NASA Astrophysics Data System (ADS)
Wang, Xingwei; Li, Lihua; Xu, Weidong; Liu, Wei; Lederman, Dror; Zheng, Bin
2012-01-01
Current computer-aided detection (CAD) schemes for detecting mammographic masses have several limitations including high correlation with radiologists’ detection and cueing most subtle masses only on one view. To increase CAD sensitivity in cueing more subtle masses that are likely missed and/or overlooked by radiologists without increasing false-positive rates, we investigated a new case-dependent cueing method by combining the original CAD-generated detection scores with a computed bilateral mammographic density asymmetry index. Using the new method, we adaptively raise the CAD-generated scores of the regions detected on ‘high-risk’ cases to cue more subtle mass regions and reduce the CAD scores of the regions detected on ‘low-risk’ cases to discard more false-positive regions. A testing dataset involving 78 positive and 338 negative cases was used to test this adaptive cueing method. Each positive case involves two sequential examinations in which the mass was detected in ‘current’ examination and missed in ‘prior’ examination but detected in a retrospective review by radiologists. Applying to this dataset, a pre-optimized CAD scheme yielded 75% case-based and 55% region-based sensitivity on ‘current’ examinations at a false-positive rate of 0.25 per image. CAD sensitivity was reduced to 42% (case based) and 27% (region based) on ‘prior’ examinations. Using the new cueing method, case-based and region-based sensitivity could maximally increase 9% and 33% on the ‘prior’ examinations, respectively. The percentages of the masses cued on two views also increased from 27% to 65%. The study demonstrated that using this adaptive cueing method enabled us to help CAD cue more subtle cancers without increasing the false-positive cueing rate.
NASA Astrophysics Data System (ADS)
Tan, Maxine; Aghaei, Faranak; Wang, Yunzhi; Qian, Wei; Zheng, Bin
2016-03-01
Current commercialized CAD schemes have high false-positive (FP) detection rates and also have high correlations in positive lesion detection with radiologists. Thus, we recently investigated a new approach to improve the efficacy of applying CAD to assist radiologists in reading and interpreting screening mammograms. Namely, we developed a new global feature based CAD approach/scheme that can cue the warning sign on the cases with high risk of being positive. In this study, we investigate the possibility of fusing global feature or case-based scores with the local or lesion-based CAD scores using an adaptive cueing method. We hypothesize that the information from the global feature extraction (features extracted from the whole breast regions) are different from and can provide supplementary information to the locally-extracted features (computed from the segmented lesion regions only). On a large and diverse full-field digital mammography (FFDM) testing dataset with 785 cases (347 negative and 438 cancer cases with masses only), we ran our lesion-based and case-based CAD schemes "as is" on the whole dataset. To assess the supplementary information provided by the global features, we used an adaptive cueing method to adaptively adjust the original CAD-generated detection scores (Sorg) of a detected suspicious mass region based on the computed case-based score (Scase) of the case associated with this detected region. Using the adaptive cueing method, better sensitivity results were obtained at lower FP rates (<= 1 FP per image). Namely, increases of sensitivities (in the FROC curves) of up to 6.7% and 8.2% were obtained for the ROI and Case-based results, respectively.
NASA Astrophysics Data System (ADS)
Tan, Maxine; Aghaei, Faranak; Wang, Yunzhi; Zheng, Bin
2017-01-01
The purpose of this study is to evaluate a new method to improve performance of computer-aided detection (CAD) schemes of screening mammograms with two approaches. In the first approach, we developed a new case based CAD scheme using a set of optimally selected global mammographic density, texture, spiculation, and structural similarity features computed from all four full-field digital mammography images of the craniocaudal (CC) and mediolateral oblique (MLO) views by using a modified fast and accurate sequential floating forward selection feature selection algorithm. Selected features were then applied to a ‘scoring fusion’ artificial neural network classification scheme to produce a final case based risk score. In the second approach, we combined the case based risk score with the conventional lesion based scores of a conventional lesion based CAD scheme using a new adaptive cueing method that is integrated with the case based risk scores. We evaluated our methods using a ten-fold cross-validation scheme on 924 cases (476 cancer and 448 recalled or negative), whereby each case had all four images from the CC and MLO views. The area under the receiver operating characteristic curve was AUC = 0.793 ± 0.015 and the odds ratio monotonically increased from 1 to 37.21 as CAD-generated case based detection scores increased. Using the new adaptive cueing method, the region based and case based sensitivities of the conventional CAD scheme at a false positive rate of 0.71 per image increased by 2.4% and 0.8%, respectively. The study demonstrated that supplementary information can be derived by computing global mammographic density image features to improve CAD-cueing performance on the suspicious mammographic lesions.
A review on auditory space adaptations to altered head-related cues
Mendonça, Catarina
2014-01-01
In this article we present a review of current literature on adaptations to altered head-related auditory localization cues. Localization cues can be altered through ear blocks, ear molds, electronic hearing devices, and altered head-related transfer functions (HRTFs). Three main methods have been used to induce auditory space adaptation: sound exposure, training with feedback, and explicit training. Adaptations induced by training, rather than exposure, are consistently faster. Studies on localization with altered head-related cues have reported poor initial localization, but improved accuracy and discriminability with training. Also, studies that displaced the auditory space by altering cue values reported adaptations in perceived source position to compensate for such displacements. Auditory space adaptations can last for a few months even without further contact with the learned cues. In most studies, localization with the subject's own unaltered cues remained intact despite the adaptation to a second set of cues. Generalization is observed from trained to untrained sound source positions, but there is mixed evidence regarding cross-frequency generalization. Multiple brain areas might be involved in auditory space adaptation processes, but the auditory cortex (AC) may play a critical role. Auditory space plasticity may involve context-dependent cue reweighting. PMID:25120422
Sensorimotor Adaptation Following Exposure to Ambiguous Inertial Motion Cues
NASA Technical Reports Server (NTRS)
Wood, S. J.; Clement, G. R.; Rupert, A. H.; Reschke, M. F.; Harm, D. L.; Guedry, F. E.
2007-01-01
The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive accurate spatial orientation awareness. Adaptive changes in how inertial cues from the otolith system are integrated with other sensory information lead to perceptual and postural disturbances upon return to Earth s gravity. The primary goals of this ground-based research investigation are to explore physiological mechanisms and operational implications of tilt-translation disturbances during and following re-entry, and to evaluate a tactile prosthesis as a countermeasure for improving control of whole-body orientation during tilt and translation motion.
CUE: the continuous unified electronic diary method.
Ellis-Davies, Kate; Sakkalou, Elena; Fowler, Nia C; Hilbrink, Elma E; Gattis, Merideth
2012-12-01
In the present article, we introduce the continuous unified electronic (CUE) diary method, a longitudinal, event-based, electronic parent report method that allows real-time recording of infant and child behavior in natural contexts. Thirty-nine expectant mothers were trained to identify and record target behaviors into programmed handheld computers. From birth to 18 months, maternal reporters recorded the initial, second, and third occurrences of seven target motor behaviors: palmar grasp, rolls from side to back, reaching when sitting, pincer grip, crawling, walking, and climbing stairs. Compliance was assessed as two valid entries per behavior: 97 % of maternal reporters met compliance criteria. Reliability was assessed by comparing diary entries with researcher assessments for three of the motor behaviors: palmar grasp, pincer grip and walking. A total of 81 % of maternal reporters met reliability criteria. For those three target behaviors, age of emergence was compared across data from the CUE diary method and researcher assessments. The CUE diary method was found to detect behaviors earlier and with greater sensitivity to individual differences. The CUE diary method is shown to be a reliable methodological tool for studying processes of change in human development.
Sensorimotor Adaptation Following Exposure to Ambiguous Inertial Motion Cues
NASA Technical Reports Server (NTRS)
Wood, S. J.; Clement, G. R.; Harm, D. L.; Rupert, A. H.; Guedry, F. E.; Reschke, M. F.
2005-01-01
The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive accurate spatial orientation awareness. Our general hypothesis is that the central nervous system utilizes both multi-sensory integration and frequency segregation as neural strategies to resolve the ambiguity of tilt and translation stimuli. Movement in an altered gravity environment, such as weightlessness without a stable gravity reference, results in new patterns of sensory cues. For example, the semicircular canals, vision and neck proprioception provide information about head tilt on orbit without the normal otolith head-tilt position that is omnipresent on Earth. Adaptive changes in how inertial cues from the otolith system are integrated with other sensory information lead to perceptual and postural disturbances upon return to Earth's gravity. The primary goals of this ground-based research investigation are to explore physiological mechanisms and operational implications of disorientation and tilt-translation disturbances reported by crewmembers during and following re-entry, and to evaluate a tactile prosthesis as a countermeasure for improving control of whole-body orientation during tilt and translation motion.
Sensorimotor Adaptation Following Exposure to Ambiguous Inertial Motion Cues
NASA Technical Reports Server (NTRS)
Wood, S. J.; Clement, G. R.; Harm, D L.; Rupert, A. H.; Guedry, F. E.; Reschke, M. F.
2005-01-01
The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive accurate spatial orientation awareness. Our general hypothesis is that the central nervous system utilizes both multi-sensory integration and frequency segregation as neural strategies to resolve the ambiguity of tilt and translation stimuli. Movement in an altered gravity environment, such as weightlessness without a stable gravity reference, results in new patterns of sensory cues. For example, the semicircular canals, vision and neck proprioception provide information about head tilt on orbit without the normal otolith head-tilt position that is omnipresent on Earth. Adaptive changes in how inertial cues from the otolith system are integrated with other sensory information lead to perceptual and postural disturbances upon return to Earth s gravity. The primary goals of this ground-based research investigation are to explore physiological mechanisms and operational implications of disorientation and tilt-translation disturbances reported by crewmembers during and following re-entry, and to evaluate a tactile prosthesis as a countermeasure for improving control of whole-body orientation during tilt and translation motion.
Seed Pubescence and Shape Modulate Adaptive Responses to Fire Cues.
Gómez-González, Susana; Ojeda, Fernando; Torres-Morales, Patricio; Palma, Jazmín E
2016-01-01
Post-fire recruitment by seeds is regarded as an adaptive response in fire-prone ecosystems. Nevertheless, little is known about which heritable seed traits are functional to the main signals of fire (heat and smoke), thus having the potential to evolve. Here, we explored whether three seed traits (pubescence, dormancy and shape) and fire regime modulate seed response to fire cues(heat and smoke). As a model study system, we used Helenium aromaticum (Asteraceae), a native annual forb from the Chilean matorral, where fires are anthropogenic. We related seed trait values with fitness responses (germination and survival) after exposure to heat-shock and smoke experimental treatments on seeds from 10 H. aromaticum wild populations. We performed a phenotypic selection experiment to examine the relationship of seed traits with post-treatment fitness within a population (adaptive hypothesis). We then explored whether fire frequency in natural habitats was associated with trait expression across populations, and with germination and survival responses to experimental fire-cues. We found that populations subjected to higher fire frequency had, in average, more rounded and pubescent seeds than populations from rarely burned areas. Populations with more rounded and pubescent seeds were more resistant to 80°C heat-shock and smoke treatments.There was correlated selection on seed traits: pubescent-rounded or glabrouscent-elongated seeds had the highest probability of germinating after heat-shock treatments. Seed pubescence and shape in H. aromaticum are heritable traits that modulate adaptive responses to fire. Our results provide new insights into the process of plant adaptation to fire and highlight the relevance of human-made fires as a strong evolutionary agent in the Anthropocene.
Seed Pubescence and Shape Modulate Adaptive Responses to Fire Cues
Gómez-González, Susana; Ojeda, Fernando; Torres-Morales, Patricio; Palma, Jazmín E.
2016-01-01
Post-fire recruitment by seeds is regarded as an adaptive response in fire-prone ecosystems. Nevertheless, little is known about which heritable seed traits are functional to the main signals of fire (heat and smoke), thus having the potential to evolve. Here, we explored whether three seed traits (pubescence, dormancy and shape) and fire regime modulate seed response to fire cues(heat and smoke). As a model study system, we used Helenium aromaticum (Asteraceae), a native annual forb from the Chilean matorral, where fires are anthropogenic. We related seed trait values with fitness responses (germination and survival) after exposure to heat-shock and smoke experimental treatments on seeds from 10 H. aromaticum wild populations. We performed a phenotypic selection experiment to examine the relationship of seed traits with post-treatment fitness within a population (adaptive hypothesis). We then explored whether fire frequency in natural habitats was associated with trait expression across populations, and with germination and survival responses to experimental fire-cues. We found that populations subjected to higher fire frequency had, in average, more rounded and pubescent seeds than populations from rarely burned areas. Populations with more rounded and pubescent seeds were more resistant to 80°C heat-shock and smoke treatments.There was correlated selection on seed traits: pubescent-rounded or glabrouscent-elongated seeds had the highest probability of germinating after heat-shock treatments. Seed pubescence and shape in H. aromaticum are heritable traits that modulate adaptive responses to fire. Our results provide new insights into the process of plant adaptation to fire and highlight the relevance of human-made fires as a strong evolutionary agent in the Anthropocene. PMID:27438267
Sensorimotor Adaptations Following Exposure to Ambiguous Inertial Motion Cues
NASA Technical Reports Server (NTRS)
Wood, S. J.; Harm, D. L.; Reschke, M. F.; Rupert, A. H.; Clement, G. R.
2009-01-01
The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive accurate spatial orientation awareness. We hypothesize that multi-sensory integration will be adaptively optimized in altered gravity environments based on the dynamics of other sensory information available, with greater changes in otolith-mediated responses in the mid-frequency range where there is a crossover of tilt and translation responses. The primary goals of this ground-based research investigation are to explore physiological mechanisms and operational implications of tilt-translation disturbances during and following re-entry, and to evaluate a tactile prosthesis as a countermeasure for improving control of whole-body orientation.
The Personalized Cueing Method: From the Laboratory to the Clinic
ERIC Educational Resources Information Center
Marshall, Robert C.; Freed, Donald B.
2006-01-01
Purpose: The personalized cueing method is a novel procedure for treating naming deficits of persons with aphasia that is relatively unfamiliar to most speech-language pathologists. The goal of this article is to introduce the personalized cueing method to clinicians so that it might be expanded and improved upon. It is also hoped that this…
Conflict Adaptation and Cue Competition during Learning in an Eriksen Flanker Task.
Ghinescu, Rodica; Schachtman, Todd R; Ramsey, Ashley K; Gratton, Gabriele; Fabiani, Monica
2016-01-01
Two experiments investigated competition between cues that predicted the correct target response to a target stimulus in a response conflict procedure using a flanker task. Subjects received trials with five-character arrays with a central target character and distractor flanker characters that matched (compatible) or did not match (incompatible) the central target. Subjects' expectancies for compatible and incompatible trials were manipulated by presenting pre-trial cues that signaled the occurrence of compatible or incompatible trials. On some trials, a single cue predicted the target stimulus and the required target response. On other trials, a second redundant, predictive cue was also present on such trials. The results showed an effect of competition between cues for control over strategic responding to the target stimuli, a finding that is predicted by associative learning theories. The finding of competition between pre-trial cues that predict incompatible trials, but not cues that predict compatible trials, suggests that different strategic processes may occur during adaptation to conflict when different kinds of trials are expected.
Conflict Adaptation and Cue Competition during Learning in an Eriksen Flanker Task
Ghinescu, Rodica; Ramsey, Ashley K.; Gratton, Gabriele; Fabiani, Monica
2016-01-01
Two experiments investigated competition between cues that predicted the correct target response to a target stimulus in a response conflict procedure using a flanker task. Subjects received trials with five-character arrays with a central target character and distractor flanker characters that matched (compatible) or did not match (incompatible) the central target. Subjects’ expectancies for compatible and incompatible trials were manipulated by presenting pre-trial cues that signaled the occurrence of compatible or incompatible trials. On some trials, a single cue predicted the target stimulus and the required target response. On other trials, a second redundant, predictive cue was also present on such trials. The results showed an effect of competition between cues for control over strategic responding to the target stimuli, a finding that is predicted by associative learning theories. The finding of competition between pre-trial cues that predict incompatible trials, but not cues that predict compatible trials, suggests that different strategic processes may occur during adaptation to conflict when different kinds of trials are expected. PMID:27941977
A cue-free method to probe human lighting biases.
Mazzilli, Giacomo; Schofield, Andrew J
2013-01-01
People readily perceive patterns of shading as 3-D shapes. Owing to the generalised bas-relief ambiguity when extracting shape from shading, people must simultaneously estimate the shape of the surface and the nature of the light source. In many cases cues in the image will be insufficient to resolve all of the ambiguities present, and in such cases the human visual system may employ one of a number of prior assumptions based on ecology and experience. One such assumption is the lighting-from-above prior. Here, in the absence of extrinsic cues to lighting direction, ambiguous shading patterns are interpreted as if lit by a light source that is above the observer's head. Studies of this prior typically use ambiguous stimuli and observe perceptual biases. A degree of cueing is inherent to such methods. Participants see the shaded stimuli repeatedly and are asked to make shape judgments about them regardless of whether or not they actually perceive any 3-D shape. We wanted to access people's lighting prior more directly by establishing the template they would employ to detect a shaded object in the absence of any visual cue to object shape. To this end, we adopted a classification image approach.
Torres-Oviedo, Gelsy; Bastian, Amy J
2010-12-15
Devices such as robots or treadmills are often used to drive motor learning because they can create novel physical environments. However, the learning (i.e., adaptation) acquired on these devices only partially generalizes to natural movements. What determines the specificity of motor learning, and can this be reliably made more general? Here we investigated the effect of visual cues on the specificity of split-belt walking adaptation. We systematically removed vision to eliminate the visual-proprioceptive mismatch that is a salient cue specific to treadmills: vision indicates that we are not moving while leg proprioception indicates that we are. We evaluated the adaptation of temporal and spatial features of gait (i.e., timing and location of foot landing), their transfer to walking over ground, and washout of adaptation when subjects returned to the treadmill. Removing vision during both training (i.e., on the treadmill) and testing (i.e., over ground) strongly improved the transfer of treadmill adaptation to natural walking. Removing vision only during training increased transfer of temporal adaptation, whereas removing vision only during testing increased the transfer of spatial adaptation. This dissociation reveals differences in adaptive mechanisms for temporal and spatial features of walking. Finally training without vision increased the amount that was learned and was linked to the variability in the behavior during adaptation. In conclusion, contextual cues can be manipulated to modulate the magnitude, transfer, and washout of device-induced learning in humans. These results bring us closer to our ultimate goal of developing rehabilitation strategies that improve movements beyond the clinical setting.
Kumpik, Daniel P.; Kacelnik, Oliver; King, Andrew J.
2014-01-01
Localizing a sound source involves the detection and integration of various spatial cues present in the sound waves at each ear. Previous studies indicate that the brain circuits underlying sound localization are calibrated by experience of the cues available to each individual. Plasticity in spatial hearing is most pronounced during development, but can also be demonstrated during adulthood under certain circumstances. Investigations into whether adult humans can adjust to reduced input in one ear and learn a new correspondence between interaural differences cues and directions in space have produced conflicting results. Here we show that humans of both sexes can relearn to localize broadband sounds with a “flat” spectrum in the horizontal plane after altering the spatial cues available by plugging one ear. In subjects who received daily training, localization accuracy progressively shifted back toward their pre-plug performance after one week of ear-plugging, whereas no improvement was seen if all trials were carried out on the same day. However, localization performance did not improve on a task that employed stimuli in which the source spectrum was randomized from trial to trial, indicating that monaural spectral cues are needed for plasticity. We also characterized the effects of the earplug on sensitivity to interaural time and level differences, and found no clear evidence for adaptation to these cues as the free-field localization performance improved. These findings suggest that the mature auditory system can accommodate abnormal inputs and maintain a stable spatial percept by reweighting different cues according to how informative they are. PMID:20371808
Adaptive Algebraic Multigrid Methods
Brezina, M; Falgout, R; MacLachlan, S; Manteuffel, T; McCormick, S; Ruge, J
2004-04-09
Our ability to simulate physical processes numerically is constrained by our ability to solve the resulting linear systems, prompting substantial research into the development of multiscale iterative methods capable of solving these linear systems with an optimal amount of effort. Overcoming the limitations of geometric multigrid methods to simple geometries and differential equations, algebraic multigrid methods construct the multigrid hierarchy based only on the given matrix. While this allows for efficient black-box solution of the linear systems associated with discretizations of many elliptic differential equations, it also results in a lack of robustness due to assumptions made on the near-null spaces of these matrices. This paper introduces an extension to algebraic multigrid methods that removes the need to make such assumptions by utilizing an adaptive process. The principles which guide the adaptivity are highlighted, as well as their application to algebraic multigrid solution of certain symmetric positive-definite linear systems.
Context cue-dependent saccadic adaptation in rhesus macaques cannot be elicited using color.
Cecala, Aaron L; Smalianchuk, Ivan; Khanna, Sanjeev B; Smith, Matthew A; Gandhi, Neeraj J
2015-07-01
When the head does not move, rapid movements of the eyes called saccades are used to redirect the line of sight. Saccades are defined by a series of metrical and kinematic (evolution of a movement as a function of time) relationships. For example, the amplitude of a saccade made from one visual target to another is roughly 90% of the distance between the initial fixation point (T0) and the peripheral target (T1). However, this stereotypical relationship between saccade amplitude and initial retinal error (T1-T0) may be altered, either increased or decreased, by surreptitiously displacing a visual target during an ongoing saccade. This form of motor learning (called saccadic adaptation) has been described in both humans and monkeys. Recent experiments in humans and monkeys have suggested that internal (proprioceptive) and external (target shape, color, and/or motion) cues may be used to produce context-dependent adaptation. We tested the hypothesis that an external contextual cue (target color) could be used to evoke differential gain (actual saccade/initial retinal error) states in rhesus monkeys. We did not observe differential gain states correlated with target color regardless of whether targets were displaced along the same vector as the primary saccade or perpendicular to it. Furthermore, this observation held true regardless of whether adaptation trials using various colors and intrasaccade target displacements were randomly intermixed or presented in short or long blocks of trials. These results are consistent with hypotheses that state that color cannot be used as a contextual cue and are interpreted in light of previous studies of saccadic adaptation in both humans and monkeys.
Accelerated Adaptive Integration Method
2015-01-01
Conformational changes that occur upon ligand binding may be too slow to observe on the time scales routinely accessible using molecular dynamics simulations. The adaptive integration method (AIM) leverages the notion that when a ligand is either fully coupled or decoupled, according to λ, barrier heights may change, making some conformational transitions more accessible at certain λ values. AIM adaptively changes the value of λ in a single simulation so that conformations sampled at one value of λ seed the conformational space sampled at another λ value. Adapting the value of λ throughout a simulation, however, does not resolve issues in sampling when barriers remain high regardless of the λ value. In this work, we introduce a new method, called Accelerated AIM (AcclAIM), in which the potential energy function is flattened at intermediate values of λ, promoting the exploration of conformational space as the ligand is decoupled from its receptor. We show, with both a simple model system (Bromocyclohexane) and the more complex biomolecule Thrombin, that AcclAIM is a promising approach to overcome high barriers in the calculation of free energies, without the need for any statistical reweighting or additional processors. PMID:24780083
Advances in Adaptive Control Methods
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2009-01-01
This poster presentation describes recent advances in adaptive control technology developed by NASA. Optimal Control Modification is a novel adaptive law that can improve performance and robustness of adaptive control systems. A new technique has been developed to provide an analytical method for computing time delay stability margin for adaptive control systems.
Batson, Glenna; Hugenschmidt, Christina E; Soriano, Christina T
2016-01-01
Dance is a non-pharmacological intervention that helps maintain functional independence and quality of life in people with Parkinson's disease (PPD). Results from controlled studies on group-delivered dance for people with mild-to-moderate stage Parkinson's have shown statistically and clinically significant improvements in gait, balance, and psychosocial factors. Tested interventions include non-partnered dance forms (ballet and modern dance) and partnered (tango). In all of these dance forms, specific movement patterns initially are learned through repetition and performed in time-to-music. Once the basic steps are mastered, students may be encouraged to improvise on the learned steps as they perform them in rhythm with the music. Here, we summarize a method of teaching improvisational dance that advances previous reported benefits of dance for people with Parkinson's disease (PD). The method relies primarily on improvisational verbal auditory cueing with less emphasis on directed movement instruction. This method builds on the idea that daily living requires flexible, adaptive responses to real-life challenges. In PD, movement disorders not only limit mobility but also impair spontaneity of thought and action. Dance improvisation demands open and immediate interpretation of verbally delivered movement cues, potentially fostering the formation of spontaneous movement strategies. Here, we present an introduction to a proposed method, detailing its methodological specifics, and pointing to future directions. The viewpoint advances an embodied cognitive approach that has eco-validity in helping PPD meet the changing demands of daily living.
Parallel multilevel adaptive methods
NASA Technical Reports Server (NTRS)
Dowell, B.; Govett, M.; Mccormick, S.; Quinlan, D.
1989-01-01
The progress of a project for the design and analysis of a multilevel adaptive algorithm (AFAC/HM/) targeted for the Navier Stokes Computer is discussed. The results of initial timing tests of AFAC, coupled with multigrid and an efficient load balancer, on a 16-node Intel iPSC/2 hypercube are included. The results of timing tests are presented.
NASA Technical Reports Server (NTRS)
Wood, Scott J.; Clarke, A. H.; Harm, D. L.; Rupert, A. H.; Clement, G. R.
2009-01-01
Adaptive changes during space flight in how the brain integrates vestibular cues with other sensory information can lead to impaired movement coordination, vertigo, spatial disorientation and perceptual illusions following Gtransitions. These studies are designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances following short duration space flights.
Bukovetzky, Elena; Schwimmer, Hagit; Fares, Fuad; Haim, Abraham
2012-01-01
Understanding the ways environmental signals, regulate reproduction and reproductive behavior of desert adapted rodents is a major gap in our knowledge. In this study, we assessed the roles of photoperiod and diet salinity, as signals for reproduction. We challenged desert adapted common spiny mice, Acomys cahirinus, males and females with osmotic stress, by gradually increasing salinity in their water source - from 0.9% to 5% NaCl under short and long days (SD and LD, respectively). Photoperiodicity affected testosterone levels, as under LD-acclimation, levels were significantly (p<0.05) higher than under SD-acclimation. Salinity treatment (ST) significantly reduced SD-acclimated male body mass (W(b)) and testis mass (p<0.005; normalized to W(b)). ST-LD-females significantly (p<0.005) decreased progesterone levels and the numbers of estrous cycles. A reduction in white adipose tissue (WAT) to an undetectable level was noted in ST-mice of both sexes under both photoperiod regimes. Receptors for vasopressin (VP) and aldosterone were revealed on testes of all male groups and on WAT in control groups. Our results suggest that photoperiod serves as an initial signal while water availability, expressed by increased salinity in the water source, is an ultimate cue for regulation of reproduction, in both sexes of desert-adapted A. cahirinus. We assume that environmental changes also affect behavior, as water seeking behavior by selecting food items, or locomotor activity may change in extreme environment, and thus indirectly affect reproduction and reproductive behavior. The existence of VP and aldosterone receptors in the gonads and WAT suggests the involvement of osmoregulatory hormones in reproductive control of desert adapted rodents.
The role of forget-cue salience in list-method directed forgetting.
Foster, Nathaniel L; Sahakyan, Lili
2011-01-01
Research suggests that manipulating the wording of the forget cue in list-method directed forgetting affects the magnitude of directed forgetting both in younger children (Aslan, Staudigl, Samenieh, & Bauml, in press) and in older adults (Sahakyan, Delaney, & Goodmon, 2008). This occurs when the forget cue overemphasises the importance of forgetting in the current context. The present experiment investigated whether de-emphasising forgetting affected the magnitude of list-method directed forgetting in college adults. Some participants received overt forget cues that explicitly instructed them to forget earlier studied items, whereas others received covert forget cues that implied forgetting by emphasising selective remembering (e.g., "you will only need to remember some of the items"). Results indicated equivalent directed forgetting for both types of cues. However, regardless of the type of cue received, participants who reported using specific forgetting strategies in response to the forget cue showed directed forgetting, whereas those that reported doing nothing did not show any effects. The results underscore that successful directed forgetting requires engagement of controlled processes.
NASA Astrophysics Data System (ADS)
Heldmaier, G.; Steinlechner, S.; Rafael, J.; Latteier, B.
1982-12-01
For their seasonal control of thermogenesis Djungarian hamsters rely on environmental cueing by both photoperiod and ambient temperature. Their total potential for adaptive improvements of nonshivering thermogenesis is constant in summer and winter. The shortening of photoperiod in fall is used to anticipate about half of the total improvement in thermogenesis, in advance of any experience of cold, as can be concluded from the photoperiodic control of thermogenesis, cold resistance, and the protein content, cyctochrome oxidase activity and content of mitochondria in brown adipose tissue. The remainder of the seasonal thermogenic adaptation is due to stimulatory responses to chronic exposure to cold.
Milne, Roger Brent
1995-12-01
This thesis describes a new method for the numerical solution of partial differential equations of the parabolic type on an adaptively refined mesh in two or more spatial dimensions. The method is motivated and developed in the context of the level set formulation for the curvature dependent propagation of surfaces in three dimensions. In that setting, it realizes the multiple advantages of decreased computational effort, localized accuracy enhancement, and compatibility with problems containing a range of length scales.
Method of adaptive artificial viscosity
NASA Astrophysics Data System (ADS)
Popov, I. V.; Fryazinov, I. V.
2011-09-01
A new finite-difference method for the numerical solution of gas dynamics equations is proposed. This method is a uniform monotonous finite-difference scheme of second-order approximation on time and space outside of domains of shock and compression waves. This method is based on inputting adaptive artificial viscosity (AAV) into gas dynamics equations. In this paper, this method is analyzed for 2D geometry. The testing computations of the movement of contact discontinuities and shock waves and the breakup of discontinuities are demonstrated.
Adapting to the Destitute Situations: Poverty Cues Lead to Short-Term Choice
Suo, Tao; Lee, Kang; Li, Hong
2012-01-01
Background Why do some people live for the present, whereas others save for the future? The evolutionary framework of life history theory predicts that preference for delay of gratification should be influenced by social economic status (SES). However, here we propose that the decision to choose alternatives in immediate and delayed gratification in poverty environments may have a psychological dimension. Specifically, the perception of environmental poverty cues may induce people alike to favor choices with short-term, likely smaller benefit than choices with long-term, greater benefit. Methodology/Principal Findings The present study was conducted to explore how poverty and affluence cues affected individuals' intertemporal choices. In our first two experiments, individuals exposed explicitly (Experiment 1) and implicitly (Experiment 2) to poverty pictures (the poverty cue) were induced to prefer immediate gratification compared with those exposed to affluence pictures (the affluence cue). Furthermore, by the manipulation of temporary perceptions of poverty and affluence status using a lucky draw game; individuals in the poverty state were more impulsive in a manner, which made them pursue immediate gratification in intertemporal choices (Experiment 3). Thus, poverty cues can lead to short-term choices. Conclusions/Significance Decision makers chose more frequently the sooner-smaller reward over the later-larger reward as they were exposed to the poverty cue. This indicates that it is that just the feeling of poverty influences intertemporal choice – the actual reality of poverty (restricted resources, etc.) is not necessary to get the effect. Furthermore, our findings emphasize that it is a change of the poverty-affluence status, not a trait change, can influence individual preference in intertemporal choice. PMID:22529902
Hollands, Kristen L.; Pelton, Trudy A.; Wimperis, Andrew; Whitham, Diane; Tan, Wei; Jowett, Sue; Sackley, Catherine M.; Wing, Alan M.; Tyson, Sarah F.; Mathias, Jonathan; Hensman, Marianne; van Vliet, Paulette M.
2015-01-01
Objectives Given the importance of vision in the control of walking and evidence indicating varied practice of walking improves mobility outcomes, this study sought to examine the feasibility and preliminary efficacy of varied walking practice in response to visual cues, for the rehabilitation of walking following stroke. Design This 3 arm parallel, multi-centre, assessor blind, randomised control trial was conducted within outpatient neurorehabilitation services Participants Community dwelling stroke survivors with walking speed <0.8m/s, lower limb paresis and no severe visual impairments Intervention Over-ground visual cue training (O-VCT), Treadmill based visual cue training (T-VCT), and Usual care (UC) delivered by physiotherapists twice weekly for 8 weeks. Main outcome measures: Participants were randomised using computer generated random permutated balanced blocks of randomly varying size. Recruitment, retention, adherence, adverse events and mobility and balance were measured before randomisation, post-intervention and at four weeks follow-up. Results Fifty-six participants participated (18 T-VCT, 19 O-VCT, 19 UC). Thirty-four completed treatment and follow-up assessments. Of the participants that completed, adherence was good with 16 treatments provided over (median of) 8.4, 7.5 and 9 weeks for T-VCT, O-VCT and UC respectively. No adverse events were reported. Post-treatment improvements in walking speed, symmetry, balance and functional mobility were seen in all treatment arms. Conclusions Outpatient based treadmill and over-ground walking adaptability practice using visual cues are feasible and may improve mobility and balance. Future studies should continue a carefully phased approach using identified methods to improve retention. Trial Registration Clinicaltrials.gov NCT01600391 PMID:26445137
Batson, Glenna; Hugenschmidt, Christina E.; Soriano, Christina T.
2016-01-01
Dance is a non-pharmacological intervention that helps maintain functional independence and quality of life in people with Parkinson’s disease (PPD). Results from controlled studies on group-delivered dance for people with mild-to-moderate stage Parkinson’s have shown statistically and clinically significant improvements in gait, balance, and psychosocial factors. Tested interventions include non-partnered dance forms (ballet and modern dance) and partnered (tango). In all of these dance forms, specific movement patterns initially are learned through repetition and performed in time-to-music. Once the basic steps are mastered, students may be encouraged to improvise on the learned steps as they perform them in rhythm with the music. Here, we summarize a method of teaching improvisational dance that advances previous reported benefits of dance for people with Parkinson’s disease (PD). The method relies primarily on improvisational verbal auditory cueing with less emphasis on directed movement instruction. This method builds on the idea that daily living requires flexible, adaptive responses to real-life challenges. In PD, movement disorders not only limit mobility but also impair spontaneity of thought and action. Dance improvisation demands open and immediate interpretation of verbally delivered movement cues, potentially fostering the formation of spontaneous movement strategies. Here, we present an introduction to a proposed method, detailing its methodological specifics, and pointing to future directions. The viewpoint advances an embodied cognitive approach that has eco-validity in helping PPD meet the changing demands of daily living. PMID:26925029
Robust Optimal Adaptive Control Method with Large Adaptive Gain
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2009-01-01
In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.
Adapting to the human world: dogs' responsiveness to our social cues.
Reid, Pamela J
2009-03-01
Dogs are more skilful than a host of other species at tasks which require they respond to human communicative gestures in order to locate hidden food. Four basic interpretations for this proficiency surface from distilling the research findings. One possibility is that dogs simply have more opportunity than other species to learn to be responsive to human social cues. A different analysis suggests that the domestication process provided an opening for dogs to apply general cognitive problem-solving skills to a novel social niche. Some researchers go beyond this account and propose that dogs' co-evolution with humans equipped them with a theory of mind for social exchanges. Finally, a more prudent approach suggests that sensitivity to the behaviours of both humans and conspecifics would be particularly advantageous for a social scavenger like the dog. A predisposition to attend to human actions allows for rapid early learning of the association between gestures and the availability of food.
NASA Astrophysics Data System (ADS)
Kalamees, Rein; Püssa, Kersti; Tamm, Sirli; Zobel, Kristjan
2012-01-01
Although boreal forests are biomes which are characterized by periodical forest wildfires, very little is known about adaptations to fire in forest herbs. We investigated whether a putatively fire-dependent herbaceous species - Pulsatilla patens - demonstrated adaptive responses to environmental cues that reflect differences in pre-fire and post-fire environments (the presence of ericoid litter and charcoal, and light levels). For comparison, we included in the experiment a close congeneric species that is less bound to forest ecosystems ( Pulsatilla pratensis) and a morphologically similar mesic grassland species from the same family ( Ranunculus polyanthemos), as examples of species for which adaptations to fire should be of lower value, or of no value at all, respectively. The addition of ericoid litter to the soil generally enhanced plant growth, suggesting that its negative effect on plant germination and growth is not as widespread as previously thought. In both Pulsatilla species charcoal without forest litter retarded plant growth, but in combination with ericoid litter the negative effect disappeared or was even replaced by a slightly positive effect. Such an interactive effect was absent in the grassland species R. polyanthemos. The response of Pulsatilla species to different post-fire signals may be explained by adaptive down-regulation of growth after high-intensity fire - small plant size can be advantageous in sparse and well illuminated field-layer vegetation - and intense growth in the more competitive situation following weak fire. An additional experiment demonstrated that the effects of fire-related treatments were not mediated by differential AM infection.
Cañas, Rafael A.; Canales, Javier; Muñoz-Hernández, Carmen; Granados, Jose M.; Ávila, Concepción; García-Martín, María L.; Cánovas, Francisco M.
2015-01-01
Conifers include long-lived evergreen trees of great economic and ecological importance, including pines and spruces. During their long lives conifers must respond to seasonal environmental changes, adapt to unpredictable environmental stresses, and co-ordinate their adaptive adjustments with internal developmental programmes. To gain insights into these responses, we examined metabolite and transcriptomic profiles of needles from naturally growing 25-year-old maritime pine (Pinus pinaster L. Aiton) trees over a year. The effect of environmental parameters such as temperature and rain on needle development were studied. Our results show that seasonal changes in the metabolite profiles were mainly affected by the needles’ age and acclimation for winter, but changes in transcript profiles were mainly dependent on climatic factors. The relative abundance of most transcripts correlated well with temperature, particularly for genes involved in photosynthesis or winter acclimation. Gene network analysis revealed relationships between 14 co-expressed gene modules and development and adaptation to environmental stimuli. Novel Myb transcription factors were identified as candidate regulators during needle development. Our systems-based analysis provides integrated data of the seasonal regulation of maritime pine growth, opening new perspectives for understanding the complex regulatory mechanisms underlying conifers’ adaptive responses. Taken together, our results suggest that the environment regulates the transcriptome for fine tuning of the metabolome during development. PMID:25873654
Koppel, Jonathan; Berntsen, Dorthe
2016-01-01
The reminiscence bump has been found for both autobiographical memories and memories of public events. However, there have been few comparisons of the bump across each type of event. In the current study, therefore, we compared the bump for autobiographical memories versus the bump for memories of public events. We did so between-subjects, through two cueing methods administered within-subjects, the cue word method and the important memories method. For word-cued memories, we found a similar bump from ages 5 to 19 for both types of memories. However, the bump was more pronounced for autobiographical memories. For most important memories, we found a bump from ages 20 to 29 in autobiographical memory, but little discernible age pattern for public events. Rather, specific public events (e.g., the Fall of the Berlin Wall) dominated recall, producing a chronological distribution characterised by spikes in citations according to the years these events occurred. Follow-up analyses suggested that the bump in most important autobiographical memories was a function of the cultural life script. Our findings did not yield support for any of the dominant existing accounts of the bump as underlying the bump in word-cued memories.
Effect of stimuli presentation method on perception of room size using only acoustic cues
NASA Astrophysics Data System (ADS)
Hunt, Jeffrey Barnabas
People listen to music and speech in a large variety of rooms and many room parameters, including the size of the room, can drastically affect how well the speech is understood or the music enjoyed. While multi-modal (typically hearing and sight) tests may be more realistic, in order to isolate what acoustic cues listeners use to determine the size of a room, a listening-only tests is conducted here. Nearly all of the studies to-date on the perception of room volume using acoustic cues have presented the stimuli only over headphones and these studies have reported that, in most cases, the perceived room volume is more highly correlated with the perceived reverberation (reverberance) than with actual room volume. While reverberance may be a salient acoustic cue used for the determination or room size, the actual sound field in a room is not accurately reproduced when presented over headphones and it is thought that some of the complexities of the sound field that relate to perception of geometric volume, specifically directional information of reflections, may be lost. It is possible that the importance of reverberance may be overemphasized when using only headphones to present stimuli so a comparison of room-size perception is proposed where the sound field (from modeled and recorded impulse responses) is presented both over headphones and also over a surround system using higher order ambisonics to more accurately produce directional sound information. Major results are that, in this study, no difference could be seen between the two presentation methods and that reverberation time is highly correlated to room-size perception while real room size is not.
Andari, Elissar; Richard, Nathalie; Leboyer, Marion; Sirigu, Angela
2016-03-01
The neuropeptide oxytocin (OT) is one of the major targets of research in neuroscience, with respect to social functioning. Oxytocin promotes social skills and improves the quality of face processing in individuals with social dysfunctions such as autism spectrum disorder (ASD). Although one of OT's key functions is to promote social behavior during dynamic social interactions, the neural correlates of this function remain unknown. Here, we combined acute intranasal OT (IN-OT) administration (24 IU) and fMRI with an interactive ball game and a face-matching task in individuals with ASD (N = 20). We found that IN-OT selectively enhanced the brain activity of early visual areas in response to faces as compared to non-social stimuli. OT inhalation modulated the BOLD activity of amygdala and hippocampus in a context-dependent manner. Interestingly, IN-OT intake enhanced the activity of mid-orbitofrontal cortex in response to a fair partner, and insula region in response to an unfair partner. These OT-induced neural responses were accompanied by behavioral improvements in terms of allocating appropriate feelings of trust toward different partners' profiles. Our findings suggest that OT impacts the brain activity of key areas implicated in attention and emotion regulation in an adaptive manner, based on the value of social cues.
Figure-ground separation by cue integration.
Tang, Xiangyu; von der Malsburg, Christoph
2008-06-01
This letter presents an improved cue integration approach to reliably separate coherent moving objects from their background scene in video sequences. The proposed method uses a probabilistic framework to unify bottom-up and top-down cues in a parallel, "democratic" fashion. The algorithm makes use of a modified Bayes rule where each pixel's posterior probabilities of figure or ground layer assignment are derived from likelihood models of three bottom-up cues and a prior model provided by a top-down cue. Each cue is treated as independent evidence for figure-ground separation. They compete with and complement each other dynamically by adjusting relative weights from frame to frame according to cue quality measured against the overall integration. At the same time, the likelihood or prior models of individual cues adapt toward the integrated result. These mechanisms enable the system to organize under the influence of visual scene structure without manual intervention. A novel contribution here is the incorporation of a top-down cue. It improves the system's robustness and accuracy and helps handle difficult and ambiguous situations, such as abrupt lighting changes or occlusion among multiple objects. Results on various video sequences are demonstrated and discussed. (Video demos are available at http://organic.usc.edu:8376/ approximately tangx/neco/index.html .).
A new orientation-adaptive interpolation method.
Wang, Qing; Ward, Rabab Kreidieh
2007-04-01
We propose an isophote-oriented, orientation-adaptive interpolation method. The proposed method employs an interpolation kernel that adapts to the local orientation of isophotes, and the pixel values are obtained through an oriented, bilinear interpolation. We show that, by doing so, the curvature of the interpolated isophotes is reduced, and, thus, zigzagging artifacts are largely suppressed. Analysis and experiments show that images interpolated using the proposed method are visually pleasing and almost artifact free.
The Method of Adaptive Comparative Judgement
ERIC Educational Resources Information Center
Pollitt, Alastair
2012-01-01
Adaptive Comparative Judgement (ACJ) is a modification of Thurstone's method of comparative judgement that exploits the power of adaptivity, but in scoring rather than testing. Professional judgement by teachers replaces the marking of tests; a judge is asked to compare the work of two students and simply to decide which of them is the better.…
Adaptive Discontinuous Galerkin Methods in Multiwavelets Bases
Archibald, Richard K; Fann, George I; Shelton Jr, William Allison
2011-01-01
We use a multiwavelet basis with the Discontinuous Galerkin (DG) method to produce a multi-scale DG method. We apply this Multiwavelet DG method to convection and convection-diffusion problems in multiple dimensions. Merging the DG method with multiwavelets allows the adaptivity in the DG method to be resolved through manipulation of multiwavelet coefficients rather than grid manipulation. Additionally, the Multiwavelet DG method is tested on non-linear equations in one dimension and on the cubed sphere.
Varnet, Léo; Knoblauch, Kenneth; Serniclaes, Willy; Meunier, Fanny; Hoen, Michel
2015-01-01
Although there is a large consensus regarding the involvement of specific acoustic cues in speech perception, the precise mechanisms underlying the transformation from continuous acoustical properties into discrete perceptual units remains undetermined. This gap in knowledge is partially due to the lack of a turnkey solution for isolating critical speech cues from natural stimuli. In this paper, we describe a psychoacoustic imaging method known as the Auditory Classification Image technique that allows experimenters to estimate the relative importance of time-frequency regions in categorizing natural speech utterances in noise. Importantly, this technique enables the testing of hypotheses on the listening strategies of participants at the group level. We exemplify this approach by identifying the acoustic cues involved in da/ga categorization with two phonetic contexts, Al- or Ar-. The application of Auditory Classification Images to our group of 16 participants revealed significant critical regions on the second and third formant onsets, as predicted by the literature, as well as an unexpected temporal cue on the first formant. Finally, through a cluster-based nonparametric test, we demonstrate that this method is sufficiently sensitive to detect fine modifications of the classification strategies between different utterances of the same phoneme. PMID:25781470
Varnet, Léo; Knoblauch, Kenneth; Serniclaes, Willy; Meunier, Fanny; Hoen, Michel
2015-01-01
Although there is a large consensus regarding the involvement of specific acoustic cues in speech perception, the precise mechanisms underlying the transformation from continuous acoustical properties into discrete perceptual units remains undetermined. This gap in knowledge is partially due to the lack of a turnkey solution for isolating critical speech cues from natural stimuli. In this paper, we describe a psychoacoustic imaging method known as the Auditory Classification Image technique that allows experimenters to estimate the relative importance of time-frequency regions in categorizing natural speech utterances in noise. Importantly, this technique enables the testing of hypotheses on the listening strategies of participants at the group level. We exemplify this approach by identifying the acoustic cues involved in da/ga categorization with two phonetic contexts, Al- or Ar-. The application of Auditory Classification Images to our group of 16 participants revealed significant critical regions on the second and third formant onsets, as predicted by the literature, as well as an unexpected temporal cue on the first formant. Finally, through a cluster-based nonparametric test, we demonstrate that this method is sufficiently sensitive to detect fine modifications of the classification strategies between different utterances of the same phoneme.
Domain adaptive boosting method and its applications
NASA Astrophysics Data System (ADS)
Geng, Jie; Miao, Zhenjiang
2015-03-01
Differences of data distributions widely exist among datasets, i.e., domains. For many pattern recognition, nature language processing, and content-based analysis systems, a decrease in performance caused by the domain differences between the training and testing datasets is still a notable problem. We propose a domain adaptation method called domain adaptive boosting (DAB). It is based on the AdaBoost approach with extensions to cover the domain differences between the source and target domains. Two main stages are contained in this approach: source-domain clustering and source-domain sample selection. By iteratively adding the selected training samples from the source domain, the discrimination model is able to achieve better domain adaptation performance based on a small validation set. The DAB algorithm is suitable for the domains with large scale samples and easy to extend for multisource adaptation. We implement this method on three computer vision systems: the skin detection model in single images, the video concept detection model, and the object classification model. In the experiments, we compare the performances of several commonly used methods and the proposed DAB. Under most situations, the DAB is superior.
Structured adaptive grid generation using algebraic methods
NASA Technical Reports Server (NTRS)
Yang, Jiann-Cherng; Soni, Bharat K.; Roger, R. P.; Chan, Stephen C.
1993-01-01
The accuracy of the numerical algorithm depends not only on the formal order of approximation but also on the distribution of grid points in the computational domain. Grid adaptation is a procedure which allows optimal grid redistribution as the solution progresses. It offers the prospect of accurate flow field simulations without the use of an excessively timely, computationally expensive, grid. Grid adaptive schemes are divided into two basic categories: differential and algebraic. The differential method is based on a variational approach where a function which contains a measure of grid smoothness, orthogonality and volume variation is minimized by using a variational principle. This approach provided a solid mathematical basis for the adaptive method, but the Euler-Lagrange equations must be solved in addition to the original governing equations. On the other hand, the algebraic method requires much less computational effort, but the grid may not be smooth. The algebraic techniques are based on devising an algorithm where the grid movement is governed by estimates of the local error in the numerical solution. This is achieved by requiring the points in the large error regions to attract other points and points in the low error region to repel other points. The development of a fast, efficient, and robust algebraic adaptive algorithm for structured flow simulation applications is presented. This development is accomplished in a three step process. The first step is to define an adaptive weighting mesh (distribution mesh) on the basis of the equidistribution law applied to the flow field solution. The second, and probably the most crucial step, is to redistribute grid points in the computational domain according to the aforementioned weighting mesh. The third and the last step is to reevaluate the flow property by an appropriate search/interpolate scheme at the new grid locations. The adaptive weighting mesh provides the information on the desired concentration
Adaptive Method for Nonsmooth Nonnegative Matrix Factorization.
Yang, Zuyuan; Xiang, Yong; Xie, Kan; Lai, Yue
2017-04-01
Nonnegative matrix factorization (NMF) is an emerging tool for meaningful low-rank matrix representation. In NMF, explicit constraints are usually required, such that NMF generates desired products (or factorizations), especially when the products have significant sparseness features. It is known that the ability of NMF in learning sparse representation can be improved by embedding a smoothness factor between the products. Motivated by this result, we propose an adaptive nonsmooth NMF (Ans-NMF) method in this paper. In our method, the embedded factor is obtained by using a data-related approach, so it matches well with the underlying products, implying a superior faithfulness of the representations. Besides, due to the usage of an adaptive selection scheme to this factor, the sparseness of the products can be separately constrained, leading to wider applicability and interpretability. Furthermore, since the adaptive selection scheme is processed through solving a series of typical linear programming problems, it can be easily implemented. Simulations using computer-generated data and real-world data show the advantages of the proposed Ans-NMF method over the state-of-the-art methods.
Parallel adaptive wavelet collocation method for PDEs
Nejadmalayeri, Alireza; Vezolainen, Alexei; Brown-Dymkoski, Eric; Vasilyev, Oleg V.
2015-10-01
A parallel adaptive wavelet collocation method for solving a large class of Partial Differential Equations is presented. The parallelization is achieved by developing an asynchronous parallel wavelet transform, which allows one to perform parallel wavelet transform and derivative calculations with only one data synchronization at the highest level of resolution. The data are stored using tree-like structure with tree roots starting at a priori defined level of resolution. Both static and dynamic domain partitioning approaches are developed. For the dynamic domain partitioning, trees are considered to be the minimum quanta of data to be migrated between the processes. This allows fully automated and efficient handling of non-simply connected partitioning of a computational domain. Dynamic load balancing is achieved via domain repartitioning during the grid adaptation step and reassigning trees to the appropriate processes to ensure approximately the same number of grid points on each process. The parallel efficiency of the approach is discussed based on parallel adaptive wavelet-based Coherent Vortex Simulations of homogeneous turbulence with linear forcing at effective non-adaptive resolutions up to 2048{sup 3} using as many as 2048 CPU cores.
Parallel adaptive wavelet collocation method for PDEs
NASA Astrophysics Data System (ADS)
Nejadmalayeri, Alireza; Vezolainen, Alexei; Brown-Dymkoski, Eric; Vasilyev, Oleg V.
2015-10-01
A parallel adaptive wavelet collocation method for solving a large class of Partial Differential Equations is presented. The parallelization is achieved by developing an asynchronous parallel wavelet transform, which allows one to perform parallel wavelet transform and derivative calculations with only one data synchronization at the highest level of resolution. The data are stored using tree-like structure with tree roots starting at a priori defined level of resolution. Both static and dynamic domain partitioning approaches are developed. For the dynamic domain partitioning, trees are considered to be the minimum quanta of data to be migrated between the processes. This allows fully automated and efficient handling of non-simply connected partitioning of a computational domain. Dynamic load balancing is achieved via domain repartitioning during the grid adaptation step and reassigning trees to the appropriate processes to ensure approximately the same number of grid points on each process. The parallel efficiency of the approach is discussed based on parallel adaptive wavelet-based Coherent Vortex Simulations of homogeneous turbulence with linear forcing at effective non-adaptive resolutions up to 20483 using as many as 2048 CPU cores.
Nicholson, Stephen P
2012-01-01
People categorize themselves and others, creating ingroup and outgroup distinctions. In American politics, parties constitute the in- and outgroups, and party leaders hold sway in articulating party positions. A party leader's endorsement of a policy can be persuasive, inducing co-partisans to take the same position. In contrast, a party leader's endorsement may polarize opinion, inducing out-party identifiers to take a contrary position. Using survey experiments from the 2008 presidential election, I examine whether in- and out-party candidate cues—John McCain and Barack Obama—affected partisan opinion. The results indicate that in-party leader cues do not persuade but that out-party leader cues polarize. This finding holds in an experiment featuring President Bush in which his endorsement did not persuade Republicans but it polarized Democrats. Lastly, I compare the effect of party leader cues to party label cues. The results suggest that politicians, not parties, function as polarizing cues.
Adaptive envelope protection methods for aircraft
NASA Astrophysics Data System (ADS)
Unnikrishnan, Suraj
Carefree handling refers to the ability of a pilot to operate an aircraft without the need to continuously monitor aircraft operating limits. At the heart of all carefree handling or maneuvering systems, also referred to as envelope protection systems, are algorithms and methods for predicting future limit violations. Recently, envelope protection methods that have gained more acceptance, translate limit proximity information to its equivalent in the control channel. Envelope protection algorithms either use very small prediction horizon or are static methods with no capability to adapt to changes in system configurations. Adaptive approaches maximizing prediction horizon such as dynamic trim, are only applicable to steady-state-response critical limit parameters. In this thesis, a new adaptive envelope protection method is developed that is applicable to steady-state and transient response critical limit parameters. The approach is based upon devising the most aggressive optimal control profile to the limit boundary and using it to compute control limits. Pilot-in-the-loop evaluations of the proposed approach are conducted at the Georgia Tech Carefree Maneuver lab for transient longitudinal hub moment limit protection. Carefree maneuvering is the dual of carefree handling in the realm of autonomous Uninhabited Aerial Vehicles (UAVs). Designing a flight control system to fully and effectively utilize the operational flight envelope is very difficult. With the increasing role and demands for extreme maneuverability there is a need for developing envelope protection methods for autonomous UAVs. In this thesis, a full-authority automatic envelope protection method is proposed for limit protection in UAVs. The approach uses adaptive estimate of limit parameter dynamics and finite-time horizon predictions to detect impending limit boundary violations. Limit violations are prevented by treating the limit boundary as an obstacle and by correcting nominal control
Ensemble transform sensitivity method for adaptive observations
NASA Astrophysics Data System (ADS)
Zhang, Yu; Xie, Yuanfu; Wang, Hongli; Chen, Dehui; Toth, Zoltan
2016-01-01
The Ensemble Transform (ET) method has been shown to be useful in providing guidance for adaptive observation deployment. It predicts forecast error variance reduction for each possible deployment using its corresponding transformation matrix in an ensemble subspace. In this paper, a new ET-based sensitivity (ETS) method, which calculates the gradient of forecast error variance reduction in terms of analysis error variance reduction, is proposed to specify regions for possible adaptive observations. ETS is a first order approximation of the ET; it requires just one calculation of a transformation matrix, increasing computational efficiency (60%-80% reduction in computational cost). An explicit mathematical formulation of the ETS gradient is derived and described. Both the ET and ETS methods are applied to the Hurricane Irene (2011) case and a heavy rainfall case for comparison. The numerical results imply that the sensitive areas estimated by the ETS and ET are similar. However, ETS is much more efficient, particularly when the resolution is higher and the number of ensemble members is larger.
Adaptive method with intercessory feedback control for an intelligent agent
Goldsmith, Steven Y.
2004-06-22
An adaptive architecture method with feedback control for an intelligent agent provides for adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. An adaptive architecture method with feedback control for multiple intelligent agents provides for coordinating and adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. Re-programming of the adaptive architecture is through a nexus which coordinates reflexive and deliberator components.
Adaptive Accommodation Control Method for Complex Assembly
NASA Astrophysics Data System (ADS)
Kang, Sungchul; Kim, Munsang; Park, Shinsuk
Robotic systems have been used to automate assembly tasks in manufacturing and in teleoperation. Conventional robotic systems, however, have been ineffective in controlling contact force in multiple contact states of complex assemblythat involves interactions between complex-shaped parts. Unlike robots, humans excel at complex assembly tasks by utilizing their intrinsic impedance, forces and torque sensation, and tactile contact clues. By examining the human behavior in assembling complex parts, this study proposes a novel geometry-independent control method for robotic assembly using adaptive accommodation (or damping) algorithm. Two important conditions for complex assembly, target approachability and bounded contact force, can be met by the proposed control scheme. It generates target approachable motion that leads the object to move closer to a desired target position, while contact force is kept under a predetermined value. Experimental results from complex assembly tests have confirmed the feasibility and applicability of the proposed method.
Fraser, Matthew; McKay, Colette M
2012-01-01
Temporal modulation transfer functions (TMTFs) were measured for six users of cochlear implants, using different carrier rates and levels. Unlike most previous studies investigating modulation detection, the experimental design limited potential effects of overall loudness cues. Psychometric functions (percent correct discrimination of modulated from unmodulated stimuli versus modulation depth) were obtained. For each modulation depth, each modulated stimulus was loudness balanced to the unmodulated reference stimulus, and level jitter was applied in the discrimination task. The loudness-balance data showed that the modulated stimuli were louder than the unmodulated reference stimuli with the same average current, thus confirming the need to limit loudness cues when measuring modulation detection. TMTFs measured in this way had a low-pass characteristic, with a cut-off frequency (at comfortably loud levels) similar to that for normal-hearing listeners. A reduction in level caused degradation in modulation detection efficiency and a lower-cut-off frequency (i.e. poorer temporal resolution). An increase in carrier rate also led to a degradation in modulation detection efficiency, but only at lower levels or higher modulation frequencies. When detection thresholds were expressed as a proportion of dynamic range, there was no effect of carrier rate for the lowest modulation frequency (50 Hz) at either level.
Adapting implicit methods to parallel processors
Reeves, L.; McMillin, B.; Okunbor, D.; Riggins, D.
1994-12-31
When numerically solving many types of partial differential equations, it is advantageous to use implicit methods because of their better stability and more flexible parameter choice, (e.g. larger time steps). However, since implicit methods usually require simultaneous knowledge of the entire computational domain, these methods axe difficult to implement directly on distributed memory parallel processors. This leads to infrequent use of implicit methods on parallel/distributed systems. The usual implementation of implicit methods is inefficient due to the nature of parallel systems where it is common to take the computational domain and distribute the grid points over the processors so as to maintain a relatively even workload per processor. This creates a problem at the locations in the domain where adjacent points are not on the same processor. In order for the values at these points to be calculated, messages have to be exchanged between the corresponding processors. Without special adaptation, this will result in idle processors during part of the computation, and as the number of idle processors increases, the lower the effective speed improvement by using a parallel processor.
Adaptive model training system and method
Bickford, Randall L; Palnitkar, Rahul M; Lee, Vo
2014-04-15
An adaptive model training system and method for filtering asset operating data values acquired from a monitored asset for selectively choosing asset operating data values that meet at least one predefined criterion of good data quality while rejecting asset operating data values that fail to meet at least the one predefined criterion of good data quality; and recalibrating a previously trained or calibrated model having a learned scope of normal operation of the asset by utilizing the asset operating data values that meet at least the one predefined criterion of good data quality for adjusting the learned scope of normal operation of the asset for defining a recalibrated model having the adjusted learned scope of normal operation of the asset.
Adaptive model training system and method
Bickford, Randall L; Palnitkar, Rahul M
2014-11-18
An adaptive model training system and method for filtering asset operating data values acquired from a monitored asset for selectively choosing asset operating data values that meet at least one predefined criterion of good data quality while rejecting asset operating data values that fail to meet at least the one predefined criterion of good data quality; and recalibrating a previously trained or calibrated model having a learned scope of normal operation of the asset by utilizing the asset operating data values that meet at least the one predefined criterion of good data quality for adjusting the learned scope of normal operation of the asset for defining a recalibrated model having the adjusted learned scope of normal operation of the asset.
Adaptive filtering for the lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Marié, Simon; Gloerfelt, Xavier
2017-03-01
In this study, a new selective filtering technique is proposed for the Lattice Boltzmann Method. This technique is based on an adaptive implementation of the selective filter coefficient σ. The proposed model makes the latter coefficient dependent on the shear stress in order to restrict the use of the spatial filtering technique in sheared stress region where numerical instabilities may occur. Different parameters are tested on 2D test-cases sensitive to numerical stability and on a 3D decaying Taylor-Green vortex. The results are compared to the classical static filtering technique and to the use of a standard subgrid-scale model and give significant improvements in particular for low-order filter consistent with the LBM stencil.
Heather, N; Greeley, J
1990-01-01
Cue exposure has been used successfully in the treatment of neurotic disorders. Its application to the treatment of drug dependence is founded on the premise that craving for drugs can become classically conditioned to internal and external drug-related cues and that such conditioned craving responses play an important part in relapse to drug use. This article reviews the theoretical background for the use of cue exposure, research on cue reactivity in samples of drug-dependent persons and the role of cue reactivity in relapse. What evidence exists on the clinical effectiveness of cue exposure is reviewed in some detail and a number of clinical issues relating to its practical application are discussed. It is concluded that controlled trials of the effectiveness of cue exposure treatment for drug dependence should be implemented without further delay.
ERIC Educational Resources Information Center
Aguirre-Sacasa, Roberto
This performance guide is designed for teachers to use with students before and after a performance of "Ramona Quimby," adapted by Len Jenkin from the Ramona books by Beverly Cleary. The guide, called a "Cuesheet," contains seven activity sheets for use in class, addressing: (1) The Characters (introducing the characters in the…
ERIC Educational Resources Information Center
Aguirre-Sacasa, Roberto
This performance guide is designed for teachers to use with students before and after a performance of "Caddie Woodlawn," adapted by Greg Gunning from the novel by Carol Ryrie Brink. The guide, called a "Cuesheet," contains seven activity sheets for use in class, addressing: (1) The Characters (introducing the characters in the…
ERIC Educational Resources Information Center
Pratt, Suzanne
This performance guide is designed for teachers to use with students before and after a performance of "The Snow Queen," adapted from the story by Hans Christian Andersen by Sandra Deer. The guide, called a "Cuesheet," contains seven sheets for use in class, addressing: (1) What Happens in "The Snow Queen?" (offering…
El Gamal, Abrahim; Agarwal, Vinayak; Diethelm, Stefan; Rahman, Imran; Schorn, Michelle A; Sneed, Jennifer M; Louie, Gordon V; Whalen, Kristen E; Mincer, Tracy J; Noel, Joseph P; Paul, Valerie J; Moore, Bradley S
2016-04-05
Halogenated pyrroles (halopyrroles) are common chemical moieties found in bioactive bacterial natural products. The halopyrrole moieties of mono- and dihalopyrrole-containing compounds arise from a conserved mechanism in which a proline-derived pyrrolyl group bound to a carrier protein is first halogenated and then elaborated by peptidic or polyketide extensions. This paradigm is broken during the marine pseudoalteromonad bacterial biosynthesis of the coral larval settlement cue tetrabromopyrrole (1), which arises from the substitution of the proline-derived carboxylate by a bromine atom. To understand the molecular basis for decarboxylative bromination in the biosynthesis of 1, we sequenced two Pseudoalteromonas genomes and identified a conserved four-gene locus encoding the enzymes involved in its complete biosynthesis. Through total in vitro reconstitution of the biosynthesis of 1 using purified enzymes and biochemical interrogation of individual biochemical steps, we show that all four bromine atoms in 1 are installed by the action of a single flavin-dependent halogenase: Bmp2. Tetrabromination of the pyrrole induces a thioesterase-mediated offloading reaction from the carrier protein and activates the biosynthetic intermediate for decarboxylation. Insights into the tetrabrominating activity of Bmp2 were obtained from the high-resolution crystal structure of the halogenase contrasted against structurally homologous halogenase Mpy16 that forms only a dihalogenated pyrrole in marinopyrrole biosynthesis. Structure-guided mutagenesis of the proposed substrate-binding pocket of Bmp2 led to a reduction in the degree of halogenation catalyzed. Our study provides a biogenetic basis for the biosynthesis of 1 and sets a firm foundation for querying the biosynthetic potential for the production of 1 in marine (meta)genomes.
El Gamal, Abrahim; Agarwal, Vinayak; Diethelm, Stefan; Rahman, Imran; Schorn, Michelle A.; Sneed, Jennifer M.; Louie, Gordon V.; Whalen, Kristen E.; Mincer, Tracy J.; Noel, Joseph P.; Paul, Valerie J.; Moore, Bradley S.
2016-01-01
Halogenated pyrroles (halopyrroles) are common chemical moieties found in bioactive bacterial natural products. The halopyrrole moieties of mono- and dihalopyrrole-containing compounds arise from a conserved mechanism in which a proline-derived pyrrolyl group bound to a carrier protein is first halogenated and then elaborated by peptidic or polyketide extensions. This paradigm is broken during the marine pseudoalteromonad bacterial biosynthesis of the coral larval settlement cue tetrabromopyrrole (1), which arises from the substitution of the proline-derived carboxylate by a bromine atom. To understand the molecular basis for decarboxylative bromination in the biosynthesis of 1, we sequenced two Pseudoalteromonas genomes and identified a conserved four-gene locus encoding the enzymes involved in its complete biosynthesis. Through total in vitro reconstitution of the biosynthesis of 1 using purified enzymes and biochemical interrogation of individual biochemical steps, we show that all four bromine atoms in 1 are installed by the action of a single flavin-dependent halogenase: Bmp2. Tetrabromination of the pyrrole induces a thioesterase-mediated offloading reaction from the carrier protein and activates the biosynthetic intermediate for decarboxylation. Insights into the tetrabrominating activity of Bmp2 were obtained from the high-resolution crystal structure of the halogenase contrasted against structurally homologous halogenase Mpy16 that forms only a dihalogenated pyrrole in marinopyrrole biosynthesis. Structure-guided mutagenesis of the proposed substrate-binding pocket of Bmp2 led to a reduction in the degree of halogenation catalyzed. Our study provides a biogenetic basis for the biosynthesis of 1 and sets a firm foundation for querying the biosynthetic potential for the production of 1 in marine (meta)genomes. PMID:27001835
Borisyuk, Alla; Semple, Malcolm N; Rinzel, John
2002-10-01
A mathematical model was developed for exploring the sensitivity of low-frequency inferior colliculus (IC) neurons to interaural phase disparity (IPD). The formulation involves a firing-rate-type model that does not include spikes per se. The model IC neuron receives IPD-tuned excitatory and inhibitory inputs (viewed as the output of a collection of cells in the medial superior olive). The model cell possesses cellular properties of firing rate adaptation and postinhibitory rebound (PIR). The descriptions of these mechanisms are biophysically reasonable, but only semi-quantitative. We seek to explain within a minimal model the experimentally observed mismatch between responses to IPD stimuli delivered dynamically and those delivered statically (McAlpine et al. 2000; Spitzer and Semple 1993). The model reproduces many features of the responses to static IPD presentations, binaural beat, and partial range sweep stimuli. These features include differences in responses to a stimulus presented in static or dynamic context: sharper tuning and phase shifts in response to binaural beats, and hysteresis and "rise-from-nowhere" in response to partial range sweeps. Our results suggest that dynamic response features are due to the structure of inputs and the presence of firing rate adaptation and PIR mechanism in IC cells, but do not depend on a specific biophysical mechanism. We demonstrate how the model's various components contribute to shaping the observed phenomena. For example, adaptation, PIR, and transmission delay shape phase advances and delays in responses to binaural beats, adaptation and PIR shape hysteresis in different ranges of IPD, and tuned inhibition underlies asymmetry in dynamic tuning properties. We also suggest experiments to test our modeling predictions: in vitro simulation of the binaural beat (phase advance at low beat frequencies, its dependence on firing rate), in vivo partial range sweep experiments (dependence of the hysteresis curve on
Adaptive numerical methods for partial differential equations
Cololla, P.
1995-07-01
This review describes a structured approach to adaptivity. The Automated Mesh Refinement (ARM) algorithms developed by M Berger are described, touching on hyperbolic and parabolic applications. Adaptivity is achieved by overlaying finer grids only in areas flagged by a generalized error criterion. The author discusses some of the issues involved in abutting disparate-resolution grids, and demonstrates that suitable algorithms exist for dissipative as well as hyperbolic systems.
Hazlett, Karsten R O; Caldon, Seth D; McArthur, Debbie G; Cirillo, Kerry A; Kirimanjeswara, Girish S; Magguilli, Micheal L; Malik, Meenakshi; Shah, Aaloki; Broderick, Scott; Golovliov, Igor; Metzger, Dennis W; Rajan, Krishna; Sellati, Timothy J; Loegering, Daniel J
2008-10-01
The intracellular bacterium Francisella tularensis survives in mammals, arthropods, and freshwater amoeba. It was previously established that the conventional media used for in vitro propagation of this microbe do not yield bacteria that mimic those harvested from infected mammals; whether these in vitro-cultivated bacteria resemble arthropod- or amoeba-adapted Francisella is unknown. As a foundation for our goal of identifying F. tularensis outer membrane proteins which are expressed during mammalian infection, we first sought to identify in vitro cultivation conditions that induce the bacterium's infection-derived phenotype. We compared Francisella LVS grown in brain heart infusion broth (BHI; a standard microbiological medium rarely used in Francisella research) to that grown in Mueller-Hinton broth (MHB; the most widely used F. tularensis medium, used here as a negative control) and macrophages (a natural host cell, used here as a positive control). BHI- and macrophage-grown F. tularensis cells showed similar expression of MglA-dependent and MglA-independent proteins; expression of the MglA-dependent proteins was repressed by the supraphysiological levels of free amino acids present in MHB. We observed that during macrophage infection, protein expression by intracellular bacteria differed from that by extracellular bacteria; BHI-grown bacteria mirrored the latter, while MHB-grown bacteria resembled neither. Naïve macrophages responding to BHI- and macrophage-grown bacteria produced markedly lower levels of proinflammatory mediators than those in cells exposed to MHB-grown bacteria. In contrast to MHB-grown bacteria, BHI-grown bacteria showed minimal delay during intracellular replication. Cumulatively, our findings provide compelling evidence that growth in BHI yields bacteria which recapitulate the phenotype of Francisella organisms that have emerged from macrophages.
A Method for Severely Constrained Item Selection in Adaptive Testing.
ERIC Educational Resources Information Center
Stocking, Martha L.; Swanson, Len
1993-01-01
A method is presented for incorporating a large number of constraints on adaptive item selection in the construction of computerized adaptive tests. The method, which emulates practices of expert test specialists, is illustrated for verbal and quantitative measures. Its foundation is application of a weighted deviations model and algorithm. (SLD)
Solution-adaptive finite element method in computational fracture mechanics
NASA Technical Reports Server (NTRS)
Min, J. B.; Bass, J. M.; Spradley, L. W.
1993-01-01
Some recent results obtained using solution-adaptive finite element method in linear elastic two-dimensional fracture mechanics problems are presented. The focus is on the basic issue of adaptive finite element method for validating the applications of new methodology to fracture mechanics problems by computing demonstration problems and comparing the stress intensity factors to analytical results.
Adaptive method for electron bunch profile prediction
Scheinker, Alexander; Gessner, Spencer
2015-10-01
We report on an experiment performed at the Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC National Accelerator Laboratory, in which a new adaptive control algorithm, one with known, bounded update rates, despite operating on analytically unknown cost functions, was utilized in order to provide quasi-real-time bunch property estimates of the electron beam. Multiple parameters, such as arbitrary rf phase settings and other time-varying accelerator properties, were simultaneously tuned in order to match a simulated bunch energy spectrum with a measured energy spectrum. The simple adaptive scheme was digitally implemented using matlab and the experimental physics and industrial control system. The main result is a nonintrusive, nondestructive, real-time diagnostic scheme for prediction of bunch profiles, as well as other beam parameters, the precise control of which are important for the plasma wakefield acceleration experiments being explored at FACET. © 2015 authors. Published by the American Physical Society.
Adaptive method for electron bunch profile prediction
NASA Astrophysics Data System (ADS)
Scheinker, Alexander; Gessner, Spencer
2015-10-01
We report on an experiment performed at the Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC National Accelerator Laboratory, in which a new adaptive control algorithm, one with known, bounded update rates, despite operating on analytically unknown cost functions, was utilized in order to provide quasi-real-time bunch property estimates of the electron beam. Multiple parameters, such as arbitrary rf phase settings and other time-varying accelerator properties, were simultaneously tuned in order to match a simulated bunch energy spectrum with a measured energy spectrum. The simple adaptive scheme was digitally implemented using matlab and the experimental physics and industrial control system. The main result is a nonintrusive, nondestructive, real-time diagnostic scheme for prediction of bunch profiles, as well as other beam parameters, the precise control of which are important for the plasma wakefield acceleration experiments being explored at FACET.
Adaptive finite element methods in electrochemistry.
Gavaghan, David J; Gillow, Kathryn; Süli, Endre
2006-12-05
In this article, we review some of our previous work that considers the general problem of numerical simulation of the currents at microelectrodes using an adaptive finite element approach. Microelectrodes typically consist of an electrode embedded (or recessed) in an insulating material. For all such electrodes, numerical simulation is made difficult by the presence of a boundary singularity at the electrode edge (where the electrode meets the insulator), manifested by the large increase in the current density at this point, often referred to as the edge effect. Our approach to overcoming this problem has involved the derivation of an a posteriori bound on the error in the numerical approximation for the current that can be used to drive an adaptive mesh-generation algorithm, allowing calculation of the quantity of interest (the current) to within a prescribed tolerance. We illustrate the generic applicability of the approach by considering a broad range of steady-state applications of the technique.
Adaptive methods, rolling contact, and nonclassical friction laws
NASA Technical Reports Server (NTRS)
Oden, J. T.
1989-01-01
Results and methods on three different areas of contemporary research are outlined. These include adaptive methods, the rolling contact problem for finite deformation of a hyperelastic or viscoelastic cylinder, and non-classical friction laws for modeling dynamic friction phenomena.
NASA Astrophysics Data System (ADS)
Kachejian, Kerry C.; Vujcic, Doug
1998-08-01
The combat cueing (CBT-Q) research effort will develop and demonstrate a portable tactical information system that will enhance the effectiveness of small unit military operations by providing real-time target cueing information to individual warfighters and teams. CBT-Q consists of a network of portable radio frequency (RF) 'modules' and is controlled by a body-worn 'user station' utilizing a head mounted display . On the battlefield, CBT-Q modules will detect an enemy transmitter and instantly provide the warfighter with an emitter's location. During the 'fog of battle', CBT-Q would tell the warfighter, 'Look here, right now individuals into the RF spectrum, resulting in faster target engagement times, increased survivability, and reduce the potential for fratricide. CBT-Q technology can support both mounted and dismounted tactical forces involved in land, sea and air warfighting operations. The CBT-Q system combines robust geolocation and signal sorting algorithms with hardware and software modularity to offer maximum utility to the warfighter. A single CBT-Q module can provide threat RF detection. Three networked CBT-Q modules can provide emitter positions using a time difference of arrival (TDOA) technique. The TDOA approach relies on timing and positioning data derived from a global positioning systems. The information will be displayed on a variety of displays, including a flat-panel head mounted display. The end results of the program will be the demonstration of the system with US Army Scouts in an operational environment.
An Adaptive Discontinuous Galerkin Method for Modeling Atmospheric Convection (Preprint)
2011-04-13
Giraldo and Volkmar Wirth 5 SENSITIVITY STUDIES One important question for each adaptive numerical model is: how accurate is the adaptive method? For...this criterion that is used later for some sensitivity studies . These studies include a comparison between a simulation on an adaptive mesh with a...simulation on a uniform mesh and a sensitivity study concerning the size of the refinement region. 5.1 Comparison Criterion For comparing different
Vadyvaloo, Viveka; Hinz, Angela K
2015-01-01
Yersinia pestis has evolved as a clonal variant of Yersinia pseudotuberculosis to cause flea-borne biofilm-mediated transmission of the bubonic plague. The LysR-type transcriptional regulator, RovM, is highly induced only during Y. pestis infection of the flea host. RovM homologs in other pathogens regulate biofilm formation, nutrient sensing, and virulence; including in Y. pseudotuberculosis, where RovM represses the major virulence factor, RovA. Here the role that RovM plays during flea infection was investigated using a Y. pestis KIM6+ strain deleted of rovM, ΔrovM. The ΔrovM mutant strain was not affected in characteristic biofilm gut blockage, growth, or survival during single infection of fleas. Nonetheless, during a co-infection of fleas, the ΔrovM mutant exhibited a significant competitive fitness defect relative to the wild type strain. This competitive fitness defect was restored as a fitness advantage relative to the wild type in a ΔrovM mutant complemented in trans to over-express rovM. Consistent with this, Y. pestis strains, producing elevated transcriptional levels of rovM, displayed higher growth rates, and differential ability to form biofilm in response to specific nutrients in comparison to the wild type. In addition, we demonstrated that rovA was not repressed by RovM in fleas, but that elevated transcriptional levels of rovM in vitro correlated with repression of rovA under specific nutritional conditions. Collectively, these findings suggest that RovM likely senses specific nutrient cues in the flea gut environment, and accordingly directs metabolic adaptation to enhance flea gut colonization by Y. pestis.
NASA Astrophysics Data System (ADS)
Iverson, Paul; Hazan, Valerie; Bannister, Kerry
2005-11-01
Recent work [Iverson et al. (2003) Cognition, 87, B47-57] has suggested that Japanese adults have difficulty learning English /r/ and /l/ because they are overly sensitive to acoustic cues that are not reliable for /r/-/l/ categorization (e.g., F2 frequency). This study investigated whether cue weightings are altered by auditory training, and compared the effectiveness of different training techniques. Separate groups of subjects received High Variability Phonetic Training (natural words from multiple talkers), and 3 techniques in which the natural recordings were altered via signal processing (All Enhancement, with F3 contrast maximized and closure duration lengthened; Perceptual Fading, with F3 enhancement reduced during training; and Secondary Cue Variability, with variation in F2 and durations increased during training). The results demonstrated that all of the training techniques improved /r/-/l/ identification by Japanese listeners, but there were no differences between the techniques. Training also altered the use of secondary acoustic cues; listeners became biased to identify stimuli as English /l/ when the cues made them similar to the Japanese /r/ category, and reduced their use of secondary acoustic cues for stimuli that were dissimilar to Japanese /r/. The results suggest that both category assimilation and perceptual interference affect English /r/ and /l/ acquisition.
Cue reactivity towards shopping cues in female participants.
Starcke, Katrin; Schlereth, Berenike; Domass, Debora; Schöler, Tobias; Brand, Matthias
2013-03-01
Background and aims It is currently under debate whether pathological buying can be considered as a behavioural addiction. Addictions have often been investigated with cue-reactivity paradigms to assess subjective, physiological and neural craving reactions. The current study aims at testing whether cue reactivity towards shopping cues is related to pathological buying tendencies. Methods A sample of 66 non-clinical female participants rated shopping related pictures concerning valence, arousal, and subjective craving. In a subgroup of 26 participants, electrodermal reactions towards those pictures were additionally assessed. Furthermore, all participants were screened concerning pathological buying tendencies and baseline craving for shopping. Results Results indicate a relationship between the subjective ratings of the shopping cues and pathological buying tendencies, even if baseline craving for shopping was controlled for. Electrodermal reactions were partly related to the subjective ratings of the cues. Conclusions Cue reactivity may be a potential correlate of pathological buying tendencies. Thus, pathological buying may be accompanied by craving reactions towards shopping cues. Results support the assumption that pathological buying can be considered as a behavioural addiction. From a methodological point of view, results support the view that the cue-reactivity paradigm is suited for the investigation of craving reactions in pathological buying and future studies should implement this paradigm in clinical samples.
Adaptable radiation monitoring system and method
Archer, Daniel E.; Beauchamp, Brock R.; Mauger, G. Joseph; Nelson, Karl E.; Mercer, Michael B.; Pletcher, David C.; Riot, Vincent J.; Schek, James L.; Knapp, David A.
2006-06-20
A portable radioactive-material detection system capable of detecting radioactive sources moving at high speeds. The system has at least one radiation detector capable of detecting gamma-radiation and coupled to an MCA capable of collecting spectral data in very small time bins of less than about 150 msec. A computer processor is connected to the MCA for determining from the spectral data if a triggering event has occurred. Spectral data is stored on a data storage device, and a power source supplies power to the detection system. Various configurations of the detection system may be adaptably arranged for various radiation detection scenarios. In a preferred embodiment, the computer processor operates as a server which receives spectral data from other networked detection systems, and communicates the collected data to a central data reporting system.
Adaptive computational methods for aerothermal heating analysis
NASA Technical Reports Server (NTRS)
Price, John M.; Oden, J. Tinsley
1988-01-01
The development of adaptive gridding techniques for finite-element analysis of fluid dynamics equations is described. The developmental work was done with the Euler equations with concentration on shock and inviscid flow field capturing. Ultimately this methodology is to be applied to a viscous analysis for the purpose of predicting accurate aerothermal loads on complex shapes subjected to high speed flow environments. The development of local error estimate strategies as a basis for refinement strategies is discussed, as well as the refinement strategies themselves. The application of the strategies to triangular elements and a finite-element flux-corrected-transport numerical scheme are presented. The implementation of these strategies in the GIM/PAGE code for 2-D and 3-D applications is documented and demonstrated.
An adaptive pseudospectral method for discontinuous problems
NASA Technical Reports Server (NTRS)
Augenbaum, Jeffrey M.
1988-01-01
The accuracy of adaptively chosen, mapped polynomial approximations is studied for functions with steep gradients or discontinuities. It is shown that, for steep gradient functions, one can obtain spectral accuracy in the original coordinate system by using polynomial approximations in a transformed coordinate system with substantially fewer collocation points than are necessary using polynomial expansion directly in the original, physical, coordinate system. It is also shown that one can avoid the usual Gibbs oscillation associated with steep gradient solutions of hyperbolic pde's by approximation in suitably chosen coordinate systems. Continuous, high gradient solutions are computed with spectral accuracy (as measured in the physical coordinate system). Discontinuous solutions associated with nonlinear hyperbolic equations can be accurately computed by using an artificial viscosity chosen to smooth out the solution in the mapped, computational domain. Thus, shocks can be effectively resolved on a scale that is subgrid to the resolution available with collocation only in the physical domain. Examples with Fourier and Chebyshev collocation are given.
Motion Cueing Algorithm Modification for Improved Turbulence Simulation
NASA Technical Reports Server (NTRS)
Ercole, Anthony V.; Cardullo, Frank M.; Zaychik, Kirill; Kelly, Lon C.; Houck, Jacob
2009-01-01
Atmospheric turbulence cueing produced by flight simulator motion systems has been less than satisfactory because the turbulence profiles have been attenuated by the motion cueing algorithms. Cardullo and Ellor initially addressed this problem by directly porting the turbulence model output to the motion system. Reid and Robinson addressed the problem by employing a parallel aircraft model, which is only stimulated by the turbulence inputs and adding a filter specially designed to pass the higher turbulence frequencies. There have been advances in motion cueing algorithm development at the Man-Machine Systems Laboratory, at SUNY Binghamton. In particular, the system used to generate turbulence cues has been studied. The Reid approach, implemented by Telban and Cardullo, was employed to augment the optimal motion cueing algorithm installed at the NASA LaRC Simulation Laboratory, driving the Visual Motion Simulator. In this implementation, the output of the primary flight channel was added to the output of the turbulence channel and then sent through a non-linear cueing filter. The cueing filter is an adaptive filter; therefore, it is not desirable for the output of the turbulence channel to be augmented by this type of filter. The likelihood of the signal becoming divergent was also an issue in this design. After testing on-site it became apparent that the architecture of the turbulence algorithm was generating unacceptable cues. As mentioned above, this cueing algorithm comprised a filter that was designed to operate at low bandwidth. Therefore, the turbulence was also filtered, augmenting the cues generated by the model. If any filtering is to be done to the turbulence, it will utilize a filter with a much higher bandwidth, above the frequencies produced by the aircraft response to turbulence. The authors have developed an implementation wherein only the signal from the primary flight channel passes through the nonlinear cueing filter. This paper discusses three
Moving and adaptive grid methods for compressible flows
NASA Technical Reports Server (NTRS)
Trepanier, Jean-Yves; Camarero, Ricardo
1995-01-01
This paper describes adaptive grid methods developed specifically for compressible flow computations. The basic flow solver is a finite-volume implementation of Roe's flux difference splitting scheme or arbitrarily moving unstructured triangular meshes. The grid adaptation is performed according to geometric and flow requirements. Some results are included to illustrate the potential of the methodology.
NASA Astrophysics Data System (ADS)
Rosen, A. L.; Krumholz, M. R.; Oishi, J. S.; Lee, A. T.; Klein, R. I.
2017-02-01
We present a highly-parallel multi-frequency hybrid radiation hydrodynamics algorithm that combines a spatially-adaptive long characteristics method for the radiation field from point sources with a moment method that handles the diffuse radiation field produced by a volume-filling fluid. Our Hybrid Adaptive Ray-Moment Method (HARM2) operates on patch-based adaptive grids, is compatible with asynchronous time stepping, and works with any moment method. In comparison to previous long characteristics methods, we have greatly improved the parallel performance of the adaptive long-characteristics method by developing a new completely asynchronous and non-blocking communication algorithm. As a result of this improvement, our implementation achieves near-perfect scaling up to O (103) processors on distributed memory machines. We present a series of tests to demonstrate the accuracy and performance of the method.
Adaptive mesh strategies for the spectral element method
NASA Technical Reports Server (NTRS)
Mavriplis, Catherine
1992-01-01
An adaptive spectral method was developed for the efficient solution of time dependent partial differential equations. Adaptive mesh strategies that include resolution refinement and coarsening by three different methods are illustrated on solutions to the 1-D viscous Burger equation and the 2-D Navier-Stokes equations for driven flow in a cavity. Sharp gradients, singularities, and regions of poor resolution are resolved optimally as they develop in time using error estimators which indicate the choice of refinement to be used. The adaptive formulation presents significant increases in efficiency, flexibility, and general capabilities for high order spectral methods.
Comparing Anisotropic Output-Based Grid Adaptation Methods by Decomposition
NASA Technical Reports Server (NTRS)
Park, Michael A.; Loseille, Adrien; Krakos, Joshua A.; Michal, Todd
2015-01-01
Anisotropic grid adaptation is examined by decomposing the steps of flow solution, ad- joint solution, error estimation, metric construction, and simplex grid adaptation. Multiple implementations of each of these steps are evaluated by comparison to each other and expected analytic results when available. For example, grids are adapted to analytic metric fields and grid measures are computed to illustrate the properties of multiple independent implementations of grid adaptation mechanics. Different implementations of each step in the adaptation process can be evaluated in a system where the other components of the adaptive cycle are fixed. Detailed examination of these properties allows comparison of different methods to identify the current state of the art and where further development should be targeted.
Pastötter, Bernhard; Kliegl, Oliver; Bäuml, Karl-Heinz T
2012-08-01
In list-method directed forgetting, people are cued to forget a previously studied item list and to learn a new list instead. Such cuing typically leads to forgetting of the first list and to memory enhancement of the second, referred to as list 1 forgetting and list 2 enhancement. In the present study, two experiments are reported that examined influences of items' serial learning position in a list and the two lists' output order on list-method directed forgetting. The results show that list output order influences list 2 enhancement but not list 1 forgetting. The enhancement was higher when list 2 was recalled first than when list 1 was recalled first and, in both cases, was higher for early list 2 items than for middle and late list 2 items. In contrast, the forgetting was equally present for all list 1 items and did not depend on the two lists' output order. The findings suggest that two separate factors can contribute to list 2 enhancement: one (encoding) factor that is restricted to early list 2 items and does not depend on list output order, and another (retrieval) factor that pertains to all list 2 items and varies with the two lists' output order. A new two-mechanism account of directed forgetting is suggested that reconciles previous (encoding or retrieval) views on list 2 enhancement.
Motion Cueing Algorithm Development: Piloted Performance Testing of the Cueing Algorithms
NASA Technical Reports Server (NTRS)
Houck, Jacob A. (Technical Monitor); Telban, Robert J.; Cardullo, Frank M.; Kelly, Lon C.
2005-01-01
The relative effectiveness in simulating aircraft maneuvers with both current and newly developed motion cueing algorithms was assessed with an eleven-subject piloted performance evaluation conducted on the NASA Langley Visual Motion Simulator (VMS). In addition to the current NASA adaptive algorithm, two new cueing algorithms were evaluated: the optimal algorithm and the nonlinear algorithm. The test maneuvers included a straight-in approach with a rotating wind vector, an offset approach with severe turbulence and an on/off lateral gust that occurs as the aircraft approaches the runway threshold, and a takeoff both with and without engine failure after liftoff. The maneuvers were executed with each cueing algorithm with added visual display delay conditions ranging from zero to 200 msec. Two methods, the quasi-objective NASA Task Load Index (TLX), and power spectral density analysis of pilot control, were used to assess pilot workload. Piloted performance parameters for the approach maneuvers, the vertical velocity upon touchdown and the runway touchdown position, were also analyzed but did not show any noticeable difference among the cueing algorithms. TLX analysis reveals, in most cases, less workload and variation among pilots with the nonlinear algorithm. Control input analysis shows pilot-induced oscillations on a straight-in approach were less prevalent compared to the optimal algorithm. The augmented turbulence cues increased workload on an offset approach that the pilots deemed more realistic compared to the NASA adaptive algorithm. The takeoff with engine failure showed the least roll activity for the nonlinear algorithm, with the least rudder pedal activity for the optimal algorithm.
Adaptive Kernel Based Machine Learning Methods
2012-10-15
multiscale collocation method with a matrix compression strategy to discretize the system of integral equations and then use the multilevel...augmentation method to solve the resulting discrete system. A priori and a posteriori 1 parameter choice strategies are developed for thesemethods. The...performance of the proximity algo- rithms for the L1/TV denoising model. This leads us to a new characterization of all solutions to the L1/TV model via fixed
Adaptive upscaling with the dual mesh method
Guerillot, D.; Verdiere, S.
1997-08-01
The objective of this paper is to demonstrate that upscaling should be calculated during the flow simulation instead of trying to enhance the a priori upscaling methods. Hence, counter-examples are given to motivate our approach, the so-called Dual Mesh Method. The main steps of this numerical algorithm are recalled. Applications illustrate the necessity to consider different average relative permeability values depending on the direction in space. Moreover, these values could be different for the same average saturation. This proves that an a priori upscaling cannot be the answer even in homogeneous cases because of the {open_quotes}dynamical heterogeneity{close_quotes} created by the saturation profile. Other examples show the efficiency of the Dual Mesh Method applied to heterogeneous medium and to an actual field case in South America.
Adaptive Finite Element Methods for Continuum Damage Modeling
NASA Technical Reports Server (NTRS)
Min, J. B.; Tworzydlo, W. W.; Xiques, K. E.
1995-01-01
The paper presents an application of adaptive finite element methods to the modeling of low-cycle continuum damage and life prediction of high-temperature components. The major objective is to provide automated and accurate modeling of damaged zones through adaptive mesh refinement and adaptive time-stepping methods. The damage modeling methodology is implemented in an usual way by embedding damage evolution in the transient nonlinear solution of elasto-viscoplastic deformation problems. This nonlinear boundary-value problem is discretized by adaptive finite element methods. The automated h-adaptive mesh refinements are driven by error indicators, based on selected principal variables in the problem (stresses, non-elastic strains, damage, etc.). In the time domain, adaptive time-stepping is used, combined with a predictor-corrector time marching algorithm. The time selection is controlled by required time accuracy. In order to take into account strong temperature dependency of material parameters, the nonlinear structural solution a coupled with thermal analyses (one-way coupling). Several test examples illustrate the importance and benefits of adaptive mesh refinements in accurate prediction of damage levels and failure time.
Adjoint Methods for Guiding Adaptive Mesh Refinement in Tsunami Modeling
NASA Astrophysics Data System (ADS)
Davis, B. N.; LeVeque, R. J.
2016-12-01
One difficulty in developing numerical methods for tsunami modeling is the fact that solutions contain time-varying regions where much higher resolution is required than elsewhere in the domain, particularly when tracking a tsunami propagating across the ocean. The open source GeoClaw software deals with this issue by using block-structured adaptive mesh refinement to selectively refine around propagating waves. For problems where only a target area of the total solution is of interest (e.g., one coastal community), a method that allows identifying and refining the grid only in regions that influence this target area would significantly reduce the computational cost of finding a solution. In this work, we show that solving the time-dependent adjoint equation and using a suitable inner product with the forward solution allows more precise refinement of the relevant waves. We present the adjoint methodology first in one space dimension for illustration and in a broad context since it could also be used in other adaptive software, and potentially for other tsunami applications beyond adaptive refinement. We then show how this adjoint method has been integrated into the adaptive mesh refinement strategy of the open source GeoClaw software and present tsunami modeling results showing that the accuracy of the solution is maintained and the computational time required is significantly reduced through the integration of the adjoint method into adaptive mesh refinement.
Studies of an Adaptive Kaczmarz Method for Electrical Impedance Imaging
NASA Astrophysics Data System (ADS)
Li, Taoran; Isaacson, David; Newell, Jonathan C.; Saulnier, Gary J.
2013-04-01
We present an adaptive Kaczmarz method for solving the inverse problem in electrical impedance tomography and determining the conductivity distribution inside an object from electrical measurements made on the surface. To best characterize an unknown conductivity distribution and avoid inverting the Jacobian-related term JTJ which could be expensive in terms of memory storage in large scale problems, we propose to solve the inverse problem by adaptively updating both the optimal current pattern with improved distinguishability and the conductivity estimate at each iteration. With a novel subset scheme, the memory-efficient reconstruction algorithm which appropriately combines the optimal current pattern generation and the Kaczmarz method can produce accurate and stable solutions adaptively compared to traditional Kaczmarz and Gauss-Newton type methods. Several reconstruction image metrics are used to quantitatively evaluate the performance of the simulation results.
Final Report: Symposium on Adaptive Methods for Partial Differential Equations
Pernice, M.; Johnson, C.R.; Smith, P.J.; Fogelson, A.
1998-12-10
OAK-B135 Final Report: Symposium on Adaptive Methods for Partial Differential Equations. Complex physical phenomena often include features that span a wide range of spatial and temporal scales. Accurate simulation of such phenomena can be difficult to obtain, and computations that are under-resolved can even exhibit spurious features. While it is possible to resolve small scale features by increasing the number of grid points, global grid refinement can quickly lead to problems that are intractable, even on the largest available computing facilities. These constraints are particularly severe for three dimensional problems that involve complex physics. One way to achieve the needed resolution is to refine the computational mesh locally, in only those regions where enhanced resolution is required. Adaptive solution methods concentrate computational effort in regions where it is most needed. These methods have been successfully applied to a wide variety of problems in computational science and engineering. Adaptive methods can be difficult to implement, prompting the development of tools and environments to facilitate their use. To ensure that the results of their efforts are useful, algorithm and tool developers must maintain close communication with application specialists. Conversely it remains difficult for application specialists who are unfamiliar with the methods to evaluate the trade-offs between the benefits of enhanced local resolution and the effort needed to implement an adaptive solution method.
An improved adaptive IHS method for image fusion
NASA Astrophysics Data System (ADS)
Wang, Ting
2015-12-01
An improved adaptive intensity-hue-saturation (IHS) method is proposed for image fusion in this paper based on the adaptive IHS (AIHS) method and its improved method(IAIHS). Through improved method, the weighting matrix, which decides how many spatial details in the panchromatic (Pan) image should be injected into the multispectral (MS) image, is defined on the basis of the linear relationship of the edges of Pan and MS image. At the same time, a modulation parameter t is used to balance the spatial resolution and spectral resolution of the fusion image. Experiments showed that the improved method can improve spectral quality and maintain spatial resolution compared with the AIHS and IAIHS methods.
A Dynamically Adaptive Arbitrary Lagrangian-Eulerian Method for Hydrodynamics
Anderson, R W; Pember, R B; Elliott, N S
2002-10-19
A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. The novel components of the combined ALE-AMR method hinge upon the integration of traditional AMR techniques with both staggered grid Lagrangian operators as well as elliptic relaxation operators on moving, deforming mesh hierarchies. Numerical examples demonstrate the utility of the method in performing detailed three-dimensional shock-driven instability calculations.
A Dynamically Adaptive Arbitrary Lagrangian-Eulerian Method for Hydrodynamics
Anderson, R W; Pember, R B; Elliott, N S
2004-01-28
A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. The novel components of the combined ALE-AMR method hinge upon the integration of traditional AMR techniques with both staggered grid Lagrangian operators as well as elliptic relaxation operators on moving, deforming mesh hierarchies. Numerical examples demonstrate the utility of the method in performing detailed three-dimensional shock-driven instability calculations.
Wavelet methods in multi-conjugate adaptive optics
NASA Astrophysics Data System (ADS)
Helin, T.; Yudytskiy, M.
2013-08-01
The next generation ground-based telescopes rely heavily on adaptive optics for overcoming the limitation of atmospheric turbulence. In the future adaptive optics modalities, like multi-conjugate adaptive optics (MCAO), atmospheric tomography is the major mathematical and computational challenge. In this severely ill-posed problem, a fast and stable reconstruction algorithm is needed that can take into account many real-life phenomena of telescope imaging. We introduce a novel reconstruction method for the atmospheric tomography problem and demonstrate its performance and flexibility in the context of MCAO. Our method is based on using locality properties of compactly supported wavelets, both in the spatial and frequency domains. The reconstruction in the atmospheric tomography problem is obtained by solving the Bayesian MAP estimator with a conjugate-gradient-based algorithm. An accelerated algorithm with preconditioning is also introduced. Numerical performance is demonstrated on the official end-to-end simulation tool OCTOPUS of European Southern Observatory.
Tullis, Jonathan G; Benjamin, Aaron S
2015-05-01
Many situations require us to generate external cues to support later retrieval from memory. For instance, we create file names in order to cue our memory to a file's contents, and instructors create lecture slides to remember what points to make during classes. We even generate cues for others when we remind friends of shared experiences or send colleagues a computer file that is named in such a way so as to remind them of its contents. Here we explore how and how well learners tailor retrieval cues for different intended recipients. Across three experiments, subjects generated verbal cues for a list of target words for themselves or for others. Learners generated cues for others by increasing the normative cue-to-target associative strength but also by increasing the number of other words their cues point to, relative to cues that they generated for themselves. This strategy was effective: such cues supported higher levels of recall for others than cues generated for oneself. Generating cues for others also required more time than generating cues for oneself. Learners responded to the differential demands of cue generation for others by effortfully excluding personal, episodic knowledge and including knowledge that they estimate to be broadly shared.
Adaptive computational methods for SSME internal flow analysis
NASA Technical Reports Server (NTRS)
Oden, J. T.
1986-01-01
Adaptive finite element methods for the analysis of classes of problems in compressible and incompressible flow of interest in SSME (space shuttle main engine) analysis and design are described. The general objective of the adaptive methods is to improve and to quantify the quality of numerical solutions to the governing partial differential equations of fluid dynamics in two-dimensional cases. There are several different families of adaptive schemes that can be used to improve the quality of solutions in complex flow simulations. Among these are: (1) r-methods (node-redistribution or moving mesh methods) in which a fixed number of nodal points is allowed to migrate to points in the mesh where high error is detected; (2) h-methods, in which the mesh size h is automatically refined to reduce local error; and (3) p-methods, in which the local degree p of the finite element approximation is increased to reduce local error. Two of the three basic techniques have been studied in this project: an r-method for steady Euler equations in two dimensions and a p-method for transient, laminar, viscous incompressible flow. Numerical results are presented. A brief introduction to residual methods of a-posterior error estimation is also given and some pertinent conclusions of the study are listed.
Adaptive clustering and adaptive weighting methods to detect disease associated rare variants.
Sha, Qiuying; Wang, Shuaicheng; Zhang, Shuanglin
2013-03-01
Current statistical methods to test association between rare variants and phenotypes are essentially the group-wise methods that collapse or aggregate all variants in a predefined group into a single variant. Comparing with the variant-by-variant methods, the group-wise methods have their advantages. However, two factors may affect the power of these methods. One is that some of the causal variants may be protective. When both risk and protective variants are presented, it will lose power by collapsing or aggregating all variants because the effects of risk and protective variants will counteract each other. The other is that not all variants in the group are causal; rather, a large proportion is believed to be neutral. When a large proportion of variants are neutral, collapsing or aggregating all variants may not be an optimal solution. We propose two alternative methods, adaptive clustering (AC) method and adaptive weighting (AW) method, aiming to test rare variant association in the presence of neutral and/or protective variants. Both of AC and AW are applicable to quantitative traits as well as qualitative traits. Results of extensive simulation studies show that AC and AW have similar power and both of them have clear advantages from power to computational efficiency comparing with existing group-wise methods and existing data-driven methods that allow neutral and protective variants. We recommend AW method because AW method is computationally more efficient than AC method.
Adaptive windowed range-constrained Otsu method using local information
NASA Astrophysics Data System (ADS)
Zheng, Jia; Zhang, Dinghua; Huang, Kuidong; Sun, Yuanxi; Tang, Shaojie
2016-01-01
An adaptive windowed range-constrained Otsu method using local information is proposed for improving the performance of image segmentation. First, the reason why traditional thresholding methods do not perform well in the segmentation of complicated images is analyzed. Therein, the influences of global and local thresholdings on the image segmentation are compared. Second, two methods that can adaptively change the size of the local window according to local information are proposed by us. The characteristics of the proposed methods are analyzed. Thereby, the information on the number of edge pixels in the local window of the binarized variance image is employed to adaptively change the local window size. Finally, the superiority of the proposed method over other methods such as the range-constrained Otsu, the active contour model, the double Otsu, the Bradley's, and the distance-regularized level set evolution is demonstrated. It is validated by the experiments that the proposed method can keep more details and acquire much more satisfying area overlap measure as compared with the other conventional methods.
New developments in adaptive methods for computational fluid dynamics
NASA Technical Reports Server (NTRS)
Oden, J. T.; Bass, Jon M.
1990-01-01
New developments in a posteriori error estimates, smart algorithms, and h- and h-p adaptive finite element methods are discussed in the context of two- and three-dimensional compressible and incompressible flow simulations. Applications to rotor-stator interaction, rotorcraft aerodynamics, shock and viscous boundary layer interaction and fluid-structure interaction problems are discussed.
Likelihood Methods for Adaptive Filtering and Smoothing. Technical Report #455.
ERIC Educational Resources Information Center
Butler, Ronald W.
The dynamic linear model or Kalman filtering model provides a useful methodology for predicting the past, present, and future states of a dynamic system, such as an object in motion or an economic or social indicator that is changing systematically with time. Recursive likelihood methods for adaptive Kalman filtering and smoothing are developed.…
A Conditional Exposure Control Method for Multidimensional Adaptive Testing
ERIC Educational Resources Information Center
Finkelman, Matthew; Nering, Michael L.; Roussos, Louis A.
2009-01-01
In computerized adaptive testing (CAT), ensuring the security of test items is a crucial practical consideration. A common approach to reducing item theft is to define maximum item exposure rates, i.e., to limit the proportion of examinees to whom a given item can be administered. Numerous methods for controlling exposure rates have been proposed…
Lesmes, Luis A; Lu, Zhong-Lin; Baek, Jongsoo; Tran, Nina; Dosher, Barbara A; Albright, Thomas D
2015-01-01
Motivated by Signal Detection Theory (SDT), we developed a family of novel adaptive methods that estimate the sensitivity threshold-the signal intensity corresponding to a pre-defined sensitivity level (d' = 1)-in Yes-No (YN) and Forced-Choice (FC) detection tasks. Rather than focus stimulus sampling to estimate a single level of %Yes or %Correct, the current methods sample psychometric functions more broadly, to concurrently estimate sensitivity and decision factors, and thereby estimate thresholds that are independent of decision confounds. Developed for four tasks-(1) simple YN detection, (2) cued YN detection, which cues the observer's response state before each trial, (3) rated YN detection, which incorporates a Not Sure response, and (4) FC detection-the qYN and qFC methods yield sensitivity thresholds that are independent of the task's decision structure (YN or FC) and/or the observer's subjective response state. Results from simulation and psychophysics suggest that 25 trials (and sometimes less) are sufficient to estimate YN thresholds with reasonable precision (s.d. = 0.10-0.15 decimal log units), but more trials are needed for FC thresholds. When the same subjects were tested across tasks of simple, cued, rated, and FC detection, adaptive threshold estimates exhibited excellent agreement with the method of constant stimuli (MCS), and with each other. These YN adaptive methods deliver criterion-free thresholds that have previously been exclusive to FC methods.
Lesmes, Luis A.; Lu, Zhong-Lin; Baek, Jongsoo; Tran, Nina; Dosher, Barbara A.; Albright, Thomas D.
2015-01-01
Motivated by Signal Detection Theory (SDT), we developed a family of novel adaptive methods that estimate the sensitivity threshold—the signal intensity corresponding to a pre-defined sensitivity level (d′ = 1)—in Yes-No (YN) and Forced-Choice (FC) detection tasks. Rather than focus stimulus sampling to estimate a single level of %Yes or %Correct, the current methods sample psychometric functions more broadly, to concurrently estimate sensitivity and decision factors, and thereby estimate thresholds that are independent of decision confounds. Developed for four tasks—(1) simple YN detection, (2) cued YN detection, which cues the observer's response state before each trial, (3) rated YN detection, which incorporates a Not Sure response, and (4) FC detection—the qYN and qFC methods yield sensitivity thresholds that are independent of the task's decision structure (YN or FC) and/or the observer's subjective response state. Results from simulation and psychophysics suggest that 25 trials (and sometimes less) are sufficient to estimate YN thresholds with reasonable precision (s.d. = 0.10–0.15 decimal log units), but more trials are needed for FC thresholds. When the same subjects were tested across tasks of simple, cued, rated, and FC detection, adaptive threshold estimates exhibited excellent agreement with the method of constant stimuli (MCS), and with each other. These YN adaptive methods deliver criterion-free thresholds that have previously been exclusive to FC methods. PMID:26300798
Adaptive reconnection-based arbitrary Lagrangian Eulerian method
Bo, Wurigen; Shashkov, Mikhail
2015-07-21
We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALEmore » method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.« less
Adaptive reconnection-based arbitrary Lagrangian Eulerian method
Bo, Wurigen; Shashkov, Mikhail
2015-07-21
We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALE method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.
Effects of self-relevant cues and cue valence on autobiographical memory specificity in dysphoria.
Matsumoto, Noboru; Mochizuki, Satoshi
2017-04-01
Reduced autobiographical memory specificity (rAMS) is a characteristic memory bias observed in depression. To corroborate the capture hypothesis in the CaRFAX (capture and rumination, functional avoidance, executive capacity and control) model, we investigated the effects of self-relevant cues and cue valence on rAMS using an adapted Autobiographical Memory Test conducted with a nonclinical population. Hierarchical linear modelling indicated that the main effects of depression and self-relevant cues elicited rAMS. Moreover, the three-way interaction among valence, self-relevance, and depression scores was significant. A simple slope test revealed that dysphoric participants experienced rAMS in response to highly self-relevant positive cues and low self-relevant negative cues. These results partially supported the capture hypothesis in nonclinical dysphoria. It is important to consider cue valence in future studies examining the capture hypothesis.
Method and system for environmentally adaptive fault tolerant computing
NASA Technical Reports Server (NTRS)
Copenhaver, Jason L. (Inventor); Jeremy, Ramos (Inventor); Wolfe, Jeffrey M. (Inventor); Brenner, Dean (Inventor)
2010-01-01
A method and system for adapting fault tolerant computing. The method includes the steps of measuring an environmental condition representative of an environment. An on-board processing system's sensitivity to the measured environmental condition is measured. It is determined whether to reconfigure a fault tolerance of the on-board processing system based in part on the measured environmental condition. The fault tolerance of the on-board processing system may be reconfigured based in part on the measured environmental condition.
Workshop on adaptive grid methods for fusion plasmas
Wiley, J.C.
1995-07-01
The author describes a general `hp` finite element method with adaptive grids. The code was based on the work of Oden, et al. The term `hp` refers to the method of spatial refinement (h), in conjunction with the order of polynomials used as a part of the finite element discretization (p). This finite element code seems to handle well the different mesh grid sizes occuring between abuted grids with different resolutions.
ICASE/LaRC Workshop on Adaptive Grid Methods
NASA Technical Reports Server (NTRS)
South, Jerry C., Jr. (Editor); Thomas, James L. (Editor); Vanrosendale, John (Editor)
1995-01-01
Solution-adaptive grid techniques are essential to the attainment of practical, user friendly, computational fluid dynamics (CFD) applications. In this three-day workshop, experts gathered together to describe state-of-the-art methods in solution-adaptive grid refinement, analysis, and implementation; to assess the current practice; and to discuss future needs and directions for research. This was accomplished through a series of invited and contributed papers. The workshop focused on a set of two-dimensional test cases designed by the organizers to aid in assessing the current state of development of adaptive grid technology. In addition, a panel of experts from universities, industry, and government research laboratories discussed their views of needs and future directions in this field.
Free energy calculations: an efficient adaptive biasing potential method.
Dickson, Bradley M; Legoll, Frédéric; Lelièvre, Tony; Stoltz, Gabriel; Fleurat-Lessard, Paul
2010-05-06
We develop an efficient sampling and free energy calculation technique within the adaptive biasing potential (ABP) framework. By mollifying the density of states we obtain an approximate free energy and an adaptive bias potential that is computed directly from the population along the coordinates of the free energy. Because of the mollifier, the bias potential is "nonlocal", and its gradient admits a simple analytic expression. A single observation of the reaction coordinate can thus be used to update the approximate free energy at every point within a neighborhood of the observation. This greatly reduces the equilibration time of the adaptive bias potential. This approximation introduces two parameters: strength of mollification and the zero of energy of the bias potential. While we observe that the approximate free energy is a very good estimate of the actual free energy for a large range of mollification strength, we demonstrate that the errors associated with the mollification may be removed via deconvolution. The zero of energy of the bias potential, which is easy to choose, influences the speed of convergence but not the limiting accuracy. This method is simple to apply to free energy or mean force computation in multiple dimensions and does not involve second derivatives of the reaction coordinates, matrix manipulations nor on-the-fly adaptation of parameters. For the alanine dipeptide test case, the new method is found to gain as much as a factor of 10 in efficiency as compared to two basic implementations of the adaptive biasing force methods, and it is shown to be as efficient as well-tempered metadynamics with the postprocess deconvolution giving a clear advantage to the mollified density of states method.
An Adaptive Cross-Architecture Combination Method for Graph Traversal
You, Yang; Song, Shuaiwen; Kerbyson, Darren J.
2014-06-18
Breadth-First Search (BFS) is widely used in many real-world applications including computational biology, social networks, and electronic design automation. The combination method, using both top-down and bottom-up techniques, is the most effective BFS approach. However, current combination methods rely on trial-and-error and exhaustive search to locate the optimal switching point, which may cause significant runtime overhead. To solve this problem, we design an adaptive method based on regression analysis to predict an optimal switching point for the combination method at runtime within less than 0.1% of the BFS execution time.
Adaptive Kaczmarz Method for Image Reconstruction in Electrical Impedance Tomography
Li, Taoran; Kao, Tzu-Jen; Isaacson, David; Newell, Jonathan C.; Saulnier, Gary J.
2013-01-01
We present an adaptive Kaczmarz method for solving the inverse problem in electrical impedance tomography and determining the conductivity distribution inside an object from electrical measurements made on the surface. To best characterize an unknown conductivity distribution and avoid inverting the Jacobian-related term JTJ which could be expensive in terms of computation cost and memory in large scale problems, we propose solving the inverse problem by applying the optimal current patterns for distinguishing the actual conductivity from the conductivity estimate between each iteration of the block Kaczmarz algorithm. With a novel subset scheme, the memory-efficient reconstruction algorithm which appropriately combines the optimal current pattern generation with the Kaczmarz method can produce more accurate and stable solutions adaptively as compared to traditional Kaczmarz and Gauss-Newton type methods. Choices of initial current pattern estimates are discussed in the paper. Several reconstruction image metrics are used to quantitatively evaluate the performance of the simulation results. PMID:23718952
Final Report: Symposium on Adaptive Methods for Partial Differential Equations
Pernice, Michael; Johnson, Christopher R.; Smith, Philip J.; Fogelson, Aaron
1998-12-08
Complex physical phenomena often include features that span a wide range of spatial and temporal scales. Accurate simulation of such phenomena can be difficult to obtain, and computations that are under-resolved can even exhibit spurious features. While it is possible to resolve small scale features by increasing the number of grid points, global grid refinement can quickly lead to problems that are intractable, even on the largest available computing facilities. These constraints are particularly severe for three dimensional problems that involve complex physics. One way to achieve the needed resolution is to refine the computational mesh locally, in only those regions where enhanced resolution is required. Adaptive solution methods concentrate computational effort in regions where it is most needed. These methods have been successfully applied to a wide variety of problems in computational science and engineering. Adaptive methods can be difficult to implement, prompting the development of tools and environments to facilitate their use. To ensure that the results of their efforts are useful, algorithm and tool developers must maintain close communication with application specialists. Conversely it remains difficult for application specialists who are unfamiliar with the methods to evaluate the trade-offs between the benefits of enhanced local resolution and the effort needed to implement an adaptive solution method.
Adaptive Set-Based Methods for Association Testing.
Su, Yu-Chen; Gauderman, William James; Berhane, Kiros; Lewinger, Juan Pablo
2016-02-01
With a typical sample size of a few thousand subjects, a single genome-wide association study (GWAS) using traditional one single nucleotide polymorphism (SNP)-at-a-time methods can only detect genetic variants conferring a sizable effect on disease risk. Set-based methods, which analyze sets of SNPs jointly, can detect variants with smaller effects acting within a gene, a pathway, or other biologically relevant sets. Although self-contained set-based methods (those that test sets of variants without regard to variants not in the set) are generally more powerful than competitive set-based approaches (those that rely on comparison of variants in the set of interest with variants not in the set), there is no consensus as to which self-contained methods are best. In particular, several self-contained set tests have been proposed to directly or indirectly "adapt" to the a priori unknown proportion and distribution of effects of the truly associated SNPs in the set, which is a major determinant of their power. A popular adaptive set-based test is the adaptive rank truncated product (ARTP), which seeks the set of SNPs that yields the best-combined evidence of association. We compared the standard ARTP, several ARTP variations we introduced, and other adaptive methods in a comprehensive simulation study to evaluate their performance. We used permutations to assess significance for all the methods and thus provide a level playing field for comparison. We found the standard ARTP test to have the highest power across our simulations followed closely by the global model of random effects (GMRE) and a least absolute shrinkage and selection operator (LASSO)-based test.
Advanced numerical methods in mesh generation and mesh adaptation
Lipnikov, Konstantine; Danilov, A; Vassilevski, Y; Agonzal, A
2010-01-01
Numerical solution of partial differential equations requires appropriate meshes, efficient solvers and robust and reliable error estimates. Generation of high-quality meshes for complex engineering models is a non-trivial task. This task is made more difficult when the mesh has to be adapted to a problem solution. This article is focused on a synergistic approach to the mesh generation and mesh adaptation, where best properties of various mesh generation methods are combined to build efficiently simplicial meshes. First, the advancing front technique (AFT) is combined with the incremental Delaunay triangulation (DT) to build an initial mesh. Second, the metric-based mesh adaptation (MBA) method is employed to improve quality of the generated mesh and/or to adapt it to a problem solution. We demonstrate with numerical experiments that combination of all three methods is required for robust meshing of complex engineering models. The key to successful mesh generation is the high-quality of the triangles in the initial front. We use a black-box technique to improve surface meshes exported from an unattainable CAD system. The initial surface mesh is refined into a shape-regular triangulation which approximates the boundary with the same accuracy as the CAD mesh. The DT method adds robustness to the AFT. The resulting mesh is topologically correct but may contain a few slivers. The MBA uses seven local operations to modify the mesh topology. It improves significantly the mesh quality. The MBA method is also used to adapt the mesh to a problem solution to minimize computational resources required for solving the problem. The MBA has a solid theoretical background. In the first two experiments, we consider the convection-diffusion and elasticity problems. We demonstrate the optimal reduction rate of the discretization error on a sequence of adaptive strongly anisotropic meshes. The key element of the MBA method is construction of a tensor metric from hierarchical edge
Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes
NASA Technical Reports Server (NTRS)
Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak
2004-01-01
High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel
Methods for prismatic/tetrahedral grid generation and adaptation
NASA Technical Reports Server (NTRS)
Kallinderis, Y.
1995-01-01
The present work involves generation of hybrid prismatic/tetrahedral grids for complex 3-D geometries including multi-body domains. The prisms cover the region close to each body's surface, while tetrahedra are created elsewhere. Two developments are presented for hybrid grid generation around complex 3-D geometries. The first is a new octree/advancing front type of method for generation of the tetrahedra of the hybrid mesh. The main feature of the present advancing front tetrahedra generator that is different from previous such methods is that it does not require the creation of a background mesh by the user for the determination of the grid-spacing and stretching parameters. These are determined via an automatically generated octree. The second development is a method for treating the narrow gaps in between different bodies in a multiply-connected domain. This method is applied to a two-element wing case. A High Speed Civil Transport (HSCT) type of aircraft geometry is considered. The generated hybrid grid required only 170 K tetrahedra instead of an estimated two million had a tetrahedral mesh been used in the prisms region as well. A solution adaptive scheme for viscous computations on hybrid grids is also presented. A hybrid grid adaptation scheme that employs both h-refinement and redistribution strategies is developed to provide optimum meshes for viscous flow computations. Grid refinement is a dual adaptation scheme that couples 3-D, isotropic division of tetrahedra and 2-D, directional division of prisms.
Efficient Unstructured Grid Adaptation Methods for Sonic Boom Prediction
NASA Technical Reports Server (NTRS)
Campbell, Richard L.; Carter, Melissa B.; Deere, Karen A.; Waithe, Kenrick A.
2008-01-01
This paper examines the use of two grid adaptation methods to improve the accuracy of the near-to-mid field pressure signature prediction of supersonic aircraft computed using the USM3D unstructured grid flow solver. The first method (ADV) is an interactive adaptation process that uses grid movement rather than enrichment to more accurately resolve the expansion and compression waves. The second method (SSGRID) uses an a priori adaptation approach to stretch and shear the original unstructured grid to align the grid with the pressure waves and reduce the cell count required to achieve an accurate signature prediction at a given distance from the vehicle. Both methods initially create negative volume cells that are repaired in a module in the ADV code. While both approaches provide significant improvements in the near field signature (< 3 body lengths) relative to a baseline grid without increasing the number of grid points, only the SSGRID approach allows the details of the signature to be accurately computed at mid-field distances (3-10 body lengths) for direct use with mid-field-to-ground boom propagation codes.
Methods for prismatic/tetrahedral grid generation and adaptation
NASA Astrophysics Data System (ADS)
Kallinderis, Y.
1995-10-01
The present work involves generation of hybrid prismatic/tetrahedral grids for complex 3-D geometries including multi-body domains. The prisms cover the region close to each body's surface, while tetrahedra are created elsewhere. Two developments are presented for hybrid grid generation around complex 3-D geometries. The first is a new octree/advancing front type of method for generation of the tetrahedra of the hybrid mesh. The main feature of the present advancing front tetrahedra generator that is different from previous such methods is that it does not require the creation of a background mesh by the user for the determination of the grid-spacing and stretching parameters. These are determined via an automatically generated octree. The second development is a method for treating the narrow gaps in between different bodies in a multiply-connected domain. This method is applied to a two-element wing case. A High Speed Civil Transport (HSCT) type of aircraft geometry is considered. The generated hybrid grid required only 170 K tetrahedra instead of an estimated two million had a tetrahedral mesh been used in the prisms region as well. A solution adaptive scheme for viscous computations on hybrid grids is also presented. A hybrid grid adaptation scheme that employs both h-refinement and redistribution strategies is developed to provide optimum meshes for viscous flow computations. Grid refinement is a dual adaptation scheme that couples 3-D, isotropic division of tetrahedra and 2-D, directional division of prisms.
Space-time adaptive numerical methods for geophysical applications.
Castro, C E; Käser, M; Toro, E F
2009-11-28
In this paper we present high-order formulations of the finite volume and discontinuous Galerkin finite-element methods for wave propagation problems with a space-time adaptation technique using unstructured meshes in order to reduce computational cost without reducing accuracy. Both methods can be derived in a similar mathematical framework and are identical in their first-order version. In their extension to higher order accuracy in space and time, both methods use spatial polynomials of higher degree inside each element, a high-order solution of the generalized Riemann problem and a high-order time integration method based on the Taylor series expansion. The static adaptation strategy uses locally refined high-resolution meshes in areas with low wave speeds to improve the approximation quality. Furthermore, the time step length is chosen locally adaptive such that the solution is evolved explicitly in time by an optimal time step determined by a local stability criterion. After validating the numerical approach, both schemes are applied to geophysical wave propagation problems such as tsunami waves and seismic waves comparing the new approach with the classical global time-stepping technique. The problem of mesh partitioning for large-scale applications on multi-processor architectures is discussed and a new mesh partition approach is proposed and tested to further reduce computational cost.
Developing new online calibration methods for multidimensional computerized adaptive testing.
Chen, Ping; Wang, Chun; Xin, Tao; Chang, Hua-Hua
2017-02-01
Multidimensional computerized adaptive testing (MCAT) has received increasing attention over the past few years in educational measurement. Like all other formats of CAT, item replenishment is an essential part of MCAT for its item bank maintenance and management, which governs retiring overexposed or obsolete items over time and replacing them with new ones. Moreover, calibration precision of the new items will directly affect the estimation accuracy of examinees' ability vectors. In unidimensional CAT (UCAT) and cognitive diagnostic CAT, online calibration techniques have been developed to effectively calibrate new items. However, there has been very little discussion of online calibration in MCAT in the literature. Thus, this paper proposes new online calibration methods for MCAT based upon some popular methods used in UCAT. Three representative methods, Method A, the 'one EM cycle' method and the 'multiple EM cycles' method, are generalized to MCAT. Three simulation studies were conducted to compare the three new methods by manipulating three factors (test length, item bank design, and level of correlation between coordinate dimensions). The results showed that all the new methods were able to recover the item parameters accurately, and the adaptive online calibration designs showed some improvements compared to the random design under most conditions.
A simplified self-adaptive grid method, SAGE
NASA Technical Reports Server (NTRS)
Davies, C.; Venkatapathy, E.
1989-01-01
The formulation of the Self-Adaptive Grid Evolution (SAGE) code, based on the work of Nakahashi and Deiwert, is described in the first section of this document. The second section is presented in the form of a user guide which explains the input and execution of the code, and provides many examples. Application of the SAGE code, by Ames Research Center and by others, in the solution of various flow problems has been an indication of the code's general utility and success. Although the basic formulation follows the method of Nakahashi and Deiwert, many modifications have been made to facilitate the use of the self-adaptive grid method for single, zonal, and multiple grids. Modifications to the methodology and the simplified input options make this current version a flexible and user-friendly code.
Optimal and adaptive methods of processing hydroacoustic signals (review)
NASA Astrophysics Data System (ADS)
Malyshkin, G. S.; Sidel'nikov, G. B.
2014-09-01
Different methods of optimal and adaptive processing of hydroacoustic signals for multipath propagation and scattering are considered. Advantages and drawbacks of the classical adaptive (Capon, MUSIC, and Johnson) algorithms and "fast" projection algorithms are analyzed for the case of multipath propagation and scattering of strong signals. The classical optimal approaches to detecting multipath signals are presented. A mechanism of controlled normalization of strong signals is proposed to automatically detect weak signals. The results of simulating the operation of different detection algorithms for a linear equidistant array under multipath propagation and scattering are presented. An automatic detector is analyzed, which is based on classical or fast projection algorithms, which estimates the background proceeding from median filtering or the method of bilateral spatial contrast.
NASA Astrophysics Data System (ADS)
Li, Dongming; Zhang, Lijuan; Wang, Ting; Liu, Huan; Yang, Jinhua; Chen, Guifen
2016-11-01
To improve the adaptive optics (AO) image's quality, we study the AO image restoration algorithm based on wavefront reconstruction technology and adaptive total variation (TV) method in this paper. Firstly, the wavefront reconstruction using Zernike polynomial is used for initial estimated for the point spread function (PSF). Then, we develop our proposed iterative solutions for AO images restoration, addressing the joint deconvolution issue. The image restoration experiments are performed to verify the image restoration effect of our proposed algorithm. The experimental results show that, compared with the RL-IBD algorithm and Wiener-IBD algorithm, we can see that GMG measures (for real AO image) from our algorithm are increased by 36.92%, and 27.44% respectively, and the computation time are decreased by 7.2%, and 3.4% respectively, and its estimation accuracy is significantly improved.
Grid adaptation and remapping for arbitrary lagrangian eulerian (ALE) methods
Lapenta, G. M.
2002-01-01
Methods to include automatic grid adaptation tools within the Arbitrary Lagrangian Eulerian (ALE) method are described. Two main developments will be described. First, a new grid adaptation approach is described, based on an automatic and accurate estimate of the local truncation error. Second, a new method to remap the information between two grids is presented, based on the MPDATA approach. The Arbitrary Lagrangian Eulerian (ALE) method solves hyperbolic equations by splitting the operators is two phases. First, in the Lagrangian phase, the equations under consideration are written in a Lagrangian frame and are discretized. In this phase, the grid moves with the solution, the velocity of each node being the local fluid velocity. Second, in the Eulerian phase, a new grid is generated and the information is transferred to the new grid. The advantage of considering this second step is the possibility of avoiding mesh distortion and tangling typical of pure Lagrangian methods. The second phase of the ALE method is the primary topic of the present communication. In the Eulerian phase two tasks need to be completed. First, a new grid need to be created (we will refer to this task as rezoning). Second, the information is transferred from the grid available at the end of the Lagrangian phase to the new grid (we will refer to this task as remapping). New techniques are presented for the two tasks of the Eulerian phase: rezoning and remapping.
A novel adaptive force control method for IPMC manipulation
NASA Astrophysics Data System (ADS)
Hao, Lina; Sun, Zhiyong; Li, Zhi; Su, Yunquan; Gao, Jianchao
2012-07-01
IPMC is a type of electro-active polymer material, also called artificial muscle, which can generate a relatively large deformation under a relatively low input voltage (generally speaking, less than 5 V), and can be implemented in a water environment. Due to these advantages, IPMC can be used in many fields such as biomimetics, service robots, bio-manipulation, etc. Until now, most existing methods for IPMC manipulation are displacement control not directly force control, however, under most conditions, the success rate of manipulations for tiny fragile objects is limited by the contact force, such as using an IPMC gripper to fix cells. Like most EAPs, a creep phenomenon exists in IPMC, of which the generated force will change with time and the creep model will be influenced by the change of the water content or other environmental factors, so a proper force control method is urgently needed. This paper presents a novel adaptive force control method (AIPOF control—adaptive integral periodic output feedback control), based on employing a creep model of which parameters are obtained by using the FRLS on-line identification method. The AIPOF control method can achieve an arbitrary pole configuration as long as the plant is controllable and observable. This paper also designs the POF and IPOF controller to compare their test results. Simulation and experiments of micro-force-tracking tests are carried out, with results confirming that the proposed control method is viable.
Investigation of the Multiple Method Adaptive Control (MMAC) method for flight control systems
NASA Technical Reports Server (NTRS)
Athans, M.; Baram, Y.; Castanon, D.; Dunn, K. P.; Green, C. S.; Lee, W. H.; Sandell, N. R., Jr.; Willsky, A. S.
1979-01-01
The stochastic adaptive control of the NASA F-8C digital-fly-by-wire aircraft using the multiple model adaptive control (MMAC) method is presented. The selection of the performance criteria for the lateral and the longitudinal dynamics, the design of the Kalman filters for different operating conditions, the identification algorithm associated with the MMAC method, the control system design, and simulation results obtained using the real time simulator of the F-8 aircraft at the NASA Langley Research Center are discussed.
A two-dimensional adaptive mesh generation method
NASA Astrophysics Data System (ADS)
Altas, Irfan; Stephenson, John W.
1991-05-01
The present, two-dimensional adaptive mesh-generation method allows selective modification of a small portion of the mesh without affecting large areas of adjacent mesh-points, and is applicable with or without boundary-fitted coordinate-generation procedures. The cases of differential equation discretization by, on the one hand, classical difference formulas designed for uniform meshes, and on the other the present difference formulas, are illustrated through the application of the method to the Hiemenz flow for which the Navier-Stokes equation's exact solution is known, as well as to a two-dimensional viscous internal flow problem.
An adaptive penalty method for DIRECT algorithm in engineering optimization
NASA Astrophysics Data System (ADS)
Vilaça, Rita; Rocha, Ana Maria A. C.
2012-09-01
The most common approach for solving constrained optimization problems is based on penalty functions, where the constrained problem is transformed into a sequence of unconstrained problem by penalizing the objective function when constraints are violated. In this paper, we analyze the implementation of an adaptive penalty method, within the DIRECT algorithm, in which the constraints that are more difficult to be satisfied will have relatively higher penalty values. In order to assess the applicability and performance of the proposed method, some benchmark problems from engineering design optimization are considered.
Adaptive Current Control Method for Hybrid Active Power Filter
NASA Astrophysics Data System (ADS)
Chau, Minh Thuyen
2016-09-01
This paper proposes an adaptive current control method for Hybrid Active Power Filter (HAPF). It consists of a fuzzy-neural controller, identification and prediction model and cost function. The fuzzy-neural controller parameters are adjusted according to the cost function minimum criteria. For this reason, the proposed control method has a capability on-line control clings to variation of the load harmonic currents. Compared to the single fuzzy logic control method, the proposed control method shows the advantages of better dynamic response, compensation error in steady-state is smaller, able to online control is better and harmonics cancelling is more effective. Simulation and experimental results have demonstrated the effectiveness of the proposed control method.
Parallel, adaptive finite element methods for conservation laws
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Devine, Karen D.; Flaherty, Joseph E.
1994-01-01
We construct parallel finite element methods for the solution of hyperbolic conservation laws in one and two dimensions. Spatial discretization is performed by a discontinuous Galerkin finite element method using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kutta method. Dissipative fluxes and projection limiting prevent oscillations near solution discontinuities. A posteriori estimates of spatial errors are obtained by a p-refinement technique using superconvergence at Radau points. The resulting method is of high order and may be parallelized efficiently on MIMD computers. We compare results using different limiting schemes and demonstrate parallel efficiency through computations on an NCUBE/2 hypercube. We also present results using adaptive h- and p-refinement to reduce the computational cost of the method.
A novel adaptive noise filtering method for SAR images
NASA Astrophysics Data System (ADS)
Li, Weibin; He, Mingyi
2009-08-01
In the most application situation, signal or image always is corrupted by additive noise. As a result there are mass methods to remove the additive noise while few approaches can work well for the multiplicative noise. The paper presents an improved MAP-based filter for multiplicative noise by adaptive window denoising technique. A Gamma noise models is discussed and a preprocessing technique to differential the matured and un-matured pixel is applied to get accurate estimate for Equivalent Number of Looks. Also the adaptive local window growth and 3 different denoise strategies are applied to smooth noise while keep its subtle information according to its local statistics feature. The simulation results show that the performance is better than existing filter. Several image experiments demonstrate its theoretical performance.
Planetary gearbox fault diagnosis using an adaptive stochastic resonance method
NASA Astrophysics Data System (ADS)
Lei, Yaguo; Han, Dong; Lin, Jing; He, Zhengjia
2013-07-01
Planetary gearboxes are widely used in aerospace, automotive and heavy industry applications due to their large transmission ratio, strong load-bearing capacity and high transmission efficiency. The tough operation conditions of heavy duty and intensive impact load may cause gear tooth damage such as fatigue crack and teeth missed etc. The challenging issues in fault diagnosis of planetary gearboxes include selection of sensitive measurement locations, investigation of vibration transmission paths and weak feature extraction. One of them is how to effectively discover the weak characteristics from noisy signals of faulty components in planetary gearboxes. To address the issue in fault diagnosis of planetary gearboxes, an adaptive stochastic resonance (ASR) method is proposed in this paper. The ASR method utilizes the optimization ability of ant colony algorithms and adaptively realizes the optimal stochastic resonance system matching input signals. Using the ASR method, the noise may be weakened and weak characteristics highlighted, and therefore the faults can be diagnosed accurately. A planetary gearbox test rig is established and experiments with sun gear faults including a chipped tooth and a missing tooth are conducted. And the vibration signals are collected under the loaded condition and various motor speeds. The proposed method is used to process the collected signals and the results of feature extraction and fault diagnosis demonstrate its effectiveness.
Adaptation of fast marching methods to intracellular signaling
NASA Astrophysics Data System (ADS)
Chikando, Aristide C.; Kinser, Jason M.
2006-02-01
Imaging of signaling phenomena within the intracellular domain is a well studied field. Signaling is the process by which all living cells communicate with their environment and with each other. In the case of signaling calcium waves, numerous computational models based on solving homogeneous reaction diffusion equations have been developed. Typically, the reaction diffusion approach consists of solving systems of partial differential equations at each update step. The traditional methods used to solve these reaction diffusion equations are very computationally expensive since they must employ small time steps in order to reduce the computational error. The presented research suggests the application of fast marching methods to imaging signaling calcium waves, more specifically fertilization calcium waves, in Xenopus laevis eggs. The fast marching approach provides fast and efficient means of tracking the evolution of monotonically advancing fronts. A model that employs biophysical properties of intracellular calcium signaling, and adapts fast marching methods to tracking the propagation of signaling calcium waves is presented. The developed model is used to reproduce simulation results obtained with reaction diffusion based model. Results obtained with our model agree with both the results obtained with reaction diffusion based models, and confocal microscopy observations during in vivo experiments. The adaptation of fast marching methods to intracellular protein or macromolecule trafficking is also briefly explored.
Robust time and frequency domain estimation methods in adaptive control
NASA Technical Reports Server (NTRS)
Lamaire, Richard Orville
1987-01-01
A robust identification method was developed for use in an adaptive control system. The type of estimator is called the robust estimator, since it is robust to the effects of both unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator was motivated by a need to provide guarantees in the identification part of an adaptive controller. To enable the design of a robust control system, a nominal model as well as a frequency-domain bounding function on the modeling uncertainty associated with this nominal model must be provided. Two estimation methods are presented for finding parameter estimates, and, hence, a nominal model. One of these methods is based on the well developed field of time-domain parameter estimation. In a second method of finding parameter estimates, a type of weighted least-squares fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown to perform better, in general, than the time-domain parameter estimator. In addition, a methodology for finding a frequency-domain bounding function on the disturbance is used to compute a frequency-domain bounding function on the additive modeling error due to the effects of the disturbance and the use of finite-length data. The performance of the robust estimator in both open-loop and closed-loop situations is examined through the use of simulations.
Coordinated adaptive washout for motion simulators.
NASA Technical Reports Server (NTRS)
Parrish, R. V.; Dieudonne, J. E.; Bowles, R. L.; Martin, D. J., Jr.
1973-01-01
This paper introduces a new method of providing motion cues to a moving base six-degree-of-freedom flight simulator utilizing nonlinear filters. Coordinated adaptive filters, used to coordinate translational and rotational motion, are derived based on the method of continuous steepest descent, and the basic concept of the digital controllers used for the uncoordinated heave and yaw cues is also presented. The coordinated adaptive washout method is illustrated by an application in a six-degree-of-freedom fixed-base environment.
The SMART CLUSTER METHOD - adaptive earthquake cluster analysis and declustering
NASA Astrophysics Data System (ADS)
Schaefer, Andreas; Daniell, James; Wenzel, Friedemann
2016-04-01
Earthquake declustering is an essential part of almost any statistical analysis of spatial and temporal properties of seismic activity with usual applications comprising of probabilistic seismic hazard assessments (PSHAs) and earthquake prediction methods. The nature of earthquake clusters and subsequent declustering of earthquake catalogues plays a crucial role in determining the magnitude-dependent earthquake return period and its respective spatial variation. Various methods have been developed to address this issue from other researchers. These have differing ranges of complexity ranging from rather simple statistical window methods to complex epidemic models. This study introduces the smart cluster method (SCM), a new methodology to identify earthquake clusters, which uses an adaptive point process for spatio-temporal identification. Hereby, an adaptive search algorithm for data point clusters is adopted. It uses the earthquake density in the spatio-temporal neighbourhood of each event to adjust the search properties. The identified clusters are subsequently analysed to determine directional anisotropy, focussing on a strong correlation along the rupture plane and adjusts its search space with respect to directional properties. In the case of rapid subsequent ruptures like the 1992 Landers sequence or the 2010/2011 Darfield-Christchurch events, an adaptive classification procedure is applied to disassemble subsequent ruptures which may have been grouped into an individual cluster using near-field searches, support vector machines and temporal splitting. The steering parameters of the search behaviour are linked to local earthquake properties like magnitude of completeness, earthquake density and Gutenberg-Richter parameters. The method is capable of identifying and classifying earthquake clusters in space and time. It is tested and validated using earthquake data from California and New Zealand. As a result of the cluster identification process, each event in
A decentralized adaptive robust method for chaos control.
Kobravi, Hamid-Reza; Erfanian, Abbas
2009-09-01
This paper presents a control strategy, which is based on sliding mode control, adaptive control, and fuzzy logic system for controlling the chaotic dynamics. We consider this control paradigm in chaotic systems where the equations of motion are not known. The proposed control strategy is robust against the external noise disturbance and system parameter variations and can be used to convert the chaotic orbits not only to the desired periodic ones but also to any desired chaotic motions. Simulation results of controlling some typical higher order chaotic systems demonstrate the effectiveness of the proposed control method.
The Perceptual Cues that Reshape Expert Reasoning
Harré, Michael; Bossomaier, Terry; Snyder, Allan
2012-01-01
The earliest stages in our perception of the world have a subtle but powerful influence on later thought processes; they provide the contextual cues within which our thoughts are framed and they adapt to many different environments throughout our lives. Understanding the changes in these cues is crucial to understanding how our perceptual ability develops, but these changes are often difficult to quantify in sufficiently complex tasks where objective measures of development are available. Here we simulate perceptual learning using neural networks and demonstrate fundamental changes in these cues as a function of skill. These cues are cognitively grouped together to form perceptual templates that enable rapid ‘whole scene' categorisation of complex stimuli. Such categories reduce the computational load on our capacity limited thought processes, they inform our higher cognitive processes and they suggest a framework of perceptual pre-processing that captures the central role of perception in expertise. PMID:22792435
Adaptive grid methods for RLV environment assessment and nozzle analysis
NASA Technical Reports Server (NTRS)
Thornburg, Hugh J.
1996-01-01
Rapid access to highly accurate data about complex configurations is needed for multi-disciplinary optimization and design. In order to efficiently meet these requirements a closer coupling between the analysis algorithms and the discretization process is needed. In some cases, such as free surface, temporally varying geometries, and fluid structure interaction, the need is unavoidable. In other cases the need is to rapidly generate and modify high quality grids. Techniques such as unstructured and/or solution-adaptive methods can be used to speed the grid generation process and to automatically cluster mesh points in regions of interest. Global features of the flow can be significantly affected by isolated regions of inadequately resolved flow. These regions may not exhibit high gradients and can be difficult to detect. Thus excessive resolution in certain regions does not necessarily increase the accuracy of the overall solution. Several approaches have been employed for both structured and unstructured grid adaption. The most widely used involve grid point redistribution, local grid point enrichment/derefinement or local modification of the actual flow solver. However, the success of any one of these methods ultimately depends on the feature detection algorithm used to determine solution domain regions which require a fine mesh for their accurate representation. Typically, weight functions are constructed to mimic the local truncation error and may require substantial user input. Most problems of engineering interest involve multi-block grids and widely disparate length scales. Hence, it is desirable that the adaptive grid feature detection algorithm be developed to recognize flow structures of different type as well as differing intensity, and adequately address scaling and normalization across blocks. These weight functions can then be used to construct blending functions for algebraic redistribution, interpolation functions for unstructured grid generation
ERIC Educational Resources Information Center
Carr, John C.
This performance guide is designed for teachers to use with students before and after a performance of "The Pearl" by John Steinbeck, adapted by Warren Frost and dramatized for the Kennedy Center by Nick Olcott. It is in the form of a Director's Notebook--a scrapbook/journal of clippings, memos, lists, illustrations, notes, and other…
Turbulence profiling methods applied to ESO's adaptive optics facility
NASA Astrophysics Data System (ADS)
Valenzuela, Javier; Béchet, Clémentine; Garcia-Rissmann, Aurea; Gonté, Frédéric; Kolb, Johann; Le Louarn, Miska; Neichel, Benoît; Madec, Pierre-Yves; Guesalaga, Andrés.
2014-07-01
Two algorithms were recently studied for C2n profiling from wide-field Adaptive Optics (AO) measurements on GeMS (Gemini Multi-Conjugate AO system). They both rely on the Slope Detection and Ranging (SLODAR) approach, using spatial covariances of the measurements issued from various wavefront sensors. The first algorithm estimates the C2n profile by applying the truncated least-squares inverse of a matrix modeling the response of slopes covariances to various turbulent layer heights. In the second method, the profile is estimated by deconvolution of these spatial cross-covariances of slopes. We compare these methods in the new configuration of ESO Adaptive Optics Facility (AOF), a high-order multiple laser system under integration. For this, we use measurements simulated by the AO cluster of ESO. The impact of the measurement noise and of the outer scale of the atmospheric turbulence is analyzed. The important influence of the outer scale on the results leads to the development of a new step for outer scale fitting included in each algorithm. This increases the reliability and robustness of the turbulence strength and profile estimations.
An adaptive stepsize method for the chemical Langevin equation.
Ilie, Silvana; Teslya, Alexandra
2012-05-14
Mathematical and computational modeling are key tools in analyzing important biological processes in cells and living organisms. In particular, stochastic models are essential to accurately describe the cellular dynamics, when the assumption of the thermodynamic limit can no longer be applied. However, stochastic models are computationally much more challenging than the traditional deterministic models. Moreover, many biochemical systems arising in applications have multiple time-scales, which lead to mathematical stiffness. In this paper we investigate the numerical solution of a stochastic continuous model of well-stirred biochemical systems, the chemical Langevin equation. The chemical Langevin equation is a stochastic differential equation with multiplicative, non-commutative noise. We propose an adaptive stepsize algorithm for approximating the solution of models of biochemical systems in the Langevin regime, with small noise, based on estimates of the local error. The underlying numerical method is the Milstein scheme. The proposed adaptive method is tested on several examples arising in applications and it is shown to have improved efficiency and accuracy compared to the existing fixed stepsize schemes.
NASA Technical Reports Server (NTRS)
Kantor, A. V.; Timonin, V. G.; Azarova, Y. S.
1974-01-01
The method of adaptive discretization is the most promising for elimination of redundancy from telemetry messages characterized by signal shape. Adaptive discretization with associative sorting was considered as a way to avoid the shortcomings of adaptive discretization with buffer smoothing and adaptive discretization with logical switching in on-board information compression devices (OICD) in spacecraft. Mathematical investigations of OICD are presented.
Robust image registration using adaptive coherent point drift method
NASA Astrophysics Data System (ADS)
Yang, Lijuan; Tian, Zheng; Zhao, Wei; Wen, Jinhuan; Yan, Weidong
2016-04-01
Coherent point drift (CPD) method is a powerful registration tool under the framework of the Gaussian mixture model (GMM). However, the global spatial structure of point sets is considered only without other forms of additional attribute information. The equivalent simplification of mixing parameters and the manual setting of the weight parameter in GMM make the CPD method less robust to outlier and have less flexibility. An adaptive CPD method is proposed to automatically determine the mixing parameters by embedding the local attribute information of features into the construction of GMM. In addition, the weight parameter is treated as an unknown parameter and automatically determined in the expectation-maximization algorithm. In image registration applications, the block-divided salient image disk extraction method is designed to detect sparse salient image features and local self-similarity is used as attribute information to describe the local neighborhood structure of each feature. The experimental results on optical images and remote sensing images show that the proposed method can significantly improve the matching performance.
Research on PGNAA adaptive analysis method with BP neural network
NASA Astrophysics Data System (ADS)
Peng, Ke-Xin; Yang, Jian-Bo; Tuo, Xian-Guo; Du, Hua; Zhang, Rui-Xue
2016-11-01
A new approach method to dealing with the puzzle of spectral analysis in prompt gamma neutron activation analysis (PGNAA) is developed and demonstrated. It consists of utilizing BP neural network to PGNAA energy spectrum analysis which is based on Monte Carlo (MC) simulation, the main tasks which we will accomplish as follows: (1) Completing the MC simulation of PGNAA spectrum library, we respectively set mass fractions of element Si, Ca, Fe from 0.00 to 0.45 with a step of 0.05 and each sample is simulated using MCNP. (2) Establishing the BP model of adaptive quantitative analysis of PGNAA energy spectrum, we calculate peak areas of eight characteristic gamma rays that respectively correspond to eight elements in each individual of 1000 samples and that of the standard sample. (3) Verifying the viability of quantitative analysis of the adaptive algorithm where 68 samples were used successively. Results show that the precision when using neural network to calculate the content of each element is significantly higher than the MCLLS.
Efficient Combustion Simulation via the Adaptive Wavelet Collocation Method
NASA Astrophysics Data System (ADS)
Lung, Kevin; Brown-Dymkoski, Eric; Guerrero, Victor; Doran, Eric; Museth, Ken; Balme, Jo; Urberger, Bob; Kessler, Andre; Jones, Stephen; Moses, Billy; Crognale, Anthony
Rocket engine development continues to be driven by the intuition and experience of designers, progressing through extensive trial-and-error test campaigns. Extreme temperatures and pressures frustrate direct observation, while high-fidelity simulation can be impractically expensive owing to the inherent muti-scale, multi-physics nature of the problem. To address this cost, an adaptive multi-resolution PDE solver has been designed which targets the high performance, many-core architecture of GPUs. The adaptive wavelet collocation method is used to maintain a sparse-data representation of the high resolution simulation, greatly reducing the memory footprint while tightly controlling physical fidelity. The tensorial, stencil topology of wavelet-based grids lends itself to highly vectorized algorithms which are necessary to exploit the performance of GPUs. This approach permits efficient implementation of direct finite-rate kinetics, and improved resolution of steep thermodynamic gradients and the smaller mixing scales that drive combustion dynamics. Resolving these scales is crucial for accurate chemical kinetics, which are typically degraded or lost in statistical modeling approaches.
A locally adaptive kernel regression method for facies delineation
NASA Astrophysics Data System (ADS)
Fernàndez-Garcia, D.; Barahona-Palomo, M.; Henri, C. V.; Sanchez-Vila, X.
2015-12-01
Facies delineation is defined as the separation of geological units with distinct intrinsic characteristics (grain size, hydraulic conductivity, mineralogical composition). A major challenge in this area stems from the fact that only a few scattered pieces of hydrogeological information are available to delineate geological facies. Several methods to delineate facies are available in the literature, ranging from those based only on existing hard data, to those including secondary data or external knowledge about sedimentological patterns. This paper describes a methodology to use kernel regression methods as an effective tool for facies delineation. The method uses both the spatial and the actual sampled values to produce, for each individual hard data point, a locally adaptive steering kernel function, self-adjusting the principal directions of the local anisotropic kernels to the direction of highest local spatial correlation. The method is shown to outperform the nearest neighbor classification method in a number of synthetic aquifers whenever the available number of hard data is small and randomly distributed in space. In the case of exhaustive sampling, the steering kernel regression method converges to the true solution. Simulations ran in a suite of synthetic examples are used to explore the selection of kernel parameters in typical field settings. It is shown that, in practice, a rule of thumb can be used to obtain suboptimal results. The performance of the method is demonstrated to significantly improve when external information regarding facies proportions is incorporated. Remarkably, the method allows for a reasonable reconstruction of the facies connectivity patterns, shown in terms of breakthrough curves performance.
Sparse diffraction imaging method using an adaptive reweighting homotopy algorithm
NASA Astrophysics Data System (ADS)
Yu, Caixia; Zhao, Jingtao; Wang, Yanfei; Qiu, Zhen
2017-02-01
Seismic diffractions carry valuable information from subsurface small-scale geologic discontinuities, such as faults, cavities and other features associated with hydrocarbon reservoirs. However, seismic imaging methods mainly use reflection theory for constructing imaging models, which means a smooth constraint on imaging conditions. In fact, diffractors occupy a small account of distributions in an imaging model and possess discontinuous characteristics. In mathematics, this kind of phenomena can be described by the sparse optimization theory. Therefore, we propose a diffraction imaging method based on a sparsity-constraint model for studying diffractors. A reweighted L 2-norm and L 1-norm minimization model is investigated, where the L 2 term requests a least-square error between modeled diffractions and observed diffractions and the L 1 term imposes sparsity on the solution. In order to efficiently solve this model, we use an adaptive reweighting homotopy algorithm that updates the solutions by tracking a path along inexpensive homotopy steps. Numerical examples and field data application demonstrate the feasibility of the proposed method and show its significance for detecting small-scale discontinuities in a seismic section. The proposed method has an advantage in improving the focusing ability of diffractions and reducing the migration artifacts.
An adaptive Cartesian grid generation method for Dirty geometry
NASA Astrophysics Data System (ADS)
Wang, Z. J.; Srinivasan, Kumar
2002-07-01
Traditional structured and unstructured grid generation methods need a water-tight boundary surface grid to start. Therefore, these methods are named boundary to interior (B2I) approaches. Although these methods have achieved great success in fluid flow simulations, the grid generation process can still be very time consuming if non-water-tight geometries are given. Significant user time can be taken to repair or clean a dirty geometry with cracks, overlaps or invalid manifolds before grid generation can take place. In this paper, we advocate a different approach in grid generation, namely the interior to boundary (I2B) approach. With an I2B approach, the computational grid is first generated inside the computational domain. Then this grid is intelligently connected to the boundary, and the boundary grid is a result of this connection. A significant advantage of the I2B approach is that dirty geometries can be handled without cleaning or repairing, dramatically reducing grid generation time. An I2B adaptive Cartesian grid generation method is developed in this paper to handle dirty geometries without geometry repair. Comparing with a B2I approach, the grid generation time with the I2B approach for a complex automotive engine can be reduced by three orders of magnitude. Copyright
A method of camera calibration with adaptive thresholding
NASA Astrophysics Data System (ADS)
Gao, Lei; Yan, Shu-hua; Wang, Guo-chao; Zhou, Chun-lei
2009-07-01
In order to calculate the parameters of the camera correctly, we must figure out the accurate coordinates of the certain points in the image plane. Corners are the important features in the 2D images. Generally speaking, they are the points that have high curvature and lie in the junction of different brightness regions of images. So corners detection has already widely used in many fields. In this paper we use the pinhole camera model and SUSAN corner detection algorithm to calibrate the camera. When using the SUSAN corner detection algorithm, we propose an approach to retrieve the gray difference threshold, adaptively. That makes it possible to pick up the right chessboard inner comers in all kinds of gray contrast. The experiment result based on this method was proved to be feasible.
A forward method for optimal stochastic nonlinear and adaptive control
NASA Technical Reports Server (NTRS)
Bayard, David S.
1988-01-01
A computational approach is taken to solve the optimal nonlinear stochastic control problem. The approach is to systematically solve the stochastic dynamic programming equations forward in time, using a nested stochastic approximation technique. Although computationally intensive, this provides a straightforward numerical solution for this class of problems and provides an alternative to the usual dimensionality problem associated with solving the dynamic programming equations backward in time. It is shown that the cost degrades monotonically as the complexity of the algorithm is reduced. This provides a strategy for suboptimal control with clear performance/computation tradeoffs. A numerical study focusing on a generic optimal stochastic adaptive control example is included to demonstrate the feasibility of the method.
Adaptive mesh refinement and adjoint methods in geophysics simulations
NASA Astrophysics Data System (ADS)
Burstedde, Carsten
2013-04-01
It is an ongoing challenge to increase the resolution that can be achieved by numerical geophysics simulations. This applies to considering sub-kilometer mesh spacings in global-scale mantle convection simulations as well as to using frequencies up to 1 Hz in seismic wave propagation simulations. One central issue is the numerical cost, since for three-dimensional space discretizations, possibly combined with time stepping schemes, a doubling of resolution can lead to an increase in storage requirements and run time by factors between 8 and 16. A related challenge lies in the fact that an increase in resolution also increases the dimensionality of the model space that is needed to fully parametrize the physical properties of the simulated object (a.k.a. earth). Systems that exhibit a multiscale structure in space are candidates for employing adaptive mesh refinement, which varies the resolution locally. An example that we found well suited is the mantle, where plate boundaries and fault zones require a resolution on the km scale, while deeper area can be treated with 50 or 100 km mesh spacings. This approach effectively reduces the number of computational variables by several orders of magnitude. While in this case it is possible to derive the local adaptation pattern from known physical parameters, it is often unclear what are the most suitable criteria for adaptation. We will present the goal-oriented error estimation procedure, where such criteria are derived from an objective functional that represents the observables to be computed most accurately. Even though this approach is well studied, it is rarely used in the geophysics community. A related strategy to make finer resolution manageable is to design methods that automate the inference of model parameters. Tweaking more than a handful of numbers and judging the quality of the simulation by adhoc comparisons to known facts and observations is a tedious task and fundamentally limited by the turnaround times
The Effects of Keyword Cues and 3R Strategy on Children's e-Book Reading
ERIC Educational Resources Information Center
Liang, T.-H.
2015-01-01
Various studies have found that electronic books (e-books) promote learning, but few works have examined the use of e-books along with an adaptive reading strategy for children. The current study implemented a method to extract keyword cues from e-books to support e-book reading with the read, recite and review (3R) strategy, and then examined the…
Adaptive Elastic Net for Generalized Methods of Moments.
Caner, Mehmet; Zhang, Hao Helen
2014-01-30
Model selection and estimation are crucial parts of econometrics. This paper introduces a new technique that can simultaneously estimate and select the model in generalized method of moments (GMM) context. The GMM is particularly powerful for analyzing complex data sets such as longitudinal and panel data, and it has wide applications in econometrics. This paper extends the least squares based adaptive elastic net estimator of Zou and Zhang (2009) to nonlinear equation systems with endogenous variables. The extension is not trivial and involves a new proof technique due to estimators lack of closed form solutions. Compared to Bridge-GMM of Caner (2009), we allow for the number of parameters to diverge to infinity as well as collinearity among a large number of variables, also the redundant parameters set to zero via a data dependent technique. This method has the oracle property, meaning that we can estimate nonzero parameters with their standard limit and the redundant parameters are dropped from the equations simultaneously. Numerical examples are used to illustrate the performance of the new method.
Evaluation of Adaptive Subdivision Method on Mobile Device
NASA Astrophysics Data System (ADS)
Rahim, Mohd Shafry Mohd; Isa, Siti Aida Mohd; Rehman, Amjad; Saba, Tanzila
2013-06-01
Recently, there are significant improvements in the capabilities of mobile devices; but rendering large 3D object is still tedious because of the constraint in resources of mobile devices. To reduce storage requirement, 3D object is simplified but certain area of curvature is compromised and the surface will not be smooth. Therefore a method to smoother selected area of a curvature is implemented. One of the popular methods is adaptive subdivision method. Experiments are performed using two data with results based on processing time, rendering speed and the appearance of the object on the devices. The result shows a downfall in frame rate performance due to the increase in the number of triangles with each level of iteration while the processing time of generating the new mesh also significantly increase. Since there is a difference in screen size between the devices the surface on the iPhone appears to have more triangles and more compact than the surface displayed on the iPad. [Figure not available: see fulltext.
Perceptual Adaptation of Voice Gender Discrimination with Spectrally Shifted Vowels
ERIC Educational Resources Information Center
Li, Tianhao; Fu, Qian-Jie
2011-01-01
Purpose: To determine whether perceptual adaptation improves voice gender discrimination of spectrally shifted vowels and, if so, which acoustic cues contribute to the improvement. Method: Voice gender discrimination was measured for 10 normal-hearing subjects, during 5 days of adaptation to spectrally shifted vowels, produced by processing the…
Method for removing tilt control in adaptive optics systems
Salmon, Joseph Thaddeus
1998-01-01
A new adaptive optics system and method of operation, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G'=(I-X(X.sup.T X).sup.-1 X.sup.T)G(I-A)
Method for removing tilt control in adaptive optics systems
Salmon, J.T.
1998-04-28
A new adaptive optics system and method of operation are disclosed, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G{prime} = (I{minus}X(X{sup T} X){sup {minus}1}X{sup T})G(I{minus}A). 3 figs.
Adapted G-mode Clustering Method applied to Asteroid Taxonomy
NASA Astrophysics Data System (ADS)
Hasselmann, Pedro H.; Carvano, Jorge M.; Lazzaro, D.
2013-11-01
The original G-mode was a clustering method developed by A. I. Gavrishin in the late 60's for geochemical classification of rocks, but was also applied to asteroid photometry, cosmic rays, lunar sample and planetary science spectroscopy data. In this work, we used an adapted version to classify the asteroid photometry from SDSS Moving Objects Catalog. The method works by identifying normal distributions in a multidimensional space of variables. The identification starts by locating a set of points with smallest mutual distance in the sample, which is a problem when data is not planar. Here we present a modified version of the G-mode algorithm, which was previously written in FORTRAN 77, in Python 2.7 and using NumPy, SciPy and Matplotlib packages. The NumPy was used for array and matrix manipulation and Matplotlib for plot control. The Scipy had a import role in speeding up G-mode, Scipy.spatial.distance.mahalanobis was chosen as distance estimator and Numpy.histogramdd was applied to find the initial seeds from which clusters are going to evolve. Scipy was also used to quickly produce dendrograms showing the distances among clusters. Finally, results for Asteroids Taxonomy and tests for different sample sizes and implementations are presented.
Associative learning of shape as a cue to appearance: a new demonstration of cue recruitment.
Harrison, Sarah J; Backus, Benjamin T
2012-03-16
The perceived rotation direction of a wire-frame Necker cube at stimulus onset can be conditioned to be dependent on retinal location (B. T. Backus & Q. Haijiang, 2007; S. J. Harrison & B. T. Backus, 2010a). This phenomenon was proposed to be an example of the visual system learning new cues to visual appearance, by adaptation in response to new experiences. Here, we demonstrate recruitment of a new cue, object shape, for the appearance of rotating 3D objects. The cue was established by interleaving ambiguous and disambiguated instances of two shapes, cubes and spheres, at the same retinal location. Disambiguated cubes and spheres rotated in opposite directions. A significant bias was consequently introduced in the resolution of ambiguity, whereby the proportions of ambiguous shapes perceived as rotating clockwise differed, in the direction predicted by their disambiguated counterparts. This finding suggests that training led the visual system to distinguish between the two shapes. The association of rotation direction and shape was only achieved when monocular depth cues were used to depict rotation in depth; shapes disambiguated by binocular disparity did not lead to recruitment of the shape cue. We speculate that this difference may be the consequence of a difference in the neural pathways by which the disambiguating cues act. This new instance of the cue recruitment effect opens possibilities for further generalization of the phenomenon.
A Self-Adaptive Projection and Contraction Method for Linear Complementarity Problems
Liao Lizhi Wang Shengli
2003-10-15
In this paper we develop a self-adaptive projection and contraction method for the linear complementarity problem (LCP). This method improves the practical performance of the modified projection and contraction method by adopting a self-adaptive technique. The global convergence of our new method is proved under mild assumptions. Our numerical tests clearly demonstrate the necessity and effectiveness of our proposed method.
Adaptable Metadata Rich IO Methods for Portable High Performance IO
Lofstead, J.; Zheng, Fang; Klasky, Scott A; Schwan, Karsten
2009-01-01
Since IO performance on HPC machines strongly depends on machine characteristics and configuration, it is important to carefully tune IO libraries and make good use of appropriate library APIs. For instance, on current petascale machines, independent IO tends to outperform collective IO, in part due to bottlenecks at the metadata server. The problem is exacerbated by scaling issues, since each IO library scales differently on each machine, and typically, operates efficiently to different levels of scaling on different machines. With scientific codes being run on a variety of HPC resources, efficient code execution requires us to address three important issues: (1) end users should be able to select the most efficient IO methods for their codes, with minimal effort in terms of code updates or alterations; (2) such performance-driven choices should not prevent data from being stored in the desired file formats, since those are crucial for later data analysis; and (3) it is important to have efficient ways of identifying and selecting certain data for analysis, to help end users cope with the flood of data produced by high end codes. This paper employs ADIOS, the ADaptable IO System, as an IO API to address (1)-(3) above. Concerning (1), ADIOS makes it possible to independently select the IO methods being used by each grouping of data in an application, so that end users can use those IO methods that exhibit best performance based on both IO patterns and the underlying hardware. In this paper, we also use this facility of ADIOS to experimentally evaluate on petascale machines alternative methods for high performance IO. Specific examples studied include methods that use strong file consistency vs. delayed parallel data consistency, as that provided by MPI-IO or POSIX IO. Concerning (2), to avoid linking IO methods to specific file formats and attain high IO performance, ADIOS introduces an efficient intermediate file format, termed BP, which can be converted, at small
Principles and Methods of Adapted Physical Education and Recreation.
ERIC Educational Resources Information Center
Arnheim, Daniel D.; And Others
This text is designed for the elementary and secondary school physical educator and the recreation specialist in adapted physical education and, more specifically, as a text for college courses in adapted and corrective physical education and therapeutic recreation. The text is divided into four major divisions: scope, key teaching and therapy…
Broom, Donald M
2006-01-01
The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and
Tsunami modelling with adaptively refined finite volume methods
LeVeque, R.J.; George, D.L.; Berger, M.J.
2011-01-01
Numerical modelling of transoceanic tsunami propagation, together with the detailed modelling of inundation of small-scale coastal regions, poses a number of algorithmic challenges. The depth-averaged shallow water equations can be used to reduce this to a time-dependent problem in two space dimensions, but even so it is crucial to use adaptive mesh refinement in order to efficiently handle the vast differences in spatial scales. This must be done in a 'wellbalanced' manner that accurately captures very small perturbations to the steady state of the ocean at rest. Inundation can be modelled by allowing cells to dynamically change from dry to wet, but this must also be done carefully near refinement boundaries. We discuss these issues in the context of Riemann-solver-based finite volume methods for tsunami modelling. Several examples are presented using the GeoClaw software, and sample codes are available to accompany the paper. The techniques discussed also apply to a variety of other geophysical flows. ?? 2011 Cambridge University Press.
A hybrid method for optimization of the adaptive Goldstein filter
NASA Astrophysics Data System (ADS)
Jiang, Mi; Ding, Xiaoli; Tian, Xin; Malhotra, Rakesh; Kong, Weixue
2014-12-01
The Goldstein filter is a well-known filter for interferometric filtering in the frequency domain. The main parameter of this filter, alpha, is set as a power of the filtering function. Depending on it, considered areas are strongly or weakly filtered. Several variants have been developed to adaptively determine alpha using different indicators such as the coherence, and phase standard deviation. The common objective of these methods is to prevent areas with low noise from being over filtered while simultaneously allowing stronger filtering over areas with high noise. However, the estimators of these indicators are biased in the real world and the optimal model to accurately determine the functional relationship between the indicators and alpha is also not clear. As a result, the filter always under- or over-filters and is rarely correct. The study presented in this paper aims to achieve accurate alpha estimation by correcting the biased estimator using homogeneous pixel selection and bootstrapping algorithms, and by developing an optimal nonlinear model to determine alpha. In addition, an iteration is also merged into the filtering procedure to suppress the high noise over incoherent areas. The experimental results from synthetic and real data show that the new filter works well under a variety of conditions and offers better and more reliable performance when compared to existing approaches.
NASA Astrophysics Data System (ADS)
Rogowitz, Bernice E.; Rabenhorst, David A.; Gerth, John A.; Kalin, Edward B.
1996-04-01
This paper describes a set of visual techniques, based on principles of human perception and cognition, which can help users analyze and develop intuitions about tabular data. Collections of tabular data are widely available, including, for example, multivariate time series data, customer satisfaction data, stock market performance data, multivariate profiles of companies and individuals, and scientific measurements. In our approach, we show how visual cues can help users perform a number of data mining tasks, including identifying correlations and interaction effects, finding clusters and understanding the semantics of cluster membership, identifying anomalies and outliers, and discovering multivariate relationships among variables. These cues are derived from psychological studies on perceptual organization, visual search, perceptual scaling, and color perception. These visual techniques are presented as a complement to the statistical and algorithmic methods more commonly associated with these tasks, and provide an interactive interface for the human analyst.
LDRD Final Report: Adaptive Methods for Laser Plasma Simulation
Dorr, M R; Garaizar, F X; Hittinger, J A
2003-01-29
The goal of this project was to investigate the utility of parallel adaptive mesh refinement (AMR) in the simulation of laser plasma interaction (LPI). The scope of work included the development of new numerical methods and parallel implementation strategies. The primary deliverables were (1) parallel adaptive algorithms to solve a system of equations combining plasma fluid and light propagation models, (2) a research code implementing these algorithms, and (3) an analysis of the performance of parallel AMR on LPI problems. The project accomplished these objectives. New algorithms were developed for the solution of a system of equations describing LPI. These algorithms were implemented in a new research code named ALPS (Adaptive Laser Plasma Simulator) that was used to test the effectiveness of the AMR algorithms on the Laboratory's large-scale computer platforms. The details of the algorithm and the results of the numerical tests were documented in an article published in the Journal of Computational Physics [2]. A principal conclusion of this investigation is that AMR is most effective for LPI systems that are ''hydrodynamically large'', i.e., problems requiring the simulation of a large plasma volume relative to the volume occupied by the laser light. Since the plasma-only regions require less resolution than the laser light, AMR enables the use of efficient meshes for such problems. In contrast, AMR is less effective for, say, a single highly filamented beam propagating through a phase plate, since the resulting speckle pattern may be too dense to adequately separate scales with a locally refined mesh. Ultimately, the gain to be expected from the use of AMR is highly problem-dependent. One class of problems investigated in this project involved a pair of laser beams crossing in a plasma flow. Under certain conditions, energy can be transferred from one beam to the other via a resonant interaction with an ion acoustic wave in the crossing region. AMR provides an
Nishimaru, Eiji; Ichikawa, Katsuhiro; Hara, Takanori; Terakawa, Shoichi; Yokomachi, Kazushi; Fujioka, Chikako; Kiguchi, Masao; Ishifuro, Minoru
2012-01-01
Adaptive iterative reconstruction techniques (IRs) can decrease image noise in computed tomography (CT) and are expected to contribute to reduction of the radiation dose. To evaluate the performance of IRs, the conventional two-dimensional (2D) noise power spectrum (NPS) is widely used. However, when an IR provides an NPS value drop at all spatial frequency (which is similar to NPS changes by dose increase), the conventional method cannot evaluate the correct noise property because the conventional method does not correspond to the volume data natures of CT images. The purpose of our study was to develop a new method for NPS measurements that can be adapted to IRs. Our method utilized thick multi-planar reconstruction (MPR) images. The thick images are generally made by averaging CT volume data in a direction perpendicular to a MPR plane (e.g. z-direction for axial MPR plane). By using this averaging technique as a cutter for 3D-NPS, we can obtain adequate 2D-extracted NPS (eNPS) from 3D NPS. We applied this method to IR images generated with adaptive iterative dose reduction 3D (AIDR-3D, Toshiba) to investigate the validity of our method. A water phantom with 24 cm-diameters was scanned at 120 kV and 200 mAs with a 320-row CT (Acquilion One, Toshiba). From the results of study, the adequate thickness of MPR images for eNPS was more than 25.0 mm. Our new NPS measurement method utilizing thick MPR images was accurate and effective for evaluating noise reduction effects of IRs.
Reactivity to nicotine cues over repeated cue reactivity sessions.
LaRowe, Steven D; Saladin, Michael E; Carpenter, Matthew J; Upadhyaya, Himanshu P
2007-12-01
The present study investigated whether reactivity to nicotine-related cues would attenuate across four experimental sessions held 1 week apart. Participants were nineteen non-treatment seeking, nicotine-dependent males. Cue reactivity sessions were performed in an outpatient research center using in vivo cues consisting of standardized smoking-related paraphernalia (e.g., cigarettes) and neutral comparison paraphernalia (e.g., pencils). Craving ratings were collected before and after both cue presentations while physiological measures (heart rate, skin conductance) were collected before and during the cue presentations. Although craving levels decreased across sessions, smoking-related cues consistently evoked significantly greater increases in craving relative to neutral cues over all four experimental sessions. Skin conductance was higher in response to smoking cues, though this effect was not as robust as that observed for craving. Results suggest that, under the described experimental parameters, craving can be reliably elicited over repeated cue reactivity sessions.
On Accuracy of Adaptive Grid Methods for Captured Shocks
NASA Technical Reports Server (NTRS)
Yamaleev, Nail K.; Carpenter, Mark H.
2002-01-01
The accuracy of two grid adaptation strategies, grid redistribution and local grid refinement, is examined by solving the 2-D Euler equations for the supersonic steady flow around a cylinder. Second- and fourth-order linear finite difference shock-capturing schemes, based on the Lax-Friedrichs flux splitting, are used to discretize the governing equations. The grid refinement study shows that for the second-order scheme, neither grid adaptation strategy improves the numerical solution accuracy compared to that calculated on a uniform grid with the same number of grid points. For the fourth-order scheme, the dominant first-order error component is reduced by the grid adaptation, while the design-order error component drastically increases because of the grid nonuniformity. As a result, both grid adaptation techniques improve the numerical solution accuracy only on the coarsest mesh or on very fine grids that are seldom found in practical applications because of the computational cost involved. Similar error behavior has been obtained for the pressure integral across the shock. A simple analysis shows that both grid adaptation strategies are not without penalties in the numerical solution accuracy. Based on these results, a new grid adaptation criterion for captured shocks is proposed.
NASA Technical Reports Server (NTRS)
Wang, Ray (Inventor)
2009-01-01
A method and system for spatial data manipulation input and distribution via an adaptive wireless transceiver. The method and system include a wireless transceiver for automatically and adaptively controlling wireless transmissions using a Waveform-DNA method. The wireless transceiver can operate simultaneously over both the short and long distances. The wireless transceiver is automatically adaptive and wireless devices can send and receive wireless digital and analog data from various sources rapidly in real-time via available networks and network services.
Adaptive L₁/₂ shooting regularization method for survival analysis using gene expression data.
Liu, Xiao-Ying; Liang, Yong; Xu, Zong-Ben; Zhang, Hai; Leung, Kwong-Sak
2013-01-01
A new adaptive L₁/₂ shooting regularization method for variable selection based on the Cox's proportional hazards mode being proposed. This adaptive L₁/₂ shooting algorithm can be easily obtained by the optimization of a reweighed iterative series of L₁ penalties and a shooting strategy of L₁/₂ penalty. Simulation results based on high dimensional artificial data show that the adaptive L₁/₂ shooting regularization method can be more accurate for variable selection than Lasso and adaptive Lasso methods. The results from real gene expression dataset (DLBCL) also indicate that the L₁/₂ regularization method performs competitively.
Adaptation of a-Stratified Method in Variable Length Computerized Adaptive Testing.
ERIC Educational Resources Information Center
Wen, Jian-Bing; Chang, Hua-Hua; Hau, Kit-Tai
Test security has often been a problem in computerized adaptive testing (CAT) because the traditional wisdom of item selection overly exposes high discrimination items. The a-stratified (STR) design advocated by H. Chang and his collaborators, which uses items of less discrimination in earlier stages of testing, has been shown to be very…
Systems and Methods for Derivative-Free Adaptive Control
NASA Technical Reports Server (NTRS)
Yucelen, Tansel (Inventor); Kim, Kilsoo (Inventor); Calise, Anthony J. (Inventor)
2015-01-01
An adaptive control system is disclosed. The control system can control uncertain dynamic systems. The control system can employ one or more derivative-free adaptive control architectures. The control system can further employ one or more derivative-free weight update laws. The derivative-free weight update laws can comprise a time-varying estimate of an ideal vector of weights. The control system of the present invention can therefore quickly stabilize systems that undergo sudden changes in dynamics, caused by, for example, sudden changes in weight. Embodiments of the present invention can also provide a less complex control system than existing adaptive control systems. The control system can control aircraft and other dynamic systems, such as, for example, those with non-minimum phase dynamics.
Study of adaptive methods for data compression of scanner data
NASA Technical Reports Server (NTRS)
1977-01-01
The performance of adaptive image compression techniques and the applicability of a variety of techniques to the various steps in the data dissemination process are examined in depth. It is concluded that the bandwidth of imagery generated by scanners can be reduced without introducing significant degradation such that the data can be transmitted over an S-band channel. This corresponds to a compression ratio equivalent to 1.84 bits per pixel. It is also shown that this can be achieved using at least two fairly simple techniques with weight-power requirements well within the constraints of the LANDSAT-D satellite. These are the adaptive 2D DPCM and adaptive hybrid techniques.
NASA Astrophysics Data System (ADS)
Bargatze, L. F.
2015-12-01
Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted
Inner string cementing adapter and method of use
Helms, L.C.
1991-08-20
This patent describes an inner string cementing adapter for use on a work string in a well casing having floating equipment therein. It comprises mandrel means for connecting to a lower end of the work string; and sealing means adjacent to the mandrel means for substantially flatly sealing against a surface of the floating equipment without engaging a central opening in the floating equipment.
An adaptive precision gradient method for optimal control.
NASA Technical Reports Server (NTRS)
Klessig, R.; Polak, E.
1973-01-01
This paper presents a gradient algorithm for unconstrained optimal control problems. The algorithm is stated in terms of numerical integration formulas, the precision of which is controlled adaptively by a test that ensures convergence. Empirical results show that this algorithm is considerably faster than its fixed precision counterpart.-
A configural dominant account of contextual cueing: Configural cues are stronger than colour cues.
Kunar, Melina A; John, Rebecca; Sweetman, Hollie
2014-01-01
Previous work has shown that reaction times to find a target in displays that have been repeated are faster than those for displays that have never been seen before. This learning effect, termed "contextual cueing" (CC), has been shown using contexts such as the configuration of the distractors in the display and the background colour. However, it is not clear how these two contexts interact to facilitate search. We investigated this here by comparing the strengths of these two cues when they appeared together. In Experiment 1, participants searched for a target that was cued by both colour and distractor configural cues, compared with when the target was only predicted by configural information. The results showed that the addition of a colour cue did not increase contextual cueing. In Experiment 2, participants searched for a target that was cued by both colour and distractor configuration compared with when the target was only cued by colour. The results showed that adding a predictive configural cue led to a stronger CC benefit. Experiments 3 and 4 tested the disruptive effects of removing either a learned colour cue or a learned configural cue and whether there was cue competition when colour and configural cues were presented together. Removing the configural cue was more disruptive to CC than removing colour, and configural learning was shown to overshadow the learning of colour cues. The data support a configural dominant account of CC, where configural cues act as the stronger cue in comparison to colour when they are presented together.
A New Method to Cancel RFI---The Adaptive Filter
NASA Astrophysics Data System (ADS)
Bradley, R.; Barnbaum, C.
1996-12-01
An increasing amount of precious radio frequency spectrum in the VHF, UHF, and microwave bands is being utilized each year to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Some radio spectral lines of astronomical interest occur outside the protected radio astronomy bands and are unobservable due to heavy interference. Conventional approaches to deal with RFI include legislation, notch filters, RF shielding, and post-processing techniques. Although these techniques are somewhat successful, each suffers from insufficient interference cancellation. One concept of interference excision that has not been used before in radio astronomy is adaptive interference cancellation. The concept of adaptive interference canceling was first introduced in the mid-1970s as a way to reduce unwanted noise in low frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartment of automobiles. Only recently have high-speed digital filter chips made adaptive filtering possible in a bandwidth as large a few megahertz, finally opening the door to astronomical uses. The system consists of two receivers: the main beam of the radio telescope receives the desired signal corrupted by RFI coming in the sidelobes, and the reference antenna receives only the RFI. The reference antenna is processed using a digital adaptive filter and then subtracted from the signal in the main beam, thus producing the system output. The weights of the digital filter are adjusted by way of an algorithm that minimizes, in a least-squares sense, the power output of the system. Through an adaptive-iterative process, the interference canceler will lock onto the RFI and the filter will adjust itself to minimize the effect of the RFI at the system output. We are building a prototype 100 MHz receiver and will measure the cancellation
The use of the spectral method within the fast adaptive composite grid method
McKay, S.M.
1994-12-31
The use of efficient algorithms for the solution of partial differential equations has been sought for many years. The fast adaptive composite grid (FAC) method combines an efficient algorithm with high accuracy to obtain low cost solutions to partial differential equations. The FAC method achieves fast solution by combining solutions on different grids with varying discretizations and using multigrid like techniques to find fast solution. Recently, the continuous FAC (CFAC) method has been developed which utilizes an analytic solution within a subdomain to iterate to a solution of the problem. This has been shown to achieve excellent results when the analytic solution can be found. The CFAC method will be extended to allow solvers which construct a function for the solution, e.g., spectral and finite element methods. In this discussion, the spectral methods will be used to provide a fast, accurate solution to the partial differential equation. As spectral methods are more accurate than finite difference methods, the ensuing accuracy from this hybrid method outside of the subdomain will be investigated.
ERIC Educational Resources Information Center
BROWN, ROBERT M.; LACY, GRACE N.
AN EXPERIMENTAL NINTH-GRADE PROGRAM IN THE AREA OF SOCIAL STUDIES, ENGLISH, SCIENCE, HOME ECONOMICS, AND INDUSTRIAL ARTS WAS DESCRIBED. APPROXIMATELY 200 TEACHERS AND 3,000 STUDENTS LOCATED IN NEW YORK STATE SCHOOLS PARTICIPATED IN THE EXPERIMENT. INCLUDED IN THE CUE SYSTEM WERE (1) PACKAGES OF NEWER MEDIA MATERIALS, (2) CURRICULUM GUIDES, (3)…
Defocus cue and saliency preserving video compression
NASA Astrophysics Data System (ADS)
Khanna, Meera Thapar; Chaudhury, Santanu; Lall, Brejesh
2016-11-01
There are monocular depth cues present in images or videos that aid in depth perception in two-dimensional images or videos. Our objective is to preserve the defocus depth cue present in the videos along with the salient regions during compression application. A method is provided for opportunistic bit allocation during the video compression using visual saliency information comprising both the image features, such as color and contrast, and the defocus-based depth cue. The method is divided into two steps: saliency computation followed by compression. A nonlinear method is used to combine pure and defocus saliency maps to form the final saliency map. Then quantization values are assigned on the basis of these saliency values over a frame. The experimental results show that the proposed scheme yields good results over standard H.264 compression as well as pure and defocus saliency methods.
Adaptive finite element methods for two-dimensional problems in computational fracture mechanics
NASA Technical Reports Server (NTRS)
Min, J. B.; Bass, J. M.; Spradley, L. W.
1994-01-01
Some recent results obtained using solution-adaptive finite element methods in two-dimensional problems in linear elastic fracture mechanics are presented. The focus is on the basic issue of adaptive finite element methods for validating the new methodology by computing demonstration problems and comparing the stress intensity factors to analytical results.
Reminder Cues Modulate the Renewal Effect in Human Predictive Learning
Bustamante, Javier; Uengoer, Metin; Lachnit, Harald
2016-01-01
Associative learning refers to our ability to learn about regularities in our environment. When a stimulus is repeatedly followed by a specific outcome, we learn to expect the outcome in the presence of the stimulus. We are also able to modify established expectations in the face of disconfirming information (the stimulus is no longer followed by the outcome). Both the change of environmental regularities and the related processes of adaptation are referred to as extinction. However, extinction does not erase the initially acquired expectations. For instance, following successful extinction, the initially learned expectations can recover when there is a context change – a phenomenon called the renewal effect, which is considered as a model for relapse after exposure therapy. Renewal was found to be modulated by reminder cues of acquisition and extinction. However, the mechanisms underlying the effectiveness of reminder cues are not well understood. The aim of the present study was to investigate the impact of reminder cues on renewal in the field of human predictive learning. Experiment I demonstrated that renewal in human predictive learning is modulated by cues related to acquisition or extinction. Initially, participants received pairings of a stimulus and an outcome in one context. These stimulus-outcome pairings were preceded by presentations of a reminder cue (acquisition cue). Then, participants received extinction in a different context in which presentations of the stimulus were no longer followed by the outcome. These extinction trials were preceded by a second reminder cue (extinction cue). During a final phase conducted in a third context, participants showed stronger expectations of the outcome in the presence of the stimulus when testing was accompanied by the acquisition cue compared to the extinction cue. Experiment II tested an explanation of the reminder cue effect in terms of simple cue-outcome associations. Therefore, acquisition and
Method and apparatus for adaptive force and position control of manipulators
NASA Technical Reports Server (NTRS)
Seraji, Homayoun (Inventor)
1989-01-01
The present invention discloses systematic methods and apparatus for the design of real time controllers. Real-time control employs adaptive force/position by use of feedforward and feedback controllers, with the feedforward controller being the inverse of the linearized model of robot dynamics and containing only proportional-double-derivative terms is disclosed. The feedback controller, of the proportional-integral-derivative type, ensures that manipulator joints follow reference trajectories and the feedback controller achieves robust tracking of step-plus-exponential trajectories, all in real time. The adaptive controller includes adaptive force and position control within a hybrid control architecture. The adaptive controller, for force control, achieves tracking of desired force setpoints, and the adaptive position controller accomplishes tracking of desired position trajectories. Circuits in the adaptive feedback and feedforward controllers are varied by adaptation laws.
A new adaptive time step method for unsteady flow simulations in a human lung.
Fenández-Tena, Ana; Marcos, Alfonso C; Martínez, Cristina; Keith Walters, D
2017-04-07
The innovation presented is a method for adaptive time-stepping that allows clustering of time steps in portions of the cycle for which flow variables are rapidly changing, based on the concept of using a uniform step in a relevant dependent variable rather than a uniform step in the independent variable time. A user-defined function was developed to adapt the magnitude of the time step (adaptive time step) to a defined rate of change in inlet velocity. Quantitative comparison indicates that the new adaptive time stepping method significantly improves accuracy for simulations using an equivalent number of time steps per cycle.
NASA Astrophysics Data System (ADS)
Bussetta, Philippe; Marceau, Daniel; Ponthot, Jean-Philippe
2012-02-01
The aim of this work is to propose a new numerical method for solving the mechanical frictional contact problem in the general case of multi-bodies in a three dimensional space. This method is called adapted augmented Lagrangian method (AALM) and can be used in a multi-physical context (like thermo-electro-mechanical fields problems). This paper presents this new method and its advantages over other classical methods such as penalty method (PM), adapted penalty method (APM) and, augmented Lagrangian method (ALM). In addition, the efficiency and the reliability of the AALM are proved with some academic problems and an industrial thermo-electromechanical problem.
Generalization and transfer of contextual cues in motor learning.
Sarwary, A M E; Stegeman, D F; Selen, L P J; Medendorp, W P
2015-09-01
We continuously adapt our movements in daily life, forming new internal models whenever necessary and updating existing ones. Recent work has suggested that this flexibility is enabled via sensorimotor cues, serving to access the correct internal model whenever necessary and keeping new models apart from previous ones. While research to date has mainly focused on identifying the nature of such cue representations, here we investigated whether and how these cue representations generalize, interfere, and transfer within and across effector systems. Subjects were trained to make two-stage reaching movements: a premovement that served as a cue, followed by a targeted movement that was perturbed by one of two opposite curl force fields. The direction of the premovement was uniquely coupled to the direction of the ensuing force field, enabling simultaneous learning of the two respective internal models. After training, generalization of the two premovement cues' representations was tested at untrained premovement directions, within both the trained and untrained hand. We show that the individual premovement representations generalize in a Gaussian-like pattern around the trained premovement direction. When the force fields are of unequal strengths, the cue-dependent generalization skews toward the strongest field. Furthermore, generalization patterns transfer to the nontrained hand, in an extrinsic reference frame. We conclude that contextual cues do not serve as discrete switches between multiple internal models. Instead, their generalization suggests a weighted contribution of the associated internal models based on the angular separation from the trained cues to the net motor output.
Generalization and transfer of contextual cues in motor learning
Stegeman, D. F.; Selen, L. P. J.; Medendorp, W. P.
2015-01-01
We continuously adapt our movements in daily life, forming new internal models whenever necessary and updating existing ones. Recent work has suggested that this flexibility is enabled via sensorimotor cues, serving to access the correct internal model whenever necessary and keeping new models apart from previous ones. While research to date has mainly focused on identifying the nature of such cue representations, here we investigated whether and how these cue representations generalize, interfere, and transfer within and across effector systems. Subjects were trained to make two-stage reaching movements: a premovement that served as a cue, followed by a targeted movement that was perturbed by one of two opposite curl force fields. The direction of the premovement was uniquely coupled to the direction of the ensuing force field, enabling simultaneous learning of the two respective internal models. After training, generalization of the two premovement cues' representations was tested at untrained premovement directions, within both the trained and untrained hand. We show that the individual premovement representations generalize in a Gaussian-like pattern around the trained premovement direction. When the force fields are of unequal strengths, the cue-dependent generalization skews toward the strongest field. Furthermore, generalization patterns transfer to the nontrained hand, in an extrinsic reference frame. We conclude that contextual cues do not serve as discrete switches between multiple internal models. Instead, their generalization suggests a weighted contribution of the associated internal models based on the angular separation from the trained cues to the net motor output. PMID:26156381
Carpenter, Matthew J.; Saladin, Michael E.; DeSantis, Stacia; Gray, Kevin M.; LaRowe, Steven D.; Upadhyaya, Himanshu P.
2009-01-01
Cigarette craving, one hallmark sign of nicotine dependence, is often measured in laboratory settings using cue reactivity methods. How lab measures of cue reactivity relate to real world smoking behavior is unclear, particularly among non-treatment seeking smokers. Within a larger study of hormonal effects on cue reactivity (N=78), we examined the predictive relationship of cue reactivity to smoking, each measured in several ways. Results indicated that cue-evoked craving in response to stressful imagery, and to a lesser extent, in vivo smoking cues, significantly predicted smoking behavior during the week following testing. However, this predictive relationship was absent upon controlling for reactivity to neutral cues. Nicotine dependence may moderate the relationship between cue reactivity and actual smoking, such that this predictive relationship is less robust among highly dependent smokers than among smokers low in nicotine dependence. The question of whether cue-elicited craving predicts smoking among smokers not in treatment is best answered with a qualified yes, depending on how craving is manipulated and measured. Our findings highlight important methodological and theoretical considerations for cue reactivity research. PMID:19395178
Carpenter, Matthew J; Saladin, Michael E; DeSantis, Stacia; Gray, Kevin M; LaRowe, Steven D; Upadhyaya, Himanshu P
2009-01-01
Cigarette craving, one hallmark sign of nicotine dependence, is often measured in laboratory settings using cue reactivity methods. How lab measures of cue reactivity relate to real world smoking behavior is unclear, particularly among non-treatment seeking smokers. Within a larger study of hormonal effects on cue reactivity (N=78), we examined the predictive relationship of cue reactivity to smoking, each measured in several ways. Results indicated that cue-evoked craving in response to stressful imagery, and to a lesser extent, in vivo smoking cues, significantly predicted smoking behavior during the week following testing. However, this predictive relationship was absent upon controlling for reactivity to neutral cues. Nicotine dependence may moderate the relationship between cue reactivity and actual smoking, such that this predictive relationship is less robust among highly dependent smokers than among smokers low in nicotine dependence. The question of whether cue-elicited craving predicts smoking among smokers not in treatment is best answered with a qualified yes, depending on how craving is manipulated and measured. Our findings highlight important methodological and theoretical considerations for cue reactivity research.
Surface estimation methods with phased-arrays for adaptive ultrasonic imaging in complex components
NASA Astrophysics Data System (ADS)
Robert, S.; Calmon, P.; Calvo, M.; Le Jeune, L.; Iakovleva, E.
2015-03-01
Immersion ultrasonic testing of structures with complex geometries may be significantly improved by using phased-arrays and specific adaptive algorithms that allow to image flaws under a complex and unknown interface. In this context, this paper presents a comparative study of different Surface Estimation Methods (SEM) available in the CIVA software and used for adaptive imaging. These methods are based either on time-of-flight measurements or on image processing. We also introduce a generalized adaptive method where flaws may be fully imaged with half-skip modes. In this method, both the surface and the back-wall of a complex structure are estimated before imaging flaws.
Lingel, Christian; Haist, Tobias; Osten, Wolfgang
2016-12-20
We propose an adaptive optical setup using a spatial light modulator (SLM), which is suitable to perform different phase retrieval methods with varying optical features and without mechanical movement. By this approach, it is possible to test many different phase retrieval methods and their parameters (optical and algorithmic) using one stable setup and without hardware adaption. We show exemplary results for the well-known transport of intensity equation (TIE) method and a new iterative adaptive phase retrieval method, where the object phase is canceled by an inverse phase written into part of the SLM. The measurement results are compared to white light interferometric measurements.
Nonlinear mode decomposition: A noise-robust, adaptive decomposition method
NASA Astrophysics Data System (ADS)
Iatsenko, Dmytro; McClintock, Peter V. E.; Stefanovska, Aneta
2015-09-01
The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool—nonlinear mode decomposition (NMD)—which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques—which, together with the adaptive choice of their parameters, make it extremely noise robust—and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download.
Nonlinear mode decomposition: a noise-robust, adaptive decomposition method.
Iatsenko, Dmytro; McClintock, Peter V E; Stefanovska, Aneta
2015-09-01
The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool-nonlinear mode decomposition (NMD)-which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques-which, together with the adaptive choice of their parameters, make it extremely noise robust-and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download.
Integrated processing of spatial cues in human auditory cortex.
Salminen, Nelli H; Takanen, Marko; Santala, Olli; Lamminsalo, Jarkko; Altoè, Alessandro; Pulkki, Ville
2015-09-01
Human sound source localization relies on acoustical cues, most importantly, the interaural differences in time and level (ITD and ILD). For reaching a unified representation of auditory space the auditory nervous system needs to combine the information provided by these two cues. In search for such a unified representation, we conducted a magnetoencephalography (MEG) experiment that took advantage of the location-specific adaptation of the auditory cortical N1 response. In general, the attenuation caused by a preceding adaptor sound to the response elicited by a probe depends on their spatial arrangement: if the two sounds coincide, adaptation is stronger than when the locations differ. Here, we presented adaptor-probe pairs that contained different localization cues, for instance, adaptors with ITD and probes with ILD. We found that the adaptation of the N1 amplitude was location-specific across localization cues. This result can be explained by the existence of auditory cortical neurons that are sensitive to sound source location independent on which cue, ITD or ILD, provides the location information. Such neurons would form a cue-independent, unified representation of auditory space in human auditory cortex.
Investigating Item Exposure Control Methods in Computerized Adaptive Testing
ERIC Educational Resources Information Center
Ozturk, Nagihan Boztunc; Dogan, Nuri
2015-01-01
This study aims to investigate the effects of item exposure control methods on measurement precision and on test security under various item selection methods and item pool characteristics. In this study, the Randomesque (with item group sizes of 5 and 10), Sympson-Hetter, and Fade-Away methods were used as item exposure control methods. Moreover,…
An examination of an adapter method for measuring the vibration transmitted to the human arms.
Xu, Xueyan S; Dong, Ren G; Welcome, Daniel E; Warren, Christopher; McDowell, Thomas W
2015-09-01
The objective of this study is to evaluate an adapter method for measuring the vibration on the human arms. Four instrumented adapters with different weights were used to measure the vibration transmitted to the wrist, forearm, and upper arm of each subject. Each adapter was attached at each location on the subjects using an elastic cloth wrap. Two laser vibrometers were also used to measure the transmitted vibration at each location to evaluate the validity of the adapter method. The apparent mass at the palm of the hand along the forearm direction was also measured to enhance the evaluation. This study found that the adapter and laser-measured transmissibility spectra were comparable with some systematic differences. While increasing the adapter mass reduced the resonant frequency at the measurement location, increasing the tightness of the adapter attachment increased the resonant frequency. However, the use of lightweight (≤15 g) adapters under medium attachment tightness did not change the basic trends of the transmissibility spectrum. The resonant features observed in the transmissibility spectra were also correlated with those observed in the apparent mass spectra. Because the local coordinate systems of the adapters may be significantly misaligned relative to the global coordinates of the vibration test systems, large errors were observed for the adapter-measured transmissibility in some individual orthogonal directions. This study, however, also demonstrated that the misalignment issue can be resolved by either using the total vibration transmissibility or by measuring the misalignment angles to correct the errors. Therefore, the adapter method is acceptable for understanding the basic characteristics of the vibration transmission in the human arms, and the adapter-measured data are acceptable for approximately modeling the system.
An examination of an adapter method for measuring the vibration transmitted to the human arms
Xu, Xueyan S.; Dong, Ren G.; Welcome, Daniel E.; Warren, Christopher; McDowell, Thomas W.
2016-01-01
The objective of this study is to evaluate an adapter method for measuring the vibration on the human arms. Four instrumented adapters with different weights were used to measure the vibration transmitted to the wrist, forearm, and upper arm of each subject. Each adapter was attached at each location on the subjects using an elastic cloth wrap. Two laser vibrometers were also used to measure the transmitted vibration at each location to evaluate the validity of the adapter method. The apparent mass at the palm of the hand along the forearm direction was also measured to enhance the evaluation. This study found that the adapter and laser-measured transmissibility spectra were comparable with some systematic differences. While increasing the adapter mass reduced the resonant frequency at the measurement location, increasing the tightness of the adapter attachment increased the resonant frequency. However, the use of lightweight (≤15 g) adapters under medium attachment tightness did not change the basic trends of the transmissibility spectrum. The resonant features observed in the transmissibility spectra were also correlated with those observed in the apparent mass spectra. Because the local coordinate systems of the adapters may be significantly misaligned relative to the global coordinates of the vibration test systems, large errors were observed for the adapter-measured transmissibility in some individual orthogonal directions. This study, however, also demonstrated that the misalignment issue can be resolved by either using the total vibration transmissibility or by measuring the misalignment angles to correct the errors. Therefore, the adapter method is acceptable for understanding the basic characteristics of the vibration transmission in the human arms, and the adapter-measured data are acceptable for approximately modeling the system. PMID:26834309
Context-specific adaptation of pursuit initiation in humans
NASA Technical Reports Server (NTRS)
Takagi, M.; Abe, H.; Hasegawa, S.; Usui, T.; Hasebe, H.; Miki, A.; Zee, D. S.; Shelhauser, M. (Principal Investigator)
2000-01-01
PURPOSE: To determine if multiple states for the initiation of pursuit, as assessed by acceleration in the "open-loop" period, can be learned and gated by context. METHODS: Four normal subjects were studied. A modified step-ramp paradigm for horizontal pursuit was used to induce adaptation. In an increasing paradigm, target velocity doubled 230 msec after onset; in a decreasing paradigm, it was halved. In the first experiment, vertical eye position (+/-5 degrees ) was used as the context cue, and the training paradigm (increasing or decreasing) changed with vertical eye position. In the second experiment, with vertical position constant, when the target was red, training was decreasing, and when green, increasing. The average eye acceleration in the first 100 msec of tracking was the index of open-loop pursuit performance. RESULTS: With vertical position as the cue, pursuit adaptation differed between up and down gaze. In some cases, the direction of adaptation was in exact accord with the training stimuli. In others, acceleration increased or decreased for both up and down gaze but always in correct relative proportion to the training stimuli. In contrast, multiple adaptive states were not induced with color as the cue. CONCLUSIONS: Multiple values for the relationship between the average eye acceleration during the initiation of pursuit and target velocity could be learned and gated by context. Vertical position was an effective contextual cue but not target color, implying that useful contextual cues must be similar to those occurring naturally, for example, orbital position with eye muscle weakness.
A new and efficient method to obtain benzalkonium chloride adapted cells of Listeria monocytogenes.
Saá Ibusquiza, Paula; Herrera, Juan J R; Vázquez-Sánchez, Daniel; Parada, Adelaida; Cabo, Marta L
2012-10-01
A new method to obtain benzalkonium chloride (BAC) adapted L. monocytogenes cells was developed. A factorial design was used to assess the effects of the inoculum size and BAC concentration on the adaptation (measured in terms of lethal dose 50 -LD50-) of 6 strains of Listeria monocytogenes after only one exposure. The proposed method could be applied successfully in the L. monocytogenes strains with higher adaptive capacity to BAC. In those cases, a significant empirical equation was obtained showing a positive effect of the inoculum size and a positive interaction between the effects of BAC and inoculum size on the level of adaptation achieved. However, a slight negative effect of BAC, due to the biocide, was also significant. The proposed method improves the classical method based on successive stationary phase cultures in sublethal BAC concentrations because it is less time-consuming and more effective. For the laboratory strain L. monocytogenes 5873, by applying the new procedure it was possible to increase BAC-adaptation 3.69-fold in only 33 h, whereas using the classical procedure 2.61-fold of increase was reached after 5 days. Moreover, with the new method, the maximum level of adaptation was determined for all the strains reaching surprisingly almost the same concentration of BAC (mg/l) for 5 out 6 strains. Thus, a good reference for establishing the effective concentrations of biocides to ensure the maximum level of adaptation was also determined.
Analysis of modified SMI method for adaptive array weight control
NASA Technical Reports Server (NTRS)
Dilsavor, R. L.; Moses, R. L.
1989-01-01
An adaptive array is applied to the problem of receiving a desired signal in the presence of weak interference signals which need to be suppressed. A modification, suggested by Gupta, of the sample matrix inversion (SMI) algorithm controls the array weights. In the modified SMI algorithm, interference suppression is increased by subtracting a fraction F of the noise power from the diagonal elements of the estimated covariance matrix. Given the true covariance matrix and the desired signal direction, the modified algorithm is shown to maximize a well-defined, intuitive output power ratio criterion. Expressions are derived for the expected value and variance of the array weights and output powers as a function of the fraction F and the number of snapshots used in the covariance matrix estimate. These expressions are compared with computer simulation and good agreement is found. A trade-off is found to exist between the desired level of interference suppression and the number of snapshots required in order to achieve that level with some certainty. The removal of noise eigenvectors from the covariance matrix inverse is also discussed with respect to this application. Finally, the type and severity of errors which occur in the covariance matrix estimate are characterized through simulation.
Parallel architectures for iterative methods on adaptive, block structured grids
NASA Technical Reports Server (NTRS)
Gannon, D.; Vanrosendale, J.
1983-01-01
A parallel computer architecture well suited to the solution of partial differential equations in complicated geometries is proposed. Algorithms for partial differential equations contain a great deal of parallelism. But this parallelism can be difficult to exploit, particularly on complex problems. One approach to extraction of this parallelism is the use of special purpose architectures tuned to a given problem class. The architecture proposed here is tuned to boundary value problems on complex domains. An adaptive elliptic algorithm which maps effectively onto the proposed architecture is considered in detail. Two levels of parallelism are exploited by the proposed architecture. First, by making use of the freedom one has in grid generation, one can construct grids which are locally regular, permitting a one to one mapping of grids to systolic style processor arrays, at least over small regions. All local parallelism can be extracted by this approach. Second, though there may be a regular global structure to the grids constructed, there will be parallelism at this level. One approach to finding and exploiting this parallelism is to use an architecture having a number of processor clusters connected by a switching network. The use of such a network creates a highly flexible architecture which automatically configures to the problem being solved.
Mixed Methods in Intervention Research: Theory to Adaptation
ERIC Educational Resources Information Center
Nastasi, Bonnie K.; Hitchcock, John; Sarkar, Sreeroopa; Burkholder, Gary; Varjas, Kristen; Jayasena, Asoka
2007-01-01
The purpose of this article is to demonstrate the application of mixed methods research designs to multiyear programmatic research and development projects whose goals include integration of cultural specificity when generating or translating evidence-based practices. The authors propose a set of five mixed methods designs related to different…
Adaptive Discontinuous Evolution Galerkin Method for Dry Atmospheric Flow
2013-04-02
standard one-dimensional approximate Riemann solver used for the flux integration demonstrate better stability, accuracy as well as reliability of the...discontinuous evolution Galerkin method for dry atmospheric convection. Comparisons with the standard one-dimensional approximate Riemann solver used...instead of a standard one- dimensional approximate Riemann solver, the flux integration within the discontinuous Galerkin method is now realized by
Signals, cues and the nature of mimicry.
Jamie, Gabriel A
2017-02-22
'Mimicry' is used in the evolutionary and ecological literature to describe diverse phenomena. Many are textbook examples of natural selection's power to produce stunning adaptations. However, there remains a lack of clarity over how mimetic resemblances are conceptually related to each other. The result is that categories denoting the traditional subdivisions of mimicry are applied inconsistently across studies, hindering attempts at conceptual unification. This review critically examines the logic by which mimicry can be conceptually organized and analysed. It highlights the following three evolutionarily relevant distinctions. (i) Are the model's traits being mimicked signals or cues? (ii) Does the mimic signal a fitness benefit or fitness cost in order to manipulate the receiver's behaviour? (iii) Is the mimic's signal deceptive? The first distinction divides mimicry into two broad categories: 'signal mimicry' and 'cue mimicry'. 'Signal mimicry' occurs when mimic and model share the same receiver, and 'cue mimicry' when mimic and model have different receivers or when there is no receiver for the model's trait. 'Masquerade' fits conceptually within cue mimicry. The second and third distinctions divide both signal and cue mimicry into four types each. These are the three traditional mimicry categories (aggressive, Batesian and Müllerian) and a fourth, often overlooked category for which the term 'rewarding mimicry' is suggested. Rewarding mimicry occurs when the mimic's signal is non-deceptive (as in Müllerian mimicry) but where the mimic signals a fitness benefit to the receiver (as in aggressive mimicry). The existence of rewarding mimicry is a logical extension of the criteria used to differentiate the three well-recognized forms of mimicry. These four forms of mimicry are not discrete, immutable types, but rather help to define important axes along which mimicry can vary.
Signals, cues and the nature of mimicry
2017-01-01
‘Mimicry’ is used in the evolutionary and ecological literature to describe diverse phenomena. Many are textbook examples of natural selection's power to produce stunning adaptations. However, there remains a lack of clarity over how mimetic resemblances are conceptually related to each other. The result is that categories denoting the traditional subdivisions of mimicry are applied inconsistently across studies, hindering attempts at conceptual unification. This review critically examines the logic by which mimicry can be conceptually organized and analysed. It highlights the following three evolutionarily relevant distinctions. (i) Are the model's traits being mimicked signals or cues? (ii) Does the mimic signal a fitness benefit or fitness cost in order to manipulate the receiver's behaviour? (iii) Is the mimic's signal deceptive? The first distinction divides mimicry into two broad categories: ‘signal mimicry’ and ‘cue mimicry’. ‘Signal mimicry’ occurs when mimic and model share the same receiver, and ‘cue mimicry’ when mimic and model have different receivers or when there is no receiver for the model's trait. ‘Masquerade’ fits conceptually within cue mimicry. The second and third distinctions divide both signal and cue mimicry into four types each. These are the three traditional mimicry categories (aggressive, Batesian and Müllerian) and a fourth, often overlooked category for which the term ‘rewarding mimicry’ is suggested. Rewarding mimicry occurs when the mimic's signal is non-deceptive (as in Müllerian mimicry) but where the mimic signals a fitness benefit to the receiver (as in aggressive mimicry). The existence of rewarding mimicry is a logical extension of the criteria used to differentiate the three well-recognized forms of mimicry. These four forms of mimicry are not discrete, immutable types, but rather help to define important axes along which mimicry can vary. PMID:28202806
Hall-McMaster, Sam; Millar, Jessica; Ruan, Ming; Ward, Ryan D
2017-02-01
It has recently been recognized that orbitofrontal cortex has 2 subdivisions that are anatomically and functionally distinct. Most rodent research has focused on the lateral subdivision, leaving the medial subdivision (mOFC) relatively unexplored. We recently showed that inhibiting mOFC neurons eliminated the differential impact of reward probability cues on discrimination accuracy in a sustained attention task. In the present study, we tested whether increasing mOFC neuronal activity in rats would accelerate acquisition of reward contingencies. mOFC neuronal activity was increased using the DREADD (Designer Receptors Exclusively Activated by Designer Drugs) method, in which clozapine-N-oxide administration leads to neuronal modulation by acting on synthetic receptors not normally expressed in the rat brain. We predicted that rats with neuronal activation in mOFC would require fewer sessions than controls for acquisition of a task in which visual cues signal the probability of reward for correct discrimination performance. Contrary to this prediction, mOFC neuronal activation impaired task acquisition, suggesting mOFC may play a role in learning relationships between environmental cues and reward probability or for using that information in adaptive decision-making. In addition, disrupted mOFC activity may contribute to psychiatric conditions in which learning associations between environmental cues and reward probability is impaired. (PsycINFO Database Record
Identifying specific erotic cues in sexual deviations by audiotaped descriptions.
Abel, G G; Blanchard, E B; Barlow, D H; Mavissakalian, M
1975-01-01
Using audiotaped descriptions of sexual experiences and a direct measure of penile erection, it is possible to specify more precisely erotic cues in sexual deviates. Results indicated that such cues are highly idiosyncratic. Some tentative conclusions and suggested application for the method are discussed. PMID:1184490
Speckle reduction in optical coherence tomography by adaptive total variation method
NASA Astrophysics Data System (ADS)
Wu, Tong; Shi, Yaoyao; Liu, Youwen; He, Chongjun
2015-12-01
An adaptive total variation method based on the combination of speckle statistics and total variation restoration is proposed and developed for reducing speckle noise in optical coherence tomography (OCT) images. The statistical distribution of the speckle noise in OCT image is investigated and measured. With the measured parameters such as the mean value and variance of the speckle noise, the OCT image is restored by the adaptive total variation restoration method. The adaptive total variation restoration algorithm was applied to the OCT images of a volunteer's hand skin, which showed effective speckle noise reduction and image quality improvement. For image quality comparison, the commonly used median filtering method was also applied to the same images to reduce the speckle noise. The measured results demonstrate the superior performance of the adaptive total variation restoration method in terms of image signal-to-noise ratio, equivalent number of looks, contrast-to-noise ratio, and mean square error.
An adaptation of Krylov subspace methods to path following
Walker, H.F.
1996-12-31
Krylov subspace methods at present constitute a very well known and highly developed class of iterative linear algebra methods. These have been effectively applied to nonlinear system solving through Newton-Krylov methods, in which Krylov subspace methods are used to solve the linear systems that characterize steps of Newton`s method (the Newton equations). Here, we will discuss the application of Krylov subspace methods to path following problems, in which the object is to track a solution curve as a parameter varies. Path following methods are typically of predictor-corrector form, in which a point near the solution curve is {open_quotes}predicted{close_quotes} by some easy but relatively inaccurate means, and then a series of Newton-like corrector iterations is used to return approximately to the curve. The analogue of the Newton equation is underdetermined, and an additional linear condition must be specified to determine corrector steps uniquely. This is typically done by requiring that the steps be orthogonal to an approximate tangent direction. Augmenting the under-determined system with this orthogonality condition in a straightforward way typically works well if direct linear algebra methods are used, but Krylov subspace methods are often ineffective with this approach. We will discuss recent work in which this orthogonality condition is imposed directly as a constraint on the corrector steps in a certain way. The means of doing this preserves problem conditioning, allows the use of preconditioners constructed for the fixed-parameter case, and has certain other advantages. Experiments on standard PDE continuation test problems indicate that this approach is effective.
USEPA ambient air monitoring methods for volatile organic compounds (VOCs) using specially-prepared canisters and solid adsorbents are directly adaptable to monitoring for vapors in the indoor environment. The draft Method TO-15 Supplement, an extension of the USEPA Method TO-15,...
Adapting Western research methods to indigenous ways of knowing.
Simonds, Vanessa W; Christopher, Suzanne
2013-12-01
Indigenous communities have long experienced exploitation by researchers and increasingly require participatory and decolonizing research processes. We present a case study of an intervention research project to exemplify a clash between Western research methodologies and Indigenous methodologies and how we attempted reconciliation. We then provide implications for future research based on lessons learned from Native American community partners who voiced concern over methods of Western deductive qualitative analysis. Decolonizing research requires constant reflective attention and action, and there is an absence of published guidance for this process. Continued exploration is needed for implementing Indigenous methods alone or in conjunction with appropriate Western methods when conducting research in Indigenous communities. Currently, examples of Indigenous methods and theories are not widely available in academic texts or published articles, and are often not perceived as valid.
Automatic multirate methods for ordinary differential equations. [Adaptive time steps
Gear, C.W.
1980-01-01
A study is made of the application of integration methods in which different step sizes are used for different members of a system of equations. Such methods can result in savings if the cost of derivative evaluation is high or if a system is sparse; however, the estimation and control of errors is very difficult and can lead to high overheads. Three approaches are discussed, and it is shown that the least intuitive is the most promising. 2 figures.
Systems and Methods for Parameter Dependent Riccati Equation Approaches to Adaptive Control
NASA Technical Reports Server (NTRS)
Kim, Kilsoo (Inventor); Yucelen, Tansel (Inventor); Calise, Anthony J. (Inventor)
2015-01-01
Systems and methods for adaptive control are disclosed. The systems and methods can control uncertain dynamic systems. The control system can comprise a controller that employs a parameter dependent Riccati equation. The controller can produce a response that causes the state of the system to remain bounded. The control system can control both minimum phase and non-minimum phase systems. The control system can augment an existing, non-adaptive control design without modifying the gains employed in that design. The control system can also avoid the use of high gains in both the observer design and the adaptive control law.
ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve☆
Feischl, Michael; Führer, Thomas; Karkulik, Michael; Praetorius, Dirk
2014-01-01
In the context of the adaptive finite element method (FEM), ZZ-error estimators named after Zienkiewicz and Zhu (1987) [52] are mathematically well-established and widely used in practice. In this work, we propose and analyze ZZ-type error estimators for the adaptive boundary element method (BEM). We consider weakly singular and hyper-singular integral equations and prove, in particular, convergence of the related adaptive mesh-refining algorithms. Throughout, the theoretical findings are underlined by numerical experiments. PMID:24748725
Adaptive error covariances estimation methods for ensemble Kalman filters
Zhen, Yicun; Harlim, John
2015-08-01
This paper presents a computationally fast algorithm for estimating, both, the system and observation noise covariances of nonlinear dynamics, that can be used in an ensemble Kalman filtering framework. The new method is a modification of Belanger's recursive method, to avoid an expensive computational cost in inverting error covariance matrices of product of innovation processes of different lags when the number of observations becomes large. When we use only product of innovation processes up to one-lag, the computational cost is indeed comparable to a recently proposed method by Berry–Sauer's. However, our method is more flexible since it allows for using information from product of innovation processes of more than one-lag. Extensive numerical comparisons between the proposed method and both the original Belanger's and Berry–Sauer's schemes are shown in various examples, ranging from low-dimensional linear and nonlinear systems of SDEs and 40-dimensional stochastically forced Lorenz-96 model. Our numerical results suggest that the proposed scheme is as accurate as the original Belanger's scheme on low-dimensional problems and has a wider range of more accurate estimates compared to Berry–Sauer's method on L-96 example.
Olsen, Sara; Smith, Simon; Oei, Tian P.S.; Douglas, James
2010-01-01
Background: The reasons that a patient has to start treatment, their “Cues to Action,” are important for determining subsequent health behaviors. Cues to action are an explicit component of the Health Belief Model of continuous positive airway pressure (CPAP) acceptance. At present, there is no scale available to measure this construct for individuals with obstructive sleep apnea (OSA). This paper aims to develop, validate, and describe responding patterns within a sample of patients with OSA to the Cues to CPAP Use Questionnaire (CCUQ). Method: Participants were 63 adult patients diagnosed with OSA who had never tried CPAP when initially recruited. The CCUQ was completed at 1 month after being prescribed CPAP. Results: Exploratory factor analysis (EFA) showed a 3-factor structure of the 9-item CCUQ, with “Health Cues,” “Partner Cues,” and “Health Professional Cues” subscales accounting for 59.91% of the total variance. The CCUQ demonstrated modest internal consistency and split-half reliability. The questionnaire is brief and user friendly, with readability at a seventh-grade level. The most frequently endorsed cues for starting CPAP were Health Professional Cues (prompting by the sleep physician) and Health Cues such as tiredness and concern about health outcomes. Conclusions: This study validates a measure of an important motivational component of the Health Belief Model. Health Professional Cues and internal Health Cues were reported to be the most important prompts to commence CPAP by this patient sample. Citation: Olsen S; Smith S; Oei TPS; Douglas J. Cues to starting CPAP in obstructive sleep apnea: development and validation of the cues to CPAP use questionnaire. J Clin Sleep Med 2010;6(3):229-237. PMID:20572415
Visual Cues and Listening Effort: Individual Variability
ERIC Educational Resources Information Center
Picou, Erin M.; Ricketts, Todd A; Hornsby, Benjamin W. Y.
2011-01-01
Purpose: To investigate the effect of visual cues on listening effort as well as whether predictive variables such as working memory capacity (WMC) and lipreading ability affect the magnitude of listening effort. Method: Twenty participants with normal hearing were tested using a paired-associates recall task in 2 conditions (quiet and noise) and…
Preschoolers Benefit from Visually Salient Speech Cues
ERIC Educational Resources Information Center
Lalonde, Kaylah; Holt, Rachael Frush
2015-01-01
Purpose: This study explored visual speech influence in preschoolers using 3 developmentally appropriate tasks that vary in perceptual difficulty and task demands. They also examined developmental differences in the ability to use visually salient speech cues and visual phonological knowledge. Method: Twelve adults and 27 typically developing 3-…
Learning to integrate contradictory multisensory self-motion cue pairings.
Kaliuzhna, Mariia; Prsa, Mario; Gale, Steven; Lee, Stella J; Blanke, Olaf
2015-01-14
Humans integrate multisensory information to reduce perceptual uncertainty when perceiving the world and self. Integration fails, however, if a common causality is not attributed to the sensory signals, as would occur in conditions of spatiotemporal discrepancies. In the case of passive self-motion, visual and vestibular cues are integrated according to statistical optimality, yet the extent of cue conflicts that do not compromise this optimality is currently underexplored. Here, we investigate whether human subjects can learn to integrate two arbitrary, but co-occurring, visual and vestibular cues of self-motion. Participants made size comparisons between two successive whole-body rotations using only visual, only vestibular, and both modalities together. The vestibular stimulus provided a yaw self-rotation cue, the visual a roll (Experiment 1) or pitch (Experiment 2) rotation cue. Experimentally measured thresholds in the bimodal condition were compared with theoretical predictions derived from the single-cue thresholds. Our results show that human subjects combine and optimally integrate vestibular and visual information, each signaling self-motion around a different rotation axis (yaw vs. roll and yaw vs. pitch). This finding suggests that the experience of two temporally co-occurring but spatially unrelated self-motion cues leads to inferring a common cause for these two initially unrelated sources of information about self-motion. We discuss our results in terms of specific task demands, cross-modal adaptation, and spatial compatibility. The importance of these results for the understanding of bodily illusions is also discussed.
Developments in Human Centered Cueing Algorithms for Control of Flight Simulator Motion Systems
NASA Technical Reports Server (NTRS)
Houck, Jacob A.; Telban, Robert J.; Cardullo, Frank M.
1997-01-01
The authors conducted further research with cueing algorithms for control of flight simulator motion systems. A variation of the so-called optimal algorithm was formulated using simulated aircraft angular velocity input as a basis. Models of the human vestibular sensation system, i.e. the semicircular canals and otoliths, are incorporated within the algorithm. Comparisons of angular velocity cueing responses showed a significant improvement over a formulation using angular acceleration input. Results also compared favorably with the coordinated adaptive washout algorithm, yielding similar results for angular velocity cues while eliminating false cues and reducing the tilt rate for longitudinal cues. These results were confirmed in piloted tests on the current motion system at NASA-Langley, the Visual Motion Simulator (VMS). Proposed future developments by the authors in cueing algorithms are revealed. The new motion system, the Cockpit Motion Facility (CMF), where the final evaluation of the cueing algorithms will be conducted, is also described.
Adaptive entropy-constrained discontinuous Galerkin method for simulation of turbulent flows
NASA Astrophysics Data System (ADS)
Lv, Yu; Ihme, Matthias
2015-11-01
A robust and adaptive computational framework will be presented for high-fidelity simulations of turbulent flows based on the discontinuous Galerkin (DG) scheme. For this, an entropy-residual based adaptation indicator is proposed to enable adaptation in polynomial and physical space. The performance and generality of this entropy-residual indicator is evaluated through direct comparisons with classical indicators. In addition, a dynamic load balancing procedure is developed to improve computational efficiency. The adaptive framework is tested by considering a series of turbulent test cases, which include homogeneous isotropic turbulence, channel flow and flow-over-a-cylinder. The accuracy, performance and scalability are assessed, and the benefit of this adaptive high-order method is discussed. The funding from NSF CAREER award is greatly acknowledged.
A high-throughput multiplex method adapted for GMO detection.
Chaouachi, Maher; Chupeau, Gaëlle; Berard, Aurélie; McKhann, Heather; Romaniuk, Marcel; Giancola, Sandra; Laval, Valérie; Bertheau, Yves; Brunel, Dominique
2008-12-24
A high-throughput multiplex assay for the detection of genetically modified organisms (GMO) was developed on the basis of the existing SNPlex method designed for SNP genotyping. This SNPlex assay allows the simultaneous detection of up to 48 short DNA sequences (approximately 70 bp; "signature sequences") from taxa endogenous reference genes, from GMO constructions, screening targets, construct-specific, and event-specific targets, and finally from donor organisms. This assay avoids certain shortcomings of multiplex PCR-based methods already in widespread use for GMO detection. The assay demonstrated high specificity and sensitivity. The results suggest that this assay is reliable, flexible, and cost- and time-effective for high-throughput GMO detection.
MR Image Reconstruction Using Block Matching and Adaptive Kernel Methods
Schmidt, Johannes F. M.; Santelli, Claudio; Kozerke, Sebastian
2016-01-01
An approach to Magnetic Resonance (MR) image reconstruction from undersampled data is proposed. Undersampling artifacts are removed using an iterative thresholding algorithm applied to nonlinearly transformed image block arrays. Each block array is transformed using kernel principal component analysis where the contribution of each image block to the transform depends in a nonlinear fashion on the distance to other image blocks. Elimination of undersampling artifacts is achieved by conventional principal component analysis in the nonlinear transform domain, projection onto the main components and back-mapping into the image domain. Iterative image reconstruction is performed by interleaving the proposed undersampling artifact removal step and gradient updates enforcing consistency with acquired k-space data. The algorithm is evaluated using retrospectively undersampled MR cardiac cine data and compared to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT reconstruction. Evaluation of image quality and root-mean-squared-error (RMSE) reveal improved image reconstruction for up to 8-fold undersampled data with the proposed approach relative to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT. In conclusion, block matching and kernel methods can be used for effective removal of undersampling artifacts in MR image reconstruction and outperform methods using standard compressed sensing and ℓ1-regularized parallel imaging methods. PMID:27116675
An Adaptive Kalman Filter using a Simple Residual Tuning Method
NASA Technical Reports Server (NTRS)
Harman, Richard R.
1999-01-01
One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.
An Adaptive Kalman Filter Using a Simple Residual Tuning Method
NASA Technical Reports Server (NTRS)
Harman, Richard R.
1999-01-01
One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. A. H. Jazwinski developed a specialized version of this technique for estimation of process noise. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.
The Pilates method and cardiorespiratory adaptation to training.
Tinoco-Fernández, Maria; Jiménez-Martín, Miguel; Sánchez-Caravaca, M Angeles; Fernández-Pérez, Antonio M; Ramírez-Rodrigo, Jesús; Villaverde-Gutiérrez, Carmen
2016-01-01
Although all authors report beneficial health changes following training based on the Pilates method, no explicit analysis has been performed of its cardiorespiratory effects. The objective of this study was to evaluate possible changes in cardiorespiratory parameters with the Pilates method. A total of 45 university students aged 18-35 years (77.8% female and 22.2% male), who did not routinely practice physical exercise or sports, volunteered for the study and signed informed consent. The Pilates training was conducted over 10 weeks, with three 1-hour sessions per week. Physiological cardiorespiratory responses were assessed using a MasterScreen CPX apparatus. After the 10-week training, statistically significant improvements were observed in mean heart rate (135.4-124.2 beats/min), respiratory exchange ratio (1.1-0.9) and oxygen equivalent (30.7-27.6) values, among other spirometric parameters, in submaximal aerobic testing. These findings indicate that practice of the Pilates method has a positive influence on cardiorespiratory parameters in healthy adults who do not routinely practice physical exercise activities.
Restrictive Stochastic Item Selection Methods in Cognitive Diagnostic Computerized Adaptive Testing
ERIC Educational Resources Information Center
Wang, Chun; Chang, Hua-Hua; Huebner, Alan
2011-01-01
This paper proposes two new item selection methods for cognitive diagnostic computerized adaptive testing: the restrictive progressive method and the restrictive threshold method. They are built upon the posterior weighted Kullback-Leibler (KL) information index but include additional stochastic components either in the item selection index or in…
Cues and Cue Interactions in Segmenting Words in Fluent Speech
ERIC Educational Resources Information Center
Newman, Rochelle S.; Sawusch, James R.; Wunnenberg, Tyler
2011-01-01
Fluent speech does not contain obvious breaks to word boundaries, yet there are a number of cues that listeners can use to help them segment the speech stream. Most of these cues have been investigated in isolation from one another. In previous work, Norris, McQueen, Cutler, and Butterfield (1997) suggested that listeners use a Possible Word…
Self-Adaptive Filon's Integration Method and Its Application to Computing Synthetic Seismograms
NASA Astrophysics Data System (ADS)
Zhang, Hai-Ming; Chen, Xiao-Fei
2001-03-01
Based on the principle of the self-adaptive Simpson integration method, and by incorporating the `fifth-order' Filon's integration algorithm [Bull. Seism. Soc. Am. 73(1983)913], we have proposed a simple and efficient numerical integration method, i.e., the self-adaptive Filon's integration method (SAFIM), for computing synthetic seismograms at large epicentral distances. With numerical examples, we have demonstrated that the SAFIM is not only accurate but also very efficient. This new integration method is expected to be very useful in seismology, as well as in computing similar oscillatory integrals in other branches of physics.
NASA Astrophysics Data System (ADS)
Tanizawa, Ken; Hirose, Akira
Adaptive polarization mode dispersion (PMD) compensation is required for the speed-up and advancement of the present optical communications. The combination of a tunable PMD compensator and its adaptive control method achieves adaptive PMD compensation. In this paper, we report an effective search control algorithm for the feedback control of the PMD compensator. The algorithm is based on the hill-climbing method. However, the step size changes randomly to prevent the convergence from being trapped at a local maximum or a flat, unlike the conventional hill-climbing method. The randomness depends on the Gaussian probability density functions. We conducted transmission simulations at 160Gb/s and the results show that the proposed method provides more optimal compensator control than the conventional hill-climbing method.
A Massively Parallel Adaptive Fast Multipole Method on Heterogeneous Architectures
Lashuk, Ilya; Chandramowlishwaran, Aparna; Langston, Harper; Nguyen, Tuan-Anh; Sampath, Rahul S; Shringarpure, Aashay; Vuduc, Richard; Ying, Lexing; Zorin, Denis; Biros, George
2012-01-01
We describe a parallel fast multipole method (FMM) for highly nonuniform distributions of particles. We employ both distributed memory parallelism (via MPI) and shared memory parallelism (via OpenMP and GPU acceleration) to rapidly evaluate two-body nonoscillatory potentials in three dimensions on heterogeneous high performance computing architectures. We have performed scalability tests with up to 30 billion particles on 196,608 cores on the AMD/CRAY-based Jaguar system at ORNL. On a GPU-enabled system (NSF's Keeneland at Georgia Tech/ORNL), we observed 30x speedup over a single core CPU and 7x speedup over a multicore CPU implementation. By combining GPUs with MPI, we achieve less than 10 ns/particle and six digits of accuracy for a run with 48 million nonuniformly distributed particles on 192 GPUs.
Adaptive bit truncation and compensation method for EZW image coding
NASA Astrophysics Data System (ADS)
Dai, Sheng-Kui; Zhu, Guangxi; Wang, Yao
2003-09-01
The embedded zero-tree wavelet algorithm (EZW) is widely adopted to compress wavelet coefficients of images with the property that the bits stream can be truncated and produced anywhere. The lower bit plane of the wavelet coefficents is verified to be less important than the higher bit plane. Therefore it can be truncated and not encoded. Based on experiments, a generalized function, which can provide a glancing guide for EZW encoder to intelligently decide the number of low bit plane to be truncated, is deduced in this paper. In the EZW decoder, a simple method is presented to compensate for the truncated wavelet coefficients, and finally it can surprisingly enhance the quality of reconstructed image and spend scarcely any additional cost at the same time.
An Adaptive Unstructured Grid Method by Grid Subdivision, Local Remeshing, and Grid Movement
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
1999-01-01
An unstructured grid adaptation technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The approach is based on a combination of grid subdivision, local remeshing, and grid movement. For solution adaptive grids, the surface triangulation is locally refined by grid subdivision, and the tetrahedral grid in the field is partially remeshed at locations of dominant flow features. A grid redistribution strategy is employed for geometric adaptation of volume grids to moving or deforming surfaces. The method is automatic and fast and is designed for modular coupling with different solvers. Several steady state test cases with different inviscid flow features were tested for grid/solution adaptation. In all cases, the dominant flow features, such as shocks and vortices, were accurately and efficiently predicted with the present approach. A new and robust method of moving tetrahedral "viscous" grids is also presented and demonstrated on a three-dimensional example.
Impedance adaptation methods of the piezoelectric energy harvesting
NASA Astrophysics Data System (ADS)
Kim, Hyeoungwoo
In this study, the important issues of energy recovery were addressed and a comprehensive investigation was performed on harvesting electrical power from an ambient mechanical vibration source. Also discussed are the impedance matching methods used to increase the efficiency of energy transfer from the environment to the application. Initially, the mechanical impedance matching method was investigated to increase mechanical energy transferred to the transducer from the environment. This was done by reducing the mechanical impedance such as damping factor and energy reflection ratio. The vibration source and the transducer were modeled by a two-degree-of-freedom dynamic system with mass, spring constant, and damper. The transmissibility employed to show how much mechanical energy that was transferred in this system was affected by the damping ratio and the stiffness of elastic materials. The mechanical impedance of the system was described by electrical system using analogy between the two systems in order to simply the total mechanical impedance. Secondly, the transduction rate of mechanical energy to electrical energy was improved by using a PZT material which has a high figure of merit and a high electromechanical coupling factor for electrical power generation, and a piezoelectric transducer which has a high transduction rate was designed and fabricated. The high g material (g33 = 40 [10-3Vm/N]) was developed to improve the figure of merit of the PZT ceramics. The cymbal composite transducer has been found as a promising structure for piezoelectric energy harvesting under high force at cyclic conditions (10--200 Hz), because it has almost 40 times higher effective strain coefficient than PZT ceramics. The endcap of cymbal also enhances the endurance of the ceramic to sustain ac load along with stress amplification. In addition, a macro fiber composite (MFC) was employed as a strain component because of its flexibility and the high electromechanical coupling
Prisciandaro, James J.; Myrick, Hugh; Henderson, Scott; McRae-Clark, Aimee L.; Ana, Elizabeth J. Santa; Saladin, Michael E.; Brady, Kathleen T.
2013-01-01
Background The development of addiction is marked by a pathological associative learning process that imbues incentive salience to stimuli associated with drug use. Recent efforts to treat addiction have targeted this learning process using cue exposure therapy augmented with D-cycloserine (DCS), a glutamatergic agent hypothesized to enhance extinction learning. To better understand the impact of DCS-facilitated extinction on neural reactivity to drug cues, the present study reports fMRI findings from a randomized, double-blind, placebo-controlled trial of DCS-facilitated cue exposure for cocaine dependence. Methods Twenty-five participants completed two MRI sessions (before and after intervention), with a cocaine-cue reactivity fMRI task. The intervention consisted of 50mg of DCS or placebo, combined with two sessions of cocaine cue exposure and skills training. Results Participants demonstrated cocaine cue activation in a variety of brain regions at baseline. From the pre- to post-study scan, participants experienced decreased activation to cues in a number of regions (e.g., accumbens, caudate, frontal poles). Unexpectedly, placebo participants experienced decreases in activation to cues in the left angular and middle temporal gyri and the lateral occipital cortex, while DCS participants did not. Conclusions Three trials of DCS-facilitated cue exposure therapy for cocaine dependence have found that DCS either increases or does not significantly impact response to cocaine cues. The present study adds to this literature by demonstrating that DCS may prevent extinction to cocaine cues in temporal and occipital brain regions. Although consistent with past research, results from the present study should be considered preliminary until replicated in larger samples. PMID:23497788
ERIC Educational Resources Information Center
Mattingly, Ignatius G.
Parallels between sign stimuli and speech cues suggest some interesting speculations about the origins of language. Speech cues may belong to the class of human sign stimuli which, as in animal behavior, may be the product of an innate releasing mechanism. Prelinguistic speech for man may have functioned as a social-releaser system. Human language…
Individual Sensitivity to Spectral and Temporal Cues in Listeners with Hearing Impairment
ERIC Educational Resources Information Center
Souza, Pamela E.; Wright, Richard A.; Blackburn, Michael C.; Tatman, Rachael; Gallun, Frederick J.
2015-01-01
Purpose: The present study was designed to evaluate use of spectral and temporal cues under conditions in which both types of cues were available. Method: Participants included adults with normal hearing and hearing loss. We focused on 3 categories of speech cues: static spectral (spectral shape), dynamic spectral (formant change), and temporal…
Perception of Speech Modulation Cues by 6-Month-Old Infants
ERIC Educational Resources Information Center
Cabrera, Laurianne; Bertoncini, Josiane; Lorenzi, Christian
2013-01-01
Purpose: The capacity of 6-month-old infants to discriminate a voicing contrast (/aba/--/apa/) on the basis of "amplitude modulation (AM) cues" and "frequency modulation (FM) cues" was evaluated. Method: Several vocoded speech conditions were designed to either degrade FM cues in 4 or 32 bands or degrade AM in 32 bands. Infants…
A self-adaptive-grid method with application to airfoil flow
NASA Technical Reports Server (NTRS)
Nakahashi, K.; Deiwert, G. S.
1985-01-01
A self-adaptive-grid method is described that is suitable for multidimensional steady and unsteady computations. Based on variational principles, a spring analogy is used to redistribute grid points in an optimal sense to reduce the overall solution error. User-specified parameters, denoting both maximum and minimum permissible grid spacings, are used to define the all-important constants, thereby minimizing the empiricism and making the method self-adaptive. Operator splitting and one-sided controls for orthogonality and smoothness are used to make the method practical, robust, and efficient. Examples are included for both steady and unsteady viscous flow computations about airfoils in two dimensions, as well as for a steady inviscid flow computation and a one-dimensional case. These examples illustrate the precise control the user has with the self-adaptive method and demonstrate a significant improvement in accuracy and quality of the solutions.
NASA Astrophysics Data System (ADS)
Susanti, D.; Hartini, E.; Permana, A.
2017-01-01
Sale and purchase of the growing competition between companies in Indonesian, make every company should have a proper planning in order to win the competition with other companies. One of the things that can be done to design the plan is to make car sales forecast for the next few periods, it’s required that the amount of inventory of cars that will be sold in proportion to the number of cars needed. While to get the correct forecasting, on of the methods that can be used is the method of Adaptive Spline Threshold Autoregression (ASTAR). Therefore, this time the discussion will focus on the use of Adaptive Spline Threshold Autoregression (ASTAR) method in forecasting the volume of car sales in PT.Srikandi Diamond Motors using time series data.In the discussion of this research, forecasting using the method of forecasting value Adaptive Spline Threshold Autoregression (ASTAR) produce approximately correct.
Webster, Clayton G; Zhang, Guannan; Gunzburger, Max D
2012-10-01
Accurate predictive simulations of complex real world applications require numerical approximations to first, oppose the curse of dimensionality and second, converge quickly in the presence of steep gradients, sharp transitions, bifurcations or finite discontinuities in high-dimensional parameter spaces. In this paper we present a novel multi-dimensional multi-resolution adaptive (MdMrA) sparse grid stochastic collocation method, that utilizes hierarchical multiscale piecewise Riesz basis functions constructed from interpolating wavelets. The basis for our non-intrusive method forms a stable multiscale splitting and thus, optimal adaptation is achieved. Error estimates and numerical examples will used to compare the efficiency of the method with several other techniques.
Compound cueing in free recall
Lohnas, Lynn J.; Kahana, Michael J.
2013-01-01
According to the retrieved context theory of episodic memory, the cue for recall of an item is a weighted sum of recently activated cognitive states, including previously recalled and studied items as well as their associations. We show that this theory predicts there should be compound cueing in free recall. Specifically, the temporal contiguity effect should be greater when the two most recently recalled items were studied in contiguous list positions. A meta-analysis of published free recall experiments demonstrates evidence for compound cueing in both conditional response probabilities and inter-response times. To help rule out a rehearsal-based account of these compound cueing effects, we conducted an experiment with immediate, delayed and continual-distractor free recall conditions. Consistent with retrieved context theory but not with a rehearsal-based account, compound cueing was present in all conditions, and was not significantly influenced by the presence of interitem distractors. PMID:23957364
Hsieh, I-Hui; Petrosyan, Agavni; Gonçalves, Óscar F.; Hickok, Gregory; Saberi, Kourosh
2011-01-01
The auditory system can encode interaural delays in highpass-filtered complex sounds by phase locking to their slowly modulating envelopes. Spectrotemporal analysis of interaurally time delayed highpass waveforms reveals the presence of a concomitant interaural level cue. The current study systematically investigated the contribution of time and concomitant level cues carried by positive and negative envelope slopes of a modified sinusoidally amplitude-modulated (SAM) high-frequency carrier. The waveforms were generated from concatenation of individual modulation cycles whose envelope peaks were extended by the desired interaural delay, allowing independent control of delays in the positive and negative modulation slopes. In experiment 1, thresholds were measured using a 2-interval forced-choice adaptive task for interaural delays in either the positive or negative modulation slopes. In a control condition, thresholds were measured for a standard SAM tone. In experiment 2, decision weights were estimated using a multiple-observation correlational method in a single-interval forced-choice task for interaural delays carried simultaneously by the positive, and independently, negative slopes of the modulation envelope. In experiment 3, decision weights were measured for groups of 3 modulation cycles at the start, middle, and end of the waveform to determine the influence of onset dominance or recency effects. Results were consistent across experiments: Thresholds were equal for the positive and negative modulation slopes. Decision weights were positive and equal for the time cue in the positive and negative envelope slopes. Weights were also larger for modulations cycles near the waveform onset. Weights estimated for the concomitant interaural level cue were positive for the positive envelope slope and negative for the negative slope, consistent with exclusive use of time cues. PMID:21272630
Anderson, R W; Pember, R B; Elliott, N S
2001-10-22
A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. This method facilitates the solution of problems currently at and beyond the boundary of soluble problems by traditional ALE methods by focusing computational resources where they are required through dynamic adaption. Many of the core issues involved in the development of the combined ALEAMR method hinge upon the integration of AMR with a staggered grid Lagrangian integration method. The novel components of the method are mainly driven by the need to reconcile traditional AMR techniques, which are typically employed on stationary meshes with cell-centered quantities, with the staggered grids and grid motion employed by Lagrangian methods. Numerical examples are presented which demonstrate the accuracy and efficiency of the method.
ERIC Educational Resources Information Center
Wang, Ze; Rohrer, David; Chuang, Chi-ching; Fujiki, Mayo; Herman, Keith; Reinke, Wendy
2015-01-01
This study compared 5 scoring methods in terms of their statistical assumptions. They were then used to score the Teacher Observation of Classroom Adaptation Checklist, a measure consisting of 3 subscales and 21 Likert-type items. The 5 methods used were (a) sum/average scores of items, (b) latent factor scores with continuous indicators, (c)…
An adaptive, formally second order accurate version of the immersed boundary method
NASA Astrophysics Data System (ADS)
Griffith, Boyce E.; Hornung, Richard D.; McQueen, David M.; Peskin, Charles S.
2007-04-01
Like many problems in biofluid mechanics, cardiac mechanics can be modeled as the dynamic interaction of a viscous incompressible fluid (the blood) and a (visco-)elastic structure (the muscular walls and the valves of the heart). The immersed boundary method is a mathematical formulation and numerical approach to such problems that was originally introduced to study blood flow through heart valves, and extensions of this work have yielded a three-dimensional model of the heart and great vessels. In the present work, we introduce a new adaptive version of the immersed boundary method. This adaptive scheme employs the same hierarchical structured grid approach (but a different numerical scheme) as the two-dimensional adaptive immersed boundary method of Roma et al. [A multilevel self adaptive version of the immersed boundary method, Ph.D. Thesis, Courant Institute of Mathematical Sciences, New York University, 1996; An adaptive version of the immersed boundary method, J. Comput. Phys. 153 (2) (1999) 509-534] and is based on a formally second order accurate (i.e., second order accurate for problems with sufficiently smooth solutions) version of the immersed boundary method that we have recently described [B.E. Griffith, C.S. Peskin, On the order of accuracy of the immersed boundary method: higher order convergence rates for sufficiently smooth problems, J. Comput. Phys. 208 (1) (2005) 75-105]. Actual second order convergence rates are obtained for both the uniform and adaptive methods by considering the interaction of a viscous incompressible flow and an anisotropic incompressible viscoelastic shell. We also present initial results from the application of this methodology to the three-dimensional simulation of blood flow in the heart and great vessels. The results obtained by the adaptive method show good qualitative agreement with simulation results obtained by earlier non-adaptive versions of the method, but the flow in the vicinity of the model heart valves
Adaptive methods: when and how should they be used in clinical trials?
Porcher, Raphaël; Lecocq, Brigitte; Vray, Muriel
2011-01-01
Adaptive clinical trial designs are defined as designs that use data cumulated during trial to possibly modify certain aspects without compromising the validity and integrity of the said trial. Compared to more traditional trials, in theory, adaptive designs allow the same information to be generated but in a more efficient manner. The advantages and limits of this type of design together with the weight of the constraints, in particular of a logistic nature, that their use implies, differ depending on whether the trial is exploratory or confirmatory with a view to registration. One of the key elements ensuring trial integrity is the involvement of an independent committee to determine adaptations in terms of experimental design during the study. Adaptive methods for clinical trials are appealing and may be accepted by the relevant authorities. However, the constraints that they impose must be determined well in advance.
An h-adaptive local discontinuous Galerkin method for the Navier-Stokes-Korteweg equations
NASA Astrophysics Data System (ADS)
Tian, Lulu; Xu, Yan; Kuerten, J. G. M.; van der Vegt, J. J. W.
2016-08-01
In this article, we develop a mesh adaptation algorithm for a local discontinuous Galerkin (LDG) discretization of the (non)-isothermal Navier-Stokes-Korteweg (NSK) equations modeling liquid-vapor flows with phase change. This work is a continuation of our previous research, where we proposed LDG discretizations for the (non)-isothermal NSK equations with a time-implicit Runge-Kutta method. To save computing time and to capture the thin interfaces more accurately, we extend the LDG discretization with a mesh adaptation method. Given the current adapted mesh, a criterion for selecting candidate elements for refinement and coarsening is adopted based on the locally largest value of the density gradient. A strategy to refine and coarsen the candidate elements is then provided. We emphasize that the adaptive LDG discretization is relatively simple and does not require additional stabilization. The use of a locally refined mesh in combination with an implicit Runge-Kutta time method is, however, non-trivial, but results in an efficient time integration method for the NSK equations. Computations, including cases with solid wall boundaries, are provided to demonstrate the accuracy, efficiency and capabilities of the adaptive LDG discretizations.
Adaptive remeshing method in 2D based on refinement and coarsening techniques
NASA Astrophysics Data System (ADS)
Giraud-Moreau, L.; Borouchaki, H.; Cherouat, A.
2007-04-01
The analysis of mechanical structures using the Finite Element Method, in the framework of large elastoplastic strains, needs frequent remeshing of the deformed domain during computation. Remeshing is necessary for two main reasons, the large geometric distortion of finite elements and the adaptation of the mesh size to the physical behavior of the solution. This paper presents an adaptive remeshing method to remesh a mechanical structure in two dimensions subjected to large elastoplastic deformations with damage. The proposed remeshing technique includes adaptive refinement and coarsening procedures, based on geometrical and physical criteria. The proposed method has been integrated in a computational environment using the ABAQUS solver. Numerical examples show the efficiency of the proposed approach.
NASA Astrophysics Data System (ADS)
Moore, F.; Burke, M.
2015-12-01
A wide range of studies using a variety of methods strongly suggest that climate change will have a negative impact on agricultural production in many areas. Farmers though should be able to learn about a changing climate and to adjust what they grow and how they grow it in order to reduce these negative impacts. However, it remains unclear how effective these private (autonomous) adaptations will be, or how quickly they will be adopted. Constraining the uncertainty on this adaptation is important for understanding the impacts of climate change on agriculture. Here we review a number of empirical methods that have been proposed for understanding the rate and effectiveness of private adaptation to climate change. We compare these methods using data on agricultural yields in the United States and western Europe.
Fast multipole and space adaptive multiresolution methods for the solution of the Poisson equation
NASA Astrophysics Data System (ADS)
Bilek, Petr; Duarte, Max; Nečas, David; Bourdon, Anne; Bonaventura, Zdeněk
2016-09-01
This work focuses on the conjunction of the fast multipole method (FMM) with the space adaptive multiresolution (MR) technique for grid adaptation. Since both methods, MR and FMM provide a priori error estimates, both achieve O(N) computational complexity, and both operate on the same hierarchical space division, their conjunction represents a natural choice when designing a numerically efficient and robust strategy for time dependent problems. Special attention is given to the use of these methods in the simulation of streamer discharges in air. We have designed a FMM Poisson solver on multiresolution adapted grid in 2D. The accuracy and the computation complexity of the solver has been verified for a set of manufactured solutions. We confirmed that the developed solver attains desired accuracy and this accuracy is controlled only by the number of terms in the multipole expansion in combination with the multiresolution accuracy tolerance. The implementation has a linear computation complexity O(N).
NASA Astrophysics Data System (ADS)
Ran, Qiwen; Yang, Zhonghua; Ma, Jing; Tan, Liying; Liao, Huixi; Liu, Qingfeng
2013-02-01
In this paper, a weighted adaptive threshold estimating method is proposed to deal with long and deep channel fades in Satellite-to-Ground optical communications. During the channel correlation interval where there are sufficient correlations in adjacent signal samples, the correlations in its change rates are described by weighted equations in the form of Toeplitz matrix. As vital inputs to the proposed adaptive threshold estimator, the optimal values of the change rates can be obtained by solving the weighted equation systems. The effect of channel fades and aberrant samples can be mitigated by joint use of weighted equation systems and Kalman estimation. Based on the channel information data from star observation trails, simulations are made and the numerical results show that the proposed method have better anti-fade performances than the D-value adaptive threshold estimating method in both weak and strong turbulence conditions.
The adaptive problems of female teenage refugees and their behavioral adjustment methods for coping
Mhaidat, Fatin
2016-01-01
This study aimed at identifying the levels of adaptive problems among teenage female refugees in the government schools and explored the behavioral methods that were used to cope with the problems. The sample was composed of 220 Syrian female students (seventh to first secondary grades) enrolled at government schools within the Zarqa Directorate and who came to Jordan due to the war conditions in their home country. The study used the scale of adaptive problems that consists of four dimensions (depression, anger and hostility, low self-esteem, and feeling insecure) and a questionnaire of the behavioral adjustment methods for dealing with the problem of asylum. The results indicated that the Syrian teenage female refugees suffer a moderate degree of adaptation problems, and the positive adjustment methods they have used are more than the negatives. PMID:27175098
A Nonlinear, Human-Centered Approach to Motion Cueing with a Neurocomputing Solver
NASA Technical Reports Server (NTRS)
Telban, Robert J.; Cardullo, Frank M.; Houck, Jacob A.
2002-01-01
This paper discusses the continuation of research into the development of new motion cueing algorithms first reported in 1999. In this earlier work, two viable approaches to motion cueing were identified: the coordinated adaptive washout algorithm or 'adaptive algorithm', and the 'optimal algorithm'. In this study, a novel approach to motion cueing is discussed that would combine features of both algorithms. The new algorithm is formulated as a linear optimal control problem, incorporating improved vestibular models and an integrated visual-vestibular motion perception model previously reported. A control law is generated from the motion platform states, resulting in a set of nonlinear cueing filters. The time-varying control law requires the matrix Riccati equation to be solved in real time. Therefore, in order to meet the real time requirement, a neurocomputing approach is used to solve this computationally challenging problem. Single degree-of-freedom responses for the nonlinear algorithm were generated and compared to the adaptive and optimal algorithms. Results for the heave mode show the nonlinear algorithm producing a motion cue with a time-varying washout, sustaining small cues for a longer duration and washing out larger cues more quickly. The addition of the optokinetic influence from the integrated perception model was shown to improve the response to a surge input, producing a specific force response with no steady-state washout. Improved cues are also observed for responses to a sway input. Yaw mode responses reveal that the nonlinear algorithm improves the motion cues by reducing the magnitude of negative cues. The effectiveness of the nonlinear algorithm as compared to the adaptive and linear optimal algorithms will be evaluated on a motion platform, the NASA Langley Research Center Visual Motion Simulator (VMS), and ultimately the Cockpit Motion Facility (CMF) with a series of pilot controlled maneuvers. A proposed experimental procedure is
Lei, Xusheng; Li, Jingjing
2012-01-01
This paper presents an adaptive information fusion method to improve the accuracy and reliability of the altitude measurement information for small unmanned aerial rotorcraft during the landing process. Focusing on the low measurement performance of sensors mounted on small unmanned aerial rotorcraft, a wavelet filter is applied as a pre-filter to attenuate the high frequency noises in the sensor output. Furthermore, to improve altitude information, an adaptive extended Kalman filter based on a maximum a posteriori criterion is proposed to estimate measurement noise covariance matrix in real time. Finally, the effectiveness of the proposed method is proved by static tests, hovering flight and autonomous landing flight tests. PMID:23201993
A comparison of locally adaptive multigrid methods: LDC, FAC and FIC
NASA Technical Reports Server (NTRS)
Khadra, Khodor; Angot, Philippe; Caltagirone, Jean-Paul
1993-01-01
This study is devoted to a comparative analysis of three 'Adaptive ZOOM' (ZOom Overlapping Multi-level) methods based on similar concepts of hierarchical multigrid local refinement: LDC (Local Defect Correction), FAC (Fast Adaptive Composite), and FIC (Flux Interface Correction)--which we proposed recently. These methods are tested on two examples of a bidimensional elliptic problem. We compare, for V-cycle procedures, the asymptotic evolution of the global error evaluated by discrete norms, the corresponding local errors, and the convergence rates of these algorithms.
Software for the parallel adaptive solution of conservation laws by discontinous Galerkin methods.
Flaherty, J. E.; Loy, R. M.; Shephard, M. S.; Teresco, J. D.
1999-08-17
The authors develop software tools for the solution of conservation laws using parallel adaptive discontinuous Galerkin methods. In particular, the Rensselaer Partition Model (RPM) provides parallel mesh structures within an adaptive framework to solve the Euler equations of compressible flow by a discontinuous Galerkin method (LOCO). Results are presented for a Rayleigh-Taylor flow instability for computations performed on 128 processors of an IBM SP computer. In addition to managing the distributed data and maintaining a load balance, RPM provides information about the parallel environment that can be used to tailor partitions to a specific computational environment.
The block adaptive multigrid method applied to the solution of the Euler equations
NASA Technical Reports Server (NTRS)
Pantelelis, Nikos
1993-01-01
In the present study, a scheme capable of solving very fast and robust complex nonlinear systems of equations is presented. The Block Adaptive Multigrid (BAM) solution method offers multigrid acceleration and adaptive grid refinement based on the prediction of the solution error. The proposed solution method was used with an implicit upwind Euler solver for the solution of complex transonic flows around airfoils. Very fast results were obtained (18-fold acceleration of the solution) using one fourth of the volumes of a global grid with the same solution accuracy for two test cases.
Cues Resulting in Desire for Sexual Activity in Women
McCall, Katie; Meston, Cindy
2010-01-01
Introduction A number of questionnaires have been created to assess levels of sexual desire in women, but to our knowledge, there are currently no validated measures for assessing cues that result in sexual desire. A questionnaire of this nature could be useful for both clinicians and researchers, because it considers the contextual nature of sexual desire and it draws attention to individual differences in factors that can contribute to sexual desire. Aim The aim of the present study was to create a multidimensional assessment tool of cues for sexual desire in women that is validated in women with and without hypoactive sexual desire disorder (HSDD). Methods Factor analyses conducted on both an initial sample (N = 874) and a community sample (N = 138) resulted in the Cues for Sexual Desire Scale (CSDS) which included four factors: (i) Emotional Bonding Cues; (ii) Erotic/ Explicit Cues; (iii) Visual/Proximity Cues; and (iv) Implicit/Romantic Cues. Main Outcome Measures Scale construction of cues associated with sexual desire and differences between women with and without sexual dysfunction. Results The CSDS demonstrated good reliability and validity and was able to detect significant differences between women with and without HSDD. Results from regression analyses indicated that both marital status and level of sexual functioning predicted scores on the CSDS. The CSDS provided predictive validity for the Female Sexual Function Index desire and arousal domain scores, and increased cues were related to a higher reported frequency of sexual activity in women. Conclusions The findings from the present study provide valuable information regarding both internal and external triggers that can result in sexual desire for women. We believe that the CSDS could be beneficial in therapeutic settings to help identify cues that do and do not facilitate sexual desire in women with clinically diagnosed desire difficulties. PMID:16942529
Adaptive-Anisotropic Wavelet Collocation Method on general curvilinear coordinate systems
NASA Astrophysics Data System (ADS)
Brown-Dymkoski, Eric; Vasilyev, Oleg V.
2017-03-01
A new general framework for an Adaptive-Anisotropic Wavelet Collocation Method (A-AWCM) for the solution of partial differential equations is developed. This proposed framework addresses two major shortcomings of existing wavelet-based adaptive numerical methodologies, namely the reliance on a rectangular domain and the "curse of anisotropy", i.e. drastic over-resolution of sheet- and filament-like features arising from the inability of the wavelet refinement mechanism to distinguish highly correlated directional information in the solution. The A-AWCM addresses both of these challenges by incorporating coordinate transforms into the Adaptive Wavelet Collocation Method for the solution of PDEs. The resulting integrated framework leverages the advantages of both the curvilinear anisotropic meshes and wavelet-based adaptive refinement in a complimentary fashion, resulting in greatly reduced cost of resolution for anisotropic features. The proposed Adaptive-Anisotropic Wavelet Collocation Method retains the a priori error control of the solution and fully automated mesh refinement, while offering new abilities through the flexible mesh geometry, including body-fitting. The new A-AWCM is demonstrated for a variety of cases, including parabolic diffusion, acoustic scattering, and unsteady external flow.
Cunningham, Clare L; Ramos, Mari F
2014-05-01
Domestic dogs (Canis familiaris) seem to possess an evolved competency to follow human-given cues, often out-performing their wild progenitor the wolf (Canis lupus) on cue-following tasks. However, domestication may not be solely responsible for the socio-cognitive skills of dogs, with ontogenetic experience also playing a role. This research evaluated the effects of intensive training on cue-following behaviour using an unreinforced object-choice paradigm. The responses of dogs that were trained to competitive levels were compared to those of pet dogs with only basic training, and dogs living in an animal shelter that demonstrated no or only rudimentary following of basic commands. Using a cue-following task where three types of cues were presented by familiar and unfamiliar human partners, the number of cues followed by each training group were recorded. All dogs found cues where gesture was combined with a congruent head and eye movement easier to follow than either gesture or eye gaze alone. Whether the cue-giver was familiar or not had a significant effect on number of cues followed in homed dogs, and the performance of shelter dogs was comparable to the other groups when faced with an unfamiliar cue-giver. Contrary to predictions, level of training did not improve performance on the cue-following task. This work does provide support for the presence of an evolved adaptation to exploit social cues provided by humans that can be augmented by familiarity with the cue giver. However, additional joint activity as experienced in an intensive training regime does not seem to increase accuracy in following human-given cues.
A NOISE ADAPTIVE FUZZY EQUALIZATION METHOD FOR PROCESSING SOLAR EXTREME ULTRAVIOLET IMAGES
Druckmueller, M.
2013-08-15
A new image enhancement tool ideally suited for the visualization of fine structures in extreme ultraviolet images of the corona is presented in this paper. The Noise Adaptive Fuzzy Equalization method is particularly suited for the exceptionally high dynamic range images from the Atmospheric Imaging Assembly instrument on the Solar Dynamics Observatory. This method produces artifact-free images and gives significantly better results than methods based on convolution or Fourier transform which are often used for that purpose.
FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid in two dimensions
Brackbill, J.U.; Ruppel, H.M.
1986-08-01
A method is presented for calculating fluid flow in two dimensions using a full particle-in-cell representation on an adaptively zoned grid. The method has many interesting properties, among them an almost total absence of numerical dissipation and the ability to represent large variations in the data. The method is described using a standard formalism and its properties are illustrated by supersonic flow over a step and the interaction of a shock with a thin foil.
Motion Cueing Algorithm Development: Human-Centered Linear and Nonlinear Approaches
NASA Technical Reports Server (NTRS)
Houck, Jacob A. (Technical Monitor); Telban, Robert J.; Cardullo, Frank M.
2005-01-01
While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. Prior research identified viable features from two algorithms: the nonlinear "adaptive algorithm", and the "optimal algorithm" that incorporates human vestibular models. A novel approach to motion cueing, the "nonlinear algorithm" is introduced that combines features from both approaches. This algorithm is formulated by optimal control, and incorporates a new integrated perception model that includes both visual and vestibular sensation and the interaction between the stimuli. Using a time-varying control law, the matrix Riccati equation is updated in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. The neurocomputing approach was crucial in that the number of presentations of an input vector could be reduced to meet the real time requirement without degrading the quality of the motion cues.
Adaptive eigenspace method for inverse scattering problems in the frequency domain
NASA Astrophysics Data System (ADS)
Grote, Marcus J.; Kray, Marie; Nahum, Uri
2017-02-01
A nonlinear optimization method is proposed for the solution of inverse scattering problems in the frequency domain, when the scattered field is governed by the Helmholtz equation. The time-harmonic inverse medium problem is formulated as a PDE-constrained optimization problem and solved by an inexact truncated Newton-type iteration. Instead of a grid-based discrete representation, the unknown wave speed is projected to a particular finite-dimensional basis of eigenfunctions, which is iteratively adapted during the optimization. Truncating the adaptive eigenspace (AE) basis at a (small and slowly increasing) finite number of eigenfunctions effectively introduces regularization into the inversion and thus avoids the need for standard Tikhonov-type regularization. Both analytical and numerical evidence underpins the accuracy of the AE representation. Numerical experiments demonstrate the efficiency and robustness to missing or noisy data of the resulting adaptive eigenspace inversion method.
Automatic off-body overset adaptive Cartesian mesh method based on an octree approach
NASA Astrophysics Data System (ADS)
Péron, Stéphanie; Benoit, Christophe
2013-01-01
This paper describes a method for generating adaptive structured Cartesian grids within a near-body/off-body mesh partitioning framework for the flow simulation around complex geometries. The off-body Cartesian mesh generation derives from an octree structure, assuming each octree leaf node defines a structured Cartesian block. This enables one to take into account the large scale discrepancies in terms of resolution between the different bodies involved in the simulation, with minimum memory requirements. Two different conversions from the octree to Cartesian grids are proposed: the first one generates Adaptive Mesh Refinement (AMR) type grid systems, and the second one generates abutting or minimally overlapping Cartesian grid set. We also introduce an algorithm to control the number of points at each adaptation, that automatically determines relevant values of the refinement indicator driving the grid refinement and coarsening. An application to a wing tip vortex computation assesses the capability of the method to capture accurately the flow features.
A GPU-accelerated adaptive discontinuous Galerkin method for level set equation
NASA Astrophysics Data System (ADS)
Karakus, A.; Warburton, T.; Aksel, M. H.; Sert, C.
2016-01-01
This paper presents a GPU-accelerated nodal discontinuous Galerkin method for the solution of two- and three-dimensional level set (LS) equation on unstructured adaptive meshes. Using adaptive mesh refinement, computations are localised mostly near the interface location to reduce the computational cost. Small global time step size resulting from the local adaptivity is avoided by local time-stepping based on a multi-rate Adams-Bashforth scheme. Platform independence of the solver is achieved with an extensible multi-threading programming API that allows runtime selection of different computing devices (GPU and CPU) and different threading interfaces (CUDA, OpenCL and OpenMP). Overall, a highly scalable, accurate and mass conservative numerical scheme that preserves the simplicity of LS formulation is obtained. Efficiency, performance and local high-order accuracy of the method are demonstrated through distinct numerical test cases.
Method study on fuzzy-PID adaptive control of electric-hydraulic hitch system
NASA Astrophysics Data System (ADS)
Li, Mingsheng; Wang, Liubu; Liu, Jian; Ye, Jin
2017-03-01
In this paper, fuzzy-PID adaptive control method is applied to the control of tractor electric-hydraulic hitch system. According to the characteristics of the system, a fuzzy-PID adaptive controller is designed and the electric-hydraulic hitch system model is established. Traction control and position control performance simulation are carried out with the common PID control method. A field test rig was set up to test the electric-hydraulic hitch system. The test results showed that, after the fuzzy-PID adaptive control is adopted, when the tillage depth steps from 0.1m to 0.3m, the system transition process time is 4s, without overshoot, and when the tractive force steps from 3000N to 7000N, the system transition process time is 5s, the system overshoot is 25%.
Three-dimensional self-adaptive grid method for complex flows
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Deiwert, George S.
1988-01-01
A self-adaptive grid procedure for efficient computation of three-dimensional complex flow fields is described. The method is based on variational principles to minimize the energy of a spring system analogy which redistributes the grid points. Grid control parameters are determined by specifying maximum and minimum grid spacing. Multidirectional adaptation is achieved by splitting the procedure into a sequence of successive applications of a unidirectional adaptation. One-sided, two-directional constraints for orthogonality and smoothness are used to enhance the efficiency of the method. Feasibility of the scheme is demonstrated by application to a multinozzle, afterbody, plume flow field. Application of the algorithm for initial grid generation is illustrated by constructing a three-dimensional grid about a bump-like geometry.
Method and system for training dynamic nonlinear adaptive filters which have embedded memory
NASA Technical Reports Server (NTRS)
Rabinowitz, Matthew (Inventor)
2002-01-01
Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6.
A Hyperspherical Adaptive Sparse-Grid Method for High-Dimensional Discontinuity Detection
Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max D.; Burkardt, John V.
2015-06-24
This study proposes and analyzes a hyperspherical adaptive hierarchical sparse-grid method for detecting jump discontinuities of functions in high-dimensional spaces. The method is motivated by the theoretical and computational inefficiencies of well-known adaptive sparse-grid methods for discontinuity detection. Our novel approach constructs a function representation of the discontinuity hypersurface of an N-dimensional discontinuous quantity of interest, by virtue of a hyperspherical transformation. Then, a sparse-grid approximation of the transformed function is built in the hyperspherical coordinate system, whose value at each point is estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of the hypersurface, the new technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. In addition, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. Rigorous complexity analyses of the new method are provided as are several numerical examples that illustrate the effectiveness of the approach.
A Dynamically Adaptive Arbitrary Lagrangian-Eulerian Method for Solution of the Euler Equations
Anderson, R W; Elliott, N S; Pember, R B
2003-02-14
A new method that combines staggered grid arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. The novel components of the methods are driven by the need to reconcile traditional AMR techniques with the staggered variables and moving, deforming meshes associated with Lagrange based ALE schemes. We develop interlevel solution transfer operators and interlevel boundary conditions first in the case of purely Lagrangian hydrodynamics, and then extend these ideas into an ALE method by developing adaptive extensions of elliptic mesh relaxation techniques. Conservation properties of the method are analyzed, and a series of test problem calculations are presented which demonstrate the utility and efficiency of the method.
Adaptive iteration method for star centroid extraction under highly dynamic conditions
NASA Astrophysics Data System (ADS)
Gao, Yushan; Qin, Shiqiao; Wang, Xingshu
2016-10-01
Star centroiding accuracy decreases significantly when star sensor works under highly dynamic conditions or star images are corrupted by severe noise, reducing the output attitude precision. Herein, an adaptive iteration method is proposed to solve this problem. Firstly, initial star centroids are predicted by traditional method, and then based on initial reported star centroids and angular velocities of the star sensor, adaptive centroiding windows are generated to cover the star area and then an iterative method optimizing the location of centroiding window is used to obtain the final star spot extraction results. Simulation results shows that, compared with traditional star image restoration method and Iteratively Weighted Center of Gravity method, AWI algorithm maintains higher extraction accuracy when rotation velocities or noise level increases.
A numerical study of 2D detonation waves with adaptive finite volume methods on unstructured grids
NASA Astrophysics Data System (ADS)
Hu, Guanghui
2017-02-01
In this paper, a framework of adaptive finite volume solutions for the reactive Euler equations on unstructured grids is proposed. The main ingredients of the algorithm include a second order total variation diminishing Runge-Kutta method for temporal discretization, and the finite volume method with piecewise linear solution reconstruction of the conservative variables for the spatial discretization in which the least square method is employed for the reconstruction, and weighted essentially nonoscillatory strategy is used to restrain the potential numerical oscillation. To resolve the high demanding on the computational resources due to the stiffness of the system caused by the reaction term and the shock structure in the solutions, the h-adaptive method is introduced. OpenMP parallelization of the algorithm is also adopted to further improve the efficiency of the implementation. Several one and two dimensional benchmark tests on the ZND model are studied in detail, and numerical results successfully show the effectiveness of the proposed method.
Development and evaluation of a method of calibrating medical displays based on fixed adaptation
Sund, Patrik Månsson, Lars Gunnar; Båth, Magnus
2015-04-15
Purpose: The purpose of this work was to develop and evaluate a new method for calibration of medical displays that includes the effect of fixed adaptation and by using equipment and luminance levels typical for a modern radiology department. Methods: Low contrast sinusoidal test patterns were derived at nine luminance levels from 2 to 600 cd/m{sup 2} and used in a two alternative forced choice observer study, where the adaptation level was fixed at the logarithmic average of 35 cd/m{sup 2}. The contrast sensitivity at each luminance level was derived by establishing a linear relationship between the ten pattern contrast levels used at every luminance level and a detectability index (d′) calculated from the fraction of correct responses. A Gaussian function was fitted to the data and normalized to the adaptation level. The corresponding equation was used in a display calibration method that included the grayscale standard display function (GSDF) but compensated for fixed adaptation. In the evaluation study, the contrast of circular objects with a fixed pixel contrast was displayed using both calibration methods and was rated on a five-grade scale. Results were calculated using a visual grading characteristics method. Error estimations in both observer studies were derived using a bootstrap method. Results: The contrast sensitivities for the darkest and brightest patterns compared to the contrast sensitivity at the adaptation luminance were 37% and 56%, respectively. The obtained Gaussian fit corresponded well with similar studies. The evaluation study showed a higher degree of equally distributed contrast throughout the luminance range with the calibration method compensated for fixed adaptation than for the GSDF. The two lowest scores for the GSDF were obtained for the darkest and brightest patterns. These scores were significantly lower than the lowest score obtained for the compensated GSDF. For the GSDF, the scores for all luminance levels were statistically
Gaze cueing by pareidolia faces
Takahashi, Kohske; Watanabe, Katsumi
2013-01-01
Visual images that are not faces are sometimes perceived as faces (the pareidolia phenomenon). While the pareidolia phenomenon provides people with a strong impression that a face is present, it is unclear how deeply pareidolia faces are processed as faces. In the present study, we examined whether a shift in spatial attention would be produced by gaze cueing of face-like objects. A robust cueing effect was observed when the face-like objects were perceived as faces. The magnitude of the cueing effect was comparable between the face-like objects and a cartoon face. However, the cueing effect was eliminated when the observer did not perceive the objects as faces. These results demonstrated that pareidolia faces do more than give the impression of the presence of faces; indeed, they trigger an additional face-specific attentional process. PMID:25165505
Method for reducing the drag of blunt-based vehicles by adaptively increasing forebody roughness
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A. (Inventor); Saltzman, Edwin J. (Inventor); Moes, Timothy R. (Inventor); Iliff, Kenneth W. (Inventor)
2005-01-01
A method for reducing drag upon a blunt-based vehicle by adaptively increasing forebody roughness to increase drag at the roughened area of the forebody, which results in a decrease in drag at the base of this vehicle, and in total vehicle drag.
Kornilova, L N; Cowings, P S; Toscano, W B; Arlashchenko, N I; Korneev, D Iu; Ponomarenko, A V; Salagovich, S V; Sarantseva, A V; Kozlovskaia, I B
2000-01-01
Presented are results of testing the method of adaptive biocontrol during preflight training of cosmonauts. Within the MIR-25 crew, a high level of controllability of the autonomous reactions was characteristic of Flight Commanders MIR-23 and MIR-25 and flight Engineer MIR-23, while Flight Engineer MIR-25 displayed a weak intricate dependence of these reactions on the depth of relaxation or strain.
New cardiac MRI gating method using event-synchronous adaptive digital filter.
Park, Hodong; Park, Youngcheol; Cho, Sungpil; Jang, Bongryoel; Lee, Kyoungjoung
2009-11-01
When imaging the heart using MRI, an artefact-free electrocardiograph (ECG) signal is not only important for monitoring the patient's heart activity but also essential for cardiac gating to reduce noise in MR images induced by moving organs. The fundamental problem in conventional ECG is the distortion induced by electromagnetic interference. Here, we propose an adaptive algorithm for the suppression of MR gradient artefacts (MRGAs) in ECG leads of a cardiac MRI gating system. We have modeled MRGAs by assuming a source of strong pulses used for dephasing the MR signal. The modeled MRGAs are rectangular pulse-like signals. We used an event-synchronous adaptive digital filter whose reference signal is synchronous to the gradient peaks of MRI. The event detection processor for the event-synchronous adaptive digital filter was implemented using the phase space method-a sort of topology mapping method-and least-squares acceleration filter. For evaluating the efficiency of the proposed method, the filter was tested using simulation and actual data. The proposed method requires a simple experimental setup that does not require extra hardware connections to obtain the reference signals of adaptive digital filter. The proposed algorithm was more effective than the multichannel approach.
An adaptive multiresolution gradient-augmented level set method for advection problems
NASA Astrophysics Data System (ADS)
Schneider, Kai; Kolomenskiy, Dmitry; Nave, Jean-Chtristophe
2014-11-01
Advection problems are encountered in many applications, such as transport of passive scalars modeling pollution or mixing in chemical engineering. In some problems, the solution develops small-scale features localized in a part of the computational domain. If the location of these features changes in time, the efficiency of the numerical method can be significantly improved by adapting the partition dynamically to the solution. We present a space-time adaptive scheme for solving advection equations in two space dimensions. The third order accurate gradient-augmented level set method using a semi-Lagrangian formulation with backward time integration is coupled with a point value multiresolution analysis using Hermite interpolation. Thus locally refined dyadic spatial grids are introduced which are efficiently implemented with dynamic quad-tree data structures. For adaptive time integration, an embedded Runge-Kutta method is employed. The precision of the new fully adaptive method is analysed and speed up of CPU time and memory compression with respect to the uniform grid discretization are reported.
NASA Technical Reports Server (NTRS)
Kornilova, L. N.; Cowings, P. S.; Toscano, W. B.; Arlashchenko, N. I.; Korneev, D. Iu; Ponomarenko, A. V.; Salagovich, S. V.; Sarantseva, A. V.; Kozlovskaia, I. B.
2000-01-01
Presented are results of testing the method of adaptive biocontrol during preflight training of cosmonauts. Within the MIR-25 crew, a high level of controllability of the autonomous reactions was characteristic of Flight Commanders MIR-23 and MIR-25 and flight Engineer MIR-23, while Flight Engineer MIR-25 displayed a weak intricate dependence of these reactions on the depth of relaxation or strain.
ERIC Educational Resources Information Center
Zwick, Rebecca; And Others
1994-01-01
Simulated data were used to investigate the performance of modified versions of the Mantel-Haenszel method of differential item functioning (DIF) analysis in computerized adaptive tests (CAT). Results indicate that CAT-based DIF procedures perform well and support the use of item response theory-based matching variables in DIF analysis. (SLD)
ERIC Educational Resources Information Center
Zwick, Rebecca; And Others
Simulated data were used to investigate the performance of modified versions of the Mantel-Haenszel and standardization methods of differential item functioning (DIF) analysis in computer-adaptive tests (CATs). Each "examinee" received 25 items out of a 75-item pool. A three-parameter logistic item response model was assumed, and…
Focus cues affect perceived depth
Watt, Simon J.; Akeley, Kurt; Ernst, Marc O.; Banks, Martin S.
2007-01-01
Depth information from focus cues—accommodation and the gradient of retinal blur—is typically incorrect in three-dimensional (3-D) displays because the light comes from a planar display surface. If the visual system incorporates information from focus cues into its calculation of 3-D scene parameters, this could cause distortions in perceived depth even when the 2-D retinal images are geometrically correct. In Experiment 1 we measured the direct contribution of focus cues to perceived slant by varying independently the physical slant of the display surface and the slant of a simulated surface specified by binocular disparity (binocular viewing) or perspective/texture (monocular viewing). In the binocular condition, slant estimates were unaffected by display slant. In the monocular condition, display slant had a systematic effect on slant estimates. Estimates were consistent with a weighted average of slant from focus cues and slant from disparity/texture, where the cue weights are determined by the reliability of each cue. In Experiment 2, we examined whether focus cues also have an indirect effect on perceived slant via the distance estimate used in disparity scaling. We varied independently the simulated distance and the focal distance to a disparity-defined 3-D stimulus. Perceived slant was systematically affected by changes in focal distance. Accordingly, depth constancy (with respect to simulated distance) was significantly reduced when focal distance was held constant compared to when it varied appropriately with the simulated distance to the stimulus. The results of both experiments show that focus cues can contribute to estimates of 3-D scene parameters. Inappropriate focus cues in typical 3-D displays may therefore contribute to distortions in perceived space. PMID:16441189
Flexible echolocation behavior of trawling bats during approach of continuous or transient prey cues
Übernickel, Kirstin; Tschapka, Marco; Kalko, Elisabeth K. V.
2013-01-01
Trawling bats use echolocation not only to detect and classify acoustically continuous cues originated from insects at and above water surfaces, but also to detect small water-dwelling prey items breaking the water surface for a very short time, producing only transient cues to be perceived acoustically. Generally, bats need to adjust their echolocation behavior to the specific task on hand, and because of the diversity of prey cues they use in hunting, trawling bats should be highly flexible in their echolocation behavior. We studied the adaptations in the behavior of Noctilio leporinus when approaching either a continuous cue or a transient cue that disappeared during the approach of the bat. Normally the bats reacted by dipping their feet in the water at the cue location. We found that the bats typically started to adapt their calling behavior at approximately 410 ms before prey contact in continuous cue trials, but were also able to adapt their approach behavior to stimuli onsets as short as 177 ms before contact, within a minimum reaction time of 50.9 ms in response to transient cues. In both tasks the approach phase ended between 32 and 53 ms before prey contact. Call emission always continued after the end of the approach phase until around prey contact. In some failed capture attempts, call emission did not cease at all after prey contact. Probably bats used spatial memory to dip at the original location of the transient cue after its disappearance. The duration of the pointed dips was significantly longer in transient cue trials than in continuous cue trials. Our results suggest that trawling bats possess the ability to modify their generally rather stereotyped echolocation behavior during approaches within very short reaction times depending on the sensory information available. PMID:23675352
Matthews, Devin A.; Stanton, John F.
2015-02-14
The theory of non-orthogonal spin-adaptation for closed-shell molecular systems is applied to coupled cluster methods with quadruple excitations (CCSDTQ). Calculations at this level of detail are of critical importance in describing the properties of molecular systems to an accuracy which can meet or exceed modern experimental techniques. Such calculations are of significant (and growing) importance in such fields as thermodynamics, kinetics, and atomic and molecular spectroscopies. With respect to the implementation of CCSDTQ and related methods, we show that there are significant advantages to non-orthogonal spin-adaption with respect to simplification and factorization of the working equations and to creating an efficient implementation. The resulting algorithm is implemented in the CFOUR program suite for CCSDT, CCSDTQ, and various approximate methods (CCSD(T), CC3, CCSDT-n, and CCSDT(Q))
Matthews, Devin A; Stanton, John F
2015-02-14
The theory of non-orthogonal spin-adaptation for closed-shell molecular systems is applied to coupled cluster methods with quadruple excitations (CCSDTQ). Calculations at this level of detail are of critical importance in describing the properties of molecular systems to an accuracy which can meet or exceed modern experimental techniques. Such calculations are of significant (and growing) importance in such fields as thermodynamics, kinetics, and atomic and molecular spectroscopies. With respect to the implementation of CCSDTQ and related methods, we show that there are significant advantages to non-orthogonal spin-adaption with respect to simplification and factorization of the working equations and to creating an efficient implementation. The resulting algorithm is implemented in the CFOUR program suite for CCSDT, CCSDTQ, and various approximate methods (CCSD(T), CC3, CCSDT-n, and CCSDT(Q)).
NASA Astrophysics Data System (ADS)
Matthews, Devin A.; Stanton, John F.
2015-02-01
The theory of non-orthogonal spin-adaptation for closed-shell molecular systems is applied to coupled cluster methods with quadruple excitations (CCSDTQ). Calculations at this level of detail are of critical importance in describing the properties of molecular systems to an accuracy which can meet or exceed modern experimental techniques. Such calculations are of significant (and growing) importance in such fields as thermodynamics, kinetics, and atomic and molecular spectroscopies. With respect to the implementation of CCSDTQ and related methods, we show that there are significant advantages to non-orthogonal spin-adaption with respect to simplification and factorization of the working equations and to creating an efficient implementation. The resulting algorithm is implemented in the CFOUR program suite for CCSDT, CCSDTQ, and various approximate methods (CCSD(T), CC3, CCSDT-n, and CCSDT(Q)).
Cochard, E; Aubry, J F; Tanter, M; Prada, C
2011-08-01
An adaptive projection method for ultrasonic focusing through the rib cage, with minimal energy deposition on the ribs, was evaluated experimentally in 3D geometry. Adaptive projection is based on decomposition of the time-reversal operator (DORT method) and projection on the "noise" subspace. It is shown that 3D implementation of this method is straightforward, and not more time-consuming than 2D. Comparisons are made between adaptive projection, spherical focusing, and a previously proposed time-reversal focusing method, by measuring pressure fields in the focal plane and rib region using the three methods. The ratio of the specific absorption rate at the focus over the one at the ribs was found to be increased by a factor of up to eight, versus spherical emission. Beam steering out of geometric focus was also investigated. For all configurations projecting steered emissions were found to deposit less energy on the ribs than steering time-reversed emissions: thus the non-invasive method presented here is more efficient than state-of-the-art invasive techniques. In fact, this method could be used for real-time treatment, because a single acquisition of back-scattered echoes from the ribs is enough to treat a large volume around the focus, thanks to real time projection of the steered beams.
An edge-based solution-adaptive method applied to the AIRPLANE code
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Thomas, Scott D.; Cliff, Susan E.
1995-01-01
Computational methods to solve large-scale realistic problems in fluid flow can be made more efficient and cost effective by using them in conjunction with dynamic mesh adaption procedures that perform simultaneous coarsening and refinement to capture flow features of interest. This work couples the tetrahedral mesh adaption scheme, 3D_TAG, with the AIRPLANE code to solve complete aircraft configuration problems in transonic and supersonic flow regimes. Results indicate that the near-field sonic boom pressure signature of a cone-cylinder is improved, the oblique and normal shocks are better resolved on a transonic wing, and the bow shock ahead of an unstarted inlet is better defined.
An edge-based solution-adaptive method applied to the AIRPLANE code
NASA Astrophysics Data System (ADS)
Biswas, Rupak; Thomas, Scott D.; Cliff, Susan E.
1995-11-01
Computational methods to solve large-scale realistic problems in fluid flow can be made more efficient and cost effective by using them in conjunction with dynamic mesh adaption procedures that perform simultaneous coarsening and refinement to capture flow features of interest. This work couples the tetrahedral mesh adaption scheme, 3D_TAG, with the AIRPLANE code to solve complete aircraft configuration problems in transonic and supersonic flow regimes. Results indicate that the near-field sonic boom pressure signature of a cone-cylinder is improved, the oblique and normal shocks are better resolved on a transonic wing, and the bow shock ahead of an unstarted inlet is better defined.
Applying Parallel Adaptive Methods with GeoFEST/PYRAMID to Simulate Earth Surface Crustal Dynamics
NASA Technical Reports Server (NTRS)
Norton, Charles D.; Lyzenga, Greg; Parker, Jay; Glasscoe, Margaret; Donnellan, Andrea; Li, Peggy
2006-01-01
This viewgraph presentation reviews the use Adaptive Mesh Refinement (AMR) in simulating the Crustal Dynamics of Earth's Surface. AMR simultaneously improves solution quality, time to solution, and computer memory requirements when compared to generating/running on a globally fine mesh. The use of AMR in simulating the dynamics of the Earth's Surface is spurred by future proposed NASA missions, such as InSAR for Earth surface deformation and other measurements. These missions will require support for large-scale adaptive numerical methods using AMR to model observations. AMR was chosen because it has been successful in computation fluid dynamics for predictive simulation of complex flows around complex structures.
An Adaptive Instability Suppression Controls Method for Aircraft Gas Turbine Engine Combustors
NASA Technical Reports Server (NTRS)
Kopasakis, George; DeLaat, John C.; Chang, Clarence T.
2008-01-01
An adaptive controls method for instability suppression in gas turbine engine combustors has been developed and successfully tested with a realistic aircraft engine combustor rig. This testing was part of a program that demonstrated, for the first time, successful active combustor instability control in an aircraft gas turbine engine-like environment. The controls method is called Adaptive Sliding Phasor Averaged Control. Testing of the control method has been conducted in an experimental rig with different configurations designed to simulate combustors with instabilities of about 530 and 315 Hz. Results demonstrate the effectiveness of this method in suppressing combustor instabilities. In addition, a dramatic improvement in suppression of the instability was achieved by focusing control on the second harmonic of the instability. This is believed to be due to a phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling. These results may have implications for future research in combustor instability control.
NASA Astrophysics Data System (ADS)
Chai, Runqi; Savvaris, Al; Tsourdos, Antonios
2016-06-01
In this paper, a fuzzy physical programming (FPP) method has been introduced for solving multi-objective Space Manoeuvre Vehicles (SMV) skip trajectory optimization problem based on hp-adaptive pseudospectral methods. The dynamic model of SMV is elaborated and then, by employing hp-adaptive pseudospectral methods, the problem has been transformed to nonlinear programming (NLP) problem. According to the mission requirements, the solutions were calculated for each single-objective scenario. To get a compromised solution for each target, the fuzzy physical programming (FPP) model is proposed. The preference function is established with considering the fuzzy factor of the system such that a proper compromised trajectory can be acquired. In addition, the NSGA-II is tested to obtain the Pareto-optimal solution set and verify the Pareto optimality of the FPP solution. Simulation results indicate that the proposed method is effective and feasible in terms of dealing with the multi-objective skip trajectory optimization for the SMV.
Framework for Instructional Technology: Methods of Implementing Adaptive Training and Education
2014-01-01
business , or the military. With Role Adaptation, trainees select their role (e.g., tank driver vs. tank gunner) and are then presented with different...one-size-fits-all, non -mastery based methods (for a review see Durlach & Ray, 2011). After conducting a meta-analysis of various tutoring methods... verbal ), and/or to challenge or stimulate learners with above average aptitude. Multiple versions might also be created to suit students with
Xia, Kelin; Zhan, Meng; Wan, Decheng; Wei, Guo-Wei
2011-01-01
Mesh deformation methods are a versatile strategy for solving partial differential equations (PDEs) with a vast variety of practical applications. However, these methods break down for elliptic PDEs with discontinuous coefficients, namely, elliptic interface problems. For this class of problems, the additional interface jump conditions are required to maintain the well-posedness of the governing equation. Consequently, in order to achieve high accuracy and high order convergence, additional numerical algorithms are required to enforce the interface jump conditions in solving elliptic interface problems. The present work introduces an interface technique based adaptively deformed mesh strategy for resolving elliptic interface problems. We take the advantages of the high accuracy, flexibility and robustness of the matched interface and boundary (MIB) method to construct an adaptively deformed mesh based interface method for elliptic equations with discontinuous coefficients. The proposed method generates deformed meshes in the physical domain and solves the transformed governed equations in the computational domain, which maintains regular Cartesian meshes. The mesh deformation is realized by a mesh transformation PDE, which controls the mesh redistribution by a source term. The source term consists of a monitor function, which builds in mesh contraction rules. Both interface geometry based deformed meshes and solution gradient based deformed meshes are constructed to reduce the L∞ and L2 errors in solving elliptic interface problems. The proposed adaptively deformed mesh based interface method is extensively validated by many numerical experiments. Numerical results indicate that the adaptively deformed mesh based interface method outperforms the original MIB method for dealing with elliptic interface problems. PMID:22586356
Refinement trajectory and determination of eigenstates by a wavelet based adaptive method
Pipek, Janos; Nagy, Szilvia
2006-11-07
The detail structure of the wave function is analyzed at various refinement levels using the methods of wavelet analysis. The eigenvalue problem of a model system is solved in granular Hilbert spaces, and the trajectory of the eigenstates is traced in terms of the resolution. An adaptive method is developed for identifying the fine structure localization regions, where further refinement of the wave function is necessary.
A wavelet-optimized, very high order adaptive grid and order numerical method
NASA Technical Reports Server (NTRS)
Jameson, Leland
1996-01-01
Differencing operators of arbitrarily high order can be constructed by interpolating a polynomial through a set of data followed by differentiation of this polynomial and finally evaluation of the polynomial at the point where a derivative approximation is desired. Furthermore, the interpolating polynomial can be constructed from algebraic, trigonometric, or, perhaps exponential polynomials. This paper begins with a comparison of such differencing operator construction. Next, the issue of proper grids for high order polynomials is addressed. Finally, an adaptive numerical method is introduced which adapts the numerical grid and the order of the differencing operator depending on the data. The numerical grid adaptation is performed on a Chebyshev grid. That is, at each level of refinement the grid is a Chebvshev grid and this grid is refined locally based on wavelet analysis.
A Digitalized Gyroscope System Based on a Modified Adaptive Control Method.
Xia, Dunzhu; Hu, Yiwei; Ni, Peizhen
2016-03-04
In this work we investigate the possibility of applying the adaptive control algorithm to Micro-Electro-Mechanical System (MEMS) gyroscopes. Through comparing the gyroscope working conditions with the reference model, the adaptive control method can provide online estimation of the key parameters and the proper control strategy for the system. The digital second-order oscillators in the reference model are substituted for two phase locked loops (PLLs) to achieve a more steady amplitude and frequency control. The adaptive law is modified to satisfy the condition of unequal coupling stiffness and coupling damping coefficient. The rotation mode of the gyroscope system is considered in our work and a rotation elimination section is added to the digitalized system. Before implementing the algorithm in the hardware platform, different simulations are conducted to ensure the algorithm can meet the requirement of the angular rate sensor, and some of the key adaptive law coefficients are optimized. The coupling components are detected and suppressed respectively and Lyapunov criterion is applied to prove the stability of the system. The modified adaptive control algorithm is verified in a set of digitalized gyroscope system, the control system is realized in digital domain, with the application of Field Programmable Gate Array (FPGA). Key structure parameters are measured and compared with the estimation results, which validated that the algorithm is feasible in the setup. Extra gyroscopes are used in repeated experiments to prove the commonality of the algorithm.
Adaptive Kalman filtering methods for tracking GPS signals in high noise/high dynamic environments
NASA Astrophysics Data System (ADS)
Zuo, Qiyao; Yuan, Hong; Lin, Baojun
2007-11-01
GPS C/A signal tracking algorithms have been developed based on adaptive Kalman filtering theory. In the research, an adaptive Kalman filter is used to substitute for standard tracking loop filters. The goal is to improve estimation accuracy and tracking stabilization in high noise and high dynamic environments. The linear dynamics model and the measurements model are designed to estimate code phase, carrier phase, Doppler shift, and rate of change of Doppler shift. Two adaptive algorithms are applied to improve robustness and adaptive faculty of the tracking, one is Sage adaptive filtering approach and the other is strong tracking method. Both the new algorithms and the conventional tracking loop have been tested by using simulation data. In the simulation experiment, the highest jerk of the receiver is set to 10G m/s 3 with the lowest C/No 30dBHz. The results indicate that the Kalman filtering algorithms are more robust than the standard tracking loop, and performance of tracking loop using the algorithms is satisfactory in such extremely adverse circumstances.
Huttunen, Sanna; Olsson, Sanna; Buchbender, Volker; Enroth, Johannes; Hedenäs, Lars; Quandt, Dietmar
2012-01-01
Adaptive evolution has often been proposed to explain correlations between habitats and certain phenotypes. In mosses, a high frequency of species with specialized sporophytic traits in exposed or epiphytic habitats was, already 100 years ago, suggested as due to adaptation. We tested this hypothesis by contrasting phylogenetic and morphological data from two moss families, Neckeraceae and Lembophyllaceae, both of which show parallel shifts to a specialized morphology and to exposed epiphytic or epilithic habitats. Phylogeny-based tests for correlated evolution revealed that evolution of four sporophytic traits is correlated with a habitat shift. For three of them, evolutionary rates of dual character-state changes suggest that habitat shifts appear prior to changes in morphology. This suggests that they could have evolved as adaptations to new habitats. Regarding the fourth correlated trait the specialized morphology had already evolved before the habitat shift. In addition, several other specialized "epiphytic" traits show no correlation with a habitat shift. Besides adaptive diversification, other processes thus also affect the match between phenotype and environment. Several potential factors such as complex genetic and developmental pathways yielding the same phenotypes, differences in strength of selection, or constraints in phenotypic evolution may lead to an inability of phylogeny-based comparative methods to detect potential adaptations.
Huttunen, Sanna; Olsson, Sanna; Buchbender, Volker; Enroth, Johannes; Hedenäs, Lars; Quandt, Dietmar
2012-01-01
Adaptive evolution has often been proposed to explain correlations between habitats and certain phenotypes. In mosses, a high frequency of species with specialized sporophytic traits in exposed or epiphytic habitats was, already 100 years ago, suggested as due to adaptation. We tested this hypothesis by contrasting phylogenetic and morphological data from two moss families, Neckeraceae and Lembophyllaceae, both of which show parallel shifts to a specialized morphology and to exposed epiphytic or epilithic habitats. Phylogeny-based tests for correlated evolution revealed that evolution of four sporophytic traits is correlated with a habitat shift. For three of them, evolutionary rates of dual character-state changes suggest that habitat shifts appear prior to changes in morphology. This suggests that they could have evolved as adaptations to new habitats. Regarding the fourth correlated trait the specialized morphology had already evolved before the habitat shift. In addition, several other specialized “epiphytic” traits show no correlation with a habitat shift. Besides adaptive diversification, other processes thus also affect the match between phenotype and environment. Several potential factors such as complex genetic and developmental pathways yielding the same phenotypes, differences in strength of selection, or constraints in phenotypic evolution may lead to an inability of phylogeny-based comparative methods to detect potential adaptations. PMID:23118967
A Digitalized Gyroscope System Based on a Modified Adaptive Control Method
Xia, Dunzhu; Hu, Yiwei; Ni, Peizhen
2016-01-01
In this work we investigate the possibility of applying the adaptive control algorithm to Micro-Electro-Mechanical System (MEMS) gyroscopes. Through comparing the gyroscope working conditions with the reference model, the adaptive control method can provide online estimation of the key parameters and the proper control strategy for the system. The digital second-order oscillators in the reference model are substituted for two phase locked loops (PLLs) to achieve a more steady amplitude and frequency control. The adaptive law is modified to satisfy the condition of unequal coupling stiffness and coupling damping coefficient. The rotation mode of the gyroscope system is considered in our work and a rotation elimination section is added to the digitalized system. Before implementing the algorithm in the hardware platform, different simulations are conducted to ensure the algorithm can meet the requirement of the angular rate sensor, and some of the key adaptive law coefficients are optimized. The coupling components are detected and suppressed respectively and Lyapunov criterion is applied to prove the stability of the system. The modified adaptive control algorithm is verified in a set of digitalized gyroscope system, the control system is realized in digital domain, with the application of Field Programmable Gate Array (FPGA). Key structure parameters are measured and compared with the estimation results, which validated that the algorithm is feasible in the setup. Extra gyroscopes are used in repeated experiments to prove the commonality of the algorithm. PMID:26959019
Menkir, A; Bramel-Cox, P J; Witt, M D
1994-08-01
The association among six traits in the F2 lines derived from adapted × exotic backcrosses of sorghum developed via two introgression methods was studied using principal component analysis. The first principal component defined a hybrid index in matings of the wild accession ('12-26') but not in matings of the cultivated sorghum genotypes ('Segeolane' and 'SC408'), no matter which adapted parent was used. This component accounted for 27-42% of the total variation in each mating. The 'recombination spindle' was wide in all matings of CK60 and KP9B, which indicated that the relationships among traits were not strong enough to restrict recombination among the parental characters. The index scores of both CK60 and KP9B matings showed clear differentiation of the backcross generations only when the exotic parent was the undomesticated wild accession ('12-26'). None of the distributions of the first principal component scores in any backcross population was bimodal. The frequency of recombinant genotypes derived from a mating was determined by the level of domestication and adaptation of the exotic parent and the genetic background of the adapted parent. Backcrossing to a population (KP9B) was found to be superior to backcrossing to an inbred line (CK60) to produce lines with an improved adapted phenotype.
An h-adaptive finite element method for turbulent heat transfer
Carriington, David B
2009-01-01
A two-equation turbulence closure model (k-{omega}) using an h-adaptive grid technique and finite element method (FEM) has been developed to simulate low Mach flow and heat transfer. These flows are applicable to many flows in engineering and environmental sciences. Of particular interest in the engineering modeling areas are: combustion, solidification, and heat exchanger design. Flows for indoor air quality modeling and atmospheric pollution transport are typical types of environmental flows modeled with this method. The numerical method is based on a hybrid finite element model using an equal-order projection process. The model includes thermal and species transport, localized mesh refinement (h-adaptive) and Petrov-Galerkin weighting for the stabilizing the advection. This work develops the continuum model of a two-equation turbulence closure method. The fractional step solution method is stated along with the h-adaptive grid method (Carrington and Pepper, 2002). Solutions are presented for 2d flow over a backward-facing step.
Haven't a Cue? Mapping the CUE Space as an Aid to HRA Modeling
David I Gertman; Ronald L Boring; Jacques Hugo; William Phoenix
2012-06-01
Advances in automation present a new modeling environment for the human reliability analysis (HRA) practitioner. Many, if not most, current day HRA methods have their origin in characterizing and quantifying human performance in analog environments where mode awareness and system status indications are potentially less comprehensive, but simpler to comprehend at a glance when compared to advanced presentation systems. The introduction of highly complex automation has the potential to lead to: decreased levels of situation awareness caused by the need for increased monitoring; confusion regarding the often non-obvious causes of automation failures, and emergent system dependencies that formerly may have been uncharacterized. Understanding the relation of incoming cues available to operators during plant upset conditions, in conjunction with operating procedures, yields insight into understanding the nature of the expected operator response in this control room environment. Static systems methods such as fault trees do not contain the appropriate temporal information or necessarily specify the relationship among cues leading to operator response. In this paper, we do not attempt to replace standard performance shaping factors commonly used in HRA nor offer a new HRA method, existing methods may suffice. In this paper we strive to enhance current understanding of the basis for operator response through a technique that can be used during the qualitative portion of the HRA analysis process. The CUE map is a means to visualize the relationship among salient cues in the control room that help influence operator response, show how the cognitive map of the operator changes as information is gained or lost, and is applicable to existing as well as advanced hybrid plants and small modular reactor designs. A brief application involving loss of condensate is presented and advantages and limitations of the modeling approach and use of the CUE map are discussed.
High-precision self-adaptive phase-calibration method for wavelength-tuning interferometry
NASA Astrophysics Data System (ADS)
Zhu, Xueliang; Zhao, Huiying; Dong, Longchao; Wang, Hongjun; Liu, Bingcai; Yuan, Daocheng; Tian, Ailing; Wang, Fangjie; Zhang, Chupeng; Ban, Xinxing
2017-03-01
We introduce a high-precision self-adaptive phase-calibration method for performing wavelength-tuning interferometry. Our method is insensitive to the nonlinearity of the phase shifter, even under random control. Intensity errors derived from laser voltage changes can be restrained by adopting this approach. Furthermore, this method can effectively overcome the influences from the background and modulation intensities in the interferogram, regardless of the phase structure. Numerical simulations and experiments are implemented to verify the validity of this high-precision calibration method.
Wagemans, Johan; van Doorn, Andrea J; Koenderink, Jan J
2010-01-01
The shading cue is supposed to be a major factor in monocular stereopsis. However, the hypothesis is hardly corroborated by available data. For instance, the conventional stimulus used in perception research, which involves a circular disk with monotonic luminance gradient on a uniform surround, is theoretically ‘explained’ by any quadric surface, including spherical caps or cups (the conventional response categories), cylindrical ruts or ridges, and saddle surfaces. Whereas cylindrical ruts or ridges are reported when the outline is changed from circular to square, saddle surfaces are never reported. We introduce a method that allows us to differentiate between such possible responses. We report observations on a number of variations of the conventional stimulus, including variations of shape and quality of the boundary, and contexts that allow the observer to infer illumination direction. We find strong and expected influences of outline shape, but, perhaps surprisingly, we fail to find any influence of context, and only partial influence of outline quality. Moreover, we report appreciable differences within the generic population. We trace some of the idiosyncrasies (as compared to shape from shading algorithms) of the human observer to generic properties of the environment, in particular the fact that many objects are limited in size and elliptically convex over most of their boundaries. PMID:23145221
An adaptive subspace trust-region method for frequency-domain seismic full waveform inversion
NASA Astrophysics Data System (ADS)
Zhang, Huan; Li, Xiaofan; Song, Hanjie; Liu, Shaolin
2015-05-01
Full waveform inversion is currently considered as a promising seismic imaging method to obtain high-resolution and quantitative images of the subsurface. It is a nonlinear ill-posed inverse problem, the main difficulty of which that prevents the full waveform inversion from widespread applying to real data is the sensitivity to incorrect initial models and noisy data. Local optimization theories including Newton's method and gradient method always lead the convergence to local minima, while global optimization algorithms such as simulated annealing are computationally costly. To confront this issue, in this paper we investigate the possibility of applying the trust-region method to the full waveform inversion problem. Different from line search methods, trust-region methods force the new trial step within a certain neighborhood of the current iterate point. Theoretically, the trust-region methods are reliable and robust, and they have very strong convergence properties. The capability of this inversion technique is tested with the synthetic Marmousi velocity model and the SEG/EAGE Salt model. Numerical examples demonstrate that the adaptive subspace trust-region method can provide solutions closer to the global minima compared to the conventional Approximate Hessian approach and the L-BFGS method with a higher convergence rate. In addition, the match between the inverted model and the true model is still excellent even when the initial model deviates far from the true model. Inversion results with noisy data also exhibit the remarkable capability of the adaptive subspace trust-region method for low signal-to-noise data inversions. Promising numerical results suggest this adaptive subspace trust-region method is suitable for full waveform inversion, as it has stronger convergence and higher convergence rate.
Long-time simulations of the Kelvin-Helmholtz instability using an adaptive vortex method.
Sohn, Sung-Ik; Yoon, Daeki; Hwang, Woonjae
2010-10-01
The nonlinear evolution of an interface subject to a parallel shear flow is studied by the vortex sheet model. We perform long-time computations for the vortex sheet in density-stratified fluids by using the point vortex method and investigate late-time dynamics of the Kelvin-Helmholtz instability. We apply an adaptive point insertion procedure and a high-order shock-capturing scheme to the vortex method to handle the nonuniform distribution of point vortices and enhance the resolution. Our adaptive vortex method successfully simulates chaotically distorted interfaces of the Kelvin-Helmholtz instability with fine resolutions. The numerical results show that the Kelvin-Helmholtz instability evolves a secondary instability at a late time, distorting the internal rollup, and eventually develops to a disordered structure.
NASA Astrophysics Data System (ADS)
Lee, Sanghyun; Wheeler, Mary F.
2017-02-01
We present a novel approach to the simulation of miscible displacement by employing adaptive enriched Galerkin finite element methods (EG) coupled with entropy residual stabilization for transport. In particular, numerical simulations of viscous fingering instabilities in heterogeneous porous media and Hele-Shaw cells are illustrated. EG is formulated by enriching the conforming continuous Galerkin finite element method (CG) with piecewise constant functions. The method provides locally and globally conservative fluxes, which are crucial for coupled flow and transport problems. Moreover, EG has fewer degrees of freedom in comparison with discontinuous Galerkin (DG) and an efficient flow solver has been derived which allows for higher order schemes. Dynamic adaptive mesh refinement is applied in order to reduce computational costs for large-scale three dimensional applications. In addition, entropy residual based stabilization for high order EG transport systems prevents spurious oscillations. Numerical tests are presented to show the capabilities of EG applied to flow and transport.
An adaptive method for determining an acquisition parameter t0 in a modified CPMG sequence
NASA Astrophysics Data System (ADS)
Xing, Donghui; Fan, Yiren; Hao, Jianfei; Ge, Xinmin; Li, Chaoliu; Xiao, Yufeng; Wu, Fei
2017-03-01
The modified CPMG (Carr-Purcell-Meiboom-Gill) pulse sequence is a common sequence used for measuring the internal magnetic field gradient distribution of formation rocks, for which t0 (the duration of the first window) is a key acquisition parameter. In order to obtain the optimal t0, an adaptive method is proposed in this paper. By studying the factors influencing discriminant factor σ and its variation trend using T2-G forward numerical simulation, it is found that the optimal t0 corresponds to the maximum value of σ. Then combining the constraint condition of SNR (Signal Noise Ratio) of spin echo, an optimal t0 in modified CPMG pulse sequence is determined. This method can reduce the difficulties of operating T2-G experiments. Finally, the adaptive method is verified by the results of the T2-G experiments for four water-saturated sandstone samples.
A novel adaptive 3D medical image interpolation method based on shape
NASA Astrophysics Data System (ADS)
Chen, Jiaxin; Ma, Wei
2013-03-01
Image interpolation of cross-sections is one of the key steps of medical visualization. Aiming at the problem of fuzzy boundaries and large amount of calculation, which are brought by the traditional interpolation, a novel adaptive 3-D medical image interpolation method is proposed in this paper. Firstly, the contour is obtained by the edge interpolation, and the corresponding points are found according to the relation of the contour and points on the original images. Secondly, this algorithm utilizes volume relativity to get the best point-pair with the adaptive methods. Finally, the grey value of interpolation pixel is got by the matching point interpolation. The experimental results show that the method presented in the paper not only can meet the requirements of interpolation accuracy, but also can be used effectively in medical image 3D reconstruction.
[Adaptation of a method for determining serum iron after deproteinization on a parallel analyzer].
Pontézière, C; Meneguzzer, E; Succari, M; Miocque, M
1989-04-01
The study of the determination of iron in sera by a bathophenanthroline method after deproteinization, has been realized according to the protocol Valtec conceived by SFBC, after adaptation on a FP9 parallel analyzer. The critical study of this adaptation included trials of within run precision (CV of 1.25%), total precision (CV 2.29 to 4.66%) as also evaluation of analytical range: the limit of linearity is 140 mumol/l. The evaluation of inaccuracy performed with patient specimens leads to establishment of follow up norms and interpretation norms of allometry line. Our whole results are in agreement with the performance standards of the protocol for the validation of methods published by the Société Française de Biologie Clinique. Finally the described method is quick acting, reliable and very inexpensive.
ERIC Educational Resources Information Center
Walters, Amber; Long, Marilee
2012-01-01
Objective: To determine whether differences in nutrition knowledge affected how women (a high-involvement group) interpreted intrinsic cues (ingredient list) and extrinsic cues ("all natural" label) on food labels. Methods: A 2 (intrinsic cue) x 2 (extrinsic cue) x 2 (nutrition knowledge expert vs novice) within-subject factorial design…
Retrospective Revaluation of Associative Retroactive Cue Interference
Miguez, Gonzalo; Laborda, Mario A.; Miller, Ralph R.
2013-01-01
Two fear-conditioning experiments with rats assessed whether retrospective revaluation, which has been observed in cue competition (i.e., when compounded cues are followed with an outcome), can also be observed in retroactive cue interference (i.e., when different cues are reinforced in separate phases with the same outcome). Experiment 1 found that after inducing retroactive cue interference (i.e., X-outcome followed by A-outcome), nonreinforced presentations of the interfering cue (A) decreases interference with responding to the target cue (X), just as has been observed in retrospective revaluation experiments in cue competition. Using the opposite manipulation (i.e., adding reinforced presentations of A), Experiment 2 demonstrated that after inducing retroactive cue interference, additional reinforced presentations of the interfering cue (A) increases interference with responding to the target cue (X); alternatively stated, the amount of interference increases with the amount of training with the interfering cue. Thus, both types of retrospective revaluation occur in retroactive cue competition. The results are discussed in terms of the possibility that similar associative mechanisms underlie cue competition and cue interference. PMID:24142799
Global Cue Inconsistency Diminishes Learning of Cue Validity
Wang, Tony S. L.; Christie, Nicole; Howe, Piers D. L.; Little, Daniel R.
2016-01-01
In daily life, we make decisions that are associated with probabilistic outcomes (e.g., the chance of rain today). People search for and utilize information that validly predicts an outcome (i.e., we look for dark clouds to indicate the possibility of rain). In the current study (N = 107), we present a two-stage learning task that examines how participants learn and utilize predictive information within a probabilistic learning environment. In the first stage, participants select one of three cues that gives predictive information about the outcome of the second stage. Participants then use this information to predict the outcome in stage two, for which they receive feedback. Critically, only one of the three cues in stage one gives valid predictive information about the outcome in stage two. Participants must differentiate the valid from non-valid cues and select this cue on subsequent trials in order to inform their prediction of the outcome in stage two. The validity of this predictive information, however, is reinforced with varying levels of probabilistic feedback (i.e., 75, 85, 95, 100%). A second manipulation involved changing the consistency of the predictive information in stage one and the outcome in stage two. The results show that participants, with higher levels of probabilistic feedback, learned to utilize the valid cue. In inconsistent task conditions, however, participants were significantly less successful in utilizing higher validity cues. We interpret this result as implying that learning in probabilistic categorization is based on developing a representation of the task that allows for goal-directed action. PMID:27891105
Functional phase response curves: a method for understanding synchronization of adapting neurons.
Cui, Jianxia; Canavier, Carmen C; Butera, Robert J
2009-07-01
Phase response curves (PRCs) for a single neuron are often used to predict the synchrony of mutually coupled neurons. Previous theoretical work on pulse-coupled oscillators used single-pulse perturbations. We propose an alternate method in which functional PRCs (fPRCs) are generated using a train of pulses applied at a fixed delay after each spike, with the PRC measured when the phasic relationship between the stimulus and the subsequent spike in the neuron has converged. The essential information is the dependence of the recovery time from pulse onset until the next spike as a function of the delay between the previous spike and the onset of the applied pulse. Experimental fPRCs in Aplysia pacemaker neurons were different from single-pulse PRCs, principally due to adaptation. In the biological neuron, convergence to the fully adapted recovery interval was slower at some phases than that at others because the change in the effective intrinsic period due to adaptation changes the effective phase resetting in a way that opposes and slows the effects of adaptation. The fPRCs for two isolated adapting model neurons were used to predict the existence and stability of 1:1 phase-locked network activity when the two neurons were coupled. A stability criterion was derived by linearizing a coupled map based on the fPRC and the existence and stability criteria were successfully tested in two-simulated-neuron networks with reciprocal inhibition or excitation. The fPRC is the first PRC-based tool that can account for adaptation in analyzing networks of neural oscillators.
Functional Phase Response Curves: A Method for Understanding Synchronization of Adapting Neurons
Cui, Jianxia; Canavier, Carmen C.; Butera, Robert J.
2009-01-01
Phase response curves (PRCs) for a single neuron are often used to predict the synchrony of mutually coupled neurons. Previous theoretical work on pulse-coupled oscillators used single-pulse perturbations. We propose an alternate method in which functional PRCs (fPRCs) are generated using a train of pulses applied at a fixed delay after each spike, with the PRC measured when the phasic relationship between the stimulus and the subsequent spike in the neuron has converged. The essential information is the dependence of the recovery time from pulse onset until the next spike as a function of the delay between the previous spike and the onset of the applied pulse. Experimental fPRCs in Aplysia pacemaker neurons were different from single-pulse PRCs, principally due to adaptation. In the biological neuron, convergence to the fully adapted recovery interval was slower at some phases than that at others because the change in the effective intrinsic period due to adaptation changes the effective phase resetting in a way that opposes and slows the effects of adaptation. The fPRCs for two isolated adapting model neurons were used to predict the existence and stability of 1:1 phase-locked network activity when the two neurons were coupled. A stability criterion was derived by linearizing a coupled map based on the fPRC and the existence and stability criteria were successfully tested in two-simulated-neuron networks with reciprocal inhibition or excitation. The fPRC is the first PRC-based tool that can account for adaptation in analyzing networks of neural oscillators. PMID:19420126
A time-accurate adaptive grid method and the numerical simulation of a shock-vortex interaction
NASA Technical Reports Server (NTRS)
Bockelie, Michael J.; Eiseman, Peter R.
1990-01-01
A time accurate, general purpose, adaptive grid method is developed that is suitable for multidimensional steady and unsteady numerical simulations. The grid point movement is performed in a manner that generates smooth grids which resolve the severe solution gradients and the sharp transitions in the solution gradients. The temporal coupling of the adaptive grid and the PDE solver is performed with a grid prediction correction method that is simple to implement and ensures the time accuracy of the grid. Time accurate solutions of the 2-D Euler equations for an unsteady shock vortex interaction demonstrate the ability of the adaptive method to accurately adapt the grid to multiple solution features.
Identifying Biologically Relevant Cues in the Hydrologic Regime
NASA Astrophysics Data System (ADS)
Lovellford, R. M.; Flitcroft, R.; Santelmann, M. V.; Grant, G. E.; Safeeq, M.; Lewis, S.
2012-12-01
Seasonal variation in hydrologic discharge and temperature defines the availability, connectivity, and quality of lentic habitats. Native aquatic species are adapted to local hydrologic regimes , eg. magnitudes and rates of change . In recent decades, biologically relevant hydrologic conditions have been identified that are necessary to maintain habitat conditions for aquatic obligate species. Another element of hydrologic regimes important to aquatic species are the cues that inform individuals of seasonal changes that precipitate important physiological or behavioral alterations. There is a need for hydrologists, biologists, and ecologists, to define biologically significant cues within the hydrologic regime. Coho salmon (Onchorhynchus kisutch), an anadromous species of Pacific salmon, offers an example of sensitivity to environmental cues. Examinations of the run-timing of mature adult coho salmon on the North Umpqua River, OR, indicate that migration timing coincides with decreasing fall water temperatures prior to increasing winter discharge. For this species, adults leave the ocean ready to spawn. Adults need to spawn in small headwater streams prior to the onset of intense storm conditions that prohibit effective deposition or fertilization of eggs in redds (salmon nests).Therefore, the timing of spawning must be carefully executed. Understanding the cues that trigger specific behaviors gives insight to the processes that provide ecosystem stability and flexibility over time. Improved understanding of these cues may help us protect freshwater ecosystems and improve management for endangered species.
Acoustic cues to Nehiyawewin constituency
NASA Astrophysics Data System (ADS)
Cook, Clare; Muehlbauer, Jeff
2005-04-01
This study examines how speakers use acoustic cues, e.g., pitch and pausing, to establish syntactic and semantic constituents in Nehiyawewin, an Algonquian language. Two Nehiyawewin speakers autobiographies, which have been recorded, transcribed, and translated by H. C. Wolfart in collaboration with a native speaker of Nehiyawewin, provide natural-speech data for the study. Since it is difficult for a non-native-speaker to reliably distinguish Nehiyawewin constituents, an intermediary is needed. The transcription provides this intermediary through punctuation marks (commas, semi-colons, em-dashes, periods), which have been shown to consistently mark constituency structure [Nunberg, CSLI 1990]. The acoustic cues are thus mapped onto the punctuated constituents, and then similar constituents are compared to see what acoustic cues they share. Preliminarily, the clearest acoustic signal to a constituent boundary is a pitch drop preceding the boundary and/or a pitch reset on the syllable following the boundary. Further, constituent boundaries marked by a period consistently end on a low pitch, are followed by a pitch reset of 30-90 Hz and have an average pause of 1.9 seconds. I also discuss cross-speaker cues, and prosodic cues that do not correlate to punctuation, with implications for the transcriptional view of orthography [Marckwardt, Oxford 1942].
A method for online verification of adapted fields using an independent dose monitor
Chang Jina; Norrlinger, Bernhard D.; Heaton, Robert K.; Jaffray, David A.; Cho, Young-Bin; Islam, Mohammad K.; Mahon, Robert
2013-07-15
Purpose: Clinical implementation of online adaptive radiotherapy requires generation of modified fields and a method of dosimetric verification in a short time. We present a method of treatment field modification to account for patient setup error, and an online method of verification using an independent monitoring system.Methods: The fields are modified by translating each multileaf collimator (MLC) defined aperture in the direction of the patient setup error, and magnifying to account for distance variation to the marked isocentre. A modified version of a previously reported online beam monitoring system, the integral quality monitoring (IQM) system, was investigated for validation of adapted fields. The system consists of a large area ion-chamber with a spatial gradient in electrode separation to provide a spatially sensitive signal for each beam segment, mounted below the MLC, and a calculation algorithm to predict the signal. IMRT plans of ten prostate patients have been modified in response to six randomly chosen setup errors in three orthogonal directions.Results: A total of approximately 49 beams for the modified fields were verified by the IQM system, of which 97% of measured IQM signal agree with the predicted value to within 2%.Conclusions: The modified IQM system was found to be suitable for online verification of adapted treatment fields.
A multigrid method for steady Euler equations on unstructured adaptive grids
NASA Technical Reports Server (NTRS)
Riemslagh, Kris; Dick, Erik
1993-01-01
A flux-difference splitting type algorithm is formulated for the steady Euler equations on unstructured grids. The polynomial flux-difference splitting technique is used. A vertex-centered finite volume method is employed on a triangular mesh. The multigrid method is in defect-correction form. A relaxation procedure with a first order accurate inner iteration and a second-order correction performed only on the finest grid, is used. A multi-stage Jacobi relaxation method is employed as a smoother. Since the grid is unstructured a Jacobi type is chosen. The multi-staging is necessary to provide sufficient smoothing properties. The domain is discretized using a Delaunay triangular mesh generator. Three grids with more or less uniform distribution of nodes but with different resolution are generated by successive refinement of the coarsest grid. Nodes of coarser grids appear in the finer grids. The multigrid method is started on these grids. As soon as the residual drops below a threshold value, an adaptive refinement is started. The solution on the adaptively refined grid is accelerated by a multigrid procedure. The coarser multigrid grids are generated by successive coarsening through point removement. The adaption cycle is repeated a few times. Results are given for the transonic flow over a NACA-0012 airfoil.
Stabilized Conservative Level Set Method with Adaptive Wavelet-based Mesh Refinement
NASA Astrophysics Data System (ADS)
Shervani-Tabar, Navid; Vasilyev, Oleg V.
2016-11-01
This paper addresses one of the main challenges of the conservative level set method, namely the ill-conditioned behavior of the normal vector away from the interface. An alternative formulation for reconstruction of the interface is proposed. Unlike the commonly used methods which rely on the unit normal vector, Stabilized Conservative Level Set (SCLS) uses a modified renormalization vector with diminishing magnitude away from the interface. With the new formulation, in the vicinity of the interface the reinitialization procedure utilizes compressive flux and diffusive terms only in the normal direction to the interface, thus, preserving the conservative level set properties, while away from the interfaces the directional diffusion mechanism automatically switches to homogeneous diffusion. The proposed formulation is robust and general. It is especially well suited for use with adaptive mesh refinement (AMR) approaches due to need for a finer resolution in the vicinity of the interface in comparison with the rest of the domain. All of the results were obtained using the Adaptive Wavelet Collocation Method, a general AMR-type method, which utilizes wavelet decomposition to adapt on steep gradients in the solution while retaining a predetermined order of accuracy.
Contextual taste cues modulate olfactory learning in C. elegans by an occasion-setting mechanism.
Law, Eric; Nuttley, William M; van der Kooy, Derek
2004-07-27
Manipulations of context can affect learning and memory performance across species in many associative learning paradigms. Using taste cues to create distinct contexts for olfactory adaptation assays in the nematode Caenorhabditis elegans, we now show that performance in this associative learning paradigm is sensitive to context manipulations, and we investigate the mechanism(s) used for the integration of context cues in learning. One possibility is that the taste and olfactory stimuli are perceived as a combined, blended cue that the animals then associate with the unconditioned stimulus (US) in the same manner as with any other unitary conditioned stimuli (CS). Alternatively, an occasion-setting model suggests that the taste cues only define the appropriate context for olfactory memory retrieval without directly entering into the primary association. Analysis of genetic mutants demonstrated that the olfactory and context cues are sensed by distinct primary sensory neurons and that the animals' ability to use taste cues to modulate olfactory learning is independent from their ability to utilize these same taste cues for adaptation. We interpret these results as evidence for the occasion-setting mechanism in which context cues modulate primary Pavlovian association by functioning in a hierarchical manner to define the appropriate setting for memory recall.
Vivid Motor Imagery as an Adaptation Method for Head Turns on a Short-Arm Centrifuge
NASA Technical Reports Server (NTRS)
Newby, N. J.; Mast, F. W.; Natapoff, A.; Paloski, W. H.
2006-01-01
from one another. For the perceived duration of sensations, the CG group again exhibited the least amount of adaptation. However, the rates of adaptation of the PA and the MA groups were indistinguishable, suggesting that the imagined pseudostimulus appeared to be just as effective a means of adaptation as the actual stimulus. The MA group's rate of adaptation to motion sickness symptoms was also comparable to the PA group. The use of vivid motor imagery may be an effective method for adapting to the illusory sensations and motion sickness symptoms produced by cross-coupled stimuli. For space-based AG applications, this technique may prove quite useful in retaining astronauts considered highly susceptible to motion sickness as it reduces the number of actual CCS required to attain adaptation.
Adaptation of LASCA method for diagnostics of malignant tumours in laboratory animals
NASA Astrophysics Data System (ADS)
Ul'yanov, S. S.; Laskavyi, V. N.; Glova, Alina B.; Polyanina, T. I.; Ul'yanova, O. V.; Fedorova, V. A.; Ul'yanov, A. S.
2012-05-01
The LASCA method is adapted for diagnostics of malignant neoplasms in laboratory animals. Tumours are studied in mice of Balb/c inbred line after inoculation of cells of syngeneic myeloma cell line Sp.2/0 — Ag.8. The appropriateness of using the tLASCA method in tumour investigations is substantiated; its advantages in comparison with the sLASCA method are demonstrated. It is found that the most informative characteristic, indicating the presence of a tumour, is the fractal dimension of LASCA images.
Adaptive stochastic resonance method for impact signal detection based on sliding window
NASA Astrophysics Data System (ADS)
Li, Jimeng; Chen, Xuefeng; He, Zhengjia
2013-04-01
Aiming at solving the existing sharp problems in impact signal detection by using stochastic resonance (SR) in the fault diagnosis of rotating machinery, such as the measurement index selection of SR and the detection of impact signal with different impact amplitudes, the present study proposes an adaptive SR method for impact signal detection based on sliding window by analyzing the SR characteristics of impact signal. This method can not only achieve the optimal selection of system parameters by means of weighted kurtosis index constructed through using kurtosis index and correlation coefficient, but also achieve the detection of weak impact signal through the algorithm of data segmentation based on sliding window, even though the differences between different impact amplitudes are great. The algorithm flow of adaptive SR method is given and effectiveness of the method has been verified by the contrastive results between the proposed method and the traditional SR method of simulation experiments. Finally, the proposed method has been applied to a gearbox fault diagnosis in a hot strip finishing mill in which two local faults located on the pinion are obtained successfully. Therefore, it can be concluded that the proposed method is of great practical value in engineering.
NASA Astrophysics Data System (ADS)
Kim, Nakwan
Utilizing the universal approximation property of neural networks, we develop several novel approaches to neural network-based adaptive output feedback control of nonlinear systems, and illustrate these approaches for several flight control applications. In particular, we address the problem of non-affine systems and eliminate the fixed point assumption present in earlier work. All of the stability proofs are carried out in a form that eliminates an algebraic loop in the neural network implementation. An approximate input/output feedback linearizing controller is augmented with a neural network using input/output sequences of the uncertain system. These approaches permit adaptation to both parametric uncertainty and unmodeled dynamics. All physical systems also have control position and rate limits, which may either deteriorate performance or cause instability for a sufficiently high control bandwidth. Here we apply a method for protecting an adaptive process from the effects of input saturation and time delays, known as "pseudo control hedging". This method was originally developed for the state feedback case, and we provide a stability analysis that extends its domain of applicability to the case of output feedback. The approach is illustrated by the design of a pitch-attitude flight control system for a linearized model of an R-50 experimental helicopter, and by the design of a pitch-rate control system for a 58-state model of a flexible aircraft consisting of rigid body dynamics coupled with actuator and flexible modes. A new approach to augmentation of an existing linear controller is introduced. It is especially useful when there is limited information concerning the plant model, and the existing controller. The approach is applied to the design of an adaptive autopilot for a guided munition. Design of a neural network adaptive control that ensures asymptotically stable tracking performance is also addressed.
NASA Astrophysics Data System (ADS)
Sheng, Qin; Sun, Hai-wei
2016-11-01
This study concerns the asymptotic stability of an eikonal, or ray, transformation based Peaceman-Rachford splitting method for solving the paraxial Helmholtz equation with high wave numbers. Arbitrary nonuniform grids are considered in transverse and beam propagation directions. The differential equation targeted has been used for modeling propagations of high intensity laser pulses over a long distance without diffractions. Self-focusing of high intensity beams may be balanced with the de-focusing effect of created ionized plasma channel in the situation, and applications of grid adaptations are frequently essential. It is shown rigorously that the fully discretized oscillation-free decomposition method on arbitrary adaptive grids is asymptotically stable with a stability index one. Simulation experiments are carried out to illustrate our concern and conclusions.
Advanced adaptive computational methods for Navier-Stokes simulations in rotorcraft aerodynamics
NASA Technical Reports Server (NTRS)
Stowers, S. T.; Bass, J. M.; Oden, J. T.
1993-01-01
A phase 2 research and development effort was conducted in area transonic, compressible, inviscid flows with an ultimate goal of numerically modeling complex flows inherent in advanced helicopter blade designs. The algorithms and methodologies therefore are classified as adaptive methods, which are error estimation techniques for approximating the local numerical error, and automatically refine or unrefine the mesh so as to deliver a given level of accuracy. The result is a scheme which attempts to produce the best possible results with the least number of grid points, degrees of freedom, and operations. These types of schemes automatically locate and resolve shocks, shear layers, and other flow details to an accuracy level specified by the user of the code. The phase 1 work involved a feasibility study of h-adaptive methods for steady viscous flows, with emphasis on accurate simulation of vortex initiation, migration, and interaction. Phase 2 effort focused on extending these algorithms and methodologies to a three-dimensional topology.
Liu, Hui; Zhang, Cai-Ming; Su, Zhi-Yuan; Wang, Kai; Deng, Kai
2015-01-01
The key problem of computer-aided diagnosis (CAD) of lung cancer is to segment pathologically changed tissues fast and accurately. As pulmonary nodules are potential manifestation of lung cancer, we propose a fast and self-adaptive pulmonary nodules segmentation method based on a combination of FCM clustering and classification learning. The enhanced spatial function considers contributions to fuzzy membership from both the grayscale similarity between central pixels and single neighboring pixels and the spatial similarity between central pixels and neighborhood and improves effectively the convergence rate and self-adaptivity of the algorithm. Experimental results show that the proposed method can achieve more accurate segmentation of vascular adhesion, pleural adhesion, and ground glass opacity (GGO) pulmonary nodules than other typical algorithms. PMID:25945120
An a posteriori-driven adaptive Mixed High-Order method with application to electrostatics
NASA Astrophysics Data System (ADS)
Di Pietro, Daniele A.; Specogna, Ruben
2016-12-01
In this work we propose an adaptive version of the recently introduced Mixed High-Order method and showcase its performance on a comprehensive set of academic and industrial problems in computational electromagnetism. The latter include, in particular, the numerical modeling of comb-drive and MEMS devices. Mesh adaptation is driven by newly derived, residual-based error estimators. The resulting method has several advantageous features: It supports fairly general meshes, it enables arbitrary approximation orders, and has a moderate computational cost thanks to hybridization and static condensation. The a posteriori-driven mesh refinement is shown to significantly enhance the performance on problems featuring singular solutions, allowing to fully exploit the high-order of approximation.
An adaptive tau-leaping method for stochastic simulations of reaction-diffusion systems
NASA Astrophysics Data System (ADS)
Padgett, Jill M. A.; Ilie, Silvana
2016-03-01
Stochastic modelling is critical for studying many biochemical processes in a cell, in particular when some reacting species have low population numbers. For many such cellular processes the spatial distribution of the molecular species plays a key role. The evolution of spatially heterogeneous biochemical systems with some species in low amounts is accurately described by the mesoscopic model of the Reaction-Diffusion Master Equation. The Inhomogeneous Stochastic Simulation Algorithm provides an exact strategy to numerically solve this model, but it is computationally very expensive on realistic applications. We propose a novel adaptive time-stepping scheme for the tau-leaping method for approximating the solution of the Reaction-Diffusion Master Equation. This technique combines effective strategies for variable time-stepping with path preservation to reduce the computational cost, while maintaining the desired accuracy. The numerical tests on various examples arising in applications show the improved efficiency achieved by the new adaptive method.
Aitken, Tara J; Greenfield, Venuz Y; Wassum, Kate M
2016-03-01
Environmental reward-predictive stimuli provide a major source of motivation for instrumental reward-seeking activity and this has been linked to dopamine signaling in the nucleus accumbens (NAc) core. This cue-induced incentive motivation can be quite general, not restricted to instrumental actions that earn the same unique reward, and is also typically regulated by one's current need state, such that cues only motivate actions when this is adaptive. But it remains unknown whether cue-evoked dopamine signaling is similarly regulated by need state. Here, we used fast-scan cyclic voltammetry to monitor dopamine concentration changes in the NAc core of rats during a Pavlovian-to-instrumental transfer task in which the motivating influence of two cues, each signaling a distinct food reward (sucrose or food pellets), over an action earning a third unique food reward (polycose) was assessed in a state of hunger and of satiety. Both cues elicited a robust NAc dopamine response when hungry. The magnitude of the sucrose cue-evoked dopamine response correlated with the Pavlovian-to-instrumental transfer effect that was selectively induced by this stimulus. Satiety attenuated these cue-evoked dopamine responses and behavioral responding, even though rats had never experienced the specific food rewards in this state. These data demonstrate that cue-evoked NAc core responses are sensitive to current need state, one critical variable that determines the current adaptive utility of cue-motivated behavior. Food-predictive stimuli motivate food-seeking behavior. Here, we show that food cues evoke a robust nucleus accumbens core dopamine response when hungry that correlates with the cue's ability to invigorate general food seeking. This response is attenuated when sated, demonstrating that food cue-evoked accumbens dopamine responses are sensitive to the need state information that determines the current adaptive utility of cue-motivated action.
System and method for adaptively deskewing parallel data signals relative to a clock
Jenkins, Philip Nord; Cornett, Frank N.
2008-10-07
A system and method of reducing skew between a plurality of signals transmitted with a transmit clock is described. Skew is detected between the received transmit clock and each of received data signals. Delay is added to the clock or to one or more of the plurality of data signals to compensate for the detected skew. The delay added to each of the plurality of delayed signals is updated to adapt to changes in detected skew.
System and method for adaptively deskewing parallel data signals relative to a clock
Jenkins, Philip Nord; Cornett, Frank N
2011-10-04
A system and method of reducing skew between a plurality of signals transmitted with a transmit clock is described. Skew is detected between the received transmit clock and each of received data signals. Delay is added to the clock or to one or more of the plurality of data signals to compensate for the detected skew. The delay added to each of the plurality of delayed signals is updated to adapt to changes in detected skew.
A Mass Conservation Algorithm for Adaptive Unrefinement Meshes Used by Finite Element Methods
2012-01-01
dimensional mesh generation. In: Proc. 4th ACM-SIAM Symp. on Disc. Algorithms. (1993) 83–92 [9] Weatherill, N., Hassan, O., Marcum, D., Marchant, M.: Grid ...Conference on Computational Science, ICCS 2012 A Mass Conservation Algorithm For Adaptive Unrefinement Meshes Used By Finite Element Methods Hung V. Nguyen...velocity fields, and chemical distribution, as well as conserve mass, especially for water quality applications. Solution accuracy depends highly on mesh
Cox-Davenport, Rebecca A; Phelan, Julia C
2015-05-01
First-time NCLEX-RN pass rates are an important indicator of nursing school success and quality. Nursing schools use different methods to anticipate NCLEX outcomes and help prevent student failure and possible threat to accreditation. This study evaluated the impact of a shift in NCLEX preparation policy at a BSN program in the southeast United States. The policy shifted from the use of predictor score thresholds to determine graduation eligibility to a more proactive remediation strategy involving adaptive quizzing. A descriptive correlational design evaluated the impact of an adaptive quizzing system designed to give students ongoing active practice and feedback and explored the relationship between predictor examinations and NCLEX success. Data from student usage of the system as well as scores on predictor tests were collected for three student cohorts. Results revealed a positive correlation between adaptive quizzing system usage and content mastery. Two of the 69 students in the sample did not pass the NCLEX. With so few students failing the NCLEX, predictability of any course variables could not be determined. The power of predictor examinations to predict NCLEX failure could also not be supported. The most consistent factor among students, however, was their content mastery level within the adaptive quizzing system. Implications of these findings are discussed.
Anderson, R W; Pember, R B; Elliot, N S
2000-09-26
A new method for the solution of the unsteady Euler equations has been developed. The method combines staggered grid Lagrangian techniques with structured local adaptive mesh refinement (AMR). This method is a precursor to a more general adaptive arbitrary Lagrangian Eulerian (ALE-AMR) algorithm under development, which will facilitate the solution of problems currently at and beyond the boundary of soluble problems by traditional ALE methods by focusing computational resources where they are required. Many of the core issues involved in the development of the ALE-AMR method hinge upon the integration of AMR with a Lagrange step, which is the focus of the work described here. The novel components of the method are mainly driven by the need to reconcile traditional AMR techniques, which are typically employed on stationary meshes with cell-centered quantities, with the staggered grids and grid motion employed by Lagrangian methods. These new algorithmic components are first developed in one dimension and are then generalized to two dimensions. Solutions of several model problems involving shock hydrodynamics are presented and discussed.
NASA Astrophysics Data System (ADS)
Pedretti, Daniele; Fernàndez-Garcia, Daniel
2013-09-01
Particle tracking methods to simulate solute transport deal with the issue of having to reconstruct smooth concentrations from a limited number of particles. This is an error-prone process that typically leads to large fluctuations in the determined late-time behavior of breakthrough curves (BTCs). Kernel density estimators (KDE) can be used to automatically reconstruct smooth BTCs from a small number of particles. The kernel approach incorporates the uncertainty associated with subsampling a large population by equipping each particle with a probability density function. Two broad classes of KDE methods can be distinguished depending on the parametrization of this function: global and adaptive methods. This paper shows that each method is likely to estimate a specific portion of the BTCs. Although global methods offer a valid approach to estimate early-time behavior and peak of BTCs, they exhibit important fluctuations at the tails where fewer particles exist. In contrast, locally adaptive methods improve tail estimation while oversmoothing both early-time and peak concentrations. Therefore a new method is proposed combining the strength of both KDE approaches. The proposed approach is universal and only needs one parameter (α) which slightly depends on the shape of the BTCs. Results show that, for the tested cases, heavily-tailed BTCs are properly reconstructed with α ≈ 0.5 .
Adaptive reproducing kernel particle method for extraction of the cortical surface.
Xu, Meihe; Thompson, Paul M; Toga, Arthur W
2006-06-01
We propose a novel adaptive approach based on the Reproducing Kernel Particle Method (RKPM) to extract the cortical surfaces of the brain from three-dimensional (3-D) magnetic resonance images (MRIs). To formulate the discrete equations of the deformable model, a flexible particle shape function is employed in the Galerkin approximation of the weak form of the equilibrium equations. The proposed support generation method ensures that support of all particles cover the entire computational domains. The deformable model is adaptively adjusted by dilating the shape function and by inserting or merging particles in the high curvature regions or regions stopped by the target boundary. The shape function of the particle with a dilation parameter is adaptively constructed in response to particle insertion or merging. The proposed method offers flexibility in representing highly convolved structures and in refining the deformable models. Self-intersection of the surface, during evolution, is prevented by tracing backward along gradient descent direction from the crest interface of the distance field, which is computed by fast marching. These operations involve a significant computational cost. The initial model for the deformable surface is simple and requires no prior knowledge of the segmented structure. No specific template is required, e.g., an average cortical surface obtained from many subjects. The extracted cortical surface efficiently localizes the depths of the cerebral sulci, unlike some other active surface approaches that penalize regions of high curvature. Comparisons with manually segmented landmark data are provided to demonstrate the high accuracy of the proposed method. We also compare the proposed method to the finite element method, and to a commonly used cortical surface extraction approach, the CRUISE method. We also show that the independence of the shape functions of the RKPM from the underlying mesh enhances the convergence speed of the deformable
Gaudio, Jennifer L; Snowdon, Charles T
2008-11-01
Animals living in stable home ranges have many potential cues to locate food. Spatial and color cues are important for wild Callitrichids (marmosets and tamarins). Field studies have assigned the highest priority to distal spatial cues for determining the location of food resources with color cues serving as a secondary cue to assess relative ripeness, once a food source is located. We tested two hypotheses with captive cotton-top tamarins: (a) Tamarins will demonstrate higher rates of initial learning when rewarded for attending to spatial cues versus color cues. (b) Tamarins will show higher rates of correct responses when transferred from color cues to spatial cues than from spatial cues to color cues. The results supported both hypotheses. Tamarins rewarded based on spatial location made significantly more correct choices and fewer errors than tamarins rewarded based on color cues during initial learning. Furthermore, tamarins trained on color cues showed significantly increased correct responses and decreased errors when cues were reversed to reward spatial cues. Subsequent reversal to color cues induced a regression in performance. For tamarins spatial cues appear more salient than color cues in a foraging task.
Daneshmand, Saeed; Marathe, Thyagaraja; Lachapelle, Gérard
2016-10-31
The use of antenna arrays in Global Navigation Satellite System (GNSS) applications is gaining significant attention due to its superior capability to suppress both narrowband and wideband interference. However, the phase distortions resulting from array processing may limit the applicability of these methods for high precision applications using carrier phase based positioning techniques. This paper studies the phase distortions occurring with the adaptive blind beamforming method in which satellite angle of arrival (AoA) information is not employed in the optimization problem. To cater to non-stationary interference scenarios, the array weights of the adaptive beamformer are continuously updated. The effects of these continuous updates on the tracking parameters of a GNSS receiver are analyzed. The second part of this paper focuses on reducing the phase distortions during the blind beamforming process in order to allow the receiver to perform carrier phase based positioning by applying a constraint on the structure of the array configuration and by compensating the array uncertainties. Limitations of the previous methods are studied and a new method is proposed that keeps the simplicity of the blind beamformer structure and, at the same time, reduces tracking degradations while achieving millimetre level positioning accuracy in interference environments. To verify the applicability of the proposed method and analyze the degradations, array signals corresponding to the GPS L1 band are generated using a combination of hardware and software simulators. Furthermore, the amount of degradation and performance of the proposed method under different conditions are evaluated based on Monte Carlo simulations.
Daneshmand, Saeed; Marathe, Thyagaraja; Lachapelle, Gérard
2016-01-01
The use of antenna arrays in Global Navigation Satellite System (GNSS) applications is gaining significant attention due to its superior capability to suppress both narrowband and wideband interference. However, the phase distortions resulting from array processing may limit the applicability of these methods for high precision applications using carrier phase based positioning techniques. This paper studies the phase distortions occurring with the adaptive blind beamforming method in which satellite angle of arrival (AoA) information is not employed in the optimization problem. To cater to non-stationary interference scenarios, the array weights of the adaptive beamformer are continuously updated. The effects of these continuous updates on the tracking parameters of a GNSS receiver are analyzed. The second part of this paper focuses on reducing the phase distortions during the blind beamforming process in order to allow the receiver to perform carrier phase based positioning by applying a constraint on the structure of the array configuration and by compensating the array uncertainties. Limitations of the previous methods are studied and a new method is proposed that keeps the simplicity of the blind beamformer structure and, at the same time, reduces tracking degradations while achieving millimetre level positioning accuracy in interference environments. To verify the applicability of the proposed method and analyze the degradations, array signals corresponding to the GPS L1 band are generated using a combination of hardware and software simulators. Furthermore, the amount of degradation and performance of the proposed method under different conditions are evaluated based on Monte Carlo simulations. PMID:27809252
Atzberger, Paul J.
2010-05-01
Stochastic partial differential equations are introduced for the continuum concentration fields of reaction-diffusion systems. The stochastic partial differential equations account for fluctuations arising from the finite number of molecules which diffusively migrate and react. Spatially adaptive stochastic numerical methods are developed for approximation of the stochastic partial differential equations. The methods allow for adaptive meshes with multiple levels of resolution, Neumann and Dirichlet boundary conditions, and domains having geometries with curved boundaries. A key issue addressed by the methods is the formulation of consistent discretizations for the stochastic driving fields at coarse-refined interfaces of the mesh and at boundaries. Methods are also introduced for the efficient generation of the required stochastic driving fields on such meshes. As a demonstration of the methods, investigations are made of the role of fluctuations in a biological model for microorganism direction sensing based on concentration gradients. Also investigated, a mechanism for spatial pattern formation induced by fluctuations. The discretization approaches introduced for SPDEs have the potential to be widely applicable in the development of numerical methods for the study of spatially extended stochastic systems.
Young, Eric D.
2011-01-01
Previous studies have demonstrated that single neurons in the central nucleus of the inferior colliculus (ICC) are sensitive to multiple sound localization cues. We investigated the hypothesis that ICC neurons are specialized to encode multiple sound localization cues that are aligned in space (as would naturally occur from a single broadband sound source). Sound localization cues including interaural time differences (ITDs), interaural level differences (ILDs), and spectral shapes (SSs) were measured in a marmoset monkey. Virtual space methods were used to generate stimuli with aligned and misaligned combinations of cues while recording in the ICC of the same monkey. Mutual information (MI) between spike rates and stimuli for aligned versus misaligned cues were compared. Neurons with best frequencies (BFs) less than ∼11 kHz mostly encoded information about a single sound localization cue, ITD or ILD depending on frequency, consistent with the dominance of ear acoustics by either ITD or ILD at those frequencies. Most neurons with BFs >11 kHz encoded information about multiple sound localization cues, usually ILD and SS, and were sensitive to their alignment. In some neurons MI between stimuli and spike responses was greater for aligned cues, while in others it was greater for misaligned cues. If SS cues were shifted to lower frequencies in the virtual space stimuli, a similar result was found for neurons with BFs <11 kHz, showing that the cue interaction reflects the spectra of the stimuli and not a specialization for representing SS cues. In general the results show that ICC neurons are sensitive to multiple localization cues if they are simultaneously present in the frequency response area of the neuron. However, the representation is diffuse in that there is not a specialization in the ICC for encoding aligned sound localization cues. PMID:21653729
Cue Reactivity Is Associated with Duration and Severity of Alcohol Dependence: An fMRI Study
Sjoerds, Zsuzsika; van den Brink, Wim; Beekman, Aartjan T. F.; Penninx, Brenda W. J. H.; Veltman, Dick J.
2014-01-01
Introduction With the progression of substance dependence, drug cue-related brain activation is thought to shift from motivational towards habit pathways. However, a direct association between cue-induced brain activation and dependence duration has not yet been shown. We therefore examined the relationship between alcohol cue-reactivity in the brain, cue-induced subjective craving and alcohol dependence duration and severity. Since alcohol dependence is highly comorbid with depression/anxiety, which may modulate brain responses to alcohol cues, we also examined the relation between comorbid depression/anxiety and cue-reactivity. Methods We compared 30 alcohol dependent patients with 15 healthy controls and 15 depression/anxiety patients during a visual alcohol cue-reactivity task using functional magnetic resonance imaging blood oxygenated level-dependent responses and subjective craving as outcomes. Within the alcohol dependent group we correlated cue-reactivity with alcohol dependence severity and duration, with cue-induced craving and with depression/anxiety levels. Results Alcohol dependent patients showed greater cue-reactivity in motivational brain pathways and stronger subjective craving than depression/anxiety patients and healthy controls. Depression/anxiety was not associated with cue-reactivity, but depression severity in alcohol dependent patients was positively associated with craving. Within alcohol dependence, longer duration of alcohol dependence was associated with stronger cue-related activation of the posterior putamen, a structure involved in habits, whereas higher alcohol dependence severity was associated with lower cue-reactivity in the anterior putamen, an area implicated in goal-directed behavior preceding habit formation. Conclusion Cue-reactivity in alcohol dependence is not modulated by comorbid depression or anxiety. More importantly, the current data confirm the hypothesis of a ventral to dorsal striatal shift of learning processes
Augmented Reality Cues and Elderly Driver Hazard Perception
Schall, Mark C.; Rusch, Michelle L.; Lee, John D.; Dawson, Jeffrey D.; Thomas, Geb; Aksan, Nazan; Rizzo, Matthew
2013-01-01
Objective Evaluate the effectiveness of augmented reality (AR) cues in improving driving safety in elderly drivers who are at increased crash risk due to cognitive impairments. Background Cognitively challenging driving environments pose a particular crash risk for elderly drivers. AR cueing is a promising technology to mitigate risk by directing driver attention to roadway hazards. This study investigates whether AR cues improve or interfere with hazard perception in elderly drivers with age-related cognitive decline. Methods Twenty elderly (Mean= 73 years, SD= 5 years), licensed drivers with a range of cognitive abilities measured by a speed of processing (SOP) composite participated in a one-hour drive in an interactive, fixed-base driving simulator. Each participant drove through six, straight, six-mile-long rural roadway scenarios following a lead vehicle. AR cues directed attention to potential roadside hazards in three of the scenarios, and the other three were uncued (baseline) drives. Effects of AR cueing were evaluated with respect to: 1) detection of hazardous target objects, 2) interference with detecting nonhazardous secondary objects, and 3) impairment in maintaining safe distance behind a lead vehicle. Results AR cueing improved the detection of hazardous target objects of low visibility. AR cues did not interfere with detection of nonhazardous secondary objects and did not impair ability to maintain safe distance behind a lead vehicle. SOP capacity did not moderate those effects. Conclusion AR cues show promise for improving elderly driver safety by increasing hazard detection likelihood without interfering with other driving tasks such as maintaining safe headway. PMID:23829037
NASA Astrophysics Data System (ADS)
Abedini, Mohammad; Nojoumian, Mohammad Ali; Salarieh, Hassan; Meghdari, Ali
2015-08-01
In this paper, model reference control of a fractional order system has been discussed. In order to control the fractional order plant, discrete-time approximation methods have been applied. Plant and reference model are discretized by Grünwald-Letnikov definition of the fractional order derivative using "Short Memory Principle". Unknown parameters of the fractional order system are appeared in the discrete time approximate model as combinations of parameters of the main system. The discrete time MRAC via RLS identification is modified to estimate the parameters and control the fractional order plant. Numerical results show the effectiveness of the proposed method of model reference adaptive control.
Souza-Junior, Eduardo José; de Souza-Régis, Marcos Ribeiro; Alonso, Roberta Caroline Bruschi; de Freitas, Anderson Pinheiro; Sinhoreti, Mario Alexandre Coelho; Cunha, Leonardo Gonçalves
2011-01-01
The aim of the present study was to evaluate the influence of curing methods and composite volumes on the marginal and internal adaptation of composite restoratives. Two cavities with different volumes (Lower volume: 12.6 mm(3); Higher volume: 24.5 mm(3)) were prepared on the buccal surface of 60 bovine teeth and restored using Filtek Z250 in bulk filling. For each cavity, specimens were randomly assigned into three groups according to the curing method (n=10): 1) continuous light (CL: 27 seconds at 600 mW/cm(2)); 2) soft-start (SS: 10 seconds at 150 mW/cm(2)+24 seconds at 600 mW/cm(2)); and 3) pulse delay (PD: five seconds at 150 mW/cm(2)+three minutes with no light+25 seconds at 600 mW/cm(2)). The radiant exposure for all groups was 16 J/cm(2). Marginal adaptation was measured with the dye staining gap procedure, using Caries Detector. Outer margins were stained for five seconds and the gap percentage was determined using digital images on a computer measurement program (Image Tool). Then, specimens were sectioned in slices and stained for five seconds, and the internal gaps were measured using the same method. Data were submitted to two-way analysis of variance and Tukey test (p<0.05). Composite volume had a significant influence on superficial and internal gap formation, depending on the curing method. For CL groups, restorations with higher volume showed higher marginal gap incidence than did the lower volume restorations. Additionally, the effect of the curing method depended on the volume. Regarding marginal adaptation, SS resulted in a significant reduction of gap formation, when compared to CL, for higher volume restorations. For lower volume restorations, there was no difference among the curing methods. For internal adaptation, the modulated curing methods SS and PD promoted a significant reduction of gap formation, when compared to CL, only for the lower volume restoration. Therefore, in similar conditions of the cavity configuration, the higher the
Selective acoustic cues for French voiceless stop consonants.
Bonneau, Anne; Laprie, Yves
2008-06-01
The objective of this study is to define selective cues that identify only certain realizations of a feature, more precisely the place of articulation of French unvoiced stops, but have every realization identified with a very high level of confidence. The method is based on the delimitation of "distinctive regions" for well chosen acoustic criteria, which contains some exemplars of a feature and (almost) no other exemplar of any other feature in competition. Selective cues, which correspond to distinctive regions, must not be combined with less reliable acoustic cues and their evaluation should be done on reliable elementary acoustic detector outputs. A set of selective cues has been defined for the identification of the place of /p,t,k/, and then tested on a corpus of sentences. The cues were estimated from formant transitions and the transient segment (an automatic segmentation of the transient part of the burst has been designed). About 38% of the feature realizations have been identified by selective cues on the basis of their very distinctive patterns. The error rate, which constitutes the crucial test of our approach, was 0.7%. This opens the way to interesting applications for the improvement of oral comprehension, lexical access, or automatic speech recognition.
Differential effectiveness of cues in informational masking studies
NASA Astrophysics Data System (ADS)
Richards, Virginia M.; Huang, Rong; Kidd, Gerald
2001-05-01
For the detection of a tone added to random multitone maskers, playing a preview of the masker before detection trials can reduce thresholds compared to when there is no preview. In contrast, playing a preview of the signal-plus-masker does not provide a release from masking. This differential effectiveness of cues was examined in several conditions. Using the method of constant stimuli and a yes/no task, observers detected a 1000-Hz tone added to six-tone maskers. Prior to each trial, the frequencies of the masker components were randomly drawn. Two types of cues were tested, either a copy of the masker or a copy of the signal-plus-masker. The cues were presented either before or after the yes/no presentation interval. Finally, data were collected either blocked for each condition or the trials from the four conditions were interleaved. D-prime values were higher when the conditions were blocked than when they were interleaved. The pattern of results was the same in both situations; d was highest for pretrial masker cues, lowest for pretrial signal-plus-masker cues, and intermediate when either cue followed the trial interval. [Work supported by NIH/NIDCD.
An Adaptive INS-Aided PLL Tracking Method for GNSS Receivers in Harsh Environments.
Cong, Li; Li, Xin; Jin, Tian; Yue, Song; Xue, Rui
2016-01-23
As the weak link in global navigation satellite system (GNSS) signal processing, the phase-locked loop (PLL) is easily influenced with frequent cycle slips and loss of lock as a result of higher vehicle dynamics and lower signal-to-noise ratios. With inertial navigation system (INS) aid, PLLs' tracking performance can be improved. However, for harsh environments with high dynamics and signal attenuation, the traditional INS-aided PLL with fixed loop parameters has some limitations to improve the tracking adaptability. In this paper, an adaptive INS-aided PLL capable of adjusting its noise bandwidth and coherent integration time has been proposed. Through theoretical analysis, the relation between INS-aided PLL phase tracking error and carrier to noise density ratio (C/N₀), vehicle dynamics, aiding information update time, noise bandwidth, and coherent integration time has been built. The relation formulae are used to choose the optimal integration time and bandwidth for a given application under the minimum tracking error criterion. Software and hardware simulation results verify the correctness of the theoretical analysis, and demonstrate that the adaptive tracking method can effectively improve the PLL tracking ability and integrated GNSS/INS navigation performance. For harsh environments, the tracking sensitivity is increased by 3 to 5 dB, velocity errors are decreased by 36% to 50% and position errors are decreased by 6% to 24% when compared with other INS-aided PLL methods.
Classical FEM-BEM coupling methods: nonlinearities, well-posedness, and adaptivity
NASA Astrophysics Data System (ADS)
Aurada, Markus; Feischl, Michael; Führer, Thomas; Karkulik, Michael; Melenk, Jens Markus; Praetorius, Dirk
2013-04-01
We consider a (possibly) nonlinear interface problem in 2D and 3D, which is solved by use of various adaptive FEM-BEM coupling strategies, namely the Johnson-Nédélec coupling, the Bielak-MacCamy coupling, and Costabel's symmetric coupling. We provide a framework to prove that the continuous as well as the discrete Galerkin solutions of these coupling methods additionally solve an appropriate operator equation with a Lipschitz continuous and strongly monotone operator. Therefore, the original coupling formulations are well-defined, and the Galerkin solutions are quasi-optimal in the sense of a Céa-type lemma. For the respective Galerkin discretizations with lowest-order polynomials, we provide reliable residual-based error estimators. Together with an estimator reduction property, we prove convergence of the adaptive FEM-BEM coupling methods. A key point for the proof of the estimator reduction are novel inverse-type estimates for the involved boundary integral operators which are advertized. Numerical experiments conclude the work and compare performance and effectivity of the three adaptive coupling procedures in the presence of generic singularities.
Parallel level-set methods on adaptive tree-based grids
NASA Astrophysics Data System (ADS)
Mirzadeh, Mohammad; Guittet, Arthur; Burstedde, Carsten; Gibou, Frederic
2016-10-01
We present scalable algorithms for the level-set method on dynamic, adaptive Quadtree and Octree Cartesian grids. The algorithms are fully parallelized and implemented using the MPI standard and the open-source p4est library. We solve the level set equation with a semi-Lagrangian method which, similar to its serial implementation, is free of any time-step restrictions. This is achieved by introducing a scalable global interpolation scheme on adaptive tree-based grids. Moreover, we present a simple parallel reinitialization scheme using the pseudo-time transient formulation. Both parallel algorithms scale on the Stampede supercomputer, where we are currently using up to 4096 CPU cores, the limit of our current account. Finally, a relevant application of the algorithms is presented in modeling a crystallization phenomenon by solving a Stefan problem, illustrating a level of detail that would be impossible to achieve without a parallel adaptive strategy. We believe that the algorithms presented in this article will be of interest and useful to researchers working with the level-set framework and modeling multi-scale physics in general.
An Adaptive INS-Aided PLL Tracking Method for GNSS Receivers in Harsh Environments
Cong, Li; Li, Xin; Jin, Tian; Yue, Song; Xue, Rui
2016-01-01
As the weak link in global navigation satellite system (GNSS) signal processing, the phase-locked loop (PLL) is easily influenced with frequent cycle slips and loss of lock as a result of higher vehicle dynamics and lower signal-to-noise ratios. With inertial navigation system (INS) aid, PLLs’ tracking performance can be improved. However, for harsh environments with high dynamics and signal attenuation, the traditional INS-aided PLL with fixed loop parameters has some limitations to improve the tracking adaptability. In this paper, an adaptive INS-aided PLL capable of adjusting its noise bandwidth and coherent integration time has been proposed. Through theoretical analysis, the relation between INS-aided PLL phase tracking error and carrier to noise density ratio (C/N0), vehicle dynamics, aiding information update time, noise bandwidth, and coherent integration time has been built. The relation formulae are used to choose the optimal integration time and bandwidth for a given application under the minimum tracking error criterion. Software and hardware simulation results verify the correctness of the theoretical analysis, and demonstrate that the adaptive tracking method can effectively improve the PLL tracking ability and integrated GNSS/INS navigation performance. For harsh environments, the tracking sensitivity is increased by 3 to 5 dB, velocity errors are decreased by 36% to 50% and position errors are decreased by 6% to 24% when compared with other INS-aided PLL methods. PMID:26805853
Lee, W H; Kim, T-S; Cho, M H; Ahn, Y B; Lee, S Y
2006-12-07
In studying bioelectromagnetic problems, finite element analysis (FEA) offers several advantages over conventional methods such as the boundary element method. It allows truly volumetric analysis and incorporation of material properties such as anisotropic conductivity. For FEA, mesh generation is the first critical requirement and there exist many different approaches. However, conventional approaches offered by commercial packages and various algorithms do not generate content-adaptive meshes (cMeshes), resulting in numerous nodes and elements in modelling the conducting domain, and thereby increasing computational load and demand. In this work, we present efficient content-adaptive mesh generation schemes for complex biological volumes of MR images. The presented methodology is fully automatic and generates FE meshes that are adaptive to the geometrical contents of MR images, allowing optimal representation of conducting domain for FEA. We have also evaluated the effect of cMeshes on FEA in three dimensions by comparing the forward solutions from various cMesh head models to the solutions from the reference FE head model in which fine and equidistant FEs constitute the model. The results show that there is a significant gain in computation time with minor loss in numerical accuracy. We believe that cMeshes should be useful in the FEA of bioelectromagnetic problems.
NASA Astrophysics Data System (ADS)
Lee, W. H.; Kim, T.-S.; Cho, M. H.; Ahn, Y. B.; Lee, S. Y.
2006-12-01
In studying bioelectromagnetic problems, finite element analysis (FEA) offers several advantages over conventional methods such as the boundary element method. It allows truly volumetric analysis and incorporation of material properties such as anisotropic conductivity. For FEA, mesh generation is the first critical requirement and there exist many different approaches. However, conventional approaches offered by commercial packages and various algorithms do not generate content-adaptive meshes (cMeshes), resulting in numerous nodes and elements in modelling the conducting domain, and thereby increasing computational load and demand. In this work, we present efficient content-adaptive mesh generation schemes for complex biological volumes of MR images. The presented methodology is fully automatic and generates FE meshes that are adaptive to the geometrical contents of MR images, allowing optimal representation of conducting domain for FEA. We have also evaluated the effect of cMeshes on FEA in three dimensions by comparing the forward solutions from various cMesh head models to the solutions from the reference FE head model in which fine and equidistant FEs constitute the model. The results show that there is a significant gain in computation time with minor loss in numerical accuracy. We believe that cMeshes should be useful in the FEA of bioelectromagnetic problems.
Pulse front adaptive optics: a new method for control of ultrashort laser pulses.
Sun, Bangshan; Salter, Patrick S; Booth, Martin J
2015-07-27
Ultrafast lasers enable a wide range of physics research and the manipulation of short pulses is a critical part of the ultrafast tool kit. Current methods of laser pulse shaping are usually considered separately in either the spatial or the temporal domain, but laser pulses are complex entities existing in four dimensions, so full freedom of manipulation requires advanced forms of spatiotemporal control. We demonstrate through a combination of adaptable diffractive and reflective optical elements - a liquid crystal spatial light modulator (SLM) and a deformable mirror (DM) - decoupled spatial control over the pulse front (temporal group delay) and phase front of an ultra-short pulse was enabled. Pulse front modulation was confirmed through autocorrelation measurements. This new adaptive optics technique, for the first time enabling in principle arbitrary shaping of the pulse front, promises to offer a further level of control for ultrafast lasers.
A DAFT DL_POLY distributed memory adaptation of the Smoothed Particle Mesh Ewald method
NASA Astrophysics Data System (ADS)
Bush, I. J.; Todorov, I. T.; Smith, W.
2006-09-01
The Smoothed Particle Mesh Ewald method [U. Essmann, L. Perera, M.L. Berkowtz, T. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103 (1995) 8577] for calculating long ranged forces in molecular simulation has been adapted for the parallel molecular dynamics code DL_POLY_3 [I.T. Todorov, W. Smith, Philos. Trans. Roy. Soc. London 362 (2004) 1835], making use of a novel 3D Fast Fourier Transform (DAFT) [I.J. Bush, The Daresbury Advanced Fourier transform, Daresbury Laboratory, 1999] that perfectly matches the Domain Decomposition (DD) parallelisation strategy [W. Smith, Comput. Phys. Comm. 62 (1991) 229; M.R.S. Pinches, D. Tildesley, W. Smith, Mol. Sim. 6 (1991) 51; D. Rapaport, Comput. Phys. Comm. 62 (1991) 217] of the DL_POLY_3 code. In this article we describe software adaptations undertaken to import this functionality and provide a review of its performance.
An adaptive two-stage dose-response design method for establishing Proof of Concept
Franchetti, Yoko; Anderson, Stewart J.; Sampson, Allan R.
2013-01-01
We propose an adaptive two-stage dose-response design where a pre-specified adaptation rule is used to add and/or drop treatment arms between the stages. We extend the multiple comparison procedures-modeling (MCP-Mod) approach into a two-stage design. In each stage, we use the same set of candidate dose-response models and test for a dose-response relationship or proof of concept (PoC) via model-associated statistics. The stage-wise test results are then combined to establish ‘global’ PoC using a conditional error function. Our simulation studies showed good and more robust power in our design method compared to conventional and fixed designs. PMID:23957520
Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods
NASA Astrophysics Data System (ADS)
Bause, M.; Knabner, P.
2004-06-01
We present adaptive mixed hybrid finite element discretizations of the Richards equation, a nonlinear parabolic partial differential equation modeling the flow of water into a variably saturated porous medium. The approach simultaneously constructs approximations of the flux and the pressure head in Raviart-Thomas spaces. The resulting nonlinear systems of equations are solved by a Newton method. For the linear problems of the Newton iteration a multigrid algorithm is used. We consider two different kinds of error indicators for space adaptive grid refinement: superconvergence and residual based indicators. They can be calculated easily by means of the available finite element approximations. This seems attractive for computations since no additional (sub-)problems have to be solved. Computational experiments conducted for realistic water table recharge problems illustrate the effectiveness and robustness of the approach.
ERIC Educational Resources Information Center
Buller, David B.
A study was conducted to examine the presence and composition of nonverbal cues exhibited in a spontaneous dyadic interaction and to investigate the assumption that cue variation is inconsequential to the effect of nonverbal behavior implicit in methods that aggregate cue incidence across interactions. Subjects, 110 college undergraduates, worked…
An adaptive segment method for smoothing lidar signal based on noise estimation
NASA Astrophysics Data System (ADS)
Wang, Yuzhao; Luo, Pingping
2014-10-01
An adaptive segmentation smoothing method (ASSM) is introduced in the paper to smooth the signal and suppress the noise. In the ASSM, the noise is defined as the 3σ of the background signal. An integer number N is defined for finding the changing positions in the signal curve. If the difference of adjacent two points is greater than 3Nσ, the position is recorded as an end point of the smoothing segment. All the end points detected as above are recorded and the curves between them will be smoothed separately. In the traditional method, the end points of the smoothing windows in the signals are fixed. The ASSM creates changing end points in different signals and the smoothing windows could be set adaptively. The windows are always set as the half of the segmentations and then the average smoothing method will be applied in the segmentations. The Iterative process is required for reducing the end-point aberration effect in the average smoothing method and two or three times are enough. In ASSM, the signals are smoothed in the spacial area nor frequent area, that means the frequent disturbance will be avoided. A lidar echo was simulated in the experimental work. The echo was supposed to be created by a space-born lidar (e.g. CALIOP). And white Gaussian noise was added to the echo to act as the random noise resulted from environment and the detector. The novel method, ASSM, was applied to the noisy echo to filter the noise. In the test, N was set to 3 and the Iteration time is two. The results show that, the signal could be smoothed adaptively by the ASSM, but the N and the Iteration time might be optimized when the ASSM is applied in a different lidar.
Adaptive Projection Subspace Dimension for the Thick-Restart Lanczos Method
Yamazaki, Ichitaro; Bai, Zhaojun; Simon, Horst; Wang, Lin-Wang; Wu, K.
2008-10-01
The Thick-Restart Lanczos (TRLan) method is an effective method for solving large-scale Hermitian eigenvalue problems. However, its performance strongly depends on the dimension of the projection subspace. In this paper, we propose an objective function to quantify the effectiveness of a chosen subspace dimension, and then introduce an adaptive scheme to dynamically adjust the dimension at each restart. An open-source software package, nu-TRLan, which implements the TRLan method with this adaptive projection subspace dimension is available in the public domain. The numerical results of synthetic eigenvalue problems are presented to demonstrate that nu-TRLan achieves speedups of between 0.9 and 5.1 over the static method using a default subspace dimension. To demonstrate the effectiveness of nu-TRLan in a real application, we apply it to the electronic structure calculations of quantum dots. We show that nu-TRLan can achieve speedups of greater than 1.69 over the state-of-the-art eigensolver for this application, which is based on the Conjugate Gradient method with a powerful preconditioner.
Cen, Guanjun; Yu, Yonghao; Zeng, Xianru; Long, Xiuzhen; Wei, Dewei; Gao, Xuyuan; Zeng, Tao
2015-01-01
In insects, the frequency distribution of the measurements of sclerotized body parts is generally used to classify larval instars and is characterized by a multimodal overlap between instar stages. Nonparametric methods with fixed bandwidths, such as histograms, have significant limitations when used to fit this type of distribution, making it difficult to identify divisions between instars. Fixed bandwidths have also been chosen somewhat subjectively in the past, which is another problem. In this study, we describe an adaptive kernel smoothing method to differentiate instars based on discontinuities in the growth rates of sclerotized insect body parts. From Brooks' rule, we derived a new standard for assessing the quality of instar classification and a bandwidth selector that more accurately reflects the distributed character of specific variables. We used this method to classify the larvae of Austrosimulium tillyardianum (Diptera: Simuliidae) based on five different measurements. Based on head capsule width and head capsule length, the larvae were separated into nine instars. Based on head capsule postoccipital width and mandible length, the larvae were separated into 8 instars and 10 instars, respectively. No reasonable solution was found for antennal segment 3 length. Separation of the larvae into nine instars using head capsule width or head capsule length was most robust and agreed with Crosby's growth rule. By strengthening the distributed character of the separation variable through the use of variable bandwidths, the adaptive kernel smoothing method could identify divisions between instars more effectively and accurately than previous methods.
Cen, Guanjun; Zeng, Xianru; Long, Xiuzhen; Wei, Dewei; Gao, Xuyuan; Zeng, Tao
2015-01-01
In insects, the frequency distribution of the measurements of sclerotized body parts is generally used to classify larval instars and is characterized by a multimodal overlap between instar stages. Nonparametric methods with fixed bandwidths, such as histograms, have significant limitations when used to fit this type of distribution, making it difficult to identify divisions between instars. Fixed bandwidths have also been chosen somewhat subjectively in the past, which is another problem. In this study, we describe an adaptive kernel smoothing method to differentiate instars based on discontinuities in the growth rates of sclerotized insect body parts. From Brooks’ rule, we derived a new standard for assessing the quality of instar classification and a bandwidth selector that more accurately reflects the distributed character of specific variables. We used this method to classify the larvae of Austrosimulium tillyardianum (Diptera: Simuliidae) based on five different measurements. Based on head capsule width and head capsule length, the larvae were separated into nine instars. Based on head capsule postoccipital width and mandible length, the larvae were separated into 8 instars and 10 instars, respectively. No reasonable solution was found for antennal segment 3 length. Separation of the larvae into nine instars using head capsule width or head capsule length was most robust and agreed with Crosby’s growth rule. By strengthening the distributed character of the separation variable through the use of variable bandwidths, the adaptive kernel smoothing method could identify divisions between instars more effectively and accurately than previous methods. PMID:26546689
Jokinen, Emma; Yrttiaho, Santeri; Pulakka, Hannu; Vainio, Martti; Alku, Paavo
2012-12-01
Post-filtering can be utilized to improve the quality and intelligibility of telephone speech. Previous studies have shown that energy reallocation with a high-pass type filter works effectively in improving the intelligibility of speech in difficult noise conditions. The present study introduces a signal-to-noise ratio adaptive post-filtering method that utilizes energy reallocation to transfer energy from the first formant to higher frequencies. The proposed method adapts to the level of the background noise so that, in favorable noise conditions, the post-filter has a flat frequency response and the effect of the post-filtering is increased as the level of the ambient noise increases. The performance of the proposed method is compared with a similar post-filtering algorithm and unprocessed speech in subjective listening tests which evaluate both intelligibility and listener preference. The results indicate that both of the post-filtering methods maintain the quality of speech in negligible noise conditions and are able to provide intelligibility improvement over unprocessed speech in adverse noise conditions. Furthermore, the proposed post-filtering algorithm performs better than the other post-filtering method under evaluation in moderate to difficult noise conditions, where intelligibility improvement is mostly required.
A Parallel Adaptive Wavelet Method for the Simulation of Compressible Reacting Flows
NASA Astrophysics Data System (ADS)
Zikoski, Zachary; Paolucci, Samuel
2011-11-01
The Wavelet Adaptive Multiresolution Representation (WAMR) method provides a robust method for controlling spatial grid adaption--fine grid spacing in regions of a solution requiring high resolution (i.e. near steep gradients, singularities, or near- singularities) and using much coarser grid spacing where the solution is slowly varying. The sparse grids produced using the WAMR method exhibit very high compression ratios compared to uniform grids of equivalent resolution. Subsequently, a wide range of spatial scales often occurring in continuum physics models can be captured efficiently. Furthermore, the wavelet transform provides a direct measure of local error at each grid point, effectively producing automatically verified solutions. The algorithm is parallelized using an MPI-based domain decomposition approach suitable for a wide range of distributed-memory parallel architectures. The method is applied to the solution of the compressible, reactive Navier-Stokes equations and includes multi-component diffusive transport and chemical kinetics models. Results for the method's parallel performance are reported, and its effectiveness on several challenging compressible reacting flow problems is highlighted.
A Hyperspherical Adaptive Sparse-Grid Method for High-Dimensional Discontinuity Detection
Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max D.; ...
2015-06-24
This study proposes and analyzes a hyperspherical adaptive hierarchical sparse-grid method for detecting jump discontinuities of functions in high-dimensional spaces. The method is motivated by the theoretical and computational inefficiencies of well-known adaptive sparse-grid methods for discontinuity detection. Our novel approach constructs a function representation of the discontinuity hypersurface of an N-dimensional discontinuous quantity of interest, by virtue of a hyperspherical transformation. Then, a sparse-grid approximation of the transformed function is built in the hyperspherical coordinate system, whose value at each point is estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of the hypersurface, the newmore » technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. In addition, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. Rigorous complexity analyses of the new method are provided as are several numerical examples that illustrate the effectiveness of the approach.« less
Johansson, A Torbjorn; White, Paul R
2011-08-01
This paper proposes an adaptive filter-based method for detection and frequency estimation of whistle calls, such as the calls of birds and marine mammals, which are typically analyzed in the time-frequency domain using a spectrogram. The approach taken here is based on adaptive notch filtering, which is an established technique for frequency tracking. For application to automatic whistle processing, methods for detection and improved frequency tracking through frequency crossings as well as interfering transients are developed and coupled to the frequency tracker. Background noise estimation and compensation is accomplished using order statistics and pre-whitening. Using simulated signals as well as recorded calls of marine mammals and a human whistled speech utterance, it is shown that the proposed method can detect more simultaneous whistles than two competing spectrogram-based methods while not reporting any false alarms on the example datasets. In one example, it extracts complete 1.4 and 1.8 s bottlenose dolphin whistles successfully through frequency crossings. The method performs detection and estimates frequency tracks even at high sweep rates. The algorithm is also shown to be effective on human whistled utterances.
NASA Astrophysics Data System (ADS)
Bu, Guochao; Wang, Pei
2016-04-01
Terrestrial laser scanning (TLS) has been used to extract accurate forest biophysical parameters for inventory purposes. The diameter at breast height (DBH) is a key parameter for individual trees because it has the potential for modeling the height, volume, biomass, and carbon sequestration potential of the tree based on empirical allometric scaling equations. In order to extract the DBH from the single-scan data of TLS automatically and accurately within a certain range, we proposed an adaptive circle-ellipse fitting method based on the point cloud transect. This proposed method can correct the error caused by the simple circle fitting method when a tree is slanted. A slanted tree was detected by the circle-ellipse fitting analysis, then the corresponding slant angle was found based on the ellipse fitting result. With this information, the DBH of the trees could be recalculated based on reslicing the point cloud data at breast height. Artificial stem data simulated by a cylindrical model of leaning trees and the scanning data acquired with the RIEGL VZ-400 were used to test the proposed adaptive fitting method. The results shown that the proposed method can detect the trees and accurately estimate the DBH for leaning trees.
A hyper-spherical adaptive sparse-grid method for high-dimensional discontinuity detection
Zhang, Guannan; Webster, Clayton G; Gunzburger, Max D; Burkardt, John V
2014-03-01
This work proposes and analyzes a hyper-spherical adaptive hi- erarchical sparse-grid method for detecting jump discontinuities of functions in high-dimensional spaces is proposed. The method is motivated by the the- oretical and computational inefficiencies of well-known adaptive sparse-grid methods for discontinuity detection. Our novel approach constructs a func- tion representation of the discontinuity hyper-surface of an N-dimensional dis- continuous quantity of interest, by virtue of a hyper-spherical transformation. Then, a sparse-grid approximation of the transformed function is built in the hyper-spherical coordinate system, whose value at each point is estimated by solving a one-dimensional discontinuity detection problem. Due to the smooth- ness of the hyper-surface, the new technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. Moreover, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. Rigorous error estimates and complexity anal- yses of the new method are provided as are several numerical examples that illustrate the effectiveness of the approach.
Locomotor adaptation to a powered ankle-foot orthosis depends on control method
Cain, Stephen M; Gordon, Keith E; Ferris, Daniel P
2007-01-01
Background We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control) and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control). Both controllers activated an artificial pneumatic muscle providing plantar flexion torque. Methods Subjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6) or myoelectric control (n = 6). We recorded lower limb electromyography (EMG), joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time. Results During steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis. Conclusion These results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control. PMID:18154649
The stochastic control of the F-8C aircraft using the Multiple Model Adaptive Control (MMAC) method
NASA Technical Reports Server (NTRS)
Athans, M.; Dunn, K. P.; Greene, E. S.; Lee, W. H.; Sandel, N. R., Jr.
1975-01-01
The purpose of this paper is to summarize results obtained for the adaptive control of the F-8C aircraft using the so-called Multiple Model Adaptive Control method. The discussion includes the selection of the performance criteria for both the lateral and the longitudinal dynamics, the design of the Kalman filters for different flight conditions, the 'identification' aspects of the design using hypothesis testing ideas, and the performance of the closed loop adaptive system.
They can take a hint: Older adults effectively integrate memory cues during recognition.
Konkel, Alex; Selmeczy, Diana; Dobbins, Ian G
2015-12-01
Adaptively biasing recognition judgments in light of environmental cues improves net accuracy. Based on previous work suggesting that strategically shifting biases on a trial-wise basis should be cognitively demanding, the authors predicted that older adults would not achieve the same accuracy benefits from environmental cues as the young. However, despite showing clear declines in cognitive control as indexed by complex span, older adults demonstrated similar accuracy gains and similar alterations of response probabilities with cues of 75% reliability (Experiment 1) and more complex cues spanning 3 levels of reliability (Experiment 2). Despite preserved gains in accuracy, older adults clearly demonstrated disproportionate slowing that was specific to trials in which cues were invalid. This slowing may reflect impairments in behavioral inhibition that could impinge upon accuracy were responding increasingly sped and future work manipulating response speed and measures of inhibition may yield further insights.
Calvo, Juan Francisco; San José, Sol; Garrido, LLuís; Puertas, Enrique; Moragues, Sandra; Pozo, Miquel; Casals, Joan
2013-10-01
To introduce an approach for online adaptive replanning (i.e., dose-guided radiosurgery) in frameless stereotactic radiosurgery, when a 6-dimensional (6D) robotic couch is not available in the linear accelerator (linac). Cranial radiosurgical treatments are planned in our department using intensity-modulated technique. Patients are immobilized using thermoplastic mask. A cone-beam computed tomography (CBCT) scan is acquired after the initial laser-based patient setup (CBCT{sub setup}). The online adaptive replanning procedure we propose consists of a 6D registration-based mapping of the reference plan onto actual CBCT{sub setup}, followed by a reoptimization of the beam fluences (“6D plan”) to achieve similar dosage as originally was intended, while the patient is lying in the linac couch and the original beam arrangement is kept. The goodness of the online adaptive method proposed was retrospectively analyzed for 16 patients with 35 targets treated with CBCT-based frameless intensity modulated technique. Simulation of reference plan onto actual CBCT{sub setup}, according to the 4 degrees of freedom, supported by linac couch was also generated for each case (4D plan). Target coverage (D99%) and conformity index values of 6D and 4D plans were compared with the corresponding values of the reference plans. Although the 4D-based approach does not always assure the target coverage (D99% between 72% and 103%), the proposed online adaptive method gave a perfect coverage in all cases analyzed as well as a similar conformity index value as was planned. Dose-guided radiosurgery approach is effective to assure the dose coverage and conformity of an intracranial target volume, avoiding resetting the patient inside the mask in a “trial and error” way so as to remove the pitch and roll errors when a robotic table is not available.
CUE, ENGLISH HUMANITIES MEDIA GUIDE.
ERIC Educational Resources Information Center
BROWN, ROBERT M.; AND OTHERS
THIS DOCUMENT IS ONE OF A SERIES OF MEDIA GUIDES SPONSORED BY THE NEW YORK STATE EDUCATION DEPARTMENT UNDER THE CUE SYSTEM. THE ENGLISH HUMANITIES ARE DIVIDED INTO 11 DIFFERENT TOPICS, COVERING AREAS OF COMMUNICATION, VOCABULARY, AND WORLD CULTURE. WITHIN EACH TOPIC IS A SERIES OF SUGGESTED FILM AND TELEVISION SUBJECTS. A DISCUSSION IS GIVEN ON…
Optimal cue integration in ants
Wystrach, Antoine; Mangan, Michael; Webb, Barbara
2015-01-01
In situations with redundant or competing sensory information, humans have been shown to perform cue integration, weighting different cues according to their certainty in a quantifiably optimal manner. Ants have been shown to merge the directional information available from their path integration (PI) and visual memory, but as yet it is not clear that they do so in a way that reflects the relative certainty of the cues. In this study, we manipulate the variance of the PI home vector by allowing ants (Cataglyphis velox) to run different distances and testing their directional choice when the PI vector direction is put in competition with visual memory. Ants show progressively stronger weighting of their PI direction as PI length increases. The weighting is quantitatively predicted by modelling the expected directional variance of home vectors of different lengths and assuming optimal cue integration. However, a subsequent experiment suggests ants may not actually compute an internal estimate of the PI certainty, but are using the PI home vector length as a proxy. PMID:26400741
Behavioral Cues of Interpersonal Warmth
ERIC Educational Resources Information Center
Bayes, Marjorie A.
1972-01-01
The results of this study suggest, first, that interpersonal warmth does seem to be a personality dimension which can be reliably judged and, second, that it was possible to define and demonstrate the relevance of a number of behavioral cues for warmth. (Author)
Optimal cue integration in ants.
Wystrach, Antoine; Mangan, Michael; Webb, Barbara
2015-10-07
In situations with redundant or competing sensory information, humans have been shown to perform cue integration, weighting different cues according to their certainty in a quantifiably optimal manner. Ants have been shown to merge the directional information available from their path integration (PI) and visual memory, but as yet it is not clear that they do so in a way that reflects the relative certainty of the cues. In this study, we manipulate the variance of the PI home vector by allowing ants (Cataglyphis velox) to run different distances and testing their directional choice when the PI vector direction is put in competition with visual memory. Ants show progressively stronger weighting of their PI direction as PI length increases. The weighting is quantitatively predicted by modelling the expected directional variance of home vectors of different lengths and assuming optimal cue integration. However, a subsequent experiment suggests ants may not actually compute an internal estimate of the PI certainty, but are using the PI home vector length as a proxy.
Self-adaptive method for high frequency multi-channel analysis of surface wave method
Technology Transfer Automated Retrieval System (TEKTRAN)
When the high frequency multi-channel analysis of surface waves (MASW) method is conducted to explore soil properties in the vadose zone, existing rules for selecting the near offset and spread lengths cannot satisfy the requirements of planar dominant Rayleigh waves for all frequencies of interest ...
Adaptation to environmental change is not a new concept. Humans have shown throughout history a capacity for adapting to different climates and environmental changes. Farmers, foresters, civil engineers, have all been forced to adapt to numerous challenges to overcome adversity...
Estimating location without external cues.
Cheung, Allen
2014-10-01
The ability to determine one's location is fundamental to spatial navigation. Here, it is shown that localization is theoretically possible without the use of external cues, and without knowledge of initial position or orientation. With only error-prone self-motion estimates as input, a fully disoriented agent can, in principle, determine its location in familiar spaces with 1-fold rotational symmetry. Surprisingly, localization does not require the sensing of any external cue, including the boundary. The combination of self-motion estimates and an internal map of the arena provide enough information for localization. This stands in conflict with the supposition that 2D arenas are analogous to open fields. Using a rodent error model, it is shown that the localization performance which can be achieved is enough to initiate and maintain stable firing patterns like those of grid cells, starting from full disorientation. Successful localization was achieved when the rotational asymmetry was due to the external boundary, an interior barrier or a void space within an arena. Optimal localization performance was found to depend on arena shape, arena size, local and global rotational asymmetry, and the structure of the path taken during localization. Since allothetic cues including visual and boundary contact cues were not present, localization necessarily relied on the fusion of idiothetic self-motion cues and memory of the boundary. Implications for spatial navigation mechanisms are discussed, including possible relationships with place field overdispersion and hippocampal reverse replay. Based on these results, experiments are suggested to identify if and where information fusion occurs in the mammalian spatial memory system.
Adaptive method for quantifying uncertainty in discharge measurements using velocity-area method.
NASA Astrophysics Data System (ADS)
Despax, Aurélien; Favre, Anne-Catherine; Belleville, Arnaud
2015-04-01
Streamflow information provided by hydrometric services such as EDF-DTG allow real time monitoring of rivers, streamflow forecasting, paramount hydrological studies and engineering design. In open channels, the traditional approach to measure flow uses a rating curve, which is an indirect method to estimate the discharge in rivers based on water level and punctual discharge measurements. A large proportion of these discharge measurements are performed using the velocity-area method; it consists in integrating flow velocities and depths through the cross-section [1]. The velocity field is estimated by choosing a number m of verticals, distributed across the river, where vertical velocity profile is sampled by a current-meter at ni different depths. Uncertainties coming from several sources are related to the measurement process. To date, the framework for assessing uncertainty in velocity-area discharge measurements is the method presented in the ISO 748 standard [2] which follows the GUM [3] approach. The equation for the combined uncertainty in measured discharge u(Q), at 68% level of confidence, proposed by the ISO 748 standard is expressed as: Σ 2 2 2 -q2i[u2(Bi)+-u2(Di)+-u2p(Vi)+-(1ni) ×-[u2c(Vi)+-u2exp(Vi)
An HP Adaptive Discontinuous Galerkin Method for Hyperbolic Conservation Laws. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Bey, Kim S.
1994-01-01
This dissertation addresses various issues for model classes of hyperbolic conservation laws. The basic approach developed in this work employs a new family of adaptive, hp-version, finite element methods based on a special discontinuous Galerkin formulation for hyperbolic problems. The discontinuous Galerkin formulation admits high-order local approximations on domains of quite general geometry, while providing a natural framework for finite element approximations and for theoretical developments. The use of hp-versions of the finite element method makes possible exponentially convergent schemes with very high accuracies in certain cases; the use of adaptive hp-schemes allows h-refinement in regions of low regularity and p-enrichment to deliver high accuracy, while keeping problem sizes manageable and dramatically smaller than many conventional approaches. The use of discontinuous Galerkin methods is uncommon in applications, but the methods rest on a reasonable mathematical basis for low-order cases and has local approximation features that can be exploited to produce very efficient schemes, especially in a parallel, multiprocessor environment. The place of this work is to first and primarily focus on a model class of linear hyperbolic conservation laws for which concrete mathematical results, methodologies, error estimates, convergence criteria, and parallel adaptive strategies can be developed, and to then briefly explore some extensions to more general cases. Next, we provide preliminaries to the study and a review of some aspects of the theory of hyperbolic conservation laws. We also provide a review of relevant literature on this subject and on the numerical analysis of these types of problems.
A vertical parallax reduction method for stereoscopic video based on adaptive interpolation
NASA Astrophysics Data System (ADS)
Li, Qingyu; Zhao, Yan
2016-10-01
The existence of vertical parallax is the main factor of affecting the viewing comfort of stereo video. Visual fatigue is gaining widespread attention with the booming development of 3D stereoscopic video technology. In order to reduce the vertical parallax without affecting the horizontal parallax, a self-adaptive image scaling algorithm is proposed, which can use the edge characteristics efficiently. In the meantime, the nonlinear Levenberg-Marquardt (L-M) algorithm is introduced in this paper to improve the accuracy of the transformation matrix. Firstly, the self-adaptive scaling algorithm is used for the original image interpolation. When the pixel point of original image is in the edge areas, the interpretation is implemented adaptively along the edge direction obtained by Sobel operator. Secondly the SIFT algorithm, which is invariant to scaling, rotation and affine transformation, is used to detect the feature matching points from the binocular images. Then according to the coordinate position of matching points, the transformation matrix, which can reduce the vertical parallax, is calculated using Levenberg-Marquardt algorithm. Finally, the transformation matrix is applied to target image to calculate the new coordinate position of each pixel from the view image. The experimental results show that: comparing with the method which reduces the vertical parallax using linear algorithm to calculate two-dimensional projective transformation, the proposed method improves the vertical parallax reduction obviously. At the same time, in terms of the impact on horizontal parallax, the proposed method has more similar horizontal parallax to that of the original image after vertical parallax reduction. Therefore, the proposed method can optimize the vertical parallax reduction.
Nonverbal Cues and Television News: TV News.
ERIC Educational Resources Information Center
Tankard, James W., Jr.; And Others
1977-01-01
Presents evidence that nonverbal cues by newscasters are interpreted by the viewer as a sign of bias. Using two cues, raised eyebrows and a smile, the study produced data that suggest that the audience is aware of this influence. (JMF)
Investigation of self-adaptive LED surgical lighting based on entropy contrast enhancing method
NASA Astrophysics Data System (ADS)
Liu, Peng; Wang, Huihui; Zhang, Yaqin; Shen, Junfei; Wu, Rengmao; Zheng, Zhenrong; Li, Haifeng; Liu, Xu
2014-05-01
Investigation was performed to explore the possibility of enhancing contrast by varying the spectral distribution (SPD) of the surgical lighting. The illumination scenes with different SPDs were generated by the combination of a self-adaptive white light optimization method and the LED ceiling system, the images of biological sample are taken by a CCD camera and then processed by an 'Entropy' based contrast evaluation model which is proposed specific for surgery occasion. Compared with the neutral white LED based and traditional algorithm based image enhancing methods, the illumination based enhancing method turns out a better performance in contrast enhancing and improves the average contrast value about 9% and 6%, respectively. This low cost method is simple, practicable, and thus may provide an alternative solution for the expensive visual facility medical instruments.
Motion correction of magnetic resonance imaging data by using adaptive moving least squares method.
Nam, Haewon; Lee, Yeon Ju; Jeong, Byeongseon; Park, Hae-Jeong; Yoon, Jungho
2015-06-01
Image artifacts caused by subject motion during the imaging sequence are one of the most common problems in magnetic resonance imaging (MRI) and often degrade the image quality. In this study, we develop a motion correction algorithm for the interleaved-MR acquisition. An advantage of the proposed method is that it does not require either additional equipment or redundant over-sampling. The general framework of this study is similar to that of Rohlfing et al. [1], except for the introduction of the following fundamental modification. The three-dimensional (3-D) scattered data approximation method is used to correct the artifacted data as a post-processing step. In order to obtain a better match to the local structures of the given image, we use the data-adapted moving least squares (MLS) method that can improve the performance of the classical method. Numerical results are provided to demonstrate the advantages of the proposed algorithm.
A Cartesian Adaptive Level Set Method for Two-Phase Flows
NASA Technical Reports Server (NTRS)
Ham, F.; Young, Y.-N.
2003-01-01
In the present contribution we develop a level set method based on local anisotropic Cartesian adaptation as described in Ham et al. (2002). Such an approach should allow for the smallest possible Cartesian grid capable of resolving a given flow. The remainder of the paper is organized as follows. In section 2 the level set formulation for free surface calculations is presented and its strengths and weaknesses relative to the other free surface methods reviewed. In section 3 the collocated numerical method is described. In section 4 the method is validated by solving the 2D and 3D drop oscilation problem. In section 5 we present some results from more complex cases including the 3D drop breakup in an impulsively accelerated free stream, and the 3D immiscible Rayleigh-Taylor instability. Conclusions are given in section 6.
NASA Astrophysics Data System (ADS)
Yao, Zhenjian; Wang, Zhongyu; Yi-Lin Forrest, Jeffrey; Wang, Qiyue; Lv, Jing
2017-04-01
In this paper, an approach combining empirical mode decomposition (EMD) with adaptive least squares (ALS) is proposed to improve the dynamic calibration accuracy of pressure sensors. With EMD, the original output of the sensor can be represented as sums of zero-mean amplitude modulation frequency modulation components. By identifying and excluding those components involved in noises, the noise-free output could be reconstructed with the useful frequency modulation ones. Then the least squares method is iteratively performed to estimate the optimal order and parameters of the mathematical model. The dynamic characteristic parameters of the sensor can be derived from the model in both time and frequency domains. A series of shock tube calibration tests are carried out to validate the performance of this method. Experimental results show that the proposed method works well in reducing the influence of noise and yields an appropriate mathematical model. Furthermore, comparative experiments also demonstrate the superiority of the proposed method over the existing ones.
Eckstein, Miguel P; Mack, Stephen C; Liston, Dorion B; Bogush, Lisa; Menzel, Randolf; Krauzlis, Richard J
2013-06-07
Visual attention is commonly studied by using visuo-spatial cues indicating probable locations of a target and assessing the effect of the validity of the cue on perceptual performance and its neural correlates. Here, we adapt a cueing task to measure spatial cueing effects on the decisions of honeybees and compare their behavior to that of humans and monkeys in a similarly structured two-alternative forced-choice perceptual task. Unlike the typical cueing paradigm in which the stimulus strength remains unchanged within a block of trials, for the monkey and human studies we randomized the contrast of the signal to simulate more real world conditions in which the organism is uncertain about the strength of the signal. A Bayesian ideal observer that weights sensory evidence from cued and uncued locations based on the cue validity to maximize overall performance is used as a benchmark of comparison against the three animals and other suboptimal models: probability matching, ignore the cue, always follow the cue, and an additive bias/single decision threshold model. We find that the cueing effect is pervasive across all three species but is smaller in size than that shown by the Bayesian ideal observer. Humans show a larger cueing effect than monkeys and bees show the smallest effect. The cueing effect and overall performance of the honeybees allows rejection of the models in which the bees are ignoring the cue, following the cue and disregarding stimuli to be discriminated, or adopting a probability matching strategy. Stimulus strength uncertainty also reduces the theoretically predicted variation in cueing effect with stimulus strength of an optimal Bayesian observer and diminishes the size of the cueing effect when stimulus strength is low. A more biologically plausible model that includes an additive bias to the sensory response from the cued location, although not mathematically equivalent to the optimal observer for the case stimulus strength uncertainty, can
Novel Multistatic Adaptive Microwave Imaging Methods for Early Breast Cancer Detection
NASA Astrophysics Data System (ADS)
Xie, Yao; Guo, Bin; Li, Jian; Stoica, Petre
2006-12-01
Multistatic adaptive microwave imaging (MAMI) methods are presented and compared for early breast cancer detection. Due to the significant contrast between the dielectric properties of normal and malignant breast tissues, developing microwave imaging techniques for early breast cancer detection has attracted much interest lately. MAMI is one of the microwave imaging modalities and employs multiple antennas that take turns to transmit ultra-wideband (UWB) pulses while all antennas are used to receive the reflected signals. MAMI can be considered as a special case of the multi-input multi-output (MIMO) radar with the multiple transmitted waveforms being either UWB pulses or zeros. Since the UWB pulses transmitted by different antennas are displaced in time, the multiple transmitted waveforms are orthogonal to each other. The challenge to microwave imaging is to improve resolution and suppress strong interferences caused by the breast skin, nipple, and so forth. The MAMI methods we investigate herein utilize the data-adaptive robust Capon beamformer (RCB) to achieve high resolution and interference suppression. We will demonstrate the effectiveness of our proposed methods for breast cancer detection via numerical examples with data simulated using the finite-difference time-domain method based on a 3D realistic breast model.
Patched based methods for adaptive mesh refinement solutions of partial differential equations
Saltzman, J.
1997-09-02
This manuscript contains the lecture notes for a course taught from July 7th through July 11th at the 1997 Numerical Analysis Summer School sponsored by C.E.A., I.N.R.I.A., and E.D.F. The subject area was chosen to support the general theme of that year`s school which is ``Multiscale Methods and Wavelets in Numerical Simulation.`` The first topic covered in these notes is a description of the problem domain. This coverage is limited to classical PDEs with a heavier emphasis on hyperbolic systems and constrained hyperbolic systems. The next topic is difference schemes. These schemes are the foundation for the adaptive methods. After the background material is covered, attention is focused on a simple patched based adaptive algorithm and its associated data structures for square grids and hyperbolic conservation laws. Embellishments include curvilinear meshes, embedded boundary and overset meshes. Next, several strategies for parallel implementations are examined. The remainder of the notes contains descriptions of elliptic solutions on the mesh hierarchy, elliptically constrained flow solution methods and elliptically constrained flow solution methods with diffusion.
Validation of an Adaptive Combustion Instability Control Method for Gas-Turbine Engines
NASA Technical Reports Server (NTRS)
Kopasakis, George; DeLaat, John C.; Chang, Clarence T.
2004-01-01
This paper describes ongoing testing of an adaptive control method to suppress high frequency thermo-acoustic instabilities like those found in lean-burning, low emission combustors that are being developed for future aircraft gas turbine engines. The method called Adaptive Sliding Phasor Averaged Control, was previously tested in an experimental rig designed to simulate a combustor with an instability of about 530 Hz. Results published earlier, and briefly presented here, demonstrated that this method was effective in suppressing the instability. Because this test rig did not exhibit a well pronounced instability, a question remained regarding the effectiveness of the control methodology when applied to a more coherent instability. To answer this question, a modified combustor rig was assembled at the NASA Glenn Research Center in Cleveland, Ohio. The modified rig exhibited a more coherent, higher amplitude instability, but at a lower frequency of about 315 Hz. Test results show that this control method successfully reduced the instability pressure of the lower frequency test rig. In addition, due to a certain phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling, a dramatic suppression of the instability was achieved by focusing control on the second harmonic of the instability. These results and their implications are discussed, as well as a hypothesis describing the mechanism of intra-harmonic coupling.
Adaptation of the Conditions of US EPA Method 538 for the ...
Report The objective of this study was to evaluate U.S. EPA’s Method 538 for the assessment of drinking water exposure to the nerve agent degradation product, EA2192, the most toxic degradation product of nerve agent VX. As a result of the similarities in sample preparation and analysis that Method 538 uses for nonvolatile chemicals, this method is applicable to the nonvolatile Chemical Warfare Agent (CWA) degradation product, EA2192, in drinking water. The method may be applicable to other nonvolatile CWAs and their respective degradation products as well, but the method will need extensive testing to verify compatibility. Gaps associated with the need for analysis methods capable of analyzing such analytes were addressed by adapting the EPA 538 method for this CWA degradation product. Many laboratories have the experience and capability to run the already rigorous method for nonvolatile compounds in drinking water. Increasing the number of laboratories capable of carrying out these methods serves to significantly increase the surge laboratory capacity to address sample throughput during a large exposure event. The approach desired for this study was to start with a proven high performance liquid chromatography tandem mass spectrometry (HPLC/MS/MS) method for nonvolatile chemicals in drinking water and assess the inclusion of a similar nonvolatile chemical, EA2192.
A Self-Adaptive Model-Based Wi-Fi Indoor Localization Method
Tuta, Jure; Juric, Matjaz B.
2016-01-01
This paper presents a novel method for indoor localization, developed with the main aim of making it useful for real-world deployments. Many indoor localization methods exist, yet they have several disadvantages in real-world deployments—some are static, which is not suitable for long-term usage; some require costly human recalibration procedures; and others require special hardware such as Wi-Fi anchors and transponders. Our method is self-calibrating and self-adaptive thus maintenance free and based on Wi-Fi only. We have employed two well-known propagation models—free space path loss and ITU models—which we have extended with additional parameters for better propagation simulation. Our self-calibrating procedure utilizes one propagation model to infer parameters of the space and the other to simulate the propagation of the signal without requiring any additional hardware beside Wi-Fi access points, which is suitable for real-world usage. Our method is also one of the few model-based Wi-Fi only self-adaptive approaches that do not require the mobile terminal to be in the access-point mode. The only input requirements of the method are Wi-Fi access point positions, and positions and properties of the walls. Our method has been evaluated in single- and multi-room environments, with measured mean error of 2–3 and 3–4 m, respectively, which is similar to existing methods. The evaluation has proven that usable localization accuracy can be achieved in real-world environments solely by the proposed Wi-Fi method that relies on simple hardware and software requirements. PMID:27929453
A Self-Adaptive Model-Based Wi-Fi Indoor Localization Method.
Tuta, Jure; Juric, Matjaz B
2016-12-06
This paper presents a novel method for indoor localization, developed with the main aim of making it useful for real-world deployments. Many indoor localization methods exist, yet they have several disadvantages in real-world deployments-some are static, which is not suitable for long-term usage; some require costly human recalibration procedures; and others require special hardware such as Wi-Fi anchors and transponders. Our method is self-calibrating and self-adaptive thus maintenance free and based on Wi-Fi only. We have employed two well-known propagation models-free space path loss and ITU models-which we have extended with additional parameters for better propagation simulation. Our self-calibrating procedure utilizes one propagation model to infer parameters of the space and the other to simulate the propagation of the signal without requiring any additional hardware beside Wi-Fi access points, which is suitable for real-world usage. Our method is also one of the few model-based Wi-Fi only self-adaptive approaches that do not require the mobile terminal to be in the access-point mode. The only input requirements of the method are Wi-Fi access point positions, and positions and properties of the walls. Our method has been evaluated in single- and multi-room environments, with measured mean error of 2-3 and 3-4 m, respectively, which is similar to existing methods. The evaluation has proven that usable localization accuracy can be achieved in real-world environments solely by the proposed Wi-Fi method that relies on simple hardware and software requirements.
Individual differences in perceptual adaptability of foreign sound categories.
Schertz, Jessamyn; Cho, Taehong; Lotto, Andrew; Warner, Natasha
2016-01-01
Listeners possess a remarkable ability to adapt to acoustic variability in the realization of speech sound categories (e.g., different accents). The current work tests whether non-native listeners adapt their use of acoustic cues in phonetic categorization when they are confronted with changes in the distribution of cues in the input, as native listeners do, and examines to what extent these adaptation patterns are influenced by individual cue-weighting strategies. In line with previous work, native English listeners, who use voice onset time (VOT) as a primary cue to the stop voicing contrast (e.g., 'pa' vs. 'ba'), adjusted their use of f0 (a secondary cue to the contrast) when confronted with a noncanonical "accent" in which the two cues gave conflicting information about category membership. Native Korean listeners' adaptation strategies, while variable, were predictable based on their initial cue weighting strategies. In particular, listeners who used f0 as the primary cue to category membership adjusted their use of VOT (their secondary cue) in response to the noncanonical accent, mirroring the native pattern of "downweighting" a secondary cue. Results suggest that non-native listeners show native-like sensitivity to distributional information in the input and use this information to adjust categorization, just as native listeners do, with the specific trajectory of category adaptation governed by initial cue-weighting strategies.
Individual differences in perceptual adaptability of foreign sound categories
Schertz, Jessamyn; Cho, Taehong; Lotto, Andrew; Warner, Natasha
2015-01-01
Listeners possess a remarkable ability to adapt to acoustic variability in the realization of speech sound categories (e.g. different accents). The current work tests whether non-native listeners adapt their use of acoustic cues in phonetic categorization when they are confronted with changes in the distribution of cues in the input, as native listeners do, and examines to what extent these adaptation patterns are influenced by individual cue-weighting strategies. In line with previous work, native English listeners, who use VOT as a primary cue to the stop voicing contrast (e.g. ‘pa’ vs. ‘ba’), adjusted their use of f0 (a secondary cue to the contrast) when confronted with a noncanonical “accent” in which the two cues gave conflicting information about category membership. Native Korean listeners’ adaptation strategies, while variable, were predictable based on their initial cue weighting strategies. In particular, listeners who used f0 as the primary cue to category membership adjusted their use of VOT (their secondary cue) in response to the noncanonical accent, mirroring the native pattern of “downweighting” a secondary cue. Results suggest that non-native listeners show native-like sensitivity to distributional information in the input and use this information to adjust categorization, just as native listeners do, with the specific trajectory of category adaptation governed by initial cue-weighting strategies. PMID:26404530
Effects of providing advance cues during a soccer penalty kick on the kicker's rate of success.
Núñez, F Javier; Oño, Antonio; Raya, Antonio; Bilbao, Alfonso
2010-12-01
The effect of explicitly providing goalkeeper's movement advanced cue to the kicker during a real penalty kick task was assessed. 32 expert soccer players (M age= 23.2 yr.), who were divided into four groups: an experimental group, a discovery group, a placebo group, and a control group, participated. Rate of success in the task was assessed, as well as goals, decision times, and ball flight times. Providing an advance cue significantly improved the players' rate of success relative to players without the advance cue; this difference was still present after 1 and 7 days without training. The experimental group adapted better to the time range within which the response could be effective, while the discovery group showed adaptations. Explicit instructions about the advance cues available from goalkeepers' actions before the dive during practice can improve penalty kick performance.
Comparative adaptation accuracy of acrylic denture bases evaluated by two different methods.
Lee, Chung-Jae; Bok, Sung-Bem; Bae, Ji-Young; Lee, Hae-Hyoung
2010-08-01
This study examined the adaptation accuracy of acrylic denture base processed using fluid-resin (PERform), injection-moldings (SR-Ivocap, Success, Mak Press), and two compression-molding techniques. The adaptation accuracy was measured primarily by the posterior border gaps at the mid-palatal area using a microscope and subsequently by weighing of the weight of the impression material between the denture base and master cast using hand-mixed and automixed silicone. The correlation between the data measured using these two test methods was examined. The PERform and Mak Press produced significantly smaller maximum palatal gap dimensions than the other groups (p<0.05). Mak Press also showed a significantly smaller weight of automixed silicone material than the other groups (p<0.05), while SR-Ivocap and Success showed similar adaptation accuracy to the compression-molding denture. The correlationship between the magnitude of the posterior border gap and the weight of the silicone impression materials was affected by either the material or mixing variables.
Fraisier, V; Clouvel, G; Jasaitis, A; Dimitrov, A; Piolot, T; Salamero, J
2015-09-01
Multiconfocal microscopy gives a good compromise between fast imaging and reasonable resolution. However, the low intensity of live fluorescent emitters is a major limitation to this technique. Aberrations induced by the optical setup, especially the mismatch of the refractive index and the biological sample itself, distort the point spread function and further reduce the amount of detected photons. Altogether, this leads to impaired image quality, preventing accurate analysis of molecular processes in biological samples and imaging deep in the sample. The amount of detected fluorescence can be improved with adaptive optics. Here, we used a compact adaptive optics module (adaptive optics box for sectioning optical microscopy), which was specifically designed for spinning disk confocal microscopy. The module overcomes undesired anomalies by correcting for most of the aberrations in confocal imaging. Existing aberration detection methods require prior illumination, which bleaches the sample. To avoid multiple exposures of the sample, we established an experimental model describing the depth dependence of major aberrations. This model allows us to correct for those aberrations when performing a z-stack, gradually increasing the amplitude of the correction with depth. It does not require illumination of the sample for aberration detection, thus minimizing photobleaching and phototoxicity. With this model, we improved both signal-to-background ratio and image contrast. Here, we present comparative studies on a variety of biological samples.
Ergün, Ayla; Barbieri, Riccardo; Eden, Uri T; Wilson, Matthew A; Brown, Emery N
2007-03-01
The stochastic state point process filter (SSPPF) and steepest descent point process filter (SDPPF) are adaptive filter algorithms for state estimation from point process observations that have been used to track neural receptive field plasticity and to decode the representations of biological signals in ensemble neural spiking activity. The SSPPF and SDPPF are constructed using, respectively, Gaussian and steepest descent approximations to the standard Bayes and Chapman-Kolmogorov (BCK) system of filter equations. To extend these approaches for constructing point process adaptive filters, we develop sequential Monte Carlo (SMC) approximations to the BCK equations in which the SSPPF and SDPPF serve as the proposal densities. We term the two new SMC point process filters SMC-PPFs and SMC-PPFD, respectively. We illustrate the new filter algorithms by decoding the wind stimulus magnitude from simulated neural spiking activity in the cricket cercal system. The SMC-PPFs and SMC-PPFD provide more accurate state estimates at low number of particles than a conventional bootstrap SMC filter algorithm in which the state transition probability density is the proposal density. We also use the SMC-PPFs algorithm to track the temporal evolution of a spatial receptive field of a rat hippocampal neuron recorded while the animal foraged in an open environment. Our results suggest an approach for constructing point process adaptive filters using SMC methods.
Zhou, Hui; Kunz, Thomas; Schwartz, Howard
2011-01-01
Traditional oscillators used in timing modules of CDMA and WiMAX base stations are large and expensive. Applying cheaper and smaller, albeit more inaccurate, oscillators in timing modules is an interesting research challenge. An adaptive control algorithm is presented to enhance the oscillators to meet the requirements of base stations during holdover mode. An oscillator frequency stability model is developed for the adaptive control algorithm. This model takes into account the control loop which creates the correction signal when the timing module is in locked mode. A recursive prediction error method is used to identify the system model parameters. Simulation results show that an oscillator enhanced by our adaptive control algorithm improves the oscillator performance significantly, compared with uncorrected oscillators. Our results also show the benefit of explicitly modeling the control loop. Finally, the cumulative time error upper bound of such enhanced oscillators is investigated analytically and comparison results between the analytical and simulated upper bound are provided. The results show that the analytical upper bound can serve as a practical guide for system designers.
Application of a self-adaptive grid method to complex flows
NASA Technical Reports Server (NTRS)
Deiwert, G. S.; Venkatapathy, E.; Davies, C.; Djomehri, J.; Abrahamson, K.
1989-01-01
A directional-split, modular, user-friendly grid point distribution code is applied to several test problems. The code is self-adaptive in the sense that grid point spacing is determined by user-specified constants denoting maximum and minimum grid spacings and constants relating the relative influence of smoothness and orthogonality. Estimates of truncation error, in terms of flow-field gradients and/or geometric features, are used to determine the point distribution. Points are redistributed along grid lines in a specified direction in an elliptic manner over a user-specified subdomain, while orthogonality and smoothness are controlled in a parabolic (marching) manner in the remaining directions. Multidirectional adaption is achieved by sequential application of the method in each coordinate direction. The flow-field solution is redistributed onto the newly distributed grid points after each unidirectional adaption by a simple one-dimensional interpolation scheme. For time-accurate schemes such interpolation is not necessary and time-dependent metrics are carried in the fluid dynamic equations to account for grid movement.
Adaptive control system having hedge unit and related apparatus and methods
NASA Technical Reports Server (NTRS)
Johnson, Eric Norman (Inventor); Calise, Anthony J. (Inventor)
2003-01-01
The invention includes an adaptive control system used to control a plant. The adaptive control system includes a hedge unit that receives at least one control signal and a plant state signal. The hedge unit generates a hedge signal based on the control signal, the plant state signal, and a hedge model including a first model having one or more characteristics to which the adaptive control system is not to adapt, and a second model not having the characteristic(s) to which the adaptive control system is not to adapt. The hedge signal is used in the adaptive control system to remove the effect of the characteristic from a signal supplied to an adaptation law unit of the adaptive control system so that the adaptive control system does not adapt to the characteristic in controlling the plant.
Adaptive control system having hedge unit and related apparatus and methods
NASA Technical Reports Server (NTRS)
Johnson, Eric Norman (Inventor); Calise, Anthony J. (Inventor)
2007-01-01
The invention includes an adaptive control system used to control a plant. The adaptive control system includes a hedge unit that receives at least one control signal and a plant state signal. The hedge unit generates a hedge signal based on the control signal, the plant state signal, and a hedge model including a first model having one or more characteristics to which the adaptive control system is not to adapt, and a second model not having the characteristic(s) to which the adaptive control system is not to adapt. The hedge signal is used in the adaptive control system to remove the effect of the characteristic from a signal supplied to an adaptation law unit of the adaptive control system so that the adaptive control system does not adapt to the characteristic in controlling the plant.
1983-03-01
AN ANALYSIS OF A FINITE ELEMENT METHOD FOR CONVECTION- DIFFUSION PROBLEMS PART II: A POSTERIORI ERROR ESTIMATES AND ADAPTIVITY by W. G. Szymczak Y 6a...PERIOD COVERED AN ANALYSIS OF A FINITE ELEMENT METHOD FOR final life of the contract CONVECTION- DIFFUSION PROBLEM S. Part II: A POSTERIORI ERROR ...Element Method for Convection- Diffusion Problems. Part II: A Posteriori Error Estimates and Adaptivity W. G. Szvmczak and I. Babu~ka# Laboratory for
Hiscock, R; Kumar, D; Simmons, S W
2015-05-01
We assessed agreement in haemoglobin measurement between Masimo pulse co-oximeters (Rad-7™ and Pronto-7™) and HemoCue® photometers (201+ or B-Hemoglobin) with laboratory-based determination and identified 39 relevant studies (2915 patients in Masimo group and 3084 patients in HemoCue group). In the Masimo group, the overall mean difference was -0.03 g/dl (95% prediction interval -0.30 to 0.23) and 95% limits of agreement -3.0 to 2.9 g/dl compared to 0.08 g/dl (95% prediction interval -0.04 to 0.20) and 95% limits of agreement -1.3 to 1.4 g/dl in the HemoCue group. Only B-Hemoglobin exhibited bias (0.53, 95% prediction interval 0.27 to 0.78). The overall standard deviation of difference was larger (1.42 g/dl versus 0.64 g/dl) for Masimo pulse co-oximeters compared to HemoCue photometers. Masimo devices and HemoCue 201+ both provide an unbiased, pooled estimate of laboratory haemoglobin. However, Masimo devices have lower precision and wider 95% limits of agreement than HemoCue devices. Clinicians should carefully consider these limits of agreement before basing transfusion or other clinical decisions on these point-of-care measurements alone.
Adaptive Filtering Methods for Identifying Cross-Frequency Couplings in Human EEG
Van Zaen, Jérôme; Murray, Micah M.; Meuli, Reto A.; Vesin, Jean-Marc
2013-01-01
Oscillations have been increasingly recognized as a core property of neural responses that contribute to spontaneous, induced, and evoked activities within and between individual neurons and neural ensembles. They are considered as a prominent mechanism for information processing within and communication between brain areas. More recently, it has been proposed that interactions between periodic components at different frequencies, known as cross-frequency couplings, may support the integration of neuronal oscillations at different temporal and spatial scales. The present study details methods based on an adaptive frequency tracking approach that improve the quantification and statistical analysis of oscillatory components and cross-frequency couplings. This approach allows for time-varying instantaneous frequency, which is particularly important when measuring phase interactions between components. We compared this adaptive approach to traditional band-pass filters in their measurement of phase-amplitude and phase-phase cross-frequency couplings. Evaluations were performed with synthetic signals and EEG data recorded from healthy humans performing an illusory contour discrimination task. First, the synthetic signals in conjunction with Monte Carlo simulations highlighted two desirable features of the proposed algorithm vs. classical filter-bank approaches: resilience to broad-band noise and oscillatory interference. Second, the analyses with real EEG signals revealed statistically more robust effects (i.e. improved sensitivity) when using an adaptive frequency tracking framework, particularly when identifying phase-amplitude couplings. This was further confirmed after generating surrogate signals from the real EEG data. Adaptive frequency tracking appears to improve the measurements of cross-frequency couplings through precise extraction of neuronal oscillations. PMID:23560098
Adaptive filtering methods for identifying cross-frequency couplings in human EEG.
Van Zaen, Jérôme; Murray, Micah M; Meuli, Reto A; Vesin, Jean-Marc
2013-01-01
Oscillations have been increasingly recognized as a core property of neural responses that contribute to spontaneous, induced, and evoked activities within and between individual neurons and neural ensembles. They are considered as a prominent mechanism for information processing within and communication between brain areas. More recently, it has been proposed that interactions between periodic components at different frequencies, known as cross-frequency couplings, may support the integration of neuronal oscillations at different temporal and spatial scales. The present study details methods based on an adaptive frequency tracking approach that improve the quantification and statistical analysis of oscillatory components and cross-frequency couplings. This approach allows for time-varying instantaneous frequency, which is particularly important when measuring phase interactions between components. We compared this adaptive approach to traditional band-pass filters in their measurement of phase-amplitude and phase-phase cross-frequency couplings. Evaluations were performed with synthetic signals and EEG data recorded from healthy humans performing an illusory contour discrimination task. First, the synthetic signals in conjunction with Monte Carlo simulations highlighted two desirable features of the proposed algorithm vs. classical filter-bank approaches: resilience to broad-band noise and oscillatory interference. Second, the analyses with real EEG signals revealed statistically more robust effects (i.e. improved sensitivity) when using an adaptive frequency tracking framework, particularly when identifying phase-amplitude couplings. This was further confirmed after generating surrogate signals from the real EEG data. Adaptive frequency tracking appears to improve the measurements of cross-frequency couplings through precise extraction of neuronal oscillations.
Environmental Cues and Attempts to Change in Daily Cannabis Users: An Intensive Longitudinal Study
Hughes, John R.; Naud, Shelly; Budney, Alan J.; Fingar, James R.; Callas, Peter W.
2016-01-01
Introduction We tested whether environmental cues prompt or inhibit quit or reduction attempts among heavy cannabis users. Methods We recruited 196 daily cannabis users who intended to stop or reduce at some point in the next 3 months. Users called an Interactive Voice Response system daily over 3 months to report on cues that might prompt an attempt to quit or reduce (e.g., a request to stop), cues that might inhibit a quit/reduction attempt (e.g., someone offering cannabis), cannabis use, and attempts to stop or reduce cannabis. No treatment was provided. Results Our major findings were a) cost and health/psychological problems were the most common prompting cues, and seeing others use and being offered cannabis were the most common inhibiting cues, b) the number of different types of prompting cues prospectively predicted an increase in attempts to change in a dose-related manner, c) more proximal cues appeared to be more strongly related to change, d) requests to stop or reduce, and physical or psychological problems from cannabis, best predicted change attempts, and e) inhibiting cues did not consistently predict the probability of an attempt to change. Conclusion These preliminary results suggest several environmental cues prompt attempts to change cannabis use. Thus, interventions to increase the frequency of these cues, and specifically requests to stop or reduce cannabis use, and reinforcing concerns about health and mental adverse events from cannabis use may increase cannabis reduction or cessation. PMID:26872879
Gender Differences in Responses to Cues Presented in the Natural Environment of Cigarette Smokers
Gray, Kevin M.; McClure, Erin A.; Carpenter, Matthew J.; Tiffany, Stephen T.; Saladin, Michael E.
2015-01-01
Introduction: Although the evidence is mixed, female smokers appear to have more difficulty quitting smoking than male smokers. Craving, stress, and negative affect have been hypothesized as potential factors underlying gender differences in quit rates. Methods: In the current study, the cue-reactivity paradigm was used to assess craving, stress, and negative affect in response to cues presented in the natural environment of cigarette smokers using ecological momentary assessment. Seventy-six daily smokers (42% female) responded to photographs (smoking, stress, and neutral) presented 4 times per day on an iPhone over the course of 2 weeks. Results: Both smoking and stress cues elicited stronger cigarette craving and stress responses compared to neutral cues. Compared with males, females reported higher levels of post-stress cue craving, stress, and negative affect, but response to smoking cues did not differ by gender. Discussion: Findings from this project were largely consistent with results from laboratory-based research and extend previous work by measuring response to cues in the natural environment of cigarette smokers. This study extends previous cue reactivity ecological momentary assessment research by using a new platform and by measuring response to stress cues outside of the laboratory. Findings from this project highlight the importance of addressing coping in response to stress cues in clinical settings, especially when working with female smokers. PMID:25762753
Cross-Cultural Nonverbal Cue Immersive Training
2008-12-01
1 CROSS-CULTURAL NONVERBAL CUE IMMERSIVE TRAINING Shatha N. Samman*, Michael Moshell + , Bryan Clark, Chantel Brathwaite + , and Allison Abbe...their meaning. 1.2 Nonverbal Cues Categorized by Function In one commonly accepted taxonomic approach, Ekman and Friesen (1969) classified...nonverbal cues (Ekman & Friesen , 1969). Emblems occur mainly when verbal communication is inhibited by external factors (e.g., noise, distance
When Symbolic Spatial Cues Go before Numbers
ERIC Educational Resources Information Center
Herrera, Amparo; Macizo, Pedro
2011-01-01
This work explores the effect of spatial cueing on number processing. Participants performed a parity judgment task. However, shortly before the target number, a cue (arrow pointing to left, arrow pointing to right or a cross) was centrally presented. In Experiment 1, in which responses were lateralized, the cue direction modulated the interaction…
Noise and Inattentiveness to Social Cues
ERIC Educational Resources Information Center
Cohen, Sheldon; Lezak, Anne
1977-01-01
The effects of environmental stress on the processing of task-irrelevant cues of a social nature were examined. While noise did not affect memory for the task-relevant cues, task-irrelevant cues, regardless of whether they depicted calm or distressed persons, were remembered less well under noise than under quiet. (Author/MA)
Adapting and Evaluating a Rapid, Low-Cost Method to Enumerate Flies in the Household Setting.
Wolfe, Marlene K; Dentz, Holly N; Achando, Beryl; Mureithi, MaryAnne; Wolfe, Tim; Null, Clair; Pickering, Amy J
2017-02-08
Diarrhea is a leading cause of death among children under 5 years of age worldwide. Flies are important vectors of diarrheal pathogens in settings lacking networked sanitation services. There is no standardized method for measuring fly density in households; many methods are cumbersome and unvalidated. We adapted a rapid, low-cost fly enumeration technique previously developed for industrial settings, the Scudder fly grill, for field use in household settings. We evaluated its performance in comparison to a sticky tape fly trapping method at latrine and food preparation areas among households in rural Kenya. The grill method was more sensitive; it detected the presence of any flies at 80% (433/543) of sampling locations versus 64% (348/543) of locations by the sticky tape. We found poor concordance between the two methods, suggesting that standardizing protocols is important for comparison of fly densities between studies. Fly species identification was feasible with both methods; however, the sticky tape trap allowed for more nuanced identification. Both methods detected a greater presence of bottle flies near latrines compared with food preparation areas (P < 0.01). The grill method detected more flies at the food preparation area compared with near the latrine (P = 0.014) while the sticky tape method detected no difference. We recommend the Scudder grill as a sensitive fly enumeration tool that is rapid and low cost to implement.
Data-adapted moving least squares method for 3-D image interpolation
NASA Astrophysics Data System (ADS)
Jang, Sumi; Nam, Haewon; Lee, Yeon Ju; Jeong, Byeongseon; Lee, Rena; Yoon, Jungho
2013-12-01
In this paper, we present a nonlinear three-dimensional interpolation scheme for gray-level medical images. The scheme is based on the moving least squares method but introduces a fundamental modification. For a given evaluation point, the proposed method finds the local best approximation by reproducing polynomials of a certain degree. In particular, in order to obtain a better match to the local structures of the given image, we employ locally data-adapted least squares methods that can improve the classical one. Some numerical experiments are presented to demonstrate the performance of the proposed method. Five types of data sets are used: MR brain, MR foot, MR abdomen, CT head, and CT foot. From each of the five types, we choose five volumes. The scheme is compared with some well-known linear methods and other recently developed nonlinear methods. For quantitative comparison, we follow the paradigm proposed by Grevera and Udupa (1998). (Each slice is first assumed to be unknown then interpolated by each method. The performance of each interpolation method is assessed statistically.) The PSNR results for the estimated volumes are also provided. We observe that the new method generates better results in both quantitative and visual quality comparisons.
Adapting and Evaluating a Rapid, Low-Cost Method to Enumerate Flies in the Household Setting
Wolfe, Marlene K.; Dentz, Holly N.; Achando, Beryl; Mureithi, MaryAnne; Wolfe, Tim; Null, Clair; Pickering, Amy J.
2017-01-01
Diarrhea is a leading cause of death among children under 5 years of age worldwide. Flies are important vectors of diarrheal pathogens in settings lacking networked sanitation services. There is no standardized method for measuring fly density in households; many methods are cumbersome and unvalidated. We adapted a rapid, low-cost fly enumeration technique previously developed for industrial settings, the Scudder fly grill, for field use in household settings. We evaluated its performance in comparison to a sticky tape fly trapping method at latrine and food preparation areas among households in rural Kenya. The grill method was more sensitive; it detected the presence of any flies at 80% (433/543) of sampling locations versus 64% (348/543) of locations by the sticky tape. We found poor concordance between the two methods, suggesting that standardizing protocols is important for comparison of fly densities between studies. Fly species identification was feasible with both methods; however, the sticky tape trap allowed for more nuanced identification. Both methods detected a greater presence of bottle flies near latrines compared with food preparation areas (P < 0.01). The grill method detected more flies at the food preparation area compared with near the latrine (P = 0.014) while the sticky tape method detected no difference. We recommend the Scudder grill as a sensitive fly enumeration tool that is rapid and low cost to implement. PMID:27956654
System and method for adaptively deskewing parallel data signals relative to a clock
Jenkins, Philip Nord; Cornett, Frank N.
2006-04-18
A system and method of reducing skew between a plurality of signals transmitted with a transmit clock is described. Skew is detected between the received transmit clock and each of received data signals. Delay is added to the clock or to one or more of the plurality of data signals to compensate for the detected skew. Each of the plurality of delayed signals is compared to a reference signal to detect changes in the skew. The delay added to each of the plurality of delayed signals is updated to adapt to changes in the detected skew.
Adaptive Forward Modeling Method for Analysis and Reconstructions of Orientation Image Map
Frankie Li, Shiu Fai
2014-06-01
IceNine is a MPI-parallel orientation reconstruction and microstructure analysis code. It's primary purpose is to reconstruct a spatially resolved orientation map given a set of diffraction images from a high energy x-ray diffraction microscopy (HEDM) experiment (1). In particular, IceNine implements the adaptive version of the forward modeling method (2, 3). Part of IceNine is a library used to for conbined analysis of the microstructure with the experimentally measured diffraction signal. The libraries is also designed for tapid prototyping of new reconstruction and analysis algorithms. IceNine is also built with a simulator of diffraction images with an input microstructure.
Adaptive Low Dissipative High Order Filter Methods for Multiscale MHD Flows
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sjoegreen, Bjoern
2004-01-01
Adaptive low-dissipative high order filter finite difference methods for long time wave propagation of shock/turbulence/combustion compressible viscous MHD flows has been constructed. Several variants of the filter approach that cater to different flow types are proposed. These filters provide a natural and efficient way for the minimization of the divergence of the magnetic field [divergence of B] numerical error in the sense that no standard divergence cleaning is required. For certain 2-D MHD test problems, divergence free preservation of the magnetic fields of these filter schemes has been achieved.
Overcoming the Curse of Dimension: Methods Based on Sparse Representation and Adaptive Sampling
2011-02-28
carried out mainly by him, together with our joint post-doc Haijun Yu. Please refer to his report for the progress made in this direction. 3 Exploring...multiscale modeling using sparse representation”, Comm. Comp. Phys., 4(5), pp. 1025–1033 (2008). [3] X. Zhou and W. Ren and W. E, “Adaptive minimum...action method for the study of rare events”, J. Chem. Phys., 128, 10, 2008. [4] X. Wan, X. Zhou and W. E, “Noise-induced transitions in the Kuramoto-Sivashinsky equation”, preprint, submitted. 4
Adaptive Wavelet Galerkin Methods on Distorted Domains: Setup of the Algebraic System
2000-01-01
let T, and T• be the largest integers such that O E W7!,’°(!2) andj E wTf’,-(Q), respectively. Then, we set R:= min{Ro, Tý - II & II , Th - 11[111. We...the first time. Moreover, for computing the right-hand side, two Adaptive Wavelet Galerkin Methods 71 AI = Ij = jo, AI= jo, = jo + 1 AI= ii = Jo + 1 4J...during the preparation of this paper. The first author is extremely grateful to the Dipartimento di Matematica of the Politecnico di Torino for using its
FALCON: A method for flexible adaptation of local coordinates of nuclei
NASA Astrophysics Data System (ADS)
König, Carolin; Hansen, Mads Bøttger; Godtliebsen, Ian H.; Christiansen, Ove
2016-02-01
We present a flexible scheme for calculating vibrational rectilinear coordinates with well-defined strict locality on a certain set of atoms. Introducing a method for Flexible Adaption of Local COordinates of Nuclei (FALCON) we show how vibrational subspaces can be "grown" in an adaptive manner. Subspace Hessian matrices are set up and used to calculate and analyze vibrational modes and frequencies. FALCON coordinates can more generally be used to construct vibrational coordinates for describing local and (semi-local) interacting modes with desired features. For instance, spatially local vibrations can be approximately described as internal motion within only a group of atoms and delocalized modes can be approximately expressed as relative motions of rigid groups of atoms. The FALCON method can support efficiency in the calculation and analysis of vibrational coordinates and energies in the context of harmonic and anharmonic calculations. The features of this method are demonstrated on a few small molecules, i.e., formylglycine, coumarin, and dimethylether as well as for the amide-I band and low-frequency modes of alanine oligomers and alpha conotoxin.
NASA Astrophysics Data System (ADS)
Danaila, Ionut; Moglan, Raluca; Hecht, Frédéric; Le Masson, Stéphane
2014-10-01
We present a new numerical system using finite elements with mesh adaptivity for the simulation of solid-liquid phase change systems. In the liquid phase, the natural convection flow is simulated by solving the incompressible Navier-Stokes equations with Boussinesq approximation. A variable viscosity model allows the velocity to progressively vanish in the solid phase, through an intermediate mushy region. The phase change is modeled by introducing an implicit enthalpy source term in the heat equation. The final system of equations describing the liquid-solid system by a single domain approach is solved using a Newton iterative algorithm. The space discretization is based on a P2-P1 Taylor-Hood finite elements and mesh adaptivity by metric control is used to accurately track the solid-liquid interface or the density inversion interface for water flows. The numerical method is validated against classical benchmarks that progressively add strong non-linearities in the system of equations: natural convection of air, natural convection of water, melting of a phase-change material and water freezing. Very good agreement with experimental data is obtained for each test case, proving the capability of the method to deal with both melting and solidification problems with convection. The presented numerical method is easy to implement using FreeFem++ software using a syntax close to the mathematical formulation.
Wagner, Roland; Helin, Tapio; Obereder, Andreas; Ramlau, Ronny
2016-02-20
The imaging quality of modern ground-based telescopes such as the planned European Extremely Large Telescope is affected by atmospheric turbulence. In consequence, they heavily depend on stable and high-performance adaptive optics (AO) systems. Using measurements of incoming light from guide stars, an AO system compensates for the effects of turbulence by adjusting so-called deformable mirror(s) (DMs) in real time. In this paper, we introduce a novel reconstruction method for ground layer adaptive optics. In the literature, a common approach to this problem is to use Bayesian inference in order to model the specific noise structure appearing due to spot elongation. This approach leads to large coupled systems with high computational effort. Recently, fast solvers of linear order, i.e., with computational complexity O(n), where n is the number of DM actuators, have emerged. However, the quality of such methods typically degrades in low flux conditions. Our key contribution is to achieve the high quality of the standard Bayesian approach while at the same time maintaining the linear order speed of the recent solvers. Our method is based on performing a separate preprocessing step before applying the cumulative reconstructor (CuReD). The efficiency and performance of the new reconstructor are demonstrated using the OCTOPUS, the official end-to-end simulation environment of the ESO for extremely large telescopes. For more specific simulations we also use the MOST toolbox.
NASA Technical Reports Server (NTRS)
Kim, Hyoungin; Liou, Meng-Sing
2011-01-01
In this paper, we demonstrate improved accuracy of the level set method for resolving deforming interfaces by proposing two key elements: (1) accurate level set solutions on adapted Cartesian grids by judiciously choosing interpolation polynomials in regions of different grid levels and (2) enhanced reinitialization by an interface sharpening procedure. The level set equation is solved using a fifth order WENO scheme or a second order central differencing scheme depending on availability of uniform stencils at each grid point. Grid adaptation criteria are determined so that the Hamiltonian functions at nodes adjacent to interfaces are always calculated by the fifth order WENO scheme. This selective usage between the fifth order WENO and second order central differencing schemes is confirmed to give more accurate results compared to those in literature for standard test problems. In order to further improve accuracy especially near thin filaments, we suggest an artificial sharpening method, which is in a similar form with the conventional re-initialization method but utilizes sign of curvature instead of sign of the level set function. Consequently, volume loss due to numerical dissipation on thin filaments is remarkably reduced for the test problems
Takahara, Teruhiko; Doi, Hideyuki; Kohmatsu, Yukihiro; Yamaoka, Ryohei
2013-01-01
In freshwater ecosystems, inducible defenses that involve behavioral or morphological changes in response to chemical cue detection are key phenomena in prey-predator interactions. Many species with different phylogenetic and ecological traits (e.g., general activity patterns and microhabitats) use chemical cues to avoid predators. We hypothesized that prey species with a shared predator, but having different ecological traits, would be adapted to detect different chemical cues from the predator. However, the proximate mechanisms by which prey use chemical cues to avoid predation remain little known. Here, we tested our hypothesis by using fractionated chemical components from predatory dragonfly nymphs (Lesser Emperor, Anax parthenope julius) to trigger anti-predator behavioral responses in two anuran tadpoles, the wrinkled frog Glandirana (Rana) rugosa and the Japanese tree frog Hyla japonica. Glandirana rugosa detected chemical cues that had either high or low hydrophobic properties, but H. japonica responded only to chemical cues with hydrophilic properties. During the normal behaviors of these tadpole species, G. rugosa remains immobile in benthic habitats, whereas H. japonica exhibits active swimming at the surface or in the middle of the water column. As we had hypothesized, these tadpole species, which have different general activity levels and microhabitats, detected different chemical cues that were exuded by their shared predator and responded by changing their activities to avoid predation. The specific chemical cues detected by each tadpole species are likely to have characteristics that optimize effective predator detection and encounter avoidance of the shared dragonfly predator.
Effective wavelet-based compression method with adaptive quantization threshold and zerotree coding
NASA Astrophysics Data System (ADS)
Przelaskowski, Artur; Kazubek, Marian; Jamrogiewicz, Tomasz
1997-10-01
Efficient image compression technique especially for medical applications is presented. Dyadic wavelet decomposition by use of Antonini and Villasenor bank filters is followed by adaptive space-frequency quantization and zerotree-based entropy coding of wavelet coefficients. Threshold selection and uniform quantization is made on a base of spatial variance estimate built on the lowest frequency subband data set. Threshold value for each coefficient is evaluated as linear function of 9-order binary context. After quantization zerotree construction, pruning and arithmetic coding is applied for efficient lossless data coding. Presented compression method is less complex than the most effective EZW-based techniques but allows to achieve comparable compression efficiency. Specifically our method has similar to SPIHT efficiency in MR image compression, slightly better for CT image and significantly better in US image compression. Thus the compression efficiency of presented method is competitive with the best published algorithms in the literature across diverse classes of medical images.
Interactive Rhythmic Cue Facilitates Gait Relearning in Patients with Parkinson's Disease
Uchitomi, Hirotaka; Ota, Leo; Ogawa, Ken-ichiro; Orimo, Satoshi; Miyake, Yoshihiro
2013-01-01
To develop a method for cooperative human gait training, we investigated whether interactive rhythmic cues could improve the gait performance of Parkinson's disease patients. The interactive rhythmic cues ware generated based on the mutual entrainment between the patient's gait rhythms and the cue rhythms input to the patient while the patient walked. Previously, we found that the dynamic characteristics of stride interval fluctuation in Parkinson's disease patients were improved to a healthy 1/f fluctuation level using interactive rhythmic cues and that this effect was maintained in the short term. However, two problems remained in our previous study. First, it was not clear whether the key factor underpinning the effect was the mutual entrainment between the gait rhythms and the cue rhythms or the rhythmic cue fluctuation itself. Second, it was not clear whether or not the gait restoration was maintained longitudinally and was relearned after repeating the cue-based gait training. Thus, the present study clarified these issues using 32 patients who participated in a four-day experimental program. The patients were assigned randomly to one of four experimental groups with the following rhythmic cues: (a) interactive rhythmic cue, (b) fixed tempo cue, (c) 1/f fluctuating tempo cue, and (d) no cue. It has been reported that the 1/f fluctuation of stride interval in healthy gait is absent in Parkinson's disease patients. Therefore, we used this dynamic characteristic as an evaluation index to analyze gait relearning in the four different conditions. We observed a significant effect in condition (a) that the gait fluctuation of the patients gradually returned to a healthy 1/f fluctuation level, whereas this did not occur in the other conditions. This result suggests that the mutual entrainment can facilitate gait relearning effectively. It is expected that interactive rhythmic cues will be widely applicable in the fields of rehabilitation and assistive technology
Sensory information and associative cues used in food detection by wild vervet monkeys.
Teichroeb, Julie A; Chapman, Colin A
2014-05-01
Understanding animals' spatial perception is a critical step toward discerning their cognitive processes. The spatial sense is multimodal and based on both the external world and mental representations of that world. Navigation in each species depends upon its evolutionary history, physiology, and ecological niche. We carried out foraging experiments on wild vervet monkeys (Chlorocebus pygerythrus) at Lake Nabugabo, Uganda, to determine the types of cues used to detect food and whether associative cues could be used to find hidden food. Our first and second set of experiments differentiated between vervets' use of global spatial cues (including the arrangement of feeding platforms within the surrounding vegetation) and/or local layout cues (the position of platforms relative to one another), relative to the use of goal-object cues on each platform. Our third experiment provided an associative cue to the presence of food with global spatial, local layout, and goal-object cues disguised. Vervets located food above chance levels when goal-object cues and associative cues were present, and visual signals were the predominant goal-object cues that they attended to. With similar sample sizes and methods as previous studies on New World monkeys, vervets were not able to locate food using only global spatial cues and local layout cues, unlike all five species of platyrrhines thus far tested. Relative to these platyrrhines, the spatial location of food may need to stay the same for a longer time period before vervets encode this information, and goal-object cues may be more salient for them in small-scale space.
NASA Technical Reports Server (NTRS)
Demkowicz, L.; Oden, J. T.; Rachowicz, W.
1990-01-01
A new finite element method solving compressible Navier-Stokes equations is proposed. The method is based on a version of Strang's operator splitting and an h-p adaptive finite element approximation in space. This paper contains the formulation of the method with a detailed discussion of boundary conditions, a sample adaptive strategy and numerical examples involving compressible viscous flow over a flat plate with Reynolds number Re = 1000 and Re = 10,000.
Rodrigues, Daniele Bobrowski; Mariutti, Lilian Regina Barros; Mercadante, Adriana Zerlotti
2016-12-07
In vitro digestion methods are a useful approach to predict the bioaccessibility of food components and overcome some limitations or disadvantages associated with in vivo methodologies. Recently, the INFOGEST network published a static method of in vitro digestion with a proposal for assay standardization. The INFOGEST method is not specific for any food component; therefore, we aimed to adapt this method to assess the in vitro bioaccessibility of carotenoids and carotenoid esters in a model fruit (Byrsonima crassifolia). Two additional steps were coupled to the in vitro digestion procedure, centrifugation at 20 000g for the separation of the aqueous phase containing mixed micelles and exhaustive carotenoid extraction with an organic solvent. The effect of electrolytes, enzymes and bile acids on carotenoid micellarization and stability was also tested. The results were compared with those found with a simpler method that has already been used for carotenoid bioaccessibility analysis. These values were in the expected range for free carotenoids (5-29%), monoesters (9-26%) and diesters (4-28%). In general, the in vitro bioaccessibility of carotenoids assessed by the adapted INFOGEST method was significantly higher (p < 0.05) than those assessed by the simplest protocol, with or without the addition of simulated fluids. Although no trend was observed, differences in bioaccessibility values depended on the carotenoid form (free, monoester or diester), isomerization (Z/E) and the in vitro digestion protocol. To the best of our knowledge, it was the first time that a systematic identification of carotenoid esters by HPLC-DAD-MS/MS after in vitro digestion using the INFOGEST protocol was carried out.
An adaptive distance-based group contribution method for thermodynamic property prediction.
He, Tanjin; Li, Shuang; Chi, Yawei; Zhang, Hong-Bo; Wang, Zhi; Yang, Bin; He, Xin; You, Xiaoqing
2016-09-14
In the search for an accurate yet inexpensive method to predict thermodynamic properties of large hydrocarbon molecules, we have developed an automatic and adaptive distance-based group contribution (DBGC) method. The method characterizes the group interaction within a molecule with an exponential decay function of the group-to-group distance, defined as the number of bonds between the groups. A database containing the molecular bonding information and the standard enthalpy of formation (Hf,298K) for alkanes, alkenes, and their radicals at the M06-2X/def2-TZVP//B3LYP/6-31G(d) level of theory was constructed. Multiple linear regression (MLR) and artificial neural network (ANN) fitting were used to obtain the contributions from individual groups and group interactions for further predictions. Compared with the conventional group additivity (GA) method, the DBGC method predicts Hf,298K for alkanes more accurately using the same training sets. Particularly for some highly branched large hydrocarbons, the discrepancy with the literature data is smaller for the DBGC method than the conventional GA method. When extended to other molecular classes, including alkenes and radicals, the overall accuracy level of this new method is still satisfactory.
Stop identity cue as a cue to language identity
NASA Astrophysics Data System (ADS)
Castonguay, Paula Lisa
The purpose of the present study was to determine whether language membership could potentially be cued by the acoustic-phonetic detail of word-initial stops and retained all the way through the process of lexical access to aid in language identification. Of particular interest were language-specific differences in CE and CF word-initial stops. Experiment 1 consisted of an interlingual homophone production task. The purpose of this study was to examine how word-initial stop consonants differ in terms of acoustic properties in Canadian English (CE) and Canadian French (CF) interlingual homophones. The analyses from the bilingual speakers in Experiment 1 indicate that bilinguals do produce language-specific differences in CE and CF word-initial stops, and that closure duration, voice onset time, and burst spectral SD may provide cues to language identity in CE and CF stops. Experiment 2 consisted of a Phoneme and Language Categorization task. The purpose of this study was to examine how stop identity cues, such as VOT and closure duration, influence a listener to identify word-initial stop consonants as belonging to Canadian English (CE) or Canadian French (CF). The RTs from the bilingual listeners in this study indicate that bilinguals do perceive language-specific differences in CE and CF word-initial stops, and that voice onset time may provide cues to phoneme and language membership in CE and CF stops. Experiment 3 consisted of a Phonological-Semantic priming task. The purpose of this study was to examine how subphonetic variations, such as changes in the VOT, affect lexical access. The results of Experiment 3 suggest that language-specific cues, such as VOT, affects the composition of the bilingual cohort and that the extent to which English and/or French words are activated is dependent on the language-specific cues present in a word. The findings of this study enhanced our theoretical understanding of lexical structure and lexical access in bilingual speakers
NASA Astrophysics Data System (ADS)
Coleman, S.; Hurley, S.; Koliba, C.; Zia, A.; Exler, S.
2014-12-01
Eutrophication and nutrient pollution of surface waters occur within complex governance, social, hydrologic and biophysical basin contexts. The pervasive and perennial nutrient pollution in Lake Champlain Basin, despite decades of efforts, exemplifies problems found across the world's surface waters. Stakeholders with diverse values, interests, and forms of explicit and tacit knowledge determine water quality impacts through land use, agricultural and water resource decisions. Uncertainty, ambiguity and dynamic feedback further complicate the ability to promote the continual provision of water quality and ecosystem services. Adaptive management of water resources and land use requires mechanisms to allow for learning and integration of new information over time. The transdisciplinary Research on Adaptation to Climate Change (RACC) team is working to build regional adaptive capacity in Lake Champlain Basin while studying and integrating governance, land use, hydrological, and biophysical systems to evaluate implications for adaptive management. The RACC team has engaged stakeholders through mediated modeling workshops, online forums, surveys, focus groups and interviews. In March 2014, CSS2CC.org, an interactive online forum to source and identify adaptive interventions from a group of stakeholders across sectors was launched. The forum, based on the Delphi Method, brings forward the collective wisdom of stakeholders and experts to identify potential interventions and governance designs in response to scientific uncertainty and ambiguity surrounding the effectiveness of any strategy, climate change impacts, and the social and natural systems governing water quality and eutrophication. A Mediated Modeling Workshop followed the forum in May 2014, where participants refined and identified plausible interventions under different governance, policy and resource scenarios. Results from the online forum and workshop can identify emerging consensus across scales and sectors
The adaptive EVP method for solving the sea ice momentum equation
NASA Astrophysics Data System (ADS)
Kimmritz, Madlen; Danilov, Sergey; Losch, Martin
2016-04-01
Most dynamic sea ice models for climate-type simulations are based on the viscous-plastic (VP) rheology. The resulting stiff system of partial differential equations for the sea ice velocity is either solved implicitly at great computational cost, or explicitly with added pseudo-elasticity (elastic-viscous-plastic, EVP). Bouillon et al. (Ocean Modell., 2013) reinterpreted the EVP method for solving the sea ice momentum equation as an iterative pseudotime VP solver with improved convergence properties. In Kimmritz et al. (J. Comput. Physics, 2015) we showed that this modified EVP (mEVP) scheme should warrant converging solutions if its stability is maintained and the number of pseudotime iterations is sufficiently high. Here, we focus on the role of spatial discretizations. We analyze stability and convergence of mEVP on B- and C-grids. We show that the implementation on B-grids is less restrictive with respect to stability constraints than on C-grids. Additionally, convergence on C-grids is sensitive to the discretization of the viscosities and can be lost for some variants of discretization. Building on these findings we present an adaptive version of the mEVP scheme, which satisfies local stability constraints and aims to accelerate convergence where possible. This is achieved by local adaptation of the parameters governing the pseudotime subcycling of the scheme. We analyze the performance of this new ``adaptive EVP'' approach in a series of experiments with the sea ice component of the general circulation model MITgcm, which is formulated on a C-grid. We show that convergence in realistic settings is sensitive to the details of the implementation of the rheology. In particular, the use of the pressure replacement method deteriorates convergence.
The Adaptive Biasing Force Method: Everything You Always Wanted To Know but Were Afraid To Ask
2014-01-01
In the host of numerical schemes devised to calculate free energy differences by way of geometric transformations, the adaptive biasing force algorithm has emerged as a promising route to map complex free-energy landscapes. It relies upon the simple concept that as a simulation progresses, a continuously updated biasing force is added to the equations of motion, such that in the long-time limit it yields a Hamiltonian devoid of an average force acting along the transition coordinate of interest. This means that sampling proceeds uniformly on a flat free-energy surface, thus providing reliable free-energy estimates. Much of the appeal of the algorithm to the practitioner is in its physically intuitive underlying ideas and the absence of any requirements for prior knowledge about free-energy landscapes. Since its inception in 2001, the adaptive biasing force scheme has been the subject of considerable attention, from in-depth mathematical analysis of convergence properties to novel developments and extensions. The method has also been successfully applied to many challenging problems in chemistry and biology. In this contribution, the method is presented in a comprehensive, self-contained fashion, discussing with a critical eye its properties, applicability, and inherent limitations, as well as introducing novel extensions. Through free-energy calculations of prototypical molecular systems, many methodological aspects are examined, from stratification strategies to overcoming the so-called hidden barriers in orthogonal space, relevant not only to the adaptive biasing force algorithm but also to other importance-sampling schemes. On the basis of the discussions in this paper, a number of good practices for improving the efficiency and reliability of the computed free-energy differences are proposed. PMID:25247823
The adaptive biasing force method: everything you always wanted to know but were afraid to ask.
Comer, Jeffrey; Gumbart, James C; Hénin, Jérôme; Lelièvre, Tony; Pohorille, Andrew; Chipot, Christophe
2015-01-22
In the host of numerical schemes devised to calculate free energy differences by way of geometric transformations, the adaptive biasing force algorithm has emerged as a promising route to map complex free-energy landscapes. It relies upon the simple concept that as a simulation progresses, a continuously updated biasing force is added to the equations of motion, such that in the long-time limit it yields a Hamiltonian devoid of an average force acting along the transition coordinate of interest. This means that sampling proceeds uniformly on a flat free-energy surface, thus providing reliable free-energy estimates. Much of the appeal of the algorithm to the practitioner is in its physically intuitive underlying ideas and the absence of any requirements for prior knowledge about free-energy landscapes. Since its inception in 2001, the adaptive biasing force scheme has been the subject of considerable attention, from in-depth mathematical analysis of convergence properties to novel developments and extensions. The method has also been successfully applied to many challenging problems in chemistry and biology. In this contribution, the method is presented in a comprehensive, self-contained fashion, discussing with a critical eye its properties, applicability, and inherent limitations, as well as introducing novel extensions. Through free-energy calculations of prototypical molecular systems, many methodological aspects are examined, from stratification strategies to overcoming the so-called hidden barriers in orthogonal space, relevant not only to the adaptive biasing force algorithm but also to other importance-sampling schemes. On the basis of the discussions in this paper, a number of good practices for improving the efficiency and reliability of the computed free-energy differences are proposed.
Aitken, Tara J.; Greenfield, Venuz Y.; Wassum, Kate M.
2016-01-01
Environmental reward-predictive stimuli provide a major source of motivation for instrumental reward-seeking activity and this has been linked to dopamine signaling in the nucleus accumbens (NAc). This cue-induced incentive motivation can be quite general, not restricted to instrumental actions that earn the same unique reward, and is also typically regulated by one’s current need state, such that cues only motivate actions when this is adaptive. But it is unknown whether cue-evoked dopamine signaling is similarly regulated by need state. Here we used fast-scan cyclic voltammetry to monitor dopamine concentration changes in the NAc core of rats during a Pavlovian-to-instrumental transfer (PIT) task in which the motivating influence of two cues, each signaling a distinct food reward (sucrose or food pellets), over an action earning a third unique food reward (grape-flavored polycose) was assessed in a state of hunger and of satiety. Both cues elicited a robust NAc dopamine response when hungry. The magnitude of the sucrose cue-evoked dopamine response correlated with the PIT effect that was selectively induced by this stimulus. Satiety attenuated these cue-evoked dopamine responses and behavioral responding, even though rats had never experienced the specific food rewards in this state. These data demonstrate that cue-evoked NAc core responses are sensitive to current need state, one critical variable that determines the current adaptive utility of cue-motivated behavior. PMID:26715366
Integration of Pragmatic and Phonetic Cues in Spoken Word Recognition
Rohde, Hannah; Ettlinger, Marc
2015-01-01
Although previous research has established that multiple top-down factors guide the identification of words during speech processing, the ultimate range of information sources that listeners integrate from different levels of linguistic structure is still unknown. In a set of experiments, we investigate whether comprehenders can integrate information from the two most disparate domains: pragmatic inference and phonetic perception. Using contexts that trigger pragmatic expectations regarding upcoming coreference (expectations for either he or she), we test listeners' identification of phonetic category boundaries (using acoustically ambiguous words on the/hi/∼/∫i/continuum). The results indicate that, in addition to phonetic cues, word recognition also reflects pragmatic inference. These findings are consistent with evidence for top-down contextual effects from lexical, syntactic, and semantic cues, but they extend this previous work by testing cues at the pragmatic level and by eliminating a statistical-frequency confound that might otherwise explain the previously reported results. We conclude by exploring the time-course of this interaction and discussing how different models of cue integration could be adapted to account for our results. PMID:22250908
Coakley, K J; Imtiaz, A; Wallis, T M; Weber, J C; Berweger, S; Kabos, P
2015-03-01
Near-field scanning microwave microscopy offers great potential to facilitate characterization, development and modeling of materials. By acquiring microwave images at multiple frequencies and amplitudes (along with the other modalities) one can study material and device physics at different lateral and depth scales. Images are typically noisy and contaminated by artifacts that can vary from scan line to scan line and planar-like trends due to sample tilt errors. Here, we level images based on an estimate of a smooth 2-d trend determined with a robust implementation of a local regression method. In this robust approach, features and outliers which are not due to the trend are automatically downweighted. We denoise images with the Adaptive Weights Smoothing method. This method smooths out additive noise while preserving edge-like features in images. We demonstrate the feasibility of our methods on topography images and microwave |S11| images. For one challenging test case, we demonstrate that our method outperforms alternative methods from the scanning probe microscopy data analysis software package Gwyddion. Our methods should be useful for massive image data sets where manual selection of landmarks or image subsets by a user is impractical.
Compact integration factor methods for complex domains and adaptive mesh refinement.
Liu, Xinfeng; Nie, Qing
2010-08-10
Implicit integration factor (IIF) method, a class of efficient semi-implicit temporal scheme, was introduced recently for stiff reaction-diffusion equations. To reduce cost of IIF, compact implicit integration factor (cIIF) method was later developed for efficient storage and calculation of exponential matrices associated with the diffusion operators in two and three spatial dimensions for Cartesian coordinates with regular meshes. Unlike IIF, cIIF cannot be directly extended to other curvilinear coordinates, such as polar and spherical coordinate, due to the compact representation for the diffusion terms in cIIF. In this paper, we present a method to generalize cIIF for other curvilinear coordinates through examples of polar and spherical coordinates. The new cIIF method in polar and spherical coordinates has similar computational efficiency and stability properties as the cIIF in Cartesian coordinate. In addition, we present a method for integrating cIIF with adaptive mesh refinement (AMR) to take advantage of the excellent stability condition for cIIF. Because the second order cIIF is unconditionally stable, it allows large time steps for AMR, unlike a typical explicit temporal scheme whose time step is severely restricted by the smallest mesh size in the entire spatial domain. Finally, we apply those methods to simulating a cell signaling system described by a system of stiff reaction-diffusion equations in both two and three spatial dimensions using AMR, curvilinear and Cartesian coordinates. Excellent performance of the new methods is observed.
NASA Astrophysics Data System (ADS)
Cheng, Junsheng; Peng, Yanfeng; Yang, Yu; Wu, Zhantao
2017-02-01
Enlightened by ASTFA method, adaptive sparsest narrow-band decomposition (ASNBD) method is proposed in this paper. In ASNBD method, an optimized filter must be established at first. The parameters of the filter are determined by solving a nonlinear optimization problem. A regulated differential operator is used as the objective function so that each component is constrained to be a local narrow-band signal. Afterwards, the signal is filtered by the optimized filter to generate an intrinsic narrow-band component (INBC). ASNBD is proposed aiming at solving the problems existed in ASTFA. Gauss-Newton type method, which is applied to solve the optimization problem in ASTFA, is irreplaceable and very sensitive to initial values. However, more appropriate optimization method such as genetic algorithm (GA) can be utilized to solve the optimization problem in ASNBD. Meanwhile, compared with ASTFA, the decomposition results generated by ASNBD have better physical meaning by constraining the components to be local narrow-band signals. Comparisons are made between ASNBD, ASTFA and EMD by analyzing simulation and experimental signals. The results indicate that ASNBD method is superior to the other two methods in generating more accurate components from noise signal, restraining the boundary effect, possessing better orthogonality and diagnosing rolling element bearing fault.
A Bayesian adaptive blinded sample size adjustment method for risk differences.
Hartley, Andrew Montgomery
2015-01-01
Adaptive sample size adjustment (SSA) for clinical trials consists of examining early subsets of on trial data to adjust estimates of sample size requirements. Blinded SSA is often preferred over unblinded SSA because it obviates many logistical complications of the latter and generally introduces less bias. On the other hand, current blinded SSA methods for binary data offer little to no new information about the treatment effect, ignore uncertainties associated with the population treatment proportions, and/or depend on enhanced randomization schemes that risk partial unblinding. I propose an innovative blinded SSA method for use when the primary analysis is a non-inferiority or superiority test regarding a risk difference. The method incorporates evidence about the treatment effect via the likelihood function of a mixture distribution. I compare the new method with an established one and with the fixed sample size study design, in terms of maximization of an expected utility function. The new method maximizes the expected utility better than do the comparators, under a range of assumptions. I illustrate the use of the proposed method with an example that incorporates a Bayesian hierarchical model. Lastly, I suggest topics for future study regarding the proposed methods.
An adaptive multifluid interface-capturing method for compressible flow in complex geometries
Greenough, J.A.; Beckner, V.; Pember, R.B.; Crutchfield, W.Y.; Bell, J.B.; Colella, P.
1995-04-01
We present a numerical method for solving the multifluid equations of gas dynamics using an operator-split second-order Godunov method for flow in complex geometries in two and three dimensions. The multifluid system treats the fluid components as thermodynamically distinct entities and correctly models fluids with different compressibilities. This treatment allows a general equation-of-state (EOS) specification and the method is implemented so that the EOS references are minimized. The current method is complementary to volume-of-fluid (VOF) methods in the sense that a VOF representation is used, but no interface reconstruction is performed. The Godunov integrator captures the interface during the solution process. The basic multifluid integrator is coupled to a Cartesian grid algorithm that also uses a VOF representation of the fluid-body interface. This representation of the fluid-body interface allows the algorithm to easily accommodate arbitrarily complex geometries. The resulting single grid multifluid-Cartesian grid integration scheme is coupled to a local adaptive mesh refinement algorithm that dynamically refines selected regions of the computational grid to achieve a desired level of accuracy. The overall method is fully conservative with respect to the total mixture. The method will be used for a simple nozzle problem in two-dimensional axisymmetric coordinates.
An adaptive block-based fusion method with LUE-SSIM for multi-focus images
NASA Astrophysics Data System (ADS)
Zheng, Jianing; Guo, Yongcai; Huang, Yukun
2016-09-01
Because of the lenses' limited depth of field, digital cameras are incapable of acquiring an all-in-focus image of objects at varying distances in a scene. Multi-focus image fusion technique can effectively solve this problem. Aiming at the block-based multi-focus image fusion methods, the problem that blocking-artifacts often occurs. An Adaptive block-based fusion method based on lifting undistorted-edge structural similarity (LUE-SSIM) is put forward. In this method, image quality metrics LUE-SSIM is firstly proposed, which utilizes the characteristics of human visual system (HVS) and structural similarity (SSIM) to make the metrics consistent with the human visual perception. Particle swarm optimization(PSO) algorithm which selects LUE-SSIM as the object function is used for optimizing the block size to construct the fused image. Experimental results on LIVE image database shows that LUE-SSIM outperform SSIM on Gaussian defocus blur images quality assessment. Besides, multi-focus image fusion experiment is carried out to verify our proposed image fusion method in terms of visual and quantitative evaluation. The results show that the proposed method performs better than some other block-based methods, especially in reducing the blocking-artifact of the fused image. And our method can effectively preserve the undistorted-edge details in focus region of the source images.
Morphological Cues for Lexical Semantics
1996-06-01
father, and turned thirty-graduate school has been a long varied haul and I could never have made it alone. Thus it is a good time to thank all the...distinction between world and linguistic knowledge has a long history in philosophy. Whether the distinction exists and if so how it should be drawn are...explaining human language acquisition. Language semantics cueing is more promising from a computational perspective and consequently has a long (for
Optimal energy-splitting method for an open-loop liquid crystal adaptive optics system.
Cao, Zhaoliang; Mu, Quanquan; Hu, Lifa; Liu, Yonggang; Peng, Zenghui; Yang, Qingyun; Meng, Haoran; Yao, Lishuang; Xuan, Li
2012-08-13
A waveband-splitting method is proposed for open-loop liquid crystal adaptive optics systems (LC AOSs). The proposed method extends the working waveband, splits energy flexibly, and improves detection capability. Simulated analysis is performed for a waveband in the range of 350 nm to 950 nm. The results show that the optimal energy split is 7:3 for the wavefront sensor (WFS) and for the imaging camera with the waveband split into 350 nm to 700 nm and 700 nm to 950 nm, respectively. A validation experiment is conducted by measuring the signal-to-noise ratio (SNR) of the WFS and the imaging camera. The results indicate that for the waveband-splitting method, the SNR of WFS is approximately equal to that of the imaging camera with a variation in the intensity. On the other hand, the SNR of the WFS is significantly different from that of the imaging camera for the polarized beam splitter energy splitting scheme. Therefore, the waveband-splitting method is more suitable for an open-loop LC AOS. An adaptive correction experiment is also performed on a 1.2-meter telescope. A star with a visual magnitude of 4.45 is observed and corrected and an angular resolution ability of 0.31″ is achieved. A double star with a combined visual magnitude of 4.3 is observed as well, and its two components are resolved after correction. The results indicate that the proposed method can significantly improve the detection capability of an open-loop LC AOS.
Automatic white matter lesion segmentation using an adaptive outlier detection method.
Ong, Kok Haur; Ramachandram, Dhanesh; Mandava, Rajeswari; Shuaib, Ibrahim Lutfi
2012-07-01
White matter (WM) lesions are diffuse WM abnormalities that appear as hyperintense (bright) regions in cranial magnetic resonance imaging (MRI). WM lesions are often observed in older populations and are important indicators of stroke, multiple sclerosis, dementia and other brain-related disorders. In this paper, a new automated method for WM lesions segmentation is presented. In the proposed method, the presence of WM lesions is detected as outliers in the intensity distribution of the fluid-attenuated inversion recovery (FLAIR) MR images using an adaptive outlier detection approach. Outliers are detected using a novel adaptive trimmed mean algorithm and box-whisker plot. In addition, pre- and postprocessing steps are implemented to reduce false positives attributed to MRI artifacts commonly observed in FLAIR sequences. The approach is validated using the cranial MRI sequences of 38 subjects. A significant correlation (R=0.9641, P value=3.12×10(-3)) is observed between the automated approach and manual segmentation by radiologist. The accuracy of the proposed approach was further validated by comparing the lesion volumes computed using the automated approach and lesions manually segmented by an expert radiologist. Finally, the proposed approach is compared against leading lesion segmentation algorithms using a benchmark dataset.
A texture-analysis-based design method for self-adaptive focus criterion function.
Liang, Q; Qu, Y F
2012-05-01
Autofocusing (AF) criterion functions are critical to the performance of a passive autofocusing system in automatic video microscopy. Most of the autofocusing criterion functions proposed are dependent on the imaging system and image captured by the objective being focused or ranged. This dependence destabilizes the performance of the system when the criterion functions are applied to objectives with different characteristics. In this paper, a new design method for autofocusing criterion functions is introduced. This method enables the system to have the ability to tell the texture directional information of the objective. Based on this information, the optimal focus criterion function specific to one texture direction is designed, voiding blindly using autofocusing functions which cannot perform well when applied to the certain surface and can even lead to failure of the whole process. In this way, we improved the self-adaptability, robustness, reliability and focusing accuracy of the algorithm. First, the grey-level co-occurrence matrices of real-time images are calculated in four directions. Next, the contrast values of the four matrices are computed and then compared. The result reflects the directional information of the measured objective surfaces. Finally, with the directional information, an adaptive criterion function is constructed. To demonstrate the effectiveness of the new focus algorithm, we conducted experiments on different texture surfaces and compared the results with those obtained by existing algorithms. The proposed algorithm excellently performs with different measured objectives.
NASA Technical Reports Server (NTRS)
Kopasakis, George
2004-01-01
An adaptive feedback control method was demonstrated that suppresses thermoacoustic instabilities in a liquid-fueled combustor of a type used in aircraft engines. Extensive research has been done to develop lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle to reduce the environmental impact of aerospace propulsion systems. However, these lean-burning combustors are susceptible to thermoacoustic instabilities (high-frequency pressure waves), which can fatigue combustor components and even the downstream turbine blades. This can significantly decrease the safe operating lives of the combustor and turbine. Thus, suppressing the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors under NASA's Propulsion and Power Program. This control methodology has been developed and tested in a partnership of the NASA Glenn Research Center, Pratt & Whitney, United Technologies Research Center, and the Georgia Institute of Technology. Initial combustor rig testing of the controls algorithm was completed during 2002. Subsequently, the test results were analyzed and improvements to the method were incorporated in 2003, which culminated in the final status of this controls algorithm. This control methodology is based on adaptive phase shifting. The combustor pressure oscillations are sensed and phase shifted, and a high-frequency fuel valve is actuated to put pressure oscillations into the combustor to cancel pressure oscillations produced by the instability.
An Adaptive Fast Multipole Boundary Element Method for Poisson−Boltzmann Electrostatics
2009-01-01
The numerical solution of the Poisson−Boltzmann (PB) equation is a useful but a computationally demanding tool for studying electrostatic solvation effects in chemical and biomolecular systems. Recently, we have described a boundary integral equation-based PB solver accelerated by a new version of the fast multipole method (FMM). The overall algorithm shows an order N complexity in both the computational cost and memory usage. Here, we present an updated version of the solver by using an adaptive FMM for accelerating the convolution type matrix-vector multiplications. The adaptive algorithm, when compared to our previous nonadaptive one, not only significantly improves the performance of the overall memory usage but also remarkably speeds the calculation because of an improved load balancing between the local- and far-field calculations. We have also implemented a node-patch discretization scheme that leads to a reduction of unknowns by a factor of 2 relative to the constant element method without sacrificing accuracy. As a result of these improvements, the new solver makes the PB calculation truly feasible for large-scale biomolecular systems such as a 30S ribosome molecule even on a typical 2008 desktop computer. PMID:19517026
Florio, C S
2015-04-01
Improved methods to analyze and compare the muscle-based influences that drive bone strength adaptation can aid in the understanding of the wide array of experimental observations about the effectiveness of various mechanical countermeasures to losses in bone strength that result from age, disuse, and reduced gravity environments. The coupling of gradient-based and gradientless numerical optimization routines with finite element methods in this work results in a modeling technique that determines the individual magnitudes of the muscle forces acting in a multisegment musculoskeletal system and predicts the improvement in the stress state uniformity and, therefore, strength, of a targeted bone through simulated local cortical material accretion and resorption. With a performance-based stopping criteria, no experimentally based or system-based parameters, and designed to include the direct and indirect effects of muscles attached to the targeted bone as well as to its neighbors, shape and strength alterations resulting from a wide range of boundary conditions can be consistently quantified. As demonstrated in a representative parametric study, the developed technique effectively provides a clearer foundation for the study of the relationships between muscle forces and the induced changes in bone strength. Its use can lead to the better control of such adaptive phenomena.
A goal-oriented adaptive procedure for the quasi-continuum method with cluster approximation
NASA Astrophysics Data System (ADS)
Memarnahavandi, Arash; Larsson, Fredrik; Runesson, Kenneth
2015-04-01
We present a strategy for adaptive error control for the quasi-continuum (QC) method applied to molecular statics problems. The QC-method is introduced in two steps: Firstly, introducing QC-interpolation while accounting for the exact summation of all the bond-energies, we compute goal-oriented error estimators in a straight-forward fashion based on the pertinent adjoint (dual) problem. Secondly, for large QC-elements the bond energy and its derivatives are typically computed using an appropriate discrete quadrature using cluster approximations, which introduces a model error. The combined error is estimated approximately based on the same dual problem in conjunction with a hierarchical strategy for approximating the residual. As a model problem, we carry out atomistic-to-continuum homogenization of a graphene monolayer, where the Carbon-Carbon energy bonds are modeled via the Tersoff-Brenner potential, which involves next-nearest neighbor couplings. In particular, we are interested in computing the representative response for an imperfect lattice. Within the goal-oriented framework it becomes natural to choose the macro-scale (continuum) stress as the "quantity of interest". Two different formulations are adopted: The Basic formulation and the Global formulation. The presented numerical investigation shows the accuracy and robustness of the proposed error estimator and the pertinent adaptive algorithm.
An Efficient Adaptive Window Size Selection Method for Improving Spectrogram Visualization
Khan, Omar Usman
2016-01-01
Short Time Fourier Transform (STFT) is an important technique for the time-frequency analysis of a time varying signal. The basic approach behind it involves the application of a Fast Fourier Transform (FFT) to a signal multiplied with an appropriate window function with fixed resolution. The selection of an appropriate window size is difficult when no background information about the input signal is known. In this paper, a novel empirical model is proposed that adaptively adjusts the window size for a narrow band-signal using spectrum sensing technique. For wide-band signals, where a fixed time-frequency resolution is undesirable, the approach adapts the constant Q transform (CQT). Unlike the STFT, the CQT provides a varying time-frequency resolution. This results in a high spectral resolution at low frequencies and high temporal resolution at high frequencies. In this paper, a simple but effective switching framework is provided between both STFT and CQT. The proposed method also allows for the dynamic construction of a filter bank according to user-defined parameters. This helps in reducing redundant entries in the filter bank. Results obtained from the proposed method not only improve the spectrogram visualization but also reduce the computation cost and achieves 87.71% of the appropriate window length selection. PMID:27642291
An Adaptive Fast Multipole Boundary Element Method for Poisson-Boltzmann Electrostatics
Lu, Benzhuo; Cheng, Xiaolin; Huang, Jingfang; McCammon, Jonathan
2009-01-01
The numerical solution of the Poisson Boltzmann (PB) equation is a useful but a computationally demanding tool for studying electrostatic solvation effects in chemical and biomolecular systems. Recently, we have described a boundary integral equation-based PB solver accelerated by a new version of the fast multipole method (FMM). The overall algorithm shows an order N complexity in both the computational cost and memory usage. Here, we present an updated version of the solver by using an adaptive FMM for accelerating the convolution type matrix-vector multiplications. The adaptive algorithm, when compared to our previous nonadaptive one, not only significantly improves the performance of the overall memory usage but also remarkably speeds the calculation because of an improved load balancing between the local- and far-field calculations. We have also implemented a node-patch discretization scheme that leads to a reduction of unknowns by a factor of 2 relative to the constant element method without sacrificing accuracy. As a result of these improvements, the new solver makes the PB calculation truly feasible for large-scale biomolecular systems such as a 30S ribosome molecule even on a typical 2008 desktop computer.
An Efficient Adaptive Window Size Selection Method for Improving Spectrogram Visualization.
Nisar, Shibli; Khan, Omar Usman; Tariq, Muhammad
2016-01-01
Short Time Fourier Transform (STFT) is an important technique for the time-frequency analysis of a time varying signal. The basic approach behind it involves the application of a Fast Fourier Transform (FFT) to a signal multiplied with an appropriate window function with fixed resolution. The selection of an appropriate window size is difficult when no background information about the input signal is known. In this paper, a novel empirical model is proposed that adaptively adjusts the window size for a narrow band-signal using spectrum sensing technique. For wide-band signals, where a fixed time-frequency resolution is undesirable, the approach adapts the constant Q transform (CQT). Unlike the STFT, the CQT provides a varying time-frequency resolution. This results in a high spectral resolution at low frequencies and high temporal resolution at high frequencies. In this paper, a simple but effective switching framework is provided between both STFT and CQT. The proposed method also allows for the dynamic construction of a filter bank according to user-defined parameters. This helps in reducing redundant entries in the filter bank. Results obtained from the proposed method not only improve the spectrogram visualization but also reduce the computation cost and achieves 87.71% of the appropriate window length selection.
Modeling adaptation of carbon use efficiency in microbial communities.
Allison, Steven D
2014-01-01
In new microbial-biogeochemical models, microbial carbon use efficiency (CUE) is often assumed to decline with increasing temperature. Under this assumption, soil carbon losses under warming are small because microbial biomass declines. Yet there is also empirical evidence that CUE may adapt (i.e., become less sensitive) to warming, thereby mitigating negative effects on microbial biomass. To analyze potential mechanisms of CUE adaptation, I used two theoretical models to implement a tradeoff between microbial uptake rate and CUE. This rate-yield tradeoff is based on thermodynamic principles and suggests that microbes with greater investment in resource acquisition should have lower CUE. Microbial communities or individuals could adapt to warming by reducing investment in enzymes and uptake machinery. Consistent with this idea, a simple analytical model predicted that adaptation can offset 50% of the warming-induced decline in CUE. To assess the ecosystem implications of the rate-yield tradeoff, I quantified CUE adaptation in a spatially-structured simulation model with 100 microbial taxa and 12 soil carbon substrates. This model predicted much lower CUE adaptation, likely due to additional physiological and ecological constraints on microbes. In particular, specific resource acquisition traits are needed to maintain stoichiometric balance, and taxa with high CUE and low enzyme investment rely on low-yield, high-enzyme neighbors to catalyze substrate degradation. In contrast to published microbial models, simulations with greater CUE adaptation also showed greater carbon storage under warming. This pattern occurred because microbial communities with stronger CUE adaptation produced fewer degradative enzymes, despite increases in biomass. Thus, the rate-yield tradeoff prevents CUE adaptation from driving ecosystem carbon loss under climate warming.
NASA Astrophysics Data System (ADS)
Le Jeune, L.; Robert, S.; Dumas, P.; Membre, A.; Prada, C.
2015-03-01
In this paper, we propose an ultrasonic adaptive imaging method based on the phased-array technology and the synthetic focusing algorithm Total Focusing Method (TFM). The general principle is to image the surface by applying the TFM algorithm in a semi-infinite water medium. Then, the reconstructed surface is taken into account to make a second TFM image inside the component. In the surface reconstruction step, the TFM algorithm has been optimized to decrease computation time and to limit noise in water. In the second step, the ultrasonic paths through the reconstructed surface are calculated by the Fermat's principle and an iterative algorithm, and the classical TFM is applied to obtain an image inside the component. This paper presents several results of TFM imaging in components of different geometries, and a result obtained with a new technology of probes equipped with a flexible wedge filled with water (manufactured by Imasonic).
Adaptive-Grid Methods for Phase Field Models of Microstructure Development
NASA Technical Reports Server (NTRS)
Provatas, Nikolas; Goldenfeld, Nigel; Dantzig, Jonathan A.
1999-01-01
In this work the authors show how the phase field model can be solved in a computationally efficient manner that opens a new large-scale simulational window on solidification physics. Our method uses a finite element, adaptive-grid formulation, and exploits the fact that the phase and temperature fields vary significantly only near the interface. We illustrate how our method allows efficient simulation of phase-field models in very large systems, and verify the predictions of solvability theory at intermediate undercooling. We then present new results at low undercoolings that suggest that solvability theory may not give the correct tip speed in that regime. We model solidification using the phase-field model used by Karma and Rappel.
Numerical simulation of diffusion MRI signals using an adaptive time-stepping method
NASA Astrophysics Data System (ADS)
Li, Jing-Rebecca; Calhoun, Donna; Poupon, Cyril; Le Bihan, Denis
2014-01-01
The effect on the MRI signal of water diffusion in biological tissues in the presence of applied magnetic field gradient pulses can be modelled by a multiple compartment Bloch-Torrey partial differential equation. We present a method for the numerical solution of this equation by coupling a standard Cartesian spatial discretization with an adaptive time discretization. The time discretization is done using the explicit Runge-Kutta-Chebyshev method, which is more efficient than the forward Euler time discretization for diffusive-type problems. We use this approach to simulate the diffusion MRI signal from the extra-cylindrical compartment in a tissue model of the brain gray matter consisting of cylindrical and spherical cells and illustrate the effect of cell membrane permeability.
Adaptation of an ethnographic method for investigation of the task domain in diagnostic radiology
NASA Astrophysics Data System (ADS)
Ramey, Judith A.; Rowberg, Alan H.; Robinson, Carol
1992-07-01
A number of user-centered methods for designing radiology workstations have been described by researchers at Carleton University (Ottawa), Georgetown University, George Washington University, and University of Arizona, among others. The approach described here differs in that it enriches standard human-factors practices with methods adapted from ethnography to study users (in this case, diagnostic radiologists) as members of a distinct culture. The overall approach combines several methods; the core method, based on ethnographic ''stream of behavior chronicles'' and their analysis, has four phases: (1) first, we gather the stream of behavior by videotaping a radiologist as he or she works; (2) we view the tape ourselves and formulate questions and hypothesis about the work; and then (3) in a second videotaped session, we show the radiologist the original tape and ask for a running commentary on the work, into which, at the appropriate points, we interject our questions for clarification. We then (4) categorize/index the behavior on the ''raw data'' tapes for various kinds of follow-on analysis. We describe and illustrate this method in detail, describe how we analyze the ''raw data'' videotapes and the commentary tapes, and explain how the method can be integrated into an overall user-centered design process based on standard human-factors techniques.
Liang, Xiaoyu; Wang, Zhenchuan; Sha, Qiuying; Zhang, Shuanglin
2016-01-01
Currently, the analyses of most genome-wide association studies (GWAS) have been performed on a single phenotype. There is increasing evidence showing that pleiotropy is a widespread phenomenon in complex diseases. Therefore, using only one single phenotype may lose statistical power to identify the underlying genetic mechanism. There is an increasing need to develop and apply powerful statistical tests to detect association between multiple phenotypes and a genetic variant. In this paper, we develop an Adaptive Fisher’s Combination (AFC) method for joint analysis of multiple phenotypes in association studies. The AFC method combines p-values obtained in standard univariate GWAS by using the optimal number of p-values which is determined by the data. We perform extensive simulations to evaluate the performance of the AFC method and compare the power of our method with the powers of TATES, Tippett’s method, Fisher’s combination test, MANOVA, MultiPhen, and SUMSCORE. Our simulation studies show that the proposed method has correct type I error rates and is either the most powerful test or comparable with the most powerful test. Finally, we illustrate our proposed methodology by analyzing whole-genome genotyping data from a lung function study. PMID:27694844
Trinh, Quoclinh; Xu, Wentao; Shi, Hui; Luo, Yunbo; Huang, Kunlun
2012-06-01
A-T linker adapter polymerase chain reaction (PCR) was modified and employed for the isolation of genomic fragments adjacent to a known DNA sequence. The improvements in the method focus on two points. The first is the modification of the PO(4) and NH(2) groups in the adapter to inhibit the self-ligation of the adapter or the generation of nonspecific products. The second improvement is the use of the capacity of rTaq DNA polymerase to add an adenosine overhang at the 3' ends of digested DNA to suppress self-ligation in the digested DNA and simultaneously resolve restriction site clone bias. The combination of modifications in the adapter and in the digested DNA leads to T/A-specific ligation, which enhances the flexibility of this method and makes it feasible to use many different restriction enzymes with a single adapter. This novel A-T linker adapter PCR overcomes the inherent limitations of the original ligation-mediated PCR method such as low specificity and a lack of restriction enzyme choice. Moreover, this method also offers higher amplification efficiency, greater flexibility, and easier manipulation compared with other PCR methods for chromosome walking. Experimental results from 143 Arabidopsis mutants illustrate that this method is reliable and efficient in high-throughput experiments.
Ritter, André V; Cavalcante, Larissa M; Swift, Edward J; Thompson, Jeffrey Y; Pimenta, Luiz A
2006-08-01
The objective of this study was to investigate the effects of different light-curing methods on microleakage, marginal adaptation, and microhardness of composite restorations. Slot-type preparations were made in bovine teeth, with gingival margins on dentin. Specimens were divided into 12 groups (n = 12) according to composite-light-curing unit (LCU) combinations. Three composites were used: Filtek Supreme, Herculite XRV, and Heliomolar. All restorations were placed using the same adhesive. Four LCUs were used: a quartz-tungsten-halogen (QTH) LCU (Optilux 501), a first-generation light-emitting diode (LED) LCU (FreeLight 1), and two second-generation LED LCUs (FreeLight 2 and Translux Power Blue). After finishing and polishing, specimens were subjected to mechanical load cycling (100,000 cycles). Gingival margin adaptation was determined as a function of gap formation using epoxy replicas. Microleakage was evaluated by measuring dye penetration across the gingival wall in cross-sectioned specimens. Microhardness was measured as Knoop Hardness number (KHN) at different occluso-gingival locations in cross-sectioned specimens. Data were analyzed for statistical significance (p = 0.05) using appropriate statistical tests. Marginal adaptation was affected by load-cycling in most specimens, but no significant differences were observed among composites and LCUs. Microleakage was not affected by LCU, except for Heliomolar specimens which when cured with Optilux 501 resulted in higher microleakage scores than those obtained with the other LCUs. For microhardness, Translux Power Blue generally produced the highest values and the FreeLight 1 produced the lowest. The performance of the second-generation LED LCUs generally was similar to that of the QTH control, and better than that of the first-generation LED unit.
Adaptive Finite Element Method for Solving the Exact Kohn-Sham Equation of Density Functional Theory
Bylaska, Eric J.; Holst, Michael; Weare, John H.
2009-04-14
Results of the application of an adaptive finite element (FE) based solution using the FETK library of M. Holst to Density Functional Theory (DFT) approximation to the electronic structure of atoms and molecules are reported. The severe problem associated with the rapid variation of the electronic wave functions in the near singular regions of the atomic centers is treated by implementing completely unstructured simplex meshes that resolve these features around atomic nuclei. This concentrates the computational work in the regions in which the shortest length scales are necessary and provides for low resolution in regions for which there is no electron density. The accuracy of the solutions significantly improved when adaptive mesh refinement was applied, and it was found that the essential difficulties of the Kohn-Sham eigenvalues equation were the result of the singular behavior of the atomic potentials. Even though the matrix representations of the discrete Hamiltonian operator in the adaptive finite element basis are always sparse with a linear complexity in the number of discretization points, the overall memory and computational requirements for the solver implemented were found to be quite high. The number of mesh vertices per atom as a function of the atomic number Z and the required accuracy e (in atomic units) was esitmated to be v (e;Z) = 122:37 * Z2:2346 /1:1173 , and the number of floating point operations per minimization step for a system of NA atoms was found to be 0(N3A*v(e,Z0) (e.g. Z=26, e=0.0015 au, and NA=100, the memory requirement and computational cost would be ~0.2 terabytes and ~25 petaflops). It was found that the high cost of the method could be reduced somewhat by using a geometric based refinement strategy to fix the error near the singularities.
Illusory Distance Modulates Perceived Size of Afterimage despite the Disappearance of Depth Cues
Liu, Shengxi; Lei, Quan
2016-01-01
It is known that the perceived size of an afterimage is modulated by the perceived distance between the observer and the depth plane on which the afterimage is projected (Emmert’s law). Illusions like Ponzo demonstrate that illusory distance induced by depth cues can also affect the perceived size of an object. In this study, we report that the illusory distance not only modulates the perceived size of object’s afterimage during the presence of the depth cues, but the modulation persists after the disappearance of the depth cues. We used an adapted version of the classic Ponzo illusion. Illusory depth perception was induced by linear perspective cues with two tilted lines converging at the upper boundary of the display. Two horizontal bars were placed between the two lines, resulting in a percept of the upper bar to be farther away than the lower bar. Observers were instructed to make judgment about the relative size of the afterimage of the lower and the upper bars after adaptation. When the perspective cues and the bars were static, the illusory effect of the Ponzo afterimage is consistent with that of the traditional size-distance illusion. When the perspective cues were flickering and the bars were static, only the afterimage of the latter was perceived, yet still a considerable amount of the illusory effect was perceived. The results could not be explained by memory of a prejudgment of the bar length during the adaptation phase. The findings suggest that cooccurrences of depth cues and object may link a depth marker for the object, so that the perceived size of the object or its afterimage is modulated by feedback of depth information from higher-level visual cortex even when there is no depth cues directly available on the retinal level. PMID:27391335
Alcohol cues impair learning inhibitory signals in beer drinkers
Laude, Jennifer R.; Fillmore, Mark T.
2015-01-01
Background Models of drug addiction emphasize the reciprocal influence of incentive-motivational properties of drug-related cues and poor impulse control resulting in drug use. Recent studies have shown that alcohol-related cues can impair response inhibition. What is unknown is whether these cues also disrupt learning of inhibitory associations. Methods Participants performed a Conditioned Inhibition (CI) task and were required to learn that a neutral image was a conditioned inhibitor when presented in the context of either an alcohol image intended to draw their attention away from the to-be-trained inhibitor, or a control condition in which the alcohol image was absent. After training, subjects in each condition rated the likelihood that the neutral image would signal the outcome. Eye tracking was used to verify that attention to the neutral image was in fact reduced when the alcohol image was present. Results Compared with controls those trained in the alcohol image condition reported a greater likelihood that the presence of the inhibitor would be followed by the outcome and thus were less able to acquire CI. Measures of eye-tracking verified that attention to the alcohol cue was associated with this maladaptive behavior. Conclusions When alcohol cues are present, there is a reduced ability to learn that such information is irrelevant to an outcome, and this impairs ones’ ability to inhibit perseveration of a response. This has implications for persistence of a drinking episode. PMID:25872597
NASA Astrophysics Data System (ADS)
Zhang, Lin-Lin; Yuan, Shi-Jin; Mu, Bin; Zhou, Fei-Fan
2017-02-01
In this paper, conditional nonlinear optimal perturbation (CNOP) was investigated to identify sensitive areas for tropical cyclone adaptive observations with principal component analysis based genetic algorithm (PCAGA) method and two tropical cyclones, Fitow (2013) and Matmo (2014), were studied with a 120 km resolution using the fifth-generation Mesoscale Model (MM5). To verify the effectiveness of PCAGA method, CNOPs were also calculated by an adjoint-based method as a benchmark for comparison on patterns, energies, and vertical distributions of temperatures. Comparing with the benchmark, the CNOPs obtained from PCAGA had similar patterns for Fitow and a little different for Matmo; the vertically integrated energies were located closer to the verification areas and the initial tropical cyclones. Experimental results also presented that the CNOPs of PCAGA had a more positive impact on the forecast improvement, which gained from the reductions of the CNOPs in the whole domain containing sensitive areas. Furthermore, the PCAGA program was executed 40 times for each case and all the averages of benefits were larger than the benchmark. This also proved the validity and stability of the PCAGA method. All results showed that the PCAGA method could approximately solve CNOP of complicated models without computing adjoint models, and obtain more benefits of reducing the CNOPs in the whole domain.
Dynamic Adaptive Runtime Systems for Advanced Multipole Method-based Science Achievement
NASA Astrophysics Data System (ADS)
Debuhr, Jackson; Anderson, Matthew; Sterling, Thomas; Zhang, Bo
2015-04-01
Multipole methods are a key computational kernel for a large class of scientific applications spanning multiple disciplines. Yet many of these applications are strong scaling constrained when using conventional programming practices. Hardware parallelism continues to grow, emphasizing medium and fine-grained thread parallelism rather than the coarse-grained process parallelism favored by conventional programming practices. Emerging, dynamic task management execution models can go beyond these conventional practices to significantly improve both efficiency and scalability for algorithms like multipole methods which exhibit irregular and time-varying execution properties. We present a new scientific library, DASHMM, built on the ParalleX HPX-5 runtime system, which explores the use of dynamic adaptive runtime techniques to improve scalability and efficiency for multipole-method based scientific computing. DASHMM allows application scientists to rapidly create custom, scalable, and efficient multipole methods, especially targeting the Fast Multipole Method and the Barnes-Hut N-body algorithm. After a discussion of the system and its goals, some application examples will be presented.
NASA Astrophysics Data System (ADS)
Hong, Wien; Chen, Tung-Shou; Wu, Mei-Chen
2013-03-01
Jung et al., IEEE Signal Processing Letters, 18, 2, 95, 2011 proposed a reversible data hiding method considering the human visual system (HVS). They employed the mean of visited neighboring pixels to predict the current pixel value, and estimated the just noticeable difference (JND) of the current pixel. Message bits are then embedded by adjusting the embedding level according to the calculated JND. Jung et al.'s method achieved excellent image quality. However, the embedding algorithm they used may result in over modification of pixel values and a large location map, which may deteriorate the image quality and decrease the pure payload. The proposed method exploits the nearest neighboring pixels to predict the visited pixel value and to estimate the corresponding JND. The cover pixels are preprocessed adaptively to reduce the size of the location map. We also employ an embedding level selection mechanism to prevent near-saturated pixels from being over modified. Experimental results show that the image quality of the proposed method is higher than that of Jung et al.'s method, and the payload can also be increased due to the reduction of the location map.
P-method post hoc test for adaptive trimmed mean, HQ
NASA Astrophysics Data System (ADS)
Low, Joon Khim; Yahaya, Sharipah Soaad Syed; Abdullah, Suhaida; Yusof, Zahayu Md; Othman, Abdul Rahman
2014-12-01
Adaptive trimmed mean, HQ, which is one of the latest additions in robust estimators, had been proven to be good in controlling Type I error in omnibus test. However, post hoc (pairwise multiple comparison) procedure for HQ was yet to be developed then. Thus, we have taken the initiative to develop post hoc procedure for HQ. Percentile bootstrap method or P-Method was proposed as it was proven to be effective in controlling Type I error rate even when the sample size was small. This paper deliberates on the effectiveness of P-Method on HQ, denoted as P-HQ. The strength and weakness of the proposed method were put to test on various conditions created by manipulating several variables such as shape of distributions, number of groups, sample sizes, degree of variance heterogeneity and pairing of sample sizes and group variances. For such, a simulation study on 2000 datasets was conducted using SAS/IML Version 9.2. The performance of the method on various conditions was based on its ability in controlling Type I error which was benchmarked using Bradley's criterion of robustness. The finding revealed that P-HQ could effectively control Type I error for almost all the conditions investigated.
TU-C-17A-07: FusionARC Treatment with Adaptive Beam Selection Method
Kim, H; Li, R; Xing, L; Lee, R
2014-06-15
Purpose: Recently, a new treatment scheme, FusionARC, has been introduced to compensate for the pitfalls in single-arc VMAT planning. It basically allows for the static field treatment in selected locations, while the remaining is treated by single-rotational arc delivery. The important issue is how to choose the directions for static field treatment. This study presents an adaptive beam selection method to formulate fusionARC treatment scheme. Methods: The optimal plan for single-rotational arc treatment is obtained from two-step approach based on the reweighted total-variation (TV) minimization. To choose the directions for static field treatment with extra segments, a value of our proposed cost function at each field is computed on the new fluence-map, which adds an extra segment to the designated field location only. The cost function is defined as a summation of equivalent uniform dose (EUD) of all structures with the fluence-map, while assuming that the lower cost function value implies the enhancement of plan quality. Finally, the extra segments for static field treatment would be added to the selected directions with low cost function values. A prostate patient data was applied and evaluated with three different plans: conventional VMAT, fusionARC, and static IMRT. Results: The 7 field locations, corresponding to the lowest cost function values, are chosen to insert extra segment for step-and-shoot dose delivery. Our proposed fusionARC plan with the selected angles improves the dose sparing to the critical organs, relative to static IMRT and conventional VMAT plans. The dose conformity to the target is significantly enhanced at the small expense of treatment time, compared with VMAT plan. Its estimated treatment time, however, is still much faster than IMRT. Conclusion: The fusionARC treatment with adaptive beam selection method could improve the plan quality with insignificant damage in the treatment time, relative to the conventional VMAT.
The rejection of vibrations in adaptive optics systems using a DFT-based estimation method
NASA Astrophysics Data System (ADS)
Kania, Dariusz; Borkowski, Józef
2016-04-01
Adaptive optics systems are commonly used in many optical structures to reduce perturbations and to increase the system performance. The problem in such systems is undesirable vibrations due to some effects as shaking of the whole structure or the tracking process. This paper presents a frequency, amplitude and phase estimation method of a multifrequency signal that can be used to reject these vibrations in an adaptive method. The estimation method is based on using the FFT procedure. The undesirable signals are usually exponentially damped harmonic oscillations. The estimation error depends on several parameters and consists of a systematic component and a random component. The systematic error depends on the signal phase, the number of samples N in a measurement window, the value of CiR (number of signal periods in a measurement window), the THD value and the time window order H. The random error depends mainly on the variance of noise and the SNR value. This paper shows research on the sinusoidal signal phase and the estimation of exponentially damped sinusoids parameters. The shape of errors signals is periodical and it is associated with the signal period and with the sliding measurement window. For CiR=1.6 and the damping ratio 0.1% the error was in the order of 10-5 Hz/Hz, 10-4 V/V and 10-4 rad for the frequency, the amplitude and the phase estimation respectively. The information provided in this paper can be used to determine the approximate level of the efficiency of the vibrations elimination process before starting it.
An Adaptive Finite Difference Method for Hyperbolic Systems in OneSpace Dimension
Bolstad, John H.
1982-06-01
Many problems of physical interest have solutions which are generally quite smooth in a large portion of the region of interest, but have local phenomena such as shocks, discontinuities or large gradients which require much more accurate approximations or finer grids for reasonable accuracy. Examples are atmospheric fronts, ocean currents, and geological discontinuities. In this thesis we develop and partially analyze an adaptive finite difference mesh refinement algorithm for the initial boundary value problem for hyperbolic systems in one space dimension. The method uses clusters of uniform grids which can ''move'' along with pulses or steep gradients appearing in the calculation, and which are superimposed over a uniform coarse grid. Such refinements are created, destroyed, merged, separated, recursively nested or moved based on estimates of the local truncation error. We use a four-way linked tree and sequentially allocated deques (double-ended queues) to perform these operations efficiently. The local truncation error in the interior of the region is estimated using a three-step Richardson extrapolation procedure, which can also be considered a deferred correction method. At the boundaries we employ differences to estimate the error. Our algorithm was implemented using a portable, extensible Fortran preprocessor, to which we added records and pointers. The method is applied to three model problems: the first order wave equation, the second order wave equation, and the inviscid Burgers equation. For the first two model problems our algorithm is shown to be three to five times more efficient (in computing time) than the use of a uniform coarse mesh, for the same accuracy. Furthermore, to our knowledge, our algorithm is the only one which adaptively treats time-dependent boundary conditions for hyperbolic systems.
Adaptive spacetime method using Riemann jump conditions for coupled atomistic-continuum dynamics
Kraczek, B. Miller, S.T. Haber, R.B. Johnson, D.D.
2010-03-20
We combine the Spacetime Discontinuous Galerkin (SDG) method for elastodynamics with the mathematically consistent Atomistic Discontinuous Galerkin (ADG) method in a new scheme that concurrently couples continuum and atomistic models of dynamic response in solids. The formulation couples non-overlapping continuum and atomistic models across sharp interfaces by weakly enforcing jump conditions, for both momentum balance and kinematic compatibility, using Riemann values to preserve the characteristic structure of the underlying hyperbolic system. Momentum balances to within machine-precision accuracy over every element, on each atom, and over the coupled system, with small, controllable energy dissipation in the continuum region that ensures numerical stability. When implemented on suitable unstructured spacetime grids, the continuum SDG model offers linear computational complexity in the number of elements and powerful adaptive analysis capabilities that readily bridge between atomic and continuum scales in both space and time. A special trace operator for the atomic velocities and an associated atomistic traction field enter the jump conditions at the coupling interface. The trace operator depends on parameters that specify, at the scale of the atomic spacing, the position of the coupling interface relative to the atoms. In a key finding, we demonstrate that optimizing these parameters suppresses spurious reflections at the coupling interface without the use of non-physical damping or special boundary conditions. We formulate the implicit SDG-ADG coupling scheme in up to three spatial dimensions, and describe an efficient iterative solution scheme that outperforms common explicit schemes, such as the Velocity Verlet integrator. Numerical examples, in 1dxtime and employing both linear and nonlinear potentials, demonstrate the performance of the SDG-ADG method and show how adaptive spacetime meshing reconciles disparate time steps and resolves atomic-scale signals in
NASA Technical Reports Server (NTRS)
Aftosmis, M. J.; Berger, M. J.; Adomavicius, G.
2000-01-01
Preliminary verification and validation of an efficient Euler solver for adaptively refined Cartesian meshes with embedded boundaries is presented. The parallel, multilevel method makes use of a new on-the-fly parallel domain decomposition strategy based upon the use of space-filling curves, and automatically generates a sequence of coarse meshes for processing by the multigrid smoother. The coarse mesh generation algorithm produces grids which completely cover the computational domain at every level in the mesh hierarchy. A series of examples on realistically complex three-dimensional configurations demonstrate that this new coarsening algorithm reliably achieves mesh coarsening ratios in excess of 7 on adaptively refined meshes. Numerical investigations of the scheme's local truncation error demonstrate an achieved order of accuracy between 1.82 and 1.88. Convergence results for the multigrid scheme are presented for both subsonic and transonic test cases and demonstrate W-cycle multigrid convergence rates between 0.84 and 0.94. Preliminary parallel scalability tests on both simple wing and complex complete aircraft geometries shows a computational speedup of 52 on 64 processors using the run-time mesh partitioner.
A New Feedback-Based Method for Parameter Adaptation in Image Processing Routines
Mikut, Ralf; Reischl, Markus
2016-01-01
The parametrization of automatic image processing routines is time-consuming if a lot of image processing parameters are involved. An expert can tune parameters sequentially to get desired results. This may not be productive for applications with difficult image analysis tasks, e.g. when high noise and shading levels in an image are present or images vary in their characteristics due to different acquisition conditions. Parameters are required to be tuned simultaneously. We propose a framework to improve standard image segmentation methods by using feedback-based automatic parameter adaptation. Moreover, we compare algorithms by implementing them in a feedforward fashion and then adapting their parameters. This comparison is proposed to be evaluated by a benchmark data set that contains challenging image distortions in an increasing fashion. This promptly enables us to compare different standard image segmentation algorithms in a feedback vs. feedforward implementation by evaluating their segmentation quality and robustness. We also propose an efficient way of performing automatic image analysis when only abstract ground truth is present. Such a framework evaluates robustness of different image processing pipelines using a graded data set. This is useful for both end-users and experts. PMID:27764213
A New Feedback-Based Method for Parameter Adaptation in Image Processing Routines.
Khan, Arif Ul Maula; Mikut, Ralf; Reischl, Markus
2016-01-01
The parametrization of automatic image processing routines is time-consuming if a lot of image processing parameters are involved. An expert can tune parameters sequentially to get desired results. This may not be productive for applications with difficult image analysis tasks, e.g. when high noise and shading levels in an image are present or images vary in their characteristics due to different acquisition conditions. Parameters are required to be tuned simultaneously. We propose a framework to improve standard image segmentation methods by using feedback-based automatic parameter adaptation. Moreover, we compare algorithms by implementing them in a feedforward fashion and then adapting their parameters. This comparison is proposed to be evaluated by a benchmark data set that contains challenging image distortions in an increasing fashion. This promptly enables us to compare different standard image segmentation algorithms in a feedback vs. feedforward implementation by evaluating their segmentation quality and robustness. We also propose an efficient way of performing automatic image analysis when only abstract ground truth is present. Such a framework evaluates robustness of different image processing pipelines using a graded data set. This is useful for both end-users and experts.
Zheng, Xiao-Min; Tao, Yun-Li; Chi, Hsin; Wan, Fang-Hao; Chu, Dong
2017-01-01
In this study, we evaluated the adaptability of the small brown planthopper (SBPH), Laodelphax striatellus (Hemiptera: Delphacidae) to four rice cultivars including Shengdao13 (SD13), Shengdao14 (SD14), Shengdao15 (SD15), and Zixiangnuo (ZXN) using the age-stage, two-sex life table with a simplified method for recording egg production (i.e., every five days vs. daily). The intrinsic rate of increase (r) of the SBPH was the highest (0.1067 d−1) on cultivar SD15, which was similar to the rate on SD14 (0.1029 d−1), but was significantly higher than that occurring on ZXN (0.0897 d−1) and SD13 (0.0802 d−1). The differences of the finite rate of increase (λ) on the four rice cultivars were consistent with the r values. Population projection predicted an explosive population growth of the SBPH occurring in a relatively short time when reared on SD14 and SD15. These findings demonstrated that the SBPH can successfully survive on the four rice cultivars, although there were varying host adaptabilities. PMID:28205522
An adaptive 6-DOF tracking method by hybrid sensing for ultrasonic endoscopes.
Du, Chengyang; Chen, Xiaodong; Wang, Yi; Li, Junwei; Yu, Daoyin
2014-06-06
In this paper, a novel hybrid sensing method for tracking an ultrasonic endoscope within the gastrointestinal (GI) track is presented, and the prototype of the tracking system is also developed. We implement 6-DOF localization by sensing integration and information fusion. On the hardware level, a tri-axis gyroscope and accelerometer, and a magnetic angular rate and gravity (MARG) sensor array are attached at the end of endoscopes, and three symmetric cylindrical coils are placed around patients' abdomens. On the algorithm level, an adaptive fast quaternion convergence (AFQC) algorithm is introduced to determine the orientation by fusing inertial/magnetic measurements, in which the effects of magnetic disturbance and acceleration are estimated to gain an adaptive convergence output. A simplified electro-magnetic tracking (SEMT) algorithm for dimensional position is also implemented, which can easily integrate the AFQC's results and magnetic measurements. Subsequently, the average position error is under 0.3 cm by reasonable setting, and the average orientation error is 1° without noise. If magnetic disturbance or acceleration exists, the average orientation error can be controlled to less than 3.5°.
Jacobi-like method for a control algorithm in adaptive-optics imaging
NASA Astrophysics Data System (ADS)
Pitsianis, Nikos P.; Ellerbroek, Brent L.; Van Loan, Charles; Plemmons, Robert J.
1998-10-01
A study is made of a non-smooth optimization problem arising in adaptive-optics, which involves the real-time control of a deformable mirror designed to compensate for atmospheric turbulence and other dynamic image degradation factors. One formulation of this problem yields a functional f(U) equals (Sigma) iequals1n maxj[(UTMjU)ii] to be maximized over orthogonal matrices U for a fixed collection of n X n symmetric matrices Mj. We consider first the situation which can arise in practical applications where the matrices Mj are nearly pairwise commutative. Besides giving useful bounds, results for this case lead to a simple corollary providing a theoretical closed-form solution for globally maximizing f if the Mj are simultaneously diagonalizable. However, even here conventional optimization methods for maximizing f are not practical in a real-time environment. The genal optimization problem is quite difficult and is approached using a heuristic Jacobi-like algorithm. Numerical test indicate that the algorithm provides an effective means to optimize performance for some important adaptive-optics systems.
NASA Astrophysics Data System (ADS)
Zhou, Peng; Lu, Siliang; Liu, Fang; Liu, Yongbin; Li, Guihua; Zhao, Jiwen
2017-03-01
Stochastic resonance (SR), which is characterized by the fact that proper noise can be utilized to enhance weak periodic signals, has been widely applied in weak signal detection. SR is a nonlinear parameterized filter, and the output signal relies on the system parameters for the deterministic input signal. The most commonly used index for parameter tuning in the SR procedure is the signal-to-noise ratio (SNR). However, using the SNR index to evaluate the denoising effect of SR quantitatively is insufficient when the target signal frequency cannot be estimated accurately. To address this issue, six different indexes, namely, power spectral kurtosis of the SR output signal, correlation coefficient between the SR output and the original signal, peak SNR, structural similarity, root mean square error, and smoothness, are constructed in this study to measure the SR output quantitatively. These six quantitative indexes are fused into a new synthetic quantitative index (SQI) via a back propagation neural network to guide the adaptive parameter selection of the SR procedure. The index fusion procedure reduces the instability of each index and thus improves the robustness of parameter tuning. In addition, genetic algorithm is utilized to quickly select the optimal SR parameters. The efficiency of bearing fault diagnosis is thus further improved. The effectiveness and efficiency of the proposed SQI-based adaptive SR method for bearing fault diagnosis are verified through numerical and experiment analyses.