate the results.

  11. Adaptive critic designs for discrete-time zero-sum games with application to H(infinity) control.

    PubMed

    Al-Tamimi, Asma; Abu-Khalaf, Murad; Lewis, Frank L

    2007-02-01

    In this correspondence, adaptive critic approximate dynamic programming designs are derived to solve the discrete-time zero-sum game in which the state and action spaces are continuous. This results in a forward-in-time reinforcement learning algorithm that converges to the Nash equilibrium of the corresponding zero-sum game. The results in this correspondence can be thought of as a way to solve the Riccati equation of the well-known discrete-time H(infinity) optimal control problem forward in time. Two schemes are presented, namely: 1) a heuristic dynamic programming and 2) a dual-heuristic dynamic programming, to solve for the value function and the costate of the game, respectively. An H(infinity) autopilot design for an F-16 aircraft is presented to illustrate the results. PMID:17278575

  12. Optimal Information Representation and Criticality in an Adaptive Sensory Recurrent Neuronal Network

    PubMed Central

    Shriki, Oren; Yellin, Dovi

    2016-01-01

    Recurrent connections play an important role in cortical function, yet their exact contribution to the network computation remains unknown. The principles guiding the long-term evolution of these connections are poorly understood as well. Therefore, gaining insight into their computational role and into the mechanism shaping their pattern would be of great importance. To that end, we studied the learning dynamics and emergent recurrent connectivity in a sensory network model based on a first-principle information theoretic approach. As a test case, we applied this framework to a model of a hypercolumn in the visual cortex and found that the evolved connections between orientation columns have a "Mexican hat" profile, consistent with empirical data and previous modeling work. Furthermore, we found that optimal information representation is achieved when the network operates near a critical point in its dynamics. Neuronal networks working near such a phase transition are most sensitive to their inputs and are thus optimal in terms of information representation. Nevertheless, a mild change in the pattern of interactions may cause such networks to undergo a transition into a different regime of behavior in which the network activity is dominated by its internal recurrent dynamics and does not reflect the objective input. We discuss several mechanisms by which the pattern of interactions can be driven into this supercritical regime and relate them to various neurological and neuropsychiatric phenomena. PMID:26882372

  13. [The short version of Critical Care Family Needs Inventory (CCFNI): adaptation and validation for a spanish sample].

    PubMed

    Gómez-Martíinez, S; Arnal, R Ballester; Juliá, B Gil

    2011-01-01

    Relatives play an important role in the disease process of patients admitted to Intensive Care Units (ICU). It is therefore important to know the needs of people close to the patient in order to try to improve their adaption to a situation as difficult as an ICU admission. The aim of this study was the adaptation and validation of the short version of the Critical Care Family Needs Inventory (CCFNI) for a Spanish sample. The inventory was applied to 55 relatives of patients admitted to the ICU of the Hospital General de Castellón. After the removal of three items for different reasons, we performed an Exploratory Factor Analysis with the 11 remaining items to determine the factor structure of the questionnaire. We also made a descriptive analysis of the items, and internal consistency and construct validity were calculated through Cronbach's α and Pearson correlation coefficient respectively. The results of the principal components factor analysis using varimax rotation indicated a four-factor solution. These four factors corresponded to: medical attention to the patient, personal attention to the relatives, communication between the family and the doctor, and perceived improvements in the Unit. The short version of CCFNI showed good internal consistency for both the total scale and factors. The results suggest that the CCFNI is a suitable measure for assessing the different needs presented by the relatives of patients admitted to an Intensive Care Unit, showing adequate psychometric properties.

  14. Targeted ethnography as a critical step to inform cultural adaptations of HIV prevention interventions for adults with severe mental illness.

    PubMed

    Wainberg, Milton L; Alfredo González, M; McKinnon, Karen; Elkington, Katherine S; Pinto, Diana; Gruber Mann, Claudio; Mattos, Paulo E

    2007-07-01

    As in other countries worldwide, adults with severe mental illness (SMI) in Brazil are disproportionately infected with HIV relative to the general population. Brazilian psychiatric facilities lack tested HIV prevention interventions. To adapt existing interventions, developed only in the US, we conducted targeted ethnography with adults with SMI and staff from two psychiatric institutions in Brazil. We sought to characterize individual, institutional, and interpersonal factors that may affect HIV risk behavior in this population. We conducted 350 hours of ethnographic field observations in two mental health service settings in Rio de Janeiro, and 9 focus groups (n=72) and 16 key-informant interviews with patients and staff in these settings. Data comprised field notes and audiotapes of all exchanges, which were transcribed, coded, and systematically analyzed. The ethnography identified and/or characterized the institutional culture: (1) patients' risk behaviors; (2) the institutional setting; (3) intervention content; and (4) intervention format and delivery strategies. Targeted ethnography also illuminated broader contextual issues for development and implementation of HIV prevention interventions for adults with SMI in Brazil, including an institutional culture that did not systematically address patients' sexual behavior, sexual health, or HIV sexual risk, yet strongly impacted the structure of patients' sexual networks. Further, ethnography identified the Brazilian concept of "social responsibility" as important to prevention work with psychiatric patients. Targeted ethnography with adults with SMI and institutional staff provided information critical to the adaptation of tested US HIV prevention interventions for Brazilians with SMI.

  15. Application of adaptive boosting to EP-derived multilayer feed-forward neural networks (MLFN) to improve benign/malignant breast cancer classification

    NASA Astrophysics Data System (ADS)

    Land, Walker H., Jr.; Masters, Timothy D.; Lo, Joseph Y.; McKee, Dan

    2001-07-01

    A new neural network technology was developed for improving the benign/malignant diagnosis of breast cancer using mammogram findings. A new paradigm, Adaptive Boosting (AB), uses a markedly different theory in solutioning Computational Intelligence (CI) problems. AB, a new machine learning paradigm, focuses on finding weak learning algorithm(s) that initially need to provide slightly better than random performance (i.e., approximately 55%) when processing a mammogram training set. Then, by successive development of additional architectures (using the mammogram training set), the adaptive boosting process improves the performance of the basic Evolutionary Programming derived neural network architectures. The results of these several EP-derived hybrid architectures are then intelligently combined and tested using a similar validation mammogram data set. Optimization focused on improving specificity and positive predictive value at very high sensitivities, where an analysis of the performance of the hybrid would be most meaningful. Using the DUKE mammogram database of 500 biopsy proven samples, on average this hybrid was able to achieve (under statistical 5-fold cross-validation) a specificity of 48.3% and a positive predictive value (PPV) of 51.8% while maintaining 100% sensitivity. At 97% sensitivity, a specificity of 56.6% and a PPV of 55.8% were obtained.

  16. MycN Is Critical for the Maintenance of Human Embryonic Stem Cell-Derived Neural Crest Stem Cells.

    PubMed

    Zhang, Jie Ting; Weng, Zhi Hui; Tsang, Kam Sze; Tsang, Lai Ling; Chan, Hsiao Chang; Jiang, Xiao Hua

    2016-01-01

    The biologic studies of human neural crest stem cells (hNCSCs) are extremely challenging due to the limited source of hNCSCs as well as ethical and technical issues surrounding isolation of early human embryonic tissues. On the other hand, vast majority of studies on MycN have been conducted in human tumor cells, thus, the role of MycN in normal human neural crest development is completely unknown. In the present study, we determined the role of MycN in hNCSCs isolated from in vitro-differentiating human embryonic stem cells (hESCs). For the first time, we show that suppression of MycN in hNCSCs inhibits cell growth and cell cycle progression. Knockdown of MycN in hNCSCs increases the expression of Cdkn1a, Cdkn2a and Cdkn2b, which encodes the cyclin-dependent kinases p21CIP1, p16 INK4a and p15INK4b. In addition, MycN is involved in the regulation of human sympathetic neurogenesis, as knockdown of MycN enhances the expression of key transcription factors involved in sympathetic neuron differentiation, including Phox2a, Phox2b, Mash1, Hand2 and Gata3. We propose that unlimited source of hNCSCs provides an invaluable platform for the studies of human neural crest development and diseases.

  17. Criticism hurts everybody, praise only some: Common and specific neural responses to approving and disapproving social-evaluative videos.

    PubMed

    Miedl, Stephan F; Blechert, Jens; Klackl, Johannes; Wiggert, Nicole; Reichenberger, Julia; Derntl, Birgit; Wilhelm, Frank H

    2016-05-15

    Social evaluation is a ubiquitous feature of daily interpersonal interactions and can produce strong positive or negative emotional reactions. While previous research has highlighted neural correlates of static or dynamic facial expressions, little is known about neural processing of more naturalistic social interaction simulations or the modulating role of inter-individual differences such as trait fear of negative/positive evaluation. The present fMRI study investigated neural activity of 37 (21 female) healthy participants while watching videos of posers expressing a range of positive, negative, and neutral statements tapping into several basic and social emotions. Unpleasantness ratings linearly increased in response to positive to neutral to negative videos whereas arousal ratings were elevated in both emotional video conditions. At the whole brain level, medial prefrontal and rostral anterior cingulate cortex activated strongly in both emotional conditions which may be attributed to the cognitive processing demands of responding to complex social evaluation. Region of interest analysis for basic emotion processing areas revealed enhanced amygdala activation in both emotional conditions, whereas anterior and posterior insula showed stronger activity during negative evaluations only. Individuals with high fear of positive evaluation were characterized by increased posterior insula activity during positive videos, suggesting heightened interoception. Taken together, these results replicate and extend studies that used facial expression stimuli and reveal neurobiological systems involved in processing of more complex social-evaluative videos. Results also point to vulnerability factors for social-interaction related psychopathologies.

  18. Adaptive Neural Network-Based Event-Triggered Control of Single-Input Single-Output Nonlinear Discrete-Time Systems.

    PubMed

    Sahoo, Avimanyu; Xu, Hao; Jagannathan, Sarangapani

    2016-01-01

    This paper presents a novel adaptive neural network (NN) control of single-input and single-output uncertain nonlinear discrete-time systems under event sampled NN inputs. In this control scheme, the feedback signals are transmitted, and the NN weights are tuned in an aperiodic manner at the event sampled instants. After reviewing the NN approximation property with event sampled inputs, an adaptive state estimator (SE), consisting of linearly parameterized NNs, is utilized to approximate the unknown system dynamics in an event sampled context. The SE is viewed as a model and its approximated dynamics and the state vector, during any two events, are utilized for the event-triggered controller design. An adaptive event-trigger condition is derived by using both the estimated NN weights and a dead-zone operator to determine the event sampling instants. This condition both facilitates the NN approximation and reduces the transmission of feedback signals. The ultimate boundedness of both the NN weight estimation error and the system state vector is demonstrated through the Lyapunov approach. As expected, during an initial online learning phase, events are observed more frequently. Over time with the convergence of the NN weights, the inter-event times increase, thereby lowering the number of triggered events. These claims are illustrated through the simulation results.

  19. Evolvable Neural Software System

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A.

    2009-01-01

    The Evolvable Neural Software System (ENSS) is composed of sets of Neural Basis Functions (NBFs), which can be totally autonomously created and removed according to the changing needs and requirements of the software system. The resulting structure is both hierarchical and self-similar in that a given set of NBFs may have a ruler NBF, which in turn communicates with other sets of NBFs. These sets of NBFs may function as nodes to a ruler node, which are also NBF constructs. In this manner, the synthetic neural system can exhibit the complexity, three-dimensional connectivity, and adaptability of biological neural systems. An added advantage of ENSS over a natural neural system is its ability to modify its core genetic code in response to environmental changes as reflected in needs and requirements. The neural system is fully adaptive and evolvable and is trainable before release. It continues to rewire itself while on the job. The NBF is a unique, bilevel intelligence neural system composed of a higher-level heuristic neural system (HNS) and a lower-level, autonomic neural system (ANS). Taken together, the HNS and the ANS give each NBF the complete capabilities of a biological neural system to match sensory inputs to actions. Another feature of the NBF is the Evolvable Neural Interface (ENI), which links the HNS and ANS. The ENI solves the interface problem between these two systems by actively adapting and evolving from a primitive initial state (a Neural Thread) to a complicated, operational ENI and successfully adapting to a training sequence of sensory input. This simulates the adaptation of a biological neural system in a developmental phase. Within the greater multi-NBF and multi-node ENSS, self-similar ENI s provide the basis for inter-NBF and inter-node connectivity.

  20. An isoform of Nedd4-2 is critically involved in the renal adaptation to high salt intake in mice

    PubMed Central

    Minegishi, Shintaro; Ishigami, Tomoaki; Kino, Tabito; Chen, Lin; Nakashima-Sasaki, Rie; Araki, Naomi; Yatsu, Keisuke; Fujita, Megumi; Umemura, Satoshi

    2016-01-01

    Epithelial sodium channels (ENaCs) play critical roles in the maintenance of fluid and electrolyte homeostasis, and their genetic abnormalities cause one type of hereditary salt-sensitive hypertension, Liddle syndrome. As we reported previously, both human and rodent Nedd4L/Nedd4-2 showed molecular diversity, with and without a C2 domain in their N-terminal. Nedd4L/Nedd4-2 isoforms with a C2 domain are hypothesized to be related closely to ubiquitination of ENaCs. We generated Nedd4-2 C2 domain knockout mice. We demonstrate here that loss of Nedd4-2 C2 isoform causes salt-sensitive hypertension under conditions of a high dietary salt intake in vivo. The knockout mice had reduced urinary sodium excretion, osmotic pressure and increased water intake and urine volume with marked dilatation of cortical tubules while receiving a high salt diet. To the contrary, there was no difference in metabolic data between wild-type and knockout mice receiving a normal control diet. In the absence of Nedd4-2 C2 domain, a high salt intake accelerated ENaC expression. Coimmunoprecipitation studies revealed suppressed ubiquitination for ENaC with a high salt intake. Taken together, our findings demonstrate that during a high oral salt intake the Nedd4-2 C2 protein plays a pivotal role in maintaining adaptive salt handling in the kidney. PMID:27256588

  1. An isoform of Nedd4-2 is critically involved in the renal adaptation to high salt intake in mice.

    PubMed

    Minegishi, Shintaro; Ishigami, Tomoaki; Kino, Tabito; Chen, Lin; Nakashima-Sasaki, Rie; Araki, Naomi; Yatsu, Keisuke; Fujita, Megumi; Umemura, Satoshi

    2016-01-01

    Epithelial sodium channels (ENaCs) play critical roles in the maintenance of fluid and electrolyte homeostasis, and their genetic abnormalities cause one type of hereditary salt-sensitive hypertension, Liddle syndrome. As we reported previously, both human and rodent Nedd4L/Nedd4-2 showed molecular diversity, with and without a C2 domain in their N-terminal. Nedd4L/Nedd4-2 isoforms with a C2 domain are hypothesized to be related closely to ubiquitination of ENaCs. We generated Nedd4-2 C2 domain knockout mice. We demonstrate here that loss of Nedd4-2 C2 isoform causes salt-sensitive hypertension under conditions of a high dietary salt intake in vivo. The knockout mice had reduced urinary sodium excretion, osmotic pressure and increased water intake and urine volume with marked dilatation of cortical tubules while receiving a high salt diet. To the contrary, there was no difference in metabolic data between wild-type and knockout mice receiving a normal control diet. In the absence of Nedd4-2 C2 domain, a high salt intake accelerated ENaC expression. Coimmunoprecipitation studies revealed suppressed ubiquitination for ENaC with a high salt intake. Taken together, our findings demonstrate that during a high oral salt intake the Nedd4-2 C2 protein plays a pivotal role in maintaining adaptive salt handling in the kidney. PMID:27256588

  2. Adaptive neural network tracking control for a class of switched stochastic pure-feedback nonlinear systems with backlash-like hysteresis

    NASA Astrophysics Data System (ADS)

    Niu, Ben; Qin, Tian; Fan, Xiaodong

    2016-10-01

    In this paper, an adaptive neural network tracking control approach is proposed for a class of switched stochastic pure-feedback nonlinear systems with backlash-like hysteresis. In the design procedure, an affine variable is constructed, which avoids the use of the mean value theorem, and the additional first-order low-pass filter is employed to deal with the problem of explosion of complexity. Then, a common Lyapunov function and a state feedback controller are explicitly obtained for all subsystems. It is proved that the proposed controller that guarantees all signals in the closed-loop system are semi-globally uniformly ultimately bounded and the tracking error remains an adjustable neighbourhood of the origin. Finally, simulation results show the effectiveness of the presented control design approach.

  3. Neural networks for aircraft control

    NASA Technical Reports Server (NTRS)

    Linse, Dennis

    1990-01-01

    Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.

  4. A critical review of the allocentric spatial representation and its neural underpinnings: toward a network-based perspective

    PubMed Central

    Ekstrom, Arne D.; Arnold, Aiden E. G. F.; Iaria, Giuseppe

    2014-01-01

    While the widely studied allocentric spatial representation holds a special status in neuroscience research, its exact nature and neural underpinnings continue to be the topic of debate, particularly in humans. Here, based on a review of human behavioral research, we argue that allocentric representations do not provide the kind of map-like, metric representation one might expect based on past theoretical work. Instead, we suggest that almost all tasks used in past studies involve a combination of egocentric and allocentric representation, complicating both the investigation of the cognitive basis of an allocentric representation and the task of identifying a brain region specifically dedicated to it. Indeed, as we discuss in detail, past studies suggest numerous brain regions important to allocentric spatial memory in addition to the hippocampus, including parahippocampal, retrosplenial, and prefrontal cortices. We thus argue that although allocentric computations will often require the hippocampus, particularly those involving extracting details across temporally specific routes, the hippocampus is not necessary for all allocentric computations. We instead suggest that a non-aggregate network process involving multiple interacting brain areas, including hippocampus and extra-hippocampal areas such as parahippocampal, retrosplenial, prefrontal, and parietal cortices, better characterizes the neural basis of spatial representation during navigation. According to this model, an allocentric representation does not emerge from the computations of a single brain region (i.e., hippocampus) nor is it readily decomposable into additive computations performed by separate brain regions. Instead, an allocentric representation emerges from computations partially shared across numerous interacting brain regions. We discuss our non-aggregate network model in light of existing data and provide several key predictions for future experiments. PMID:25346679

  5. Genes encoding critical transcriptional activators for murine neural tube development and human spina bifida: a case-control study

    PubMed Central

    2010-01-01

    Background Spina bifida is a malformation of the neural tube and is the most common of neural tube defects (NTDs). The etiology of spina bifida is largely unknown, although it is thought to be multi-factorial, involving multiple interacting genes and environmental factors. Mutations in transcriptional co-activator genes-Cited2, p300, Cbp, Tfap2α, Carm1 and Cart1 result in NTDs in murine models, thus prompt us to investigate whether homologues of these genes are associated with NTDs in humans. Methods Data and biological samples from 297 spina bifida cases and 300 controls were derived from a population-based case-control study conducted in California. 37 SNPs within CITED2, EP300, CREBBP, TFAP2A, CARM1 and ALX1 were genotyped using an ABI SNPlex assay. Odds ratios and 95% confidence intervals were calculated for alleles, genotypes and haplotypes to evaluate the risk for spina bifida. Results Several SNPs showed increased or decreased risk, including CITED2 rs1131431 (OR = 5.32, 1.04~27.30), EP300 rs4820428 (OR = 1.30, 1.01~1.67), EP300 rs4820429 (OR = 0.50, 0.26~0.50, in whites, OR = 0.7, 0.49~0.99 in all subjects), EP300 rs17002284 (OR = 0.43, 0.22~0.84), TFAP2A rs3798691 (OR = 1.78, 1.13~2.87 in Hispanics), CREBBP rs129986 (OR = 0.27, 0.11~0.69), CARM1 rs17616105 (OR = 0.41, 0.22~0.72 in whites). In addition, one haplotype block in EP300 and one in TFAP2A appeared to be associated with increased risk. Conclusions Modest associations were observed in CITED2, EP300, CREBBP, TFAP2A and CARM1 but not ALX1. However, these modest associations were not statistically significant after correction for multiple comparisons. Searching for potential functional variants and rare causal mutations is warranted in these genes. PMID:20932315

  6. Different neural melatonin-target tissues are critical for encoding and retrieving day length information in Siberian hamsters.

    PubMed

    Teubner, B J W; Freeman, D A

    2007-02-01

    Siberian hamsters exhibit several seasonal rhythms in physiology and behaviour, including reproduction, energy balance, body mass, and pelage colouration. Unambiguous long- and short day lengths stimulate and inhibit reproduction, respectively. Whether gonadal growth or regression occurs in an intermediate day length (e.g. 14 h L : 10 h D; 14L), depends on whether the antecedent day lengths were shorter (10L) or longer (16L). Variations in day length are encoded by the duration of nocturnal pineal melatonin secretion, which is decoded at several neural melatonin target tissues to control testicular structure and function. We assessed participation of three such structures in the acquisition and retrieval of day length information. Elimination of melatonin signalling to the nucleus reuniens (NRe), but not to the suprachiasmatic nucleus (SCN) or paraventricular thalamus (PVt), interfered with the acquisition of a long day reproductive response, whereas the obscuring of melatonin signals to the SCN and the NRe, but not to the PVt, interfered with the photoperiod history response. The SCN and NRe contribute in different ways to the melatonin-based system that mediates seasonal rhythms in male reproduction.

  7. Neural stem cell transplantation at critical period improves learning and memory through restoring synaptic impairment in Alzheimer's disease mouse model.

    PubMed

    Kim, J A; Ha, S; Shin, K Y; Kim, S; Lee, K J; Chong, Y H; Chang, K-A; Suh, Y-H

    2015-06-18

    Alzheimer's disease (AD) is characterized by neuronal loss in several regions of the brain. Recent studies have suggested that stem cell transplantation could serve as a potential therapeutic strategy to halt or ameliorate the inexorable disease progression. However, the optimal stage of the disease for stem cell transplantation to have a therapeutic effect has yet to be determined. Here, we demonstrated that transplantation of neural stem cells into 12-month-old Tg2576 brains markedly improved both cognitive impairments and neuropathological features by reducing β-amyloid processing and upregulating clearance of β-amyloid, secretion of anti-inflammatory cytokines, endogenous neurogenesis, as well as synapse formation. In contrast, the stem cell transplantation did not recover cognitive dysfunction and β-amyloid neuropathology in Tg2576 mice aged 15 months when the memory loss is manifest. Overall, this study underscores that stem cell therapy at optimal time frame is crucial to obtain maximal therapeutic effects that can restore functional deficits or stop the progression of AD.

  8. Neural Flight Control System

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen

    2003-01-01

    The Neural Flight Control System (NFCS) was developed to address the need for control systems that can be produced and tested at lower cost, easily adapted to prototype vehicles and for flight systems that can accommodate damaged control surfaces or changes to aircraft stability and control characteristics resulting from failures or accidents. NFCS utilizes on a neural network-based flight control algorithm which automatically compensates for a broad spectrum of unanticipated damage or failures of an aircraft in flight. Pilot stick and rudder pedal inputs are fed into a reference model which produces pitch, roll and yaw rate commands. The reference model frequencies and gains can be set to provide handling quality characteristics suitable for the aircraft of interest. The rate commands are used in conjunction with estimates of the aircraft s stability and control (S&C) derivatives by a simplified Dynamic Inverse controller to produce virtual elevator, aileron and rudder commands. These virtual surface deflection commands are optimally distributed across the aircraft s available control surfaces using linear programming theory. Sensor data is compared with the reference model rate commands to produce an error signal. A Proportional/Integral (PI) error controller "winds up" on the error signal and adds an augmented command to the reference model output with the effect of zeroing the error signal. In order to provide more consistent handling qualities for the pilot, neural networks learn the behavior of the error controller and add in the augmented command before the integrator winds up. In the case of damage sufficient to affect the handling qualities of the aircraft, an Adaptive Critic is utilized to reduce the reference model frequencies and gains to stay within a flyable envelope of the aircraft.

  9. Hysteresis compensation of the piezoelectric ceramic actuators-based tip/tilt mirror with a neural network method in adaptive optics

    NASA Astrophysics Data System (ADS)

    Wang, Chongchong; Wang, Yukun; Hu, Lifa; Wang, Shaoxin; Cao, Zhaoliang; Mu, Quanquan; Li, Dayu; Yang, Chengliang; Xuan, Li

    2016-05-01

    The intrinsic hysteresis nonlinearity of the piezo-actuators can severely degrade the positioning accuracy of a tip-tilt mirror (TTM) in an adaptive optics system. This paper focuses on compensating this hysteresis nonlinearity by feed-forward linearization with an inverse hysteresis model. This inverse hysteresis model is based on the classical Presiach model, and the neural network (NN) is used to describe the hysteresis loop. In order to apply it in the real-time adaptive correction, an analytical nonlinear function derived from the NN is introduced to compute the inverse hysteresis model output instead of the time-consuming NN simulation process. Experimental results show that the proposed method effectively linearized the TTM behavior with the static hysteresis nonlinearity of TTM reducing from 15.6% to 1.4%. In addition, the tip-tilt tracking experiments using the integrator with and without hysteresis compensation are conducted. The wavefront tip-tilt aberration rejection ability of the TTM control system is significantly improved with the -3 dB error rejection bandwidth increasing from 46 to 62 Hz.

  10. Is neural Darwinism Darwinism?

    PubMed

    van Belle, T

    1997-01-01

    Neural Darwinism is a theory of cognition developed by Gerald Edelman along with George Reeke and Olaf Sporns at Rockefeller University. As its name suggests, neural Darwinism is modeled after biological Darwinism, and its authors assert that the two processes are strongly analogous. both operate on variation in a population, amplifying the more adaptive individuals. However, from a computational perspective, neural Darwinism is quite different from other models of natural selection, such as genetic algorithms. The individuals of neural Darwinism do not replicate, thus robbing the process of the capacity to explore new solutions over time and ultimately reducing it to a random search. Because neural Darwinism does not have the computational power of a truly Darwinian process, it is misleading to label it as such. to illustrate this disparity in adaptive power, one of Edelman's early computer experiments, Darwin I, is revisited, and it is shown that adding replication greatly improves the adaptive power of the system.

  11. Critical analysis of dimension reduction by a moment closure method in a population density approach to neural network modeling.

    PubMed

    Ly, Cheng; Tranchina, Daniel

    2007-08-01

    Computational techniques within the population density function (PDF) framework have provided time-saving alternatives to classical Monte Carlo simulations of neural network activity. Efficiency of the PDF method is lost as the underlying neuron model is made more realistic and the number of state variables increases. In a detailed theoretical and computational study, we elucidate strengths and weaknesses of dimension reduction by a particular moment closure method (Cai, Tao, Shelley, & McLaughlin, 2004; Cai, Tao, Rangan, & McLaughlin, 2006) as applied to integrate-and-fire neurons that receive excitatory synaptic input only. When the unitary postsynaptic conductance event has a single-exponential time course, the evolution equation for the PDF is a partial differential integral equation in two state variables, voltage and excitatory conductance. In the moment closure method, one approximates the conditional kth centered moment of excitatory conductance given voltage by the corresponding unconditioned moment. The result is a system of k coupled partial differential equations with one state variable, voltage, and k coupled ordinary differential equations. Moment closure at k = 2 works well, and at k = 3 works even better, in the regime of high dynamically varying synaptic input rates. Both closures break down at lower synaptic input rates. Phase-plane analysis of the k = 2 problem with typical parameters proves, and reveals why, no steady-state solutions exist below a synaptic input rate that gives a firing rate of 59 s(1) in the full 2D problem. Closure at k = 3 fails for similar reasons. Low firing-rate solutions can be obtained only with parameters for the amplitude or kinetics (or both) of the unitary postsynaptic conductance event that are on the edge of the physiological range. We conclude that this dimension-reduction method gives ill-posed problems for a wide range of physiological parameters, and we suggest future directions. PMID:17571938

  12. Verification and Validation of Adaptive and Intelligent Systems with Flight Test Results

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Larson, Richard R.

    2009-01-01

    F-15 IFCS project goals are: a) Demonstrate Control Approaches that can Efficiently Optimize Aircraft Performance in both Normal and Failure Conditions [A] & [B] failures. b) Advance Neural Network-Based Flight Control Technology for New Aerospace Systems Designs with a Pilot in the Loop. Gen II objectives include; a) Implement and Fly a Direct Adaptive Neural Network Based Flight Controller; b) Demonstrate the Ability of the System to Adapt to Simulated System Failures: 1) Suppress Transients Associated with Failure; 2) Re-Establish Sufficient Control and Handling of Vehicle for Safe Recovery. c) Provide Flight Experience for Development of Verification and Validation Processes for Flight Critical Neural Network Software.

  13. The Critical Role of Protein Arginine Methyltransferase prmt8 in Zebrafish Embryonic and Neural Development Is Non-Redundant with Its Paralogue prmt1

    PubMed Central

    Liu, Yu-Fang; Cheng, Yi-Chuan; Hung, Chuan-Mao; Lee, Yi-Jen; Pan, Huichin; Li, Chuan

    2013-01-01

    Protein arginine methyltransferase (PRMT) 1 is the most conserved and widely distributed PRMT in eukaryotes. PRMT8 is a vertebrate-restricted paralogue of PRMT1 with an extra N-terminal sequence and brain-specific expression. We use zebrafish (Danio rerio) as a vertebrate model to study PRMT8 function and putative redundancy with PRMT1. The transcripts of zebrafish prmt8 were specifically expressed in adult zebrafish brain and ubiquitously expressed from zygotic to early segmentation stage before the neuronal development. Whole-mount in situ hybridization revealed ubiquitous prmt8 expression pattern during early embryonic stages, similar to that of prmt1. Knockdown of prmt8 with antisense morpholino oligonucleotide phenocopied prmt1-knockdown, with convergence/extension defects at gastrulation. Other abnormalities observed later include short body axis, curled tails, small and malformed brain and eyes. Catalytically inactive prmt8 failed to complement the morphants, indicating the importance of methyltransferase activity. Full-length prmt8 but not prmt1 cRNA can rescue the phenotypic changes. Nevertheless, cRNA encoding Prmt1 fused with the N-terminus of Prmt8 can rescue the prmt8 morphants. In contrast, N-terminus- deleted but not full-length prmt8 cRNA can rescue the prmt1 morphants as efficiently as prmt1 cRNA. Abnormal brain morphologies illustrated with brain markers and loss of fluorescent neurons in a transgenic fish upon prmt8 knockdown confirm the critical roles of prmt8 in neural development. In summery, our study is the first report showing the expression and function of prmt8 in early zebrafish embryogenesis. Our results indicate that prmt8 may play important roles non-overlapping with prmt1 in embryonic and neural development depending on its specific N-terminus. PMID:23554853

  14. A Boolean Function for Neural Induction Reveals a Critical Role of Direct Intercellular Interactions in Patterning the Ectoderm of the Ascidian Embryo.

    PubMed

    Ohta, Naoyuki; Waki, Kana; Mochizuki, Atsushi; Satou, Yutaka

    2015-12-01

    A complex system of multiple signaling molecules often produce differential gene expression patterns in animal embryos. In the ascidian embryo, four signaling ligands, Ephrin-A.d (Efna.d), Fgf9/16/20, Admp, and Gdf1/3-r, coordinately induce Otx expression in the neural lineage at the 32-cell stage. However, it has not been determined whether differential inputs of all of these signaling pathways are really necessary. It is possible that differential activation of one of these signaling pathways is sufficient and the remaining signaling pathways are activated in all cells at similar levels. To address this question, we developed a parameter-free method for determining a Boolean function for Otx expression in the present study. We treated activities of signaling pathways as Boolean values, and we also took all possible patterns of signaling gradients into consideration. We successfully determined a Boolean function that explains Otx expression in the animal hemisphere of wild-type and morphant embryos at the 32-cell stage. This Boolean function was not inconsistent with three sensing patterns, which represented whether or not individual cells received sufficient amounts of the signaling molecules. These sensing patterns all indicated that differential expression of Otx in the neural lineage is primarily determined by Efna.d, but not by differential inputs of Fgf9/16/20, Admp, and Gdf1/3-r signaling. To confirm this hypothesis experimentally, we simultaneously knocked-down Admp, Gdf1/3-r, and Fgf9/16/20, and treated this triple morphant with recombinant bFGF and BMP4 proteins, which mimic Fgf9/16/20 and Admp/Gdf1/3-r activity, respectively. Although no differential inputs of Admp, Gdf1/3-r and Fgf9/16/20 signaling were expected under this experimental condition, Otx was expressed specifically in the neural lineage. Thus, direct cell-cell interactions through Efna.d play a critical role in patterning the ectoderm of the early ascidian embryo. PMID:26714026

  15. A Boolean Function for Neural Induction Reveals a Critical Role of Direct Intercellular Interactions in Patterning the Ectoderm of the Ascidian Embryo.

    PubMed

    Ohta, Naoyuki; Waki, Kana; Mochizuki, Atsushi; Satou, Yutaka

    2015-12-01

    A complex system of multiple signaling molecules often produce differential gene expression patterns in animal embryos. In the ascidian embryo, four signaling ligands, Ephrin-A.d (Efna.d), Fgf9/16/20, Admp, and Gdf1/3-r, coordinately induce Otx expression in the neural lineage at the 32-cell stage. However, it has not been determined whether differential inputs of all of these signaling pathways are really necessary. It is possible that differential activation of one of these signaling pathways is sufficient and the remaining signaling pathways are activated in all cells at similar levels. To address this question, we developed a parameter-free method for determining a Boolean function for Otx expression in the present study. We treated activities of signaling pathways as Boolean values, and we also took all possible patterns of signaling gradients into consideration. We successfully determined a Boolean function that explains Otx expression in the animal hemisphere of wild-type and morphant embryos at the 32-cell stage. This Boolean function was not inconsistent with three sensing patterns, which represented whether or not individual cells received sufficient amounts of the signaling molecules. These sensing patterns all indicated that differential expression of Otx in the neural lineage is primarily determined by Efna.d, but not by differential inputs of Fgf9/16/20, Admp, and Gdf1/3-r signaling. To confirm this hypothesis experimentally, we simultaneously knocked-down Admp, Gdf1/3-r, and Fgf9/16/20, and treated this triple morphant with recombinant bFGF and BMP4 proteins, which mimic Fgf9/16/20 and Admp/Gdf1/3-r activity, respectively. Although no differential inputs of Admp, Gdf1/3-r and Fgf9/16/20 signaling were expected under this experimental condition, Otx was expressed specifically in the neural lineage. Thus, direct cell-cell interactions through Efna.d play a critical role in patterning the ectoderm of the early ascidian embryo.

  16. Discrete neural dynamic programming in wheeled mobile robot control

    NASA Astrophysics Data System (ADS)

    Hendzel, Zenon; Szuster, Marcin

    2011-05-01

    In this paper we propose a discrete algorithm for a tracking control of a two-wheeled mobile robot (WMR), using an advanced Adaptive Critic Design (ACD). We used Dual-Heuristic Programming (DHP) algorithm, that consists of two parametric structures implemented as Neural Networks (NNs): an actor and a critic, both realized in a form of Random Vector Functional Link (RVFL) NNs. In the proposed algorithm the control system consists of the DHP adaptive critic, a PD controller and a supervisory term, derived from the Lyapunov stability theorem. The supervisory term guaranties a stable realization of a tracking movement in a learning phase of the adaptive critic structure and robustness in face of disturbances. The discrete tracking control algorithm works online, uses the WMR model for a state prediction and does not require a preliminary learning. Verification has been conducted to illustrate the performance of the proposed control algorithm, by a series of experiments on the WMR Pioneer 2-DX.

  17. Multiobjective algebraic synthesis of neural control systems by implicit model following.

    PubMed

    Ferrari, Silvia

    2009-03-01

    The advantages brought about by using classical linear control theory in conjunction with neural approximators have long been recognized in the literature. In particular, using linear controllers to obtain the starting neural control design has been shown to be a key step for the successful development and implementation of adaptive-critic neural controllers. Despite their adaptive capabilities, neural controllers are often criticized for not providing the same performance and stability guarantees as classical linear designs. Therefore, this paper develops an algebraic synthesis procedure for designing dynamic output-feedback neural controllers that are closed-loop stable and meet the same performance objectives as any classical linear design. The performance synthesis problem is addressed by deriving implicit model-following algebraic relationships between model matrices, obtained from the classical design, and the neural control parameters. Additional linear matrix inequalities (LMIs) conditions for closed-loop exponential stability of the neural controller are derived using existing integral quadratic constraints (IQCs) for operators with repeated slope-restricted nonlinearities. The approach is demonstrated by designing a recurrent neural network controller for a highly maneuverable tailfin-controlled missile that meets multiple design objectives, including pole placement for transient tuning, H(infinity) and H(2) performance in the presence of parameter uncertainty, and command-input tracking. PMID:19203887

  18. Cascaded neural networks for sequenced propagation estimation, multiuser detection, and adaptive radio resource control of third-generation wireless networks for multimedia services

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    1999-03-01

    A hybrid neural network approach is presented to estimate radio propagation characteristics and multiuser interference and to evaluate their combined impact on throughput, latency and information loss in third-generation (3G) wireless networks. The latter three performance parameters influence the quality of service (QoS) for multimedia services under consideration for 3G networks. These networks, based on a hierarchical architecture of overlaying macrocells on top of micro- and picocells, are planned to operate in mobile urban and indoor environments with service demands emanating from circuit-switched, packet-switched and satellite-based traffic sources. Candidate radio interfaces for these networks employ a form of wideband CDMA in 5-MHz and wider-bandwidth channels, with possible asynchronous operation of the mobile subscribers. The proposed neural network (NN) architecture allocates network resources to optimize QoS metrics. Parameters of the radio propagation channel are estimated, followed by control of an adaptive antenna array at the base station to minimize interference, and then joint multiuser detection is performed at the base station receiver. These adaptive processing stages are implemented as a sequence of NN techniques that provide their estimates as inputs to a final- stage Kohonen self-organizing feature map (SOFM). The SOFM optimizes the allocation of available network resources to satisfy QoS requirements for variable-rate voice, data and video services. As the first stage of the sequence, a modified feed-forward multilayer perceptron NN is trained on the pilot signals of the mobile subscribers to estimate the parameters of shadowing, multipath fading and delays on the uplinks. A recurrent NN (RNN) forms the second stage to control base stations' adaptive antenna arrays to minimize intra-cell interference. The third stage is based on a Hopfield NN (HNN), modified to detect multiple users on the uplink radio channels to mitigate multiaccess

  19. A test of the critical assumption of the sensory bias model for the evolution of female mating preference using neural networks.

    PubMed

    Fuller, Rebecca C

    2009-07-01

    The sensory bias model for the evolution of mating preferences states that mating preferences evolve as correlated responses to selection on nonmating behaviors sharing a common sensory system. The critical assumption is that pleiotropy creates genetic correlations that affect the response to selection. I simulated selection on populations of neural networks to test this. First, I selected for various combinations of foraging and mating preferences. Sensory bias predicts that populations with preferences for like-colored objects (red food and red mates) should evolve more readily than preferences for differently colored objects (red food and blue mates). Here, I found no evidence for sensory bias. The responses to selection on foraging and mating preferences were independent of one another. Second, I selected on foraging preferences alone and asked whether there were correlated responses for increased mating preferences for like-colored mates. Here, I found modest evidence for sensory bias. Selection for a particular foraging preference resulted in increased mating preference for similarly colored mates. However, the correlated responses were small and inconsistent. Selection on foraging preferences alone may affect initial levels of mating preferences, but these correlations did not constrain the joint evolution of foraging and mating preferences in these simulations.

  20. Common Features of Neural Activity during Singing and Sleep Periods in a Basal Ganglia Nucleus Critical for Vocal Learning in a Juvenile Songbird

    PubMed Central

    Yanagihara, Shin; Hessler, Neal A.

    2011-01-01

    Reactivations of waking experiences during sleep have been considered fundamental neural processes for memory consolidation. In songbirds, evidence suggests the importance of sleep-related neuronal activity in song system motor pathway nuclei for both juvenile vocal learning and maintenance of adult song. Like those in singing motor nuclei, neurons in the basal ganglia nucleus Area X, part of the basal ganglia-thalamocortical circuit essential for vocal plasticity, exhibit singing-related activity. It is unclear, however, whether Area X neurons show any distinctive spiking activity during sleep similar to that during singing. Here we demonstrate that, during sleep, Area X pallidal neurons exhibit phasic spiking activity, which shares some firing properties with activity during singing. Shorter interspike intervals that almost exclusively occurred during singing in awake periods were also observed during sleep. The level of firing variability was consistently higher during singing and sleep than during awake non-singing states. Moreover, deceleration of firing rate, which is considered to be an important firing property for transmitting signals from Area X to the thalamic nucleus DLM, was observed mainly during sleep as well as during singing. These results suggest that songbird basal ganglia circuitry may be involved in the off-line processing potentially critical for vocal learning during sensorimotor learning phase. PMID:21991379

  1. Encoding of event timing in the phase of neural oscillations.

    PubMed

    Kösem, Anne; Gramfort, Alexandre; van Wassenhove, Virginie

    2014-05-15

    Time perception is a critical component of conscious experience. To be in synchrony with the environment, the brain must deal not only with differences in the speed of light and sound but also with its computational and neural transmission delays. Here, we asked whether the brain could actively compensate for temporal delays by changing its processing time. Specifically, can changes in neural timing or in the phase of neural oscillation index perceived timing? For this, a lag-adaptation paradigm was used to manipulate participants' perceived audiovisual (AV) simultaneity of events while they were recorded with magnetoencephalography (MEG). Desynchronized AV stimuli were presented rhythmically to elicit a robust 1 Hz frequency-tagging of auditory and visual cortical responses. As participants' perception of AV simultaneity shifted, systematic changes in the phase of entrained neural oscillations were observed. This suggests that neural entrainment is not a passive response and that the entrained neural oscillation shifts in time. Crucially, our results indicate that shifts in neural timing in auditory cortices linearly map participants' perceived AV simultaneity. To our knowledge, these results provide the first mechanistic evidence for active neural compensation in the encoding of sensory event timing in support of the emergence of time awareness. PMID:24531044

  2. Genetic algorithm-artificial neural network and adaptive neuro-fuzzy inference system modeling of antibacterial activity of annatto dye on Salmonella enteritidis.

    PubMed

    Yolmeh, Mahmoud; Habibi Najafi, Mohammad B; Salehi, Fakhreddin

    2014-01-01

    Annatto is commonly used as a coloring agent in the food industry and has antimicrobial and antioxidant properties. In this study, genetic algorithm-artificial neural network (GA-ANN) and adaptive neuro-fuzzy inference system (ANFIS) models were used to predict the effect of annatto dye on Salmonella enteritidis in mayonnaise. The GA-ANN and ANFIS were fed with 3 inputs of annatto dye concentration (0, 0.1, 0.2 and 0.4%), storage temperature (4 and 25°C) and storage time (1-20 days) for prediction of S. enteritidis population. Both models were trained with experimental data. The results showed that the annatto dye was able to reduce of S. enteritidis and its effect was stronger at 25°C than 4°C. The developed GA-ANN, which included 8 hidden neurons, could predict S. enteritidis population with correlation coefficient of 0.999. The overall agreement between ANFIS predictions and experimental data was also very good (r=0.998). Sensitivity analysis results showed that storage temperature was the most sensitive factor for prediction of S. enteritidis population. PMID:24566279

  3. Toward a new task assignment and path evolution (TAPE) for missile defense system (MDS) using intelligent adaptive SOM with recurrent neural networks (RNNs).

    PubMed

    Wang, Chi-Hsu; Chen, Chun-Yao; Hung, Kun-Neng

    2015-06-01

    In this paper, a new adaptive self-organizing map (SOM) with recurrent neural network (RNN) controller is proposed for task assignment and path evolution of missile defense system (MDS). We address the problem of N agents (defending missiles) and D targets (incoming missiles) in MDS. A new RNN controller is designed to force an agent (or defending missile) toward a target (or incoming missile), and a monitoring controller is also designed to reduce the error between RNN controller and ideal controller. A new SOM with RNN controller is then designed to dispatch agents to their corresponding targets by minimizing total damaging cost. This is actually an important application of the multiagent system. The SOM with RNN controller is the main controller. After task assignment, the weighting factors of our new SOM with RNN controller are activated to dispatch the agents toward their corresponding targets. Using the Lyapunov constraints, the weighting factors for the proposed SOM with RNN controller are updated to guarantee the stability of the path evolution (or planning) system. Excellent simulations are obtained using this new approach for MDS, which show that our RNN has the lowest average miss distance among the several techniques.

  4. Adaptive Neural Network Dynamic Surface Control for a Class of Time-Delay Nonlinear Systems With Hysteresis Inputs and Dynamic Uncertainties.

    PubMed

    Zhang, Xiuyu; Su, Chun-Yi; Lin, Yan; Ma, Lianwei; Wang, Jianguo

    2015-11-01

    In this paper, an adaptive neural network (NN) dynamic surface control is proposed for a class of time-delay nonlinear systems with dynamic uncertainties and unknown hysteresis. The main advantages of the developed scheme are: 1) NNs are utilized to approximately describe nonlinearities and unknown dynamics of the nonlinear time-delay systems, making it possible to deal with unknown nonlinear uncertain systems and pursue the L∞ performance of the tracking error; 2) using the finite covering lemma together with the NNs approximators, the Krasovskii function is abandoned, which paves the way for obtaining the L∞ performance of the tracking error; 3) by introducing an initializing technique, the L∞ performance of the tracking error can be achieved; 4) using a generalized Prandtl-Ishlinskii (PI) model, the limitation of the traditional PI hysteresis model is overcome; and 5) by applying the Young's inequalities to deal with the weight vector of the NNs, the updated laws are needed only at the last controller design step with only two parameters being estimated, which reduces the computational burden. It is proved that the proposed scheme can guarantee semiglobal stability of the closed-loop system and achieves the L∞ performance of the tracking error. Simulation results for general second-order time-delay nonlinear systems and the tuning metal cutting system are presented to demonstrate the efficiency of the proposed method.

  5. Power spectrum scale invariance quantifies limbic dysregulation in trait anxious adults using fMRI: adapting methods optimized for characterizing autonomic dysregulation to neural dynamic timeseries.

    PubMed Central

    Tolkunov, Denis; Rubin, Denis; Mujica-Parodi, LR

    2010-01-01

    In a well-regulated control system, excitatory and inhibitory components work closely together with minimum lag; in response to inputs of finite duration, outputs should show rapid rise and, following the input's termination, immediate return to baseline. The efficiency of this response can be quantified using the power spectrum density's scaling parameter β, a measure of self-similarity, applied to the first-derivative of the raw signal. In this study, we adapted power spectrum density methods, previously used to quantify autonomic dysregulation (heart rate variability), to neural time-series obtained via functional MRI. The negative feedback loop we investigated was the limbic system, using affect-valent faces as stimuli. We hypothesized that trait anxiety would be related to efficiency of regulation of limbic responses, as quantified by power law scaling of fMRI time series. Our results supported this hypothesis, showing moderate to strong correlations of β (r = 0.4–0.54) for the amygdala, orbitofrontal cortex, hippocampus, superior temporal gyrus, posterior insula, and anterior cingulate. Strong anticorrelations were also found between the amygdala's β and wake heart rate variability (r = −0.61), suggesting a robust relationship between dysregulated limbic outputs and their autonomic consequences. PMID:20025979

  6. The Neural Correlates of Deficient Error Awareness in Attention-Deficit Hyperactivity Disorder (ADHD)

    ERIC Educational Resources Information Center

    O'Connell, Redmond G.; Bellgrove, Mark A.; Dockree, Paul M.; Lau, Adam; Hester, Robert; Garavan, Hugh; Fitzgerald, Michael; Foxe, John J.; Robertson, Ian H.

    2009-01-01

    The ability to detect and correct errors is critical to adaptive control of behaviour and represents a discrete neuropsychological function. A number of studies have highlighted that attention-deficit hyperactivity disorder (ADHD) is associated with abnormalities in behavioural and neural responsiveness to performance errors. One limitation of…

  7. Graybox and adaptative dynamic neural network identification models to infer the steady state efficiency of solar thermal collectors starting from the transient condition

    SciTech Connect

    Roberto, Baccoli; Ubaldo, Carlini; Stefano, Mariotti; Roberto, Innamorati; Elisa, Solinas; Paolo, Mura

    2010-06-15

    This paper deals with the development of methods for non steady state test of solar thermal collectors. Our goal is to infer performances in steady-state conditions in terms of the efficiency curve when measures in transient conditions are the only ones available. We take into consideration the method of identification of a system in dynamic conditions by applying a Graybox Identification Model and a Dynamic Adaptative Linear Neural Network (ALNN) model. The study targets the solar collector with evacuated pipes, such as Dewar pipes. The mathematical description that supervises the functioning of the solar collector in transient conditions is developed using the equation of the energy balance, with the aim of determining the order and architecture of the two models. The input and output vectors of the two models are constructed, considering the measures of 4 days of solar radiation, flow mass, environment and heat-transfer fluid temperature in the inlet and outlet from the thermal solar collector. The efficiency curves derived from the two models are detected in correspondence to the test and validation points. The two synthetic simulated efficiency curves are compared with the actual efficiency curve certified by the Swiss Institute Solartechnik Puffung Forschung which tested the solar collector performance in steady-state conditions according to the UNI-EN 12975 standard. An acquisition set of measurements of only 4 days in the transient condition was enough to trace through a Graybox State Space Model the efficiency curve of the tested solar thermal collector, with a relative error of synthetic values with respect to efficiency certified by SPF, lower than 0.5%, while with the ALNN model the error is lower than 2.2% with respect to certified one. (author)

  8. Long-term, passive exposure to non-traumatic acoustic noise induces neural adaptation in the adult rat medial geniculate body and auditory cortex.

    PubMed

    Lau, Condon; Zhang, Jevin W; McPherson, Bradley; Pienkowski, Martin; Wu, Ed X

    2015-02-15

    Exposure to loud sounds can lead to permanent hearing loss, i.e., the elevation of hearing thresholds. Exposure at more moderate sound pressure levels (SPLs) (non-traumatic and within occupational limits) may not elevate thresholds, but could in the long-term be detrimental to speech intelligibility by altering its spectrotemporal representation in the central auditory system. In support of this, electrophysiological and behavioral changes following long-term, passive (no conditioned learning) exposure at moderate SPLs have recently been observed in adult animals. To assess the potential effects of moderately loud noise on the entire auditory brain, we employed functional magnetic resonance imaging (fMRI) to study noise-exposed adult rats. We find that passive, pulsed broadband noise exposure for two months at 65 dB SPL leads to a decrease of the sound-evoked blood oxygenation level-dependent fMRI signal in the thalamic medial geniculate body (MGB) and in the auditory cortex (AC). This points to the thalamo-cortex as the site of the neural adaptation to the moderately noisy environment. The signal reduction is statistically significant during 10 Hz pulsed acoustic stimulation (MGB: p<0.05, AC: p<10(-4)), but not during 5 Hz stimulation. This indicates that noise exposure has a greater effect on the processing of higher pulse rate sounds. This study has enhanced our understanding of functional changes following exposure by mapping changes across the entire auditory brain. These findings have important implications for speech processing, which depends on accurate processing of sounds with a wide spectrum of pulse rates.

  9. A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region

    NASA Astrophysics Data System (ADS)

    He, Zhibin; Wen, Xiaohu; Liu, Hu; Du, Jun

    2014-02-01

    Data driven models are very useful for river flow forecasting when the underlying physical relationships are not fully understand, but it is not clear whether these data driven models still have a good performance in the small river basin of semiarid mountain regions where have complicated topography. In this study, the potential of three different data driven methods, artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for forecasting river flow in the semiarid mountain region, northwestern China. The models analyzed different combinations of antecedent river flow values and the appropriate input vector has been selected based on the analysis of residuals. The performance of the ANN, ANFIS and SVM models in training and validation sets are compared with the observed data. The model which consists of three antecedent values of flow has been selected as the best fit model for river flow forecasting. To get more accurate evaluation of the results of ANN, ANFIS and SVM models, the four quantitative standard statistical performance evaluation measures, the coefficient of correlation (R), root mean squared error (RMSE), Nash-Sutcliffe efficiency coefficient (NS) and mean absolute relative error (MARE), were employed to evaluate the performances of various models developed. The results indicate that the performance obtained by ANN, ANFIS and SVM in terms of different evaluation criteria during the training and validation period does not vary substantially; the performance of the ANN, ANFIS and SVM models in river flow forecasting was satisfactory. A detailed comparison of the overall performance indicated that the SVM model performed better than ANN and ANFIS in river flow forecasting for the validation data sets. The results also suggest that ANN, ANFIS and SVM method can be successfully applied to establish river flow with complicated topography forecasting models in the semiarid mountain regions.

  10. Comparative structure-toxicity relationship study of substituted benzenes to Tetrahymena pyriformis using shuffling-adaptive neuro fuzzy inference system and artificial neural networks.

    PubMed

    Jalali-Heravi, Mehdi; Kyani, Anahita

    2008-06-01

    The purpose of this study was to develop the structure-toxicity relationships for a large group of 268 substituted benzene to the ciliate Tetrahymena pyriformis using mechanistically interpretable descriptors. The shuffling-adaptive neuro fuzzy inference system (Shuffling-ANFIS) has been successfully applied to select the important factors affecting the toxicity of substituted benzenes to T. pyriformis. The results of the proposed model were compared with the model of linear-free energy response surface and also the principal component analysis Bayesian-regularized neural network (PCA-BRANN) trained using the same data. The presented model shows a better statistical parameter in comparison with the previous models. The results of the model are promising and descriptive. Five descriptors of octanol-water partition coefficient (logP), bond information content (BIC0), number of R-CX-R (C-026), eigenvalue sum from Z weighted distance matrix (SEigZ) and fragment based polar surface area (PSA) selected by Shuffling-ANFIS reveal the role of hydrophobicity, electronic and steric interactions in the mechanism of toxic action. Sequential zeroing of weights (SZW) as a sensitivity analysis method revealed that the hydrophobicity and electronic interactions play a major role in toxicity of these compounds. Satisfactory results (q(2)=0.828 and RMSE=0.348) in comparison with the previous works indicate that the Shuffling-ANFIS-ANN technique is able to model a diverse chemical class with more than one mechanism of toxicity by using simple and interpretable descriptors. Shuffling-ANFIS can be used as powerful feature selection technique, because its application in prediction of toxicity potency results in good statistical and interpretable physiochemical parameters. PMID:18499226

  11. p21Cip1 plays a critical role in the physiological adaptation to fasting through activation of PPARα

    PubMed Central

    Lopez-Guadamillas, Elena; Fernandez-Marcos, Pablo J.; Pantoja, Cristina; Muñoz-Martin, Maribel; Martínez, Dolores; Gómez-López, Gonzalo; Campos-Olivas, Ramón; Valverde, Angela M.; Serrano, Manuel

    2016-01-01

    Fasting is a physiological stress that elicits well-known metabolic adaptations, however, little is known about the role of stress-responsive tumor suppressors in fasting. Here, we have examined the expression of several tumor suppressors upon fasting in mice. Interestingly, p21 mRNA is uniquely induced in all the tissues tested, particularly in liver and muscle (>10 fold), and this upregulation is independent of p53. Remarkably, in contrast to wild-type mice, p21-null mice become severely morbid after prolonged fasting. The defective adaptation to fasting of p21-null mice is associated to elevated energy expenditure, accelerated depletion of fat stores, and premature activation of protein catabolism in the muscle. Analysis of the liver transcriptome and cell-based assays revealed that the absence of p21 partially impairs the transcriptional program of PPARα, a key regulator of fasting metabolism. Finally, treatment of p21-null mice with a PPARα agonist substantially protects them from their accelerated loss of fat upon fasting. We conclude that p21 plays a relevant role in fasting adaptation through the positive regulation of PPARα. PMID:27721423

  12. The anatomy of the bifurcated neural spine and its occurrence within Tetrapoda.

    PubMed

    Woodruff, D Cary

    2014-09-01

    Vertebral neural spine bifurcation has been historically treated as largely restrictive to sauropodomorph dinosaurs; wherein it is inferred to be an adaptation in response to the increasing weight from the horizontally extended cervical column. Because no extant terrestrial vertebrates have massive, horizontally extended necks, extant forms with large cranial masses were examined for the presence of neural spine bifurcation. Here, I report for the first time on the soft tissue surrounding neural spine bifurcation in a terrestrial quadruped through the dissection of three Ankole-Watusi cattle. With horns weighing up to a combined 90 kg, the Ankole-Watusi is unlike any other breed of cattle in terms of cranial weight and presence of neural spine bifurcation. Using the Ankole-Watusi as a model, it appears that neural spine bifurcation plays a critical role in supporting a large mobile weight adjacent to the girdles. In addition to neural spine bifurcation being recognized within nonavian dinosaurs, this vertebral feature is also documented within many members of temnospondyls, captorhinids, seymouriamorphs, diadectomorphs, Aves, marsupials, artiodactyls, perissodactyls, and Primates, amongst others. This phylogenetic distribution indicates that spine bifurcation is more common than previously thought, and that this vertebral adaptation has contributed throughout the evolutionary history of tetrapods. Neural spine bifurcation should now be recognized as an anatomical component adapted by some vertebrates to deal with massive, horizontal, mobile weights adjacent the girdles.

  13. Playful and Mindful Interactions in the Recursive Adaptations of the Zone of Proximal Development: A Critical Complexity Science Approach

    ERIC Educational Resources Information Center

    Raia, Federica; Deng, Mario C.

    2011-01-01

    We discuss Konstantinos Alexakos, Jayson Jones and Victor Rodriguez's hermeneutic study of formation and function of kinship-like relationships among inner city male students of color in a college physics classroom. From our Critical Complexity Science framework we first discuss the reading "erlebnisse" of students laughing at and with each other…

  14. Evidence against a critical role of CB1 receptors in adaptation of the hypothalamic-pituitary-adrenal axis and other consequences of daily repeated stress.

    PubMed

    Rabasa, Cristina; Pastor-Ciurana, Jordi; Delgado-Morales, Raúl; Gómez-Román, Almudena; Carrasco, Javier; Gagliano, Humberto; García-Gutiérrez, María S; Manzanares, Jorge; Armario, Antonio

    2015-08-01

    There is evidence that endogenous cannabinoids (eCBs) play a role in the control of the hypothalamic-pituitary-adrenal (HPA) axis, although they appear to have dual, stimulatory and inhibitory, effects. Recent data in rats suggest that eCBs, acting through CB1 receptors (CB1R), may be involved in adaptation of the HPA axis to daily repeated stress. In the present study we analyze this issue in male mice and rats. Using a knock-out mice for the CB1 receptor (CB1-/-) we showed that mutant mice presented similar adrenocorticotropic hormone (ACTH) response to the first IMO as wild-type mice. Daily repeated exposure to 1h of immobilization reduced the ACTH response to the stressor, regardless of the genotype, demonstrating that adaptation occurred to the same extent in absence of CB1R. Prototypical changes observed after repeated stress such as enhanced corticotropin releasing factor (CRH) gene expression in the paraventricular nucleus of the hypothalamus, impaired body weight gain and reduced thymus weight were similarly observed in both genotypes. The lack of effect of CB1R in the expression of HPA adaptation to another similar stressor (restraint) was confirmed in wild-type CD1 mice by the lack of effect of the CB1R antagonist AM251 just before the last exposure to stress. Finally, the latter drug did not blunt the HPA, glucose and behavioral adaptation to daily repeated forced swim in rats. Thus, the present results indicate that CB1R is not critical for overall effects of daily repeated stress or proper adaptation of the HPA axis in mice and rats.

  15. Contemporary approaches to neural circuit manipulation and mapping: focus on reward and addiction.

    PubMed

    Saunders, Benjamin T; Richard, Jocelyn M; Janak, Patricia H

    2015-09-19

    Tying complex psychological processes to precisely defined neural circuits is a major goal of systems and behavioural neuroscience. This is critical for understanding adaptive behaviour, and also how neural systems are altered in states of psychopathology, such as addiction. Efforts to relate psychological processes relevant to addiction to activity within defined neural circuits have been complicated by neural heterogeneity. Recent advances in technology allow for manipulation and mapping of genetically and anatomically defined neurons, which when used in concert with sophisticated behavioural models, have the potential to provide great insight into neural circuit bases of behaviour. Here we discuss contemporary approaches for understanding reward and addiction, with a focus on midbrain dopamine and cortico-striato-pallidal circuits.

  16. Contemporary approaches to neural circuit manipulation and mapping: focus on reward and addiction

    PubMed Central

    Saunders, Benjamin T.; Richard, Jocelyn M.; Janak, Patricia H.

    2015-01-01

    Tying complex psychological processes to precisely defined neural circuits is a major goal of systems and behavioural neuroscience. This is critical for understanding adaptive behaviour, and also how neural systems are altered in states of psychopathology, such as addiction. Efforts to relate psychological processes relevant to addiction to activity within defined neural circuits have been complicated by neural heterogeneity. Recent advances in technology allow for manipulation and mapping of genetically and anatomically defined neurons, which when used in concert with sophisticated behavioural models, have the potential to provide great insight into neural circuit bases of behaviour. Here we discuss contemporary approaches for understanding reward and addiction, with a focus on midbrain dopamine and cortico-striato-pallidal circuits. PMID:26240425

  17. Adaptation and Evaluation of Online Self-learning Modules to Teach Critical Appraisal and Evidence-Based Practice in Nursing: An International Collaboration.

    PubMed

    Gagnon, Johanne; Gagnon, Marie-Pierre; Buteau, Rose-Anne; Azizah, Ginette Mbourou; Jetté, Sylvie; Lampron, Amélie; Simonyan, David; Asua, José; Reviriego, Eva

    2015-07-01

    Healthcare professionals need to update their knowledge and acquire skills to continually inform their practice based on scientific evidence. This study was designed to evaluate online self-learning modules on critical appraisal skills to promote the use of research in clinical practice among nurses from Quebec (Canada) and the Basque Country (Spain). The teaching material was developed in Quebec and adapted to the Basque Country as part of an international collaboration project. A prospective pre-post study was conducted with 36 nurses from Quebec and 47 from the Basque Country. Assessment comprised the administration of questionnaires before and after the course in order to explore the main intervention outcomes: knowledge acquisition and self-learning readiness. Satisfaction was also measured at the end of the course. Two of the three research hypotheses were confirmed: (1) participants significantly improved their overall knowledge score after the educational intervention; and (2) they were, in general, satisfied with the course, giving it a rating of seven out of 10. Participants also reported a greater readiness for self-directed learning after the course, but this result was not significant in Quebec. The study provides unique knowledge on the cultural adaptation of online self-learning modules for teaching nurses about critical appraisal skills and evidence-based practice.

  18. Monitoring the Performance of a Neuro-Adaptive Controller

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Gupta, Pramod

    2004-01-01

    Traditional control has proven to be ineffective to deal with catastrophic changes or slow degradation of complex, highly nonlinear systems like aircraft or spacecraft, robotics, or flexible manufacturing systems. Control systems which can adapt toward changes in the plant have been proposed as they offer many advantages (e.g., better performance, controllability of aircraft despite of a damaged wing). In the last few years, use of neural networks in adaptive controllers (neuro-adaptive control) has been studied actively. Neural networks of various architectures have been used successfully for online learning adaptive controllers. In such a typical control architecture, the neural network receives as an input the current deviation between desired and actual plant behavior and, by on-line training, tries to minimize this discrepancy (e.g.; by producing a control augmentation signal). Even though neuro-adaptive controllers offer many advantages, they have not been used in mission- or safety-critical applications, because performance and safety guarantees cannot b e provided at development time-a major prerequisite for safety certification (e.g., by the FAA or NASA). Verification and Validation (V&V) of an adaptive controller requires the development of new analysis techniques which can demonstrate that the control system behaves safely under all operating conditions. Because of the requirement to adapt toward unforeseen changes during operation, i.e., in real time, design-time V&V is not sufficient.

  19. Prediction of HPLC retention times of tebipenem pivoxyl and its degradation products in solid state by applying adaptive artificial neural network with recursive features elimination.

    PubMed

    Mizera, Mikołaj; Talaczyńska, Alicja; Zalewski, Przemysław; Skibiński, Robert; Cielecka-Piontek, Judyta

    2015-05-01

    A sensitive and fast HPLC method using ultraviolet diode-array detector (DAD)/electrospray ionization tandem mass spectrometry (Q-TOF-MS/MS) was developed for the determination of tebipenem pivoxyl and in the presence of degradation products formed during thermolysis. The chromatographic separations were performed on stationary phases produced in core-shell technology with particle diameter of 5.0 µm. The mobile phases consisted of formic acid (0.1%) and acetonitrile at different ratios. The flow rate was 0.8 mL/min while the wavelength was set at 331 nm. The stability characteristics of tebipenem pivoxyl were studied by performing stress tests in the solid state in dry air (RH=0%) and at an increased relative air humidity (RH=90%). The validation parameters such as selectivity, accuracy, precision and sensitivity were found to be satisfying. The satisfied selectivity and precision of determination were obtained for the separation of tebipenem pivoxyl from its degradation products using a stationary phase with 5.0 µm particles. The evaluation of the chemical structure of the 9 degradation products of tebipenem pivoxyl was conducted following separation based on the stationary phase with a 5.0 µm particle size by applying a Q-TOF-MS/MS detector. The main degradation products of tebipenem pivoxyl were identified: a product resulting from the condensation of the substituents of 1-(4,5-dihydro-1,3-thiazol-2-yl)-3-azetidinyl]sulfanyl and acid and ester forms of tebipenem with an open β-lactam ring in dry air at an increased temperature (RH=0%, T=393 K) as well as acid and ester forms of tebipenem with an open β-lactam ring at an increased relative air humidity and an elevated temperature (RH=90%, T=333 K). Retention times of tebipenem pivoxyl and its degradation products were used as training data set for predictive model of quantitative structure-retention relationship. An artificial neural network with adaptation protocol and extensive feature selection process

  20. Adaptive shape coding for perceptual decisions in the human brain.

    PubMed

    Kourtzi, Zoe; Welchman, Andrew E

    2015-01-01

    In its search for neural codes, the field of visual neuroscience has uncovered neural representations that reflect the structure of stimuli of variable complexity from simple features to object categories. However, accumulating evidence suggests an adaptive neural code that is dynamically shaped by experience to support flexible and efficient perceptual decisions. Here, we review work showing that experience plays a critical role in molding midlevel visual representations for perceptual decisions. Combining behavioral and brain imaging measurements, we demonstrate that learning optimizes feature binding for object recognition in cluttered scenes, and tunes the neural representations of informative image parts to support efficient categorical judgements. Our findings indicate that similar learning mechanisms may mediate long-term optimization through development, tune the visual system to fundamental principles of feature binding, and optimize feature templates for perceptual decisions. PMID:26024511

  1. Adaptive shape coding for perceptual decisions in the human brain

    PubMed Central

    Kourtzi, Zoe; Welchman, Andrew E.

    2015-01-01

    In its search for neural codes, the field of visual neuroscience has uncovered neural representations that reflect the structure of stimuli of variable complexity from simple features to object categories. However, accumulating evidence suggests an adaptive neural code that is dynamically shaped by experience to support flexible and efficient perceptual decisions. Here, we review work showing that experience plays a critical role in molding midlevel visual representations for perceptual decisions. Combining behavioral and brain imaging measurements, we demonstrate that learning optimizes feature binding for object recognition in cluttered scenes, and tunes the neural representations of informative image parts to support efficient categorical judgements. Our findings indicate that similar learning mechanisms may mediate long-term optimization through development, tune the visual system to fundamental principles of feature binding, and optimize feature templates for perceptual decisions. PMID:26024511

  2. Playful and mindful interactions in the recursive adaptations of the zone of proximal development: a critical complexity science approach

    NASA Astrophysics Data System (ADS)

    Raia, Federica; Deng, Mario C.

    2011-12-01

    We discuss Konstantinos Alexakos, Jayson Jones and Victor Rodriguez's hermeneutic study of formation and function of kinship-like relationships among inner city male students of color in a college physics classroom. From our Critical Complexity Science framework we first discuss the reading erlebnisse of students laughing at and with each other as something that immediately captured our attention in being transformative of the classroom. We continue by exploring their classroom and research experience as an emergent structure modifying their collective as well as their individual experiences. As we analyze both the classroom and the research space as a complex system, we reflect on the instructor/students interactions characterized by an asymmetrical "power" relationship. From our analysis we propose to consider the zone of proximal development as the constantly emerging and transforming person experience ( erlebnisse and erfahrung).

  3. Neural network applications in telecommunications

    NASA Technical Reports Server (NTRS)

    Alspector, Joshua

    1994-01-01

    Neural network capabilities include automatic and organized handling of complex information, quick adaptation to continuously changing environments, nonlinear modeling, and parallel implementation. This viewgraph presentation presents Bellcore work on applications, learning chip computational function, learning system block diagram, neural network equalization, broadband access control, calling-card fraud detection, software reliability prediction, and conclusions.

  4. Orthopaedic Surgery Under National Health Reform: An Analysis of Power, Process, Adaptation, and Leadership: AOA Critical Issues.

    PubMed

    Callahan, Charles D; Adair, Daniel; Bozic, Kevin J; Manning, Blaine T; Saleh, Jamal K; Saleh, Khaled J

    2014-07-01

    Morrison argued that demography, economy, and technology drive the evolution of industries from a formative first-generation state ("First Curve") to a radically different way of doing things ("Second Curve") that is marked by new skills, strategies, and partners. The current health-reform movement in the United States reflects these three key evolutionary trends: surging medical needs of an aging population, dramatic expansion of Medicare spending, and care delivery systems optimized through powerful information technology. Successful transition from a formative first-generation state (First Curve) to a radically different way of doing things (Second Curve) will require new skills, strategies, and partners. In a new world that is value-driven, community-centric (versus hospital-centric), and prevention-focused, orthopaedic surgeons and health-care administrators must form new alliances to reduce the cost of care and improve durable outcomes for musculoskeletal problems. The greatest barrier to success in the Second Curve stems not from lack of empirical support for integrated models of care, but rather from resistance by those who would execute them. Porter's five forces of competitive strategy and the behavioral analysis of change provide insights into the predictable forms of resistance that undermine clinical and economic success in the new environment of care. This paper analyzes the components that will differentiate orthopaedic care provision for the Second Curve. It also provides recommendations for future-focused orthopaedic surgery and health-care administrative leaders to consider as they design newly adaptive, mutually reinforcing, and economically viable musculoskeletal care processes that drive the level of orthopaedic care that our nation deserves-at a cost that it can afford. PMID:24990985

  5. Orthopaedic Surgery Under National Health Reform: An Analysis of Power, Process, Adaptation, and Leadership: AOA Critical Issues.

    PubMed

    Callahan, Charles D; Adair, Daniel; Bozic, Kevin J; Manning, Blaine T; Saleh, Jamal K; Saleh, Khaled J

    2014-07-01

    Morrison argued that demography, economy, and technology drive the evolution of industries from a formative first-generation state ("First Curve") to a radically different way of doing things ("Second Curve") that is marked by new skills, strategies, and partners. The current health-reform movement in the United States reflects these three key evolutionary trends: surging medical needs of an aging population, dramatic expansion of Medicare spending, and care delivery systems optimized through powerful information technology. Successful transition from a formative first-generation state (First Curve) to a radically different way of doing things (Second Curve) will require new skills, strategies, and partners. In a new world that is value-driven, community-centric (versus hospital-centric), and prevention-focused, orthopaedic surgeons and health-care administrators must form new alliances to reduce the cost of care and improve durable outcomes for musculoskeletal problems. The greatest barrier to success in the Second Curve stems not from lack of empirical support for integrated models of care, but rather from resistance by those who would execute them. Porter's five forces of competitive strategy and the behavioral analysis of change provide insights into the predictable forms of resistance that undermine clinical and economic success in the new environment of care. This paper analyzes the components that will differentiate orthopaedic care provision for the Second Curve. It also provides recommendations for future-focused orthopaedic surgery and health-care administrative leaders to consider as they design newly adaptive, mutually reinforcing, and economically viable musculoskeletal care processes that drive the level of orthopaedic care that our nation deserves-at a cost that it can afford.

  6. Critical Climate Controls and Information Needs for the Glen Canyon Adaptive Management Program and Environmental Assessment in the Grand Canyon Region

    NASA Astrophysics Data System (ADS)

    Melis, T. S.; Jain, S.; Topping, D. J.; Pulwarty, R. S.; Eischeid, J. K.

    2005-12-01

    Climatic drivers of episodic to interdecadal variations to the observed changes in the flood magnitude, timing and spatial scales affect the sediment inputs to the Colorado River ecosystem. Since the 1963 closure of Glen Canyon Dam, the dominant sole major supplier of sand to the Colorado River in the upper portion of Grand Canyon is the Paria River, which supplies about 6% of the pre-dam supply of sand at the upstream boundary of Grand Canyon National Park. Sand is delivered by the Paria River during short-duration (< 24 hours), large magnitude (up to 300 cubic meters/second) floods that occur primarily during the warm season (July-October). The planning and decision processes in the Glen Canyon Dam Adaptive Management Program (GCD-AMP) strive to balance numerous, often competing, objectives, such as,water supply, hydropower generation, low flow maintenance, maximizing conservation of the tributary supplied sediment, endangered species recovery, and cultural resources. In this work, we focus on a key concern identified by the AMP, related to the timing and volume of sediment input into Grand Canyon. Adequate sediment inputs into the river ecosystem Canyon combined with active flow management, of the timed in the form of strategically timed bypass releases from Glen Canyon Dam, support the restoration and maintenance of sand bar habitats and instream ecology. Variability in regional precipitation distribution on multiple time scales is diagnosed with emphasis on understanding the relative role of East Pacific tropical storms, North Pacific sea surface temperatures, and subtropical moisture sources. On longer time scales, structured variations in the sediment supply imply a changing baseline for mean ecological and geomorphological conditions in the Canyon, counter to the static view taken in the current environmental impact assessments. Better understanding of the coupled climate-hydrologic variations on multiple time scales is increasingly recognized as critical

  7. Critical appraisal of assumptions in chains of model calculations used to project local climate impacts for adaptation decision support—the case of Baakse Beek

    NASA Astrophysics Data System (ADS)

    van der Sluijs, Jeroen P.; Arjan Wardekker, J.

    2015-04-01

    In order to enable anticipation and proactive adaptation, local decision makers increasingly seek detailed foresight about regional and local impacts of climate change. To this end, the Netherlands Models and Data-Centre implemented a pilot chain of sequentially linked models to project local climate impacts on hydrology, agriculture and nature under different national climate scenarios for a small region in the east of the Netherlands named Baakse Beek. The chain of models sequentially linked in that pilot includes a (future) weather generator and models of respectively subsurface hydrogeology, ground water stocks and flows, soil chemistry, vegetation development, crop yield and nature quality. These models typically have mismatching time step sizes and grid cell sizes. The linking of these models unavoidably involves the making of model assumptions that can hardly be validated, such as those needed to bridge the mismatches in spatial and temporal scales. Here we present and apply a method for the systematic critical appraisal of model assumptions that seeks to identify and characterize the weakest assumptions in a model chain. The critical appraisal of assumptions presented in this paper has been carried out ex-post. For the case of the climate impact model chain for Baakse Beek, the three most problematic assumptions were found to be: land use and land management kept constant over time; model linking of (daily) ground water model output to the (yearly) vegetation model around the root zone; and aggregation of daily output of the soil hydrology model into yearly input of a so called ‘mineralization reduction factor’ (calculated from annual average soil pH and daily soil hydrology) in the soil chemistry model. Overall, the method for critical appraisal of model assumptions presented and tested in this paper yields a rich qualitative insight in model uncertainty and model quality. It promotes reflectivity and learning in the modelling community, and leads to

  8. Neural networks in clinical medicine.

    PubMed

    Penny, W; Frost, D

    1996-01-01

    Neural networks are parallel, distributed, adaptive information-processing systems that develop their functionality in response to exposure to information. This paper is a tutorial for researchers intending to use neural nets for medical decision-making applications. It includes detailed discussion of the issues particularly relevant to medical data as well as wider issues relevant to any neural net application. The article is restricted to back-propagation learning in multilayer perceptrons, as this is the neural net model most widely used in medical applications.

  9. Hrd1 and ER-Associated Protein Degradation, ERAD, Are Critical Elements of the Adaptive ER Stress Response in Cardiac Myocytes

    PubMed Central

    Doroudgar, Shirin; Völkers, Mirko; Thuerauf, Donna J; Khan, Mohsin; Mohsin, Sadia; Respress, Jonathan L; Wang, Wei; Gude, Natalie; Müller, Oliver J; Wehrens, Xander HT; Sussman, Mark A; Glembotski, Christopher C

    2015-01-01

    Rationale Hrd1 is an endoplasmic reticulum (ER)-transmembrane E3 ubiquitin ligase that has been studied in yeast, where it contributes to ER protein quality control by ER-associated degradation (ERAD) of misfolded proteins that accumulate during ER stress. Neither Hrd1 nor ERAD have been studied in the heart, or in cardiac myocytes, where protein quality control is critical for proper heart function. Objective The objectives of this study were to elucidate roles for Hrd1 in ER stress, ERAD, and viability in cultured cardiac myocytes and in the mouse heart, in vivo. Methods and Results The effects of siRNA-mediated Hrd1 knockdown were examined in cultured neonatal rat ventricular myocytes. The effects of adeno-associated virus (AAV)-mediated Hrd1 knockdown and overexpression were examined in the hearts of mice subjected to pressure-overload induced pathological cardiac hypertrophy, which challenges protein-folding capacity. In cardiac myocytes, the ER stressors, thapsigargin (TG) and tunicamycin (TM) increased ERAD, as well as adaptive ER stress proteins, and minimally affected cell death. However, when Hrd1 was knocked down, TG and TM dramatically decreased ERAD, while increasing maladaptive ER stress proteins and cell death. In vivo, Hrd1 knockdown exacerbated cardiac dysfunction, and increased apoptosis and cardiac hypertrophy, while Hrd1 overexpression preserved cardiac function, and decreased apoptosis and attenuated cardiac hypertrophy in the hearts of mice subjected to pressure-overload. Conclusions Hrd1 and ERAD are essential components of the adaptive ER stress response in cardiac myocytes. Hrd1 contributes to preserving heart structure and function in a mouse model of pathological cardiac hypertrophy. PMID:26137860

  10. Critical power concept adapted for the specific table tennis test: comparisons between exhaustion criteria, mathematical modeling, and correlation with gas exchange parameters.

    PubMed

    Zagatto, A; Miranda, M F; Gobatto, C A

    2011-07-01

    The purposes of this study were to determine and to compare the critical power concept adapted for the specific table tennis test (critical frequency - C F ) estimated from 5 mathematical models and using 2 different exhaustion criteria (voluntary and technical exhaustions). Also, it was an aim to assess the relationship between C F estimated from mathematical models and respiratory compensation point (RCP), peak oxygen uptake ( V˙O (2PEAK)) and minimal intensity at which V˙O (2PEAK) ( F V˙O (2PEAK)) appears. 9 male table tennis players [18(1) years; 62.3(4.4) kg] performed the maximal incremental test and 3-4 exhaustive exercise bouts to estimate C F s (balls · min (-1)). The exhaustion time and C F obtained were independent of the exhaustion criteria. The C F from 3-parameter model [45.2(7.0)-voluntary, 43.2(5.6)-technical] was lower than C F estimated by linear 2-parameter models, frequency-time (-1) [53.5(3.6)-voluntary, 53.5(3.5)-technical] and total ball thrown-time [52.2(3.5)-voluntary, 52.2(3.5)-technical] but significantly correlated. C F values from 2 linear models were significantly correlated with RCP [47.4(3.4) balls · min (-1)], and C F values of the linear and nonlinear models were correlated with F V˙O (2PEAK) [56.7(3.4) balls · min (-1)]. However, there were no significant correlations between C F values and V˙O (2PEAK) [49.8(1.1)ml · kg (-1) · min (-1)]. The results were not modified by exhaustion criteria. The 2 linear and non-linear 2-parameter models can be used to estimate aerobic endurance in specific table tennis tests. PMID:21563021

  11. Adaptive handoff algorithms based on self-organizing neural networks to enhance the quality of service of nonstationary traffic in heirarchical cellular networks

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2000-03-01

    Third-generation (3G) wireless networks, based on a hierarchical cellular structure, support tiered levels of multimedia services. These services can be categorized as real-time and delay-sensitive, or non-real-time and delay- insensitive. Each call carries demand for one or more services in parallel; each with a guaranteed quality of service (QoS). Roaming is handled by handoff procedures between base stations (BSs) and the mobile subscribers (MSs) within the network. Metrics such as the probabilities of handoff failure, dropped calls and blocked calls; handoff transition time; and handoff rate are used to evaluate the handoff schemes, which also directly affects QoS. Previous researchers have proposed a fuzzy logic system (FLS) with neural encoding of the rule base and probabilistic neural network to solve the handoff decision as a pattern recognition problem in the set of MS signal measurements and mobility amid fading path uncertainties. Both neural approaches evalute only voice traffic in a closed, single- layer network of uniform cells. This paper proposed a new topology-preserving, self-organizing neural network (SONN) for both handoff and admission control as part of an overall resource allocation (RA) problem to support QoS in a three- layer, wideband CDMA HCS with dynamic loading of multimedia services. MS profiles include simultaneous service requirements, which are mapped to a new set of variables, defined in terms of the network radio resources (RRs). Simulations of the new SONN-based algorithms under various operating scenarios of MS mobility, dynamic loading, active set size, and RR bounds, using published traffic models of 3G services, compare their performance with earlier approaches.

  12. Lasting effects of developmental dexamethasone treatment on neural cell number and size, synaptic activity, and cell signaling: critical periods of vulnerability, dose-effect relationships, regional targets, and sex selectivity.

    PubMed

    Kreider, Marisa L; Tate, Charlotte A; Cousins, Mandy M; Oliver, Colleen A; Seidler, Frederic J; Slotkin, Theodore A

    2006-01-01

    Glucocorticoids administered to prevent respiratory distress in preterm infants are associated with neurodevelopmental disorders. To evaluate the long-term effects on forebrain development, we treated developing rats with dexamethasone (Dex) at 0.05, 0.2, or 0.8 mg/kg, doses below or spanning the range in clinical use, testing the effects of administration during three different stages: gestational days 17-19, postnatal days 1-3, or postnatal days 7-9. In adulthood, we assessed biomarkers of neural cell number and size, cholinergic presynaptic activity, neurotransmitter receptor expression, and synaptic signaling mediated through adenylyl cyclase (AC), in the cerebral cortex, hippocampus, and striatum. Even at doses that were devoid of lasting effects on somatic growth, Dex elicited deficits in the number and size of neural cells, with the largest effect in the cerebral cortex. Indices of cholinergic synaptic function (choline acetyltransferase, hemicholinium-3 binding) indicated substantial hyperactivity in males, especially in the hippocampus, effectively eliminating the normal sex differences for these parameters. However, the largest effects were seen for cerebrocortical cell signaling mediated by AC, where Dex treatment markedly elevated overall activity while obtunding the function of G-protein-coupled catecholaminergic or cholinergic receptors that stimulate or inhibit AC; uncoupling was noted despite receptor upregulation. Again, the effects on signaling were larger in males and offset the normal sex differences in AC. These results indicate that, during critical developmental periods, Dex administration evokes lasting alterations in neural cell numbers and synaptic function in forebrain regions, even at doses below those used in preterm infants.

  13. Visual adaptation of the perception of "life": animacy is a basic perceptual dimension of faces.

    PubMed

    Koldewyn, Kami; Hanus, Patricia; Balas, Benjamin

    2014-08-01

    One critical component of understanding another's mind is the perception of "life" in a face. However, little is known about the cognitive and neural mechanisms underlying this perception of animacy. Here, using a visual adaptation paradigm, we ask whether face animacy is (1) a basic dimension of face perception and (2) supported by a common neural mechanism across distinct face categories defined by age and species. Observers rated the perceived animacy of adult human faces before and after adaptation to (1) adult faces, (2) child faces, and (3) dog faces. When testing the perception of animacy in human faces, we found significant adaptation to both adult and child faces, but not dog faces. We did, however, find significant adaptation when morphed dog images and dog adaptors were used. Thus, animacy perception in faces appears to be a basic dimension of face perception that is species specific but not constrained by age categories.

  14. Adaptive fuzzy system for 3-D vision

    NASA Technical Reports Server (NTRS)

    Mitra, Sunanda

    1993-01-01

    An adaptive fuzzy system using the concept of the Adaptive Resonance Theory (ART) type neural network architecture and incorporating fuzzy c-means (FCM) system equations for reclassification of cluster centers was developed. The Adaptive Fuzzy Leader Clustering (AFLC) architecture is a hybrid neural-fuzzy system which learns on-line in a stable and efficient manner. The system uses a control structure similar to that found in the Adaptive Resonance Theory (ART-1) network to identify the cluster centers initially. The initial classification of an input takes place in a two stage process; a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from Fuzzy c-Means (FCM) system equations for the centroids and the membership values. The operational characteristics of AFLC and the critical parameters involved in its operation are discussed. The performance of the AFLC algorithm is presented through application of the algorithm to the Anderson Iris data, and laser-luminescent fingerprint image data. The AFLC algorithm successfully classifies features extracted from real data, discrete or continuous, indicating the potential strength of this new clustering algorithm in analyzing complex data sets. The hybrid neuro-fuzzy AFLC algorithm will enhance analysis of a number of difficult recognition and control problems involved with Tethered Satellite Systems and on-orbit space shuttle attitude controller.

  15. Gradient liquid chromatographic retention time prediction for suspect screening applications: A critical assessment of a generalised artificial neural network-based approach across 10 multi-residue reversed-phase analytical methods.

    PubMed

    Barron, Leon P; McEneff, Gillian L

    2016-01-15

    For the first time, the performance of a generalised artificial neural network (ANN) approach for the prediction of 2492 chromatographic retention times (tR) is presented for a total of 1117 chemically diverse compounds present in a range of complex matrices and across 10 gradient reversed-phase liquid chromatography-(high resolution) mass spectrometry methods. Probabilistic, generalised regression, radial basis function as well as 2- and 3-layer multilayer perceptron-type neural networks were investigated to determine the most robust and accurate model for this purpose. Multi-layer perceptrons most frequently yielded the best correlations in 8 out of 10 methods. Averaged correlations of predicted versus measured tR across all methods were R(2)=0.918, 0.924 and 0.898 for the training, verification and test sets respectively. Predictions of blind test compounds (n=8-84 cases) resulted in an average absolute accuracy of 1.02±0.54min for all methods. Within this variation, absolute accuracy was observed to marginally improve for shorter runtimes, but was found to be relatively consistent with respect to analyte retention ranges (~5%). Finally, optimised and replicated network dependency on molecular descriptor data is presented and critically discussed across all methods. Overall, ANNs were considered especially suitable for suspects screening applications and could potentially be utilised in bracketed-type analyses in combination with high resolution mass spectrometry. PMID:26592605

  16. Gradient liquid chromatographic retention time prediction for suspect screening applications: A critical assessment of a generalised artificial neural network-based approach across 10 multi-residue reversed-phase analytical methods.

    PubMed

    Barron, Leon P; McEneff, Gillian L

    2016-01-15

    For the first time, the performance of a generalised artificial neural network (ANN) approach for the prediction of 2492 chromatographic retention times (tR) is presented for a total of 1117 chemically diverse compounds present in a range of complex matrices and across 10 gradient reversed-phase liquid chromatography-(high resolution) mass spectrometry methods. Probabilistic, generalised regression, radial basis function as well as 2- and 3-layer multilayer perceptron-type neural networks were investigated to determine the most robust and accurate model for this purpose. Multi-layer perceptrons most frequently yielded the best correlations in 8 out of 10 methods. Averaged correlations of predicted versus measured tR across all methods were R(2)=0.918, 0.924 and 0.898 for the training, verification and test sets respectively. Predictions of blind test compounds (n=8-84 cases) resulted in an average absolute accuracy of 1.02±0.54min for all methods. Within this variation, absolute accuracy was observed to marginally improve for shorter runtimes, but was found to be relatively consistent with respect to analyte retention ranges (~5%). Finally, optimised and replicated network dependency on molecular descriptor data is presented and critically discussed across all methods. Overall, ANNs were considered especially suitable for suspects screening applications and could potentially be utilised in bracketed-type analyses in combination with high resolution mass spectrometry.

  17. Neural plasticity: the biological substrate for neurorehabilitation.

    PubMed

    Warraich, Zuha; Kleim, Jeffrey A

    2010-12-01

    Decades of basic science have clearly demonstrated the capacity of the central nervous system (CNS) to structurally and functionally adapt in response to experience. The field of neurorehabilitation has begun to use this body of work to develop neurobiologically informed therapies that harness the key behavioral and neural signals that drive neural plasticity. The present review describes how neural plasticity supports both learning in the intact CNS and functional improvement in the damaged or diseased CNS. A pragmatic, interdisciplinary definition of neural plasticity is presented that may be used by both clinical and basic scientists studying neurorehabilitation. Furthermore, a description of how neural plasticity may act to drive different neural strategies underlying functional improvement after CNS injury or disease is provided. The understanding of the relationship between these different neural strategies, mechanisms of neural plasticity, and changes in behavior may facilitate the development of novel, more effective rehabilitation interventions. PMID:21172683

  18. Neural network models for optical computing

    SciTech Connect

    Athale, R.A. ); Davis, J. )

    1988-01-01

    This volume comprises the record of the conference on neural network models for optical computing. In keeping with the interdisciplinary nature of the field, the invited papers are from diverse research areas, such as neuroscience, parallel architectures, neural modeling, and perception. The papers consist of three major classes: applications of optical neural nets for pattern classification, analysis, and image formation; development and analysis of neural net models that are particularly suited for optical implementation; experimental demonstrations of optical neural nets, particularly with adaptive interconnects.

  19. Spike history neural response model.

    PubMed

    Kameneva, Tatiana; Abramian, Miganoosh; Zarelli, Daniele; Nĕsić, Dragan; Burkitt, Anthony N; Meffin, Hamish; Grayden, David B

    2015-06-01

    There is a potential for improved efficacy of neural stimulation if stimulation levels can be modified dynamically based on the responses of neural tissue in real time. A neural model is developed that describes the response of neurons to electrical stimulation and that is suitable for feedback control neuroprosthetic stimulation. Experimental data from NZ white rabbit retinae is used with a data-driven technique to model neural dynamics. The linear-nonlinear approach is adapted to incorporate spike history and to predict the neural response of ganglion cells to electrical stimulation. To validate the fitness of the model, the penalty term is calculated based on the time difference between each simulated spike and the closest spike in time in the experimentally recorded train. The proposed model is able to robustly predict experimentally observed spike trains.

  20. Neural tube defects.

    PubMed

    Greene, Nicholas D E; Copp, Andrew J

    2014-01-01

    Neural tube defects (NTDs), including spina bifida and anencephaly, are severe birth defects of the central nervous system that originate during embryonic development when the neural tube fails to close completely. Human NTDs are multifactorial, with contributions from both genetic and environmental factors. The genetic basis is not yet well understood, but several nongenetic risk factors have been identified as have possibilities for prevention by maternal folic acid supplementation. Mechanisms underlying neural tube closure and NTDs may be informed by experimental models, which have revealed numerous genes whose abnormal function causes NTDs and have provided details of critical cellular and morphological events whose regulation is essential for closure. Such models also provide an opportunity to investigate potential risk factors and to develop novel preventive therapies. PMID:25032496

  1. Egr-1 is a critical regulator of EGF-receptor-mediated expansion of subventricular zone neural stem cells and progenitors during recovery from hypoxia–hypoglycemia

    PubMed Central

    Alagappan, Dhivyaa; Balan, Murugabaskar; Jiang, Yuhui; Cohen, Rachel B.; Kotenko, Sergei V.; Levison, Steven W.

    2013-01-01

    We recently established that the EGF-R (epidermal growth factor receptor) (EGF-R) is an essential regulator of the reactive expansion of SVZ (subventricular zone) NPs (neural precursors) that occurs during recovery from hypoxic-ischemic brain injury. The purpose of the current studies was to identify the conditions and the transcription factor (s) responsible for inducing the EGF-R. Here, we show that the increase in EGF-R expression and the more rapid division of the NPs can be recapitulated in in vitro by exposing SVZ NPs to hypoxia and hypoglycemia simultaneously, but not separately. The EGF-R promoter has binding sites for multiple transcription factors that includes the zinc finger transcription factor, Egr-1. We show that Egr-1 expression increases in NPs, but not astrocytes, following hypoxia and hypoglycemia where it accumulates in the nucleus. To determine whether Egr-1 is necessary for EGF-R expression, we used SiRNAs (small interfering RNA) specific for Egr-1 to decrease Egr-1 expression. Knocking-down Egr-1 decreased basal levels of EGF-R and it abolished the stress-induced increase in EGF-R expression. By contrast, HIF-1 accumulation did not contribute to EGF-R expression and FGF-2 only modestly induced EGF-R. These studies establish a new role for Egr-1 in regulating the expression of the mitogenic EGF-R. They also provide new information into mechanisms that promote NP expansion and provide insights into strategies for amplifying the numbers of stem cells for CNS (central nervous system) regeneration. PMID:23763269

  2. Workshop on neural networks

    SciTech Connect

    Uhrig, R.E.; Emrich, M.L.

    1990-01-01

    The topics covered in this report are: Learning, Memory, and Artificial Neural Systems; Emerging Neural Network Technology; Neural Networks; Digital Signal Processing and Neural Networks; Application of Neural Networks to In-Core Fuel Management; Neural Networks in Process Control; Neural Network Applications in Image Processing; Neural Networks for Multi-Sensor Information Fusion; Neural Network Research in Instruments Controls Division; Neural Networks Research in the ORNL Engineering Physics and Mathematics Division; Neural Network Applications for Linear Programming; Neural Network Applications to Signal Processing and Diagnostics; Neural Networks in Filtering and Control; Neural Network Research at Tennessee Technological University; and Global Minima within the Hopfield Hypercube.

  3. Contextual behavior and neural circuits

    PubMed Central

    Lee, Inah; Lee, Choong-Hee

    2013-01-01

    Animals including humans engage in goal-directed behavior flexibly in response to items and their background, which is called contextual behavior in this review. Although the concept of context has long been studied, there are differences among researchers in defining and experimenting with the concept. The current review aims to provide a categorical framework within which not only the neural mechanisms of contextual information processing but also the contextual behavior can be studied in more concrete ways. For this purpose, we categorize contextual behavior into three subcategories as follows by considering the types of interactions among context, item, and response: contextual response selection, contextual item selection, and contextual item–response selection. Contextual response selection refers to the animal emitting different types of responses to the same item depending on the context in the background. Contextual item selection occurs when there are multiple items that need to be chosen in a contextual manner. Finally, when multiple items and multiple contexts are involved, contextual item–response selection takes place whereby the animal either chooses an item or inhibits such a response depending on item–context paired association. The literature suggests that the rhinal cortical regions and the hippocampal formation play key roles in mnemonically categorizing and recognizing contextual representations and the associated items. In addition, it appears that the fronto-striatal cortical loops in connection with the contextual information-processing areas critically control the flexible deployment of adaptive action sets and motor responses for maximizing goals. We suggest that contextual information processing should be investigated in experimental settings where contextual stimuli and resulting behaviors are clearly defined and measurable, considering the dynamic top-down and bottom-up interactions among the neural systems for contextual behavior

  4. Towards an Irritable Bowel Syndrome Control System Based on Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Podolski, Ina; Rettberg, Achim

    To solve health problems with medical applications that use complex algorithms is a trend nowadays. It could also be a chance to help patients with critical problems caused from nerve irritations to overcome them and provide a better living situation. In this paper a system for monitoring and controlling the nerves from the intestine is described on a theoretical basis. The presented system could be applied to the irritable bowel syndrome. For control a neural network is used. The advantages for using a neural network for the control of irritable bowel syndrome are the adaptation and learning. These two aspects are important because the syndrome behavior varies from patient to patient and have also concerning the time a lot of variations with respect to each patient. The developed neural network is implemented and can be simulated. Therefore, it can be shown how the network monitor and control the nerves for individual input parameters.

  5. Incremental learning of perceptual and conceptual representations and the puzzle of neural repetition suppression.

    PubMed

    Gotts, Stephen J

    2016-08-01

    Incremental learning models of long-term perceptual and conceptual knowledge hold that neural representations are gradually acquired over many individual experiences via Hebbian-like activity-dependent synaptic plasticity across cortical connections of the brain. In such models, variation in task relevance of information, anatomic constraints, and the statistics of sensory inputs and motor outputs lead to qualitative alterations in the nature of representations that are acquired. Here, the proposal that behavioral repetition priming and neural repetition suppression effects are empirical markers of incremental learning in the cortex is discussed, and research results that both support and challenge this position are reviewed. Discussion is focused on a recent fMRI-adaptation study from our laboratory that shows decoupling of experience-dependent changes in neural tuning, priming, and repetition suppression, with representational changes that appear to work counter to the explicit task demands. Finally, critical experiments that may help to clarify and resolve current challenges are outlined. PMID:27294423

  6. Neural Networks and other Techniques for Fault Identification and Isolation of Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Innocenti, M.; Napolitano, M.

    2003-01-01

    Fault identification, isolation, and accomodation have become critical issues in the overall performance of advanced aircraft systems. Neural Networks have shown to be a very attractive alternative to classic adaptation methods for identification and control of non-linear dynamic systems. The purpose of this paper is to show the improvements in neural network applications achievable through the use of learning algorithms more efficient than the classic Back-Propagation, and through the implementation of the neural schemes in parallel hardware. The results of the analysis of a scheme for Sensor Failure, Detection, Identification and Accommodation (SFDIA) using experimental flight data of a research aircraft model are presented. Conventional approaches to the problem are based on observers and Kalman Filters while more recent methods are based on neural approximators. The work described in this paper is based on the use of neural networks (NNs) as on-line learning non-linear approximators. The performances of two different neural architectures were compared. The first architecture is based on a Multi Layer Perceptron (MLP) NN trained with the Extended Back Propagation algorithm (EBPA). The second architecture is based on a Radial Basis Function (RBF) NN trained with the Extended-MRAN (EMRAN) algorithms. In addition, alternative methods for communications links fault detection and accomodation are presented, relative to multiple unmanned aircraft applications.

  7. Genotypic Variation in Growth and Physiological Response to Drought Stress and Re-Watering Reveals the Critical Role of Recovery in Drought Adaptation in Maize Seedlings.

    PubMed

    Chen, Daoqian; Wang, Shiwen; Cao, Beibei; Cao, Dan; Leng, Guohui; Li, Hongbing; Yin, Lina; Shan, Lun; Deng, Xiping

    2015-01-01

    Non-irrigated crops in temperate climates and irrigated crops in arid climates are subjected to continuous cycles of water stress and re-watering. Thus, fast and efficient recovery from water stress may be among the key determinants of plant drought adaptation. The present study was designed to comparatively analyze the roles of drought resistance and drought recovery in drought adaptation and to investigate the physiological basis of genotypic variation in drought adaptation in maize (Zea mays) seedlings. As the seedlings behavior in growth associate with yield under drought, it could partly reflect the potential of drought adaptability. Growth and physiological responses to progressive drought stress and recovery were observed in seedlings of 10 maize lines. The results showed that drought adaptability is closely related to drought recovery (r = 0.714(**)), but not to drought resistance (r = 0.332). Drought induced decreases in leaf water content, water potential, osmotic potential, gas exchange parameters, chlorophyll content, Fv/Fm and nitrogen content, and increased H2O2 accumulation and lipid peroxidation. After recovery, most of these physiological parameters rapidly returned to normal levels. The physiological responses varied between lines. Further correlation analysis indicated that the physiological bases of drought resistance and drought recovery are definitely different, and that maintaining higher chlorophyll content (r = 0.874(***)) and Fv/Fm (r = 0.626(*)) under drought stress contributes to drought recovery. Our results suggest that both drought resistance and recovery are key determinants of plant drought adaptation, and that drought recovery may play a more important role than previously thought. In addition, leaf water potential, chlorophyll content and Fv/Fm could be used as efficient reference indicators in the selection of drought-adaptive genotypes. PMID:26793218

  8. Genotypic Variation in Growth and Physiological Response to Drought Stress and Re-Watering Reveals the Critical Role of Recovery in Drought Adaptation in Maize Seedlings

    PubMed Central

    Chen, Daoqian; Wang, Shiwen; Cao, Beibei; Cao, Dan; Leng, Guohui; Li, Hongbing; Yin, Lina; Shan, Lun; Deng, Xiping

    2016-01-01

    Non-irrigated crops in temperate climates and irrigated crops in arid climates are subjected to continuous cycles of water stress and re-watering. Thus, fast and efficient recovery from water stress may be among the key determinants of plant drought adaptation. The present study was designed to comparatively analyze the roles of drought resistance and drought recovery in drought adaptation and to investigate the physiological basis of genotypic variation in drought adaptation in maize (Zea mays) seedlings. As the seedlings behavior in growth associate with yield under drought, it could partly reflect the potential of drought adaptability. Growth and physiological responses to progressive drought stress and recovery were observed in seedlings of 10 maize lines. The results showed that drought adaptability is closely related to drought recovery (r = 0.714**), but not to drought resistance (r = 0.332). Drought induced decreases in leaf water content, water potential, osmotic potential, gas exchange parameters, chlorophyll content, Fv/Fm and nitrogen content, and increased H2O2 accumulation and lipid peroxidation. After recovery, most of these physiological parameters rapidly returned to normal levels. The physiological responses varied between lines. Further correlation analysis indicated that the physiological bases of drought resistance and drought recovery are definitely different, and that maintaining higher chlorophyll content (r = 0.874***) and Fv/Fm (r = 0.626*) under drought stress contributes to drought recovery. Our results suggest that both drought resistance and recovery are key determinants of plant drought adaptation, and that drought recovery may play a more important role than previously thought. In addition, leaf water potential, chlorophyll content and Fv/Fm could be used as efficient reference indicators in the selection of drought-adaptive genotypes. PMID:26793218

  9. Another look at neural multigrid

    SciTech Connect

    Baeker, M.

    1997-04-01

    We present a new multigrid method called neural multigrid which is based on joining multigrid ideas with concepts from neural nets. The main idea is to use the Greenbaum criterion as a cost functional for the neural net. The algorithm is able to learn efficient interpolation operators in the case of the ordered Laplace equation with only a very small critical slowing down and with a surprisingly small amount of work comparable to that of a Conjugate Gradient solver. In the case of the two-dimensional Laplace equation with SU(2) gauge fields at {beta}=0 the learning exhibits critical slowing down with an exponent of about z {approx} 0.4. The algorithm is able to find quite good interpolation operators in this case as well. Thereby it is proven that a practical true multigrid algorithm exists even for a gauge theory. An improved algorithm using dynamical blocks that will hopefully overcome the critical slowing down completely is sketched.

  10. Prism Adaptation in Schizophrenia

    ERIC Educational Resources Information Center

    Bigelow, Nirav O.; Turner, Beth M.; Andreasen, Nancy C.; Paulsen, Jane S.; O'Leary, Daniel S.; Ho, Beng-Choon

    2006-01-01

    The prism adaptation test examines procedural learning (PL) in which performance facilitation occurs with practice on tasks without the need for conscious awareness. Dynamic interactions between frontostriatal cortices, basal ganglia, and the cerebellum have been shown to play key roles in PL. Disruptions within these neural networks have also…

  11. Using reinforcement learning to provide stable brain-machine interface control despite neural input reorganization.

    PubMed

    Pohlmeyer, Eric A; Mahmoudi, Babak; Geng, Shijia; Prins, Noeline W; Sanchez, Justin C

    2014-01-01

    Brain-machine interface (BMI) systems give users direct neural control of robotic, communication, or functional electrical stimulation systems. As BMI systems begin transitioning from laboratory settings into activities of daily living, an important goal is to develop neural decoding algorithms that can be calibrated with a minimal burden on the user, provide stable control for long periods of time, and can be responsive to fluctuations in the decoder's neural input space (e.g. neurons appearing or being lost amongst electrode recordings). These are significant challenges for static neural decoding algorithms that assume stationary input/output relationships. Here we use an actor-critic reinforcement learning architecture to provide an adaptive BMI controller that can successfully adapt to dramatic neural reorganizations, can maintain its performance over long time periods, and which does not require the user to produce specific kinetic or kinematic activities to calibrate the BMI. Two marmoset monkeys used the Reinforcement Learning BMI (RLBMI) to successfully control a robotic arm during a two-target reaching task. The RLBMI was initialized using random initial conditions, and it quickly learned to control the robot from brain states using only a binary evaluative feedback regarding whether previously chosen robot actions were good or bad. The RLBMI was able to maintain control over the system throughout sessions spanning multiple weeks. Furthermore, the RLBMI was able to quickly adapt and maintain control of the robot despite dramatic perturbations to the neural inputs, including a series of tests in which the neuron input space was deliberately halved or doubled. PMID:24498055

  12. Using Reinforcement Learning to Provide Stable Brain-Machine Interface Control Despite Neural Input Reorganization

    PubMed Central

    Pohlmeyer, Eric A.; Mahmoudi, Babak; Geng, Shijia; Prins, Noeline W.; Sanchez, Justin C.

    2014-01-01

    Brain-machine interface (BMI) systems give users direct neural control of robotic, communication, or functional electrical stimulation systems. As BMI systems begin transitioning from laboratory settings into activities of daily living, an important goal is to develop neural decoding algorithms that can be calibrated with a minimal burden on the user, provide stable control for long periods of time, and can be responsive to fluctuations in the decoder’s neural input space (e.g. neurons appearing or being lost amongst electrode recordings). These are significant challenges for static neural decoding algorithms that assume stationary input/output relationships. Here we use an actor-critic reinforcement learning architecture to provide an adaptive BMI controller that can successfully adapt to dramatic neural reorganizations, can maintain its performance over long time periods, and which does not require the user to produce specific kinetic or kinematic activities to calibrate the BMI. Two marmoset monkeys used the Reinforcement Learning BMI (RLBMI) to successfully control a robotic arm during a two-target reaching task. The RLBMI was initialized using random initial conditions, and it quickly learned to control the robot from brain states using only a binary evaluative feedback regarding whether previously chosen robot actions were good or bad. The RLBMI was able to maintain control over the system throughout sessions spanning multiple weeks. Furthermore, the RLBMI was able to quickly adapt and maintain control of the robot despite dramatic perturbations to the neural inputs, including a series of tests in which the neuron input space was deliberately halved or doubled. PMID:24498055

  13. Using reinforcement learning to provide stable brain-machine interface control despite neural input reorganization.

    PubMed

    Pohlmeyer, Eric A; Mahmoudi, Babak; Geng, Shijia; Prins, Noeline W; Sanchez, Justin C

    2014-01-01

    Brain-machine interface (BMI) systems give users direct neural control of robotic, communication, or functional electrical stimulation systems. As BMI systems begin transitioning from laboratory settings into activities of daily living, an important goal is to develop neural decoding algorithms that can be calibrated with a minimal burden on the user, provide stable control for long periods of time, and can be responsive to fluctuations in the decoder's neural input space (e.g. neurons appearing or being lost amongst electrode recordings). These are significant challenges for static neural decoding algorithms that assume stationary input/output relationships. Here we use an actor-critic reinforcement learning architecture to provide an adaptive BMI controller that can successfully adapt to dramatic neural reorganizations, can maintain its performance over long time periods, and which does not require the user to produce specific kinetic or kinematic activities to calibrate the BMI. Two marmoset monkeys used the Reinforcement Learning BMI (RLBMI) to successfully control a robotic arm during a two-target reaching task. The RLBMI was initialized using random initial conditions, and it quickly learned to control the robot from brain states using only a binary evaluative feedback regarding whether previously chosen robot actions were good or bad. The RLBMI was able to maintain control over the system throughout sessions spanning multiple weeks. Furthermore, the RLBMI was able to quickly adapt and maintain control of the robot despite dramatic perturbations to the neural inputs, including a series of tests in which the neuron input space was deliberately halved or doubled.

  14. Comparison of an adaptive neuro-fuzzy inference system and an artificial neural network in the cross-talk correction of simultaneous 99 m Tc / 201Tl SPECT imaging using a GATE Monte-Carlo simulation

    NASA Astrophysics Data System (ADS)

    Heidary, Saeed; Setayeshi, Saeed; Ghannadi-Maragheh, Mohammad

    2014-09-01

    The aim of this study is to compare the adaptive neuro-fuzzy inference system (ANFIS) and the artificial neural network (ANN) to estimate the cross-talk contamination of 99 m Tc / 201 Tl image acquisition in the 201 Tl energy window (77 ± 15% keV). GATE (Geant4 Application in Emission and Tomography) is employed due to its ability to simulate multiple radioactive sources concurrently. Two kinds of phantoms, including two digital and one physical phantom, are used. In the real and the simulation studies, data acquisition is carried out using eight energy windows. The ANN and the ANFIS are prepared in MATLAB, and the GATE results are used as a training data set. Three indications are evaluated and compared. The ANFIS method yields better outcomes for two indications (Spearman's rank correlation coefficient and contrast) and the two phantom results in each category. The maximum image biasing, which is the third indication, is found to be 6% more than that for the ANN.

  15. Functional N-methyl-D-aspartate receptors in O-2A glial precursor cells: a critical role in regulating polysialic acid-neural cell adhesion molecule expression and cell migration

    PubMed Central

    1996-01-01

    The capacity for long-distance migration of the oligodendrocyte precursor cell, oligodendrocyte-type 2 astrocyte (O-2A), is essential for myelin formation. To study the molecular mechanisms that control this process, we used an in vitro migration assay that uses neurohypophysial explants. We provide evidence that O-2A cells in these preparations express functional N-methyl-D-aspartate (NMDA) receptors, most likely as homomeric complexes of the NR1 subunit. We show that NMDA evokes an increase in cytosolic Ca2+ that can be blocked by the NMDA receptor antagonist AP-5 and by Mg2+. Blocking the activity of these receptors dramatically diminished O-2A cell migration from explants. We also show that NMDA receptor activity is necessary for the expression by O-2A cells of the highly sialylated polysialic acid- neural cell adhesion molecule (PSA-NCAM) that is required for their migration. Thus, glutamate or glutamate receptor ligands may regulate O- 2A cell migration by modulating expression of PSA-NCAM. These studies demonstrate how interactions between ionotropic receptors, intracellular signaling, and cell adhesion molecule expression influence cell surface properties, which in turn are critical determinants of cell migration. PMID:8978823

  16. Evolvable synthetic neural system

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  17. Neural Networks

    SciTech Connect

    Smith, Patrick I.

    2003-09-23

    Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing

  18. Attitude control of spacecraft using neural networks

    NASA Technical Reports Server (NTRS)

    Vadali, Srinivas R.; Krishnan, S.; Singh, T.

    1993-01-01

    This paper investigates the use of radial basis function neural networks for adaptive attitude control and momentum management of spacecraft. In the first part of the paper, neural networks are trained to learn from a family of open-loop optimal controls parameterized by the initial states and times-to-go. The trained is then used for closed-loop control. In the second part of the paper, neural networks are used for direct adaptive control in the presence of unmodeled effects and parameter uncertainty. The control and learning laws are derived using the method of Lyapunov.

  19. Neural learning of constrained nonlinear transformations

    NASA Technical Reports Server (NTRS)

    Barhen, Jacob; Gulati, Sandeep; Zak, Michail

    1989-01-01

    Two issues that are fundamental to developing autonomous intelligent robots, namely, rudimentary learning capability and dexterous manipulation, are examined. A powerful neural learning formalism is introduced for addressing a large class of nonlinear mapping problems, including redundant manipulator inverse kinematics, commonly encountered during the design of real-time adaptive control mechanisms. Artificial neural networks with terminal attractor dynamics are used. The rapid network convergence resulting from the infinite local stability of these attractors allows the development of fast neural learning algorithms. Approaches to manipulator inverse kinematics are reviewed, the neurodynamics model is discussed, and the neural learning algorithm is presented.

  20. Adaptive constructive processes and the future of memory

    PubMed Central

    Schacter, Daniel L.

    2013-01-01

    Memory serves critical functions in everyday life, but is also prone to error. This article examines adaptive constructive processes, which play a functional role in memory and cognition but can also produce distortions, errors, or illusions. The article describes several types of memory errors that are produced by adaptive constructive processes, and focuses in particular on the process of imagining or simulating events that might occur in one’s personal future. Simulating future events relies on many of the same cognitive and neural processes as remembering past events, which may help to explain why imagination and memory can be easily confused. The article considers both pitfalls and adaptive aspects of future event simulation in the context of research on planning, prediction, problem solving, mind-wandering, prospective and retrospective memory, coping and positivity bias, and the interconnected set of brain regions known as the default network. PMID:23163437