Science.gov

Sample records for adaptive cueing method

  1. Improving the performance of lesion-based computer-aided detection schemes of breast masses using a case-based adaptive cueing method

    NASA Astrophysics Data System (ADS)

    Tan, Maxine; Aghaei, Faranak; Wang, Yunzhi; Qian, Wei; Zheng, Bin

    2016-03-01

    Current commercialized CAD schemes have high false-positive (FP) detection rates and also have high correlations in positive lesion detection with radiologists. Thus, we recently investigated a new approach to improve the efficacy of applying CAD to assist radiologists in reading and interpreting screening mammograms. Namely, we developed a new global feature based CAD approach/scheme that can cue the warning sign on the cases with high risk of being positive. In this study, we investigate the possibility of fusing global feature or case-based scores with the local or lesion-based CAD scores using an adaptive cueing method. We hypothesize that the information from the global feature extraction (features extracted from the whole breast regions) are different from and can provide supplementary information to the locally-extracted features (computed from the segmented lesion regions only). On a large and diverse full-field digital mammography (FFDM) testing dataset with 785 cases (347 negative and 438 cancer cases with masses only), we ran our lesion-based and case-based CAD schemes "as is" on the whole dataset. To assess the supplementary information provided by the global features, we used an adaptive cueing method to adaptively adjust the original CAD-generated detection scores (Sorg) of a detected suspicious mass region based on the computed case-based score (Scase) of the case associated with this detected region. Using the adaptive cueing method, better sensitivity results were obtained at lower FP rates (<= 1 FP per image). Namely, increases of sensitivities (in the FROC curves) of up to 6.7% and 8.2% were obtained for the ROI and Case-based results, respectively.

  2. Visual Cues for an Adaptive Expert System.

    ERIC Educational Resources Information Center

    Miller, Helen B.

    NCR (National Cash Register) Corporation is pursuing opportunities to make their point of sale (POS) terminals easy to use and easy to learn. To approach the goal of making the technology invisible to the user, NCR has developed an adaptive expert prototype system for a department store POS operation. The structure for the adaptive system, the…

  3. Sensorimotor Adaptation Following Exposure to Ambiguous Inertial Motion Cues

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Clement, G. R.; Rupert, A. H.; Reschke, M. F.; Harm, D. L.; Guedry, F. E.

    2007-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive accurate spatial orientation awareness. Adaptive changes in how inertial cues from the otolith system are integrated with other sensory information lead to perceptual and postural disturbances upon return to Earth s gravity. The primary goals of this ground-based research investigation are to explore physiological mechanisms and operational implications of tilt-translation disturbances during and following re-entry, and to evaluate a tactile prosthesis as a countermeasure for improving control of whole-body orientation during tilt and translation motion.

  4. Lysosomal adaptation: how the lysosome responds to external cues.

    PubMed

    Settembre, Carmine; Ballabio, Andrea

    2014-06-01

    Recent evidence indicates that the importance of the lysosome in cell metabolism and organism physiology goes far beyond the simple disposal of cellular garbage. This dynamic organelle is situated at the crossroad of the most important cellular pathways and is involved in sensing, signaling, and transcriptional mechanisms that respond to environmental cues, such as nutrients. Two main mediators of these lysosomal adaptation mechanisms are the mTORC1 kinase complex and the transcription factor EB (TFEB). These two factors are linked in a lysosome-to-nucleus signaling pathway that provides the lysosome with the ability to adapt to extracellular cues and control its own biogenesis. Modulation of lysosomal function by acting on TFEB has a profound impact on cellular clearance and energy metabolism and is a promising therapeutic target for a large variety of disease conditions.

  5. Lysosomal adaptation: how the lysosome responds to external cues.

    PubMed

    Settembre, Carmine; Ballabio, Andrea

    2014-06-01

    Recent evidence indicates that the importance of the lysosome in cell metabolism and organism physiology goes far beyond the simple disposal of cellular garbage. This dynamic organelle is situated at the crossroad of the most important cellular pathways and is involved in sensing, signaling, and transcriptional mechanisms that respond to environmental cues, such as nutrients. Two main mediators of these lysosomal adaptation mechanisms are the mTORC1 kinase complex and the transcription factor EB (TFEB). These two factors are linked in a lysosome-to-nucleus signaling pathway that provides the lysosome with the ability to adapt to extracellular cues and control its own biogenesis. Modulation of lysosomal function by acting on TFEB has a profound impact on cellular clearance and energy metabolism and is a promising therapeutic target for a large variety of disease conditions. PMID:24799353

  6. Lysosomal Adaptation: How the Lysosome Responds to External Cues

    PubMed Central

    Settembre, Carmine; Ballabio, Andrea

    2014-01-01

    Recent evidence indicates that the importance of the lysosome in cell metabolism and organism physiology goes far beyond the simple disposal of cellular garbage. This dynamic organelle is situated at the crossroad of the most important cellular pathways and is involved in sensing, signaling, and transcriptional mechanisms that respond to environmental cues, such as nutrients. Two main mediators of these lysosomal adaptation mechanisms are the mTORC1 kinase complex and the transcription factor EB (TFEB). These two factors are linked in a lysosome-to-nucleus signaling pathway that provides the lysosome with the ability to adapt to extracellular cues and control its own biogenesis. Modulation of lysosomal function by acting on TFEB has a profound impact on cellular clearance and energy metabolism and is a promising therapeutic target for a large variety of disease conditions. PMID:24799353

  7. Sensorimotor Adaptation Following Exposure to Ambiguous Inertial Motion Cues

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Clement, G. R.; Harm, D L.; Rupert, A. H.; Guedry, F. E.; Reschke, M. F.

    2005-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive accurate spatial orientation awareness. Our general hypothesis is that the central nervous system utilizes both multi-sensory integration and frequency segregation as neural strategies to resolve the ambiguity of tilt and translation stimuli. Movement in an altered gravity environment, such as weightlessness without a stable gravity reference, results in new patterns of sensory cues. For example, the semicircular canals, vision and neck proprioception provide information about head tilt on orbit without the normal otolith head-tilt position that is omnipresent on Earth. Adaptive changes in how inertial cues from the otolith system are integrated with other sensory information lead to perceptual and postural disturbances upon return to Earth s gravity. The primary goals of this ground-based research investigation are to explore physiological mechanisms and operational implications of disorientation and tilt-translation disturbances reported by crewmembers during and following re-entry, and to evaluate a tactile prosthesis as a countermeasure for improving control of whole-body orientation during tilt and translation motion.

  8. Sensorimotor Adaptation Following Exposure to Ambiguous Inertial Motion Cues

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Clement, G. R.; Harm, D. L.; Rupert, A. H.; Guedry, F. E.; Reschke, M. F.

    2005-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive accurate spatial orientation awareness. Our general hypothesis is that the central nervous system utilizes both multi-sensory integration and frequency segregation as neural strategies to resolve the ambiguity of tilt and translation stimuli. Movement in an altered gravity environment, such as weightlessness without a stable gravity reference, results in new patterns of sensory cues. For example, the semicircular canals, vision and neck proprioception provide information about head tilt on orbit without the normal otolith head-tilt position that is omnipresent on Earth. Adaptive changes in how inertial cues from the otolith system are integrated with other sensory information lead to perceptual and postural disturbances upon return to Earth's gravity. The primary goals of this ground-based research investigation are to explore physiological mechanisms and operational implications of disorientation and tilt-translation disturbances reported by crewmembers during and following re-entry, and to evaluate a tactile prosthesis as a countermeasure for improving control of whole-body orientation during tilt and translation motion.

  9. Adaptive changes between cue abstraction and exemplar memory in a multiple-cue judgment task with continuous cues.

    PubMed

    Karlsson, Linea; Juslin, Peter; Olsson, Henrik

    2007-12-01

    The majority of previous studies on multiple-cue judgment with continuous cues have involved comparisons between judgments and multiple linear regression models that integrated cues into a judgment. The authors present an experiment indicating that in a judgment task with additive combination of multiple continuous cues, people indeed displayed abstract knowledge of the cue criterion relations that was mentally integrated into a judgment, but in a task with multiplicative combination of continuous cues, people instead relied on retrieval of memory traces of similar judgment cases (exemplars). These results suggest that people may adopt qualitatively distinct forms of knowledge, depending on the structure of a multiple-cue judgment task. The authors discuss implications for theories of multiple-cue judgment. PMID:18229487

  10. Seed Pubescence and Shape Modulate Adaptive Responses to Fire Cues

    PubMed Central

    Gómez-González, Susana; Ojeda, Fernando; Torres-Morales, Patricio; Palma, Jazmín E.

    2016-01-01

    Post-fire recruitment by seeds is regarded as an adaptive response in fire-prone ecosystems. Nevertheless, little is known about which heritable seed traits are functional to the main signals of fire (heat and smoke), thus having the potential to evolve. Here, we explored whether three seed traits (pubescence, dormancy and shape) and fire regime modulate seed response to fire cues(heat and smoke). As a model study system, we used Helenium aromaticum (Asteraceae), a native annual forb from the Chilean matorral, where fires are anthropogenic. We related seed trait values with fitness responses (germination and survival) after exposure to heat-shock and smoke experimental treatments on seeds from 10 H. aromaticum wild populations. We performed a phenotypic selection experiment to examine the relationship of seed traits with post-treatment fitness within a population (adaptive hypothesis). We then explored whether fire frequency in natural habitats was associated with trait expression across populations, and with germination and survival responses to experimental fire-cues. We found that populations subjected to higher fire frequency had, in average, more rounded and pubescent seeds than populations from rarely burned areas. Populations with more rounded and pubescent seeds were more resistant to 80°C heat-shock and smoke treatments.There was correlated selection on seed traits: pubescent-rounded or glabrouscent-elongated seeds had the highest probability of germinating after heat-shock treatments. Seed pubescence and shape in H. aromaticum are heritable traits that modulate adaptive responses to fire. Our results provide new insights into the process of plant adaptation to fire and highlight the relevance of human-made fires as a strong evolutionary agent in the Anthropocene. PMID:27438267

  11. Seed Pubescence and Shape Modulate Adaptive Responses to Fire Cues.

    PubMed

    Gómez-González, Susana; Ojeda, Fernando; Torres-Morales, Patricio; Palma, Jazmín E

    2016-01-01

    Post-fire recruitment by seeds is regarded as an adaptive response in fire-prone ecosystems. Nevertheless, little is known about which heritable seed traits are functional to the main signals of fire (heat and smoke), thus having the potential to evolve. Here, we explored whether three seed traits (pubescence, dormancy and shape) and fire regime modulate seed response to fire cues(heat and smoke). As a model study system, we used Helenium aromaticum (Asteraceae), a native annual forb from the Chilean matorral, where fires are anthropogenic. We related seed trait values with fitness responses (germination and survival) after exposure to heat-shock and smoke experimental treatments on seeds from 10 H. aromaticum wild populations. We performed a phenotypic selection experiment to examine the relationship of seed traits with post-treatment fitness within a population (adaptive hypothesis). We then explored whether fire frequency in natural habitats was associated with trait expression across populations, and with germination and survival responses to experimental fire-cues. We found that populations subjected to higher fire frequency had, in average, more rounded and pubescent seeds than populations from rarely burned areas. Populations with more rounded and pubescent seeds were more resistant to 80°C heat-shock and smoke treatments.There was correlated selection on seed traits: pubescent-rounded or glabrouscent-elongated seeds had the highest probability of germinating after heat-shock treatments. Seed pubescence and shape in H. aromaticum are heritable traits that modulate adaptive responses to fire. Our results provide new insights into the process of plant adaptation to fire and highlight the relevance of human-made fires as a strong evolutionary agent in the Anthropocene. PMID:27438267

  12. Sensorimotor Adaptations Following Exposure to Ambiguous Inertial Motion Cues

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Harm, D. L.; Reschke, M. F.; Rupert, A. H.; Clement, G. R.

    2009-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive accurate spatial orientation awareness. We hypothesize that multi-sensory integration will be adaptively optimized in altered gravity environments based on the dynamics of other sensory information available, with greater changes in otolith-mediated responses in the mid-frequency range where there is a crossover of tilt and translation responses. The primary goals of this ground-based research investigation are to explore physiological mechanisms and operational implications of tilt-translation disturbances during and following re-entry, and to evaluate a tactile prosthesis as a countermeasure for improving control of whole-body orientation.

  13. Audiovisual cues benefit recognition of accented speech in noise but not perceptual adaptation.

    PubMed

    Banks, Briony; Gowen, Emma; Munro, Kevin J; Adank, Patti

    2015-01-01

    Perceptual adaptation allows humans to recognize different varieties of accented speech. We investigated whether perceptual adaptation to accented speech is facilitated if listeners can see a speaker's facial and mouth movements. In Study 1, participants listened to sentences in a novel accent and underwent a period of training with audiovisual or audio-only speech cues, presented in quiet or in background noise. A control group also underwent training with visual-only (speech-reading) cues. We observed no significant difference in perceptual adaptation between any of the groups. To address a number of remaining questions, we carried out a second study using a different accent, speaker and experimental design, in which participants listened to sentences in a non-native (Japanese) accent with audiovisual or audio-only cues, without separate training. Participants' eye gaze was recorded to verify that they looked at the speaker's face during audiovisual trials. Recognition accuracy was significantly better for audiovisual than for audio-only stimuli; however, no statistical difference in perceptual adaptation was observed between the two modalities. Furthermore, Bayesian analysis suggested that the data supported the null hypothesis. Our results suggest that although the availability of visual speech cues may be immediately beneficial for recognition of unfamiliar accented speech in noise, it does not improve perceptual adaptation.

  14. Audiovisual cues benefit recognition of accented speech in noise but not perceptual adaptation.

    PubMed

    Banks, Briony; Gowen, Emma; Munro, Kevin J; Adank, Patti

    2015-01-01

    Perceptual adaptation allows humans to recognize different varieties of accented speech. We investigated whether perceptual adaptation to accented speech is facilitated if listeners can see a speaker's facial and mouth movements. In Study 1, participants listened to sentences in a novel accent and underwent a period of training with audiovisual or audio-only speech cues, presented in quiet or in background noise. A control group also underwent training with visual-only (speech-reading) cues. We observed no significant difference in perceptual adaptation between any of the groups. To address a number of remaining questions, we carried out a second study using a different accent, speaker and experimental design, in which participants listened to sentences in a non-native (Japanese) accent with audiovisual or audio-only cues, without separate training. Participants' eye gaze was recorded to verify that they looked at the speaker's face during audiovisual trials. Recognition accuracy was significantly better for audiovisual than for audio-only stimuli; however, no statistical difference in perceptual adaptation was observed between the two modalities. Furthermore, Bayesian analysis suggested that the data supported the null hypothesis. Our results suggest that although the availability of visual speech cues may be immediately beneficial for recognition of unfamiliar accented speech in noise, it does not improve perceptual adaptation. PMID:26283946

  15. Audiovisual cues benefit recognition of accented speech in noise but not perceptual adaptation

    PubMed Central

    Banks, Briony; Gowen, Emma; Munro, Kevin J.; Adank, Patti

    2015-01-01

    Perceptual adaptation allows humans to recognize different varieties of accented speech. We investigated whether perceptual adaptation to accented speech is facilitated if listeners can see a speaker’s facial and mouth movements. In Study 1, participants listened to sentences in a novel accent and underwent a period of training with audiovisual or audio-only speech cues, presented in quiet or in background noise. A control group also underwent training with visual-only (speech-reading) cues. We observed no significant difference in perceptual adaptation between any of the groups. To address a number of remaining questions, we carried out a second study using a different accent, speaker and experimental design, in which participants listened to sentences in a non-native (Japanese) accent with audiovisual or audio-only cues, without separate training. Participants’ eye gaze was recorded to verify that they looked at the speaker’s face during audiovisual trials. Recognition accuracy was significantly better for audiovisual than for audio-only stimuli; however, no statistical difference in perceptual adaptation was observed between the two modalities. Furthermore, Bayesian analysis suggested that the data supported the null hypothesis. Our results suggest that although the availability of visual speech cues may be immediately beneficial for recognition of unfamiliar accented speech in noise, it does not improve perceptual adaptation. PMID:26283946

  16. Adaptation to Supernormal Auditory Localization Cues in AN Auditory Virtual Enrivonment.

    NASA Astrophysics Data System (ADS)

    Shinn-Cunningham, Barbara Gail

    An auditory virtual environment was used to investigate adaptation to transformed auditory localization cues which were "supernormal" in that physical cues were emphasized. A nonlinear transformation of the mapping from auditory localization cues to source position was used to create an artificial acoustic "fovea" in which cue resolution was enhanced directly in front of the subject and was decreased at the edges of the range. The experiments were driven in part by the fact that sensorimotor alterations will occur in all types of virtual environments, making it important to learn how such changes affect users of these systems. In addition, these experiments were designed to see whether better-than -normal performance could be achieved when supernormal localization cues were used. Bias and resolution were measured over time to see how changes in performance evolved with exposure to the altered cues. In all the experiments, mean response changed over time as expected, reducing the size of the average errors. Changes in bias were consistent with the changes in mean response, showing a reduction of about 50% at the end of the altered-cue exposure period. Resolution in the initial altered-cue run showed better-than-normal resolution in the fovea; however, resolution in the final altered -cue run tended to be smaller than the initial altered-cue test. Additional analysis showed that the mean responses during each run were always linearly related to the position that corresponded to the normal position of the cues before they were transformed. It was concluded that subjects did not adapt to the nonlinear transformation employed but rather to a linear approximation of the transformation. This mean slope (between perceived position and corresponding normal-cue position) changed exponentially over time, approaching an asymptote by the final altered -cue test. This asymptote was, on average, only 5% away from the slope of the line which minimized the mean-square error from

  17. A cue-free method to probe human lighting biases.

    PubMed

    Mazzilli, Giacomo; Schofield, Andrew J

    2013-01-01

    People readily perceive patterns of shading as 3-D shapes. Owing to the generalised bas-relief ambiguity when extracting shape from shading, people must simultaneously estimate the shape of the surface and the nature of the light source. In many cases cues in the image will be insufficient to resolve all of the ambiguities present, and in such cases the human visual system may employ one of a number of prior assumptions based on ecology and experience. One such assumption is the lighting-from-above prior. Here, in the absence of extrinsic cues to lighting direction, ambiguous shading patterns are interpreted as if lit by a light source that is above the observer's head. Studies of this prior typically use ambiguous stimuli and observe perceptual biases. A degree of cueing is inherent to such methods. Participants see the shaded stimuli repeatedly and are asked to make shape judgments about them regardless of whether or not they actually perceive any 3-D shape. We wanted to access people's lighting prior more directly by establishing the template they would employ to detect a shaded object in the absence of any visual cue to object shape. To this end, we adopted a classification image approach.

  18. Perception of correlations between acoustic cues in category tuning and speaker adaptation

    NASA Astrophysics Data System (ADS)

    Holt, Lori; Wade, Travis

    2001-05-01

    In English and many other languages, fundamental frequency (f0) varies with voicing such that voiced consonants are produced with lower f0's than their voiceless counterparts. This regularity robustly influences perception, such that sounds synthesized or spoken with a low f0 are more often perceived as voiced than are sounds with a higher f0. This series of studies exploited these observations to investigate category tuning as a function of incidental exposure to correlations among speech cues and adaptation to speaker idiosyncrasies or accent. Manipulation of f0 across sets of natural speech utterances produced stimulus sets varying in their inherent f0/voicing relationship. Listeners were exposed to these different f0/voicing patterns via spoken word and nonword items in a lexical decision task, and their resulting categorization of ambiguous consonants varying in f0 and voice onset time (VOT) was measured. The results suggest listeners adapt quickly to speaker-specific cues but also remain influenced by more global, naturally occurring covariance patterns of f0 and voicing in English. This pattern contrasts somewhat with studies where idiosyncrasy is represented instead by manipulation of primary, first-order cues to speech sounds, in which listeners are seen to adapt more straightforwardly to the cues they are presented.

  19. Seeing is believing: effects of visual contextual cues on learning and transfer of locomotor adaptation.

    PubMed

    Torres-Oviedo, Gelsy; Bastian, Amy J

    2010-12-15

    Devices such as robots or treadmills are often used to drive motor learning because they can create novel physical environments. However, the learning (i.e., adaptation) acquired on these devices only partially generalizes to natural movements. What determines the specificity of motor learning, and can this be reliably made more general? Here we investigated the effect of visual cues on the specificity of split-belt walking adaptation. We systematically removed vision to eliminate the visual-proprioceptive mismatch that is a salient cue specific to treadmills: vision indicates that we are not moving while leg proprioception indicates that we are. We evaluated the adaptation of temporal and spatial features of gait (i.e., timing and location of foot landing), their transfer to walking over ground, and washout of adaptation when subjects returned to the treadmill. Removing vision during both training (i.e., on the treadmill) and testing (i.e., over ground) strongly improved the transfer of treadmill adaptation to natural walking. Removing vision only during training increased transfer of temporal adaptation, whereas removing vision only during testing increased the transfer of spatial adaptation. This dissociation reveals differences in adaptive mechanisms for temporal and spatial features of walking. Finally training without vision increased the amount that was learned and was linked to the variability in the behavior during adaptation. In conclusion, contextual cues can be manipulated to modulate the magnitude, transfer, and washout of device-induced learning in humans. These results bring us closer to our ultimate goal of developing rehabilitation strategies that improve movements beyond the clinical setting.

  20. Adaptive Algebraic Multigrid Methods

    SciTech Connect

    Brezina, M; Falgout, R; MacLachlan, S; Manteuffel, T; McCormick, S; Ruge, J

    2004-04-09

    Our ability to simulate physical processes numerically is constrained by our ability to solve the resulting linear systems, prompting substantial research into the development of multiscale iterative methods capable of solving these linear systems with an optimal amount of effort. Overcoming the limitations of geometric multigrid methods to simple geometries and differential equations, algebraic multigrid methods construct the multigrid hierarchy based only on the given matrix. While this allows for efficient black-box solution of the linear systems associated with discretizations of many elliptic differential equations, it also results in a lack of robustness due to assumptions made on the near-null spaces of these matrices. This paper introduces an extension to algebraic multigrid methods that removes the need to make such assumptions by utilizing an adaptive process. The principles which guide the adaptivity are highlighted, as well as their application to algebraic multigrid solution of certain symmetric positive-definite linear systems.

  1. An adaptive perspective on revealed and concealed cues to empathy.

    PubMed

    Ward, Robert; Shingler, Polly

    2016-02-01

    Wu, Sheppard, and Mitchell (Br. J. Psychol., 2016; 107, 1-22) found that observers could accurately identify people with extreme but not more average empathy scores. Here, we further consider this U-shaped discrimination function. We first examine a statistical issue regarding the construction of the average groups, which are less homogenous by definition than the extreme groups. We then consider the kinds of questions arising when these results are considered within the adaptive framework of signal theory. Some interesting questions arise relating to the signal sender, including the costs and benefits to the sender in revealing and concealing true empathy levels, and the effects of adopting behavioural norms to conceal true levels of empathy.

  2. Context cue-dependent saccadic adaptation in rhesus macaques cannot be elicited using color.

    PubMed

    Cecala, Aaron L; Smalianchuk, Ivan; Khanna, Sanjeev B; Smith, Matthew A; Gandhi, Neeraj J

    2015-07-01

    When the head does not move, rapid movements of the eyes called saccades are used to redirect the line of sight. Saccades are defined by a series of metrical and kinematic (evolution of a movement as a function of time) relationships. For example, the amplitude of a saccade made from one visual target to another is roughly 90% of the distance between the initial fixation point (T0) and the peripheral target (T1). However, this stereotypical relationship between saccade amplitude and initial retinal error (T1-T0) may be altered, either increased or decreased, by surreptitiously displacing a visual target during an ongoing saccade. This form of motor learning (called saccadic adaptation) has been described in both humans and monkeys. Recent experiments in humans and monkeys have suggested that internal (proprioceptive) and external (target shape, color, and/or motion) cues may be used to produce context-dependent adaptation. We tested the hypothesis that an external contextual cue (target color) could be used to evoke differential gain (actual saccade/initial retinal error) states in rhesus monkeys. We did not observe differential gain states correlated with target color regardless of whether targets were displaced along the same vector as the primary saccade or perpendicular to it. Furthermore, this observation held true regardless of whether adaptation trials using various colors and intrasaccade target displacements were randomly intermixed or presented in short or long blocks of trials. These results are consistent with hypotheses that state that color cannot be used as a contextual cue and are interpreted in light of previous studies of saccadic adaptation in both humans and monkeys. PMID:25995353

  3. Context cue-dependent saccadic adaptation in rhesus macaques cannot be elicited using color.

    PubMed

    Cecala, Aaron L; Smalianchuk, Ivan; Khanna, Sanjeev B; Smith, Matthew A; Gandhi, Neeraj J

    2015-07-01

    When the head does not move, rapid movements of the eyes called saccades are used to redirect the line of sight. Saccades are defined by a series of metrical and kinematic (evolution of a movement as a function of time) relationships. For example, the amplitude of a saccade made from one visual target to another is roughly 90% of the distance between the initial fixation point (T0) and the peripheral target (T1). However, this stereotypical relationship between saccade amplitude and initial retinal error (T1-T0) may be altered, either increased or decreased, by surreptitiously displacing a visual target during an ongoing saccade. This form of motor learning (called saccadic adaptation) has been described in both humans and monkeys. Recent experiments in humans and monkeys have suggested that internal (proprioceptive) and external (target shape, color, and/or motion) cues may be used to produce context-dependent adaptation. We tested the hypothesis that an external contextual cue (target color) could be used to evoke differential gain (actual saccade/initial retinal error) states in rhesus monkeys. We did not observe differential gain states correlated with target color regardless of whether targets were displaced along the same vector as the primary saccade or perpendicular to it. Furthermore, this observation held true regardless of whether adaptation trials using various colors and intrasaccade target displacements were randomly intermixed or presented in short or long blocks of trials. These results are consistent with hypotheses that state that color cannot be used as a contextual cue and are interpreted in light of previous studies of saccadic adaptation in both humans and monkeys.

  4. Verbal Auditory Cueing of Improvisational Dance: A Proposed Method for Training Agency in Parkinson's Disease.

    PubMed

    Batson, Glenna; Hugenschmidt, Christina E; Soriano, Christina T

    2016-01-01

    Dance is a non-pharmacological intervention that helps maintain functional independence and quality of life in people with Parkinson's disease (PPD). Results from controlled studies on group-delivered dance for people with mild-to-moderate stage Parkinson's have shown statistically and clinically significant improvements in gait, balance, and psychosocial factors. Tested interventions include non-partnered dance forms (ballet and modern dance) and partnered (tango). In all of these dance forms, specific movement patterns initially are learned through repetition and performed in time-to-music. Once the basic steps are mastered, students may be encouraged to improvise on the learned steps as they perform them in rhythm with the music. Here, we summarize a method of teaching improvisational dance that advances previous reported benefits of dance for people with Parkinson's disease (PD). The method relies primarily on improvisational verbal auditory cueing with less emphasis on directed movement instruction. This method builds on the idea that daily living requires flexible, adaptive responses to real-life challenges. In PD, movement disorders not only limit mobility but also impair spontaneity of thought and action. Dance improvisation demands open and immediate interpretation of verbally delivered movement cues, potentially fostering the formation of spontaneous movement strategies. Here, we present an introduction to a proposed method, detailing its methodological specifics, and pointing to future directions. The viewpoint advances an embodied cognitive approach that has eco-validity in helping PPD meet the changing demands of daily living. PMID:26925029

  5. Reorienting when cues conflict: evidence for an adaptive-combination view.

    PubMed

    Ratliff, Kristin R; Newcombe, Nora S

    2008-12-01

    Proponents of a geometric module claim that human adults accomplish spatial reorientation in a fundamentally different way than young children and nonhuman animals do. However, reporting two experiments that used a conflict paradigm, this article shows striking similarities between human adults and young children, as well as nonhuman animals. Specifically, Experiment 1 demonstrates that adults favor geometric information in a small room and rely on features in a larger room, whereas Experiment 2 demonstrates that experience in a larger room produces dominance of features over geometric cues in a small room-the first human case of reliance on features that contradict geometric information. Thus, use of features during reorientation depends on the size of the environment and learning history. These results clearly undermine the modularity claim and the view that feature use during reorientation is purely associative, and we discuss the findings within an adaptive-combination view, according to which a weighting system determines use of feature or geometric cues during reorientation.

  6. Ambiguous Tilt and Translation Motion Cues after Space Flight and Otolith Assessment during Post-Flight Re-Adaptation

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Clarke, A. H.; Harm, D. L.; Rupert, A. H.; Clement, G. R.

    2009-01-01

    Adaptive changes during space flight in how the brain integrates vestibular cues with other sensory information can lead to impaired movement coordination, vertigo, spatial disorientation and perceptual illusions following Gtransitions. These studies are designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances following short duration space flights.

  7. Fast and persistent adaptation to new spectral cues for sound localization suggests a many-to-one mapping mechanism.

    PubMed

    Trapeau, Régis; Aubrais, Valérie; Schönwiesner, Marc

    2016-08-01

    The adult human auditory system can adapt to changes in spectral cues for sound localization. This plasticity was demonstrated by changing the shape of the pinna with earmolds. Previous results indicate that participants regain localization accuracy after several weeks of adaptation and that the adapted state is retained for at least one week without earmolds. No aftereffect was observed after mold removal, but any aftereffect may be too short to be observed when responses are averaged over many trials. This work investigated the lack of aftereffect by analyzing single-trial responses and modifying visual, auditory, and tactile information during the localization task. Results showed that participants localized accurately immediately after mold removal, even at the first stimulus presentation. Knowledge of the stimulus spectrum, tactile information about the absence of the earmolds, and visual feedback were not necessary to localize accurately after adaptation. Part of the adaptation persisted for one month without molds. The results are consistent with the hypothesis of a many-to-one mapping of the spectral cues, in which several spectral profiles are simultaneously associated with one sound location. Additionally, participants with acoustically more informative spectral cues localized sounds more accurately, and larger acoustical disturbances by the molds reduced adaptation success. PMID:27586720

  8. Method For Model-Reference Adaptive Control

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1990-01-01

    Relatively simple method of model-reference adaptive control (MRAC) developed from two prior classes of MRAC techniques: signal-synthesis method and parameter-adaption method. Incorporated into unified theory, which yields more general adaptation scheme.

  9. An adaptive level set method

    SciTech Connect

    Milne, R.B.

    1995-12-01

    This thesis describes a new method for the numerical solution of partial differential equations of the parabolic type on an adaptively refined mesh in two or more spatial dimensions. The method is motivated and developed in the context of the level set formulation for the curvature dependent propagation of surfaces in three dimensions. In that setting, it realizes the multiple advantages of decreased computational effort, localized accuracy enhancement, and compatibility with problems containing a range of length scales.

  10. Photoperiod and ambient temperature as environmental cues for seasonal thermogenic adaptation in the Djungarian hamster, Phodopus sungorus

    NASA Astrophysics Data System (ADS)

    Heldmaier, G.; Steinlechner, S.; Rafael, J.; Latteier, B.

    1982-12-01

    For their seasonal control of thermogenesis Djungarian hamsters rely on environmental cueing by both photoperiod and ambient temperature. Their total potential for adaptive improvements of nonshivering thermogenesis is constant in summer and winter. The shortening of photoperiod in fall is used to anticipate about half of the total improvement in thermogenesis, in advance of any experience of cold, as can be concluded from the photoperiodic control of thermogenesis, cold resistance, and the protein content, cyctochrome oxidase activity and content of mitochondria in brown adipose tissue. The remainder of the seasonal thermogenic adaptation is due to stimulatory responses to chronic exposure to cold.

  11. Adapting to the Destitute Situations: Poverty Cues Lead to Short-Term Choice

    PubMed Central

    Suo, Tao; Lee, Kang; Li, Hong

    2012-01-01

    Background Why do some people live for the present, whereas others save for the future? The evolutionary framework of life history theory predicts that preference for delay of gratification should be influenced by social economic status (SES). However, here we propose that the decision to choose alternatives in immediate and delayed gratification in poverty environments may have a psychological dimension. Specifically, the perception of environmental poverty cues may induce people alike to favor choices with short-term, likely smaller benefit than choices with long-term, greater benefit. Methodology/Principal Findings The present study was conducted to explore how poverty and affluence cues affected individuals' intertemporal choices. In our first two experiments, individuals exposed explicitly (Experiment 1) and implicitly (Experiment 2) to poverty pictures (the poverty cue) were induced to prefer immediate gratification compared with those exposed to affluence pictures (the affluence cue). Furthermore, by the manipulation of temporary perceptions of poverty and affluence status using a lucky draw game; individuals in the poverty state were more impulsive in a manner, which made them pursue immediate gratification in intertemporal choices (Experiment 3). Thus, poverty cues can lead to short-term choices. Conclusions/Significance Decision makers chose more frequently the sooner-smaller reward over the later-larger reward as they were exposed to the poverty cue. This indicates that it is that just the feeling of poverty influences intertemporal choice – the actual reality of poverty (restricted resources, etc.) is not necessary to get the effect. Furthermore, our findings emphasize that it is a change of the poverty-affluence status, not a trait change, can influence individual preference in intertemporal choice. PMID:22529902

  12. Robust Optimal Adaptive Control Method with Large Adaptive Gain

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2009-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.

  13. Feasibility and Preliminary Efficacy of Visual Cue Training to Improve Adaptability of Walking after Stroke: Multi-Centre, Single-Blind Randomised Control Pilot Trial

    PubMed Central

    Hollands, Kristen L.; Pelton, Trudy A.; Wimperis, Andrew; Whitham, Diane; Tan, Wei; Jowett, Sue; Sackley, Catherine M.; Wing, Alan M.; Tyson, Sarah F.; Mathias, Jonathan; Hensman, Marianne; van Vliet, Paulette M.

    2015-01-01

    Objectives Given the importance of vision in the control of walking and evidence indicating varied practice of walking improves mobility outcomes, this study sought to examine the feasibility and preliminary efficacy of varied walking practice in response to visual cues, for the rehabilitation of walking following stroke. Design This 3 arm parallel, multi-centre, assessor blind, randomised control trial was conducted within outpatient neurorehabilitation services Participants Community dwelling stroke survivors with walking speed <0.8m/s, lower limb paresis and no severe visual impairments Intervention Over-ground visual cue training (O-VCT), Treadmill based visual cue training (T-VCT), and Usual care (UC) delivered by physiotherapists twice weekly for 8 weeks. Main outcome measures: Participants were randomised using computer generated random permutated balanced blocks of randomly varying size. Recruitment, retention, adherence, adverse events and mobility and balance were measured before randomisation, post-intervention and at four weeks follow-up. Results Fifty-six participants participated (18 T-VCT, 19 O-VCT, 19 UC). Thirty-four completed treatment and follow-up assessments. Of the participants that completed, adherence was good with 16 treatments provided over (median of) 8.4, 7.5 and 9 weeks for T-VCT, O-VCT and UC respectively. No adverse events were reported. Post-treatment improvements in walking speed, symmetry, balance and functional mobility were seen in all treatment arms. Conclusions Outpatient based treadmill and over-ground walking adaptability practice using visual cues are feasible and may improve mobility and balance. Future studies should continue a carefully phased approach using identified methods to improve retention. Trial Registration Clinicaltrials.gov NCT01600391 PMID:26445137

  14. Verbal Auditory Cueing of Improvisational Dance: A Proposed Method for Training Agency in Parkinson’s Disease

    PubMed Central

    Batson, Glenna; Hugenschmidt, Christina E.; Soriano, Christina T.

    2016-01-01

    Dance is a non-pharmacological intervention that helps maintain functional independence and quality of life in people with Parkinson’s disease (PPD). Results from controlled studies on group-delivered dance for people with mild-to-moderate stage Parkinson’s have shown statistically and clinically significant improvements in gait, balance, and psychosocial factors. Tested interventions include non-partnered dance forms (ballet and modern dance) and partnered (tango). In all of these dance forms, specific movement patterns initially are learned through repetition and performed in time-to-music. Once the basic steps are mastered, students may be encouraged to improvise on the learned steps as they perform them in rhythm with the music. Here, we summarize a method of teaching improvisational dance that advances previous reported benefits of dance for people with Parkinson’s disease (PD). The method relies primarily on improvisational verbal auditory cueing with less emphasis on directed movement instruction. This method builds on the idea that daily living requires flexible, adaptive responses to real-life challenges. In PD, movement disorders not only limit mobility but also impair spontaneity of thought and action. Dance improvisation demands open and immediate interpretation of verbally delivered movement cues, potentially fostering the formation of spontaneous movement strategies. Here, we present an introduction to a proposed method, detailing its methodological specifics, and pointing to future directions. The viewpoint advances an embodied cognitive approach that has eco-validity in helping PPD meet the changing demands of daily living. PMID:26925029

  15. Simple method for model reference adaptive control

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1989-01-01

    A simple method is presented for combined signal synthesis and parameter adaptation within the framework of model reference adaptive control theory. The results are obtained using a simple derivation based on an improved Liapunov function.

  16. Aftereffect of motion-in-depth based on binocular cues: Effects of adaptation duration, interocular correlation, and temporal correlation.

    PubMed

    Sakano, Yuichi; Allison, Robert S

    2014-07-24

    There are at least two possible binocular cues to motion-in-depth, namely disparity change over time and interocular velocity differences. There has been significant controversy about their relative contributions to the perception of motion-in-depth. In the present study, we used the technique of selective adaptation to address this question. In Experiment 1, we found that adaptation to motion-in-depth depicted by temporally correlated random-dot stereograms, which contained coherent interocular velocity difference, produced motion aftereffect in the depth direction irrespective of the adaptors' interocular correlation for any adaptation duration tested. This suggests that coherent changing disparity does not contribute to motion-in-depth adaptation. Because the aftereffect duration did not saturate in the tested range of adaptation duration, it is unlikely that the lack of the effect of changing disparity was due to a ceiling effect. In Experiment 2, we used a novel adaptor that contained a unidirectional coherent interocular velocity difference signal and a bidirectional changing disparity signal that should not induce a motion aftereffect in depth. Following the adaptation, motion aftereffect in depth occurred in the opposite direction to the adaptor's motion-in-depth based on interocular velocity difference. Experiment 3 demonstrated that these results generalized in 12 untrained subjects. These experiments suggest that the contribution of interocular velocity difference to the perception of motion-in-depth is substantial, while that of changing disparity is very limited (if any), at least at the stages of direction-selective mechanisms subject to an aftereffect phenomenon.

  17. A psychoacoustic method for studying the necessary and sufficient perceptual cues of American English fricative consonants in noise

    PubMed Central

    Li, Feipeng; Trevino, Andrea; Menon, Anjali; Allen, Jont B.

    2012-01-01

    In a previous study on plosives, the 3-Dimensional Deep Search (3DDS) method for the exploration of the necessary and sufficient cues for speech perception was introduced (Li et al., (2010). J. Acoust. Soc. Am. 127(4), 2599–2610). Here, this method is used to isolate the spectral cue regions for perception of the American English fricatives /∫, ʒ, s, z, f, v, θ, ð/ in time, frequency, and intensity. The fricatives are analyzed in the context of consonant-vowel utterances, using the vowel /ɑ/. The necessary cues were found to be contained in the frication noise for /∫, ʒ, s, z, f, v/. 3DDS analysis isolated the cue regions of /s, z/ between 3.6 and 8 [kHz] and /∫, ʒ/ between 1.4 and 4.2 [kHz]. Some utterances were found to contain acoustic components that were unnecessary for correct perception, but caused listeners to hear non-target consonants when the primary cue region was removed; such acoustic components are labeled “conflicting cue regions.” The amplitude modulation of the high-frequency frication region by the fundamental F0 was found to be a sufficient cue for voicing. Overall, the 3DDS method allows one to analyze the effects of natural speech components without initial assumptions about where perceptual cues lie in time-frequency space or which elements of production they correspond to. PMID:23039459

  18. Adaptation to boreal forest wildfire in herbs: Responses to post-fire environmental cues in two Pulsatilla species

    NASA Astrophysics Data System (ADS)

    Kalamees, Rein; Püssa, Kersti; Tamm, Sirli; Zobel, Kristjan

    2012-01-01

    Although boreal forests are biomes which are characterized by periodical forest wildfires, very little is known about adaptations to fire in forest herbs. We investigated whether a putatively fire-dependent herbaceous species - Pulsatilla patens - demonstrated adaptive responses to environmental cues that reflect differences in pre-fire and post-fire environments (the presence of ericoid litter and charcoal, and light levels). For comparison, we included in the experiment a close congeneric species that is less bound to forest ecosystems ( Pulsatilla pratensis) and a morphologically similar mesic grassland species from the same family ( Ranunculus polyanthemos), as examples of species for which adaptations to fire should be of lower value, or of no value at all, respectively. The addition of ericoid litter to the soil generally enhanced plant growth, suggesting that its negative effect on plant germination and growth is not as widespread as previously thought. In both Pulsatilla species charcoal without forest litter retarded plant growth, but in combination with ericoid litter the negative effect disappeared or was even replaced by a slightly positive effect. Such an interactive effect was absent in the grassland species R. polyanthemos. The response of Pulsatilla species to different post-fire signals may be explained by adaptive down-regulation of growth after high-intensity fire - small plant size can be advantageous in sparse and well illuminated field-layer vegetation - and intense growth in the more competitive situation following weak fire. An additional experiment demonstrated that the effects of fire-related treatments were not mediated by differential AM infection.

  19. Understanding developmental and adaptive cues in pine through metabolite profiling and co-expression network analysis

    PubMed Central

    Cañas, Rafael A.; Canales, Javier; Muñoz-Hernández, Carmen; Granados, Jose M.; Ávila, Concepción; García-Martín, María L.; Cánovas, Francisco M.

    2015-01-01

    Conifers include long-lived evergreen trees of great economic and ecological importance, including pines and spruces. During their long lives conifers must respond to seasonal environmental changes, adapt to unpredictable environmental stresses, and co-ordinate their adaptive adjustments with internal developmental programmes. To gain insights into these responses, we examined metabolite and transcriptomic profiles of needles from naturally growing 25-year-old maritime pine (Pinus pinaster L. Aiton) trees over a year. The effect of environmental parameters such as temperature and rain on needle development were studied. Our results show that seasonal changes in the metabolite profiles were mainly affected by the needles’ age and acclimation for winter, but changes in transcript profiles were mainly dependent on climatic factors. The relative abundance of most transcripts correlated well with temperature, particularly for genes involved in photosynthesis or winter acclimation. Gene network analysis revealed relationships between 14 co-expressed gene modules and development and adaptation to environmental stimuli. Novel Myb transcription factors were identified as candidate regulators during needle development. Our systems-based analysis provides integrated data of the seasonal regulation of maritime pine growth, opening new perspectives for understanding the complex regulatory mechanisms underlying conifers’ adaptive responses. Taken together, our results suggest that the environment regulates the transcriptome for fine tuning of the metabolome during development. PMID:25873654

  20. The reminiscence bump in autobiographical memory and for public events: A comparison across different cueing methods.

    PubMed

    Koppel, Jonathan; Berntsen, Dorthe

    2016-01-01

    The reminiscence bump has been found for both autobiographical memories and memories of public events. However, there have been few comparisons of the bump across each type of event. In the current study, therefore, we compared the bump for autobiographical memories versus the bump for memories of public events. We did so between-subjects, through two cueing methods administered within-subjects, the cue word method and the important memories method. For word-cued memories, we found a similar bump from ages 5 to 19 for both types of memories. However, the bump was more pronounced for autobiographical memories. For most important memories, we found a bump from ages 20 to 29 in autobiographical memory, but little discernible age pattern for public events. Rather, specific public events (e.g., the Fall of the Berlin Wall) dominated recall, producing a chronological distribution characterised by spikes in citations according to the years these events occurred. Follow-up analyses suggested that the bump in most important autobiographical memories was a function of the cultural life script. Our findings did not yield support for any of the dominant existing accounts of the bump as underlying the bump in word-cued memories.

  1. Variational method for adaptive grid generation

    SciTech Connect

    Brackbill, J.U.

    1983-01-01

    A variational method for generating adaptive meshes is described. Functionals measuring smoothness, skewness, orientation, and the Jacobian are minimized to generate a mapping from a rectilinear domain in natural coordinate to an arbitrary domain in physical coordinates. From the mapping, a mesh is easily constructed. In using the method to adaptively zone computational problems, as few as one third the number of mesh points are required in each coordinate direction compared with a uniformly zoned mesh.

  2. Effect of stimuli presentation method on perception of room size using only acoustic cues

    NASA Astrophysics Data System (ADS)

    Hunt, Jeffrey Barnabas

    People listen to music and speech in a large variety of rooms and many room parameters, including the size of the room, can drastically affect how well the speech is understood or the music enjoyed. While multi-modal (typically hearing and sight) tests may be more realistic, in order to isolate what acoustic cues listeners use to determine the size of a room, a listening-only tests is conducted here. Nearly all of the studies to-date on the perception of room volume using acoustic cues have presented the stimuli only over headphones and these studies have reported that, in most cases, the perceived room volume is more highly correlated with the perceived reverberation (reverberance) than with actual room volume. While reverberance may be a salient acoustic cue used for the determination or room size, the actual sound field in a room is not accurately reproduced when presented over headphones and it is thought that some of the complexities of the sound field that relate to perception of geometric volume, specifically directional information of reflections, may be lost. It is possible that the importance of reverberance may be overemphasized when using only headphones to present stimuli so a comparison of room-size perception is proposed where the sound field (from modeled and recorded impulse responses) is presented both over headphones and also over a surround system using higher order ambisonics to more accurately produce directional sound information. Major results are that, in this study, no difference could be seen between the two presentation methods and that reverberation time is highly correlated to room-size perception while real room size is not.

  3. "Alice in Wonderland"--Based on Stories by Lewis Carroll, Adapted by Ric Averill. Cue Sheet for Families.

    ERIC Educational Resources Information Center

    Bavaria, Richard; And Others

    Designed to be used before and after attending a performance of "Alice in Wonderland," this cue sheet provides information about the performance and suggests activities to help families foster children's understanding and appreciation of the performing arts. The cue sheet presents activities to help children think about the performance, and…

  4. Domain adaptive boosting method and its applications

    NASA Astrophysics Data System (ADS)

    Geng, Jie; Miao, Zhenjiang

    2015-03-01

    Differences of data distributions widely exist among datasets, i.e., domains. For many pattern recognition, nature language processing, and content-based analysis systems, a decrease in performance caused by the domain differences between the training and testing datasets is still a notable problem. We propose a domain adaptation method called domain adaptive boosting (DAB). It is based on the AdaBoost approach with extensions to cover the domain differences between the source and target domains. Two main stages are contained in this approach: source-domain clustering and source-domain sample selection. By iteratively adding the selected training samples from the source domain, the discrimination model is able to achieve better domain adaptation performance based on a small validation set. The DAB algorithm is suitable for the domains with large scale samples and easy to extend for multisource adaptation. We implement this method on three computer vision systems: the skin detection model in single images, the video concept detection model, and the object classification model. In the experiments, we compare the performances of several commonly used methods and the proposed DAB. Under most situations, the DAB is superior.

  5. Structured adaptive grid generation using algebraic methods

    NASA Technical Reports Server (NTRS)

    Yang, Jiann-Cherng; Soni, Bharat K.; Roger, R. P.; Chan, Stephen C.

    1993-01-01

    The accuracy of the numerical algorithm depends not only on the formal order of approximation but also on the distribution of grid points in the computational domain. Grid adaptation is a procedure which allows optimal grid redistribution as the solution progresses. It offers the prospect of accurate flow field simulations without the use of an excessively timely, computationally expensive, grid. Grid adaptive schemes are divided into two basic categories: differential and algebraic. The differential method is based on a variational approach where a function which contains a measure of grid smoothness, orthogonality and volume variation is minimized by using a variational principle. This approach provided a solid mathematical basis for the adaptive method, but the Euler-Lagrange equations must be solved in addition to the original governing equations. On the other hand, the algebraic method requires much less computational effort, but the grid may not be smooth. The algebraic techniques are based on devising an algorithm where the grid movement is governed by estimates of the local error in the numerical solution. This is achieved by requiring the points in the large error regions to attract other points and points in the low error region to repel other points. The development of a fast, efficient, and robust algebraic adaptive algorithm for structured flow simulation applications is presented. This development is accomplished in a three step process. The first step is to define an adaptive weighting mesh (distribution mesh) on the basis of the equidistribution law applied to the flow field solution. The second, and probably the most crucial step, is to redistribute grid points in the computational domain according to the aforementioned weighting mesh. The third and the last step is to reevaluate the flow property by an appropriate search/interpolate scheme at the new grid locations. The adaptive weighting mesh provides the information on the desired concentration

  6. Parallel adaptive wavelet collocation method for PDEs

    SciTech Connect

    Nejadmalayeri, Alireza; Vezolainen, Alexei; Brown-Dymkoski, Eric; Vasilyev, Oleg V.

    2015-10-01

    A parallel adaptive wavelet collocation method for solving a large class of Partial Differential Equations is presented. The parallelization is achieved by developing an asynchronous parallel wavelet transform, which allows one to perform parallel wavelet transform and derivative calculations with only one data synchronization at the highest level of resolution. The data are stored using tree-like structure with tree roots starting at a priori defined level of resolution. Both static and dynamic domain partitioning approaches are developed. For the dynamic domain partitioning, trees are considered to be the minimum quanta of data to be migrated between the processes. This allows fully automated and efficient handling of non-simply connected partitioning of a computational domain. Dynamic load balancing is achieved via domain repartitioning during the grid adaptation step and reassigning trees to the appropriate processes to ensure approximately the same number of grid points on each process. The parallel efficiency of the approach is discussed based on parallel adaptive wavelet-based Coherent Vortex Simulations of homogeneous turbulence with linear forcing at effective non-adaptive resolutions up to 2048{sup 3} using as many as 2048 CPU cores.

  7. An adaptive selective frequency damping method

    NASA Astrophysics Data System (ADS)

    Jordi, Bastien; Cotter, Colin; Sherwin, Spencer

    2015-03-01

    The selective frequency damping (SFD) method is used to obtain unstable steady-state solutions of dynamical systems. The stability of this method is governed by two parameters that are the control coefficient and the filter width. Convergence is not guaranteed for arbitrary choice of these parameters. Even when the method does converge, the time necessary to reach a steady-state solution may be very long. We present an adaptive SFD method. We show that by modifying the control coefficient and the filter width all along the solver execution, we can reach an optimum convergence rate. This method is based on successive approximations of the dominant eigenvalue of the flow studied. We design a one-dimensional model to select SFD parameters that enable us to control the evolution of the least stable eigenvalue of the system. These parameters are then used for the application of the SFD method to the multi-dimensional flow problem. We apply this adaptive method to a set of classical test cases of computational fluid dynamics and show that the steady-state solutions obtained are similar to what can be found in the literature. Then we apply it to a specific vortex dominated flow (of interest for the automotive industry) whose stability had never been studied before. Seventh Framework Programme of the European Commission - ANADE project under Grant Contract PITN-GA-289428.

  8. A Psychophysical Imaging Method Evidencing Auditory Cue Extraction during Speech Perception: A Group Analysis of Auditory Classification Images

    PubMed Central

    Varnet, Léo; Knoblauch, Kenneth; Serniclaes, Willy; Meunier, Fanny; Hoen, Michel

    2015-01-01

    Although there is a large consensus regarding the involvement of specific acoustic cues in speech perception, the precise mechanisms underlying the transformation from continuous acoustical properties into discrete perceptual units remains undetermined. This gap in knowledge is partially due to the lack of a turnkey solution for isolating critical speech cues from natural stimuli. In this paper, we describe a psychoacoustic imaging method known as the Auditory Classification Image technique that allows experimenters to estimate the relative importance of time-frequency regions in categorizing natural speech utterances in noise. Importantly, this technique enables the testing of hypotheses on the listening strategies of participants at the group level. We exemplify this approach by identifying the acoustic cues involved in da/ga categorization with two phonetic contexts, Al- or Ar-. The application of Auditory Classification Images to our group of 16 participants revealed significant critical regions on the second and third formant onsets, as predicted by the literature, as well as an unexpected temporal cue on the first formant. Finally, through a cluster-based nonparametric test, we demonstrate that this method is sufficiently sensitive to detect fine modifications of the classification strategies between different utterances of the same phoneme. PMID:25781470

  9. Ensemble transform sensitivity method for adaptive observations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Xie, Yuanfu; Wang, Hongli; Chen, Dehui; Toth, Zoltan

    2016-01-01

    The Ensemble Transform (ET) method has been shown to be useful in providing guidance for adaptive observation deployment. It predicts forecast error variance reduction for each possible deployment using its corresponding transformation matrix in an ensemble subspace. In this paper, a new ET-based sensitivity (ETS) method, which calculates the gradient of forecast error variance reduction in terms of analysis error variance reduction, is proposed to specify regions for possible adaptive observations. ETS is a first order approximation of the ET; it requires just one calculation of a transformation matrix, increasing computational efficiency (60%-80% reduction in computational cost). An explicit mathematical formulation of the ETS gradient is derived and described. Both the ET and ETS methods are applied to the Hurricane Irene (2011) case and a heavy rainfall case for comparison. The numerical results imply that the sensitive areas estimated by the ETS and ET are similar. However, ETS is much more efficient, particularly when the resolution is higher and the number of ensemble members is larger.

  10. Adaptive Accommodation Control Method for Complex Assembly

    NASA Astrophysics Data System (ADS)

    Kang, Sungchul; Kim, Munsang; Park, Shinsuk

    Robotic systems have been used to automate assembly tasks in manufacturing and in teleoperation. Conventional robotic systems, however, have been ineffective in controlling contact force in multiple contact states of complex assemblythat involves interactions between complex-shaped parts. Unlike robots, humans excel at complex assembly tasks by utilizing their intrinsic impedance, forces and torque sensation, and tactile contact clues. By examining the human behavior in assembling complex parts, this study proposes a novel geometry-independent control method for robotic assembly using adaptive accommodation (or damping) algorithm. Two important conditions for complex assembly, target approachability and bounded contact force, can be met by the proposed control scheme. It generates target approachable motion that leads the object to move closer to a desired target position, while contact force is kept under a predetermined value. Experimental results from complex assembly tests have confirmed the feasibility and applicability of the proposed method.

  11. Adaptive method with intercessory feedback control for an intelligent agent

    DOEpatents

    Goldsmith, Steven Y.

    2004-06-22

    An adaptive architecture method with feedback control for an intelligent agent provides for adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. An adaptive architecture method with feedback control for multiple intelligent agents provides for coordinating and adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. Re-programming of the adaptive architecture is through a nexus which coordinates reflexive and deliberator components.

  12. Adapting implicit methods to parallel processors

    SciTech Connect

    Reeves, L.; McMillin, B.; Okunbor, D.; Riggins, D.

    1994-12-31

    When numerically solving many types of partial differential equations, it is advantageous to use implicit methods because of their better stability and more flexible parameter choice, (e.g. larger time steps). However, since implicit methods usually require simultaneous knowledge of the entire computational domain, these methods axe difficult to implement directly on distributed memory parallel processors. This leads to infrequent use of implicit methods on parallel/distributed systems. The usual implementation of implicit methods is inefficient due to the nature of parallel systems where it is common to take the computational domain and distribute the grid points over the processors so as to maintain a relatively even workload per processor. This creates a problem at the locations in the domain where adjacent points are not on the same processor. In order for the values at these points to be calculated, messages have to be exchanged between the corresponding processors. Without special adaptation, this will result in idle processors during part of the computation, and as the number of idle processors increases, the lower the effective speed improvement by using a parallel processor.

  13. Linearly-Constrained Adaptive Signal Processing Methods

    NASA Astrophysics Data System (ADS)

    Griffiths, Lloyd J.

    1988-01-01

    In adaptive least-squares estimation problems, a desired signal d(n) is estimated using a linear combination of L observation values samples xi (n), x2(n), . . . , xL-1(n) and denoted by the vector X(n). The estimate is formed as the inner product of this vector with a corresponding L-dimensional weight vector W. One particular weight vector of interest is Wopt which minimizes the mean-square between d(n) and the estimate. In this context, the term `mean-square difference' is a quadratic measure such as statistical expectation or time average. The specific value of W which achieves the minimum is given by the prod-uct of the inverse data covariance matrix and the cross-correlation between the data vector and the desired signal. The latter is often referred to as the P-vector. For those cases in which time samples of both the desired and data vector signals are available, a variety of adaptive methods have been proposed which will guarantee that an iterative weight vector Wa(n) converges (in some sense) to the op-timal solution. Two which have been extensively studied are the recursive least-squares (RLS) method and the LMS gradient approximation approach. There are several problems of interest in the communication and radar environment in which the optimal least-squares weight set is of interest and in which time samples of the desired signal are not available. Examples can be found in array processing in which only the direction of arrival of the desired signal is known and in single channel filtering where the spectrum of the desired response is known a priori. One approach to these problems which has been suggested is the P-vector algorithm which is an LMS-like approximate gradient method. Although it is easy to derive the mean and variance of the weights which result with this algorithm, there has never been an identification of the corresponding underlying error surface which the procedure searches. The purpose of this paper is to suggest an alternative

  14. Adaptive model training system and method

    DOEpatents

    Bickford, Randall L; Palnitkar, Rahul M

    2014-11-18

    An adaptive model training system and method for filtering asset operating data values acquired from a monitored asset for selectively choosing asset operating data values that meet at least one predefined criterion of good data quality while rejecting asset operating data values that fail to meet at least the one predefined criterion of good data quality; and recalibrating a previously trained or calibrated model having a learned scope of normal operation of the asset by utilizing the asset operating data values that meet at least the one predefined criterion of good data quality for adjusting the learned scope of normal operation of the asset for defining a recalibrated model having the adjusted learned scope of normal operation of the asset.

  15. Adaptive model training system and method

    DOEpatents

    Bickford, Randall L; Palnitkar, Rahul M; Lee, Vo

    2014-04-15

    An adaptive model training system and method for filtering asset operating data values acquired from a monitored asset for selectively choosing asset operating data values that meet at least one predefined criterion of good data quality while rejecting asset operating data values that fail to meet at least the one predefined criterion of good data quality; and recalibrating a previously trained or calibrated model having a learned scope of normal operation of the asset by utilizing the asset operating data values that meet at least the one predefined criterion of good data quality for adjusting the learned scope of normal operation of the asset for defining a recalibrated model having the adjusted learned scope of normal operation of the asset.

  16. Online Adaptive Replanning Method for Prostate Radiotherapy

    SciTech Connect

    Ahunbay, Ergun E.; Peng Cheng; Holmes, Shannon; Godley, Andrew; Lawton, Colleen; Li, X. Allen

    2010-08-01

    Purpose: To report the application of an adaptive replanning technique for prostate cancer radiotherapy (RT), consisting of two steps: (1) segment aperture morphing (SAM), and (2) segment weight optimization (SWO), to account for interfraction variations. Methods and Materials: The new 'SAM+SWO' scheme was retroactively applied to the daily CT images acquired for 10 prostate cancer patients on a linear accelerator and CT-on-Rails combination during the course of RT. Doses generated by the SAM+SWO scheme based on the daily CT images were compared with doses generated after patient repositioning using the current planning target volume (PTV) margin (5 mm, 3 mm toward rectum) and a reduced margin (2 mm), along with full reoptimization scans based on the daily CT images to evaluate dosimetry benefits. Results: For all cases studied, the online replanning method provided significantly better target coverage when compared with repositioning with reduced PTV (13% increase in minimum prostate dose) and improved organ sparing when compared with repositioning with regular PTV (13% decrease in the generalized equivalent uniform dose of rectum). The time required to complete the online replanning process was 6 {+-} 2 minutes. Conclusion: The proposed online replanning method can be used to account for interfraction variations for prostate RT with a practically acceptable time frame (5-10 min) and with significant dosimetric benefits. On the basis of this study, the developed online replanning scheme is being implemented in the clinic for prostate RT.

  17. Polarizing cues.

    PubMed

    Nicholson, Stephen P

    2012-01-01

    People categorize themselves and others, creating ingroup and outgroup distinctions. In American politics, parties constitute the in- and outgroups, and party leaders hold sway in articulating party positions. A party leader's endorsement of a policy can be persuasive, inducing co-partisans to take the same position. In contrast, a party leader's endorsement may polarize opinion, inducing out-party identifiers to take a contrary position. Using survey experiments from the 2008 presidential election, I examine whether in- and out-party candidate cues—John McCain and Barack Obama—affected partisan opinion. The results indicate that in-party leader cues do not persuade but that out-party leader cues polarize. This finding holds in an experiment featuring President Bush in which his endorsement did not persuade Republicans but it polarized Democrats. Lastly, I compare the effect of party leader cues to party label cues. The results suggest that politicians, not parties, function as polarizing cues. PMID:22400143

  18. Adaptive numerical methods for partial differential equations

    SciTech Connect

    Cololla, P.

    1995-07-01

    This review describes a structured approach to adaptivity. The Automated Mesh Refinement (ARM) algorithms developed by M Berger are described, touching on hyperbolic and parabolic applications. Adaptivity is achieved by overlaying finer grids only in areas flagged by a generalized error criterion. The author discusses some of the issues involved in abutting disparate-resolution grids, and demonstrates that suitable algorithms exist for dissipative as well as hyperbolic systems.

  19. Biosynthesis of coral settlement cue tetrabromopyrrole in marine bacteria by a uniquely adapted brominase–thioesterase enzyme pair

    PubMed Central

    El Gamal, Abrahim; Agarwal, Vinayak; Diethelm, Stefan; Rahman, Imran; Schorn, Michelle A.; Sneed, Jennifer M.; Louie, Gordon V.; Whalen, Kristen E.; Mincer, Tracy J.; Noel, Joseph P.; Paul, Valerie J.; Moore, Bradley S.

    2016-01-01

    Halogenated pyrroles (halopyrroles) are common chemical moieties found in bioactive bacterial natural products. The halopyrrole moieties of mono- and dihalopyrrole-containing compounds arise from a conserved mechanism in which a proline-derived pyrrolyl group bound to a carrier protein is first halogenated and then elaborated by peptidic or polyketide extensions. This paradigm is broken during the marine pseudoalteromonad bacterial biosynthesis of the coral larval settlement cue tetrabromopyrrole (1), which arises from the substitution of the proline-derived carboxylate by a bromine atom. To understand the molecular basis for decarboxylative bromination in the biosynthesis of 1, we sequenced two Pseudoalteromonas genomes and identified a conserved four-gene locus encoding the enzymes involved in its complete biosynthesis. Through total in vitro reconstitution of the biosynthesis of 1 using purified enzymes and biochemical interrogation of individual biochemical steps, we show that all four bromine atoms in 1 are installed by the action of a single flavin-dependent halogenase: Bmp2. Tetrabromination of the pyrrole induces a thioesterase-mediated offloading reaction from the carrier protein and activates the biosynthetic intermediate for decarboxylation. Insights into the tetrabrominating activity of Bmp2 were obtained from the high-resolution crystal structure of the halogenase contrasted against structurally homologous halogenase Mpy16 that forms only a dihalogenated pyrrole in marinopyrrole biosynthesis. Structure-guided mutagenesis of the proposed substrate-binding pocket of Bmp2 led to a reduction in the degree of halogenation catalyzed. Our study provides a biogenetic basis for the biosynthesis of 1 and sets a firm foundation for querying the biosynthetic potential for the production of 1 in marine (meta)genomes. PMID:27001835

  20. Principles and Methods of Adapted Physical Education.

    ERIC Educational Resources Information Center

    Arnheim, Daniel D.; And Others

    Programs in adapted physical education are presented preceded by a background of services for the handicapped, by the psychosocial implications of disability, and by the growth and development of the handicapped. Elements of conducting programs discussed are organization and administration, class organization, facilities, exercise programs…

  1. Adaptive method for electron bunch profile prediction

    SciTech Connect

    Scheinker, Alexander; Gessner, Spencer

    2015-10-01

    We report on an experiment performed at the Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC National Accelerator Laboratory, in which a new adaptive control algorithm, one with known, bounded update rates, despite operating on analytically unknown cost functions, was utilized in order to provide quasi-real-time bunch property estimates of the electron beam. Multiple parameters, such as arbitrary rf phase settings and other time-varying accelerator properties, were simultaneously tuned in order to match a simulated bunch energy spectrum with a measured energy spectrum. The simple adaptive scheme was digitally implemented using matlab and the experimental physics and industrial control system. The main result is a nonintrusive, nondestructive, real-time diagnostic scheme for prediction of bunch profiles, as well as other beam parameters, the precise control of which are important for the plasma wakefield acceleration experiments being explored at FACET. © 2015 authors. Published by the American Physical Society.

  2. Solution-adaptive finite element method in computational fracture mechanics

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Bass, J. M.; Spradley, L. W.

    1993-01-01

    Some recent results obtained using solution-adaptive finite element method in linear elastic two-dimensional fracture mechanics problems are presented. The focus is on the basic issue of adaptive finite element method for validating the applications of new methodology to fracture mechanics problems by computing demonstration problems and comparing the stress intensity factors to analytical results.

  3. Outlier Measures and Norming Methods for Computerized Adaptive Tests.

    ERIC Educational Resources Information Center

    Bradlow, Eric T.; Weiss, Robert E.

    2001-01-01

    Compares four methods that map outlier statistics to a familiarity probability scale (a "P" value). Explored these methods in the context of computerized adaptive test data from a 1995 nationally administered computerized examination for professionals in the medical industry. (SLD)

  4. Adaptive adjustment of unit tuning to sound localization cues in response to monaural occlusion in developing owl optic tectum.

    PubMed

    Mogdans, J; Knudsen, E I

    1992-09-01

    Bimodal units in the barn owl's optic tectum are tuned to the location of auditory and visual stimuli, and are systematically organized according to their spatial tuning to form mutually aligned maps of auditory and visual space. Map alignment results from the fact that, normally, units are tuned to the values of interaural level difference (ILD) and interaural time difference (ITD) produced by a sound source at the location of their visual receptive fields (VRFs). Monaural occlusion alters the correspondence of ILD and ITD values with locations in space. We investigated the effect that raising owls with a chronic monaural occlusion has on the tuning of tectal units to ILD and ITD. Owls were monaurally occluded beginning at 1 month of age. The effects of monaural occlusion were assessed 2-4 months later by comparing the ILD and ITD tuning of units in monaurally occluded owls with the ILD and ITD tuning of units with equivalent VRFs in normal owls. ILD and ITD tuning was shifted substantially and in the direction of the unoccluded ear (the adaptive direction) in owls raised with a monaural occlusion. In most tecta, the mapped representations of ILD and ITD were shifted systematically. In addition, in some tecta, monaural occlusion induced a change in the topography of the ILD map such that ILD tuning remained essentially constant at values near 0 dB over abnormally large portions of the tectum. Across all recording sites, the average shift in ILD tuning was 9 dB (n = 396) and the average shift in ITD tuning was 40 microseconds (n = 414). In four of five animals, the magnitude of the effect was not equivalent on the two sides of the brain, the adjustments being significantly larger and more systematic on the side ipsilateral to the occlusion. Such differences in the altered ILD and ITD maps on the two sides of the brain in individual animals indicate that, although a component of the adaptive adjustment might be due to regulation of the gain and phase response of the

  5. Assessing Adaptive Instructional Design Tools and Methods in ADAPT[IT].

    ERIC Educational Resources Information Center

    Eseryel, Deniz; Spector, J. Michael

    ADAPT[IT] (Advanced Design Approach for Personalized Training - Interactive Tools) is a European project within the Information Society Technologies program that is providing design methods and tools to guide a training designer according to the latest cognitive science and standardization principles. ADAPT[IT] addresses users in two significantly…

  6. Adaptation of Francisella tularensis to the Mammalian Environment Is Governed by Cues Which Can Be Mimicked In Vitro▿ †

    PubMed Central

    Hazlett, Karsten R. O.; Caldon, Seth D.; McArthur, Debbie G.; Cirillo, Kerry A.; Kirimanjeswara, Girish S.; Magguilli, Micheal L.; Malik, Meenakshi; Shah, Aaloki; Broderick, Scott; Golovliov, Igor; Metzger, Dennis W.; Rajan, Krishna; Sellati, Timothy J.; Loegering, Daniel J.

    2008-01-01

    The intracellular bacterium Francisella tularensis survives in mammals, arthropods, and freshwater amoeba. It was previously established that the conventional media used for in vitro propagation of this microbe do not yield bacteria that mimic those harvested from infected mammals; whether these in vitro-cultivated bacteria resemble arthropod- or amoeba-adapted Francisella is unknown. As a foundation for our goal of identifying F. tularensis outer membrane proteins which are expressed during mammalian infection, we first sought to identify in vitro cultivation conditions that induce the bacterium's infection-derived phenotype. We compared Francisella LVS grown in brain heart infusion broth (BHI; a standard microbiological medium rarely used in Francisella research) to that grown in Mueller-Hinton broth (MHB; the most widely used F. tularensis medium, used here as a negative control) and macrophages (a natural host cell, used here as a positive control). BHI- and macrophage-grown F. tularensis cells showed similar expression of MglA-dependent and MglA-independent proteins; expression of the MglA-dependent proteins was repressed by the supraphysiological levels of free amino acids present in MHB. We observed that during macrophage infection, protein expression by intracellular bacteria differed from that by extracellular bacteria; BHI-grown bacteria mirrored the latter, while MHB-grown bacteria resembled neither. Naïve macrophages responding to BHI- and macrophage-grown bacteria produced markedly lower levels of proinflammatory mediators than those in cells exposed to MHB-grown bacteria. In contrast to MHB-grown bacteria, BHI-grown bacteria showed minimal delay during intracellular replication. Cumulatively, our findings provide compelling evidence that growth in BHI yields bacteria which recapitulate the phenotype of Francisella organisms that have emerged from macrophages. PMID:18644878

  7. A New Adaptive Image Denoising Method Based on Neighboring Coefficients

    NASA Astrophysics Data System (ADS)

    Biswas, Mantosh; Om, Hari

    2016-03-01

    Many good techniques have been discussed for image denoising that include NeighShrink, improved adaptive wavelet denoising method based on neighboring coefficients (IAWDMBNC), improved wavelet shrinkage technique for image denoising (IWST), local adaptive wiener filter (LAWF), wavelet packet thresholding using median and wiener filters (WPTMWF), adaptive image denoising method based on thresholding (AIDMT). These techniques are based on local statistical description of the neighboring coefficients in a window. These methods however do not give good quality of the images since they cannot modify and remove too many small wavelet coefficients simultaneously due to the threshold. In this paper, a new image denoising method is proposed that shrinks the noisy coefficients using an adaptive threshold. Our method overcomes these drawbacks and it has better performance than the NeighShrink, IAWDMBNC, IWST, LAWF, WPTMWF, and AIDMT denoising methods.

  8. Adaptive computational methods for aerothermal heating analysis

    NASA Technical Reports Server (NTRS)

    Price, John M.; Oden, J. Tinsley

    1988-01-01

    The development of adaptive gridding techniques for finite-element analysis of fluid dynamics equations is described. The developmental work was done with the Euler equations with concentration on shock and inviscid flow field capturing. Ultimately this methodology is to be applied to a viscous analysis for the purpose of predicting accurate aerothermal loads on complex shapes subjected to high speed flow environments. The development of local error estimate strategies as a basis for refinement strategies is discussed, as well as the refinement strategies themselves. The application of the strategies to triangular elements and a finite-element flux-corrected-transport numerical scheme are presented. The implementation of these strategies in the GIM/PAGE code for 2-D and 3-D applications is documented and demonstrated.

  9. An adaptive pseudospectral method for discontinuous problems

    NASA Technical Reports Server (NTRS)

    Augenbaum, Jeffrey M.

    1988-01-01

    The accuracy of adaptively chosen, mapped polynomial approximations is studied for functions with steep gradients or discontinuities. It is shown that, for steep gradient functions, one can obtain spectral accuracy in the original coordinate system by using polynomial approximations in a transformed coordinate system with substantially fewer collocation points than are necessary using polynomial expansion directly in the original, physical, coordinate system. It is also shown that one can avoid the usual Gibbs oscillation associated with steep gradient solutions of hyperbolic pde's by approximation in suitably chosen coordinate systems. Continuous, high gradient solutions are computed with spectral accuracy (as measured in the physical coordinate system). Discontinuous solutions associated with nonlinear hyperbolic equations can be accurately computed by using an artificial viscosity chosen to smooth out the solution in the mapped, computational domain. Thus, shocks can be effectively resolved on a scale that is subgrid to the resolution available with collocation only in the physical domain. Examples with Fourier and Chebyshev collocation are given.

  10. Adaptable radiation monitoring system and method

    DOEpatents

    Archer, Daniel E.; Beauchamp, Brock R.; Mauger, G. Joseph; Nelson, Karl E.; Mercer, Michael B.; Pletcher, David C.; Riot, Vincent J.; Schek, James L.; Knapp, David A.

    2006-06-20

    A portable radioactive-material detection system capable of detecting radioactive sources moving at high speeds. The system has at least one radiation detector capable of detecting gamma-radiation and coupled to an MCA capable of collecting spectral data in very small time bins of less than about 150 msec. A computer processor is connected to the MCA for determining from the spectral data if a triggering event has occurred. Spectral data is stored on a data storage device, and a power source supplies power to the detection system. Various configurations of the detection system may be adaptably arranged for various radiation detection scenarios. In a preferred embodiment, the computer processor operates as a server which receives spectral data from other networked detection systems, and communicates the collected data to a central data reporting system.

  11. Moving and adaptive grid methods for compressible flows

    NASA Technical Reports Server (NTRS)

    Trepanier, Jean-Yves; Camarero, Ricardo

    1995-01-01

    This paper describes adaptive grid methods developed specifically for compressible flow computations. The basic flow solver is a finite-volume implementation of Roe's flux difference splitting scheme or arbitrarily moving unstructured triangular meshes. The grid adaptation is performed according to geometric and flow requirements. Some results are included to illustrate the potential of the methodology.

  12. Adaptive mesh strategies for the spectral element method

    NASA Technical Reports Server (NTRS)

    Mavriplis, Catherine

    1992-01-01

    An adaptive spectral method was developed for the efficient solution of time dependent partial differential equations. Adaptive mesh strategies that include resolution refinement and coarsening by three different methods are illustrated on solutions to the 1-D viscous Burger equation and the 2-D Navier-Stokes equations for driven flow in a cavity. Sharp gradients, singularities, and regions of poor resolution are resolved optimally as they develop in time using error estimators which indicate the choice of refinement to be used. The adaptive formulation presents significant increases in efficiency, flexibility, and general capabilities for high order spectral methods.

  13. Comparing Anisotropic Output-Based Grid Adaptation Methods by Decomposition

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Loseille, Adrien; Krakos, Joshua A.; Michal, Todd

    2015-01-01

    Anisotropic grid adaptation is examined by decomposing the steps of flow solution, ad- joint solution, error estimation, metric construction, and simplex grid adaptation. Multiple implementations of each of these steps are evaluated by comparison to each other and expected analytic results when available. For example, grids are adapted to analytic metric fields and grid measures are computed to illustrate the properties of multiple independent implementations of grid adaptation mechanics. Different implementations of each step in the adaptation process can be evaluated in a system where the other components of the adaptive cycle are fixed. Detailed examination of these properties allows comparison of different methods to identify the current state of the art and where further development should be targeted.

  14. Adaptive sequential methods for detecting network intrusions

    NASA Astrophysics Data System (ADS)

    Chen, Xinjia; Walker, Ernest

    2013-06-01

    In this paper, we propose new sequential methods for detecting port-scan attackers which routinely perform random "portscans" of IP addresses to find vulnerable servers to compromise. In addition to rigorously control the probability of falsely implicating benign remote hosts as malicious, our method performs significantly faster than other current solutions. Moreover, our method guarantees that the maximum amount of observational time is bounded. In contrast to the previous most effective method, Threshold Random Walk Algorithm, which is explicit and analytical in nature, our proposed algorithm involve parameters to be determined by numerical methods. We have introduced computational techniques such as iterative minimax optimization for quick determination of the parameters of the new detection algorithm. A framework of multi-valued decision for detecting portscanners and DoS attacks is also proposed.

  15. Are face representations depth cue invariant?

    PubMed

    Dehmoobadsharifabadi, Armita; Farivar, Reza

    2016-06-01

    The visual system can process three-dimensional depth cues defining surfaces of objects, but it is unclear whether such information contributes to complex object recognition, including face recognition. The processing of different depth cues involves both dorsal and ventral visual pathways. We investigated whether facial surfaces defined by individual depth cues resulted in meaningful face representations-representations that maintain the relationship between the population of faces as defined in a multidimensional face space. We measured face identity aftereffects for facial surfaces defined by individual depth cues (Experiments 1 and 2) and tested whether the aftereffect transfers across depth cues (Experiments 3 and 4). Facial surfaces and their morphs to the average face were defined purely by one of shading, texture, motion, or binocular disparity. We obtained identification thresholds for matched (matched identity between adapting and test stimuli), non-matched (non-matched identity between adapting and test stimuli), and no-adaptation (showing only the test stimuli) conditions for each cue and across different depth cues. We found robust face identity aftereffect in both experiments. Our results suggest that depth cues do contribute to forming meaningful face representations that are depth cue invariant. Depth cue invariance would require integration of information across different areas and different pathways for object recognition, and this in turn has important implications for cortical models of visual object recognition. PMID:27271993

  16. Identification of nonlinear optical systems using adaptive kernel methods

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Zhang, Changjiang; Zhang, Haoran; Feng, Genliang; Xu, Xiuling

    2005-12-01

    An identification approach of nonlinear optical dynamic systems, based on adaptive kernel methods which are modified version of least squares support vector machine (LS-SVM), is presented in order to obtain the reference dynamic model for solving real time applications such as adaptive signal processing of the optical systems. The feasibility of this approach is demonstrated with the computer simulation through identifying a Bragg acoustic-optical bistable system. Unlike artificial neural networks, the adaptive kernel methods possess prominent advantages: over fitting is unlikely to occur by employing structural risk minimization criterion, the global optimal solution can be uniquely obtained owing to that its training is performed through the solution of a set of linear equations. Also, the adaptive kernel methods are still effective for the nonlinear optical systems with a variation of the system parameter. This method is robust with respect to noise, and it constitutes another powerful tool for the identification of nonlinear optical systems.

  17. Adaptive upscaling with the dual mesh method

    SciTech Connect

    Guerillot, D.; Verdiere, S.

    1997-08-01

    The objective of this paper is to demonstrate that upscaling should be calculated during the flow simulation instead of trying to enhance the a priori upscaling methods. Hence, counter-examples are given to motivate our approach, the so-called Dual Mesh Method. The main steps of this numerical algorithm are recalled. Applications illustrate the necessity to consider different average relative permeability values depending on the direction in space. Moreover, these values could be different for the same average saturation. This proves that an a priori upscaling cannot be the answer even in homogeneous cases because of the {open_quotes}dynamical heterogeneity{close_quotes} created by the saturation profile. Other examples show the efficiency of the Dual Mesh Method applied to heterogeneous medium and to an actual field case in South America.

  18. A LysR-Type Transcriptional Regulator, RovM, Senses Nutritional Cues Suggesting that It Is Involved in Metabolic Adaptation of Yersinia pestis to the Flea Gut.

    PubMed

    Vadyvaloo, Viveka; Hinz, Angela K

    2015-01-01

    Yersinia pestis has evolved as a clonal variant of Yersinia pseudotuberculosis to cause flea-borne biofilm-mediated transmission of the bubonic plague. The LysR-type transcriptional regulator, RovM, is highly induced only during Y. pestis infection of the flea host. RovM homologs in other pathogens regulate biofilm formation, nutrient sensing, and virulence; including in Y. pseudotuberculosis, where RovM represses the major virulence factor, RovA. Here the role that RovM plays during flea infection was investigated using a Y. pestis KIM6+ strain deleted of rovM, ΔrovM. The ΔrovM mutant strain was not affected in characteristic biofilm gut blockage, growth, or survival during single infection of fleas. Nonetheless, during a co-infection of fleas, the ΔrovM mutant exhibited a significant competitive fitness defect relative to the wild type strain. This competitive fitness defect was restored as a fitness advantage relative to the wild type in a ΔrovM mutant complemented in trans to over-express rovM. Consistent with this, Y. pestis strains, producing elevated transcriptional levels of rovM, displayed higher growth rates, and differential ability to form biofilm in response to specific nutrients in comparison to the wild type. In addition, we demonstrated that rovA was not repressed by RovM in fleas, but that elevated transcriptional levels of rovM in vitro correlated with repression of rovA under specific nutritional conditions. Collectively, these findings suggest that RovM likely senses specific nutrient cues in the flea gut environment, and accordingly directs metabolic adaptation to enhance flea gut colonization by Y. pestis.

  19. A LysR-Type Transcriptional Regulator, RovM, Senses Nutritional Cues Suggesting that It Is Involved in Metabolic Adaptation of Yersinia pestis to the Flea Gut

    PubMed Central

    Vadyvaloo, Viveka; Hinz, Angela K.

    2015-01-01

    Yersinia pestis has evolved as a clonal variant of Yersinia pseudotuberculosis to cause flea-borne biofilm–mediated transmission of the bubonic plague. The LysR-type transcriptional regulator, RovM, is highly induced only during Y. pestis infection of the flea host. RovM homologs in other pathogens regulate biofilm formation, nutrient sensing, and virulence; including in Y. pseudotuberculosis, where RovM represses the major virulence factor, RovA. Here the role that RovM plays during flea infection was investigated using a Y. pestis KIM6+ strain deleted of rovM, ΔrovM. The ΔrovM mutant strain was not affected in characteristic biofilm gut blockage, growth, or survival during single infection of fleas. Nonetheless, during a co-infection of fleas, the ΔrovM mutant exhibited a significant competitive fitness defect relative to the wild type strain. This competitive fitness defect was restored as a fitness advantage relative to the wild type in a ΔrovM mutant complemented in trans to over-express rovM. Consistent with this, Y. pestis strains, producing elevated transcriptional levels of rovM, displayed higher growth rates, and differential ability to form biofilm in response to specific nutrients in comparison to the wild type. In addition, we demonstrated that rovA was not repressed by RovM in fleas, but that elevated transcriptional levels of rovM in vitro correlated with repression of rovA under specific nutritional conditions. Collectively, these findings suggest that RovM likely senses specific nutrient cues in the flea gut environment, and accordingly directs metabolic adaptation to enhance flea gut colonization by Y. pestis. PMID:26348850

  20. Adaptive Finite Element Methods for Continuum Damage Modeling

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Tworzydlo, W. W.; Xiques, K. E.

    1995-01-01

    The paper presents an application of adaptive finite element methods to the modeling of low-cycle continuum damage and life prediction of high-temperature components. The major objective is to provide automated and accurate modeling of damaged zones through adaptive mesh refinement and adaptive time-stepping methods. The damage modeling methodology is implemented in an usual way by embedding damage evolution in the transient nonlinear solution of elasto-viscoplastic deformation problems. This nonlinear boundary-value problem is discretized by adaptive finite element methods. The automated h-adaptive mesh refinements are driven by error indicators, based on selected principal variables in the problem (stresses, non-elastic strains, damage, etc.). In the time domain, adaptive time-stepping is used, combined with a predictor-corrector time marching algorithm. The time selection is controlled by required time accuracy. In order to take into account strong temperature dependency of material parameters, the nonlinear structural solution a coupled with thermal analyses (one-way coupling). Several test examples illustrate the importance and benefits of adaptive mesh refinements in accurate prediction of damage levels and failure time.

  1. Adaptive Transmission Control Method for Communication-Broadcasting Integrated Services

    NASA Astrophysics Data System (ADS)

    Koto, Hideyuki; Furuya, Hiroki; Nakamura, Hajime

    This paper proposes an adaptive transmission control method for massive and intensive telecommunication traffic generated by communication-broadcasting integrated services. The proposed method adaptively controls data transmissions from viewers depending on the congestion states, so that severe congestion can be effectively avoided. Furthermore, it utilizes the broadcasting channel which is not only scalable, but also reliable for controlling the responses from vast numbers of viewers. The performance of the proposed method is evaluated through experiments on a test bed where approximately one million viewers are emulated. The obtained results quantitatively demonstrate the performance of the proposed method and its effectiveness under massive and intensive traffic conditions.

  2. An auto-adaptive background subtraction method for Raman spectra

    NASA Astrophysics Data System (ADS)

    Xie, Yi; Yang, Lidong; Sun, Xilong; Wu, Dewen; Chen, Qizhen; Zeng, Yongming; Liu, Guokun

    2016-05-01

    Background subtraction is a crucial step in the preprocessing of Raman spectrum. Usually, parameter manipulating of the background subtraction method is necessary for the efficient removal of the background, which makes the quality of the spectrum empirically dependent. In order to avoid artificial bias, we proposed an auto-adaptive background subtraction method without parameter adjustment. The main procedure is: (1) select the local minima of spectrum while preserving major peaks, (2) apply an interpolation scheme to estimate background, (3) and design an iteration scheme to improve the adaptability of background subtraction. Both simulated data and Raman spectra have been used to evaluate the proposed method. By comparing the backgrounds obtained from three widely applied methods: the polynomial, the Baek's and the airPLS, the auto-adaptive method meets the demand of practical applications in terms of efficiency and accuracy.

  3. Phonetic training with acoustic cue manipulations: A comparison of methods for teaching English /r/-/l/ to Japanese adults

    NASA Astrophysics Data System (ADS)

    Iverson, Paul; Hazan, Valerie; Bannister, Kerry

    2005-11-01

    Recent work [Iverson et al. (2003) Cognition, 87, B47-57] has suggested that Japanese adults have difficulty learning English /r/ and /l/ because they are overly sensitive to acoustic cues that are not reliable for /r/-/l/ categorization (e.g., F2 frequency). This study investigated whether cue weightings are altered by auditory training, and compared the effectiveness of different training techniques. Separate groups of subjects received High Variability Phonetic Training (natural words from multiple talkers), and 3 techniques in which the natural recordings were altered via signal processing (All Enhancement, with F3 contrast maximized and closure duration lengthened; Perceptual Fading, with F3 enhancement reduced during training; and Secondary Cue Variability, with variation in F2 and durations increased during training). The results demonstrated that all of the training techniques improved /r/-/l/ identification by Japanese listeners, but there were no differences between the techniques. Training also altered the use of secondary acoustic cues; listeners became biased to identify stimuli as English /l/ when the cues made them similar to the Japanese /r/ category, and reduced their use of secondary acoustic cues for stimuli that were dissimilar to Japanese /r/. The results suggest that both category assimilation and perceptual interference affect English /r/ and /l/ acquisition.

  4. Motion Cueing Algorithm Modification for Improved Turbulence Simulation

    NASA Technical Reports Server (NTRS)

    Ercole, Anthony V.; Cardullo, Frank M.; Zaychik, Kirill; Kelly, Lon C.; Houck, Jacob

    2009-01-01

    Atmospheric turbulence cueing produced by flight simulator motion systems has been less than satisfactory because the turbulence profiles have been attenuated by the motion cueing algorithms. Cardullo and Ellor initially addressed this problem by directly porting the turbulence model output to the motion system. Reid and Robinson addressed the problem by employing a parallel aircraft model, which is only stimulated by the turbulence inputs and adding a filter specially designed to pass the higher turbulence frequencies. There have been advances in motion cueing algorithm development at the Man-Machine Systems Laboratory, at SUNY Binghamton. In particular, the system used to generate turbulence cues has been studied. The Reid approach, implemented by Telban and Cardullo, was employed to augment the optimal motion cueing algorithm installed at the NASA LaRC Simulation Laboratory, driving the Visual Motion Simulator. In this implementation, the output of the primary flight channel was added to the output of the turbulence channel and then sent through a non-linear cueing filter. The cueing filter is an adaptive filter; therefore, it is not desirable for the output of the turbulence channel to be augmented by this type of filter. The likelihood of the signal becoming divergent was also an issue in this design. After testing on-site it became apparent that the architecture of the turbulence algorithm was generating unacceptable cues. As mentioned above, this cueing algorithm comprised a filter that was designed to operate at low bandwidth. Therefore, the turbulence was also filtered, augmenting the cues generated by the model. If any filtering is to be done to the turbulence, it will utilize a filter with a much higher bandwidth, above the frequencies produced by the aircraft response to turbulence. The authors have developed an implementation wherein only the signal from the primary flight channel passes through the nonlinear cueing filter. This paper discusses three

  5. Stability and error estimation for Component Adaptive Grid methods

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph; Zhu, Xiaolei

    1994-01-01

    Component adaptive grid (CAG) methods for solving hyperbolic partial differential equations (PDE's) are discussed in this paper. Applying recent stability results for a class of numerical methods on uniform grids. The convergence of these methods for linear problems on component adaptive grids is established here. Furthermore, the computational error can be estimated on CAG's using the stability results. Using these estimates, the error can be controlled on CAG's. Thus, the solution can be computed efficiently on CAG's within a given error tolerance. Computational results for time dependent linear problems in one and two space dimensions are presented.

  6. Adaptive reconnection-based arbitrary Lagrangian Eulerian method

    NASA Astrophysics Data System (ADS)

    Bo, Wurigen; Shashkov, Mikhail

    2015-10-01

    eW present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35,34,6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. In the standard ReALE method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way. In the current paper we present a new adaptive ReALE method, A-ReALE, that is based on the following design principles. First, a monitor function (or error indicator) based on the Hessian of some flow parameter(s) is utilized. Second, an equi-distribution principle for the monitor function is used as a criterion for adapting the mesh. Third, a centroidal Voronoi tessellation is used to adapt the mesh. Fourth, we scale the monitor function to avoid very small and large cells and then smooth it to permit the use of theoretical results related to weighted centroidal Voronoi tessellation. In the A-ReALE method, both number of cells and their locations are allowed to change at the rezone stage on each time step. The number of generators at each time step is chosen to guarantee the required spatial resolution in regions where monitor function reaches its maximum value. We present all details required for implementation of new adaptive A-ReALE method and demonstrate its performance in comparison with standard ReALE method on series of numerical examples.

  7. Motion Cueing Algorithm Development: Piloted Performance Testing of the Cueing Algorithms

    NASA Technical Reports Server (NTRS)

    Houck, Jacob A. (Technical Monitor); Telban, Robert J.; Cardullo, Frank M.; Kelly, Lon C.

    2005-01-01

    The relative effectiveness in simulating aircraft maneuvers with both current and newly developed motion cueing algorithms was assessed with an eleven-subject piloted performance evaluation conducted on the NASA Langley Visual Motion Simulator (VMS). In addition to the current NASA adaptive algorithm, two new cueing algorithms were evaluated: the optimal algorithm and the nonlinear algorithm. The test maneuvers included a straight-in approach with a rotating wind vector, an offset approach with severe turbulence and an on/off lateral gust that occurs as the aircraft approaches the runway threshold, and a takeoff both with and without engine failure after liftoff. The maneuvers were executed with each cueing algorithm with added visual display delay conditions ranging from zero to 200 msec. Two methods, the quasi-objective NASA Task Load Index (TLX), and power spectral density analysis of pilot control, were used to assess pilot workload. Piloted performance parameters for the approach maneuvers, the vertical velocity upon touchdown and the runway touchdown position, were also analyzed but did not show any noticeable difference among the cueing algorithms. TLX analysis reveals, in most cases, less workload and variation among pilots with the nonlinear algorithm. Control input analysis shows pilot-induced oscillations on a straight-in approach were less prevalent compared to the optimal algorithm. The augmented turbulence cues increased workload on an offset approach that the pilots deemed more realistic compared to the NASA adaptive algorithm. The takeoff with engine failure showed the least roll activity for the nonlinear algorithm, with the least rudder pedal activity for the optimal algorithm.

  8. Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods

    NASA Astrophysics Data System (ADS)

    Chung, Eric; Efendiev, Yalchin; Hou, Thomas Y.

    2016-09-01

    In this paper, we discuss a general multiscale model reduction framework based on multiscale finite element methods. We give a brief overview of related multiscale methods. Due to page limitations, the overview focuses on a few related methods and is not intended to be comprehensive. We present a general adaptive multiscale model reduction framework, the Generalized Multiscale Finite Element Method. Besides the method's basic outline, we discuss some important ingredients needed for the method's success. We also discuss several applications. The proposed method allows performing local model reduction in the presence of high contrast and no scale separation.

  9. Final Report: Symposium on Adaptive Methods for Partial Differential Equations

    SciTech Connect

    Pernice, M.; Johnson, C.R.; Smith, P.J.; Fogelson, A.

    1998-12-10

    OAK-B135 Final Report: Symposium on Adaptive Methods for Partial Differential Equations. Complex physical phenomena often include features that span a wide range of spatial and temporal scales. Accurate simulation of such phenomena can be difficult to obtain, and computations that are under-resolved can even exhibit spurious features. While it is possible to resolve small scale features by increasing the number of grid points, global grid refinement can quickly lead to problems that are intractable, even on the largest available computing facilities. These constraints are particularly severe for three dimensional problems that involve complex physics. One way to achieve the needed resolution is to refine the computational mesh locally, in only those regions where enhanced resolution is required. Adaptive solution methods concentrate computational effort in regions where it is most needed. These methods have been successfully applied to a wide variety of problems in computational science and engineering. Adaptive methods can be difficult to implement, prompting the development of tools and environments to facilitate their use. To ensure that the results of their efforts are useful, algorithm and tool developers must maintain close communication with application specialists. Conversely it remains difficult for application specialists who are unfamiliar with the methods to evaluate the trade-offs between the benefits of enhanced local resolution and the effort needed to implement an adaptive solution method.

  10. A Dynamically Adaptive Arbitrary Lagrangian-Eulerian Method for Hydrodynamics

    SciTech Connect

    Anderson, R W; Pember, R B; Elliott, N S

    2004-01-28

    A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. The novel components of the combined ALE-AMR method hinge upon the integration of traditional AMR techniques with both staggered grid Lagrangian operators as well as elliptic relaxation operators on moving, deforming mesh hierarchies. Numerical examples demonstrate the utility of the method in performing detailed three-dimensional shock-driven instability calculations.

  11. A Dynamically Adaptive Arbitrary Lagrangian-Eulerian Method for Hydrodynamics

    SciTech Connect

    Anderson, R W; Pember, R B; Elliott, N S

    2002-10-19

    A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. The novel components of the combined ALE-AMR method hinge upon the integration of traditional AMR techniques with both staggered grid Lagrangian operators as well as elliptic relaxation operators on moving, deforming mesh hierarchies. Numerical examples demonstrate the utility of the method in performing detailed three-dimensional shock-driven instability calculations.

  12. A fourth order accurate adaptive mesh refinement method forpoisson's equation

    SciTech Connect

    Barad, Michael; Colella, Phillip

    2004-08-20

    We present a block-structured adaptive mesh refinement (AMR) method for computing solutions to Poisson's equation in two and three dimensions. It is based on a conservative, finite-volume formulation of the classical Mehrstellen methods. This is combined with finite volume AMR discretizations to obtain a method that is fourth-order accurate in solution error, and with easily verifiable solvability conditions for Neumann and periodic boundary conditions.

  13. Wavelet methods in multi-conjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Helin, T.; Yudytskiy, M.

    2013-08-01

    The next generation ground-based telescopes rely heavily on adaptive optics for overcoming the limitation of atmospheric turbulence. In the future adaptive optics modalities, like multi-conjugate adaptive optics (MCAO), atmospheric tomography is the major mathematical and computational challenge. In this severely ill-posed problem, a fast and stable reconstruction algorithm is needed that can take into account many real-life phenomena of telescope imaging. We introduce a novel reconstruction method for the atmospheric tomography problem and demonstrate its performance and flexibility in the context of MCAO. Our method is based on using locality properties of compactly supported wavelets, both in the spatial and frequency domains. The reconstruction in the atmospheric tomography problem is obtained by solving the Bayesian MAP estimator with a conjugate-gradient-based algorithm. An accelerated algorithm with preconditioning is also introduced. Numerical performance is demonstrated on the official end-to-end simulation tool OCTOPUS of European Southern Observatory.

  14. Visual Cues, Verbal Cues and Child Development

    ERIC Educational Resources Information Center

    Valentini, Nadia

    2004-01-01

    In this article, the author discusses two strategies--visual cues (modeling) and verbal cues (short, accurate phrases) which are related to teaching motor skills in maximizing learning in physical education classes. Both visual and verbal cues are strong influences in facilitating and promoting day-to-day learning. Both strategies reinforce…

  15. Adaptive windowed range-constrained Otsu method using local information

    NASA Astrophysics Data System (ADS)

    Zheng, Jia; Zhang, Dinghua; Huang, Kuidong; Sun, Yuanxi; Tang, Shaojie

    2016-01-01

    An adaptive windowed range-constrained Otsu method using local information is proposed for improving the performance of image segmentation. First, the reason why traditional thresholding methods do not perform well in the segmentation of complicated images is analyzed. Therein, the influences of global and local thresholdings on the image segmentation are compared. Second, two methods that can adaptively change the size of the local window according to local information are proposed by us. The characteristics of the proposed methods are analyzed. Thereby, the information on the number of edge pixels in the local window of the binarized variance image is employed to adaptively change the local window size. Finally, the superiority of the proposed method over other methods such as the range-constrained Otsu, the active contour model, the double Otsu, the Bradley's, and the distance-regularized level set evolution is demonstrated. It is validated by the experiments that the proposed method can keep more details and acquire much more satisfying area overlap measure as compared with the other conventional methods.

  16. A Conditional Exposure Control Method for Multidimensional Adaptive Testing

    ERIC Educational Resources Information Center

    Finkelman, Matthew; Nering, Michael L.; Roussos, Louis A.

    2009-01-01

    In computerized adaptive testing (CAT), ensuring the security of test items is a crucial practical consideration. A common approach to reducing item theft is to define maximum item exposure rates, i.e., to limit the proportion of examinees to whom a given item can be administered. Numerous methods for controlling exposure rates have been proposed…

  17. Likelihood Methods for Adaptive Filtering and Smoothing. Technical Report #455.

    ERIC Educational Resources Information Center

    Butler, Ronald W.

    The dynamic linear model or Kalman filtering model provides a useful methodology for predicting the past, present, and future states of a dynamic system, such as an object in motion or an economic or social indicator that is changing systematically with time. Recursive likelihood methods for adaptive Kalman filtering and smoothing are developed.…

  18. Adaptive reconnection-based arbitrary Lagrangian Eulerian method

    SciTech Connect

    Bo, Wurigen; Shashkov, Mikhail

    2015-07-21

    We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALE method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.

  19. Adaptive reconnection-based arbitrary Lagrangian Eulerian method

    DOE PAGES

    Bo, Wurigen; Shashkov, Mikhail

    2015-07-21

    We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALEmore » method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.« less

  20. Solving Chemical Master Equations by an Adaptive Wavelet Method

    SciTech Connect

    Jahnke, Tobias; Galan, Steffen

    2008-09-01

    Solving chemical master equations is notoriously difficult due to the tremendous number of degrees of freedom. We present a new numerical method which efficiently reduces the size of the problem in an adaptive way. The method is based on a sparse wavelet representation and an algorithm which, in each time step, detects the essential degrees of freedom required to approximate the solution up to the desired accuracy.

  1. Workshop on adaptive grid methods for fusion plasmas

    SciTech Connect

    Wiley, J.C.

    1995-07-01

    The author describes a general `hp` finite element method with adaptive grids. The code was based on the work of Oden, et al. The term `hp` refers to the method of spatial refinement (h), in conjunction with the order of polynomials used as a part of the finite element discretization (p). This finite element code seems to handle well the different mesh grid sizes occuring between abuted grids with different resolutions.

  2. Method and system for environmentally adaptive fault tolerant computing

    NASA Technical Reports Server (NTRS)

    Copenhaver, Jason L. (Inventor); Jeremy, Ramos (Inventor); Wolfe, Jeffrey M. (Inventor); Brenner, Dean (Inventor)

    2010-01-01

    A method and system for adapting fault tolerant computing. The method includes the steps of measuring an environmental condition representative of an environment. An on-board processing system's sensitivity to the measured environmental condition is measured. It is determined whether to reconfigure a fault tolerance of the on-board processing system based in part on the measured environmental condition. The fault tolerance of the on-board processing system may be reconfigured based in part on the measured environmental condition.

  3. ICASE/LaRC Workshop on Adaptive Grid Methods

    NASA Technical Reports Server (NTRS)

    South, Jerry C., Jr. (Editor); Thomas, James L. (Editor); Vanrosendale, John (Editor)

    1995-01-01

    Solution-adaptive grid techniques are essential to the attainment of practical, user friendly, computational fluid dynamics (CFD) applications. In this three-day workshop, experts gathered together to describe state-of-the-art methods in solution-adaptive grid refinement, analysis, and implementation; to assess the current practice; and to discuss future needs and directions for research. This was accomplished through a series of invited and contributed papers. The workshop focused on a set of two-dimensional test cases designed by the organizers to aid in assessing the current state of development of adaptive grid technology. In addition, a panel of experts from universities, industry, and government research laboratories discussed their views of needs and future directions in this field.

  4. Developing Bayesian adaptive methods for estimating sensitivity thresholds (d′) in Yes-No and forced-choice tasks

    PubMed Central

    Lesmes, Luis A.; Lu, Zhong-Lin; Baek, Jongsoo; Tran, Nina; Dosher, Barbara A.; Albright, Thomas D.

    2015-01-01

    Motivated by Signal Detection Theory (SDT), we developed a family of novel adaptive methods that estimate the sensitivity threshold—the signal intensity corresponding to a pre-defined sensitivity level (d′ = 1)—in Yes-No (YN) and Forced-Choice (FC) detection tasks. Rather than focus stimulus sampling to estimate a single level of %Yes or %Correct, the current methods sample psychometric functions more broadly, to concurrently estimate sensitivity and decision factors, and thereby estimate thresholds that are independent of decision confounds. Developed for four tasks—(1) simple YN detection, (2) cued YN detection, which cues the observer's response state before each trial, (3) rated YN detection, which incorporates a Not Sure response, and (4) FC detection—the qYN and qFC methods yield sensitivity thresholds that are independent of the task's decision structure (YN or FC) and/or the observer's subjective response state. Results from simulation and psychophysics suggest that 25 trials (and sometimes less) are sufficient to estimate YN thresholds with reasonable precision (s.d. = 0.10–0.15 decimal log units), but more trials are needed for FC thresholds. When the same subjects were tested across tasks of simple, cued, rated, and FC detection, adaptive threshold estimates exhibited excellent agreement with the method of constant stimuli (MCS), and with each other. These YN adaptive methods deliver criterion-free thresholds that have previously been exclusive to FC methods. PMID:26300798

  5. Developing Bayesian adaptive methods for estimating sensitivity thresholds (d') in Yes-No and forced-choice tasks.

    PubMed

    Lesmes, Luis A; Lu, Zhong-Lin; Baek, Jongsoo; Tran, Nina; Dosher, Barbara A; Albright, Thomas D

    2015-01-01

    Motivated by Signal Detection Theory (SDT), we developed a family of novel adaptive methods that estimate the sensitivity threshold-the signal intensity corresponding to a pre-defined sensitivity level (d' = 1)-in Yes-No (YN) and Forced-Choice (FC) detection tasks. Rather than focus stimulus sampling to estimate a single level of %Yes or %Correct, the current methods sample psychometric functions more broadly, to concurrently estimate sensitivity and decision factors, and thereby estimate thresholds that are independent of decision confounds. Developed for four tasks-(1) simple YN detection, (2) cued YN detection, which cues the observer's response state before each trial, (3) rated YN detection, which incorporates a Not Sure response, and (4) FC detection-the qYN and qFC methods yield sensitivity thresholds that are independent of the task's decision structure (YN or FC) and/or the observer's subjective response state. Results from simulation and psychophysics suggest that 25 trials (and sometimes less) are sufficient to estimate YN thresholds with reasonable precision (s.d. = 0.10-0.15 decimal log units), but more trials are needed for FC thresholds. When the same subjects were tested across tasks of simple, cued, rated, and FC detection, adaptive threshold estimates exhibited excellent agreement with the method of constant stimuli (MCS), and with each other. These YN adaptive methods deliver criterion-free thresholds that have previously been exclusive to FC methods.

  6. An Adaptive Cross-Architecture Combination Method for Graph Traversal

    SciTech Connect

    You, Yang; Song, Shuaiwen; Kerbyson, Darren J.

    2014-06-18

    Breadth-First Search (BFS) is widely used in many real-world applications including computational biology, social networks, and electronic design automation. The combination method, using both top-down and bottom-up techniques, is the most effective BFS approach. However, current combination methods rely on trial-and-error and exhaustive search to locate the optimal switching point, which may cause significant runtime overhead. To solve this problem, we design an adaptive method based on regression analysis to predict an optimal switching point for the combination method at runtime within less than 0.1% of the BFS execution time.

  7. An Adaptive Derivative-based Method for Function Approximation

    SciTech Connect

    Tong, C

    2008-10-22

    To alleviate the high computational cost of large-scale multi-physics simulations to study the relationships between the model parameters and the outputs of interest, response surfaces are often used in place of the exact functional relationships. This report explores a method for response surface construction using adaptive sampling guided by derivative information at each selected sample point. This method is especially suitable for applications that can readily provide added information such as gradients and Hessian with respect to the input parameters under study. When higher order terms (third and above) in the Taylor series are negligible, the approximation error for this method can be controlled. We present details of the adaptive algorithm and numerical results on a few test problems.

  8. Adaptive IMEX schemes for high-order unstructured methods

    NASA Astrophysics Data System (ADS)

    Vermeire, Brian C.; Nadarajah, Siva

    2015-01-01

    We present an adaptive implicit-explicit (IMEX) method for use with high-order unstructured schemes. The proposed method makes use of the Gerschgorin theorem to conservatively estimate the influence of each individual degree of freedom on the spectral radius of the discretization. This information is used to split the system into implicit and explicit regions, adapting to unsteady features in the flow. We dynamically repartition the domain to balance the number of implicit and explicit elements per core. As a consequence, we are able to achieve an even load balance for each implicit/explicit stage of the IMEX scheme. We investigate linear advection-diffusion, isentropic vortex advection, unsteady laminar flow over an SD7003 airfoil, and turbulent flow over a circular cylinder. Results show that the proposed method consistently yields a stable discretization, and maintains the theoretical order of accuracy of the high-order spatial schemes.

  9. Final Report: Symposium on Adaptive Methods for Partial Differential Equations

    SciTech Connect

    Pernice, Michael; Johnson, Christopher R.; Smith, Philip J.; Fogelson, Aaron

    1998-12-08

    Complex physical phenomena often include features that span a wide range of spatial and temporal scales. Accurate simulation of such phenomena can be difficult to obtain, and computations that are under-resolved can even exhibit spurious features. While it is possible to resolve small scale features by increasing the number of grid points, global grid refinement can quickly lead to problems that are intractable, even on the largest available computing facilities. These constraints are particularly severe for three dimensional problems that involve complex physics. One way to achieve the needed resolution is to refine the computational mesh locally, in only those regions where enhanced resolution is required. Adaptive solution methods concentrate computational effort in regions where it is most needed. These methods have been successfully applied to a wide variety of problems in computational science and engineering. Adaptive methods can be difficult to implement, prompting the development of tools and environments to facilitate their use. To ensure that the results of their efforts are useful, algorithm and tool developers must maintain close communication with application specialists. Conversely it remains difficult for application specialists who are unfamiliar with the methods to evaluate the trade-offs between the benefits of enhanced local resolution and the effort needed to implement an adaptive solution method.

  10. Advanced numerical methods in mesh generation and mesh adaptation

    SciTech Connect

    Lipnikov, Konstantine; Danilov, A; Vassilevski, Y; Agonzal, A

    2010-01-01

    Numerical solution of partial differential equations requires appropriate meshes, efficient solvers and robust and reliable error estimates. Generation of high-quality meshes for complex engineering models is a non-trivial task. This task is made more difficult when the mesh has to be adapted to a problem solution. This article is focused on a synergistic approach to the mesh generation and mesh adaptation, where best properties of various mesh generation methods are combined to build efficiently simplicial meshes. First, the advancing front technique (AFT) is combined with the incremental Delaunay triangulation (DT) to build an initial mesh. Second, the metric-based mesh adaptation (MBA) method is employed to improve quality of the generated mesh and/or to adapt it to a problem solution. We demonstrate with numerical experiments that combination of all three methods is required for robust meshing of complex engineering models. The key to successful mesh generation is the high-quality of the triangles in the initial front. We use a black-box technique to improve surface meshes exported from an unattainable CAD system. The initial surface mesh is refined into a shape-regular triangulation which approximates the boundary with the same accuracy as the CAD mesh. The DT method adds robustness to the AFT. The resulting mesh is topologically correct but may contain a few slivers. The MBA uses seven local operations to modify the mesh topology. It improves significantly the mesh quality. The MBA method is also used to adapt the mesh to a problem solution to minimize computational resources required for solving the problem. The MBA has a solid theoretical background. In the first two experiments, we consider the convection-diffusion and elasticity problems. We demonstrate the optimal reduction rate of the discretization error on a sequence of adaptive strongly anisotropic meshes. The key element of the MBA method is construction of a tensor metric from hierarchical edge

  11. Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes

    NASA Technical Reports Server (NTRS)

    Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak

    2004-01-01

    High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel

  12. Space-time adaptive numerical methods for geophysical applications.

    PubMed

    Castro, C E; Käser, M; Toro, E F

    2009-11-28

    In this paper we present high-order formulations of the finite volume and discontinuous Galerkin finite-element methods for wave propagation problems with a space-time adaptation technique using unstructured meshes in order to reduce computational cost without reducing accuracy. Both methods can be derived in a similar mathematical framework and are identical in their first-order version. In their extension to higher order accuracy in space and time, both methods use spatial polynomials of higher degree inside each element, a high-order solution of the generalized Riemann problem and a high-order time integration method based on the Taylor series expansion. The static adaptation strategy uses locally refined high-resolution meshes in areas with low wave speeds to improve the approximation quality. Furthermore, the time step length is chosen locally adaptive such that the solution is evolved explicitly in time by an optimal time step determined by a local stability criterion. After validating the numerical approach, both schemes are applied to geophysical wave propagation problems such as tsunami waves and seismic waves comparing the new approach with the classical global time-stepping technique. The problem of mesh partitioning for large-scale applications on multi-processor architectures is discussed and a new mesh partition approach is proposed and tested to further reduce computational cost. PMID:19840984

  13. Vortical Flow Prediction Using an Adaptive Unstructured Grid Method

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    2003-01-01

    A computational fluid dynamics (CFD) method has been employed to compute vortical flows around slender wing/body configurations. The emphasis of the paper is on the effectiveness of an adaptive grid procedure in "capturing" concentrated vortices generated at sharp edges or flow separation lines of lifting surfaces flying at high angles of attack. The method is based on a tetrahedral unstructured grid technology developed at the NASA Langley Research Center. Two steady-state, subsonic, inviscid and Navier-Stokes flow test cases are presented to demonstrate the applicability of the method for solving practical vortical flow problems. The first test case concerns vortex flow over a simple 65 delta wing with different values of leading-edge radius. Although the geometry is quite simple, it poses a challenging problem for computing vortices originating from blunt leading edges. The second case is that of a more complex fighter configuration. The superiority of the adapted solutions in capturing the vortex flow structure over the conventional unadapted results is demonstrated by comparisons with the wind-tunnel experimental data. The study shows that numerical prediction of vortical flows is highly sensitive to the local grid resolution and that the implementation of grid adaptation is essential when applying CFD methods to such complicated flow problems.

  14. Efficient Unstructured Grid Adaptation Methods for Sonic Boom Prediction

    NASA Technical Reports Server (NTRS)

    Campbell, Richard L.; Carter, Melissa B.; Deere, Karen A.; Waithe, Kenrick A.

    2008-01-01

    This paper examines the use of two grid adaptation methods to improve the accuracy of the near-to-mid field pressure signature prediction of supersonic aircraft computed using the USM3D unstructured grid flow solver. The first method (ADV) is an interactive adaptation process that uses grid movement rather than enrichment to more accurately resolve the expansion and compression waves. The second method (SSGRID) uses an a priori adaptation approach to stretch and shear the original unstructured grid to align the grid with the pressure waves and reduce the cell count required to achieve an accurate signature prediction at a given distance from the vehicle. Both methods initially create negative volume cells that are repaired in a module in the ADV code. While both approaches provide significant improvements in the near field signature (< 3 body lengths) relative to a baseline grid without increasing the number of grid points, only the SSGRID approach allows the details of the signature to be accurately computed at mid-field distances (3-10 body lengths) for direct use with mid-field-to-ground boom propagation codes.

  15. Vortical Flow Prediction Using an Adaptive Unstructured Grid Method

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    2001-01-01

    A computational fluid dynamics (CFD) method has been employed to compute vortical flows around slender wing/body configurations. The emphasis of the paper is on the effectiveness of an adaptive grid procedure in "capturing" concentrated vortices generated at sharp edges or flow separation lines of lifting surfaces flying at high angles of attack. The method is based on a tetrahedral unstructured grid technology developed at the NASA Langley Research Center. Two steady-state, subsonic, inviscid and Navier-Stokes flow test cases are presented to demonstrate the applicability of the method for solving practical vortical flow problems. The first test case concerns vortex flow over a simple 65deg delta wing with different values of leading-edge bluntness, and the second case is that of a more complex fighter configuration. The superiority of the adapted solutions in capturing the vortex flow structure over the conventional unadapted results is demonstrated by comparisons with the windtunnel experimental data. The study shows that numerical prediction of vortical flows is highly sensitive to the local grid resolution and that the implementation of grid adaptation is essential when applying CFD methods to such complicated flow problems.

  16. Robust flicker evaluation method for low power adaptive dimming LCDs

    NASA Astrophysics Data System (ADS)

    Kim, Seul-Ki; Song, Seok-Jeong; Nam, Hyoungsik

    2015-05-01

    This paper describes a robust dimming flicker evaluation method of adaptive dimming algorithms for low power liquid crystal displays (LCDs). While the previous methods use sum of square difference (SSD) values without excluding the image sequence information, the proposed modified SSD (mSSD) values are obtained only with the dimming flicker effects by making use of differential images. The proposed scheme is verified for eight dimming configurations of two dimming level selection methods and four temporal filters over three test videos. Furthermore, a new figure of merit is introduced to cover the dimming flicker as well as image qualities and power consumption.

  17. [An adaptive threshloding segmentation method for urinary sediment image].

    PubMed

    Li, Yongming; Zeng, Xiaoping; Qin, Jian; Han, Liang

    2009-02-01

    In this paper is proposed a new method to solve the segmentation of the complicated defocusing urinary sediment image. The main points of the method are: (1) using wavelet transforms and morphology to erase the effect of defocusing and realize the first segmentation, (2) using adaptive threshold processing in accordance to the subimages after wavelet processing, and (3) using 'peel off' algorithm to deal with the overlapped cells' segmentations. The experimental results showed that this method was not affected by the defocusing, and it made good use of many kinds of characteristics of the images. So this new mehtod can get very precise segmentation; it is effective for defocusing urinary sediment image segmentation.

  18. An adaptive locally optimal method detecting weak deterministic signals

    NASA Astrophysics Data System (ADS)

    Wang, C. H.

    1983-10-01

    A new method for detecting weak signals in interference and clutter in radar systems is presented. The detector which uses this method is adaptive for an environment varying with time and locally optimal for detecting targets and constant false-alarm ratio (CFAR) for the statistics of interference and clutter varying with time. The loss of CFAR is small, and the detector is also simple in structure. The statistical equivalent transfer characteristic of a rank quantizer which can be used as part of an adaptive locally most powerful detector (ALMP) is obtained. It is shown that the distribution-free Doppler processor of Dillard (1974) is not only a nonparameter detector, but also an ALMP detector under certain conditions.

  19. Optimal and adaptive methods of processing hydroacoustic signals (review)

    NASA Astrophysics Data System (ADS)

    Malyshkin, G. S.; Sidel'nikov, G. B.

    2014-09-01

    Different methods of optimal and adaptive processing of hydroacoustic signals for multipath propagation and scattering are considered. Advantages and drawbacks of the classical adaptive (Capon, MUSIC, and Johnson) algorithms and "fast" projection algorithms are analyzed for the case of multipath propagation and scattering of strong signals. The classical optimal approaches to detecting multipath signals are presented. A mechanism of controlled normalization of strong signals is proposed to automatically detect weak signals. The results of simulating the operation of different detection algorithms for a linear equidistant array under multipath propagation and scattering are presented. An automatic detector is analyzed, which is based on classical or fast projection algorithms, which estimates the background proceeding from median filtering or the method of bilateral spatial contrast.

  20. Method and apparatus for telemetry adaptive bandwidth compression

    NASA Astrophysics Data System (ADS)

    Graham, Olin L.

    1987-07-01

    Methods and apparatus are provided for automatic and/or manual adaptive bandwidth compression of telemetry. An adaptive sampler samples a video signal from a scanning sensor and generates a sequence of sampled fields. Each field and range rate information from the sensor are hence sequentially transmitted to and stored in a multiple and adaptive field storage means. The field storage means then, in response to an automatic or manual control signal, transfers the stored sampled field signals to a video monitor in a form for sequential or simultaneous display of a desired number of stored signal fields. The sampling ratio of the adaptive sample, the relative proportion of available communication bandwidth allocated respectively to transmitted data and video information, and the number of fields simultaneously displayed are manually or automatically selectively adjustable in functional relationship to each other and detected range rate. In one embodiment, when relatively little or no scene motion is detected, the control signal maximizes sampling ratio and causes simultaneous display of all stored fields, thus maximizing resolution and bandwidth available for data transmission. When increased scene motion is detected, the control signal is adjusted accordingly to cause display of fewer fields. If greater resolution is desired, the control signal is adjusted to increase the sampling ratio.

  1. A Diffusion Synthetic Acceleration Method for Block Adaptive Mesh Refinement.

    SciTech Connect

    Ward, R. C.; Baker, R. S.; Morel, J. E.

    2005-01-01

    A prototype two-dimensional Diffusion Synthetic Acceleration (DSA) method on a Block-based Adaptive Mesh Refinement (BAMR) transport mesh has been developed. The Block-Adaptive Mesh Refinement Diffusion Synthetic Acceleration (BAMR-DSA) method was tested in the PARallel TIme-Dependent SN (PARTISN) deterministic transport code. The BAMR-DSA equations are derived by differencing the DSA equation using a vertex-centered diffusion discretization that is diamond-like and may be characterized as 'partially' consistent. The derivation of a diffusion discretization that is fully consistent with diamond transport differencing on BAMR mesh does not appear to be possible. However, despite being partially consistent, the BAMR-DSA method is effective for many applications. The BAMR-DSA solver was implemented and tested in two dimensions for rectangular (XY) and cylindrical (RZ) geometries. Testing results confirm that a partially consistent BAMR-DSA method will introduce instabilities for extreme cases, e.g., scattering ratios approaching 1.0 with optically thick cells, but for most realistic problems the BAMR-DSA method provides effective acceleration. The initial use of a full matrix to store and LU-Decomposition to solve the BAMR-DSA equations has been extended to include Compressed Sparse Row (CSR) storage and a Conjugate Gradient (CG) solver. The CSR and CG methods provide significantly more efficient and faster storage and solution methods.

  2. An adaptive unsupervised hyperspectral classification method based on Gaussian distribution

    NASA Astrophysics Data System (ADS)

    Yue, Jiang; Wu, Jing-wei; Zhang, Yi; Bai, Lian-fa

    2014-11-01

    In order to achieve adaptive unsupervised clustering in the high precision, a method using Gaussian distribution to fit the similarity of the inter-class and the noise distribution is proposed in this paper, and then the automatic segmentation threshold is determined by the fitting result. First, according with the similarity measure of the spectral curve, this method assumes that the target and the background both in Gaussian distribution, the distribution characteristics is obtained through fitting the similarity measure of minimum related windows and center pixels with Gaussian function, and then the adaptive threshold is achieved. Second, make use of the pixel minimum related windows to merge adjacent similar pixels into a picture-block, then the dimensionality reduction is completed and the non-supervised classification is realized. AVIRIS data and a set of hyperspectral data we caught are used to evaluate the performance of the proposed method. Experimental results show that the proposed algorithm not only realizes the adaptive but also outperforms K-MEANS and ISODATA on the classification accuracy, edge recognition and robustness.

  3. A New Online Calibration Method for Multidimensional Computerized Adaptive Testing.

    PubMed

    Chen, Ping; Wang, Chun

    2016-09-01

    Multidimensional-Method A (M-Method A) has been proposed as an efficient and effective online calibration method for multidimensional computerized adaptive testing (MCAT) (Chen & Xin, Paper presented at the 78th Meeting of the Psychometric Society, Arnhem, The Netherlands, 2013). However, a key assumption of M-Method A is that it treats person parameter estimates as their true values, thus this method might yield erroneous item calibration when person parameter estimates contain non-ignorable measurement errors. To improve the performance of M-Method A, this paper proposes a new MCAT online calibration method, namely, the full functional MLE-M-Method A (FFMLE-M-Method A). This new method combines the full functional MLE (Jones & Jin in Psychometrika 59:59-75, 1994; Stefanski & Carroll in Annals of Statistics 13:1335-1351, 1985) with the original M-Method A in an effort to correct for the estimation error of ability vector that might otherwise adversely affect the precision of item calibration. Two correction schemes are also proposed when implementing the new method. A simulation study was conducted to show that the new method generated more accurate item parameter estimation than the original M-Method A in almost all conditions. PMID:26608960

  4. Adaptive density partitioning technique in the auxiliary plane wave method

    NASA Astrophysics Data System (ADS)

    Kurashige, Yuki; Nakajima, Takahito; Hirao, Kimihiko

    2006-01-01

    We have developed the adaptive density partitioning technique (ADPT) in the auxiliary plane wave method, in which a part of the density is expanded to plane waves, for the fast evaluation of Coulomb matrix. Our partitioning is based on the error estimations and allows us to control the accuracy and efficiency. Moreover, we can drastically reduce the core Gaussian products that are left in Gaussian representation (its analytical integrals is the bottleneck in this method). For the taxol molecule with 6-31G** basis, the core Gaussian products accounted only for 5% in submicrohartree error.

  5. Parallel, adaptive finite element methods for conservation laws

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Devine, Karen D.; Flaherty, Joseph E.

    1994-01-01

    We construct parallel finite element methods for the solution of hyperbolic conservation laws in one and two dimensions. Spatial discretization is performed by a discontinuous Galerkin finite element method using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kutta method. Dissipative fluxes and projection limiting prevent oscillations near solution discontinuities. A posteriori estimates of spatial errors are obtained by a p-refinement technique using superconvergence at Radau points. The resulting method is of high order and may be parallelized efficiently on MIMD computers. We compare results using different limiting schemes and demonstrate parallel efficiency through computations on an NCUBE/2 hypercube. We also present results using adaptive h- and p-refinement to reduce the computational cost of the method.

  6. Investigation of the Multiple Method Adaptive Control (MMAC) method for flight control systems

    NASA Technical Reports Server (NTRS)

    Athans, M.; Baram, Y.; Castanon, D.; Dunn, K. P.; Green, C. S.; Lee, W. H.; Sandell, N. R., Jr.; Willsky, A. S.

    1979-01-01

    The stochastic adaptive control of the NASA F-8C digital-fly-by-wire aircraft using the multiple model adaptive control (MMAC) method is presented. The selection of the performance criteria for the lateral and the longitudinal dynamics, the design of the Kalman filters for different operating conditions, the identification algorithm associated with the MMAC method, the control system design, and simulation results obtained using the real time simulator of the F-8 aircraft at the NASA Langley Research Center are discussed.

  7. An adaptive Tikhonov regularization method for fluorescence molecular tomography.

    PubMed

    Cao, Xu; Zhang, Bin; Wang, Xin; Liu, Fei; Liu, Ke; Luo, Jianwen; Bai, Jing

    2013-08-01

    The high degree of absorption and scattering of photons propagating through biological tissues makes fluorescence molecular tomography (FMT) reconstruction a severe ill-posed problem and the reconstructed result is susceptible to noise in the measurements. To obtain a reasonable solution, Tikhonov regularization (TR) is generally employed to solve the inverse problem of FMT. However, with a fixed regularization parameter, the Tikhonov solutions suffer from low resolution. In this work, an adaptive Tikhonov regularization (ATR) method is presented. Considering that large regularization parameters can smoothen the solution with low spatial resolution, while small regularization parameters can sharpen the solution with high level of noise, the ATR method adaptively updates the spatially varying regularization parameters during the iteration process and uses them to penalize the solutions. The ATR method can adequately sharpen the feasible region with fluorescent probes and smoothen the region without fluorescent probes resorting to no complementary priori information. Phantom experiments are performed to verify the feasibility of the proposed method. The results demonstrate that the proposed method can improve the spatial resolution and reduce the noise of FMT reconstruction at the same time.

  8. Planetary gearbox fault diagnosis using an adaptive stochastic resonance method

    NASA Astrophysics Data System (ADS)

    Lei, Yaguo; Han, Dong; Lin, Jing; He, Zhengjia

    2013-07-01

    Planetary gearboxes are widely used in aerospace, automotive and heavy industry applications due to their large transmission ratio, strong load-bearing capacity and high transmission efficiency. The tough operation conditions of heavy duty and intensive impact load may cause gear tooth damage such as fatigue crack and teeth missed etc. The challenging issues in fault diagnosis of planetary gearboxes include selection of sensitive measurement locations, investigation of vibration transmission paths and weak feature extraction. One of them is how to effectively discover the weak characteristics from noisy signals of faulty components in planetary gearboxes. To address the issue in fault diagnosis of planetary gearboxes, an adaptive stochastic resonance (ASR) method is proposed in this paper. The ASR method utilizes the optimization ability of ant colony algorithms and adaptively realizes the optimal stochastic resonance system matching input signals. Using the ASR method, the noise may be weakened and weak characteristics highlighted, and therefore the faults can be diagnosed accurately. A planetary gearbox test rig is established and experiments with sun gear faults including a chipped tooth and a missing tooth are conducted. And the vibration signals are collected under the loaded condition and various motor speeds. The proposed method is used to process the collected signals and the results of feature extraction and fault diagnosis demonstrate its effectiveness.

  9. Robust time and frequency domain estimation methods in adaptive control

    NASA Technical Reports Server (NTRS)

    Lamaire, Richard Orville

    1987-01-01

    A robust identification method was developed for use in an adaptive control system. The type of estimator is called the robust estimator, since it is robust to the effects of both unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator was motivated by a need to provide guarantees in the identification part of an adaptive controller. To enable the design of a robust control system, a nominal model as well as a frequency-domain bounding function on the modeling uncertainty associated with this nominal model must be provided. Two estimation methods are presented for finding parameter estimates, and, hence, a nominal model. One of these methods is based on the well developed field of time-domain parameter estimation. In a second method of finding parameter estimates, a type of weighted least-squares fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown to perform better, in general, than the time-domain parameter estimator. In addition, a methodology for finding a frequency-domain bounding function on the disturbance is used to compute a frequency-domain bounding function on the additive modeling error due to the effects of the disturbance and the use of finite-length data. The performance of the robust estimator in both open-loop and closed-loop situations is examined through the use of simulations.

  10. The SMART CLUSTER METHOD - adaptive earthquake cluster analysis and declustering

    NASA Astrophysics Data System (ADS)

    Schaefer, Andreas; Daniell, James; Wenzel, Friedemann

    2016-04-01

    Earthquake declustering is an essential part of almost any statistical analysis of spatial and temporal properties of seismic activity with usual applications comprising of probabilistic seismic hazard assessments (PSHAs) and earthquake prediction methods. The nature of earthquake clusters and subsequent declustering of earthquake catalogues plays a crucial role in determining the magnitude-dependent earthquake return period and its respective spatial variation. Various methods have been developed to address this issue from other researchers. These have differing ranges of complexity ranging from rather simple statistical window methods to complex epidemic models. This study introduces the smart cluster method (SCM), a new methodology to identify earthquake clusters, which uses an adaptive point process for spatio-temporal identification. Hereby, an adaptive search algorithm for data point clusters is adopted. It uses the earthquake density in the spatio-temporal neighbourhood of each event to adjust the search properties. The identified clusters are subsequently analysed to determine directional anisotropy, focussing on a strong correlation along the rupture plane and adjusts its search space with respect to directional properties. In the case of rapid subsequent ruptures like the 1992 Landers sequence or the 2010/2011 Darfield-Christchurch events, an adaptive classification procedure is applied to disassemble subsequent ruptures which may have been grouped into an individual cluster using near-field searches, support vector machines and temporal splitting. The steering parameters of the search behaviour are linked to local earthquake properties like magnitude of completeness, earthquake density and Gutenberg-Richter parameters. The method is capable of identifying and classifying earthquake clusters in space and time. It is tested and validated using earthquake data from California and New Zealand. As a result of the cluster identification process, each event in

  11. An adaptive pseudo-spectral method for reaction diffusion problems

    NASA Technical Reports Server (NTRS)

    Bayliss, A.; Matkowsky, B. J.; Gottlieb, D.; Minkoff, M.

    1989-01-01

    The spectral interpolation error was considered for both the Chebyshev pseudo-spectral and Galerkin approximations. A family of functionals I sub r (u), with the property that the maximum norm of the error is bounded by I sub r (u)/J sub r, where r is an integer and J is the degree of the polynomial approximation, was developed. These functionals are used in the adaptive procedure whereby the problem is dynamically transformed to minimize I sub r (u). The number of collocation points is then chosen to maintain a prescribed error bound. The method is illustrated by various examples from combustion problems in one and two dimensions.

  12. An adaptive pseudo-spectral method for reaction diffusion problems

    NASA Technical Reports Server (NTRS)

    Bayliss, A.; Gottlieb, D.; Matkowsky, B. J.; Minkoff, M.

    1987-01-01

    The spectral interpolation error was considered for both the Chebyshev pseudo-spectral and Galerkin approximations. A family of functionals I sub r (u), with the property that the maximum norm of the error is bounded by I sub r (u)/J sub r, where r is an integer and J is the degree of the polynomial approximation, was developed. These functionals are used in the adaptive procedure whereby the problem is dynamically transformed to minimize I sub r (u). The number of collocation points is then chosen to maintain a prescribed error bound. The method is illustrated by various examples from combustion problems in one and two dimensions.

  13. A multilevel adaptive projection method for unsteady incompressible flow

    NASA Technical Reports Server (NTRS)

    Howell, Louis H.

    1993-01-01

    There are two main requirements for practical simulation of unsteady flow at high Reynolds number: the algorithm must accurately propagate discontinuous flow fields without excessive artificial viscosity, and it must have some adaptive capability to concentrate computational effort where it is most needed. We satisfy the first of these requirements with a second-order Godunov method similar to those used for high-speed flows with shocks, and the second with a grid-based refinement scheme which avoids some of the drawbacks associated with unstructured meshes. These two features of our algorithm place certain constraints on the projection method used to enforce incompressibility. Velocities are cell-based, leading to a Laplacian stencil for the projection which decouples adjacent grid points. We discuss features of the multigrid and multilevel iteration schemes required for solution of the resulting decoupled problem. Variable-density flows require use of a modified projection operator--we have found a multigrid method for this modified projection that successfully handles density jumps of thousands to one. Numerical results are shown for the 2D adaptive and 3D variable-density algorithms.

  14. When unreliable cues are good enough.

    PubMed

    Donaldson-Matasci, Matina C; Bergstrom, Carl T; Lachmann, Michael

    2013-09-01

    In many species, nongenetic phenotypic variation helps mitigate risk associated with an uncertain environment. In some cases, developmental cues can be used to match phenotype to environment-a strategy known as predictive plasticity. When environmental conditions are entirely unpredictable, generating random phenotypic diversity may improve the long-term success of a lineage-a strategy known as diversified bet hedging. When partially reliable information is available, a well-adapted developmental strategy may strike a balance between the two strategies. We use information theory to analyze a model of development in an uncertain environment, where cue reliability is affected by variation both within and between generations. We show that within-generation variation in cues decreases the reliability of cues without affecting their fitness value. This transpires because the optimal balance of predictive plasticity and diversified bet hedging is unchanged. However, within-generation variation in cues does change the developmental mechanisms used to create that balance: developmental sensitivity to such cues not only helps match phenotype to environment but also creates phenotypic diversity that may be useful for hedging bets against environmental change. Understanding the adaptive role of developmental sensitivity thus depends on a proper assessment of both the predictive power and the structure of variation in environmental cues. PMID:23933723

  15. An adaptive stepsize method for the chemical Langevin equation.

    PubMed

    Ilie, Silvana; Teslya, Alexandra

    2012-05-14

    Mathematical and computational modeling are key tools in analyzing important biological processes in cells and living organisms. In particular, stochastic models are essential to accurately describe the cellular dynamics, when the assumption of the thermodynamic limit can no longer be applied. However, stochastic models are computationally much more challenging than the traditional deterministic models. Moreover, many biochemical systems arising in applications have multiple time-scales, which lead to mathematical stiffness. In this paper we investigate the numerical solution of a stochastic continuous model of well-stirred biochemical systems, the chemical Langevin equation. The chemical Langevin equation is a stochastic differential equation with multiplicative, non-commutative noise. We propose an adaptive stepsize algorithm for approximating the solution of models of biochemical systems in the Langevin regime, with small noise, based on estimates of the local error. The underlying numerical method is the Milstein scheme. The proposed adaptive method is tested on several examples arising in applications and it is shown to have improved efficiency and accuracy compared to the existing fixed stepsize schemes.

  16. An adaptive PCA fusion method for remote sensing images

    NASA Astrophysics Data System (ADS)

    Guo, Qing; Li, An; Zhang, Hongqun; Feng, Zhongkui

    2014-10-01

    The principal component analysis (PCA) method is a popular fusion method used for its efficiency and high spatial resolution improvement. However, the spectral distortion is often found in PCA. In this paper, we propose an adaptive PCA method to enhance the spectral quality of the fused image. The amount of spatial details of the panchromatic (PAN) image injected into each band of the multi-spectral (MS) image is appropriately determined by a weighting matrix, which is defined by the edges of the PAN image, the edges of the MS image and the proportions between MS bands. In order to prove the effectiveness of the proposed method, the qualitative visual and quantitative analyses are introduced. The correlation coefficient (CC), the spectral discrepancy (SPD), and the spectral angle mapper (SAM) are used to measure the spectral quality of each fused band image. Q index is calculated to evaluate the global spectral quality of all the fused bands as a whole. The spatial quality is evaluated by the average gradient (AG) and the standard deviation (STD). Experimental results show that the proposed method improves the spectral quality very much comparing to the original PCA method while maintaining the high spatial quality of the original PCA.

  17. A fast, robust, and simple implicit method for adaptive time-stepping on adaptive mesh-refinement grids

    NASA Astrophysics Data System (ADS)

    Commerçon, B.; Debout, V.; Teyssier, R.

    2014-03-01

    Context. Implicit solvers present strong limitations when used on supercomputing facilities and in particular for adaptive mesh-refinement codes. Aims: We present a new method for implicit adaptive time-stepping on adaptive mesh-refinement grids. We implement it in the radiation-hydrodynamics solver we designed for the RAMSES code for astrophysical purposes and, more particularly, for protostellar collapse. Methods: We briefly recall the radiation-hydrodynamics equations and the adaptive time-stepping methodology used for hydrodynamical solvers. We then introduce the different types of boundary conditions (Dirichlet, Neumann, and Robin) that are used at the interface between levels and present our implementation of the new method in the RAMSES code. The method is tested against classical diffusion and radiation-hydrodynamics tests, after which we present an application for protostellar collapse. Results: We show that using Dirichlet boundary conditions at level interfaces is a good compromise between robustness and accuracy and that it can be used in structure formation calculations. The gain in computational time over our former unique time step method ranges from factors of 5 to 50 depending on the level of adaptive time-stepping and on the problem. We successfully compare the old and new methods for protostellar collapse calculations that involve highly non linear physics. Conclusions: We have developed a simple but robust method for adaptive time-stepping of implicit scheme on adaptive mesh-refinement grids. It can be applied to a wide variety of physical problems that involve diffusion processes.

  18. Finding One's Way in Electronic Space: The Relative Importance of Navigational Cues and Mental Models.

    ERIC Educational Resources Information Center

    Kerr, Stephen T.

    This examination of the effectiveness of various methods of cuing users to their location in a videotex information system used five different versions of an electronic edition of a college catalog: "simple" (no cues), "headers" (textual cues), "color" (color cues), "icons" (graphic cues), and "fancy" (textual, color, and graphic cues). The 99…

  19. A Spectral Adaptive Mesh Refinement Method for the Burgers equation

    NASA Astrophysics Data System (ADS)

    Nasr Azadani, Leila; Staples, Anne

    2013-03-01

    Adaptive mesh refinement (AMR) is a powerful technique in computational fluid dynamics (CFD). Many CFD problems have a wide range of scales which vary with time and space. In order to resolve all the scales numerically, high grid resolutions are required. The smaller the scales the higher the resolutions should be. However, small scales are usually formed in a small portion of the domain or in a special period of time. AMR is an efficient method to solve these types of problems, allowing high grid resolutions where and when they are needed and minimizing memory and CPU time. Here we formulate a spectral version of AMR in order to accelerate simulations of a 1D model for isotropic homogenous turbulence, the Burgers equation, as a first test of this method. Using pseudo spectral methods, we applied AMR in Fourier space. The spectral AMR (SAMR) method we present here is applied to the Burgers equation and the results are compared with the results obtained using standard solution methods performed using a fine mesh.

  20. Robust image registration using adaptive coherent point drift method

    NASA Astrophysics Data System (ADS)

    Yang, Lijuan; Tian, Zheng; Zhao, Wei; Wen, Jinhuan; Yan, Weidong

    2016-04-01

    Coherent point drift (CPD) method is a powerful registration tool under the framework of the Gaussian mixture model (GMM). However, the global spatial structure of point sets is considered only without other forms of additional attribute information. The equivalent simplification of mixing parameters and the manual setting of the weight parameter in GMM make the CPD method less robust to outlier and have less flexibility. An adaptive CPD method is proposed to automatically determine the mixing parameters by embedding the local attribute information of features into the construction of GMM. In addition, the weight parameter is treated as an unknown parameter and automatically determined in the expectation-maximization algorithm. In image registration applications, the block-divided salient image disk extraction method is designed to detect sparse salient image features and local self-similarity is used as attribute information to describe the local neighborhood structure of each feature. The experimental results on optical images and remote sensing images show that the proposed method can significantly improve the matching performance.

  1. The Formative Method for Adapting Psychotherapy (FMAP): A community-based developmental approach to culturally adapting therapy

    PubMed Central

    Hwang, Wei-Chin

    2010-01-01

    How do we culturally adapt psychotherapy for ethnic minorities? Although there has been growing interest in doing so, few therapy adaptation frameworks have been developed. The majority of these frameworks take a top-down theoretical approach to adapting psychotherapy. The purpose of this paper is to introduce a community-based developmental approach to modifying psychotherapy for ethnic minorities. The Formative Method for Adapting Psychotherapy (FMAP) is a bottom-up approach that involves collaborating with consumers to generate and support ideas for therapy adaptation. It involves 5-phases that target developing, testing, and reformulating therapy modifications. These phases include: (a) generating knowledge and collaborating with stakeholders (b) integrating generated information with theory and empirical and clinical knowledge, (c) reviewing the initial culturally adapted clinical intervention with stakeholders and revising the culturally adapted intervention, (d) testing the culturally adapted intervention, and (e) finalizing the culturally adapted intervention. Application of the FMAP is illustrated using examples from a study adapting psychotherapy for Chinese Americans, but can also be readily applied to modify therapy for other ethnic groups. PMID:20625458

  2. Efficient Combustion Simulation via the Adaptive Wavelet Collocation Method

    NASA Astrophysics Data System (ADS)

    Lung, Kevin; Brown-Dymkoski, Eric; Guerrero, Victor; Doran, Eric; Museth, Ken; Balme, Jo; Urberger, Bob; Kessler, Andre; Jones, Stephen; Moses, Billy; Crognale, Anthony

    Rocket engine development continues to be driven by the intuition and experience of designers, progressing through extensive trial-and-error test campaigns. Extreme temperatures and pressures frustrate direct observation, while high-fidelity simulation can be impractically expensive owing to the inherent muti-scale, multi-physics nature of the problem. To address this cost, an adaptive multi-resolution PDE solver has been designed which targets the high performance, many-core architecture of GPUs. The adaptive wavelet collocation method is used to maintain a sparse-data representation of the high resolution simulation, greatly reducing the memory footprint while tightly controlling physical fidelity. The tensorial, stencil topology of wavelet-based grids lends itself to highly vectorized algorithms which are necessary to exploit the performance of GPUs. This approach permits efficient implementation of direct finite-rate kinetics, and improved resolution of steep thermodynamic gradients and the smaller mixing scales that drive combustion dynamics. Resolving these scales is crucial for accurate chemical kinetics, which are typically degraded or lost in statistical modeling approaches.

  3. Adaptive Ripple Down Rules Method based on Description Length

    NASA Astrophysics Data System (ADS)

    Yoshida, Tetsuya; Wada, Takuya; Motoda, Hiroshi; Washio, Takashi

    A knowledge acquisition method Ripple Down Rules (RDR) can directly acquire and encode knowledge from human experts. It is an incremental acquisition method and each new piece of knowledge is added as an exception to the existing knowledge base. Past researches on RDR method assume that the problem domain is stable. This is not the case in reality, especially when an environment changes. Things change over time. This paper proposes an adaptive Ripple Down Rules method based on the Minimum Description Length Principle aiming at knowledge acquisition in a dynamically changing environment. We consider the change in the correspondence between attribute-values and class labels as a typical change in the environment. When such a change occurs, some pieces of knowledge previously acquired become worthless, and the existence of such knowledge may hinder acquisition of new knowledge. In our approach knowledge deletion is carried out as well as knowledge acquisition so that useless knowledge is properly discarded to ensure efficient knowledge acquisition while maintaining the prediction accuracy for future data. Furthermore, pruning is incorporated into the incremental knowledge acquisition in RDR to improve the prediction accuracy of the constructed knowledge base. Experiments were conducted by simulating the change in the correspondence between attribute-values and class labels using the datasets in UCI repository. The results are encouraging.

  4. Adaptive Mesh Refinement in Computational Astrophysics -- Methods and Applications

    NASA Astrophysics Data System (ADS)

    Balsara, D.

    2001-12-01

    The advent of robust, reliable and accurate higher order Godunov schemes for many of the systems of equations of interest in computational astrophysics has made it important to understand how to solve them in multi-scale fashion. This is so because the physics associated with astrophysical phenomena evolves in multi-scale fashion and we wish to arrive at a multi-scale simulational capability to represent the physics. Because astrophysical systems have magnetic fields, multi-scale magnetohydrodynamics (MHD) is of especial interest. In this paper we first discuss general issues in adaptive mesh refinement (AMR). We then focus on the important issues in carrying out divergence-free AMR-MHD and catalogue the progress we have made in that area. We show that AMR methods lend themselves to easy parallelization. We then discuss applications of the RIEMANN framework for AMR-MHD to problems in computational astophysics.

  5. Adaptive mesh refinement and adjoint methods in geophysics simulations

    NASA Astrophysics Data System (ADS)

    Burstedde, Carsten

    2013-04-01

    It is an ongoing challenge to increase the resolution that can be achieved by numerical geophysics simulations. This applies to considering sub-kilometer mesh spacings in global-scale mantle convection simulations as well as to using frequencies up to 1 Hz in seismic wave propagation simulations. One central issue is the numerical cost, since for three-dimensional space discretizations, possibly combined with time stepping schemes, a doubling of resolution can lead to an increase in storage requirements and run time by factors between 8 and 16. A related challenge lies in the fact that an increase in resolution also increases the dimensionality of the model space that is needed to fully parametrize the physical properties of the simulated object (a.k.a. earth). Systems that exhibit a multiscale structure in space are candidates for employing adaptive mesh refinement, which varies the resolution locally. An example that we found well suited is the mantle, where plate boundaries and fault zones require a resolution on the km scale, while deeper area can be treated with 50 or 100 km mesh spacings. This approach effectively reduces the number of computational variables by several orders of magnitude. While in this case it is possible to derive the local adaptation pattern from known physical parameters, it is often unclear what are the most suitable criteria for adaptation. We will present the goal-oriented error estimation procedure, where such criteria are derived from an objective functional that represents the observables to be computed most accurately. Even though this approach is well studied, it is rarely used in the geophysics community. A related strategy to make finer resolution manageable is to design methods that automate the inference of model parameters. Tweaking more than a handful of numbers and judging the quality of the simulation by adhoc comparisons to known facts and observations is a tedious task and fundamentally limited by the turnaround times

  6. Adaptive mesh generation for edge-element finite element method

    NASA Astrophysics Data System (ADS)

    Tsuboi, Hajime; Gyimothy, Szabolcs

    2001-06-01

    An adaptive mesh generation method for two- and three-dimensional finite element methods using edge elements is proposed. Since the tangential component continuity is preserved when using edge elements, the strategy of creating new nodes is based on evaluation of the normal component of the magnetic vector potential across element interfaces. The evaluation is performed at the middle point of edge of a triangular element for two-dimensional problems or at the gravity center of triangular surface of a tetrahedral element for three-dimensional problems. At the boundary of two elements, the error estimator is the ratio of the normal component discontinuity to the maximum value of the potential in the same material. One or more nodes are set at the middle points of the edges according to the value of the estimator as well as the subdivision of elements where new nodes have been created. A final mesh will be obtained after several iterations. Some computation results of two- and three-dimensional problems using the proposed method are shown.

  7. Evaluation of Adaptive Subdivision Method on Mobile Device

    NASA Astrophysics Data System (ADS)

    Rahim, Mohd Shafry Mohd; Isa, Siti Aida Mohd; Rehman, Amjad; Saba, Tanzila

    2013-06-01

    Recently, there are significant improvements in the capabilities of mobile devices; but rendering large 3D object is still tedious because of the constraint in resources of mobile devices. To reduce storage requirement, 3D object is simplified but certain area of curvature is compromised and the surface will not be smooth. Therefore a method to smoother selected area of a curvature is implemented. One of the popular methods is adaptive subdivision method. Experiments are performed using two data with results based on processing time, rendering speed and the appearance of the object on the devices. The result shows a downfall in frame rate performance due to the increase in the number of triangles with each level of iteration while the processing time of generating the new mesh also significantly increase. Since there is a difference in screen size between the devices the surface on the iPhone appears to have more triangles and more compact than the surface displayed on the iPad. [Figure not available: see fulltext.

  8. Adaptive Elastic Net for Generalized Methods of Moments.

    PubMed

    Caner, Mehmet; Zhang, Hao Helen

    2014-01-30

    Model selection and estimation are crucial parts of econometrics. This paper introduces a new technique that can simultaneously estimate and select the model in generalized method of moments (GMM) context. The GMM is particularly powerful for analyzing complex data sets such as longitudinal and panel data, and it has wide applications in econometrics. This paper extends the least squares based adaptive elastic net estimator of Zou and Zhang (2009) to nonlinear equation systems with endogenous variables. The extension is not trivial and involves a new proof technique due to estimators lack of closed form solutions. Compared to Bridge-GMM of Caner (2009), we allow for the number of parameters to diverge to infinity as well as collinearity among a large number of variables, also the redundant parameters set to zero via a data dependent technique. This method has the oracle property, meaning that we can estimate nonzero parameters with their standard limit and the redundant parameters are dropped from the equations simultaneously. Numerical examples are used to illustrate the performance of the new method.

  9. Cue reactivity in virtual reality: the role of context.

    PubMed

    Paris, Megan M; Carter, Brian L; Traylor, Amy C; Bordnick, Patrick S; Day, Susan X; Armsworth, Mary W; Cinciripini, Paul M

    2011-07-01

    Cigarette smokers in laboratory experiments readily respond to smoking stimuli with increased craving. An alternative to traditional cue-reactivity methods (e.g., exposure to cigarette photos), virtual reality (VR) has been shown to be a viable cue presentation method to elicit and assess cigarette craving within complex virtual environments. However, it remains poorly understood whether contextual cues from the environment contribute to craving increases in addition to specific cues, like cigarettes. This study examined the role of contextual cues in a VR environment to evoke craving. Smokers were exposed to a virtual convenience store devoid of any specific cigarette cues followed by exposure to the same convenience store with specific cigarette cues added. Smokers reported increased craving following exposure to the virtual convenience store without specific cues, and significantly greater craving following the convenience store with cigarette cues added. However, increased craving recorded after the second convenience store may have been due to the pre-exposure to the first convenience store. This study offers evidence that an environmental context where cigarette cues are normally present (but are not), elicits significant craving in the absence of specific cigarette cues. This finding suggests that VR may have stronger ecological validity over traditional cue reactivity exposure methods by exposing smokers to the full range of cigarette-related environmental stimuli, in addition to specific cigarette cues, that smokers typically experience in their daily lives. PMID:21349649

  10. Adaptive enhancement method of infrared image based on scene feature

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Bai, Tingzhu; Shang, Fei

    2008-12-01

    All objects emit radiation in amounts related to their temperature and their ability to emit radiation. The infrared image shows the invisible infrared radiation emitted directly. Because of the advantages, the technology of infrared imaging is applied to many kinds of fields. But compared with visible image, the disadvantages of infrared image are obvious. The characteristics of low luminance, low contrast and the inconspicuous difference target and background are the main disadvantages of infrared image. The aim of infrared image enhancement is to improve the interpretability or perception of information in infrared image for human viewers, or to provide 'better' input for other automated image processing techniques. Most of the adaptive algorithm for image enhancement is mainly based on the gray-scale distribution of infrared image, and is not associated with the actual image scene of the features. So the pertinence of infrared image enhancement is not strong, and the infrared image is not conducive to the application of infrared surveillance. In this paper we have developed a scene feature-based algorithm to enhance the contrast of infrared image adaptively. At first, after analyzing the scene feature of different infrared image, we have chosen the feasible parameters to describe the infrared image. In the second place, we have constructed the new histogram distributing base on the chosen parameters by using Gaussian function. In the last place, the infrared image is enhanced by constructing a new form of histogram. Experimental results show that the algorithm has better performance than other methods mentioned in this paper for infrared scene images.

  11. The Perceptual Cues that Reshape Expert Reasoning

    PubMed Central

    Harré, Michael; Bossomaier, Terry; Snyder, Allan

    2012-01-01

    The earliest stages in our perception of the world have a subtle but powerful influence on later thought processes; they provide the contextual cues within which our thoughts are framed and they adapt to many different environments throughout our lives. Understanding the changes in these cues is crucial to understanding how our perceptual ability develops, but these changes are often difficult to quantify in sufficiently complex tasks where objective measures of development are available. Here we simulate perceptual learning using neural networks and demonstrate fundamental changes in these cues as a function of skill. These cues are cognitively grouped together to form perceptual templates that enable rapid ‘whole scene' categorisation of complex stimuli. Such categories reduce the computational load on our capacity limited thought processes, they inform our higher cognitive processes and they suggest a framework of perceptual pre-processing that captures the central role of perception in expertise. PMID:22792435

  12. The perceptual cues that reshape expert reasoning.

    PubMed

    Harré, Michael; Bossomaier, Terry; Snyder, Allan

    2012-01-01

    The earliest stages in our perception of the world have a subtle but powerful influence on later thought processes; they provide the contextual cues within which our thoughts are framed and they adapt to many different environments throughout our lives. Understanding the changes in these cues is crucial to understanding how our perceptual ability develops, but these changes are often difficult to quantify in sufficiently complex tasks where objective measures of development are available. Here we simulate perceptual learning using neural networks and demonstrate fundamental changes in these cues as a function of skill. These cues are cognitively grouped together to form perceptual templates that enable rapid 'whole scene' categorisation of complex stimuli. Such categories reduce the computational load on our capacity limited thought processes, they inform our higher cognitive processes and they suggest a framework of perceptual pre-processing that captures the central role of perception in expertise. PMID:22792435

  13. A novel experimental method for measuring vergence and accommodation responses to the main near visual cues in typical and atypical groups.

    PubMed

    Horwood, Anna M; Riddell, Patricia M

    2009-01-01

    Binocular disparity, blur, and proximal cues drive convergence and accommodation. Disparity is considered to be the main vergence cue and blur the main accommodation cue. We have developed a remote haploscopic photorefractor to measure simultaneous vergence and accommodation objectively in a wide range of participants of all ages while fixating targets at between 0.3 and 2 m. By separating the three main near cues, we can explore their relative weighting in three-, two-, one-, and zero-cue conditions. Disparity can be manipulated by remote occlusion; blur cues manipulated by using either a Gabor patch or a detailed picture target; looming cues by either scaling or not scaling target size with distance. In normal orthophoric, emmetropic, symptom-free, naive visually mature participants, disparity was by far the most significant cue to both vergence and accommodation. Accommodation responses dropped dramatically if disparity was not available. Blur only had a clinically significant effect when disparity was absent. Proximity had very little effect. There was considerable interparticipant variation. We predict that relative weighting of near cue use is likely to vary between clinical groups and present some individual cases as examples. We are using this naturalistic tool to research strabismus, vergence and accommodation development, and emmetropization.

  14. Method for removing tilt control in adaptive optics systems

    DOEpatents

    Salmon, Joseph Thaddeus

    1998-01-01

    A new adaptive optics system and method of operation, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G'=(I-X(X.sup.T X).sup.-1 X.sup.T)G(I-A)

  15. Method for removing tilt control in adaptive optics systems

    DOEpatents

    Salmon, J.T.

    1998-04-28

    A new adaptive optics system and method of operation are disclosed, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G{prime} = (I{minus}X(X{sup T} X){sup {minus}1}X{sup T})G(I{minus}A). 3 figs.

  16. Adaptive two-regime method: Application to front propagation

    SciTech Connect

    Robinson, Martin Erban, Radek; Flegg, Mark

    2014-03-28

    The Adaptive Two-Regime Method (ATRM) is developed for hybrid (multiscale) stochastic simulation of reaction-diffusion problems. It efficiently couples detailed Brownian dynamics simulations with coarser lattice-based models. The ATRM is a generalization of the previously developed Two-Regime Method [Flegg et al., J. R. Soc., Interface 9, 859 (2012)] to multiscale problems which require a dynamic selection of regions where detailed Brownian dynamics simulation is used. Typical applications include a front propagation or spatio-temporal oscillations. In this paper, the ATRM is used for an in-depth study of front propagation in a stochastic reaction-diffusion system which has its mean-field model given in terms of the Fisher equation [R. Fisher, Ann. Eugen. 7, 355 (1937)]. It exhibits a travelling reaction front which is sensitive to stochastic fluctuations at the leading edge of the wavefront. Previous studies into stochastic effects on the Fisher wave propagation speed have focused on lattice-based models, but there has been limited progress using off-lattice (Brownian dynamics) models, which suffer due to their high computational cost, particularly at the high molecular numbers that are necessary to approach the Fisher mean-field model. By modelling only the wavefront itself with the off-lattice model, it is shown that the ATRM leads to the same Fisher wave results as purely off-lattice models, but at a fraction of the computational cost. The error analysis of the ATRM is also presented for a morphogen gradient model.

  17. An adaptive training method for optimal interpolative neural nets.

    PubMed

    Liu, T Z; Yen, C W

    1997-04-01

    In contrast to conventional multilayered feedforward networks which are typically trained by iterative gradient search methods, an optimal interpolative (OI) net can be trained by a noniterative least squares algorithm called RLS-OI. The basic idea of RLS-OI is to use a subset of the training set, whose inputs are called subprototypes, to constrain the OI net solution. A subset of these subprototypes, called prototypes, is then chosen as the parameter vectors of the activation functions of the OI net to satisfy the subprototype constraints in the least squares (LS) sense. By dynamically increasing the numbers of subprototypes and prototypes, RLS-OI evolves the OI net from scratch to the extent sufficient to solve a given classification problem. To improve the performance of RLS-OI, this paper addresses two important problems in OI net training: the selection of the subprototypes and the selection of the prototypes. By choosing subprototypes from poorly classified regions, this paper proposes a new subprototype selection method which is adaptive to the changing classification performance of the growing OI net. This paper also proposes a new prototype selection criterion to reduce the complexity of the OI net. For the same training accuracy, simulation results demonstrate that the proposed approach produces smaller OI net than the RLS-OI algorithm. Experimental results also show that the proposed approach is less sensitive to the variation of the training set than RLS-OI.

  18. Adaptive two-regime method: application to front propagation.

    PubMed

    Robinson, Martin; Flegg, Mark; Erban, Radek

    2014-03-28

    The Adaptive Two-Regime Method (ATRM) is developed for hybrid (multiscale) stochastic simulation of reaction-diffusion problems. It efficiently couples detailed Brownian dynamics simulations with coarser lattice-based models. The ATRM is a generalization of the previously developed Two-Regime Method [Flegg et al., J. R. Soc., Interface 9, 859 (2012)] to multiscale problems which require a dynamic selection of regions where detailed Brownian dynamics simulation is used. Typical applications include a front propagation or spatio-temporal oscillations. In this paper, the ATRM is used for an in-depth study of front propagation in a stochastic reaction-diffusion system which has its mean-field model given in terms of the Fisher equation [R. Fisher, Ann. Eugen. 7, 355 (1937)]. It exhibits a travelling reaction front which is sensitive to stochastic fluctuations at the leading edge of the wavefront. Previous studies into stochastic effects on the Fisher wave propagation speed have focused on lattice-based models, but there has been limited progress using off-lattice (Brownian dynamics) models, which suffer due to their high computational cost, particularly at the high molecular numbers that are necessary to approach the Fisher mean-field model. By modelling only the wavefront itself with the off-lattice model, it is shown that the ATRM leads to the same Fisher wave results as purely off-lattice models, but at a fraction of the computational cost. The error analysis of the ATRM is also presented for a morphogen gradient model.

  19. An adaptive high and low impedance fault detection method

    SciTech Connect

    Yu, D.C. ); Khan, S.H. )

    1994-10-01

    An integrated high impedance fault (HIF) and low impedance fault (LIF) detection method is proposed in this paper. For a HIF detection, the proposed technique is based on a number of characteristics of the HIF current. These characteristics are: fault current magnitude, magnitude of the 3rd harmonic current, magnitude of the 5th harmonic current, the angle of the third harmonic current, the angle difference between the third harmonics current and the fundamental voltage, negative sequence current of HIF. These characteristics are identified by modeling the distribution feeders in EMTP. Apart from these characteristics, the above ambient (average) negative sequence current is also considered. An adjustable block out region around the average load current is provided. The average load current is calculated at every 18,000 cycles (5 minutes) interval. This adaptive feature will not only make the proposed scheme more sensitive to the low fault current, but it will also prevent the relay from tripping during the normal load current. In this paper, the logic circuit required for implementing the proposed HIF detection methods is also included. With minimal modifications, the logic developed for the HIF detection can be applied for the low impedance fault (LIF) detection. A complete logic circuit which detects both the HIF and LIF is proposed. Using this combined logic, the need of installing separate devices for HIF and LIF detection can be eliminated.

  20. Adaptable Metadata Rich IO Methods for Portable High Performance IO

    SciTech Connect

    Lofstead, J.; Zheng, Fang; Klasky, Scott A; Schwan, Karsten

    2009-01-01

    Since IO performance on HPC machines strongly depends on machine characteristics and configuration, it is important to carefully tune IO libraries and make good use of appropriate library APIs. For instance, on current petascale machines, independent IO tends to outperform collective IO, in part due to bottlenecks at the metadata server. The problem is exacerbated by scaling issues, since each IO library scales differently on each machine, and typically, operates efficiently to different levels of scaling on different machines. With scientific codes being run on a variety of HPC resources, efficient code execution requires us to address three important issues: (1) end users should be able to select the most efficient IO methods for their codes, with minimal effort in terms of code updates or alterations; (2) such performance-driven choices should not prevent data from being stored in the desired file formats, since those are crucial for later data analysis; and (3) it is important to have efficient ways of identifying and selecting certain data for analysis, to help end users cope with the flood of data produced by high end codes. This paper employs ADIOS, the ADaptable IO System, as an IO API to address (1)-(3) above. Concerning (1), ADIOS makes it possible to independently select the IO methods being used by each grouping of data in an application, so that end users can use those IO methods that exhibit best performance based on both IO patterns and the underlying hardware. In this paper, we also use this facility of ADIOS to experimentally evaluate on petascale machines alternative methods for high performance IO. Specific examples studied include methods that use strong file consistency vs. delayed parallel data consistency, as that provided by MPI-IO or POSIX IO. Concerning (2), to avoid linking IO methods to specific file formats and attain high IO performance, ADIOS introduces an efficient intermediate file format, termed BP, which can be converted, at small

  1. Principles and Methods of Adapted Physical Education and Recreation.

    ERIC Educational Resources Information Center

    Arnheim, Daniel D.; And Others

    This text is designed for the elementary and secondary school physical educator and the recreation specialist in adapted physical education and, more specifically, as a text for college courses in adapted and corrective physical education and therapeutic recreation. The text is divided into four major divisions: scope, key teaching and therapy…

  2. Perceptual Adaptation of Voice Gender Discrimination with Spectrally Shifted Vowels

    ERIC Educational Resources Information Center

    Li, Tianhao; Fu, Qian-Jie

    2011-01-01

    Purpose: To determine whether perceptual adaptation improves voice gender discrimination of spectrally shifted vowels and, if so, which acoustic cues contribute to the improvement. Method: Voice gender discrimination was measured for 10 normal-hearing subjects, during 5 days of adaptation to spectrally shifted vowels, produced by processing the…

  3. Tsunami modelling with adaptively refined finite volume methods

    USGS Publications Warehouse

    LeVeque, R.J.; George, D.L.; Berger, M.J.

    2011-01-01

    Numerical modelling of transoceanic tsunami propagation, together with the detailed modelling of inundation of small-scale coastal regions, poses a number of algorithmic challenges. The depth-averaged shallow water equations can be used to reduce this to a time-dependent problem in two space dimensions, but even so it is crucial to use adaptive mesh refinement in order to efficiently handle the vast differences in spatial scales. This must be done in a 'wellbalanced' manner that accurately captures very small perturbations to the steady state of the ocean at rest. Inundation can be modelled by allowing cells to dynamically change from dry to wet, but this must also be done carefully near refinement boundaries. We discuss these issues in the context of Riemann-solver-based finite volume methods for tsunami modelling. Several examples are presented using the GeoClaw software, and sample codes are available to accompany the paper. The techniques discussed also apply to a variety of other geophysical flows. ?? 2011 Cambridge University Press.

  4. A hybrid method for optimization of the adaptive Goldstein filter

    NASA Astrophysics Data System (ADS)

    Jiang, Mi; Ding, Xiaoli; Tian, Xin; Malhotra, Rakesh; Kong, Weixue

    2014-12-01

    The Goldstein filter is a well-known filter for interferometric filtering in the frequency domain. The main parameter of this filter, alpha, is set as a power of the filtering function. Depending on it, considered areas are strongly or weakly filtered. Several variants have been developed to adaptively determine alpha using different indicators such as the coherence, and phase standard deviation. The common objective of these methods is to prevent areas with low noise from being over filtered while simultaneously allowing stronger filtering over areas with high noise. However, the estimators of these indicators are biased in the real world and the optimal model to accurately determine the functional relationship between the indicators and alpha is also not clear. As a result, the filter always under- or over-filters and is rarely correct. The study presented in this paper aims to achieve accurate alpha estimation by correcting the biased estimator using homogeneous pixel selection and bootstrapping algorithms, and by developing an optimal nonlinear model to determine alpha. In addition, an iteration is also merged into the filtering procedure to suppress the high noise over incoherent areas. The experimental results from synthetic and real data show that the new filter works well under a variety of conditions and offers better and more reliable performance when compared to existing approaches.

  5. Plant responsiveness to root–root communication of stress cues

    PubMed Central

    Falik, Omer; Mordoch, Yonat; Ben-Natan, Daniel; Vanunu, Miriam; Goldstein, Oron; Novoplansky, Ariel

    2012-01-01

    Background and Aims Phenotypic plasticity is based on the organism's ability to perceive, integrate and respond to multiple signals and cues informative of environmental opportunities and perils. A growing body of evidence demonstrates that plants are able to adapt to imminent threats by perceiving cues emitted from their damaged neighbours. Here, the hypothesis was tested that unstressed plants are able to perceive and respond to stress cues emitted from their drought- and osmotically stressed neighbours and to induce stress responses in additional unstressed plants. Methods Split-root Pisum sativum, Cynodon dactylon, Digitaria sanguinalis and Stenotaphrum secundatum plants were subjected to osmotic stress or drought while sharing one of their rooting volumes with an unstressed neighbour, which in turn shared its other rooting volume with additional unstressed neighbours. Following the kinetics of stomatal aperture allowed testing for stress responses in both the stressed plants and their unstressed neighbours. Key Results In both P. sativum plants and the three wild clonal grasses, infliction of osmotic stress or drought caused stomatal closure in both the stressed plants and in their unstressed neighbours. While both continuous osmotic stress and drought induced prolonged stomatal closure and limited acclimation in stressed plants, their unstressed neighbours habituated to the stress cues and opened their stomata 3–24 h after the beginning of stress induction. Conclusions The results demonstrate a novel type of plant communication, by which plants might be able to increase their readiness to probable future osmotic and drought stresses. Further work is underway to decipher the identity and mode of operation of the involved communication vectors and to assess the potential ecological costs and benefits of emitting and perceiving drought and osmotic stress cues under various ecological scenarios. PMID:22408186

  6. LDRD Final Report: Adaptive Methods for Laser Plasma Simulation

    SciTech Connect

    Dorr, M R; Garaizar, F X; Hittinger, J A

    2003-01-29

    The goal of this project was to investigate the utility of parallel adaptive mesh refinement (AMR) in the simulation of laser plasma interaction (LPI). The scope of work included the development of new numerical methods and parallel implementation strategies. The primary deliverables were (1) parallel adaptive algorithms to solve a system of equations combining plasma fluid and light propagation models, (2) a research code implementing these algorithms, and (3) an analysis of the performance of parallel AMR on LPI problems. The project accomplished these objectives. New algorithms were developed for the solution of a system of equations describing LPI. These algorithms were implemented in a new research code named ALPS (Adaptive Laser Plasma Simulator) that was used to test the effectiveness of the AMR algorithms on the Laboratory's large-scale computer platforms. The details of the algorithm and the results of the numerical tests were documented in an article published in the Journal of Computational Physics [2]. A principal conclusion of this investigation is that AMR is most effective for LPI systems that are ''hydrodynamically large'', i.e., problems requiring the simulation of a large plasma volume relative to the volume occupied by the laser light. Since the plasma-only regions require less resolution than the laser light, AMR enables the use of efficient meshes for such problems. In contrast, AMR is less effective for, say, a single highly filamented beam propagating through a phase plate, since the resulting speckle pattern may be too dense to adequately separate scales with a locally refined mesh. Ultimately, the gain to be expected from the use of AMR is highly problem-dependent. One class of problems investigated in this project involved a pair of laser beams crossing in a plasma flow. Under certain conditions, energy can be transferred from one beam to the other via a resonant interaction with an ion acoustic wave in the crossing region. AMR provides an

  7. The Effects of Keyword Cues and 3R Strategy on Children's e-Book Reading

    ERIC Educational Resources Information Center

    Liang, T.-H.

    2015-01-01

    Various studies have found that electronic books (e-books) promote learning, but few works have examined the use of e-books along with an adaptive reading strategy for children. The current study implemented a method to extract keyword cues from e-books to support e-book reading with the read, recite and review (3R) strategy, and then examined the…

  8. Solution of Reactive Compressible Flows Using an Adaptive Wavelet Method

    NASA Astrophysics Data System (ADS)

    Zikoski, Zachary; Paolucci, Samuel; Powers, Joseph

    2008-11-01

    This work presents numerical simulations of reactive compressible flow, including detailed multicomponent transport, using an adaptive wavelet algorithm. The algorithm allows for dynamic grid adaptation which enhances our ability to fully resolve all physically relevant scales. The thermodynamic properties, equation of state, and multicomponent transport properties are provided by CHEMKIN and TRANSPORT libraries. Results for viscous detonation in a H2:O2:Ar mixture, and other problems in multiple dimensions, are included.

  9. On Accuracy of Adaptive Grid Methods for Captured Shocks

    NASA Technical Reports Server (NTRS)

    Yamaleev, Nail K.; Carpenter, Mark H.

    2002-01-01

    The accuracy of two grid adaptation strategies, grid redistribution and local grid refinement, is examined by solving the 2-D Euler equations for the supersonic steady flow around a cylinder. Second- and fourth-order linear finite difference shock-capturing schemes, based on the Lax-Friedrichs flux splitting, are used to discretize the governing equations. The grid refinement study shows that for the second-order scheme, neither grid adaptation strategy improves the numerical solution accuracy compared to that calculated on a uniform grid with the same number of grid points. For the fourth-order scheme, the dominant first-order error component is reduced by the grid adaptation, while the design-order error component drastically increases because of the grid nonuniformity. As a result, both grid adaptation techniques improve the numerical solution accuracy only on the coarsest mesh or on very fine grids that are seldom found in practical applications because of the computational cost involved. Similar error behavior has been obtained for the pressure integral across the shock. A simple analysis shows that both grid adaptation strategies are not without penalties in the numerical solution accuracy. Based on these results, a new grid adaptation criterion for captured shocks is proposed.

  10. Method and system for spatial data input, manipulation and distribution via an adaptive wireless transceiver

    NASA Technical Reports Server (NTRS)

    Wang, Ray (Inventor)

    2009-01-01

    A method and system for spatial data manipulation input and distribution via an adaptive wireless transceiver. The method and system include a wireless transceiver for automatically and adaptively controlling wireless transmissions using a Waveform-DNA method. The wireless transceiver can operate simultaneously over both the short and long distances. The wireless transceiver is automatically adaptive and wireless devices can send and receive wireless digital and analog data from various sources rapidly in real-time via available networks and network services.

  11. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  12. Systems and Methods for Derivative-Free Adaptive Control

    NASA Technical Reports Server (NTRS)

    Yucelen, Tansel (Inventor); Kim, Kilsoo (Inventor); Calise, Anthony J. (Inventor)

    2015-01-01

    An adaptive control system is disclosed. The control system can control uncertain dynamic systems. The control system can employ one or more derivative-free adaptive control architectures. The control system can further employ one or more derivative-free weight update laws. The derivative-free weight update laws can comprise a time-varying estimate of an ideal vector of weights. The control system of the present invention can therefore quickly stabilize systems that undergo sudden changes in dynamics, caused by, for example, sudden changes in weight. Embodiments of the present invention can also provide a less complex control system than existing adaptive control systems. The control system can control aircraft and other dynamic systems, such as, for example, those with non-minimum phase dynamics.

  13. Study of adaptive methods for data compression of scanner data

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The performance of adaptive image compression techniques and the applicability of a variety of techniques to the various steps in the data dissemination process are examined in depth. It is concluded that the bandwidth of imagery generated by scanners can be reduced without introducing significant degradation such that the data can be transmitted over an S-band channel. This corresponds to a compression ratio equivalent to 1.84 bits per pixel. It is also shown that this can be achieved using at least two fairly simple techniques with weight-power requirements well within the constraints of the LANDSAT-D satellite. These are the adaptive 2D DPCM and adaptive hybrid techniques.

  14. An adaptive coarse graining method for signal transduction in three dimensions

    PubMed Central

    Archuleta, Michelle N.; McDermott, Jason E.; Edwards, Jeremy S.; Resat, Haluk

    2013-01-01

    The spatio-temporal landscape of the plasma membrane regulates activation and signal transduction of membrane bound receptors by restricting their two-dimensional mobility and by inducing receptor clustering. This regulation also extends to complex formation between receptors and adaptor proteins, which are the intermediate signaling molecules involved in cellular signaling that relay the received cues from cell surface to cytoplasm and eventually to the nucleus. Although their investigation poses challenging technical difficulties, there is a crucial need to understand the impact of the receptor diffusivity, clustering, and spatial heterogeneity, and of receptor-adaptor protein complex formation on the cellular signal transduction patterns. Building upon our earlier studies, we have developed an adaptive coarse-grained Monte Carlo method that can be used to investigate the role of diffusion, clustering and membrane corralling on receptor association and receptor-adaptor protein complex formation dynamics in three dimensions. The new Monte Carlo lattice based approach allowed us to introduce spatial resolution on the 2-D plasma membrane and to model the cytoplasm in three-dimensions. Being a multi-resolution approach, our new method makes it possible to represent various parts of the cellular system at different levels of detail and enabled us to utilize the locally homogeneous assumption when justified (e.g., cytoplasmic region away from the cell membrane) and avoid its use when high spatial resolution is needed (e.g., cell membrane and cytoplasmic region near the membrane) while keeping the required computational complexity manageable. Our results have shown that diffusion has a significant impact on receptor-receptor dimerization and receptor-adaptor protein complex formation kinetics. We have observed an “adaptor protein hopping” mechanism where the receptor binding proteins may hop between receptors to form short-lived transient complexes. This increased

  15. A New Method to Cancel RFI---The Adaptive Filter

    NASA Astrophysics Data System (ADS)

    Bradley, R.; Barnbaum, C.

    1996-12-01

    An increasing amount of precious radio frequency spectrum in the VHF, UHF, and microwave bands is being utilized each year to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Some radio spectral lines of astronomical interest occur outside the protected radio astronomy bands and are unobservable due to heavy interference. Conventional approaches to deal with RFI include legislation, notch filters, RF shielding, and post-processing techniques. Although these techniques are somewhat successful, each suffers from insufficient interference cancellation. One concept of interference excision that has not been used before in radio astronomy is adaptive interference cancellation. The concept of adaptive interference canceling was first introduced in the mid-1970s as a way to reduce unwanted noise in low frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartment of automobiles. Only recently have high-speed digital filter chips made adaptive filtering possible in a bandwidth as large a few megahertz, finally opening the door to astronomical uses. The system consists of two receivers: the main beam of the radio telescope receives the desired signal corrupted by RFI coming in the sidelobes, and the reference antenna receives only the RFI. The reference antenna is processed using a digital adaptive filter and then subtracted from the signal in the main beam, thus producing the system output. The weights of the digital filter are adjusted by way of an algorithm that minimizes, in a least-squares sense, the power output of the system. Through an adaptive-iterative process, the interference canceler will lock onto the RFI and the filter will adjust itself to minimize the effect of the RFI at the system output. We are building a prototype 100 MHz receiver and will measure the cancellation

  16. ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve.

    PubMed

    Feischl, Michael; Führer, Thomas; Karkulik, Michael; Praetorius, Dirk

    2014-01-01

    In the context of the adaptive finite element method (FEM), ZZ-error estimators named after Zienkiewicz and Zhu (1987) [52] are mathematically well-established and widely used in practice. In this work, we propose and analyze ZZ-type error estimators for the adaptive boundary element method (BEM). We consider weakly singular and hyper-singular integral equations and prove, in particular, convergence of the related adaptive mesh-refining algorithms. Throughout, the theoretical findings are underlined by numerical experiments.

  17. The use of the spectral method within the fast adaptive composite grid method

    SciTech Connect

    McKay, S.M.

    1994-12-31

    The use of efficient algorithms for the solution of partial differential equations has been sought for many years. The fast adaptive composite grid (FAC) method combines an efficient algorithm with high accuracy to obtain low cost solutions to partial differential equations. The FAC method achieves fast solution by combining solutions on different grids with varying discretizations and using multigrid like techniques to find fast solution. Recently, the continuous FAC (CFAC) method has been developed which utilizes an analytic solution within a subdomain to iterate to a solution of the problem. This has been shown to achieve excellent results when the analytic solution can be found. The CFAC method will be extended to allow solvers which construct a function for the solution, e.g., spectral and finite element methods. In this discussion, the spectral methods will be used to provide a fast, accurate solution to the partial differential equation. As spectral methods are more accurate than finite difference methods, the ensuing accuracy from this hybrid method outside of the subdomain will be investigated.

  18. Adaptive finite element methods for two-dimensional problems in computational fracture mechanics

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Bass, J. M.; Spradley, L. W.

    1994-01-01

    Some recent results obtained using solution-adaptive finite element methods in two-dimensional problems in linear elastic fracture mechanics are presented. The focus is on the basic issue of adaptive finite element methods for validating the new methodology by computing demonstration problems and comparing the stress intensity factors to analytical results.

  19. Weighted Hashing with Multiple Cues for Cell-Level Analysis of Histopathological Images.

    PubMed

    Zhang, Xiaofan; Su, Hai; Yang, Lin; Zhang, Shaoting

    2015-01-01

    Recently, content-based image retrieval has been investigated for histopathological image analysis, focusing on improving the accuracy and scalability. The main motivation is to interpret a new image (i.e., query image) by searching among a potentially large-scale database of training images in real-time. Hashing methods have been employed because of their promising performance. However, most previous works apply hashing algorithms on the whole images, while the important information of histopathological images usually lies in individual cells. In addition, they usually only hash one type of features, even though it is often necessary to inspect multiple cues of cells. Therefore, we propose a probabilistic-based hashing framework to model multiple cues of cells for accurate analysis of histopathological images. Specifically, each cue of a cell is compressed as binary codes by kernelized and supervised hashing, and the importance of each hash entry is determined adaptively according to its discriminativity, which can be represented as probability scores. Given these scores, we also propose several feature fusion and selection schemes to integrate their strengths. The classification of the whole image is conducted by aggregating the results from multiple cues of all cells. We apply our algorithm on differentiating adenocarcinoma and squamous carcinoma, i.e., two types of lung cancers, using a large dataset containing thousands of lung microscopic tissue images. It achieves 90.3% accuracy by hashing and retrieving multiple cues of half-million cells.

  20. Method and apparatus for adaptive force and position control of manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun (Inventor)

    1989-01-01

    The present invention discloses systematic methods and apparatus for the design of real time controllers. Real-time control employs adaptive force/position by use of feedforward and feedback controllers, with the feedforward controller being the inverse of the linearized model of robot dynamics and containing only proportional-double-derivative terms is disclosed. The feedback controller, of the proportional-integral-derivative type, ensures that manipulator joints follow reference trajectories and the feedback controller achieves robust tracking of step-plus-exponential trajectories, all in real time. The adaptive controller includes adaptive force and position control within a hybrid control architecture. The adaptive controller, for force control, achieves tracking of desired force setpoints, and the adaptive position controller accomplishes tracking of desired position trajectories. Circuits in the adaptive feedback and feedforward controllers are varied by adaptation laws.

  1. Adaptive aggregation method for the Chemical Master Equation.

    PubMed

    Zhang, Jingwei; Watson, Layne T; Cao, Yang

    2009-01-01

    One important aspect of biological systems such as gene regulatory networks and protein-protein interaction networks is the stochastic nature of interactions between chemical species. Such stochastic behaviour can be accurately modelled by the Chemical Master Equation (CME). However, the CME usually imposes intensive computational requirements when used to characterise molecular biological systems. The major challenge comes from the curse of dimensionality, which has been tackled by a few research papers. The essential goal is to aggregate the system efficiently with limited approximation errors. This paper presents an adaptive way to implement the aggregation process using information collected from Monte Carlo simulations. Numerical results show the effectiveness of the proposed algorithm.

  2. An adaptive response surface method for crashworthiness optimization

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Yang, Ren-Jye; Zhu, Ping

    2013-11-01

    Response surface-based design optimization has been commonly used for optimizing large-scale design problems in the automotive industry. However, most response surface models are built by a limited number of design points without considering data uncertainty. In addition, the selection of a response surface in the literature is often arbitrary. This article uses a Bayesian metric to systematically select the best available response surface among several candidates in a library while considering data uncertainty. An adaptive, efficient response surface strategy, which minimizes the number of computationally intensive simulations, was developed for design optimization of large-scale complex problems. This methodology was demonstrated by a crashworthiness optimization example.

  3. Reactivity to nicotine cues over repeated cue reactivity sessions.

    PubMed

    LaRowe, Steven D; Saladin, Michael E; Carpenter, Matthew J; Upadhyaya, Himanshu P

    2007-12-01

    The present study investigated whether reactivity to nicotine-related cues would attenuate across four experimental sessions held 1 week apart. Participants were nineteen non-treatment seeking, nicotine-dependent males. Cue reactivity sessions were performed in an outpatient research center using in vivo cues consisting of standardized smoking-related paraphernalia (e.g., cigarettes) and neutral comparison paraphernalia (e.g., pencils). Craving ratings were collected before and after both cue presentations while physiological measures (heart rate, skin conductance) were collected before and during the cue presentations. Although craving levels decreased across sessions, smoking-related cues consistently evoked significantly greater increases in craving relative to neutral cues over all four experimental sessions. Skin conductance was higher in response to smoking cues, though this effect was not as robust as that observed for craving. Results suggest that, under the described experimental parameters, craving can be reliably elicited over repeated cue reactivity sessions.

  4. Improvement in adaptive nonuniformity correction method with nonlinear model for infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Rui, Lai; Yin-Tang, Yang; Qing, Li; Hui-Xin, Zhou

    2009-09-01

    The scene adaptive nonuniformity correction (NUC) technique is commonly used to decrease the fixed pattern noise (FPN) in infrared focal plane arrays (IRFPA). However, the correction precision of existing scene adaptive NUC methods is reduced by the nonlinear response of IRFPA detectors seriously. In this paper, an improved scene adaptive NUC method that employs "S"-curve model to approximate the detector response is presented. The performance of the proposed method is tested with real infrared video sequence, and the experimental results validate that our method can promote the correction precision considerably.

  5. Nonlinear mode decomposition: a noise-robust, adaptive decomposition method.

    PubMed

    Iatsenko, Dmytro; McClintock, Peter V E; Stefanovska, Aneta

    2015-09-01

    The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool-nonlinear mode decomposition (NMD)-which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques-which, together with the adaptive choice of their parameters, make it extremely noise robust-and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download.

  6. Nonlinear mode decomposition: A noise-robust, adaptive decomposition method

    NASA Astrophysics Data System (ADS)

    Iatsenko, Dmytro; McClintock, Peter V. E.; Stefanovska, Aneta

    2015-09-01

    The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool—nonlinear mode decomposition (NMD)—which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques—which, together with the adaptive choice of their parameters, make it extremely noise robust—and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download.

  7. Nonlinear mode decomposition: a noise-robust, adaptive decomposition method.

    PubMed

    Iatsenko, Dmytro; McClintock, Peter V E; Stefanovska, Aneta

    2015-09-01

    The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool-nonlinear mode decomposition (NMD)-which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques-which, together with the adaptive choice of their parameters, make it extremely noise robust-and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download. PMID:26465549

  8. Investigating Item Exposure Control Methods in Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Ozturk, Nagihan Boztunc; Dogan, Nuri

    2015-01-01

    This study aims to investigate the effects of item exposure control methods on measurement precision and on test security under various item selection methods and item pool characteristics. In this study, the Randomesque (with item group sizes of 5 and 10), Sympson-Hetter, and Fade-Away methods were used as item exposure control methods. Moreover,…

  9. General adaptive guidance using nonlinear programming constraint solving methods (FAST)

    NASA Astrophysics Data System (ADS)

    Skalecki, Lisa; Martin, Marc

    An adaptive, general purpose, constraint solving guidance algorithm called FAST (Flight Algorithm to Solve Trajectories) has been developed by the authors in response to the requirements for the Advanced Launch System (ALS). The FAST algorithm can be used for all mission phases for a wide range of Space Transportation Vehicles without code modification because of the general formulation of the nonlinear programming (NLP) problem, ad the general trajectory simulation used to predict constraint values. The approach allows on board re-targeting for severe weather and changes in payload or mission parameters, increasing flight reliability and dependability while reducing the amount of pre-flight analysis that must be performed. The algorithm is described in general in this paper. Three degree of freedom simulation results are presented for application of the algorithm to ascent and reentry phases of an ALS mission, and Mars aerobraking. Flight processor CPU requirement data is also shown.

  10. Investigation of the Multiple Model Adaptive Control (MMAC) method for flight control systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The application was investigated of control theoretic ideas to the design of flight control systems for the F-8 aircraft. The design of an adaptive control system based upon the so-called multiple model adaptive control (MMAC) method is considered. Progress is reported.

  11. The older person has a stroke: Learning to adapt using the Feldenkrais® Method.

    PubMed

    Jackson-Wyatt, O

    1995-01-01

    The older person with a stroke requires adapted therapeutic interventions to take into account normal age-related changes. The Feldenkrais® Method presents a model for learning to promote adaptability that addresses key functional changes seen with normal aging. Clinical examples related to specific functional tasks are discussed to highlight major treatment modifications and neuromuscular, psychological, emotional, and sensory considerations. PMID:27619899

  12. A Comparative Study of Item Exposure Control Methods in Computerized Adaptive Testing.

    ERIC Educational Resources Information Center

    Chang, Shun-Wen; Twu, Bor-Yaun

    This study investigated and compared the properties of five methods of item exposure control within the purview of estimating examinees' abilities in a computerized adaptive testing (CAT) context. Each of the exposure control algorithms was incorporated into the item selection procedure and the adaptive testing progressed based on the CAT design…

  13. Simple method for adaptive filtering of motion artifacts in E-textile wearable ECG sensors.

    PubMed

    Alkhidir, Tamador; Sluzek, Andrzej; Yapici, Murat Kaya

    2015-08-01

    In this paper, we have developed a simple method for adaptive out-filtering of the motion artifact from the electrocardiogram (ECG) obtained by using conductive textile electrodes. The textile electrodes were placed on the left and the right wrist to measure ECG through lead-1 configuration. The motion artifact was induced by simple hand movements. The reference signal for adaptive filtering was obtained by placing additional electrodes at one hand to capture the motion of the hand. The adaptive filtering was compared to independent component analysis (ICA) algorithm. The signal-to-noise ratio (SNR) for the adaptive filtering approach was higher than independent component analysis in most cases.

  14. An adaptive mesh refinement algorithm for the discrete ordinates method

    SciTech Connect

    Jessee, J.P.; Fiveland, W.A.; Howell, L.H.; Colella, P.; Pember, R.B.

    1996-03-01

    The discrete ordinates form of the radiative transport equation (RTE) is spatially discretized and solved using an adaptive mesh refinement (AMR) algorithm. This technique permits the local grid refinement to minimize spatial discretization error of the RTE. An error estimator is applied to define regions for local grid refinement; overlapping refined grids are recursively placed in these regions; and the RTE is then solved over the entire domain. The procedure continues until the spatial discretization error has been reduced to a sufficient level. The following aspects of the algorithm are discussed: error estimation, grid generation, communication between refined levels, and solution sequencing. This initial formulation employs the step scheme, and is valid for absorbing and isotopically scattering media in two-dimensional enclosures. The utility of the algorithm is tested by comparing the convergence characteristics and accuracy to those of the standard single-grid algorithm for several benchmark cases. The AMR algorithm provides a reduction in memory requirements and maintains the convergence characteristics of the standard single-grid algorithm; however, the cases illustrate that efficiency gains of the AMR algorithm will not be fully realized until three-dimensional geometries are considered.

  15. Parallel architectures for iterative methods on adaptive, block structured grids

    NASA Technical Reports Server (NTRS)

    Gannon, D.; Vanrosendale, J.

    1983-01-01

    A parallel computer architecture well suited to the solution of partial differential equations in complicated geometries is proposed. Algorithms for partial differential equations contain a great deal of parallelism. But this parallelism can be difficult to exploit, particularly on complex problems. One approach to extraction of this parallelism is the use of special purpose architectures tuned to a given problem class. The architecture proposed here is tuned to boundary value problems on complex domains. An adaptive elliptic algorithm which maps effectively onto the proposed architecture is considered in detail. Two levels of parallelism are exploited by the proposed architecture. First, by making use of the freedom one has in grid generation, one can construct grids which are locally regular, permitting a one to one mapping of grids to systolic style processor arrays, at least over small regions. All local parallelism can be extracted by this approach. Second, though there may be a regular global structure to the grids constructed, there will be parallelism at this level. One approach to finding and exploiting this parallelism is to use an architecture having a number of processor clusters connected by a switching network. The use of such a network creates a highly flexible architecture which automatically configures to the problem being solved.

  16. Analysis of modified SMI method for adaptive array weight control

    NASA Technical Reports Server (NTRS)

    Dilsavor, R. L.; Moses, R. L.

    1989-01-01

    An adaptive array is applied to the problem of receiving a desired signal in the presence of weak interference signals which need to be suppressed. A modification, suggested by Gupta, of the sample matrix inversion (SMI) algorithm controls the array weights. In the modified SMI algorithm, interference suppression is increased by subtracting a fraction F of the noise power from the diagonal elements of the estimated covariance matrix. Given the true covariance matrix and the desired signal direction, the modified algorithm is shown to maximize a well-defined, intuitive output power ratio criterion. Expressions are derived for the expected value and variance of the array weights and output powers as a function of the fraction F and the number of snapshots used in the covariance matrix estimate. These expressions are compared with computer simulation and good agreement is found. A trade-off is found to exist between the desired level of interference suppression and the number of snapshots required in order to achieve that level with some certainty. The removal of noise eigenvectors from the covariance matrix inverse is also discussed with respect to this application. Finally, the type and severity of errors which occur in the covariance matrix estimate are characterized through simulation.

  17. An adaptation of Krylov subspace methods to path following

    SciTech Connect

    Walker, H.F.

    1996-12-31

    Krylov subspace methods at present constitute a very well known and highly developed class of iterative linear algebra methods. These have been effectively applied to nonlinear system solving through Newton-Krylov methods, in which Krylov subspace methods are used to solve the linear systems that characterize steps of Newton`s method (the Newton equations). Here, we will discuss the application of Krylov subspace methods to path following problems, in which the object is to track a solution curve as a parameter varies. Path following methods are typically of predictor-corrector form, in which a point near the solution curve is {open_quotes}predicted{close_quotes} by some easy but relatively inaccurate means, and then a series of Newton-like corrector iterations is used to return approximately to the curve. The analogue of the Newton equation is underdetermined, and an additional linear condition must be specified to determine corrector steps uniquely. This is typically done by requiring that the steps be orthogonal to an approximate tangent direction. Augmenting the under-determined system with this orthogonality condition in a straightforward way typically works well if direct linear algebra methods are used, but Krylov subspace methods are often ineffective with this approach. We will discuss recent work in which this orthogonality condition is imposed directly as a constraint on the corrector steps in a certain way. The means of doing this preserves problem conditioning, allows the use of preconditioners constructed for the fixed-parameter case, and has certain other advantages. Experiments on standard PDE continuation test problems indicate that this approach is effective.

  18. Multisensor image cueing (MUSIC)

    NASA Astrophysics Data System (ADS)

    Rodvold, David; Patterson, Tim J.

    2002-07-01

    There have been many years of research and development in the Automatic Target Recognition (ATR) community. This development has resulted in numerous algorithms to perform target detection automatically. The morphing of the ATR acronym to Aided Target Recognition provides a succinct commentary regarding the success of the automatic target recognition research. Now that the goal is aided recognition, many of the algorithms which were not able to provide autonomous recognition may now provide valuable assistance in cueing a human analyst where to look in the images under consideration. This paper describes the MUSIC system being developed for the US Air Force to provide multisensor image cueing. The tool works across multiple image phenomenologies and fuses the evidence across the set of available imagery. MUSIC is designed to work with a wide variety of sensors and platforms, and provide cueing to an image analyst in an information-rich environment. The paper concentrates on the current integration of algorithms into an extensible infrastructure to allow cueing in multiple image types.

  19. Speckle reduction in optical coherence tomography by adaptive total variation method

    NASA Astrophysics Data System (ADS)

    Wu, Tong; Shi, Yaoyao; Liu, Youwen; He, Chongjun

    2015-12-01

    An adaptive total variation method based on the combination of speckle statistics and total variation restoration is proposed and developed for reducing speckle noise in optical coherence tomography (OCT) images. The statistical distribution of the speckle noise in OCT image is investigated and measured. With the measured parameters such as the mean value and variance of the speckle noise, the OCT image is restored by the adaptive total variation restoration method. The adaptive total variation restoration algorithm was applied to the OCT images of a volunteer's hand skin, which showed effective speckle noise reduction and image quality improvement. For image quality comparison, the commonly used median filtering method was also applied to the same images to reduce the speckle noise. The measured results demonstrate the superior performance of the adaptive total variation restoration method in terms of image signal-to-noise ratio, equivalent number of looks, contrast-to-noise ratio, and mean square error.

  20. Adapting Western research methods to indigenous ways of knowing.

    PubMed

    Simonds, Vanessa W; Christopher, Suzanne

    2013-12-01

    Indigenous communities have long experienced exploitation by researchers and increasingly require participatory and decolonizing research processes. We present a case study of an intervention research project to exemplify a clash between Western research methodologies and Indigenous methodologies and how we attempted reconciliation. We then provide implications for future research based on lessons learned from Native American community partners who voiced concern over methods of Western deductive qualitative analysis. Decolonizing research requires constant reflective attention and action, and there is an absence of published guidance for this process. Continued exploration is needed for implementing Indigenous methods alone or in conjunction with appropriate Western methods when conducting research in Indigenous communities. Currently, examples of Indigenous methods and theories are not widely available in academic texts or published articles, and are often not perceived as valid.

  1. Adapting Western Research Methods to Indigenous Ways of Knowing

    PubMed Central

    Christopher, Suzanne

    2013-01-01

    Indigenous communities have long experienced exploitation by researchers and increasingly require participatory and decolonizing research processes. We present a case study of an intervention research project to exemplify a clash between Western research methodologies and Indigenous methodologies and how we attempted reconciliation. We then provide implications for future research based on lessons learned from Native American community partners who voiced concern over methods of Western deductive qualitative analysis. Decolonizing research requires constant reflective attention and action, and there is an absence of published guidance for this process. Continued exploration is needed for implementing Indigenous methods alone or in conjunction with appropriate Western methods when conducting research in Indigenous communities. Currently, examples of Indigenous methods and theories are not widely available in academic texts or published articles, and are often not perceived as valid. PMID:23678897

  2. Automatic multirate methods for ordinary differential equations. [Adaptive time steps

    SciTech Connect

    Gear, C.W.

    1980-01-01

    A study is made of the application of integration methods in which different step sizes are used for different members of a system of equations. Such methods can result in savings if the cost of derivative evaluation is high or if a system is sparse; however, the estimation and control of errors is very difficult and can lead to high overheads. Three approaches are discussed, and it is shown that the least intuitive is the most promising. 2 figures.

  3. Adaptive error covariances estimation methods for ensemble Kalman filters

    SciTech Connect

    Zhen, Yicun; Harlim, John

    2015-08-01

    This paper presents a computationally fast algorithm for estimating, both, the system and observation noise covariances of nonlinear dynamics, that can be used in an ensemble Kalman filtering framework. The new method is a modification of Belanger's recursive method, to avoid an expensive computational cost in inverting error covariance matrices of product of innovation processes of different lags when the number of observations becomes large. When we use only product of innovation processes up to one-lag, the computational cost is indeed comparable to a recently proposed method by Berry–Sauer's. However, our method is more flexible since it allows for using information from product of innovation processes of more than one-lag. Extensive numerical comparisons between the proposed method and both the original Belanger's and Berry–Sauer's schemes are shown in various examples, ranging from low-dimensional linear and nonlinear systems of SDEs and 40-dimensional stochastically forced Lorenz-96 model. Our numerical results suggest that the proposed scheme is as accurate as the original Belanger's scheme on low-dimensional problems and has a wider range of more accurate estimates compared to Berry–Sauer's method on L-96 example.

  4. Gait parameter control timing with dynamic manual contact or visual cues.

    PubMed

    Rabin, Ely; Shi, Peter; Werner, William

    2016-06-01

    We investigated the timing of gait parameter changes (stride length, peak toe velocity, and double-, single-support, and complete step duration) to control gait speed. Eleven healthy participants adjusted their gait speed on a treadmill to maintain a constant distance between them and a fore-aft oscillating cue (a place on a conveyor belt surface). The experimental design balanced conditions of cue modality (vision: eyes-open; manual contact: eyes-closed while touching the cue); treadmill speed (0.2, 0.4, 0.85, and 1.3 m/s); and cue motion (none, ±10 cm at 0.09, 0.11, and 0.18 Hz). Correlation analyses revealed a number of temporal relationships between gait parameters and cue speed. The results suggest that neural control ranged from feedforward to feedback. Specifically, step length preceded cue velocity during double-support duration suggesting anticipatory control. Peak toe velocity nearly coincided with its most-correlated cue velocity during single-support duration. The toe-off concluding step and double-support durations followed their most-correlated cue velocity, suggesting feedback control. Cue-tracking accuracy and cue velocity correlations with timing parameters were higher with the manual contact cue than visual cue. The cue/gait timing relationships generalized across cue modalities, albeit with greater delays of step-cycle events relative to manual contact cue velocity. We conclude that individual kinematic parameters of gait are controlled to achieve a desired velocity at different specific times during the gait cycle. The overall timing pattern of instantaneous cue velocities associated with different gait parameters is conserved across cues that afford different performance accuracies. This timing pattern may be temporally shifted to optimize control. Different cue/gait parameter latencies in our nonadaptation paradigm provide general-case evidence of the independent control of gait parameters previously demonstrated in gait adaptation paradigms

  5. ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve☆

    PubMed Central

    Feischl, Michael; Führer, Thomas; Karkulik, Michael; Praetorius, Dirk

    2014-01-01

    In the context of the adaptive finite element method (FEM), ZZ-error estimators named after Zienkiewicz and Zhu (1987) [52] are mathematically well-established and widely used in practice. In this work, we propose and analyze ZZ-type error estimators for the adaptive boundary element method (BEM). We consider weakly singular and hyper-singular integral equations and prove, in particular, convergence of the related adaptive mesh-refining algorithms. Throughout, the theoretical findings are underlined by numerical experiments. PMID:24748725

  6. Systems and Methods for Parameter Dependent Riccati Equation Approaches to Adaptive Control

    NASA Technical Reports Server (NTRS)

    Kim, Kilsoo (Inventor); Yucelen, Tansel (Inventor); Calise, Anthony J. (Inventor)

    2015-01-01

    Systems and methods for adaptive control are disclosed. The systems and methods can control uncertain dynamic systems. The control system can comprise a controller that employs a parameter dependent Riccati equation. The controller can produce a response that causes the state of the system to remain bounded. The control system can control both minimum phase and non-minimum phase systems. The control system can augment an existing, non-adaptive control design without modifying the gains employed in that design. The control system can also avoid the use of high gains in both the observer design and the adaptive control law.

  7. Ecological Scarcity Method: Adaptation and Implementation for Different Countries

    NASA Astrophysics Data System (ADS)

    Grinberg, Marina; Ackermann, Robert; Finkbeiner, Matthias

    2012-12-01

    The Ecological Scarcity Method is one of the methods for impact assessment in LCA. It enables to express different environmental impacts in single score units, eco-points. Such results are handy for decision-makers in policy or enterprises to improve environmental management. So far this method is mostly used in the country of its origin, Switzerland. Eco-factors derive from the national conditions. For other countries sometimes it is impossible to calculate all ecofactors. The solution of the problem is to create a set of transformation rules. The rules should take into account the regional differences, the level of society development, the grade of scarcity and other factors. The research is focused on the creation of transformation rules between Switzerland, Germany and the Russian Federation in case of GHG emissions.

  8. Context-specific adaptation of pursuit initiation in humans

    NASA Technical Reports Server (NTRS)

    Takagi, M.; Abe, H.; Hasegawa, S.; Usui, T.; Hasebe, H.; Miki, A.; Zee, D. S.; Shelhauser, M. (Principal Investigator)

    2000-01-01

    PURPOSE: To determine if multiple states for the initiation of pursuit, as assessed by acceleration in the "open-loop" period, can be learned and gated by context. METHODS: Four normal subjects were studied. A modified step-ramp paradigm for horizontal pursuit was used to induce adaptation. In an increasing paradigm, target velocity doubled 230 msec after onset; in a decreasing paradigm, it was halved. In the first experiment, vertical eye position (+/-5 degrees ) was used as the context cue, and the training paradigm (increasing or decreasing) changed with vertical eye position. In the second experiment, with vertical position constant, when the target was red, training was decreasing, and when green, increasing. The average eye acceleration in the first 100 msec of tracking was the index of open-loop pursuit performance. RESULTS: With vertical position as the cue, pursuit adaptation differed between up and down gaze. In some cases, the direction of adaptation was in exact accord with the training stimuli. In others, acceleration increased or decreased for both up and down gaze but always in correct relative proportion to the training stimuli. In contrast, multiple adaptive states were not induced with color as the cue. CONCLUSIONS: Multiple values for the relationship between the average eye acceleration during the initiation of pursuit and target velocity could be learned and gated by context. Vertical position was an effective contextual cue but not target color, implying that useful contextual cues must be similar to those occurring naturally, for example, orbital position with eye muscle weakness.

  9. Generalization and transfer of contextual cues in motor learning

    PubMed Central

    Stegeman, D. F.; Selen, L. P. J.; Medendorp, W. P.

    2015-01-01

    We continuously adapt our movements in daily life, forming new internal models whenever necessary and updating existing ones. Recent work has suggested that this flexibility is enabled via sensorimotor cues, serving to access the correct internal model whenever necessary and keeping new models apart from previous ones. While research to date has mainly focused on identifying the nature of such cue representations, here we investigated whether and how these cue representations generalize, interfere, and transfer within and across effector systems. Subjects were trained to make two-stage reaching movements: a premovement that served as a cue, followed by a targeted movement that was perturbed by one of two opposite curl force fields. The direction of the premovement was uniquely coupled to the direction of the ensuing force field, enabling simultaneous learning of the two respective internal models. After training, generalization of the two premovement cues' representations was tested at untrained premovement directions, within both the trained and untrained hand. We show that the individual premovement representations generalize in a Gaussian-like pattern around the trained premovement direction. When the force fields are of unequal strengths, the cue-dependent generalization skews toward the strongest field. Furthermore, generalization patterns transfer to the nontrained hand, in an extrinsic reference frame. We conclude that contextual cues do not serve as discrete switches between multiple internal models. Instead, their generalization suggests a weighted contribution of the associated internal models based on the angular separation from the trained cues to the net motor output. PMID:26156381

  10. Generalization and transfer of contextual cues in motor learning.

    PubMed

    Sarwary, A M E; Stegeman, D F; Selen, L P J; Medendorp, W P

    2015-09-01

    We continuously adapt our movements in daily life, forming new internal models whenever necessary and updating existing ones. Recent work has suggested that this flexibility is enabled via sensorimotor cues, serving to access the correct internal model whenever necessary and keeping new models apart from previous ones. While research to date has mainly focused on identifying the nature of such cue representations, here we investigated whether and how these cue representations generalize, interfere, and transfer within and across effector systems. Subjects were trained to make two-stage reaching movements: a premovement that served as a cue, followed by a targeted movement that was perturbed by one of two opposite curl force fields. The direction of the premovement was uniquely coupled to the direction of the ensuing force field, enabling simultaneous learning of the two respective internal models. After training, generalization of the two premovement cues' representations was tested at untrained premovement directions, within both the trained and untrained hand. We show that the individual premovement representations generalize in a Gaussian-like pattern around the trained premovement direction. When the force fields are of unequal strengths, the cue-dependent generalization skews toward the strongest field. Furthermore, generalization patterns transfer to the nontrained hand, in an extrinsic reference frame. We conclude that contextual cues do not serve as discrete switches between multiple internal models. Instead, their generalization suggests a weighted contribution of the associated internal models based on the angular separation from the trained cues to the net motor output. PMID:26156381

  11. A high-throughput multiplex method adapted for GMO detection.

    PubMed

    Chaouachi, Maher; Chupeau, Gaëlle; Berard, Aurélie; McKhann, Heather; Romaniuk, Marcel; Giancola, Sandra; Laval, Valérie; Bertheau, Yves; Brunel, Dominique

    2008-12-24

    A high-throughput multiplex assay for the detection of genetically modified organisms (GMO) was developed on the basis of the existing SNPlex method designed for SNP genotyping. This SNPlex assay allows the simultaneous detection of up to 48 short DNA sequences (approximately 70 bp; "signature sequences") from taxa endogenous reference genes, from GMO constructions, screening targets, construct-specific, and event-specific targets, and finally from donor organisms. This assay avoids certain shortcomings of multiplex PCR-based methods already in widespread use for GMO detection. The assay demonstrated high specificity and sensitivity. The results suggest that this assay is reliable, flexible, and cost- and time-effective for high-throughput GMO detection.

  12. MR Image Reconstruction Using Block Matching and Adaptive Kernel Methods

    PubMed Central

    Schmidt, Johannes F. M.; Santelli, Claudio; Kozerke, Sebastian

    2016-01-01

    An approach to Magnetic Resonance (MR) image reconstruction from undersampled data is proposed. Undersampling artifacts are removed using an iterative thresholding algorithm applied to nonlinearly transformed image block arrays. Each block array is transformed using kernel principal component analysis where the contribution of each image block to the transform depends in a nonlinear fashion on the distance to other image blocks. Elimination of undersampling artifacts is achieved by conventional principal component analysis in the nonlinear transform domain, projection onto the main components and back-mapping into the image domain. Iterative image reconstruction is performed by interleaving the proposed undersampling artifact removal step and gradient updates enforcing consistency with acquired k-space data. The algorithm is evaluated using retrospectively undersampled MR cardiac cine data and compared to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT reconstruction. Evaluation of image quality and root-mean-squared-error (RMSE) reveal improved image reconstruction for up to 8-fold undersampled data with the proposed approach relative to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT. In conclusion, block matching and kernel methods can be used for effective removal of undersampling artifacts in MR image reconstruction and outperform methods using standard compressed sensing and ℓ1-regularized parallel imaging methods. PMID:27116675

  13. An Adaptive Kalman Filter Using a Simple Residual Tuning Method

    NASA Technical Reports Server (NTRS)

    Harman, Richard R.

    1999-01-01

    One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. A. H. Jazwinski developed a specialized version of this technique for estimation of process noise. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.

  14. An Adaptive Kalman Filter using a Simple Residual Tuning Method

    NASA Technical Reports Server (NTRS)

    Harman, Richard R.

    1999-01-01

    One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.

  15. The Pilates method and cardiorespiratory adaptation to training.

    PubMed

    Tinoco-Fernández, Maria; Jiménez-Martín, Miguel; Sánchez-Caravaca, M Angeles; Fernández-Pérez, Antonio M; Ramírez-Rodrigo, Jesús; Villaverde-Gutiérrez, Carmen

    2016-01-01

    Although all authors report beneficial health changes following training based on the Pilates method, no explicit analysis has been performed of its cardiorespiratory effects. The objective of this study was to evaluate possible changes in cardiorespiratory parameters with the Pilates method. A total of 45 university students aged 18-35 years (77.8% female and 22.2% male), who did not routinely practice physical exercise or sports, volunteered for the study and signed informed consent. The Pilates training was conducted over 10 weeks, with three 1-hour sessions per week. Physiological cardiorespiratory responses were assessed using a MasterScreen CPX apparatus. After the 10-week training, statistically significant improvements were observed in mean heart rate (135.4-124.2 beats/min), respiratory exchange ratio (1.1-0.9) and oxygen equivalent (30.7-27.6) values, among other spirometric parameters, in submaximal aerobic testing. These findings indicate that practice of the Pilates method has a positive influence on cardiorespiratory parameters in healthy adults who do not routinely practice physical exercise activities. PMID:27357919

  16. Laboratory-based, cue-elicited craving and cue reactivity as predictors of naturally occurring smoking behavior.

    PubMed

    Carpenter, Matthew J; Saladin, Michael E; DeSantis, Stacia; Gray, Kevin M; LaRowe, Steven D; Upadhyaya, Himanshu P

    2009-01-01

    Cigarette craving, one hallmark sign of nicotine dependence, is often measured in laboratory settings using cue reactivity methods. How lab measures of cue reactivity relate to real world smoking behavior is unclear, particularly among non-treatment seeking smokers. Within a larger study of hormonal effects on cue reactivity (N=78), we examined the predictive relationship of cue reactivity to smoking, each measured in several ways. Results indicated that cue-evoked craving in response to stressful imagery, and to a lesser extent, in vivo smoking cues, significantly predicted smoking behavior during the week following testing. However, this predictive relationship was absent upon controlling for reactivity to neutral cues. Nicotine dependence may moderate the relationship between cue reactivity and actual smoking, such that this predictive relationship is less robust among highly dependent smokers than among smokers low in nicotine dependence. The question of whether cue-elicited craving predicts smoking among smokers not in treatment is best answered with a qualified yes, depending on how craving is manipulated and measured. Our findings highlight important methodological and theoretical considerations for cue reactivity research.

  17. Restrictive Stochastic Item Selection Methods in Cognitive Diagnostic Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Wang, Chun; Chang, Hua-Hua; Huebner, Alan

    2011-01-01

    This paper proposes two new item selection methods for cognitive diagnostic computerized adaptive testing: the restrictive progressive method and the restrictive threshold method. They are built upon the posterior weighted Kullback-Leibler (KL) information index but include additional stochastic components either in the item selection index or in…

  18. A Massively Parallel Adaptive Fast Multipole Method on Heterogeneous Architectures

    SciTech Connect

    Lashuk, Ilya; Chandramowlishwaran, Aparna; Langston, Harper; Nguyen, Tuan-Anh; Sampath, Rahul S; Shringarpure, Aashay; Vuduc, Richard; Ying, Lexing; Zorin, Denis; Biros, George

    2012-01-01

    We describe a parallel fast multipole method (FMM) for highly nonuniform distributions of particles. We employ both distributed memory parallelism (via MPI) and shared memory parallelism (via OpenMP and GPU acceleration) to rapidly evaluate two-body nonoscillatory potentials in three dimensions on heterogeneous high performance computing architectures. We have performed scalability tests with up to 30 billion particles on 196,608 cores on the AMD/CRAY-based Jaguar system at ORNL. On a GPU-enabled system (NSF's Keeneland at Georgia Tech/ORNL), we observed 30x speedup over a single core CPU and 7x speedup over a multicore CPU implementation. By combining GPUs with MPI, we achieve less than 10 ns/particle and six digits of accuracy for a run with 48 million nonuniformly distributed particles on 192 GPUs.

  19. Mind your pricing cues.

    PubMed

    Anderson, Eric; Simester, Duncan

    2003-09-01

    For most of the items they buy, consumers don't have an accurate sense of what the price should be. Ask them to guess how much a four-pack of 35-mm film costs, and you'll get a variety of wrong answers: Most people will underestimate; many will only shrug. Research shows that consumers' knowledge of the market is so far from perfect that it hardly deserves to be called knowledge at all. Yet people happily buy film and other products every day. Is this because they don't care what kind of deal they're getting? No. Remarkably, it's because they rely on retailers to tell them whether they're getting a good price. In subtle and not-so-subtle ways, retailers send signals to customers, telling them whether a given price is relatively high or low. In this article, the authors review several common pricing cues retailers use--"sale" signs, prices that end in 9, signpost items, and price-matching guarantees. They also offer some surprising facts about how--and how well--those cues work. For instance, the authors' tests with several mail-order catalogs reveal that including the word "sale" beside a price can increase demand by more than 50%. The practice of using a 9 at the end of a price to denote a bargain is so common, you'd think customers would be numb to it. Yet in a study the authors did involving a women's clothing catalog, they increased demand by a third just by changing the price of a dress from $34 to $39. Pricing cues are powerful tools for guiding customers' purchasing decisions, but they must be applied judiciously. Used inappropriately, the cues may breach customers' trust, reduce brand equity, and give rise to lawsuits. PMID:12964397

  20. Error estimation and adaptive order nodal method for solving multidimensional transport problems

    SciTech Connect

    Zamonsky, O.M.; Gho, C.J.; Azmy, Y.Y.

    1998-01-01

    The authors propose a modification of the Arbitrarily High Order Transport Nodal method whereby they solve each node and each direction using different expansion order. With this feature and a previously proposed a posteriori error estimator they develop an adaptive order scheme to automatically improve the accuracy of the solution of the transport equation. They implemented the modified nodal method, the error estimator and the adaptive order scheme into a discrete-ordinates code for solving monoenergetic, fixed source, isotropic scattering problems in two-dimensional Cartesian geometry. They solve two test problems with large homogeneous regions to test the adaptive order scheme. The results show that using the adaptive process the storage requirements are reduced while preserving the accuracy of the results.

  1. An Adaptive Unstructured Grid Method by Grid Subdivision, Local Remeshing, and Grid Movement

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    1999-01-01

    An unstructured grid adaptation technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The approach is based on a combination of grid subdivision, local remeshing, and grid movement. For solution adaptive grids, the surface triangulation is locally refined by grid subdivision, and the tetrahedral grid in the field is partially remeshed at locations of dominant flow features. A grid redistribution strategy is employed for geometric adaptation of volume grids to moving or deforming surfaces. The method is automatic and fast and is designed for modular coupling with different solvers. Several steady state test cases with different inviscid flow features were tested for grid/solution adaptation. In all cases, the dominant flow features, such as shocks and vortices, were accurately and efficiently predicted with the present approach. A new and robust method of moving tetrahedral "viscous" grids is also presented and demonstrated on a three-dimensional example.

  2. Impedance adaptation methods of the piezoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Kim, Hyeoungwoo

    In this study, the important issues of energy recovery were addressed and a comprehensive investigation was performed on harvesting electrical power from an ambient mechanical vibration source. Also discussed are the impedance matching methods used to increase the efficiency of energy transfer from the environment to the application. Initially, the mechanical impedance matching method was investigated to increase mechanical energy transferred to the transducer from the environment. This was done by reducing the mechanical impedance such as damping factor and energy reflection ratio. The vibration source and the transducer were modeled by a two-degree-of-freedom dynamic system with mass, spring constant, and damper. The transmissibility employed to show how much mechanical energy that was transferred in this system was affected by the damping ratio and the stiffness of elastic materials. The mechanical impedance of the system was described by electrical system using analogy between the two systems in order to simply the total mechanical impedance. Secondly, the transduction rate of mechanical energy to electrical energy was improved by using a PZT material which has a high figure of merit and a high electromechanical coupling factor for electrical power generation, and a piezoelectric transducer which has a high transduction rate was designed and fabricated. The high g material (g33 = 40 [10-3Vm/N]) was developed to improve the figure of merit of the PZT ceramics. The cymbal composite transducer has been found as a promising structure for piezoelectric energy harvesting under high force at cyclic conditions (10--200 Hz), because it has almost 40 times higher effective strain coefficient than PZT ceramics. The endcap of cymbal also enhances the endurance of the ceramic to sustain ac load along with stress amplification. In addition, a macro fiber composite (MFC) was employed as a strain component because of its flexibility and the high electromechanical coupling

  3. An adaptive multiscale finite element method for unsaturated flow problems in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    He, Xinguang; Ren, Li

    2009-07-01

    SummaryIn this paper we present an adaptive multiscale finite element method for solving the unsaturated water flow problems in heterogeneous porous media spanning over many scales. The main purpose is to design a numerical method which is capable of adaptively capturing the large-scale behavior of the solution on a coarse-scale mesh without resolving all the small-scale details at each time step. This is accomplished by constructing the multiscale base functions that are adapted to the time change of the unsaturated hydraulic conductivity field. The key idea of our method is to use a criterion based on the temporal variation of the hydraulic conductivity field to determine when and where to update our multiscale base functions. As a consequence, these base functions are able to dynamically account for the spatio-temporal variability in the equation coefficients. We described the principle for constructing such a method in detail and gave an algorithm for implementing it. Numerical experiments were carried out for the unsaturated water flow equation with randomly generated lognormal hydraulic parameters to demonstrate the efficiency and accuracy of the proposed method. The results show that throughout the adaptive simulation, only a very small fraction of the multiscale base functions needs to be recomputed, and the level of accuracy of the adaptive method is higher than that of the multiscale finite element technique in which the base functions are not updated with the time change of the hydraulic conductivity.

  4. On the use of adaptive moving grid methods in combustion problems

    SciTech Connect

    Hyman, J.M.; Larrouturou, B.

    1986-01-01

    The investigators have presented the reasons and advantages of adaptively moving the mesh points for the solution of time-dependent PDEs (partial differential equations) systems developing sharp gradients, and more specifically for combustion problems. Several available adaptive dynamic rezone methods have been briefly reviewed, and the effectiveness of these algorithms for combustion problems has been illustrated by the numerical solution of a simple flame propagation problem. 29 refs., 7 figs.

  5. A robust adaptive sampling method for faster acquisition of MR images.

    PubMed

    Vellagoundar, Jaganathan; Machireddy, Ramasubba Reddy

    2015-06-01

    A robust adaptive k-space sampling method is proposed for faster acquisition and reconstruction of MR images. In this method, undersampling patterns are generated based on magnitude profile of a fully acquired 2-D k-space data. Images are reconstructed using compressive sampling reconstruction algorithm. Simulation experiments are done to assess the performance of the proposed method under various signal-to-noise ratio (SNR) levels. The performance of the method is better than non-adaptive variable density sampling method when k-space SNR is greater than 10dB. The method is implemented on a fully acquired multi-slice raw k-space data and a quality assurance phantom data. Data reduction of up to 60% is achieved in the multi-slice imaging data and 75% is achieved in the phantom imaging data. The results show that reconstruction accuracy is improved over non-adaptive or conventional variable density sampling method. The proposed sampling method is signal dependent and the estimation of sampling locations is robust to noise. As a result, it eliminates the necessity of mathematical model and parameter tuning to compute k-space sampling patterns as required in non-adaptive sampling methods.

  6. A self-organizing Lagrangian particle method for adaptive-resolution advection-diffusion simulations

    NASA Astrophysics Data System (ADS)

    Reboux, Sylvain; Schrader, Birte; Sbalzarini, Ivo F.

    2012-05-01

    We present a novel adaptive-resolution particle method for continuous parabolic problems. In this method, particles self-organize in order to adapt to local resolution requirements. This is achieved by pseudo forces that are designed so as to guarantee that the solution is always well sampled and that no holes or clusters develop in the particle distribution. The particle sizes are locally adapted to the length scale of the solution. Differential operators are consistently evaluated on the evolving set of irregularly distributed particles of varying sizes using discretization-corrected operators. The method does not rely on any global transforms or mapping functions. After presenting the method and its error analysis, we demonstrate its capabilities and limitations on a set of two- and three-dimensional benchmark problems. These include advection-diffusion, the Burgers equation, the Buckley-Leverett five-spot problem, and curvature-driven level-set surface refinement.

  7. A self-adaptive-grid method with application to airfoil flow

    NASA Technical Reports Server (NTRS)

    Nakahashi, K.; Deiwert, G. S.

    1985-01-01

    A self-adaptive-grid method is described that is suitable for multidimensional steady and unsteady computations. Based on variational principles, a spring analogy is used to redistribute grid points in an optimal sense to reduce the overall solution error. User-specified parameters, denoting both maximum and minimum permissible grid spacings, are used to define the all-important constants, thereby minimizing the empiricism and making the method self-adaptive. Operator splitting and one-sided controls for orthogonality and smoothness are used to make the method practical, robust, and efficient. Examples are included for both steady and unsteady viscous flow computations about airfoils in two dimensions, as well as for a steady inviscid flow computation and a one-dimensional case. These examples illustrate the precise control the user has with the self-adaptive method and demonstrate a significant improvement in accuracy and quality of the solutions.

  8. Research on adaptive segmentation and activity classification method of filamentous fungi image in microbe fermentation

    NASA Astrophysics Data System (ADS)

    Cai, Xiaochun; Hu, Yihua; Wang, Peng; Sun, Dujuan; Hu, Guilan

    2009-10-01

    The paper presents an adaptive segmentation and activity classification method for filamentous fungi image. Firstly, an adaptive structuring element (SE) construction algorithm is proposed for image background suppression. Based on watershed transform method, the color labeled segmentation of fungi image is taken. Secondly, the fungi elements feature space is described and the feature set for fungi hyphae activity classification is extracted. The growth rate evaluation of fungi hyphae is achieved by using SVM classifier. Some experimental results demonstrate that the proposed method is effective for filamentous fungi image processing.

  9. An adaptive wavelet stochastic collocation method for irregular solutions of stochastic partial differential equations

    SciTech Connect

    Webster, Clayton G; Zhang, Guannan; Gunzburger, Max D

    2012-10-01

    Accurate predictive simulations of complex real world applications require numerical approximations to first, oppose the curse of dimensionality and second, converge quickly in the presence of steep gradients, sharp transitions, bifurcations or finite discontinuities in high-dimensional parameter spaces. In this paper we present a novel multi-dimensional multi-resolution adaptive (MdMrA) sparse grid stochastic collocation method, that utilizes hierarchical multiscale piecewise Riesz basis functions constructed from interpolating wavelets. The basis for our non-intrusive method forms a stable multiscale splitting and thus, optimal adaptation is achieved. Error estimates and numerical examples will used to compare the efficiency of the method with several other techniques.

  10. Arbitrary Lagrangian-Eulerian Method with Local Structured Adaptive Mesh Refinement for Modeling Shock Hydrodynamics

    SciTech Connect

    Anderson, R W; Pember, R B; Elliott, N S

    2001-10-22

    A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. This method facilitates the solution of problems currently at and beyond the boundary of soluble problems by traditional ALE methods by focusing computational resources where they are required through dynamic adaption. Many of the core issues involved in the development of the combined ALEAMR method hinge upon the integration of AMR with a staggered grid Lagrangian integration method. The novel components of the method are mainly driven by the need to reconcile traditional AMR techniques, which are typically employed on stationary meshes with cell-centered quantities, with the staggered grids and grid motion employed by Lagrangian methods. Numerical examples are presented which demonstrate the accuracy and efficiency of the method.

  11. Five Methods to Score the Teacher Observation of Classroom Adaptation Checklist and to Examine Group Differences

    ERIC Educational Resources Information Center

    Wang, Ze; Rohrer, David; Chuang, Chi-ching; Fujiki, Mayo; Herman, Keith; Reinke, Wendy

    2015-01-01

    This study compared 5 scoring methods in terms of their statistical assumptions. They were then used to score the Teacher Observation of Classroom Adaptation Checklist, a measure consisting of 3 subscales and 21 Likert-type items. The 5 methods used were (a) sum/average scores of items, (b) latent factor scores with continuous indicators, (c)…

  12. Adaptation of the TCLP and SW-846 methods to radioactive mixed waste

    SciTech Connect

    Griest, W.H.; Schenley, R.L.; Caton, J.E.; Wolfe, P.F.

    1994-07-01

    Modifications of conventional sample preparation and analytical methods are necessary to provide radiation protection and to meet sensitivity requirements for regulated constituents when working with radioactive samples. Adaptations of regulatory methods for determining ``total`` Toxicity Characteristic Leaching Procedure (TCLP) volatile and semivolatile organics and pesticides, and for conducting aqueous leaching are presented.

  13. Identifying specific erotic cues in sexual deviations by audiotaped descriptions.

    PubMed Central

    Abel, G G; Blanchard, E B; Barlow, D H; Mavissakalian, M

    1975-01-01

    Using audiotaped descriptions of sexual experiences and a direct measure of penile erection, it is possible to specify more precisely erotic cues in sexual deviates. Results indicated that such cues are highly idiosyncratic. Some tentative conclusions and suggested application for the method are discussed. PMID:1184490

  14. An h-adaptive local discontinuous Galerkin method for the Navier-Stokes-Korteweg equations

    NASA Astrophysics Data System (ADS)

    Tian, Lulu; Xu, Yan; Kuerten, J. G. M.; van der Vegt, J. J. W.

    2016-08-01

    In this article, we develop a mesh adaptation algorithm for a local discontinuous Galerkin (LDG) discretization of the (non)-isothermal Navier-Stokes-Korteweg (NSK) equations modeling liquid-vapor flows with phase change. This work is a continuation of our previous research, where we proposed LDG discretizations for the (non)-isothermal NSK equations with a time-implicit Runge-Kutta method. To save computing time and to capture the thin interfaces more accurately, we extend the LDG discretization with a mesh adaptation method. Given the current adapted mesh, a criterion for selecting candidate elements for refinement and coarsening is adopted based on the locally largest value of the density gradient. A strategy to refine and coarsen the candidate elements is then provided. We emphasize that the adaptive LDG discretization is relatively simple and does not require additional stabilization. The use of a locally refined mesh in combination with an implicit Runge-Kutta time method is, however, non-trivial, but results in an efficient time integration method for the NSK equations. Computations, including cases with solid wall boundaries, are provided to demonstrate the accuracy, efficiency and capabilities of the adaptive LDG discretizations.

  15. Estimating the Importance of Private Adaptation to Climate Change in Agriculture: A Review of Empirical Methods

    NASA Astrophysics Data System (ADS)

    Moore, F.; Burke, M.

    2015-12-01

    A wide range of studies using a variety of methods strongly suggest that climate change will have a negative impact on agricultural production in many areas. Farmers though should be able to learn about a changing climate and to adjust what they grow and how they grow it in order to reduce these negative impacts. However, it remains unclear how effective these private (autonomous) adaptations will be, or how quickly they will be adopted. Constraining the uncertainty on this adaptation is important for understanding the impacts of climate change on agriculture. Here we review a number of empirical methods that have been proposed for understanding the rate and effectiveness of private adaptation to climate change. We compare these methods using data on agricultural yields in the United States and western Europe.

  16. Sparse regularization-based reconstruction for bioluminescence tomography using a multilevel adaptive finite element method.

    PubMed

    He, Xiaowei; Hou, Yanbin; Chen, Duofang; Jiang, Yuchuan; Shen, Man; Liu, Junting; Zhang, Qitan; Tian, Jie

    2011-01-01

    Bioluminescence tomography (BLT) is a promising tool for studying physiological and pathological processes at cellular and molecular levels. In most clinical or preclinical practices, fine discretization is needed for recovering sources with acceptable resolution when solving BLT with finite element method (FEM). Nevertheless, uniformly fine meshes would cause large dataset and overfine meshes might aggravate the ill-posedness of BLT. Additionally, accurately quantitative information of density and power has not been simultaneously obtained so far. In this paper, we present a novel multilevel sparse reconstruction method based on adaptive FEM framework. In this method, permissible source region gradually reduces with adaptive local mesh refinement. By using sparse reconstruction with l(1) regularization on multilevel adaptive meshes, simultaneous recovery of density and power as well as accurate source location can be achieved. Experimental results for heterogeneous phantom and mouse atlas model demonstrate its effectiveness and potentiality in the application of quantitative BLT.

  17. The adaptive problems of female teenage refugees and their behavioral adjustment methods for coping

    PubMed Central

    Mhaidat, Fatin

    2016-01-01

    This study aimed at identifying the levels of adaptive problems among teenage female refugees in the government schools and explored the behavioral methods that were used to cope with the problems. The sample was composed of 220 Syrian female students (seventh to first secondary grades) enrolled at government schools within the Zarqa Directorate and who came to Jordan due to the war conditions in their home country. The study used the scale of adaptive problems that consists of four dimensions (depression, anger and hostility, low self-esteem, and feeling insecure) and a questionnaire of the behavioral adjustment methods for dealing with the problem of asylum. The results indicated that the Syrian teenage female refugees suffer a moderate degree of adaptation problems, and the positive adjustment methods they have used are more than the negatives. PMID:27175098

  18. Asynchronous multilevel adaptive methods for solving partial differential equations on multiprocessors - Performance results

    NASA Technical Reports Server (NTRS)

    Mccormick, S.; Quinlan, D.

    1989-01-01

    The fast adaptive composite grid method (FAC) is an algorithm that uses various levels of uniform grids (global and local) to provide adaptive resolution and fast solution of PDEs. Like all such methods, it offers parallelism by using possibly many disconnected patches per level, but is hindered by the need to handle these levels sequentially. The finest levels must therefore wait for processing to be essentially completed on all the coarser ones. A recently developed asynchronous version of FAC, called AFAC, completely eliminates this bottleneck to parallelism. This paper describes timing results for AFAC, coupled with a simple load balancing scheme, applied to the solution of elliptic PDEs on an Intel iPSC hypercube. These tests include performance of certain processes necessary in adaptive methods, including moving grids and changing refinement. A companion paper reports on numerical and analytical results for estimating convergence factors of AFAC applied to very large scale examples.

  19. Attentional cueing at the saccade goal, not at the target location, facilitates saccades

    PubMed Central

    Khan, Aarlenne Z.; Heinen, Stephen J.; McPeek, Robert M.

    2010-01-01

    Presenting a behaviorally irrelevant cue shortly before a target at the same location decreases the latencies of saccades to the target, a phenomenon known as exogenous attention facilitation. It remains unclear whether exogenous attention interacts with early, sensory stages or later, motor planning stages of saccade production. To distinguish between these alternatives, we used a saccadic adaptation paradigm to dissociate the location of the visual target from the saccade goal. 3 male and 4 female human subjects performed both control trials, in which saccades were made to one of two target eccentricities, and adaptation trials, in which the target was shifted from one location to the other during the saccade. This manipulation adapted saccades so that they eventually were directed to the shifted location. In both conditions, a behaviorally irrelevant cue was flashed 66.7 ms before target appearance at a randomly selected one of seven positions that included the two target locations. In control trials, saccade latencies were shortest when the cue was presented at the target location and increased with cue-target distance. In contrast, adapted saccade latencies were shortest when the cue was presented at the adapted saccade goal, and not at the visual target location. The dynamics of adapted saccades were also altered, consistent with prior adaptation studies, except when the cue was flashed at the saccade goal. Overall, the results suggest that attentional cueing facilitates saccade planning rather than visual processing of the target. PMID:20410101

  20. Simultaneous seismic data interpolation and denoising with a new adaptive method based on dreamlet transform

    NASA Astrophysics Data System (ADS)

    Wang, Benfeng; Wu, Ru-Shan; Chen, Xiaohong; Li, Jingye

    2015-05-01

    Interpolation and random noise removal is a pre-requisite for multichannel techniques because the irregularity and random noise in observed data can affect their performances. Projection Onto Convex Sets (POCS) method can better handle seismic data interpolation if the data's signal-to-noise ratio (SNR) is high, while it has difficulty in noisy situations because it inserts the noisy observed seismic data in each iteration. Weighted POCS method can weaken the noise effects, while the performance is affected by the choice of weight factors and is still unsatisfactory. Thus, a new weighted POCS method is derived through the Iterative Hard Threshold (IHT) view, and in order to eliminate random noise, a new adaptive method is proposed to achieve simultaneous seismic data interpolation and denoising based on dreamlet transform. Performances of the POCS method, the weighted POCS method and the proposed method are compared in simultaneous seismic data interpolation and denoising which demonstrate the validity of the proposed method. The recovered SNRs confirm that the proposed adaptive method is the most effective among the three methods. Numerical examples on synthetic and real data demonstrate the validity of the proposed adaptive method.

  1. Preschoolers Benefit from Visually Salient Speech Cues

    ERIC Educational Resources Information Center

    Lalonde, Kaylah; Holt, Rachael Frush

    2015-01-01

    Purpose: This study explored visual speech influence in preschoolers using 3 developmentally appropriate tasks that vary in perceptual difficulty and task demands. They also examined developmental differences in the ability to use visually salient speech cues and visual phonological knowledge. Method: Twelve adults and 27 typically developing 3-…

  2. Visual Cues and Listening Effort: Individual Variability

    ERIC Educational Resources Information Center

    Picou, Erin M.; Ricketts, Todd A; Hornsby, Benjamin W. Y.

    2011-01-01

    Purpose: To investigate the effect of visual cues on listening effort as well as whether predictive variables such as working memory capacity (WMC) and lipreading ability affect the magnitude of listening effort. Method: Twenty participants with normal hearing were tested using a paired-associates recall task in 2 conditions (quiet and noise) and…

  3. Developments in Human Centered Cueing Algorithms for Control of Flight Simulator Motion Systems

    NASA Technical Reports Server (NTRS)

    Houck, Jacob A.; Telban, Robert J.; Cardullo, Frank M.

    1997-01-01

    The authors conducted further research with cueing algorithms for control of flight simulator motion systems. A variation of the so-called optimal algorithm was formulated using simulated aircraft angular velocity input as a basis. Models of the human vestibular sensation system, i.e. the semicircular canals and otoliths, are incorporated within the algorithm. Comparisons of angular velocity cueing responses showed a significant improvement over a formulation using angular acceleration input. Results also compared favorably with the coordinated adaptive washout algorithm, yielding similar results for angular velocity cues while eliminating false cues and reducing the tilt rate for longitudinal cues. These results were confirmed in piloted tests on the current motion system at NASA-Langley, the Visual Motion Simulator (VMS). Proposed future developments by the authors in cueing algorithms are revealed. The new motion system, the Cockpit Motion Facility (CMF), where the final evaluation of the cueing algorithms will be conducted, is also described.

  4. An adaptive altitude information fusion method for autonomous landing processes of small unmanned aerial rotorcraft.

    PubMed

    Lei, Xusheng; Li, Jingjing

    2012-01-01

    This paper presents an adaptive information fusion method to improve the accuracy and reliability of the altitude measurement information for small unmanned aerial rotorcraft during the landing process. Focusing on the low measurement performance of sensors mounted on small unmanned aerial rotorcraft, a wavelet filter is applied as a pre-filter to attenuate the high frequency noises in the sensor output. Furthermore, to improve altitude information, an adaptive extended Kalman filter based on a maximum a posteriori criterion is proposed to estimate measurement noise covariance matrix in real time. Finally, the effectiveness of the proposed method is proved by static tests, hovering flight and autonomous landing flight tests. PMID:23201993

  5. The block adaptive multigrid method applied to the solution of the Euler equations

    NASA Technical Reports Server (NTRS)

    Pantelelis, Nikos

    1993-01-01

    In the present study, a scheme capable of solving very fast and robust complex nonlinear systems of equations is presented. The Block Adaptive Multigrid (BAM) solution method offers multigrid acceleration and adaptive grid refinement based on the prediction of the solution error. The proposed solution method was used with an implicit upwind Euler solver for the solution of complex transonic flows around airfoils. Very fast results were obtained (18-fold acceleration of the solution) using one fourth of the volumes of a global grid with the same solution accuracy for two test cases.

  6. A comparison of locally adaptive multigrid methods: LDC, FAC and FIC

    NASA Technical Reports Server (NTRS)

    Khadra, Khodor; Angot, Philippe; Caltagirone, Jean-Paul

    1993-01-01

    This study is devoted to a comparative analysis of three 'Adaptive ZOOM' (ZOom Overlapping Multi-level) methods based on similar concepts of hierarchical multigrid local refinement: LDC (Local Defect Correction), FAC (Fast Adaptive Composite), and FIC (Flux Interface Correction)--which we proposed recently. These methods are tested on two examples of a bidimensional elliptic problem. We compare, for V-cycle procedures, the asymptotic evolution of the global error evaluated by discrete norms, the corresponding local errors, and the convergence rates of these algorithms.

  7. An Adaptive Altitude Information Fusion Method for Autonomous Landing Processes of Small Unmanned Aerial Rotorcraft

    PubMed Central

    Lei, Xusheng; Li, Jingjing

    2012-01-01

    This paper presents an adaptive information fusion method to improve the accuracy and reliability of the altitude measurement information for small unmanned aerial rotorcraft during the landing process. Focusing on the low measurement performance of sensors mounted on small unmanned aerial rotorcraft, a wavelet filter is applied as a pre-filter to attenuate the high frequency noises in the sensor output. Furthermore, to improve altitude information, an adaptive extended Kalman filter based on a maximum a posteriori criterion is proposed to estimate measurement noise covariance matrix in real time. Finally, the effectiveness of the proposed method is proved by static tests, hovering flight and autonomous landing flight tests. PMID:23201993

  8. Effects of light curing method and resin composite composition on composite adaptation to the cavity wall.

    PubMed

    Yoshikawa, Takako; Morigami, Makoto; Sadr, Alireza; Tagami, Junji

    2014-01-01

    This study aimed to evaluate the effects of the light curing method and resin composite composition on marginal sealing and resin composite adaptation to the cavity wall. Cylindrical cavities were prepared on the buccal or lingual cervical regions. The teeth were restored using Clearfil Liner Bond 2V adhesive system and filled with Clearfil Photo Bright or Palfique Estelite resin composite. The resins were cured using the conventional or slow-start light curing method. After thermal cycling, the specimens were subjected to a dye penetration test. The slow-start curing method showed better resin composite adaptation to the cavity wall for both composites. Furthermore, the slow-start curing method resulted in significantly improved dentin marginal sealing compared with the conventional method for Clearfil Photo Bright. The light-cured resin composite, which exhibited increased contrast ratios duringpolymerization, seems to suggest high compensation for polymerization contraction stress when using the slow-start curing method.

  9. A NOISE ADAPTIVE FUZZY EQUALIZATION METHOD FOR PROCESSING SOLAR EXTREME ULTRAVIOLET IMAGES

    SciTech Connect

    Druckmueller, M.

    2013-08-15

    A new image enhancement tool ideally suited for the visualization of fine structures in extreme ultraviolet images of the corona is presented in this paper. The Noise Adaptive Fuzzy Equalization method is particularly suited for the exceptionally high dynamic range images from the Atmospheric Imaging Assembly instrument on the Solar Dynamics Observatory. This method produces artifact-free images and gives significantly better results than methods based on convolution or Fourier transform which are often used for that purpose.

  10. A GPU-accelerated adaptive discontinuous Galerkin method for level set equation

    NASA Astrophysics Data System (ADS)

    Karakus, A.; Warburton, T.; Aksel, M. H.; Sert, C.

    2016-01-01

    This paper presents a GPU-accelerated nodal discontinuous Galerkin method for the solution of two- and three-dimensional level set (LS) equation on unstructured adaptive meshes. Using adaptive mesh refinement, computations are localised mostly near the interface location to reduce the computational cost. Small global time step size resulting from the local adaptivity is avoided by local time-stepping based on a multi-rate Adams-Bashforth scheme. Platform independence of the solver is achieved with an extensible multi-threading programming API that allows runtime selection of different computing devices (GPU and CPU) and different threading interfaces (CUDA, OpenCL and OpenMP). Overall, a highly scalable, accurate and mass conservative numerical scheme that preserves the simplicity of LS formulation is obtained. Efficiency, performance and local high-order accuracy of the method are demonstrated through distinct numerical test cases.

  11. Automatic off-body overset adaptive Cartesian mesh method based on an octree approach

    SciTech Connect

    Peron, Stephanie; Benoit, Christophe

    2013-01-01

    This paper describes a method for generating adaptive structured Cartesian grids within a near-body/off-body mesh partitioning framework for the flow simulation around complex geometries. The off-body Cartesian mesh generation derives from an octree structure, assuming each octree leaf node defines a structured Cartesian block. This enables one to take into account the large scale discrepancies in terms of resolution between the different bodies involved in the simulation, with minimum memory requirements. Two different conversions from the octree to Cartesian grids are proposed: the first one generates Adaptive Mesh Refinement (AMR) type grid systems, and the second one generates abutting or minimally overlapping Cartesian grid set. We also introduce an algorithm to control the number of points at each adaptation, that automatically determines relevant values of the refinement indicator driving the grid refinement and coarsening. An application to a wing tip vortex computation assesses the capability of the method to capture accurately the flow features.

  12. A method for image quality evaluation considering adaptation to luminance of surround and noise in stimuli

    NASA Astrophysics Data System (ADS)

    Kim, Youn Jin

    2010-09-01

    This study intends to quantify the effects of the surround luminance and noise of a given stimulus on the shape of spatial luminance contrast sensitivity function (CSF) and to propose an adaptive image quality evaluation method. The proposed image evaluation method extends a model called square-root integral (SQRI). The non-linear behaviour of the human visual system was taken into account by using CSF. This model can be defined as the square root integration of multiplication between display modulation transfer function and CSF. The CSF term in the original SQRI was replaced by the surround adaptive CSF quantified in this study and it is divided by the Fourier transform of a given stimulus for compensating for the noise adaptation.

  13. A density-based adaptive quantum mechanical/molecular mechanical method.

    PubMed

    Waller, Mark P; Kumbhar, Sadhana; Yang, Jack

    2014-10-20

    We present a density-based adaptive quantum mechanical/molecular mechanical (DBA-QM/MM) method, whereby molecules can switch layers from the QM to the MM region and vice versa. The adaptive partitioning of the molecular system ensures that the layer assignment can change during the optimization procedure, that is, on the fly. The switch from a QM molecule to a MM molecule is determined if there is an absence of noncovalent interactions to any atom of the QM core region. The presence/absence of noncovalent interactions is determined by analysis of the reduced density gradient. Therefore, the location of the QM/MM boundary is based on physical arguments, and this neatly removes some empiricism inherent in previous adaptive QM/MM partitioning schemes. The DBA-QM/MM method is validated by using a water-in-water setup and an explicitly solvated L-alanyl-L-alanine dipeptide. PMID:24954803

  14. A density-based adaptive quantum mechanical/molecular mechanical method.

    PubMed

    Waller, Mark P; Kumbhar, Sadhana; Yang, Jack

    2014-10-20

    We present a density-based adaptive quantum mechanical/molecular mechanical (DBA-QM/MM) method, whereby molecules can switch layers from the QM to the MM region and vice versa. The adaptive partitioning of the molecular system ensures that the layer assignment can change during the optimization procedure, that is, on the fly. The switch from a QM molecule to a MM molecule is determined if there is an absence of noncovalent interactions to any atom of the QM core region. The presence/absence of noncovalent interactions is determined by analysis of the reduced density gradient. Therefore, the location of the QM/MM boundary is based on physical arguments, and this neatly removes some empiricism inherent in previous adaptive QM/MM partitioning schemes. The DBA-QM/MM method is validated by using a water-in-water setup and an explicitly solvated L-alanyl-L-alanine dipeptide.

  15. An adaptive mesh finite volume method for the Euler equations of gas dynamics

    NASA Astrophysics Data System (ADS)

    Mungkasi, Sudi

    2016-06-01

    The Euler equations have been used to model gas dynamics for decades. They consist of mathematical equations for the conservation of mass, momentum, and energy of the gas. For a large time value, the solution may contain discontinuities, even when the initial condition is smooth. A standard finite volume numerical method is not able to give accurate solutions to the Euler equations around discontinuities. Therefore we solve the Euler equations using an adaptive mesh finite volume method. In this paper, we present a new construction of the adaptive mesh finite volume method with an efficient computation of the refinement indicator. The adaptive method takes action automatically at around places having inaccurate solutions. Inaccurate solutions are reconstructed to reduce the error by refining the mesh locally up to a certain level. On the other hand, if the solution is already accurate, then the mesh is coarsened up to another certain level to minimize computational efforts. We implement the numerical entropy production as the mesh refinement indicator. As a test problem, we take the Sod shock tube problem. Numerical results show that the adaptive method is more promising than the standard one in solving the Euler equations of gas dynamics.

  16. Performance of the Adaptive Collision Source (ACS) Method for Discrete Ordinates in Parallel Environments

    NASA Astrophysics Data System (ADS)

    Walters, William J.; Haghighat, Alireza

    2014-06-01

    A new collision source method has been developed to solve the Linear Boltzmann Equation (LBE) more efficiently by adaptation of the angular quadrature order. The angular adaptation method is unique in that the flux from each scattering source iteration is obtained separately, with potentially a different quadrature order. This allows for an optimal use of processing power, by using a high order quadrature for the first few iterations that need it, before shifting to lower order quadratures for the remaining iterations. This is essentially an extension of the first collision source method, and we call it the adaptive collision source method (ACS). The ACS methodolog y has been implemented in the TITAN discrete ordinates code, and has shown a speedup of 2-3 on a test problem, with very little loss of accuracy (within a provided adaptive tolerance). Further, the code has been extended to work in parallel environments by angular decomposition. Although the method requires increased parallel communication, tests have shown excellent scalability, with parallel fractions of up to 99%.

  17. Method and system for training dynamic nonlinear adaptive filters which have embedded memory

    NASA Technical Reports Server (NTRS)

    Rabinowitz, Matthew (Inventor)

    2002-01-01

    Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6.

  18. A Hyperspherical Adaptive Sparse-Grid Method for High-Dimensional Discontinuity Detection

    SciTech Connect

    Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max D.; Burkardt, John V.

    2015-06-24

    This study proposes and analyzes a hyperspherical adaptive hierarchical sparse-grid method for detecting jump discontinuities of functions in high-dimensional spaces. The method is motivated by the theoretical and computational inefficiencies of well-known adaptive sparse-grid methods for discontinuity detection. Our novel approach constructs a function representation of the discontinuity hypersurface of an N-dimensional discontinuous quantity of interest, by virtue of a hyperspherical transformation. Then, a sparse-grid approximation of the transformed function is built in the hyperspherical coordinate system, whose value at each point is estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of the hypersurface, the new technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. In addition, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. Rigorous complexity analyses of the new method are provided as are several numerical examples that illustrate the effectiveness of the approach.

  19. A Dynamically Adaptive Arbitrary Lagrangian-Eulerian Method for Solution of the Euler Equations

    SciTech Connect

    Anderson, R W; Elliott, N S; Pember, R B

    2003-02-14

    A new method that combines staggered grid arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. The novel components of the methods are driven by the need to reconcile traditional AMR techniques with the staggered variables and moving, deforming meshes associated with Lagrange based ALE schemes. We develop interlevel solution transfer operators and interlevel boundary conditions first in the case of purely Lagrangian hydrodynamics, and then extend these ideas into an ALE method by developing adaptive extensions of elliptic mesh relaxation techniques. Conservation properties of the method are analyzed, and a series of test problem calculations are presented which demonstrate the utility and efficiency of the method.

  20. Applications of automatic mesh generation and adaptive methods in computational medicine

    SciTech Connect

    Schmidt, J.A.; Macleod, R.S.; Johnson, C.R.; Eason, J.C.

    1995-12-31

    Important problems in Computational Medicine exist that can benefit from the implementation of adaptive mesh refinement techniques. Biological systems are so inherently complex that only efficient models running on state of the art hardware can begin to simulate reality. To tackle the complex geometries associated with medical applications we present a general purpose mesh generation scheme based upon the Delaunay tessellation algorithm and an iterative point generator. In addition, automatic, two- and three-dimensional adaptive mesh refinement methods are presented that are derived from local and global estimates of the finite element error. Mesh generation and adaptive refinement techniques are utilized to obtain accurate approximations of bioelectric fields within anatomically correct models of the heart and human thorax. Specifically, we explore the simulation of cardiac defibrillation and the general forward and inverse problems in electrocardiography (ECG). Comparisons between uniform and adaptive refinement techniques are made to highlight the computational efficiency and accuracy of adaptive methods in the solution of field problems in computational medicine.

  1. Cues and Cue Interactions in Segmenting Words in Fluent Speech

    ERIC Educational Resources Information Center

    Newman, Rochelle S.; Sawusch, James R.; Wunnenberg, Tyler

    2011-01-01

    Fluent speech does not contain obvious breaks to word boundaries, yet there are a number of cues that listeners can use to help them segment the speech stream. Most of these cues have been investigated in isolation from one another. In previous work, Norris, McQueen, Cutler, and Butterfield (1997) suggested that listeners use a Possible Word…

  2. Development and evaluation of a method of calibrating medical displays based on fixed adaptation

    SciTech Connect

    Sund, Patrik Månsson, Lars Gunnar; Båth, Magnus

    2015-04-15

    Purpose: The purpose of this work was to develop and evaluate a new method for calibration of medical displays that includes the effect of fixed adaptation and by using equipment and luminance levels typical for a modern radiology department. Methods: Low contrast sinusoidal test patterns were derived at nine luminance levels from 2 to 600 cd/m{sup 2} and used in a two alternative forced choice observer study, where the adaptation level was fixed at the logarithmic average of 35 cd/m{sup 2}. The contrast sensitivity at each luminance level was derived by establishing a linear relationship between the ten pattern contrast levels used at every luminance level and a detectability index (d′) calculated from the fraction of correct responses. A Gaussian function was fitted to the data and normalized to the adaptation level. The corresponding equation was used in a display calibration method that included the grayscale standard display function (GSDF) but compensated for fixed adaptation. In the evaluation study, the contrast of circular objects with a fixed pixel contrast was displayed using both calibration methods and was rated on a five-grade scale. Results were calculated using a visual grading characteristics method. Error estimations in both observer studies were derived using a bootstrap method. Results: The contrast sensitivities for the darkest and brightest patterns compared to the contrast sensitivity at the adaptation luminance were 37% and 56%, respectively. The obtained Gaussian fit corresponded well with similar studies. The evaluation study showed a higher degree of equally distributed contrast throughout the luminance range with the calibration method compensated for fixed adaptation than for the GSDF. The two lowest scores for the GSDF were obtained for the darkest and brightest patterns. These scores were significantly lower than the lowest score obtained for the compensated GSDF. For the GSDF, the scores for all luminance levels were statistically

  3. Adaptive non-local means method for speckle reduction in ultrasound images

    NASA Astrophysics Data System (ADS)

    Ai, Ling; Ding, Mingyue; Zhang, Xuming

    2016-03-01

    Noise removal is a crucial step to enhance the quality of ultrasound images. However, some existing despeckling methods cannot ensure satisfactory restoration performance. In this paper, an adaptive non-local means (ANLM) filter is proposed for speckle noise reduction in ultrasound images. The distinctive property of the proposed method lies in that the decay parameter will not take the fixed value for the whole image but adapt itself to the variation of the local features in the ultrasound images. In the proposed method, the pre-filtered image will be obtained using the traditional NLM method. Based on the pre-filtered result, the local gradient will be computed and it will be utilized to determine the decay parameter adaptively for each image pixel. The final restored image will be produced by the ANLM method using the obtained decay parameters. Simulations on the synthetic image show that the proposed method can deliver sufficient speckle reduction while preserving image details very well and it outperforms the state-of-the-art despeckling filters in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). Experiments on the clinical ultrasound image further demonstrate the practicality and advantage of the proposed method over the compared filtering methods.

  4. Key techniques and applications of adaptive growth method for stiffener layout design of plates and shells

    NASA Astrophysics Data System (ADS)

    Ding, Xiaohong; Ji, Xuerong; Ma, Man; Hou, Jianyun

    2013-11-01

    The application of the adaptive growth method is limited because several key techniques during the design process need manual intervention of designers. Key techniques of the method including the ground structure construction and seed selection are studied, so as to make it possible to improve the effectiveness and applicability of the adaptive growth method in stiffener layout design optimization of plates and shells. Three schemes of ground structures, which are comprised by different shell elements and beam elements, are proposed. It is found that the main stiffener layouts resulted from different ground structures are almost the same, but the ground structure comprised by 8-nodes shell elements and both 3-nodes and 2-nodes beam elements can result in clearest stiffener layout, and has good adaptability and low computational cost. An automatic seed selection approach is proposed, which is based on such selection rules that the seeds should be positioned on where the structural strain energy is great for the minimum compliance problem, and satisfy the dispersancy requirement. The adaptive growth method with the suggested key techniques is integrated into an ANSYS-based program, which provides a design tool for the stiffener layout design optimization of plates and shells. Typical design examples, including plate and shell structures to achieve minimum compliance and maximum bulking stability are illustrated. In addition, as a practical mechanical structural design example, the stiffener layout of an inlet structure for a large-scale electrostatic precipitator is also demonstrated. The design results show that the adaptive growth method integrated with the suggested key techniques can effectively and flexibly deal with stiffener layout design problem for plates and shells with complex geometrical shape and loading conditions to achieve various design objectives, thus it provides a new solution method for engineering structural topology design optimization.

  5. Relative errors can cue absolute visuomotor mappings.

    PubMed

    van Dam, Loes C J; Ernst, Marc O

    2015-12-01

    When repeatedly switching between two visuomotor mappings, e.g. in a reaching or pointing task, adaptation tends to speed up over time. That is, when the error in the feedback corresponds to a mapping switch, fast adaptation occurs. Yet, what is learned, the relative error or the absolute mappings? When switching between mappings, errors with a size corresponding to the relative difference between the mappings will occur more often than other large errors. Thus, we could learn to correct more for errors with this familiar size (Error Learning). On the other hand, it has been shown that the human visuomotor system can store several absolute visuomotor mappings (Mapping Learning) and can use associated contextual cues to retrieve them. Thus, when contextual information is present, no error feedback is needed to switch between mappings. Using a rapid pointing task, we investigated how these two types of learning may each contribute when repeatedly switching between mappings in the absence of task-irrelevant contextual cues. After training, we examined how participants changed their behaviour when a single error probe indicated either the often-experienced error (Error Learning) or one of the previously experienced absolute mappings (Mapping Learning). Results were consistent with Mapping Learning despite the relative nature of the error information in the feedback. This shows that errors in the feedback can have a double role in visuomotor behaviour: they drive the general adaptation process by making corrections possible on subsequent movements, as well as serve as contextual cues that can signal a learned absolute mapping. PMID:26280315

  6. Method for reducing the drag of blunt-based vehicles by adaptively increasing forebody roughness

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A. (Inventor); Saltzman, Edwin J. (Inventor); Moes, Timothy R. (Inventor); Iliff, Kenneth W. (Inventor)

    2005-01-01

    A method for reducing drag upon a blunt-based vehicle by adaptively increasing forebody roughness to increase drag at the roughened area of the forebody, which results in a decrease in drag at the base of this vehicle, and in total vehicle drag.

  7. [Correction of autonomic reactions parameters in organism of cosmonaut with adaptive biocontrol method

    NASA Technical Reports Server (NTRS)

    Kornilova, L. N.; Cowings, P. S.; Toscano, W. B.; Arlashchenko, N. I.; Korneev, D. Iu; Ponomarenko, A. V.; Salagovich, S. V.; Sarantseva, A. V.; Kozlovskaia, I. B.

    2000-01-01

    Presented are results of testing the method of adaptive biocontrol during preflight training of cosmonauts. Within the MIR-25 crew, a high level of controllability of the autonomous reactions was characteristic of Flight Commanders MIR-23 and MIR-25 and flight Engineer MIR-23, while Flight Engineer MIR-25 displayed a weak intricate dependence of these reactions on the depth of relaxation or strain.

  8. Item Pocket Method to Allow Response Review and Change in Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Han, Kyung T.

    2013-01-01

    Most computerized adaptive testing (CAT) programs do not allow test takers to review and change their responses because it could seriously deteriorate the efficiency of measurement and make tests vulnerable to manipulative test-taking strategies. Several modified testing methods have been developed that provide restricted review options while…

  9. Expert Concept Mapping Method for Defining the Characteristics of Adaptive ELearning: ALFANET Project Case

    ERIC Educational Resources Information Center

    Stoyanov, Slavi; Kirschner, Paul

    2004-01-01

    The article presents empirical evidence for the effectiveness and efficiency of a modified version of Trochim's (1989a, b) concept mapping approach to define the characteristics of an adaptive learning environment. The effectiveness and the efficiency of the method are attributed to the support that it provides in terms of elicitation, sharing,…

  10. Methods of Adapting Digital Content for the Learning Process via Mobile Devices

    ERIC Educational Resources Information Center

    Lopez, J. L. Gimenez; Royo, T. Magal; Laborda, Jesus Garcia; Calvo, F. Garde

    2009-01-01

    This article analyses different methods of adapting digital content for its delivery via mobile devices taking into account two aspects which are a fundamental part of the learning process; on the one hand, functionality of the contents, and on the other, the actual controlled navigation requirements that the learner needs in order to acquire high…

  11. Individual Sensitivity to Spectral and Temporal Cues in Listeners with Hearing Impairment

    ERIC Educational Resources Information Center

    Souza, Pamela E.; Wright, Richard A.; Blackburn, Michael C.; Tatman, Rachael; Gallun, Frederick J.

    2015-01-01

    Purpose: The present study was designed to evaluate use of spectral and temporal cues under conditions in which both types of cues were available. Method: Participants included adults with normal hearing and hearing loss. We focused on 3 categories of speech cues: static spectral (spectral shape), dynamic spectral (formant change), and temporal…

  12. Perception of Speech Modulation Cues by 6-Month-Old Infants

    ERIC Educational Resources Information Center

    Cabrera, Laurianne; Bertoncini, Josiane; Lorenzi, Christian

    2013-01-01

    Purpose: The capacity of 6-month-old infants to discriminate a voicing contrast (/aba/--/apa/) on the basis of "amplitude modulation (AM) cues" and "frequency modulation (FM) cues" was evaluated. Method: Several vocoded speech conditions were designed to either degrade FM cues in 4 or 32 bands or degrade AM in 32 bands. Infants…

  13. Adaptive projection method applied to three-dimensional ultrasonic focusing and steering through the ribs.

    PubMed

    Cochard, E; Aubry, J F; Tanter, M; Prada, C

    2011-08-01

    An adaptive projection method for ultrasonic focusing through the rib cage, with minimal energy deposition on the ribs, was evaluated experimentally in 3D geometry. Adaptive projection is based on decomposition of the time-reversal operator (DORT method) and projection on the "noise" subspace. It is shown that 3D implementation of this method is straightforward, and not more time-consuming than 2D. Comparisons are made between adaptive projection, spherical focusing, and a previously proposed time-reversal focusing method, by measuring pressure fields in the focal plane and rib region using the three methods. The ratio of the specific absorption rate at the focus over the one at the ribs was found to be increased by a factor of up to eight, versus spherical emission. Beam steering out of geometric focus was also investigated. For all configurations projecting steered emissions were found to deposit less energy on the ribs than steering time-reversed emissions: thus the non-invasive method presented here is more efficient than state-of-the-art invasive techniques. In fact, this method could be used for real-time treatment, because a single acquisition of back-scattered echoes from the ribs is enough to treat a large volume around the focus, thanks to real time projection of the steered beams.

  14. Non-orthogonal spin-adaptation of coupled cluster methods: A new implementation of methods including quadruple excitations

    SciTech Connect

    Matthews, Devin A.; Stanton, John F.

    2015-02-14

    The theory of non-orthogonal spin-adaptation for closed-shell molecular systems is applied to coupled cluster methods with quadruple excitations (CCSDTQ). Calculations at this level of detail are of critical importance in describing the properties of molecular systems to an accuracy which can meet or exceed modern experimental techniques. Such calculations are of significant (and growing) importance in such fields as thermodynamics, kinetics, and atomic and molecular spectroscopies. With respect to the implementation of CCSDTQ and related methods, we show that there are significant advantages to non-orthogonal spin-adaption with respect to simplification and factorization of the working equations and to creating an efficient implementation. The resulting algorithm is implemented in the CFOUR program suite for CCSDT, CCSDTQ, and various approximate methods (CCSD(T), CC3, CCSDT-n, and CCSDT(Q))

  15. Impact of DCS-facilitated cue exposure therapy on brain activation to cocaine cues in cocaine dependence

    PubMed Central

    Prisciandaro, James J.; Myrick, Hugh; Henderson, Scott; McRae-Clark, Aimee L.; Ana, Elizabeth J. Santa; Saladin, Michael E.; Brady, Kathleen T.

    2013-01-01

    Background The development of addiction is marked by a pathological associative learning process that imbues incentive salience to stimuli associated with drug use. Recent efforts to treat addiction have targeted this learning process using cue exposure therapy augmented with D-cycloserine (DCS), a glutamatergic agent hypothesized to enhance extinction learning. To better understand the impact of DCS-facilitated extinction on neural reactivity to drug cues, the present study reports fMRI findings from a randomized, double-blind, placebo-controlled trial of DCS-facilitated cue exposure for cocaine dependence. Methods Twenty-five participants completed two MRI sessions (before and after intervention), with a cocaine-cue reactivity fMRI task. The intervention consisted of 50mg of DCS or placebo, combined with two sessions of cocaine cue exposure and skills training. Results Participants demonstrated cocaine cue activation in a variety of brain regions at baseline. From the pre- to post-study scan, participants experienced decreased activation to cues in a number of regions (e.g., accumbens, caudate, frontal poles). Unexpectedly, placebo participants experienced decreases in activation to cues in the left angular and middle temporal gyri and the lateral occipital cortex, while DCS participants did not. Conclusions Three trials of DCS-facilitated cue exposure therapy for cocaine dependence have found that DCS either increases or does not significantly impact response to cocaine cues. The present study adds to this literature by demonstrating that DCS may prevent extinction to cocaine cues in temporal and occipital brain regions. Although consistent with past research, results from the present study should be considered preliminary until replicated in larger samples. PMID:23497788

  16. Applying Parallel Adaptive Methods with GeoFEST/PYRAMID to Simulate Earth Surface Crustal Dynamics

    NASA Technical Reports Server (NTRS)

    Norton, Charles D.; Lyzenga, Greg; Parker, Jay; Glasscoe, Margaret; Donnellan, Andrea; Li, Peggy

    2006-01-01

    This viewgraph presentation reviews the use Adaptive Mesh Refinement (AMR) in simulating the Crustal Dynamics of Earth's Surface. AMR simultaneously improves solution quality, time to solution, and computer memory requirements when compared to generating/running on a globally fine mesh. The use of AMR in simulating the dynamics of the Earth's Surface is spurred by future proposed NASA missions, such as InSAR for Earth surface deformation and other measurements. These missions will require support for large-scale adaptive numerical methods using AMR to model observations. AMR was chosen because it has been successful in computation fluid dynamics for predictive simulation of complex flows around complex structures.

  17. An edge-based solution-adaptive method applied to the AIRPLANE code

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Thomas, Scott D.; Cliff, Susan E.

    1995-01-01

    Computational methods to solve large-scale realistic problems in fluid flow can be made more efficient and cost effective by using them in conjunction with dynamic mesh adaption procedures that perform simultaneous coarsening and refinement to capture flow features of interest. This work couples the tetrahedral mesh adaption scheme, 3D_TAG, with the AIRPLANE code to solve complete aircraft configuration problems in transonic and supersonic flow regimes. Results indicate that the near-field sonic boom pressure signature of a cone-cylinder is improved, the oblique and normal shocks are better resolved on a transonic wing, and the bow shock ahead of an unstarted inlet is better defined.

  18. Fuzzy physical programming for Space Manoeuvre Vehicles trajectory optimization based on hp-adaptive pseudospectral method

    NASA Astrophysics Data System (ADS)

    Chai, Runqi; Savvaris, Al; Tsourdos, Antonios

    2016-06-01

    In this paper, a fuzzy physical programming (FPP) method has been introduced for solving multi-objective Space Manoeuvre Vehicles (SMV) skip trajectory optimization problem based on hp-adaptive pseudospectral methods. The dynamic model of SMV is elaborated and then, by employing hp-adaptive pseudospectral methods, the problem has been transformed to nonlinear programming (NLP) problem. According to the mission requirements, the solutions were calculated for each single-objective scenario. To get a compromised solution for each target, the fuzzy physical programming (FPP) model is proposed. The preference function is established with considering the fuzzy factor of the system such that a proper compromised trajectory can be acquired. In addition, the NSGA-II is tested to obtain the Pareto-optimal solution set and verify the Pareto optimality of the FPP solution. Simulation results indicate that the proposed method is effective and feasible in terms of dealing with the multi-objective skip trajectory optimization for the SMV.

  19. An Adaptive Instability Suppression Controls Method for Aircraft Gas Turbine Engine Combustors

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; DeLaat, John C.; Chang, Clarence T.

    2008-01-01

    An adaptive controls method for instability suppression in gas turbine engine combustors has been developed and successfully tested with a realistic aircraft engine combustor rig. This testing was part of a program that demonstrated, for the first time, successful active combustor instability control in an aircraft gas turbine engine-like environment. The controls method is called Adaptive Sliding Phasor Averaged Control. Testing of the control method has been conducted in an experimental rig with different configurations designed to simulate combustors with instabilities of about 530 and 315 Hz. Results demonstrate the effectiveness of this method in suppressing combustor instabilities. In addition, a dramatic improvement in suppression of the instability was achieved by focusing control on the second harmonic of the instability. This is believed to be due to a phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling. These results may have implications for future research in combustor instability control.

  20. Continuous Visual Cues Trigger Automatic Spatial Target Updating in Dynamic Scenes

    ERIC Educational Resources Information Center

    Meyerhoff, Hauke S.; Huff, Markus; Papenmeier, Frank; Jahn, Georg; Schwan, Stephan

    2011-01-01

    Dynamic tasks often require fast adaptations to new viewpoints. It has been shown that automatic spatial updating is triggered by proprioceptive motion cues. Here, we demonstrate that purely visual cues are sufficient to trigger automatic updating. In five experiments, we examined spatial updating in a dynamic attention task in which participants…

  1. Adaptively deformed mesh based interface method for elliptic equations with discontinuous coefficients

    PubMed Central

    Xia, Kelin; Zhan, Meng; Wan, Decheng; Wei, Guo-Wei

    2011-01-01

    Mesh deformation methods are a versatile strategy for solving partial differential equations (PDEs) with a vast variety of practical applications. However, these methods break down for elliptic PDEs with discontinuous coefficients, namely, elliptic interface problems. For this class of problems, the additional interface jump conditions are required to maintain the well-posedness of the governing equation. Consequently, in order to achieve high accuracy and high order convergence, additional numerical algorithms are required to enforce the interface jump conditions in solving elliptic interface problems. The present work introduces an interface technique based adaptively deformed mesh strategy for resolving elliptic interface problems. We take the advantages of the high accuracy, flexibility and robustness of the matched interface and boundary (MIB) method to construct an adaptively deformed mesh based interface method for elliptic equations with discontinuous coefficients. The proposed method generates deformed meshes in the physical domain and solves the transformed governed equations in the computational domain, which maintains regular Cartesian meshes. The mesh deformation is realized by a mesh transformation PDE, which controls the mesh redistribution by a source term. The source term consists of a monitor function, which builds in mesh contraction rules. Both interface geometry based deformed meshes and solution gradient based deformed meshes are constructed to reduce the L∞ and L2 errors in solving elliptic interface problems. The proposed adaptively deformed mesh based interface method is extensively validated by many numerical experiments. Numerical results indicate that the adaptively deformed mesh based interface method outperforms the original MIB method for dealing with elliptic interface problems. PMID:22586356

  2. Refinement trajectory and determination of eigenstates by a wavelet based adaptive method

    SciTech Connect

    Pipek, Janos; Nagy, Szilvia

    2006-11-07

    The detail structure of the wave function is analyzed at various refinement levels using the methods of wavelet analysis. The eigenvalue problem of a model system is solved in granular Hilbert spaces, and the trajectory of the eigenstates is traced in terms of the resolution. An adaptive method is developed for identifying the fine structure localization regions, where further refinement of the wave function is necessary.

  3. A two-dimensional adaptive spectral element method for the direct simulation of incompressible flow

    NASA Astrophysics Data System (ADS)

    Hsu, Li-Chieh

    The spectral element method is a high order discretization scheme for the solution of nonlinear partial differential equations. The method draws its strengths from the finite element method for geometrical flexibility and spectral methods for high accuracy. Although the method is, in theory, very powerful for complex phenomena such as transitional flows, its practical implementation is limited by the arbitrary choice of domain discretization. For instance, it is hard to estimate the appropriate number of elements for a specific case. Selection of regions to be refined or coarsened is difficult especially as the flow becomes more complex and memory limits of the computer are stressed. We present an adaptive spectral element method in which the grid is automatically refined or coarsened in order to capture underresolved regions of the domain and to follow regions requiring high resolution as they develop in time. The objective is to provide the best and most efficient solution to a time-dependent nonlinear problem by continually optimizing resource allocation. The adaptivity is based on an error estimator which determines which regions need more resolution. The solution strategy is as follows: compute an initial solution with a suitable initial mesh, estimate errors in the solution locally in each element, modify the mesh according to the error estimators, interpolate old mesh solutions onto the new elements, and resume the numerical solution process. A two-dimensional adaptive spectral element method for the direct simulation of incompressible flows has been developed. The adaptive algorithm effectively diagnoses and refines regions of the flow where complexity of the solution requires increased resolution. The method has been demonstrated on two-dimensional examples in heat conduction, Stokes and Navier-Stokes flows.

  4. Cue exposure and learning theory.

    PubMed

    Hammersley, R

    1992-01-01

    The implications are discussed for cue exposure treatment of four theoretical issues; (a) spontaneous recovery, (b) response competition, (c) generalization, and (d) the cognitive basis of conditioning. It is suggested that practical cue exposure treatment will not be as straight-forward as initial trials have suggested.

  5. Cracked cue ball

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    The latest images sent by the Galileo spacecraft reveal that the surface of Jupiter's moon Europa may have contained a layer of “warm ice” or even liquid water. In fact, planetologists are wondering if perhaps it still does.Photos taken earlier this summer show Europa to have a crust of smooth white and brown-tinted ice scarred by long, jagged cracks; some scientists have said the moon looks like a cracked cue ball. “The scale of fracture patterns—extending a distance equivalent to the width of the western United States—dwarf the San Andreas fault in length and width,” said Ronald Greeley, a geologist from Arizona State University and a member of the Galileo imaging team. The cracks are believed to have been caused by the stress of tidal forces created by Jupiter's gravity. Warmth generated by tidal heating also may have been sufficient to soften or liquefy some of the ice.

  6. Adaptation strategies for high order discontinuous Galerkin methods based on Tau-estimation

    NASA Astrophysics Data System (ADS)

    Kompenhans, Moritz; Rubio, Gonzalo; Ferrer, Esteban; Valero, Eusebio

    2016-02-01

    In this paper three p-adaptation strategies based on the minimization of the truncation error are presented for high order discontinuous Galerkin methods. The truncation error is approximated by means of a τ-estimation procedure and enables the identification of mesh regions that require adaptation. Three adaptation strategies are developed and termed a posteriori, quasi-a priori and quasi-a priori corrected. All strategies require fine solutions, which are obtained by enriching the polynomial order, but while the former needs time converged solutions, the last two rely on non-converged solutions, which lead to faster computations. In addition, the high order method permits the spatial decoupling for the estimated errors and enables anisotropic p-adaptation. These strategies are verified and compared in terms of accuracy and computational cost for the Euler and the compressible Navier-Stokes equations. It is shown that the two quasi-a priori methods achieve a significant reduction in computational cost when compared to a uniform polynomial enrichment. Namely, for a viscous boundary layer flow, we obtain a speedup of 6.6 and 7.6 for the quasi-a priori and quasi-a priori corrected approaches, respectively.

  7. A wavelet-optimized, very high order adaptive grid and order numerical method

    NASA Technical Reports Server (NTRS)

    Jameson, Leland

    1996-01-01

    Differencing operators of arbitrarily high order can be constructed by interpolating a polynomial through a set of data followed by differentiation of this polynomial and finally evaluation of the polynomial at the point where a derivative approximation is desired. Furthermore, the interpolating polynomial can be constructed from algebraic, trigonometric, or, perhaps exponential polynomials. This paper begins with a comparison of such differencing operator construction. Next, the issue of proper grids for high order polynomials is addressed. Finally, an adaptive numerical method is introduced which adapts the numerical grid and the order of the differencing operator depending on the data. The numerical grid adaptation is performed on a Chebyshev grid. That is, at each level of refinement the grid is a Chebvshev grid and this grid is refined locally based on wavelet analysis.

  8. An h-adaptive finite element method for turbulent heat transfer

    SciTech Connect

    Carriington, David B

    2009-01-01

    A two-equation turbulence closure model (k-{omega}) using an h-adaptive grid technique and finite element method (FEM) has been developed to simulate low Mach flow and heat transfer. These flows are applicable to many flows in engineering and environmental sciences. Of particular interest in the engineering modeling areas are: combustion, solidification, and heat exchanger design. Flows for indoor air quality modeling and atmospheric pollution transport are typical types of environmental flows modeled with this method. The numerical method is based on a hybrid finite element model using an equal-order projection process. The model includes thermal and species transport, localized mesh refinement (h-adaptive) and Petrov-Galerkin weighting for the stabilizing the advection. This work develops the continuum model of a two-equation turbulence closure method. The fractional step solution method is stated along with the h-adaptive grid method (Carrington and Pepper, 2002). Solutions are presented for 2d flow over a backward-facing step.

  9. A Digitalized Gyroscope System Based on a Modified Adaptive Control Method.

    PubMed

    Xia, Dunzhu; Hu, Yiwei; Ni, Peizhen

    2016-03-04

    In this work we investigate the possibility of applying the adaptive control algorithm to Micro-Electro-Mechanical System (MEMS) gyroscopes. Through comparing the gyroscope working conditions with the reference model, the adaptive control method can provide online estimation of the key parameters and the proper control strategy for the system. The digital second-order oscillators in the reference model are substituted for two phase locked loops (PLLs) to achieve a more steady amplitude and frequency control. The adaptive law is modified to satisfy the condition of unequal coupling stiffness and coupling damping coefficient. The rotation mode of the gyroscope system is considered in our work and a rotation elimination section is added to the digitalized system. Before implementing the algorithm in the hardware platform, different simulations are conducted to ensure the algorithm can meet the requirement of the angular rate sensor, and some of the key adaptive law coefficients are optimized. The coupling components are detected and suppressed respectively and Lyapunov criterion is applied to prove the stability of the system. The modified adaptive control algorithm is verified in a set of digitalized gyroscope system, the control system is realized in digital domain, with the application of Field Programmable Gate Array (FPGA). Key structure parameters are measured and compared with the estimation results, which validated that the algorithm is feasible in the setup. Extra gyroscopes are used in repeated experiments to prove the commonality of the algorithm.

  10. Scale-adaptive tensor algebra for local many-body methods of electronic structure theory

    SciTech Connect

    Liakh, Dmitry I

    2014-01-01

    While the formalism of multiresolution analysis (MRA), based on wavelets and adaptive integral representations of operators, is actively progressing in electronic structure theory (mostly on the independent-particle level and, recently, second-order perturbation theory), the concepts of multiresolution and adaptivity can also be utilized within the traditional formulation of correlated (many-particle) theory which is based on second quantization and the corresponding (generally nonorthogonal) tensor algebra. In this paper, we present a formalism called scale-adaptive tensor algebra (SATA) which exploits an adaptive representation of tensors of many-body operators via the local adjustment of the basis set quality. Given a series of locally supported fragment bases of a progressively lower quality, we formulate the explicit rules for tensor algebra operations dealing with adaptively resolved tensor operands. The formalism suggested is expected to enhance the applicability and reliability of local correlated many-body methods of electronic structure theory, especially those directly based on atomic orbitals (or any other localized basis functions).

  11. A Digitalized Gyroscope System Based on a Modified Adaptive Control Method.

    PubMed

    Xia, Dunzhu; Hu, Yiwei; Ni, Peizhen

    2016-01-01

    In this work we investigate the possibility of applying the adaptive control algorithm to Micro-Electro-Mechanical System (MEMS) gyroscopes. Through comparing the gyroscope working conditions with the reference model, the adaptive control method can provide online estimation of the key parameters and the proper control strategy for the system. The digital second-order oscillators in the reference model are substituted for two phase locked loops (PLLs) to achieve a more steady amplitude and frequency control. The adaptive law is modified to satisfy the condition of unequal coupling stiffness and coupling damping coefficient. The rotation mode of the gyroscope system is considered in our work and a rotation elimination section is added to the digitalized system. Before implementing the algorithm in the hardware platform, different simulations are conducted to ensure the algorithm can meet the requirement of the angular rate sensor, and some of the key adaptive law coefficients are optimized. The coupling components are detected and suppressed respectively and Lyapunov criterion is applied to prove the stability of the system. The modified adaptive control algorithm is verified in a set of digitalized gyroscope system, the control system is realized in digital domain, with the application of Field Programmable Gate Array (FPGA). Key structure parameters are measured and compared with the estimation results, which validated that the algorithm is feasible in the setup. Extra gyroscopes are used in repeated experiments to prove the commonality of the algorithm. PMID:26959019

  12. Investigation of the effects of color on judgments of sweetness using a taste adaptation method.

    PubMed

    Hidaka, Souta; Shimoda, Kazumasa

    2014-01-01

    It has been reported that color can affect the judgment of taste. For example, a dark red color enhances the subjective intensity of sweetness. However, the underlying mechanisms of the effect of color on taste have not been fully investigated; in particular, it remains unclear whether the effect is based on cognitive/decisional or perceptual processes. Here, we investigated the effect of color on sweetness judgments using a taste adaptation method. A sweet solution whose color was subjectively congruent with sweetness was judged as sweeter than an uncolored sweet solution both before and after adaptation to an uncolored sweet solution. In contrast, subjective judgment of sweetness for uncolored sweet solutions did not differ between the conditions following adaptation to a colored sweet solution and following adaptation to an uncolored one. Color affected sweetness judgment when the target solution was colored, but the colored sweet solution did not modulate the magnitude of taste adaptation. Therefore, it is concluded that the effect of color on the judgment of taste would occur mainly in cognitive/decisional domains.

  13. Phylogeny-based comparative methods question the adaptive nature of sporophytic specializations in mosses.

    PubMed

    Huttunen, Sanna; Olsson, Sanna; Buchbender, Volker; Enroth, Johannes; Hedenäs, Lars; Quandt, Dietmar

    2012-01-01

    Adaptive evolution has often been proposed to explain correlations between habitats and certain phenotypes. In mosses, a high frequency of species with specialized sporophytic traits in exposed or epiphytic habitats was, already 100 years ago, suggested as due to adaptation. We tested this hypothesis by contrasting phylogenetic and morphological data from two moss families, Neckeraceae and Lembophyllaceae, both of which show parallel shifts to a specialized morphology and to exposed epiphytic or epilithic habitats. Phylogeny-based tests for correlated evolution revealed that evolution of four sporophytic traits is correlated with a habitat shift. For three of them, evolutionary rates of dual character-state changes suggest that habitat shifts appear prior to changes in morphology. This suggests that they could have evolved as adaptations to new habitats. Regarding the fourth correlated trait the specialized morphology had already evolved before the habitat shift. In addition, several other specialized "epiphytic" traits show no correlation with a habitat shift. Besides adaptive diversification, other processes thus also affect the match between phenotype and environment. Several potential factors such as complex genetic and developmental pathways yielding the same phenotypes, differences in strength of selection, or constraints in phenotypic evolution may lead to an inability of phylogeny-based comparative methods to detect potential adaptations.

  14. A Digitalized Gyroscope System Based on a Modified Adaptive Control Method

    PubMed Central

    Xia, Dunzhu; Hu, Yiwei; Ni, Peizhen

    2016-01-01

    In this work we investigate the possibility of applying the adaptive control algorithm to Micro-Electro-Mechanical System (MEMS) gyroscopes. Through comparing the gyroscope working conditions with the reference model, the adaptive control method can provide online estimation of the key parameters and the proper control strategy for the system. The digital second-order oscillators in the reference model are substituted for two phase locked loops (PLLs) to achieve a more steady amplitude and frequency control. The adaptive law is modified to satisfy the condition of unequal coupling stiffness and coupling damping coefficient. The rotation mode of the gyroscope system is considered in our work and a rotation elimination section is added to the digitalized system. Before implementing the algorithm in the hardware platform, different simulations are conducted to ensure the algorithm can meet the requirement of the angular rate sensor, and some of the key adaptive law coefficients are optimized. The coupling components are detected and suppressed respectively and Lyapunov criterion is applied to prove the stability of the system. The modified adaptive control algorithm is verified in a set of digitalized gyroscope system, the control system is realized in digital domain, with the application of Field Programmable Gate Array (FPGA). Key structure parameters are measured and compared with the estimation results, which validated that the algorithm is feasible in the setup. Extra gyroscopes are used in repeated experiments to prove the commonality of the algorithm. PMID:26959019

  15. A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov Maxwell system

    NASA Astrophysics Data System (ADS)

    Besse, Nicolas; Latu, Guillaume; Ghizzo, Alain; Sonnendrücker, Eric; Bertrand, Pierre

    2008-08-01

    In this paper we present a new method for the numerical solution of the relativistic Vlasov-Maxwell system on a phase-space grid using an adaptive semi-Lagrangian method. The adaptivity is performed through a wavelet multiresolution analysis, which gives a powerful and natural refinement criterion based on the local measurement of the approximation error and regularity of the distribution function. Therefore, the multiscale expansion of the distribution function allows to get a sparse representation of the data and thus save memory space and CPU time. We apply this numerical scheme to reduced Vlasov-Maxwell systems arising in laser-plasma physics. Interaction of relativistically strong laser pulses with overdense plasma slabs is investigated. These Vlasov simulations revealed a rich variety of phenomena associated with the fast particle dynamics induced by electromagnetic waves as electron trapping, particle acceleration, and electron plasma wavebreaking. However, the wavelet based adaptive method that we developed here, does not yield significant improvements compared to Vlasov solvers on a uniform mesh due to the substantial overhead that the method introduces. Nonetheless they might be a first step towards more efficient adaptive solvers based on different ideas for the grid refinement or on a more efficient implementation. Here the Vlasov simulations are performed in a two-dimensional phase-space where the development of thin filaments, strongly amplified by relativistic effects requires an important increase of the total number of points of the phase-space grid as they get finer as time goes on. The adaptive method could be more useful in cases where these thin filaments that need to be resolved are a very small fraction of the hyper-volume, which arises in higher dimensions because of the surface-to-volume scaling and the essentially one-dimensional structure of the filaments. Moreover, the main way to improve the efficiency of the adaptive method is to

  16. Compound cueing in free recall

    PubMed Central

    Lohnas, Lynn J.; Kahana, Michael J.

    2013-01-01

    According to the retrieved context theory of episodic memory, the cue for recall of an item is a weighted sum of recently activated cognitive states, including previously recalled and studied items as well as their associations. We show that this theory predicts there should be compound cueing in free recall. Specifically, the temporal contiguity effect should be greater when the two most recently recalled items were studied in contiguous list positions. A meta-analysis of published free recall experiments demonstrates evidence for compound cueing in both conditional response probabilities and inter-response times. To help rule out a rehearsal-based account of these compound cueing effects, we conducted an experiment with immediate, delayed and continual-distractor free recall conditions. Consistent with retrieved context theory but not with a rehearsal-based account, compound cueing was present in all conditions, and was not significantly influenced by the presence of interitem distractors. PMID:23957364

  17. Perception of aircraft Deviation Cues

    NASA Technical Reports Server (NTRS)

    Martin, Lynne; Azuma, Ronald; Fox, Jason; Verma, Savita; Lozito, Sandra

    2005-01-01

    To begin to address the need for new displays, required by a future airspace concept to support new roles that will be assigned to flight crews, a study of potentially informative display cues was undertaken. Two cues were tested on a simple plan display - aircraft trajectory and flight corridor. Of particular interest was the speed and accuracy with which participants could detect an aircraft deviating outside its flight corridor. Presence of the trajectory cue significantly reduced participant reaction time to a deviation while the flight corridor cue did not. Although non-significant, the flight corridor cue seemed to have a relationship with the accuracy of participants judgments rather than their speed. As this is the second of a series of studies, these issues will be addressed further in future studies.

  18. An adaptive Newton-method based on a dynamical systems approach

    NASA Astrophysics Data System (ADS)

    Amrein, Mario; Wihler, Thomas P.

    2014-09-01

    The traditional Newton method for solving nonlinear operator equations in Banach spaces is discussed within the context of the continuous Newton method. This setting makes it possible to interpret the Newton method as a discrete dynamical system and thereby to cast it in the framework of an adaptive step size control procedure. In so doing, our goal is to reduce the chaotic behavior of the original method without losing its quadratic convergence property close to the roots. The performance of the modified scheme is illustrated with various examples from algebraic and differential equations.

  19. A Nonlinear, Human-Centered Approach to Motion Cueing with a Neurocomputing Solver

    NASA Technical Reports Server (NTRS)

    Telban, Robert J.; Cardullo, Frank M.; Houck, Jacob A.

    2002-01-01

    This paper discusses the continuation of research into the development of new motion cueing algorithms first reported in 1999. In this earlier work, two viable approaches to motion cueing were identified: the coordinated adaptive washout algorithm or 'adaptive algorithm', and the 'optimal algorithm'. In this study, a novel approach to motion cueing is discussed that would combine features of both algorithms. The new algorithm is formulated as a linear optimal control problem, incorporating improved vestibular models and an integrated visual-vestibular motion perception model previously reported. A control law is generated from the motion platform states, resulting in a set of nonlinear cueing filters. The time-varying control law requires the matrix Riccati equation to be solved in real time. Therefore, in order to meet the real time requirement, a neurocomputing approach is used to solve this computationally challenging problem. Single degree-of-freedom responses for the nonlinear algorithm were generated and compared to the adaptive and optimal algorithms. Results for the heave mode show the nonlinear algorithm producing a motion cue with a time-varying washout, sustaining small cues for a longer duration and washing out larger cues more quickly. The addition of the optokinetic influence from the integrated perception model was shown to improve the response to a surge input, producing a specific force response with no steady-state washout. Improved cues are also observed for responses to a sway input. Yaw mode responses reveal that the nonlinear algorithm improves the motion cues by reducing the magnitude of negative cues. The effectiveness of the nonlinear algorithm as compared to the adaptive and linear optimal algorithms will be evaluated on a motion platform, the NASA Langley Research Center Visual Motion Simulator (VMS), and ultimately the Cockpit Motion Facility (CMF) with a series of pilot controlled maneuvers. A proposed experimental procedure is

  20. Adaptive mesh refinement techniques for the immersed interface method applied to flow problems.

    PubMed

    Li, Zhilin; Song, Peng

    2013-06-01

    In this paper, we develop an adaptive mesh refinement strategy of the Immersed Interface Method for flow problems with a moving interface. The work is built on the AMR method developed for two-dimensional elliptic interface problems in the paper [12] (CiCP, 12(2012), 515-527). The interface is captured by the zero level set of a Lipschitz continuous function φ(x, y, t). Our adaptive mesh refinement is built within a small band of |φ(x, y, t)| ≤ δ with finer Cartesian meshes. The AMR-IIM is validated for Stokes and Navier-Stokes equations with exact solutions, moving interfaces driven by the surface tension, and classical bubble deformation problems. A new simple area preserving strategy is also proposed in this paper for the level set method.

  1. Adaptive mesh refinement techniques for the immersed interface method applied to flow problems

    PubMed Central

    Li, Zhilin; Song, Peng

    2013-01-01

    In this paper, we develop an adaptive mesh refinement strategy of the Immersed Interface Method for flow problems with a moving interface. The work is built on the AMR method developed for two-dimensional elliptic interface problems in the paper [12] (CiCP, 12(2012), 515–527). The interface is captured by the zero level set of a Lipschitz continuous function φ(x, y, t). Our adaptive mesh refinement is built within a small band of |φ(x, y, t)| ≤ δ with finer Cartesian meshes. The AMR-IIM is validated for Stokes and Navier-Stokes equations with exact solutions, moving interfaces driven by the surface tension, and classical bubble deformation problems. A new simple area preserving strategy is also proposed in this paper for the level set method. PMID:23794763

  2. Theory of Adaptive Acquisition Method for Image Reconstruction from Projections and Application to EPR Imaging

    NASA Astrophysics Data System (ADS)

    Placidi, G.; Alecci, M.; Sotgiu, A.

    1995-07-01

    An adaptive method for selecting the projections to be used for image reconstruction is presented. The method starts with the acquisition of four projections at angles of 0°, 45°, 90°, 135° and selects the new angles by computing a function of the previous projections. This makes it possible to adapt the selection of projections to the arbitrary shape of the sample, thus measuring a more informative set of projections. When the sample is smooth or has internal symmetries, this technique allows a reduction in the number of projections required to reconstruct the image without loss of information. The method has been tested on simulated data at different values of signal-to-noise ratio (S/N) and on experimental data recorded by an EPR imaging apparatus.

  3. The direct simulation Monte Carlo method using unstructured adaptive mesh and its application

    NASA Astrophysics Data System (ADS)

    Wu, J.-S.; Tseng, K.-C.; Kuo, C.-H.

    2002-02-01

    The implementation of an adaptive mesh-embedding (h-refinement) scheme using unstructured grid in two-dimensional direct simulation Monte Carlo (DSMC) method is reported. In this technique, local isotropic refinement is used to introduce new mesh where the local cell Knudsen number is less than some preset value. This simple scheme, however, has several severe consequences affecting the performance of the DSMC method. Thus, we have applied a technique to remove the hanging node, by introducing the an-isotropic refinement in the interfacial cells between refined and non-refined cells. Not only does this remedy increase a negligible amount of work, but it also removes all the difficulties presented in the originals scheme. We have tested the proposed scheme for argon gas in a high-speed driven cavity flow. The results show an improved flow resolution as compared with that of un-adaptive mesh. Finally, we have used triangular adaptive mesh to compute a near-continuum gas flow, a hypersonic flow over a cylinder. The results show fairly good agreement with previous studies. In summary, the proposed simple mesh adaptation is very useful in computing rarefied gas flows, which involve both complicated geometry and highly non-uniform density variations throughout the flow field. Copyright

  4. Adaptive Tracker Design with Identifier for Pendulum System by Conditional LMI Method and IROA

    NASA Astrophysics Data System (ADS)

    Hwang, Jiing-Dong; Tsai, Zhi-Ren

    This paper proposes a robust adaptive fuzzy PID control scheme augmented with a supervisory controller for unknown systems. In this scheme, a generalized fuzzy model is used to describe a class of unknown systems. The control strategy allows each part of the control law, i.e., a supervisory controller, a compensator, and an adaptive fuzzy PID controller, to be designed incrementally according to different guidelines. The supervisory controller in the outer loop aims at enhancing system robustness in the face of extra disturbances, variation in system parameters, and parameter drift in the adaptation law. Furthermore, an H∞ control design method using the fuzzy Lyapunov function is presented for the design of the initial control gains that guarantees transient performance at the start of closed-loop control, which is generally overlooked in many adaptive control systems. This design of the initial control gains is a compound search strategy called conditional linear matrix inequality (CLMI) approach with IROA (Improved random optimal algorithm), it leads to less complex designs than a standard LMI method by fuzzy Lyapunov function. Numerical studies of the tracking control of an uncertain inverted pendulum system demonstrate the effectiveness of the control strategy. From results of this simulation, the generalized fuzzy model reduces the rule number of T-S fuzzy model indeed.

  5. Cues Resulting in Desire for Sexual Activity in Women

    PubMed Central

    McCall, Katie; Meston, Cindy

    2010-01-01

    Introduction A number of questionnaires have been created to assess levels of sexual desire in women, but to our knowledge, there are currently no validated measures for assessing cues that result in sexual desire. A questionnaire of this nature could be useful for both clinicians and researchers, because it considers the contextual nature of sexual desire and it draws attention to individual differences in factors that can contribute to sexual desire. Aim The aim of the present study was to create a multidimensional assessment tool of cues for sexual desire in women that is validated in women with and without hypoactive sexual desire disorder (HSDD). Methods Factor analyses conducted on both an initial sample (N = 874) and a community sample (N = 138) resulted in the Cues for Sexual Desire Scale (CSDS) which included four factors: (i) Emotional Bonding Cues; (ii) Erotic/ Explicit Cues; (iii) Visual/Proximity Cues; and (iv) Implicit/Romantic Cues. Main Outcome Measures Scale construction of cues associated with sexual desire and differences between women with and without sexual dysfunction. Results The CSDS demonstrated good reliability and validity and was able to detect significant differences between women with and without HSDD. Results from regression analyses indicated that both marital status and level of sexual functioning predicted scores on the CSDS. The CSDS provided predictive validity for the Female Sexual Function Index desire and arousal domain scores, and increased cues were related to a higher reported frequency of sexual activity in women. Conclusions The findings from the present study provide valuable information regarding both internal and external triggers that can result in sexual desire for women. We believe that the CSDS could be beneficial in therapeutic settings to help identify cues that do and do not facilitate sexual desire in women with clinically diagnosed desire difficulties. PMID:16942529

  6. On the Use of Adaptive Wavelet-based Methods for Ocean Modeling and Data Assimilation Problems

    NASA Astrophysics Data System (ADS)

    Vasilyev, Oleg V.; Yousuff Hussaini, M.; Souopgui, Innocent

    2014-05-01

    Latest advancements in parallel wavelet-based numerical methodologies for the solution of partial differential equations, combined with the unique properties of wavelet analysis to unambiguously identify and isolate localized dynamically dominant flow structures, make it feasible to start developing integrated approaches for ocean modeling and data assimilation problems that take advantage of temporally and spatially varying meshes. In this talk the Parallel Adaptive Wavelet Collocation Method with spatially and temporarily varying thresholding is presented and the feasibility/potential advantages of its use for ocean modeling are discussed. The second half of the talk focuses on the recently developed Simultaneous Space-time Adaptive approach that addresses one of the main challenges of variational data assimilation, namely the requirement to have a forward solution available when solving the adjoint problem. The issue is addressed by concurrently solving forward and adjoint problems in the entire space-time domain on a near optimal adaptive computational mesh that automatically adapts to spatio-temporal structures of the solution. The compressed space-time form of the solution eliminates the need to save or recompute forward solution for every time slice, as it is typically done in traditional time marching variational data assimilation approaches. The simultaneous spacio-temporal discretization of both the forward and the adjoint problems makes it possible to solve both of them concurrently on the same space-time adaptive computational mesh reducing the amount of saved data to the strict minimum for a given a priori controlled accuracy of the solution. The simultaneous space-time adaptive approach of variational data assimilation is demonstrated for the advection diffusion problem in 1D-t and 2D-t dimensions.

  7. A time-accurate adaptive grid method and the numerical simulation of a shock-vortex interaction

    NASA Technical Reports Server (NTRS)

    Bockelie, Michael J.; Eiseman, Peter R.

    1990-01-01

    A time accurate, general purpose, adaptive grid method is developed that is suitable for multidimensional steady and unsteady numerical simulations. The grid point movement is performed in a manner that generates smooth grids which resolve the severe solution gradients and the sharp transitions in the solution gradients. The temporal coupling of the adaptive grid and the PDE solver is performed with a grid prediction correction method that is simple to implement and ensures the time accuracy of the grid. Time accurate solutions of the 2-D Euler equations for an unsteady shock vortex interaction demonstrate the ability of the adaptive method to accurately adapt the grid to multiple solution features.

  8. Effect of training and familiarity on responsiveness to human cues in domestic dogs (Canis familiaris).

    PubMed

    Cunningham, Clare L; Ramos, Mari F

    2014-05-01

    Domestic dogs (Canis familiaris) seem to possess an evolved competency to follow human-given cues, often out-performing their wild progenitor the wolf (Canis lupus) on cue-following tasks. However, domestication may not be solely responsible for the socio-cognitive skills of dogs, with ontogenetic experience also playing a role. This research evaluated the effects of intensive training on cue-following behaviour using an unreinforced object-choice paradigm. The responses of dogs that were trained to competitive levels were compared to those of pet dogs with only basic training, and dogs living in an animal shelter that demonstrated no or only rudimentary following of basic commands. Using a cue-following task where three types of cues were presented by familiar and unfamiliar human partners, the number of cues followed by each training group were recorded. All dogs found cues where gesture was combined with a congruent head and eye movement easier to follow than either gesture or eye gaze alone. Whether the cue-giver was familiar or not had a significant effect on number of cues followed in homed dogs, and the performance of shelter dogs was comparable to the other groups when faced with an unfamiliar cue-giver. Contrary to predictions, level of training did not improve performance on the cue-following task. This work does provide support for the presence of an evolved adaptation to exploit social cues provided by humans that can be augmented by familiarity with the cue giver. However, additional joint activity as experienced in an intensive training regime does not seem to increase accuracy in following human-given cues.

  9. Effect of training and familiarity on responsiveness to human cues in domestic dogs (Canis familiaris).

    PubMed

    Cunningham, Clare L; Ramos, Mari F

    2014-05-01

    Domestic dogs (Canis familiaris) seem to possess an evolved competency to follow human-given cues, often out-performing their wild progenitor the wolf (Canis lupus) on cue-following tasks. However, domestication may not be solely responsible for the socio-cognitive skills of dogs, with ontogenetic experience also playing a role. This research evaluated the effects of intensive training on cue-following behaviour using an unreinforced object-choice paradigm. The responses of dogs that were trained to competitive levels were compared to those of pet dogs with only basic training, and dogs living in an animal shelter that demonstrated no or only rudimentary following of basic commands. Using a cue-following task where three types of cues were presented by familiar and unfamiliar human partners, the number of cues followed by each training group were recorded. All dogs found cues where gesture was combined with a congruent head and eye movement easier to follow than either gesture or eye gaze alone. Whether the cue-giver was familiar or not had a significant effect on number of cues followed in homed dogs, and the performance of shelter dogs was comparable to the other groups when faced with an unfamiliar cue-giver. Contrary to predictions, level of training did not improve performance on the cue-following task. This work does provide support for the presence of an evolved adaptation to exploit social cues provided by humans that can be augmented by familiarity with the cue giver. However, additional joint activity as experienced in an intensive training regime does not seem to increase accuracy in following human-given cues. PMID:24318516

  10. Adaptive scene-based nonuniformity correction method for infrared-focal plane arrays

    NASA Astrophysics Data System (ADS)

    Torres, Sergio N.; Vera, Esteban M.; Reeves, Rodrigo A.; Sobarzo, Sergio K.

    2003-08-01

    The non-uniform response in infrared focal plane array (IRFPA) detectors produces corrupted images with a fixed-pattern noise. In this paper we present an enhanced adaptive scene-based non-uniformity correction (NUC) technique. The method simultaneously estimates detector's parameters and performs the non-uniformity compensation using a neural network approach. In addition, the proposed method doesn't make any assumption on the kind or amount of non-uniformity presented on the raw data. The strength and robustness of the proposed method relies in avoiding the presence of ghosting artifacts through the use of optimization techniques in the parameter estimation learning process, such as: momentum, regularization, and adaptive learning rate. The proposed method has been tested with video sequences of simulated and real infrared data taken with an InSb IRFPA, reaching high correction levels, reducing the fixed pattern noise, decreasing the ghosting, and obtaining an effective frame by frame adaptive estimation of each detector's gain and offset.

  11. Vortical Flow Prediction using an Adaptive Unstructured Grid Method. Chapter 11

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    2009-01-01

    A computational fluid dynamics (CFD) method has been employed to compute vortical flows around slender wing/body configurations. The emphasis of the paper is on the effectiveness of an adaptive grid procedure in "capturing" concentrated vortices generated at sharp edges or flow separation lines of lifting surfaces flying at high angles of attack. The method is based on a tetrahedral unstructured grid technology developed at the NASA Langley Research Center. Two steady-state, subsonic, inviscid and Navier-Stokes flow test cases are presented to demonstrate the applicability of the method for solving vortical flow problems. The first test case concerns vortex flow over a simple 65 delta wing with different values of leading-edge radius. Although the geometry is quite simple, it poses a challenging problem for computing vortices originating from blunt leading edges. The second case is that of a more complex fighter configuration. The superiority of the adapted solutions in capturing the vortex flow structure over the conventional unadapted results is demonstrated by comparisons with the wind-tunnel experimental data. The study shows that numerical prediction of vortical flows is highly sensitive to the local grid resolution and that the implementation of grid adaptation is essential when applying CFD methods to such complicated flow problems.

  12. Development of the Adaptive Collision Source (ACS) method for discrete ordinates

    SciTech Connect

    Walters, W.; Haghighat, A.

    2013-07-01

    We have developed a new collision source method to solve the Linear Boltzmann Equation (LBE) more efficiently by adaptation of the angular quadrature order. The angular adaptation method is unique in that the flux from each scattering source iteration is obtained, with potentially a different quadrature order. Traditionally, the flux from every iteration is combined, with the same quadrature applied to the combined flux. Since the scattering process tends to distribute the radiation more evenly over angles (i.e., make it more isotropic), the quadrature requirements generally decrease with each iteration. This allows for an optimal use of processing power, by using a high order quadrature for the first few iterations that need it, before shifting to lower order quadratures for the remaining iterations. This is essentially an extension of the first collision source method, and we call it the adaptive collision source method (ACS). The ACS methodology has been implemented in the TITAN discrete ordinates code, and has shown a relative speedup of 1.5-2.5 on a test problem, for the same desired level of accuracy. (authors)

  13. Adjoint-based error estimation and mesh adaptation for the correction procedure via reconstruction method

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Wang, Z. J.

    2015-08-01

    Adjoint-based mesh adaptive methods are capable of distributing computational resources to areas which are important for predicting an engineering output. In this paper, we develop an adjoint-based h-adaptation approach based on the high-order correction procedure via reconstruction formulation (CPR) to minimize the output or functional error. A dual-consistent CPR formulation of hyperbolic conservation laws is developed and its dual consistency is analyzed. Super-convergent functional and error estimate for the output with the CPR method are obtained. Factors affecting the dual consistency, such as the solution point distribution, correction functions, boundary conditions and the discretization approach for the non-linear flux divergence term, are studied. The presented method is then used to perform simulations for the 2D Euler and Navier-Stokes equations with mesh adaptation driven by the adjoint-based error estimate. Several numerical examples demonstrate the ability of the presented method to dramatically reduce the computational cost comparing with uniform grid refinement.

  14. A method for online verification of adapted fields using an independent dose monitor

    SciTech Connect

    Chang Jina; Norrlinger, Bernhard D.; Heaton, Robert K.; Jaffray, David A.; Cho, Young-Bin; Islam, Mohammad K.; Mahon, Robert

    2013-07-15

    Purpose: Clinical implementation of online adaptive radiotherapy requires generation of modified fields and a method of dosimetric verification in a short time. We present a method of treatment field modification to account for patient setup error, and an online method of verification using an independent monitoring system.Methods: The fields are modified by translating each multileaf collimator (MLC) defined aperture in the direction of the patient setup error, and magnifying to account for distance variation to the marked isocentre. A modified version of a previously reported online beam monitoring system, the integral quality monitoring (IQM) system, was investigated for validation of adapted fields. The system consists of a large area ion-chamber with a spatial gradient in electrode separation to provide a spatially sensitive signal for each beam segment, mounted below the MLC, and a calculation algorithm to predict the signal. IMRT plans of ten prostate patients have been modified in response to six randomly chosen setup errors in three orthogonal directions.Results: A total of approximately 49 beams for the modified fields were verified by the IQM system, of which 97% of measured IQM signal agree with the predicted value to within 2%.Conclusions: The modified IQM system was found to be suitable for online verification of adapted treatment fields.

  15. An adaptive grid method for computing the high speed 3D viscous flow about a re-entry vehicle

    NASA Technical Reports Server (NTRS)

    Bockelie, Michael J.; Smith, Robert E.

    1992-01-01

    An algebraic solution adaptive grid generation method that allows adapting the grid in all three coordinate directions is presented. Techniques are described that maintain the integrity of the original vehicle definition for grid point movement on the vehicle surface and that avoid grid cross over in the boundary layer portion of the grid lying next to the vehicle surface. The adaptive method is tested by computing the Mach 6 hypersonic three dimensional viscous flow about a proposed Martian entry vehicle.

  16. Ontogenetic changes in responses to settlement cues by Anemonefish

    NASA Astrophysics Data System (ADS)

    Dixson, D. L.; Munday, P. L.; Pratchett, M.; Jones, G. P.

    2011-12-01

    Population connectivity for most marine species is dictated by dispersal during the pelagic larval stage. Although reef fish larvae are known to display behavioral adaptations that influence settlement site selection, little is known about the development of behavioral preferences throughout the larval phase. Whether larvae are attracted to the same sensory cues throughout their larval phase, or exhibit distinct ontogenetic shifts in sensory preference is unknown. Here, we demonstrate an ontogenetic shift in olfactory cue preferences for two species of anemonefish, a process that could aid in understanding both patterns of dispersal and settlement. Aquarium-bred naïve Amphiprion percula and A. melanopus larvae were tested for olfactory preference of relevant reef-associated chemical cues throughout the 11-day pelagic larval stage. Age posthatching had a significant effect on the preference for olfactory cues from host anemones and live corals for both species. Preferences of olfactory cues from tropical plants of A. percula, increased by approximately ninefold between hatching and settlement, with A. percula larvae showing a fivefold increase in preference for the olfactory cue produced by the grass species. Larval age had no effect on the olfactory preference for untreated seawater over the swamp-based tree Melaleuca nervosa, which was always avoided compared with blank seawater. These results indicate that reef fish larvae are capable of utilizing olfactory cues early in the larval stage and may be predisposed to disperse away from reefs, with innate olfactory preferences drawing newly hatched larvae into the pelagic environment. Toward the end of the larval phase, larvae become attracted to the olfactory cues of appropriate habitats, which may assist them in identification of and navigation toward suitable settlement sites.

  17. Motion Cueing Algorithm Development: Human-Centered Linear and Nonlinear Approaches

    NASA Technical Reports Server (NTRS)

    Houck, Jacob A. (Technical Monitor); Telban, Robert J.; Cardullo, Frank M.

    2005-01-01

    While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. Prior research identified viable features from two algorithms: the nonlinear "adaptive algorithm", and the "optimal algorithm" that incorporates human vestibular models. A novel approach to motion cueing, the "nonlinear algorithm" is introduced that combines features from both approaches. This algorithm is formulated by optimal control, and incorporates a new integrated perception model that includes both visual and vestibular sensation and the interaction between the stimuli. Using a time-varying control law, the matrix Riccati equation is updated in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. The neurocomputing approach was crucial in that the number of presentations of an input vector could be reduced to meet the real time requirement without degrading the quality of the motion cues.

  18. Vivid Motor Imagery as an Adaptation Method for Head Turns on a Short-Arm Centrifuge

    NASA Technical Reports Server (NTRS)

    Newby, N. J.; Mast, F. W.; Natapoff, A.; Paloski, W. H.

    2006-01-01

    from one another. For the perceived duration of sensations, the CG group again exhibited the least amount of adaptation. However, the rates of adaptation of the PA and the MA groups were indistinguishable, suggesting that the imagined pseudostimulus appeared to be just as effective a means of adaptation as the actual stimulus. The MA group's rate of adaptation to motion sickness symptoms was also comparable to the PA group. The use of vivid motor imagery may be an effective method for adapting to the illusory sensations and motion sickness symptoms produced by cross-coupled stimuli. For space-based AG applications, this technique may prove quite useful in retaining astronauts considered highly susceptible to motion sickness as it reduces the number of actual CCS required to attain adaptation.

  19. The Adaptively Biased Molecular Dynamics method revisited: New capabilities and an application

    NASA Astrophysics Data System (ADS)

    Moradi, Mahmoud; Babin, Volodymyr; Roland, Christopher; Sagui, Celeste

    2015-09-01

    The free energy is perhaps one of the most important quantity required for describing biomolecular systems at equilibrium. Unfortunately, accurate and reliable free energies are notoriously difficult to calculate. To address this issue, we previously developed the Adaptively Biased Molecular Dynamics (ABMD) method for accurate calculation of rugged free energy surfaces (FES). Here, we briefly review the workings of the ABMD method with an emphasis on recent software additions, along with a short summary of a selected ABMD application based on the B-to-Z DNA transition. The ABMD method, along with current extensions, is currently implemented in the AMBER (ver.10-14) software package.

  20. An adaptive grid method for computing time accurate solutions on structured grids

    NASA Technical Reports Server (NTRS)

    Bockelie, Michael J.; Smith, Robert E.; Eiseman, Peter R.

    1991-01-01

    The solution method consists of three parts: a grid movement scheme; an unsteady Euler equation solver; and a temporal coupling routine that links the dynamic grid to the Euler solver. The grid movement scheme is an algebraic method containing grid controls that generate a smooth grid that resolves the severe solution gradients and the sharp transitions in the solution gradients. The temporal coupling is performed with a grid prediction correction procedure that is simple to implement and provides a grid that does not lag the solution in time. The adaptive solution method is tested by computing the unsteady inviscid solutions for a one dimensional shock tube and a two dimensional shock vortex iteraction.

  1. Adaptation of LASCA method for diagnostics of malignant tumours in laboratory animals

    SciTech Connect

    Ul'yanov, S S; Laskavyi, V N; Glova, Alina B; Polyanina, T I; Ul'yanova, O V; Fedorova, V A; Ul'yanov, A S

    2012-05-31

    The LASCA method is adapted for diagnostics of malignant neoplasms in laboratory animals. Tumours are studied in mice of Balb/c inbred line after inoculation of cells of syngeneic myeloma cell line Sp.2/0 Ag.8. The appropriateness of using the tLASCA method in tumour investigations is substantiated; its advantages in comparison with the sLASCA method are demonstrated. It is found that the most informative characteristic, indicating the presence of a tumour, is the fractal dimension of LASCA images.

  2. Adaptation of LASCA method for diagnostics of malignant tumours in laboratory animals

    NASA Astrophysics Data System (ADS)

    Ul'yanov, S. S.; Laskavyi, V. N.; Glova, Alina B.; Polyanina, T. I.; Ul'yanova, O. V.; Fedorova, V. A.; Ul'yanov, A. S.

    2012-05-01

    The LASCA method is adapted for diagnostics of malignant neoplasms in laboratory animals. Tumours are studied in mice of Balb/c inbred line after inoculation of cells of syngeneic myeloma cell line Sp.2/0 — Ag.8. The appropriateness of using the tLASCA method in tumour investigations is substantiated; its advantages in comparison with the sLASCA method are demonstrated. It is found that the most informative characteristic, indicating the presence of a tumour, is the fractal dimension of LASCA images.

  3. Fast and robust reconstruction for fluorescence molecular tomography via a sparsity adaptive subspace pursuit method.

    PubMed

    Ye, Jinzuo; Chi, Chongwei; Xue, Zhenwen; Wu, Ping; An, Yu; Xu, Han; Zhang, Shuang; Tian, Jie

    2014-02-01

    Fluorescence molecular tomography (FMT), as a promising imaging modality, can three-dimensionally locate the specific tumor position in small animals. However, it remains challenging for effective and robust reconstruction of fluorescent probe distribution in animals. In this paper, we present a novel method based on sparsity adaptive subspace pursuit (SASP) for FMT reconstruction. Some innovative strategies including subspace projection, the bottom-up sparsity adaptive approach, and backtracking technique are associated with the SASP method, which guarantees the accuracy, efficiency, and robustness for FMT reconstruction. Three numerical experiments based on a mouse-mimicking heterogeneous phantom have been performed to validate the feasibility of the SASP method. The results show that the proposed SASP method can achieve satisfactory source localization with a bias less than 1mm; the efficiency of the method is much faster than mainstream reconstruction methods; and this approach is robust even under quite ill-posed condition. Furthermore, we have applied this method to an in vivo mouse model, and the results demonstrate the feasibility of the practical FMT application with the SASP method.

  4. A novel timestamp based adaptive clock method for circuit emulation service over packet network

    NASA Astrophysics Data System (ADS)

    Dai, Jin-you; Yu, Shao-hua

    2007-11-01

    It is necessary to transport TDM (time division multiplexing) over packet network such as IP and Ethernet, and synchronization is a problem when carrying TDM over the packet network. Clock methods for TDM over packet network are introduced. A new adaptive clock method is presented. The method is a kind of timestamp based adaptive method, but no timestamp needs transporting over packet network. By using the local oscillator and a counter, the timestamp information (local timestamp) related to the service clock of the remote PE (provide edge) and the near PE can be attained. By using D-EWMA filter algorithm, the noise caused by packet network can be filtered and the useful timestamp can be extracted out. With the timestamp and a voltage-controlled oscillator, clock frequency of near PE can be adjusted the same as clock frequency of the remote PE. A kind of simulation device is designed and a test network topology is set up to test and verify the method. The experiment result shows that synthetical performance of the new method is better than ordinary buffer based method and ordinary timestamp based method.

  5. Improved methods in neural network-based adaptive output feedback control, with applications to flight control

    NASA Astrophysics Data System (ADS)

    Kim, Nakwan

    Utilizing the universal approximation property of neural networks, we develop several novel approaches to neural network-based adaptive output feedback control of nonlinear systems, and illustrate these approaches for several flight control applications. In particular, we address the problem of non-affine systems and eliminate the fixed point assumption present in earlier work. All of the stability proofs are carried out in a form that eliminates an algebraic loop in the neural network implementation. An approximate input/output feedback linearizing controller is augmented with a neural network using input/output sequences of the uncertain system. These approaches permit adaptation to both parametric uncertainty and unmodeled dynamics. All physical systems also have control position and rate limits, which may either deteriorate performance or cause instability for a sufficiently high control bandwidth. Here we apply a method for protecting an adaptive process from the effects of input saturation and time delays, known as "pseudo control hedging". This method was originally developed for the state feedback case, and we provide a stability analysis that extends its domain of applicability to the case of output feedback. The approach is illustrated by the design of a pitch-attitude flight control system for a linearized model of an R-50 experimental helicopter, and by the design of a pitch-rate control system for a 58-state model of a flexible aircraft consisting of rigid body dynamics coupled with actuator and flexible modes. A new approach to augmentation of an existing linear controller is introduced. It is especially useful when there is limited information concerning the plant model, and the existing controller. The approach is applied to the design of an adaptive autopilot for a guided munition. Design of a neural network adaptive control that ensures asymptotically stable tracking performance is also addressed.

  6. An Adaptive Mesh Refinement Strategy for Immersed Boundary/Interface Methods.

    PubMed

    Li, Zhilin; Song, Peng

    2012-01-01

    An adaptive mesh refinement strategy is proposed in this paper for the Immersed Boundary and Immersed Interface methods for two-dimensional elliptic interface problems involving singular sources. The interface is represented by the zero level set of a Lipschitz function φ(x,y). Our adaptive mesh refinement is done within a small tube of |φ(x,y)|≤ δ with finer Cartesian meshes. The discrete linear system of equations is solved by a multigrid solver. The AMR methods could obtain solutions with accuracy that is similar to those on a uniform fine grid by distributing the mesh more economically, therefore, reduce the size of the linear system of the equations. Numerical examples presented show the efficiency of the grid refinement strategy.

  7. An Adaptive Mesh Refinement Strategy for Immersed Boundary/Interface Methods

    PubMed Central

    Li, Zhilin; Song, Peng

    2012-01-01

    An adaptive mesh refinement strategy is proposed in this paper for the Immersed Boundary and Immersed Interface methods for two-dimensional elliptic interface problems involving singular sources. The interface is represented by the zero level set of a Lipschitz function φ(x,y). Our adaptive mesh refinement is done within a small tube of |φ(x,y)|≤ δ with finer Cartesian meshes. The discrete linear system of equations is solved by a multigrid solver. The AMR methods could obtain solutions with accuracy that is similar to those on a uniform fine grid by distributing the mesh more economically, therefore, reduce the size of the linear system of the equations. Numerical examples presented show the efficiency of the grid refinement strategy. PMID:22670155

  8. Advanced adaptive computational methods for Navier-Stokes simulations in rotorcraft aerodynamics

    NASA Technical Reports Server (NTRS)

    Stowers, S. T.; Bass, J. M.; Oden, J. T.

    1993-01-01

    A phase 2 research and development effort was conducted in area transonic, compressible, inviscid flows with an ultimate goal of numerically modeling complex flows inherent in advanced helicopter blade designs. The algorithms and methodologies therefore are classified as adaptive methods, which are error estimation techniques for approximating the local numerical error, and automatically refine or unrefine the mesh so as to deliver a given level of accuracy. The result is a scheme which attempts to produce the best possible results with the least number of grid points, degrees of freedom, and operations. These types of schemes automatically locate and resolve shocks, shear layers, and other flow details to an accuracy level specified by the user of the code. The phase 1 work involved a feasibility study of h-adaptive methods for steady viscous flows, with emphasis on accurate simulation of vortex initiation, migration, and interaction. Phase 2 effort focused on extending these algorithms and methodologies to a three-dimensional topology.

  9. Stability of a modified Peaceman-Rachford method for the paraxial Helmholtz equation on adaptive grids

    NASA Astrophysics Data System (ADS)

    Sheng, Qin; Sun, Hai-wei

    2016-11-01

    This study concerns the asymptotic stability of an eikonal, or ray, transformation based Peaceman-Rachford splitting method for solving the paraxial Helmholtz equation with high wave numbers. Arbitrary nonuniform grids are considered in transverse and beam propagation directions. The differential equation targeted has been used for modeling propagations of high intensity laser pulses over a long distance without diffractions. Self-focusing of high intensity beams may be balanced with the de-focusing effect of created ionized plasma channel in the situation, and applications of grid adaptations are frequently essential. It is shown rigorously that the fully discretized oscillation-free decomposition method on arbitrary adaptive grids is asymptotically stable with a stability index one. Simulation experiments are carried out to illustrate our concern and conclusions.

  10. Research on a pulmonary nodule segmentation method combining fast self-adaptive FCM and classification.

    PubMed

    Liu, Hui; Zhang, Cai-Ming; Su, Zhi-Yuan; Wang, Kai; Deng, Kai

    2015-01-01

    The key problem of computer-aided diagnosis (CAD) of lung cancer is to segment pathologically changed tissues fast and accurately. As pulmonary nodules are potential manifestation of lung cancer, we propose a fast and self-adaptive pulmonary nodules segmentation method based on a combination of FCM clustering and classification learning. The enhanced spatial function considers contributions to fuzzy membership from both the grayscale similarity between central pixels and single neighboring pixels and the spatial similarity between central pixels and neighborhood and improves effectively the convergence rate and self-adaptivity of the algorithm. Experimental results show that the proposed method can achieve more accurate segmentation of vascular adhesion, pleural adhesion, and ground glass opacity (GGO) pulmonary nodules than other typical algorithms.

  11. An adaptive tau-leaping method for stochastic simulations of reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Padgett, Jill M. A.; Ilie, Silvana

    2016-03-01

    Stochastic modelling is critical for studying many biochemical processes in a cell, in particular when some reacting species have low population numbers. For many such cellular processes the spatial distribution of the molecular species plays a key role. The evolution of spatially heterogeneous biochemical systems with some species in low amounts is accurately described by the mesoscopic model of the Reaction-Diffusion Master Equation. The Inhomogeneous Stochastic Simulation Algorithm provides an exact strategy to numerically solve this model, but it is computationally very expensive on realistic applications. We propose a novel adaptive time-stepping scheme for the tau-leaping method for approximating the solution of the Reaction-Diffusion Master Equation. This technique combines effective strategies for variable time-stepping with path preservation to reduce the computational cost, while maintaining the desired accuracy. The numerical tests on various examples arising in applications show the improved efficiency achieved by the new adaptive method.

  12. Quantification of organ motion based on an adaptive image-based scale invariant feature method

    SciTech Connect

    Paganelli, Chiara; Peroni, Marta

    2013-11-15

    Purpose: The availability of corresponding landmarks in IGRT image series allows quantifying the inter and intrafractional motion of internal organs. In this study, an approach for the automatic localization of anatomical landmarks is presented, with the aim of describing the nonrigid motion of anatomo-pathological structures in radiotherapy treatments according to local image contrast.Methods: An adaptive scale invariant feature transform (SIFT) was developed from the integration of a standard 3D SIFT approach with a local image-based contrast definition. The robustness and invariance of the proposed method to shape-preserving and deformable transforms were analyzed in a CT phantom study. The application of contrast transforms to the phantom images was also tested, in order to verify the variation of the local adaptive measure in relation to the modification of image contrast. The method was also applied to a lung 4D CT dataset, relying on manual feature identification by an expert user as ground truth. The 3D residual distance between matches obtained in adaptive-SIFT was then computed to verify the internal motion quantification with respect to the expert user. Extracted corresponding features in the lungs were used as regularization landmarks in a multistage deformable image registration (DIR) mapping the inhale vs exhale phase. The residual distances between the warped manual landmarks and their reference position in the inhale phase were evaluated, in order to provide a quantitative indication of the registration performed with the three different point sets.Results: The phantom study confirmed the method invariance and robustness properties to shape-preserving and deformable transforms, showing residual matching errors below the voxel dimension. The adapted SIFT algorithm on the 4D CT dataset provided automated and accurate motion detection of peak to peak breathing motion. The proposed method resulted in reduced residual errors with respect to standard SIFT

  13. System and method for adaptively deskewing parallel data signals relative to a clock

    DOEpatents

    Jenkins, Philip Nord; Cornett, Frank N.

    2008-10-07

    A system and method of reducing skew between a plurality of signals transmitted with a transmit clock is described. Skew is detected between the received transmit clock and each of received data signals. Delay is added to the clock or to one or more of the plurality of data signals to compensate for the detected skew. The delay added to each of the plurality of delayed signals is updated to adapt to changes in detected skew.

  14. System and method for adaptively deskewing parallel data signals relative to a clock

    DOEpatents

    Jenkins, Philip Nord; Cornett, Frank N.

    2011-10-04

    A system and method of reducing skew between a plurality of signals transmitted with a transmit clock is described. Skew is detected between the received transmit clock and each of received data signals. Delay is added to the clock or to one or more of the plurality of data signals to compensate for the detected skew. The delay added to each of the plurality of delayed signals is updated to adapt to changes in detected skew.

  15. Logically rectangular finite volume methods with adaptive refinement on the sphere.

    PubMed

    Berger, Marsha J; Calhoun, Donna A; Helzel, Christiane; LeVeque, Randall J

    2009-11-28

    The logically rectangular finite volume grids for two-dimensional partial differential equations on a sphere and for three-dimensional problems in a spherical shell introduced recently have nearly uniform cell size, avoiding severe Courant number restrictions. We present recent results with adaptive mesh refinement using the GeoClaw software and demonstrate well-balanced methods that exactly maintain equilibrium solutions, such as shallow water equations for an ocean at rest over arbitrary bathymetry.

  16. Plastic response to a proxy cue of predation risk when direct cues are unreliable.

    PubMed

    Miehls, Andrea L J; McAdam, Andrew G; Bourdeau, Paul E; Peacor, Scott D

    2013-10-01

    Responses to proximate cues that directly affect fitness or cues directly released by selective agents are well-documented forms of phenotypic plasticity. For example, to reduce predation risk, prey change phenotype in response to light level (e.g., moon phase) when light affects predation risk from visual predators, and to chemical cues (kairomones) released by predators. Less well understood is the potential for organisms to perceive predation risk through "proxy cues": proximate cues that correlate with, but do not directly affect predation risk. Previous field studies indicate that body and spine length of an invasive cladoceran in Lake Michigan, Bythotrephes longimanus (the spiny water flea), increase during the growing season, coincident with a decrease in clutch size. Although the cause of seasonal trait changes is not known, changes are associated with warmer water temperature and increased predation risk from gape-limited fish (i.e., fish whose ability to consume Bythotrephes is limited by mouth size). Using a laboratory experiment, we found no effect of fish (Perca flavescens) kairomones on Bythotrephes morphology or life history. In contrast, higher water temperature led to longer absolute spine and body length, increased investment in morphological defense of offspring (measured as the ratio of spine-to-body length), and decreased clutch size and age at reproduction. These plastic responses are unlikely to be adaptive to temperature per se, but rather our findings indicate that temperature serves as a proxy cue of fish predation risk. Temperature correlates with risk of gape-limited fish predation due to growth of fish from larval stages incapable of consuming Bythotrephes early in the season, to larger sizes by midseason increasingly capable of consuming Bythotrephes, but limited by gape size to consuming smaller individuals. We argue that for Bythotrephes, temperature is a more reliable cue of predation risk than fish kairomones, because fish

  17. Plastic response to a proxy cue of predation risk when direct cues are unreliable.

    PubMed

    Miehls, Andrea L J; McAdam, Andrew G; Bourdeau, Paul E; Peacor, Scott D

    2013-10-01

    Responses to proximate cues that directly affect fitness or cues directly released by selective agents are well-documented forms of phenotypic plasticity. For example, to reduce predation risk, prey change phenotype in response to light level (e.g., moon phase) when light affects predation risk from visual predators, and to chemical cues (kairomones) released by predators. Less well understood is the potential for organisms to perceive predation risk through "proxy cues": proximate cues that correlate with, but do not directly affect predation risk. Previous field studies indicate that body and spine length of an invasive cladoceran in Lake Michigan, Bythotrephes longimanus (the spiny water flea), increase during the growing season, coincident with a decrease in clutch size. Although the cause of seasonal trait changes is not known, changes are associated with warmer water temperature and increased predation risk from gape-limited fish (i.e., fish whose ability to consume Bythotrephes is limited by mouth size). Using a laboratory experiment, we found no effect of fish (Perca flavescens) kairomones on Bythotrephes morphology or life history. In contrast, higher water temperature led to longer absolute spine and body length, increased investment in morphological defense of offspring (measured as the ratio of spine-to-body length), and decreased clutch size and age at reproduction. These plastic responses are unlikely to be adaptive to temperature per se, but rather our findings indicate that temperature serves as a proxy cue of fish predation risk. Temperature correlates with risk of gape-limited fish predation due to growth of fish from larval stages incapable of consuming Bythotrephes early in the season, to larger sizes by midseason increasingly capable of consuming Bythotrephes, but limited by gape size to consuming smaller individuals. We argue that for Bythotrephes, temperature is a more reliable cue of predation risk than fish kairomones, because fish

  18. Adaptability and stability of genotypes of sweet sorghum by GGEBiplot and Toler methods.

    PubMed

    de Figueiredo, U J; Nunes, J A R; da C Parrella, R A; Souza, E D; da Silva, A R; Emygdio, B M; Machado, J R A; Tardin, F D

    2015-01-01

    Sweet sorghum has considerable potential for ethanol and energy production. The crop is adaptable and can be grown under a wide range of cultivation conditions in marginal areas; however, studies of phenotypic stability are lacking under tropical conditions. Various methods can be used to assess the stability of the crop. Some of these methods generate the same basic information, whereas others provide additional information on genotype x environment (G x E) interactions and/or a description of the genotypes and environments. In this study, we evaluated the complementarity of two methods, GGEBiplot and Toler, with the aim of achieving more detailed information on G x E interactions and their implications for selection of sweet sorghum genotypes. We used data from 25 sorghum genotypes grown in different environments and evaluated the following traits: flowering (FLOW), green mass yield (GMY), total soluble solids (TSS), and tons of Brix per hectare (TBH). Significant G x E interactions were found for all traits. The most stable genotypes identified with the GGEBiplot method were CMSXS643 for FLOW, CMSXS644 and CMSXS647 for GMY, CMSXS646 and CMSXS637 for TSS, and BRS511 and CMSXSS647 for TBH. Especially for TBH, the genotype BRS511 was classified as doubly desirable by the Toler method; however, unlike the result of the GGEBiplot method, the genotype CMSXS647 was also found to be doubly undesirable. The two analytical methods were complementary and enabled a more reliable identification of adapted and stable genotypes.

  19. Adaptive non-uniformity correction method based on temperature for infrared detector array

    NASA Astrophysics Data System (ADS)

    Zhang, Zhijie; Yue, Song; Hong, Pu; Jia, Guowei; Lei, Bo

    2013-09-01

    The existence of non-uniformities in the responsitivity of the element array is a severe problem typical to common infrared detector. These non-uniformities result in a "curtain'' like fixed pattern noises (FPN) that appear in the image. Some random noise can be restrained by the method kind of equalization method. But the fixed pattern noise can only be removed by .non uniformity correction method. The produce of non uniformities of detector array is the combined action of infrared detector array, readout circuit, semiconductor device performance, the amplifier circuit and optical system. Conventional linear correction techniques require costly recalibration due to the drift of the detector or changes in temperature. Therefore, an adaptive non-uniformity method is needed to solve this problem. A lot factors including detectors and environment conditions variety are considered to analyze and conduct the cause of detector drift. Several experiments are designed to verify the guess. Based on the experiments, an adaptive non-uniformity correction method is put forward in this paper. The strength of this method lies in its simplicity and low computational complexity. Extensive experimental results demonstrate the disadvantage of traditional non-uniformity correct method is conquered by the proposed scheme.

  20. Shack-Hartmann wavefront sensor with large dynamic range by adaptive spot search method.

    PubMed

    Shinto, Hironobu; Saita, Yusuke; Nomura, Takanori

    2016-07-10

    A Shack-Hartmann wavefront sensor (SHWFS) that consists of a microlens array and an image sensor has been used to measure the wavefront aberrations of human eyes. However, a conventional SHWFS has finite dynamic range depending on the diameter of the each microlens. The dynamic range cannot be easily expanded without a decrease of the spatial resolution. In this study, an adaptive spot search method to expand the dynamic range of an SHWFS is proposed. In the proposed method, spots are searched with the help of their approximate displacements measured with low spatial resolution and large dynamic range. By the proposed method, a wavefront can be correctly measured even if the spot is beyond the detection area. The adaptive spot search method is realized by using the special microlens array that generates both spots and discriminable patterns. The proposed method enables expanding the dynamic range of an SHWFS with a single shot and short processing time. The performance of the proposed method is compared with that of a conventional SHWFS by optical experiments. Furthermore, the dynamic range of the proposed method is quantitatively evaluated by numerical simulations.

  1. An automatic locally-adaptive method to estimate heavily-tailed breakthrough curves from particle distributions

    NASA Astrophysics Data System (ADS)

    Pedretti, Daniele; Fernàndez-Garcia, Daniel

    2013-09-01

    Particle tracking methods to simulate solute transport deal with the issue of having to reconstruct smooth concentrations from a limited number of particles. This is an error-prone process that typically leads to large fluctuations in the determined late-time behavior of breakthrough curves (BTCs). Kernel density estimators (KDE) can be used to automatically reconstruct smooth BTCs from a small number of particles. The kernel approach incorporates the uncertainty associated with subsampling a large population by equipping each particle with a probability density function. Two broad classes of KDE methods can be distinguished depending on the parametrization of this function: global and adaptive methods. This paper shows that each method is likely to estimate a specific portion of the BTCs. Although global methods offer a valid approach to estimate early-time behavior and peak of BTCs, they exhibit important fluctuations at the tails where fewer particles exist. In contrast, locally adaptive methods improve tail estimation while oversmoothing both early-time and peak concentrations. Therefore a new method is proposed combining the strength of both KDE approaches. The proposed approach is universal and only needs one parameter (α) which slightly depends on the shape of the BTCs. Results show that, for the tested cases, heavily-tailed BTCs are properly reconstructed with α ≈ 0.5 .

  2. Staggered grid lagrangian method with local structured adaptive mesh refinement for modeling shock hydrodynamics

    SciTech Connect

    Anderson, R W; Pember, R B; Elliot, N S

    2000-09-26

    A new method for the solution of the unsteady Euler equations has been developed. The method combines staggered grid Lagrangian techniques with structured local adaptive mesh refinement (AMR). This method is a precursor to a more general adaptive arbitrary Lagrangian Eulerian (ALE-AMR) algorithm under development, which will facilitate the solution of problems currently at and beyond the boundary of soluble problems by traditional ALE methods by focusing computational resources where they are required. Many of the core issues involved in the development of the ALE-AMR method hinge upon the integration of AMR with a Lagrange step, which is the focus of the work described here. The novel components of the method are mainly driven by the need to reconcile traditional AMR techniques, which are typically employed on stationary meshes with cell-centered quantities, with the staggered grids and grid motion employed by Lagrangian methods. These new algorithmic components are first developed in one dimension and are then generalized to two dimensions. Solutions of several model problems involving shock hydrodynamics are presented and discussed.

  3. Flexible echolocation behavior of trawling bats during approach of continuous or transient prey cues

    PubMed Central

    Übernickel, Kirstin; Tschapka, Marco; Kalko, Elisabeth K. V.

    2013-01-01

    Trawling bats use echolocation not only to detect and classify acoustically continuous cues originated from insects at and above water surfaces, but also to detect small water-dwelling prey items breaking the water surface for a very short time, producing only transient cues to be perceived acoustically. Generally, bats need to adjust their echolocation behavior to the specific task on hand, and because of the diversity of prey cues they use in hunting, trawling bats should be highly flexible in their echolocation behavior. We studied the adaptations in the behavior of Noctilio leporinus when approaching either a continuous cue or a transient cue that disappeared during the approach of the bat. Normally the bats reacted by dipping their feet in the water at the cue location. We found that the bats typically started to adapt their calling behavior at approximately 410 ms before prey contact in continuous cue trials, but were also able to adapt their approach behavior to stimuli onsets as short as 177 ms before contact, within a minimum reaction time of 50.9 ms in response to transient cues. In both tasks the approach phase ended between 32 and 53 ms before prey contact. Call emission always continued after the end of the approach phase until around prey contact. In some failed capture attempts, call emission did not cease at all after prey contact. Probably bats used spatial memory to dip at the original location of the transient cue after its disappearance. The duration of the pointed dips was significantly longer in transient cue trials than in continuous cue trials. Our results suggest that trawling bats possess the ability to modify their generally rather stereotyped echolocation behavior during approaches within very short reaction times depending on the sensory information available. PMID:23675352

  4. The Effect of Repeated Virtual Nicotine Cue Exposure Therapy on the Psychophysiological Responses: A Preliminary Study

    PubMed Central

    Choi, Jung-Seok; Park, Sumi; Lee, Jun-Young; Jung, Hee-Yeon; Lee, Hae-Woo; Jin, Chong-Hyeon

    2011-01-01

    Objective Smoking related cues may elicit smoking urges and psychophysiological responses in subjects with nicotine dependence. This study aimed to investigate the effect of repeated virtual cue exposure therapy using the surround-screen based projection wall system on the psychophysiological responses in nicotine dependence. Methods The authors developed 3-dimensional neutral and smoking-related environments using virtual reality (VR) technology. Smoking-related environment was a virtual bar, which comprised both object-related and social situation cues. Ten subjects with nicotine dependence participated in 4-week (one session per week) virtual cue exposure therapy. Psychophysiological responses [electromyography (EMG), skin conductance (SC), and heart rate] and subjective nicotine craving were acquired during each session. Results VR nicotine cue elicited greater psychophysiological responses and subjective craving for smoking than did neutral cue, and exposure to social situation cues showed greater psychophysiological responses in SC and EMG than did object-related cues. This responsiveness decreased during the course of repeated therapy. Conclusion The present study found that both psychophysiological responses and subjective nicotine craving were greater to nicotine cue exposure via projection wall VR system than to neutral cues and that enhanced cue reactivity decreased gradually over the course of repeated exposure therapy. These results suggest that VR cue exposure therapy combined with psychophysiological response monitoring may be an alternative treatment modality for smoking cessation, although the current findings are preliminary. PMID:21852993

  5. Adaptive f-k deghosting method based on non-Gaussianity

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Lu, Wenkai

    2016-04-01

    For conventional horizontal towed streamer data, the f-k deghosting method is widely used to remove receiver ghosts. In the traditional f-k deghosting method, the depth of the streamer and the sea surface reflection coefficient are two key ghost parameters. In general, for one seismic line, these two parameters are fixed for all shot gathers and given by the users. In practice, these two parameters often vary during acquisition because of the rough sea condition. This paper proposes an automatic method to adaptively obtain these two ghost parameters for every shot gather. Since the proposed method is based on the non-Gaussianity of the deghosting result, it is important to choose a proper non-Gaussian criterion to ensure high accuracy of the parameter estimation. We evaluate six non-Gaussian criteria by synthetic experiment. The conclusion of our experiment is expected to provide a reference for choosing the most appropriate criterion. We apply the proposed method on a 2D real field example. Experimental results show that the optimal parameters vary among shot gathers and validate effectiveness of the parameter estimation process. Moreover, despite that this method ignores the parameter variation within one shot, the adaptive deghosting results show improvements when compared with the deghosting results obtained by using constant parameters for the whole line.

  6. Gaze cueing by pareidolia faces

    PubMed Central

    Takahashi, Kohske; Watanabe, Katsumi

    2013-01-01

    Visual images that are not faces are sometimes perceived as faces (the pareidolia phenomenon). While the pareidolia phenomenon provides people with a strong impression that a face is present, it is unclear how deeply pareidolia faces are processed as faces. In the present study, we examined whether a shift in spatial attention would be produced by gaze cueing of face-like objects. A robust cueing effect was observed when the face-like objects were perceived as faces. The magnitude of the cueing effect was comparable between the face-like objects and a cartoon face. However, the cueing effect was eliminated when the observer did not perceive the objects as faces. These results demonstrated that pareidolia faces do more than give the impression of the presence of faces; indeed, they trigger an additional face-specific attentional process. PMID:25165505

  7. Gaze cueing by pareidolia faces.

    PubMed

    Takahashi, Kohske; Watanabe, Katsumi

    2013-01-01

    Visual images that are not faces are sometimes perceived as faces (the pareidolia phenomenon). While the pareidolia phenomenon provides people with a strong impression that a face is present, it is unclear how deeply pareidolia faces are processed as faces. In the present study, we examined whether a shift in spatial attention would be produced by gaze cueing of face-like objects. A robust cueing effect was observed when the face-like objects were perceived as faces. The magnitude of the cueing effect was comparable between the face-like objects and a cartoon face. However, the cueing effect was eliminated when the observer did not perceive the objects as faces. These results demonstrated that pareidolia faces do more than give the impression of the presence of faces; indeed, they trigger an additional face-specific attentional process.

  8. Measurement and modeling of depth cue combination: in defense of weak fusion.

    PubMed

    Landy, M S; Maloney, L T; Johnston, E B; Young, M

    1995-02-01

    Various visual cues provide information about depth and shape in a scene. When several of these cues are simultaneously available in a single location in the scene, the visual system attempts to combine them. In this paper, we discuss three key issues relevant to the experimental analysis of depth cue combination in human vision: cue promotion, dynamic weighting of cues, and robustness of cue combination. We review recent psychophysical studies of human depth cue combination in light of these issues. We organize the discussion and review as the development of a model of the depth cue combination process termed modified weak fusion (MWF). We relate the MWF framework to Bayesian theories of cue combination. We argue that the MWF model is consistent with previous experimental results and is a parsimonious summary of these results. While the MWF model is motivated by normative considerations, it is primarily intended to guide experimental analysis of depth cue combination in human vision. We describe experimental methods, analogous to perturbation analysis, that permit us to analyze depth cue combination in novel ways. In particular these methods allow us to investigate the key issues we have raised. We summarize recent experimental tests of the MWF framework that use these methods.

  9. Focus cues affect perceived depth

    PubMed Central

    Watt, Simon J.; Akeley, Kurt; Ernst, Marc O.; Banks, Martin S.

    2007-01-01

    Depth information from focus cues—accommodation and the gradient of retinal blur—is typically incorrect in three-dimensional (3-D) displays because the light comes from a planar display surface. If the visual system incorporates information from focus cues into its calculation of 3-D scene parameters, this could cause distortions in perceived depth even when the 2-D retinal images are geometrically correct. In Experiment 1 we measured the direct contribution of focus cues to perceived slant by varying independently the physical slant of the display surface and the slant of a simulated surface specified by binocular disparity (binocular viewing) or perspective/texture (monocular viewing). In the binocular condition, slant estimates were unaffected by display slant. In the monocular condition, display slant had a systematic effect on slant estimates. Estimates were consistent with a weighted average of slant from focus cues and slant from disparity/texture, where the cue weights are determined by the reliability of each cue. In Experiment 2, we examined whether focus cues also have an indirect effect on perceived slant via the distance estimate used in disparity scaling. We varied independently the simulated distance and the focal distance to a disparity-defined 3-D stimulus. Perceived slant was systematically affected by changes in focal distance. Accordingly, depth constancy (with respect to simulated distance) was significantly reduced when focal distance was held constant compared to when it varied appropriately with the simulated distance to the stimulus. The results of both experiments show that focus cues can contribute to estimates of 3-D scene parameters. Inappropriate focus cues in typical 3-D displays may therefore contribute to distortions in perceived space. PMID:16441189

  10. Effect of the curing method and composite volume on marginal and internal adaptation of composite restoratives.

    PubMed

    Souza-Junior, Eduardo José; de Souza-Régis, Marcos Ribeiro; Alonso, Roberta Caroline Bruschi; de Freitas, Anderson Pinheiro; Sinhoreti, Mario Alexandre Coelho; Cunha, Leonardo Gonçalves

    2011-01-01

    The aim of the present study was to evaluate the influence of curing methods and composite volumes on the marginal and internal adaptation of composite restoratives. Two cavities with different volumes (Lower volume: 12.6 mm(3); Higher volume: 24.5 mm(3)) were prepared on the buccal surface of 60 bovine teeth and restored using Filtek Z250 in bulk filling. For each cavity, specimens were randomly assigned into three groups according to the curing method (n=10): 1) continuous light (CL: 27 seconds at 600 mW/cm(2)); 2) soft-start (SS: 10 seconds at 150 mW/cm(2)+24 seconds at 600 mW/cm(2)); and 3) pulse delay (PD: five seconds at 150 mW/cm(2)+three minutes with no light+25 seconds at 600 mW/cm(2)). The radiant exposure for all groups was 16 J/cm(2). Marginal adaptation was measured with the dye staining gap procedure, using Caries Detector. Outer margins were stained for five seconds and the gap percentage was determined using digital images on a computer measurement program (Image Tool). Then, specimens were sectioned in slices and stained for five seconds, and the internal gaps were measured using the same method. Data were submitted to two-way analysis of variance and Tukey test (p<0.05). Composite volume had a significant influence on superficial and internal gap formation, depending on the curing method. For CL groups, restorations with higher volume showed higher marginal gap incidence than did the lower volume restorations. Additionally, the effect of the curing method depended on the volume. Regarding marginal adaptation, SS resulted in a significant reduction of gap formation, when compared to CL, for higher volume restorations. For lower volume restorations, there was no difference among the curing methods. For internal adaptation, the modulated curing methods SS and PD promoted a significant reduction of gap formation, when compared to CL, only for the lower volume restoration. Therefore, in similar conditions of the cavity configuration, the higher the

  11. Adaptive integral method with fast Gaussian gridding for solving combined field integral equations

    NASA Astrophysics Data System (ADS)

    Bakır, O.; Baǧ; Cı, H.; Michielssen, E.

    Fast Gaussian gridding (FGG), a recently proposed nonuniform fast Fourier transform algorithm, is used to reduce the memory requirements of the adaptive integral method (AIM) for accelerating the method of moments-based solution of combined field integral equations pertinent to the analysis of scattering from three-dimensional perfect electrically conducting surfaces. Numerical results that demonstrate the efficiency and accuracy of the AIM-FGG hybrid in comparison to an AIM-accelerated solver, which uses moment matching to project surface sources onto an auxiliary grid, are presented.

  12. Hybrid numerical method with adaptive overlapping meshes for solving nonstationary problems in continuum mechanics

    NASA Astrophysics Data System (ADS)

    Burago, N. G.; Nikitin, I. S.; Yakushev, V. L.

    2016-06-01

    Techniques that improve the accuracy of numerical solutions and reduce their computational costs are discussed as applied to continuum mechanics problems with complex time-varying geometry. The approach combines shock-capturing computations with the following methods: (1) overlapping meshes for specifying complex geometry; (2) elastic arbitrarily moving adaptive meshes for minimizing the approximation errors near shock waves, boundary layers, contact discontinuities, and moving boundaries; (3) matrix-free implementation of efficient iterative and explicit-implicit finite element schemes; (4) balancing viscosity (version of the stabilized Petrov-Galerkin method); (5) exponential adjustment of physical viscosity coefficients; and (6) stepwise correction of solutions for providing their monotonicity and conservativeness.

  13. Adaptively biased molecular dynamics: An umbrella sampling method with a time-dependent potential

    NASA Astrophysics Data System (ADS)

    Babin, Volodymyr; Karpusenka, Vadzim; Moradi, Mahmoud; Roland, Christopher; Sagui, Celeste

    We discuss an adaptively biased molecular dynamics (ABMD) method for the computation of a free energy surface for a set of reaction coordinates. The ABMD method belongs to the general category of umbrella sampling methods with an evolving biasing potential. It is characterized by a small number of control parameters and an O(t) numerical cost with simulation time t. The method naturally allows for extensions based on multiple walkers and replica exchange mechanism. The workings of the method are illustrated with a number of examples, including sugar puckering, and free energy landscapes for polymethionine and polyproline peptides, and for a short β-turn peptide. ABMD has been implemented into the latest version (Case et al., AMBER 10; University of California: San Francisco, 2008) of the AMBER software package and is freely available to the simulation community.

  14. Parallel level-set methods on adaptive tree-based grids

    NASA Astrophysics Data System (ADS)

    Mirzadeh, Mohammad; Guittet, Arthur; Burstedde, Carsten; Gibou, Frederic

    2016-10-01

    We present scalable algorithms for the level-set method on dynamic, adaptive Quadtree and Octree Cartesian grids. The algorithms are fully parallelized and implemented using the MPI standard and the open-source p4est library. We solve the level set equation with a semi-Lagrangian method which, similar to its serial implementation, is free of any time-step restrictions. This is achieved by introducing a scalable global interpolation scheme on adaptive tree-based grids. Moreover, we present a simple parallel reinitialization scheme using the pseudo-time transient formulation. Both parallel algorithms scale on the Stampede supercomputer, where we are currently using up to 4096 CPU cores, the limit of our current account. Finally, a relevant application of the algorithms is presented in modeling a crystallization phenomenon by solving a Stefan problem, illustrating a level of detail that would be impossible to achieve without a parallel adaptive strategy. We believe that the algorithms presented in this article will be of interest and useful to researchers working with the level-set framework and modeling multi-scale physics in general.

  15. An Adaptive INS-Aided PLL Tracking Method for GNSS Receivers in Harsh Environments.

    PubMed

    Cong, Li; Li, Xin; Jin, Tian; Yue, Song; Xue, Rui

    2016-01-01

    As the weak link in global navigation satellite system (GNSS) signal processing, the phase-locked loop (PLL) is easily influenced with frequent cycle slips and loss of lock as a result of higher vehicle dynamics and lower signal-to-noise ratios. With inertial navigation system (INS) aid, PLLs' tracking performance can be improved. However, for harsh environments with high dynamics and signal attenuation, the traditional INS-aided PLL with fixed loop parameters has some limitations to improve the tracking adaptability. In this paper, an adaptive INS-aided PLL capable of adjusting its noise bandwidth and coherent integration time has been proposed. Through theoretical analysis, the relation between INS-aided PLL phase tracking error and carrier to noise density ratio (C/N₀), vehicle dynamics, aiding information update time, noise bandwidth, and coherent integration time has been built. The relation formulae are used to choose the optimal integration time and bandwidth for a given application under the minimum tracking error criterion. Software and hardware simulation results verify the correctness of the theoretical analysis, and demonstrate that the adaptive tracking method can effectively improve the PLL tracking ability and integrated GNSS/INS navigation performance. For harsh environments, the tracking sensitivity is increased by 3 to 5 dB, velocity errors are decreased by 36% to 50% and position errors are decreased by 6% to 24% when compared with other INS-aided PLL methods. PMID:26805853

  16. An Adaptive INS-Aided PLL Tracking Method for GNSS Receivers in Harsh Environments.

    PubMed

    Cong, Li; Li, Xin; Jin, Tian; Yue, Song; Xue, Rui

    2016-01-23

    As the weak link in global navigation satellite system (GNSS) signal processing, the phase-locked loop (PLL) is easily influenced with frequent cycle slips and loss of lock as a result of higher vehicle dynamics and lower signal-to-noise ratios. With inertial navigation system (INS) aid, PLLs' tracking performance can be improved. However, for harsh environments with high dynamics and signal attenuation, the traditional INS-aided PLL with fixed loop parameters has some limitations to improve the tracking adaptability. In this paper, an adaptive INS-aided PLL capable of adjusting its noise bandwidth and coherent integration time has been proposed. Through theoretical analysis, the relation between INS-aided PLL phase tracking error and carrier to noise density ratio (C/N₀), vehicle dynamics, aiding information update time, noise bandwidth, and coherent integration time has been built. The relation formulae are used to choose the optimal integration time and bandwidth for a given application under the minimum tracking error criterion. Software and hardware simulation results verify the correctness of the theoretical analysis, and demonstrate that the adaptive tracking method can effectively improve the PLL tracking ability and integrated GNSS/INS navigation performance. For harsh environments, the tracking sensitivity is increased by 3 to 5 dB, velocity errors are decreased by 36% to 50% and position errors are decreased by 6% to 24% when compared with other INS-aided PLL methods.

  17. An Adaptive INS-Aided PLL Tracking Method for GNSS Receivers in Harsh Environments

    PubMed Central

    Cong, Li; Li, Xin; Jin, Tian; Yue, Song; Xue, Rui

    2016-01-01

    As the weak link in global navigation satellite system (GNSS) signal processing, the phase-locked loop (PLL) is easily influenced with frequent cycle slips and loss of lock as a result of higher vehicle dynamics and lower signal-to-noise ratios. With inertial navigation system (INS) aid, PLLs’ tracking performance can be improved. However, for harsh environments with high dynamics and signal attenuation, the traditional INS-aided PLL with fixed loop parameters has some limitations to improve the tracking adaptability. In this paper, an adaptive INS-aided PLL capable of adjusting its noise bandwidth and coherent integration time has been proposed. Through theoretical analysis, the relation between INS-aided PLL phase tracking error and carrier to noise density ratio (C/N0), vehicle dynamics, aiding information update time, noise bandwidth, and coherent integration time has been built. The relation formulae are used to choose the optimal integration time and bandwidth for a given application under the minimum tracking error criterion. Software and hardware simulation results verify the correctness of the theoretical analysis, and demonstrate that the adaptive tracking method can effectively improve the PLL tracking ability and integrated GNSS/INS navigation performance. For harsh environments, the tracking sensitivity is increased by 3 to 5 dB, velocity errors are decreased by 36% to 50% and position errors are decreased by 6% to 24% when compared with other INS-aided PLL methods. PMID:26805853

  18. Methods and evaluations of MRI content-adaptive finite element mesh generation for bioelectromagnetic problems.

    PubMed

    Lee, W H; Kim, T-S; Cho, M H; Ahn, Y B; Lee, S Y

    2006-12-01

    In studying bioelectromagnetic problems, finite element analysis (FEA) offers several advantages over conventional methods such as the boundary element method. It allows truly volumetric analysis and incorporation of material properties such as anisotropic conductivity. For FEA, mesh generation is the first critical requirement and there exist many different approaches. However, conventional approaches offered by commercial packages and various algorithms do not generate content-adaptive meshes (cMeshes), resulting in numerous nodes and elements in modelling the conducting domain, and thereby increasing computational load and demand. In this work, we present efficient content-adaptive mesh generation schemes for complex biological volumes of MR images. The presented methodology is fully automatic and generates FE meshes that are adaptive to the geometrical contents of MR images, allowing optimal representation of conducting domain for FEA. We have also evaluated the effect of cMeshes on FEA in three dimensions by comparing the forward solutions from various cMesh head models to the solutions from the reference FE head model in which fine and equidistant FEs constitute the model. The results show that there is a significant gain in computation time with minor loss in numerical accuracy. We believe that cMeshes should be useful in the FEA of bioelectromagnetic problems.

  19. Encoding and simulation of daily rainfall records via adaptations of the fractal multifractal method

    NASA Astrophysics Data System (ADS)

    Maskey, M.; Puente, C. E.; Sivakumar, B.; Cortis, A.

    2015-12-01

    A deterministic geometric approach, the fractal-multifractal (FM) method, is adapted to encode and simulate daily rainfall records exhibiting noticeable intermittency. Using data sets gathered at Laikakota in Bolivia and Tinkham in Washington State, USA, it is demonstrated that the adapted FM approach can, within the limits of accuracy of measured sets and using only a few geometric parameters, encode and simulate the erratic rainfall records reasonably well. The FM procedure does not only preserve the statistical attributes of the records such as histogram, entropy function and distribution of zeroes, but also captures the overall texture inherent in the rather complex intermittent sets. As such, the FM deterministic representations may be used to supplement stochastic frameworks for data coding and simulation.

  20. Adaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics method

    NASA Astrophysics Data System (ADS)

    Barcarolo, D. A.; Le Touzé, D.; Oger, G.; de Vuyst, F.

    2014-09-01

    SPH simulations are usually performed with a uniform particle distribution. New techniques have been recently proposed to enable the use of spatially varying particle distributions, which encouraged the development of automatic adaptivity and particle refinement/derefinement algorithms. All these efforts resulted in very interesting and promising procedures leading to more efficient and faster SPH simulations. In this article, a family of particle refinement techniques is reviewed and a new derefinement technique is proposed and validated through several test cases involving both free-surface and viscous flows. Besides, this new procedure allows higher resolutions in the regions requiring increased accuracy. Moreover, several levels of refinement can be used with this new technique, as often encountered in adaptive mesh refinement techniques in mesh-based methods.

  1. A DAFT DL_POLY distributed memory adaptation of the Smoothed Particle Mesh Ewald method

    NASA Astrophysics Data System (ADS)

    Bush, I. J.; Todorov, I. T.; Smith, W.

    2006-09-01

    The Smoothed Particle Mesh Ewald method [U. Essmann, L. Perera, M.L. Berkowtz, T. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103 (1995) 8577] for calculating long ranged forces in molecular simulation has been adapted for the parallel molecular dynamics code DL_POLY_3 [I.T. Todorov, W. Smith, Philos. Trans. Roy. Soc. London 362 (2004) 1835], making use of a novel 3D Fast Fourier Transform (DAFT) [I.J. Bush, The Daresbury Advanced Fourier transform, Daresbury Laboratory, 1999] that perfectly matches the Domain Decomposition (DD) parallelisation strategy [W. Smith, Comput. Phys. Comm. 62 (1991) 229; M.R.S. Pinches, D. Tildesley, W. Smith, Mol. Sim. 6 (1991) 51; D. Rapaport, Comput. Phys. Comm. 62 (1991) 217] of the DL_POLY_3 code. In this article we describe software adaptations undertaken to import this functionality and provide a review of its performance.

  2. Parallel simulation of multiphase flows using octree adaptivity and the volume-of-fluid method

    NASA Astrophysics Data System (ADS)

    Agbaglah, Gilou; Delaux, Sébastien; Fuster, Daniel; Hoepffner, Jérôme; Josserand, Christophe; Popinet, Stéphane; Ray, Pascal; Scardovelli, Ruben; Zaleski, Stéphane

    2011-02-01

    We describe computations performed using the Gerris code, an open-source software implementing finite volume solvers on an octree adaptive grid together with a piecewise linear volume of fluid interface tracking method. The parallelisation of Gerris is achieved by domain decomposition. We show examples of the capabilities of Gerris on several types of problems. The impact of a droplet on a layer of the same liquid results in the formation of a thin air layer trapped between the droplet and the liquid layer that the adaptive refinement allows to capture. It is followed by the jetting of a thin corolla emerging from below the impacting droplet. The jet atomisation problem is another extremely challenging computational problem, in which a large number of small scales are generated. Finally we show an example of a turbulent jet computation in an equivalent resolution of 6×1024 cells. The jet simulation is based on the configuration of the Deepwater Horizon oil leak.

  3. An adaptive segment method for smoothing lidar signal based on noise estimation

    NASA Astrophysics Data System (ADS)

    Wang, Yuzhao; Luo, Pingping

    2014-10-01

    An adaptive segmentation smoothing method (ASSM) is introduced in the paper to smooth the signal and suppress the noise. In the ASSM, the noise is defined as the 3σ of the background signal. An integer number N is defined for finding the changing positions in the signal curve. If the difference of adjacent two points is greater than 3Nσ, the position is recorded as an end point of the smoothing segment. All the end points detected as above are recorded and the curves between them will be smoothed separately. In the traditional method, the end points of the smoothing windows in the signals are fixed. The ASSM creates changing end points in different signals and the smoothing windows could be set adaptively. The windows are always set as the half of the segmentations and then the average smoothing method will be applied in the segmentations. The Iterative process is required for reducing the end-point aberration effect in the average smoothing method and two or three times are enough. In ASSM, the signals are smoothed in the spacial area nor frequent area, that means the frequent disturbance will be avoided. A lidar echo was simulated in the experimental work. The echo was supposed to be created by a space-born lidar (e.g. CALIOP). And white Gaussian noise was added to the echo to act as the random noise resulted from environment and the detector. The novel method, ASSM, was applied to the noisy echo to filter the noise. In the test, N was set to 3 and the Iteration time is two. The results show that, the signal could be smoothed adaptively by the ASSM, but the N and the Iteration time might be optimized when the ASSM is applied in a different lidar.

  4. A hyper-spherical adaptive sparse-grid method for high-dimensional discontinuity detection

    SciTech Connect

    Zhang, Guannan; Webster, Clayton G; Gunzburger, Max D; Burkardt, John V

    2014-03-01

    This work proposes and analyzes a hyper-spherical adaptive hi- erarchical sparse-grid method for detecting jump discontinuities of functions in high-dimensional spaces is proposed. The method is motivated by the the- oretical and computational inefficiencies of well-known adaptive sparse-grid methods for discontinuity detection. Our novel approach constructs a func- tion representation of the discontinuity hyper-surface of an N-dimensional dis- continuous quantity of interest, by virtue of a hyper-spherical transformation. Then, a sparse-grid approximation of the transformed function is built in the hyper-spherical coordinate system, whose value at each point is estimated by solving a one-dimensional discontinuity detection problem. Due to the smooth- ness of the hyper-surface, the new technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. Moreover, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. Rigorous error estimates and complexity anal- yses of the new method are provided as are several numerical examples that illustrate the effectiveness of the approach.

  5. An adaptive kernel smoothing method for classifying Austrosimulium tillyardianum (Diptera: Simuliidae) larval instars.

    PubMed

    Cen, Guanjun; Yu, Yonghao; Zeng, Xianru; Long, Xiuzhen; Wei, Dewei; Gao, Xuyuan; Zeng, Tao

    2015-01-01

    In insects, the frequency distribution of the measurements of sclerotized body parts is generally used to classify larval instars and is characterized by a multimodal overlap between instar stages. Nonparametric methods with fixed bandwidths, such as histograms, have significant limitations when used to fit this type of distribution, making it difficult to identify divisions between instars. Fixed bandwidths have also been chosen somewhat subjectively in the past, which is another problem. In this study, we describe an adaptive kernel smoothing method to differentiate instars based on discontinuities in the growth rates of sclerotized insect body parts. From Brooks' rule, we derived a new standard for assessing the quality of instar classification and a bandwidth selector that more accurately reflects the distributed character of specific variables. We used this method to classify the larvae of Austrosimulium tillyardianum (Diptera: Simuliidae) based on five different measurements. Based on head capsule width and head capsule length, the larvae were separated into nine instars. Based on head capsule postoccipital width and mandible length, the larvae were separated into 8 instars and 10 instars, respectively. No reasonable solution was found for antennal segment 3 length. Separation of the larvae into nine instars using head capsule width or head capsule length was most robust and agreed with Crosby's growth rule. By strengthening the distributed character of the separation variable through the use of variable bandwidths, the adaptive kernel smoothing method could identify divisions between instars more effectively and accurately than previous methods.

  6. An Adaptive Kernel Smoothing Method for Classifying Austrosimulium tillyardianum (Diptera: Simuliidae) Larval Instars

    PubMed Central

    Cen, Guanjun; Zeng, Xianru; Long, Xiuzhen; Wei, Dewei; Gao, Xuyuan; Zeng, Tao

    2015-01-01

    In insects, the frequency distribution of the measurements of sclerotized body parts is generally used to classify larval instars and is characterized by a multimodal overlap between instar stages. Nonparametric methods with fixed bandwidths, such as histograms, have significant limitations when used to fit this type of distribution, making it difficult to identify divisions between instars. Fixed bandwidths have also been chosen somewhat subjectively in the past, which is another problem. In this study, we describe an adaptive kernel smoothing method to differentiate instars based on discontinuities in the growth rates of sclerotized insect body parts. From Brooks’ rule, we derived a new standard for assessing the quality of instar classification and a bandwidth selector that more accurately reflects the distributed character of specific variables. We used this method to classify the larvae of Austrosimulium tillyardianum (Diptera: Simuliidae) based on five different measurements. Based on head capsule width and head capsule length, the larvae were separated into nine instars. Based on head capsule postoccipital width and mandible length, the larvae were separated into 8 instars and 10 instars, respectively. No reasonable solution was found for antennal segment 3 length. Separation of the larvae into nine instars using head capsule width or head capsule length was most robust and agreed with Crosby’s growth rule. By strengthening the distributed character of the separation variable through the use of variable bandwidths, the adaptive kernel smoothing method could identify divisions between instars more effectively and accurately than previous methods. PMID:26546689

  7. A Hyperspherical Adaptive Sparse-Grid Method for High-Dimensional Discontinuity Detection

    DOE PAGES

    Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max D.; Burkardt, John V.

    2015-06-24

    This study proposes and analyzes a hyperspherical adaptive hierarchical sparse-grid method for detecting jump discontinuities of functions in high-dimensional spaces. The method is motivated by the theoretical and computational inefficiencies of well-known adaptive sparse-grid methods for discontinuity detection. Our novel approach constructs a function representation of the discontinuity hypersurface of an N-dimensional discontinuous quantity of interest, by virtue of a hyperspherical transformation. Then, a sparse-grid approximation of the transformed function is built in the hyperspherical coordinate system, whose value at each point is estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of the hypersurface, the newmore » technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. In addition, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. Rigorous complexity analyses of the new method are provided as are several numerical examples that illustrate the effectiveness of the approach.« less

  8. Adaptive circle-ellipse fitting method for estimating tree diameter based on single terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Bu, Guochao; Wang, Pei

    2016-04-01

    Terrestrial laser scanning (TLS) has been used to extract accurate forest biophysical parameters for inventory purposes. The diameter at breast height (DBH) is a key parameter for individual trees because it has the potential for modeling the height, volume, biomass, and carbon sequestration potential of the tree based on empirical allometric scaling equations. In order to extract the DBH from the single-scan data of TLS automatically and accurately within a certain range, we proposed an adaptive circle-ellipse fitting method based on the point cloud transect. This proposed method can correct the error caused by the simple circle fitting method when a tree is slanted. A slanted tree was detected by the circle-ellipse fitting analysis, then the corresponding slant angle was found based on the ellipse fitting result. With this information, the DBH of the trees could be recalculated based on reslicing the point cloud data at breast height. Artificial stem data simulated by a cylindrical model of leaning trees and the scanning data acquired with the RIEGL VZ-400 were used to test the proposed adaptive fitting method. The results shown that the proposed method can detect the trees and accurately estimate the DBH for leaning trees.

  9. An adaptive filter-based method for robust, automatic detection and frequency estimation of whistles.

    PubMed

    Johansson, A Torbjorn; White, Paul R

    2011-08-01

    This paper proposes an adaptive filter-based method for detection and frequency estimation of whistle calls, such as the calls of birds and marine mammals, which are typically analyzed in the time-frequency domain using a spectrogram. The approach taken here is based on adaptive notch filtering, which is an established technique for frequency tracking. For application to automatic whistle processing, methods for detection and improved frequency tracking through frequency crossings as well as interfering transients are developed and coupled to the frequency tracker. Background noise estimation and compensation is accomplished using order statistics and pre-whitening. Using simulated signals as well as recorded calls of marine mammals and a human whistled speech utterance, it is shown that the proposed method can detect more simultaneous whistles than two competing spectrogram-based methods while not reporting any false alarms on the example datasets. In one example, it extracts complete 1.4 and 1.8 s bottlenose dolphin whistles successfully through frequency crossings. The method performs detection and estimates frequency tracks even at high sweep rates. The algorithm is also shown to be effective on human whistled utterances. PMID:21877804

  10. Adaptive Projection Subspace Dimension for the Thick-Restart Lanczos Method

    SciTech Connect

    Yamazaki, Ichitaro; Bai, Zhaojun; Simon, Horst; Wang, Lin-Wang; Wu, K.

    2008-10-01

    The Thick-Restart Lanczos (TRLan) method is an effective method for solving large-scale Hermitian eigenvalue problems. However, its performance strongly depends on the dimension of the projection subspace. In this paper, we propose an objective function to quantify the effectiveness of a chosen subspace dimension, and then introduce an adaptive scheme to dynamically adjust the dimension at each restart. An open-source software package, nu-TRLan, which implements the TRLan method with this adaptive projection subspace dimension is available in the public domain. The numerical results of synthetic eigenvalue problems are presented to demonstrate that nu-TRLan achieves speedups of between 0.9 and 5.1 over the static method using a default subspace dimension. To demonstrate the effectiveness of nu-TRLan in a real application, we apply it to the electronic structure calculations of quantum dots. We show that nu-TRLan can achieve speedups of greater than 1.69 over the state-of-the-art eigensolver for this application, which is based on the Conjugate Gradient method with a powerful preconditioner.

  11. Feasibility of an online adaptive replanning method for cranial frameless intensity-modulated radiosurgery

    SciTech Connect

    Calvo, Juan Francisco; San José, Sol; Garrido, LLuís; Puertas, Enrique; Moragues, Sandra; Pozo, Miquel; Casals, Joan

    2013-10-01

    To introduce an approach for online adaptive replanning (i.e., dose-guided radiosurgery) in frameless stereotactic radiosurgery, when a 6-dimensional (6D) robotic couch is not available in the linear accelerator (linac). Cranial radiosurgical treatments are planned in our department using intensity-modulated technique. Patients are immobilized using thermoplastic mask. A cone-beam computed tomography (CBCT) scan is acquired after the initial laser-based patient setup (CBCT{sub setup}). The online adaptive replanning procedure we propose consists of a 6D registration-based mapping of the reference plan onto actual CBCT{sub setup}, followed by a reoptimization of the beam fluences (“6D plan”) to achieve similar dosage as originally was intended, while the patient is lying in the linac couch and the original beam arrangement is kept. The goodness of the online adaptive method proposed was retrospectively analyzed for 16 patients with 35 targets treated with CBCT-based frameless intensity modulated technique. Simulation of reference plan onto actual CBCT{sub setup}, according to the 4 degrees of freedom, supported by linac couch was also generated for each case (4D plan). Target coverage (D99%) and conformity index values of 6D and 4D plans were compared with the corresponding values of the reference plans. Although the 4D-based approach does not always assure the target coverage (D99% between 72% and 103%), the proposed online adaptive method gave a perfect coverage in all cases analyzed as well as a similar conformity index value as was planned. Dose-guided radiosurgery approach is effective to assure the dose coverage and conformity of an intracranial target volume, avoiding resetting the patient inside the mask in a “trial and error” way so as to remove the pitch and roll errors when a robotic table is not available.

  12. The stochastic control of the F-8C aircraft using the Multiple Model Adaptive Control (MMAC) method

    NASA Technical Reports Server (NTRS)

    Athans, M.; Dunn, K. P.; Greene, E. S.; Lee, W. H.; Sandel, N. R., Jr.

    1975-01-01

    The purpose of this paper is to summarize results obtained for the adaptive control of the F-8C aircraft using the so-called Multiple Model Adaptive Control method. The discussion includes the selection of the performance criteria for both the lateral and the longitudinal dynamics, the design of the Kalman filters for different flight conditions, the 'identification' aspects of the design using hypothesis testing ideas, and the performance of the closed loop adaptive system.

  13. Self-adaptive method for high frequency multi-channel analysis of surface wave method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When the high frequency multi-channel analysis of surface waves (MASW) method is conducted to explore soil properties in the vadose zone, existing rules for selecting the near offset and spread lengths cannot satisfy the requirements of planar dominant Rayleigh waves for all frequencies of interest ...

  14. EPA Water Resources Adaptation Program (WRAP) Research and Development Activities Methods and Techniques

    EPA Science Inventory

    Adaptation to environmental change is not a new concept. Humans have shown throughout history a capacity for adapting to different climates and environmental changes. Farmers, foresters, civil engineers, have all been forced to adapt to numerous challenges to overcome adversity...

  15. Haven't a Cue? Mapping the CUE Space as an Aid to HRA Modeling

    SciTech Connect

    David I Gertman; Ronald L Boring; Jacques Hugo; William Phoenix

    2012-06-01

    Advances in automation present a new modeling environment for the human reliability analysis (HRA) practitioner. Many, if not most, current day HRA methods have their origin in characterizing and quantifying human performance in analog environments where mode awareness and system status indications are potentially less comprehensive, but simpler to comprehend at a glance when compared to advanced presentation systems. The introduction of highly complex automation has the potential to lead to: decreased levels of situation awareness caused by the need for increased monitoring; confusion regarding the often non-obvious causes of automation failures, and emergent system dependencies that formerly may have been uncharacterized. Understanding the relation of incoming cues available to operators during plant upset conditions, in conjunction with operating procedures, yields insight into understanding the nature of the expected operator response in this control room environment. Static systems methods such as fault trees do not contain the appropriate temporal information or necessarily specify the relationship among cues leading to operator response. In this paper, we do not attempt to replace standard performance shaping factors commonly used in HRA nor offer a new HRA method, existing methods may suffice. In this paper we strive to enhance current understanding of the basis for operator response through a technique that can be used during the qualitative portion of the HRA analysis process. The CUE map is a means to visualize the relationship among salient cues in the control room that help influence operator response, show how the cognitive map of the operator changes as information is gained or lost, and is applicable to existing as well as advanced hybrid plants and small modular reactor designs. A brief application involving loss of condensate is presented and advantages and limitations of the modeling approach and use of the CUE map are discussed.

  16. The Effect of Food Label Cues on Perceptions of Quality and Purchase Intentions among High-Involvement Consumers with Varying Levels of Nutrition Knowledge

    ERIC Educational Resources Information Center

    Walters, Amber; Long, Marilee

    2012-01-01

    Objective: To determine whether differences in nutrition knowledge affected how women (a high-involvement group) interpreted intrinsic cues (ingredient list) and extrinsic cues ("all natural" label) on food labels. Methods: A 2 (intrinsic cue) x 2 (extrinsic cue) x 2 (nutrition knowledge expert vs novice) within-subject factorial design was used.…

  17. An HP Adaptive Discontinuous Galerkin Method for Hyperbolic Conservation Laws. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bey, Kim S.

    1994-01-01

    This dissertation addresses various issues for model classes of hyperbolic conservation laws. The basic approach developed in this work employs a new family of adaptive, hp-version, finite element methods based on a special discontinuous Galerkin formulation for hyperbolic problems. The discontinuous Galerkin formulation admits high-order local approximations on domains of quite general geometry, while providing a natural framework for finite element approximations and for theoretical developments. The use of hp-versions of the finite element method makes possible exponentially convergent schemes with very high accuracies in certain cases; the use of adaptive hp-schemes allows h-refinement in regions of low regularity and p-enrichment to deliver high accuracy, while keeping problem sizes manageable and dramatically smaller than many conventional approaches. The use of discontinuous Galerkin methods is uncommon in applications, but the methods rest on a reasonable mathematical basis for low-order cases and has local approximation features that can be exploited to produce very efficient schemes, especially in a parallel, multiprocessor environment. The place of this work is to first and primarily focus on a model class of linear hyperbolic conservation laws for which concrete mathematical results, methodologies, error estimates, convergence criteria, and parallel adaptive strategies can be developed, and to then briefly explore some extensions to more general cases. Next, we provide preliminaries to the study and a review of some aspects of the theory of hyperbolic conservation laws. We also provide a review of relevant literature on this subject and on the numerical analysis of these types of problems.

  18. Investigation of self-adaptive LED surgical lighting based on entropy contrast enhancing method

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Wang, Huihui; Zhang, Yaqin; Shen, Junfei; Wu, Rengmao; Zheng, Zhenrong; Li, Haifeng; Liu, Xu

    2014-05-01

    Investigation was performed to explore the possibility of enhancing contrast by varying the spectral distribution (SPD) of the surgical lighting. The illumination scenes with different SPDs were generated by the combination of a self-adaptive white light optimization method and the LED ceiling system, the images of biological sample are taken by a CCD camera and then processed by an 'Entropy' based contrast evaluation model which is proposed specific for surgery occasion. Compared with the neutral white LED based and traditional algorithm based image enhancing methods, the illumination based enhancing method turns out a better performance in contrast enhancing and improves the average contrast value about 9% and 6%, respectively. This low cost method is simple, practicable, and thus may provide an alternative solution for the expensive visual facility medical instruments.

  19. A Cartesian Adaptive Level Set Method for Two-Phase Flows

    NASA Technical Reports Server (NTRS)

    Ham, F.; Young, Y.-N.

    2003-01-01

    In the present contribution we develop a level set method based on local anisotropic Cartesian adaptation as described in Ham et al. (2002). Such an approach should allow for the smallest possible Cartesian grid capable of resolving a given flow. The remainder of the paper is organized as follows. In section 2 the level set formulation for free surface calculations is presented and its strengths and weaknesses relative to the other free surface methods reviewed. In section 3 the collocated numerical method is described. In section 4 the method is validated by solving the 2D and 3D drop oscilation problem. In section 5 we present some results from more complex cases including the 3D drop breakup in an impulsively accelerated free stream, and the 3D immiscible Rayleigh-Taylor instability. Conclusions are given in section 6.

  20. Adaptive method for real-time gait phase detection based on ground contact forces.

    PubMed

    Yu, Lie; Zheng, Jianbin; Wang, Yang; Song, Zhengge; Zhan, Enqi

    2015-01-01

    A novel method is presented to detect real-time gait phases based on ground contact forces (GCFs) measured by force sensitive resistors (FSRs). The traditional threshold method (TM) sets a threshold to divide the GCFs into on-ground and off-ground statuses. However, TM is neither an adaptive nor real-time method. The threshold setting is based on body weight or the maximum and minimum GCFs in the gait cycles, resulting in different thresholds needed for different walking conditions. Additionally, the maximum and minimum GCFs are only obtainable after data processing. Therefore, this paper proposes a proportion method (PM) that calculates the sums and proportions of GCFs wherein the GCFs are obtained from FSRs. A gait analysis is then implemented by the proposed gait phase detection algorithm (GPDA). Finally, the PM reliability is determined by comparing the detection results between PM and TM. Experimental results demonstrate that the proposed PM is highly reliable in all walking conditions. In addition, PM could be utilized to analyze gait phases in real time. Finally, PM exhibits strong adaptability to different walking conditions.

  1. Validation of an Adaptive Combustion Instability Control Method for Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; DeLaat, John C.; Chang, Clarence T.

    2004-01-01

    This paper describes ongoing testing of an adaptive control method to suppress high frequency thermo-acoustic instabilities like those found in lean-burning, low emission combustors that are being developed for future aircraft gas turbine engines. The method called Adaptive Sliding Phasor Averaged Control, was previously tested in an experimental rig designed to simulate a combustor with an instability of about 530 Hz. Results published earlier, and briefly presented here, demonstrated that this method was effective in suppressing the instability. Because this test rig did not exhibit a well pronounced instability, a question remained regarding the effectiveness of the control methodology when applied to a more coherent instability. To answer this question, a modified combustor rig was assembled at the NASA Glenn Research Center in Cleveland, Ohio. The modified rig exhibited a more coherent, higher amplitude instability, but at a lower frequency of about 315 Hz. Test results show that this control method successfully reduced the instability pressure of the lower frequency test rig. In addition, due to a certain phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling, a dramatic suppression of the instability was achieved by focusing control on the second harmonic of the instability. These results and their implications are discussed, as well as a hypothesis describing the mechanism of intra-harmonic coupling.

  2. Self-adaptive projection methods for the multiple-sets split feasibility problem

    NASA Astrophysics Data System (ADS)

    Zhao, Jinling; Yang, Qingzhi

    2011-03-01

    The multiple-sets split feasibility problem (MSFP) is to find a point closest to the intersection of a family of closed convex sets in one space, such that its image under a linear transformation will be closest to the intersection of another family of closed convex sets in the image space. This problem arises in many practical fields, and it can be a model for many inverse problems. Noting that some existing algorithms require estimating the Lipschitz constant or calculating the largest eigenvalue of the matrix, in this paper, we first introduce a self-adaptive projection method by adopting Armijo-like searches to solve the MSFP, then we focus on a special case of the MSFP and propose a relaxed self-adaptive method by using projections onto half-spaces instead of those onto the original convex sets, which is much more practical. Convergence results for both methods are analyzed. Preliminary numerical results show that our methods are practical and promising for solving larger scale MSFPs.

  3. Patched based methods for adaptive mesh refinement solutions of partial differential equations

    SciTech Connect

    Saltzman, J.

    1997-09-02

    This manuscript contains the lecture notes for a course taught from July 7th through July 11th at the 1997 Numerical Analysis Summer School sponsored by C.E.A., I.N.R.I.A., and E.D.F. The subject area was chosen to support the general theme of that year`s school which is ``Multiscale Methods and Wavelets in Numerical Simulation.`` The first topic covered in these notes is a description of the problem domain. This coverage is limited to classical PDEs with a heavier emphasis on hyperbolic systems and constrained hyperbolic systems. The next topic is difference schemes. These schemes are the foundation for the adaptive methods. After the background material is covered, attention is focused on a simple patched based adaptive algorithm and its associated data structures for square grids and hyperbolic conservation laws. Embellishments include curvilinear meshes, embedded boundary and overset meshes. Next, several strategies for parallel implementations are examined. The remainder of the notes contains descriptions of elliptic solutions on the mesh hierarchy, elliptically constrained flow solution methods and elliptically constrained flow solution methods with diffusion.

  4. The shading cue in context

    PubMed Central

    Wagemans, Johan; van Doorn, Andrea J; Koenderink, Jan J

    2010-01-01

    The shading cue is supposed to be a major factor in monocular stereopsis. However, the hypothesis is hardly corroborated by available data. For instance, the conventional stimulus used in perception research, which involves a circular disk with monotonic luminance gradient on a uniform surround, is theoretically ‘explained’ by any quadric surface, including spherical caps or cups (the conventional response categories), cylindrical ruts or ridges, and saddle surfaces. Whereas cylindrical ruts or ridges are reported when the outline is changed from circular to square, saddle surfaces are never reported. We introduce a method that allows us to differentiate between such possible responses. We report observations on a number of variations of the conventional stimulus, including variations of shape and quality of the boundary, and contexts that allow the observer to infer illumination direction. We find strong and expected influences of outline shape, but, perhaps surprisingly, we fail to find any influence of context, and only partial influence of outline quality. Moreover, we report appreciable differences within the generic population. We trace some of the idiosyncrasies (as compared to shape from shading algorithms) of the human observer to generic properties of the environment, in particular the fact that many objects are limited in size and elliptically convex over most of their boundaries. PMID:23145221

  5. Adaptive optics in spinning disk microscopy: improved contrast and brightness by a simple and fast method.

    PubMed

    Fraisier, V; Clouvel, G; Jasaitis, A; Dimitrov, A; Piolot, T; Salamero, J

    2015-09-01

    Multiconfocal microscopy gives a good compromise between fast imaging and reasonable resolution. However, the low intensity of live fluorescent emitters is a major limitation to this technique. Aberrations induced by the optical setup, especially the mismatch of the refractive index and the biological sample itself, distort the point spread function and further reduce the amount of detected photons. Altogether, this leads to impaired image quality, preventing accurate analysis of molecular processes in biological samples and imaging deep in the sample. The amount of detected fluorescence can be improved with adaptive optics. Here, we used a compact adaptive optics module (adaptive optics box for sectioning optical microscopy), which was specifically designed for spinning disk confocal microscopy. The module overcomes undesired anomalies by correcting for most of the aberrations in confocal imaging. Existing aberration detection methods require prior illumination, which bleaches the sample. To avoid multiple exposures of the sample, we established an experimental model describing the depth dependence of major aberrations. This model allows us to correct for those aberrations when performing a z-stack, gradually increasing the amplitude of the correction with depth. It does not require illumination of the sample for aberration detection, thus minimizing photobleaching and phototoxicity. With this model, we improved both signal-to-background ratio and image contrast. Here, we present comparative studies on a variety of biological samples.

  6. Adaptive correction method for an OCXO and investigation of analytical cumulative time error upper bound.

    PubMed

    Zhou, Hui; Kunz, Thomas; Schwartz, Howard

    2011-01-01

    Traditional oscillators used in timing modules of CDMA and WiMAX base stations are large and expensive. Applying cheaper and smaller, albeit more inaccurate, oscillators in timing modules is an interesting research challenge. An adaptive control algorithm is presented to enhance the oscillators to meet the requirements of base stations during holdover mode. An oscillator frequency stability model is developed for the adaptive control algorithm. This model takes into account the control loop which creates the correction signal when the timing module is in locked mode. A recursive prediction error method is used to identify the system model parameters. Simulation results show that an oscillator enhanced by our adaptive control algorithm improves the oscillator performance significantly, compared with uncorrected oscillators. Our results also show the benefit of explicitly modeling the control loop. Finally, the cumulative time error upper bound of such enhanced oscillators is investigated analytically and comparison results between the analytical and simulated upper bound are provided. The results show that the analytical upper bound can serve as a practical guide for system designers. PMID:21244973

  7. Comparative adaptation accuracy of acrylic denture bases evaluated by two different methods.

    PubMed

    Lee, Chung-Jae; Bok, Sung-Bem; Bae, Ji-Young; Lee, Hae-Hyoung

    2010-08-01

    This study examined the adaptation accuracy of acrylic denture base processed using fluid-resin (PERform), injection-moldings (SR-Ivocap, Success, Mak Press), and two compression-molding techniques. The adaptation accuracy was measured primarily by the posterior border gaps at the mid-palatal area using a microscope and subsequently by weighing of the weight of the impression material between the denture base and master cast using hand-mixed and automixed silicone. The correlation between the data measured using these two test methods was examined. The PERform and Mak Press produced significantly smaller maximum palatal gap dimensions than the other groups (p<0.05). Mak Press also showed a significantly smaller weight of automixed silicone material than the other groups (p<0.05), while SR-Ivocap and Success showed similar adaptation accuracy to the compression-molding denture. The correlationship between the magnitude of the posterior border gap and the weight of the silicone impression materials was affected by either the material or mixing variables.

  8. Adaptive correction method for an OCXO and investigation of analytical cumulative time error upper bound.

    PubMed

    Zhou, Hui; Kunz, Thomas; Schwartz, Howard

    2011-01-01

    Traditional oscillators used in timing modules of CDMA and WiMAX base stations are large and expensive. Applying cheaper and smaller, albeit more inaccurate, oscillators in timing modules is an interesting research challenge. An adaptive control algorithm is presented to enhance the oscillators to meet the requirements of base stations during holdover mode. An oscillator frequency stability model is developed for the adaptive control algorithm. This model takes into account the control loop which creates the correction signal when the timing module is in locked mode. A recursive prediction error method is used to identify the system model parameters. Simulation results show that an oscillator enhanced by our adaptive control algorithm improves the oscillator performance significantly, compared with uncorrected oscillators. Our results also show the benefit of explicitly modeling the control loop. Finally, the cumulative time error upper bound of such enhanced oscillators is investigated analytically and comparison results between the analytical and simulated upper bound are provided. The results show that the analytical upper bound can serve as a practical guide for system designers.

  9. Adaptive control system having hedge unit and related apparatus and methods

    NASA Technical Reports Server (NTRS)

    Johnson, Eric Norman (Inventor); Calise, Anthony J. (Inventor)

    2007-01-01

    The invention includes an adaptive control system used to control a plant. The adaptive control system includes a hedge unit that receives at least one control signal and a plant state signal. The hedge unit generates a hedge signal based on the control signal, the plant state signal, and a hedge model including a first model having one or more characteristics to which the adaptive control system is not to adapt, and a second model not having the characteristic(s) to which the adaptive control system is not to adapt. The hedge signal is used in the adaptive control system to remove the effect of the characteristic from a signal supplied to an adaptation law unit of the adaptive control system so that the adaptive control system does not adapt to the characteristic in controlling the plant.

  10. Adaptive control system having hedge unit and related apparatus and methods

    NASA Technical Reports Server (NTRS)

    Johnson, Eric Norman (Inventor); Calise, Anthony J. (Inventor)

    2003-01-01

    The invention includes an adaptive control system used to control a plant. The adaptive control system includes a hedge unit that receives at least one control signal and a plant state signal. The hedge unit generates a hedge signal based on the control signal, the plant state signal, and a hedge model including a first model having one or more characteristics to which the adaptive control system is not to adapt, and a second model not having the characteristic(s) to which the adaptive control system is not to adapt. The hedge signal is used in the adaptive control system to remove the effect of the characteristic from a signal supplied to an adaptation law unit of the adaptive control system so that the adaptive control system does not adapt to the characteristic in controlling the plant.

  11. Prism adaptation and neck muscle vibration in healthy individuals: are two methods better than one?

    PubMed

    Guinet, M; Michel, C

    2013-12-19

    Studies involving therapeutic combinations reveal an important benefit in the rehabilitation of neglect patients when compared to single therapies. In light of these observations our present work examines, in healthy individuals, sensorimotor and cognitive after-effects of prism adaptation and neck muscle vibration applied individually or simultaneously. We explored sensorimotor after-effects on visuo-manual open-loop pointing, visual and proprioceptive straight-ahead estimations. We assessed cognitive after-effects on the line bisection task. Fifty-four healthy participants were divided into six groups designated according to the exposure procedure used with each: 'Prism' (P) group; 'Vibration with a sensation of body rotation' (Vb) group; 'Vibration with a move illusion of the LED' (Vl) group; 'Association with a sensation of body rotation' (Ab) group; 'Association with a move illusion of the LED' (Al) group; and 'Control' (C) group. The main findings showed that prism adaptation applied alone or combined with vibration showed significant adaptation in visuo-manual open-loop pointing, visual straight-ahead and proprioceptive straight-ahead. Vibration alone produced significant after-effects on proprioceptive straight-ahead estimation in the Vl group. Furthermore all groups (except C group) showed a rightward neglect-like bias in line bisection following the training procedure. This is the first demonstration of cognitive after-effects following neck muscle vibration in healthy individuals. The simultaneous application of both methods did not produce significant greater after-effects than prism adaptation alone in both sensorimotor and cognitive tasks. These results are discussed in terms of transfer of sensorimotor plasticity to spatial cognition in healthy individuals.

  12. Adaptive methods of two-scale edge detection in post-enhancement visual pattern processing

    NASA Astrophysics Data System (ADS)

    Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.

    2008-04-01

    Adaptive methods are defined and experimentally studied for a two-scale edge detection process that mimics human visual perception of edges and is inspired by the parvo-cellular (P) and magno-cellular (M) physiological subsystems of natural vision. This two-channel processing consists of a high spatial acuity/coarse contrast channel (P) and a coarse acuity/fine contrast (M) channel. We perform edge detection after a very strong non-linear image enhancement that uses smart Retinex image processing. Two conditions that arise from this enhancement demand adaptiveness in edge detection. These conditions are the presence of random noise further exacerbated by the enhancement process, and the equally random occurrence of dense textural visual information. We examine how to best deal with both phenomena with an automatic adaptive computation that treats both high noise and dense textures as too much information, and gracefully shifts from a smallscale to medium-scale edge pattern priorities. This shift is accomplished by using different edge-enhancement schemes that correspond with the (P) and (M) channels of the human visual system. We also examine the case of adapting to a third image condition, namely too little visual information, and automatically adjust edge detection sensitivities when sparse feature information is encountered. When this methodology is applied to a sequence of images of the same scene but with varying exposures and lighting conditions, this edge-detection process produces pattern constancy that is very useful for several imaging applications that rely on image classification in variable imaging conditions.

  13. Data-adapted moving least squares method for 3-D image interpolation

    NASA Astrophysics Data System (ADS)

    Jang, Sumi; Nam, Haewon; Lee, Yeon Ju; Jeong, Byeongseon; Lee, Rena; Yoon, Jungho

    2013-12-01

    In this paper, we present a nonlinear three-dimensional interpolation scheme for gray-level medical images. The scheme is based on the moving least squares method but introduces a fundamental modification. For a given evaluation point, the proposed method finds the local best approximation by reproducing polynomials of a certain degree. In particular, in order to obtain a better match to the local structures of the given image, we employ locally data-adapted least squares methods that can improve the classical one. Some numerical experiments are presented to demonstrate the performance of the proposed method. Five types of data sets are used: MR brain, MR foot, MR abdomen, CT head, and CT foot. From each of the five types, we choose five volumes. The scheme is compared with some well-known linear methods and other recently developed nonlinear methods. For quantitative comparison, we follow the paradigm proposed by Grevera and Udupa (1998). (Each slice is first assumed to be unknown then interpolated by each method. The performance of each interpolation method is assessed statistically.) The PSNR results for the estimated volumes are also provided. We observe that the new method generates better results in both quantitative and visual quality comparisons.

  14. Identifying Biologically Relevant Cues in the Hydrologic Regime

    NASA Astrophysics Data System (ADS)

    Lovellford, R. M.; Flitcroft, R.; Santelmann, M. V.; Grant, G. E.; Safeeq, M.; Lewis, S.

    2012-12-01

    Seasonal variation in hydrologic discharge and temperature defines the availability, connectivity, and quality of lentic habitats. Native aquatic species are adapted to local hydrologic regimes , eg. magnitudes and rates of change . In recent decades, biologically relevant hydrologic conditions have been identified that are necessary to maintain habitat conditions for aquatic obligate species. Another element of hydrologic regimes important to aquatic species are the cues that inform individuals of seasonal changes that precipitate important physiological or behavioral alterations. There is a need for hydrologists, biologists, and ecologists, to define biologically significant cues within the hydrologic regime. Coho salmon (Onchorhynchus kisutch), an anadromous species of Pacific salmon, offers an example of sensitivity to environmental cues. Examinations of the run-timing of mature adult coho salmon on the North Umpqua River, OR, indicate that migration timing coincides with decreasing fall water temperatures prior to increasing winter discharge. For this species, adults leave the ocean ready to spawn. Adults need to spawn in small headwater streams prior to the onset of intense storm conditions that prohibit effective deposition or fertilization of eggs in redds (salmon nests).Therefore, the timing of spawning must be carefully executed. Understanding the cues that trigger specific behaviors gives insight to the processes that provide ecosystem stability and flexibility over time. Improved understanding of these cues may help us protect freshwater ecosystems and improve management for endangered species.

  15. Exemplar effects in categorization and multiple-cue judgment.

    PubMed

    Juslin, Peter; Olsson, Henrik; Olsson, Anna-Carin

    2003-03-01

    Categorization and multiple-cue judgment are similar tasks, but the influential models in the two areas are different in terms of the computations, processes, and neural substrates that they imply. In categorization, exemplar memory is often emphasized, whereas multiple-cue judgment generally is interpreted in terms of integration of cues that have been abstracted in training. In 3 experiments the authors investigated whether these conclusions derive from genuine differences in the processes or are accidental to the different research methods. The results revealed large individual differences and a shift from exemplar memory to cue abstraction when the criterion is changed from a binary to a continuous variable, especially for a probabilistic criterion. People appear to switch between qualitatively distinct processes in the 2 tasks. PMID:12656301

  16. System and method for adaptively deskewing parallel data signals relative to a clock

    DOEpatents

    Jenkins, Philip Nord; Cornett, Frank N.

    2006-04-18

    A system and method of reducing skew between a plurality of signals transmitted with a transmit clock is described. Skew is detected between the received transmit clock and each of received data signals. Delay is added to the clock or to one or more of the plurality of data signals to compensate for the detected skew. Each of the plurality of delayed signals is compared to a reference signal to detect changes in the skew. The delay added to each of the plurality of delayed signals is updated to adapt to changes in the detected skew.

  17. FALCON: A method for flexible adaptation of local coordinates of nuclei.

    PubMed

    König, Carolin; Hansen, Mads Bøttger; Godtliebsen, Ian H; Christiansen, Ove

    2016-02-21

    We present a flexible scheme for calculating vibrational rectilinear coordinates with well-defined strict locality on a certain set of atoms. Introducing a method for Flexible Adaption of Local COordinates of Nuclei (FALCON) we show how vibrational subspaces can be "grown" in an adaptive manner. Subspace Hessian matrices are set up and used to calculate and analyze vibrational modes and frequencies. FALCON coordinates can more generally be used to construct vibrational coordinates for describing local and (semi-local) interacting modes with desired features. For instance, spatially local vibrations can be approximately described as internal motion within only a group of atoms and delocalized modes can be approximately expressed as relative motions of rigid groups of atoms. The FALCON method can support efficiency in the calculation and analysis of vibrational coordinates and energies in the context of harmonic and anharmonic calculations. The features of this method are demonstrated on a few small molecules, i.e., formylglycine, coumarin, and dimethylether as well as for the amide-I band and low-frequency modes of alanine oligomers and alpha conotoxin.

  18. FALCON: A method for flexible adaptation of local coordinates of nuclei

    NASA Astrophysics Data System (ADS)

    König, Carolin; Hansen, Mads Bøttger; Godtliebsen, Ian H.; Christiansen, Ove

    2016-02-01

    We present a flexible scheme for calculating vibrational rectilinear coordinates with well-defined strict locality on a certain set of atoms. Introducing a method for Flexible Adaption of Local COordinates of Nuclei (FALCON) we show how vibrational subspaces can be "grown" in an adaptive manner. Subspace Hessian matrices are set up and used to calculate and analyze vibrational modes and frequencies. FALCON coordinates can more generally be used to construct vibrational coordinates for describing local and (semi-local) interacting modes with desired features. For instance, spatially local vibrations can be approximately described as internal motion within only a group of atoms and delocalized modes can be approximately expressed as relative motions of rigid groups of atoms. The FALCON method can support efficiency in the calculation and analysis of vibrational coordinates and energies in the context of harmonic and anharmonic calculations. The features of this method are demonstrated on a few small molecules, i.e., formylglycine, coumarin, and dimethylether as well as for the amide-I band and low-frequency modes of alanine oligomers and alpha conotoxin.

  19. Accurate Adaptive Level Set Method and Sharpening Technique for Three Dimensional Deforming Interfaces

    NASA Technical Reports Server (NTRS)

    Kim, Hyoungin; Liou, Meng-Sing

    2011-01-01

    In this paper, we demonstrate improved accuracy of the level set method for resolving deforming interfaces by proposing two key elements: (1) accurate level set solutions on adapted Cartesian grids by judiciously choosing interpolation polynomials in regions of different grid levels and (2) enhanced reinitialization by an interface sharpening procedure. The level set equation is solved using a fifth order WENO scheme or a second order central differencing scheme depending on availability of uniform stencils at each grid point. Grid adaptation criteria are determined so that the Hamiltonian functions at nodes adjacent to interfaces are always calculated by the fifth order WENO scheme. This selective usage between the fifth order WENO and second order central differencing schemes is confirmed to give more accurate results compared to those in literature for standard test problems. In order to further improve accuracy especially near thin filaments, we suggest an artificial sharpening method, which is in a similar form with the conventional re-initialization method but utilizes sign of curvature instead of sign of the level set function. Consequently, volume loss due to numerical dissipation on thin filaments is remarkably reduced for the test problems

  20. Adaptive explicit and implicit finite element methods for transient thermal analysis

    NASA Technical Reports Server (NTRS)

    Probert, E. J.; Hassan, O.; Morgan, K.; Peraire, J.

    1992-01-01

    The application of adaptive finite element methods to the solution of transient heat conduction problems in two dimensions is investigated. The computational domain is represented by an unstructured assembly of linear triangular elements and the mesh adaptation is achieved by local regeneration of the grid, using an error estimation procedure coupled to an automatic triangular mesh generator. Two alternative solution procedures are considered. In the first procedure, the solution is advanced by explicit timestepping, with domain decomposition being used to improve the computational efficiency of the method. In the second procedure, an algorithm for constructing continuous lines which pass only once through each node of the mesh is employed. The lines are used as the basis of a fully implicit method, in which the equation system is solved by line relaxation using a block tridiagonal equation solver. The numerical performance of the two procedures is compared for the analysis of a problem involving a moving heat source applied to a convectively cooled cylindrical leading edge.

  1. A three-dimensional adaptive grid method. [for computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Nakahashi, K.; Deiwert, G. S.

    1985-01-01

    A three-dimensional solution-adaptive-grid scheme is described which is suitable for complex fluid flows. This method, using tension and torsion spring analogies, was previously developed and successfully applied for two-dimensional flows. In the present work, a collection of three-dimensional flow fields are used to demonstrate the feasibility and versatility of this concept to include an added dimension. Flow fields considered include: (1) supersonic flow past an aerodynamic afterbody with a propulsive jet at incidence to the free stream, (2) supersonic flow past a blunt fin mounted on a solid wall, and (3) supersonic flow over a bump. In addition to generating three-dimensional solution-adapted grids, the method can also be used effectively as an initial grid generator. The utility of the method lies in: (1) optimum distribution of discrete grid points, (2) improvement of accuracy, (3) improved computational efficiency, (4) minimization of data base sizes, and (5) simplified three-dimensional grid generation.

  2. FALCON: A method for flexible adaptation of local coordinates of nuclei.

    PubMed

    König, Carolin; Hansen, Mads Bøttger; Godtliebsen, Ian H; Christiansen, Ove

    2016-02-21

    We present a flexible scheme for calculating vibrational rectilinear coordinates with well-defined strict locality on a certain set of atoms. Introducing a method for Flexible Adaption of Local COordinates of Nuclei (FALCON) we show how vibrational subspaces can be "grown" in an adaptive manner. Subspace Hessian matrices are set up and used to calculate and analyze vibrational modes and frequencies. FALCON coordinates can more generally be used to construct vibrational coordinates for describing local and (semi-local) interacting modes with desired features. For instance, spatially local vibrations can be approximately described as internal motion within only a group of atoms and delocalized modes can be approximately expressed as relative motions of rigid groups of atoms. The FALCON method can support efficiency in the calculation and analysis of vibrational coordinates and energies in the context of harmonic and anharmonic calculations. The features of this method are demonstrated on a few small molecules, i.e., formylglycine, coumarin, and dimethylether as well as for the amide-I band and low-frequency modes of alanine oligomers and alpha conotoxin. PMID:26896977

  3. Efficient reconstruction method for ground layer adaptive optics with mixed natural and laser guide stars.

    PubMed

    Wagner, Roland; Helin, Tapio; Obereder, Andreas; Ramlau, Ronny

    2016-02-20

    The imaging quality of modern ground-based telescopes such as the planned European Extremely Large Telescope is affected by atmospheric turbulence. In consequence, they heavily depend on stable and high-performance adaptive optics (AO) systems. Using measurements of incoming light from guide stars, an AO system compensates for the effects of turbulence by adjusting so-called deformable mirror(s) (DMs) in real time. In this paper, we introduce a novel reconstruction method for ground layer adaptive optics. In the literature, a common approach to this problem is to use Bayesian inference in order to model the specific noise structure appearing due to spot elongation. This approach leads to large coupled systems with high computational effort. Recently, fast solvers of linear order, i.e., with computational complexity O(n), where n is the number of DM actuators, have emerged. However, the quality of such methods typically degrades in low flux conditions. Our key contribution is to achieve the high quality of the standard Bayesian approach while at the same time maintaining the linear order speed of the recent solvers. Our method is based on performing a separate preprocessing step before applying the cumulative reconstructor (CuReD). The efficiency and performance of the new reconstructor are demonstrated using the OCTOPUS, the official end-to-end simulation environment of the ESO for extremely large telescopes. For more specific simulations we also use the MOST toolbox. PMID:26906596

  4. Wavefront detection method of a single-sensor based adaptive optics system.

    PubMed

    Wang, Chongchong; Hu, Lifa; Xu, Huanyu; Wang, Yukun; Li, Dayu; Wang, Shaoxin; Mu, Quanquan; Yang, Chengliang; Cao, Zhaoliang; Lu, Xinghai; Xuan, Li

    2015-08-10

    In adaptive optics system (AOS) for optical telescopes, the reported wavefront sensing strategy consists of two parts: a specific sensor for tip-tilt (TT) detection and another wavefront sensor for other distortions detection. Thus, a part of incident light has to be used for TT detection, which decreases the light energy used by wavefront sensor and eventually reduces the precision of wavefront correction. In this paper, a single Shack-Hartmann wavefront sensor based wavefront measurement method is presented for both large amplitude TT and other distortions' measurement. Experiments were performed for testing the presented wavefront method and validating the wavefront detection and correction ability of the single-sensor based AOS. With adaptive correction, the root-mean-square of residual TT was less than 0.2 λ, and a clear image was obtained in the lab. Equipped on a 1.23-meter optical telescope, the binary stars with angle distance of 0.6″ were clearly resolved using the AOS. This wavefront measurement method removes the separate TT sensor, which not only simplifies the AOS but also saves light energy for subsequent wavefront sensing and imaging, and eventually improves the detection and imaging capability of the AOS. PMID:26367988

  5. A Newton method with adaptive finite elements for solving phase-change problems with natural convection

    NASA Astrophysics Data System (ADS)

    Danaila, Ionut; Moglan, Raluca; Hecht, Frédéric; Le Masson, Stéphane

    2014-10-01

    We present a new numerical system using finite elements with mesh adaptivity for the simulation of solid-liquid phase change systems. In the liquid phase, the natural convection flow is simulated by solving the incompressible Navier-Stokes equations with Boussinesq approximation. A variable viscosity model allows the velocity to progressively vanish in the solid phase, through an intermediate mushy region. The phase change is modeled by introducing an implicit enthalpy source term in the heat equation. The final system of equations describing the liquid-solid system by a single domain approach is solved using a Newton iterative algorithm. The space discretization is based on a P2-P1 Taylor-Hood finite elements and mesh adaptivity by metric control is used to accurately track the solid-liquid interface or the density inversion interface for water flows. The numerical method is validated against classical benchmarks that progressively add strong non-linearities in the system of equations: natural convection of air, natural convection of water, melting of a phase-change material and water freezing. Very good agreement with experimental data is obtained for each test case, proving the capability of the method to deal with both melting and solidification problems with convection. The presented numerical method is easy to implement using FreeFem++ software using a syntax close to the mathematical formulation.

  6. Nucleus accumbens core dopamine signaling tracks the need-based motivational value of food-paired cues.

    PubMed

    Aitken, Tara J; Greenfield, Venuz Y; Wassum, Kate M

    2016-03-01

    Environmental reward-predictive stimuli provide a major source of motivation for instrumental reward-seeking activity and this has been linked to dopamine signaling in the nucleus accumbens (NAc) core. This cue-induced incentive motivation can be quite general, not restricted to instrumental actions that earn the same unique reward, and is also typically regulated by one's current need state, such that cues only motivate actions when this is adaptive. But it remains unknown whether cue-evoked dopamine signaling is similarly regulated by need state. Here, we used fast-scan cyclic voltammetry to monitor dopamine concentration changes in the NAc core of rats during a Pavlovian-to-instrumental transfer task in which the motivating influence of two cues, each signaling a distinct food reward (sucrose or food pellets), over an action earning a third unique food reward (polycose) was assessed in a state of hunger and of satiety. Both cues elicited a robust NAc dopamine response when hungry. The magnitude of the sucrose cue-evoked dopamine response correlated with the Pavlovian-to-instrumental transfer effect that was selectively induced by this stimulus. Satiety attenuated these cue-evoked dopamine responses and behavioral responding, even though rats had never experienced the specific food rewards in this state. These data demonstrate that cue-evoked NAc core responses are sensitive to current need state, one critical variable that determines the current adaptive utility of cue-motivated behavior. Food-predictive stimuli motivate food-seeking behavior. Here, we show that food cues evoke a robust nucleus accumbens core dopamine response when hungry that correlates with the cue's ability to invigorate general food seeking. This response is attenuated when sated, demonstrating that food cue-evoked accumbens dopamine responses are sensitive to the need state information that determines the current adaptive utility of cue-motivated action. PMID:26715366

  7. Nucleus accumbens core dopamine signaling tracks the need-based motivational value of food-paired cues.

    PubMed

    Aitken, Tara J; Greenfield, Venuz Y; Wassum, Kate M

    2016-03-01

    Environmental reward-predictive stimuli provide a major source of motivation for instrumental reward-seeking activity and this has been linked to dopamine signaling in the nucleus accumbens (NAc) core. This cue-induced incentive motivation can be quite general, not restricted to instrumental actions that earn the same unique reward, and is also typically regulated by one's current need state, such that cues only motivate actions when this is adaptive. But it remains unknown whether cue-evoked dopamine signaling is similarly regulated by need state. Here, we used fast-scan cyclic voltammetry to monitor dopamine concentration changes in the NAc core of rats during a Pavlovian-to-instrumental transfer task in which the motivating influence of two cues, each signaling a distinct food reward (sucrose or food pellets), over an action earning a third unique food reward (polycose) was assessed in a state of hunger and of satiety. Both cues elicited a robust NAc dopamine response when hungry. The magnitude of the sucrose cue-evoked dopamine response correlated with the Pavlovian-to-instrumental transfer effect that was selectively induced by this stimulus. Satiety attenuated these cue-evoked dopamine responses and behavioral responding, even though rats had never experienced the specific food rewards in this state. These data demonstrate that cue-evoked NAc core responses are sensitive to current need state, one critical variable that determines the current adaptive utility of cue-motivated behavior. Food-predictive stimuli motivate food-seeking behavior. Here, we show that food cues evoke a robust nucleus accumbens core dopamine response when hungry that correlates with the cue's ability to invigorate general food seeking. This response is attenuated when sated, demonstrating that food cue-evoked accumbens dopamine responses are sensitive to the need state information that determines the current adaptive utility of cue-motivated action.

  8. Directionally adaptive finite element method for multidimensional Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Tan, Zhiqiang; Varghese, Philip L.

    1993-01-01

    A directionally adaptive finite element method for multidimensional compressible flows is presented. Quadrilateral and hexahedral elements are used because they have several advantages over triangular and tetrahedral elements. Unlike traditional methods that use quadrilateral/hexahedral elements, our method allows an element to be divided in each of the three directions in 3D and two directions in 2D. Some restrictions on mesh structure are found to be necessary, especially in 3D. The refining and coarsening procedures, and the treatment of constraints are given. A new implementation of upwind schemes in the constrained finite element system is presented. Some example problems, including a Mach 10 shock interaction with the walls of a 2D channel, a 2D viscous compression corner flow, and inviscid and viscous 3D flows in square channels, are also shown.

  9. Adaptive homochromous disturbance elimination and feature selection based mean-shift vehicle tracking method

    NASA Astrophysics Data System (ADS)

    Ding, Jie; Lei, Bo; Hong, Pu; Wang, Chensheng

    2011-11-01

    This paper introduces a novel method to adaptively diminish the effects of disturbance in the airborne camera shooting traffic video. Based on the moving vector of the tracked vehicle, a search area in the next frame is predicted, which is the area of interest (AOI) to the mean-shift method. Background color estimation is performed according to the previous tracking, which is used to judge whether there is possible disturbance in the predicted search area in the next frame. Without disturbance, the difference image of vehicle and background could be used as input features to the mean-shift algorithm; with disturbance, the histogram of colors in the predict area is calculated to find the most and second disturbing color. Experiments proved this method could diminish or eliminate the effects of homochromous disturbance and lead to more precise and more robust tracking.

  10. Multigrid iterative method with adaptive spatial support for computed tomography reconstruction from few-view data

    NASA Astrophysics Data System (ADS)

    Lee, Ping-Chang

    2014-03-01

    Computed tomography (CT) plays a key role in modern medical system, whether it be for diagnosis or therapy. As an increased risk of cancer development is associated with exposure to radiation, reducing radiation exposure in CT becomes an essential issue. Based on the compressive sensing (CS) theory, iterative based method with total variation (TV) minimization is proven to be a powerful framework for few-view tomographic image reconstruction. Multigrid method is an iterative method for solving both linear and nonlinear systems, especially when the system contains a huge number of components. In medical imaging, image background is often defined by zero intensity, thus attaining spatial support of the image, which is helpful for iterative reconstruction. In the proposed method, the image support is not considered as a priori knowledge. Rather, it evolves during the reconstruction process. Based on the CS framework, we proposed a multigrid method with adaptive spatial support constraint. The simultaneous algebraic reconstruction (SART) with TV minimization is implemented for comparison purpose. The numerical result shows: 1. Multigrid method has better performance while less than 60 views of projection data were used, 2. Spatial support highly improves the CS reconstruction, and 3. When few views of projection data were measured, our method performs better than the SART+TV method with spatial support constraint.

  11. An adaptive distance-based group contribution method for thermodynamic property prediction.

    PubMed

    He, Tanjin; Li, Shuang; Chi, Yawei; Zhang, Hong-Bo; Wang, Zhi; Yang, Bin; He, Xin; You, Xiaoqing

    2016-09-14

    In the search for an accurate yet inexpensive method to predict thermodynamic properties of large hydrocarbon molecules, we have developed an automatic and adaptive distance-based group contribution (DBGC) method. The method characterizes the group interaction within a molecule with an exponential decay function of the group-to-group distance, defined as the number of bonds between the groups. A database containing the molecular bonding information and the standard enthalpy of formation (Hf,298K) for alkanes, alkenes, and their radicals at the M06-2X/def2-TZVP//B3LYP/6-31G(d) level of theory was constructed. Multiple linear regression (MLR) and artificial neural network (ANN) fitting were used to obtain the contributions from individual groups and group interactions for further predictions. Compared with the conventional group additivity (GA) method, the DBGC method predicts Hf,298K for alkanes more accurately using the same training sets. Particularly for some highly branched large hydrocarbons, the discrepancy with the literature data is smaller for the DBGC method than the conventional GA method. When extended to other molecular classes, including alkenes and radicals, the overall accuracy level of this new method is still satisfactory. PMID:27522953

  12. Preschoolers Benefit From Visually Salient Speech Cues

    PubMed Central

    Holt, Rachael Frush

    2015-01-01

    Purpose This study explored visual speech influence in preschoolers using 3 developmentally appropriate tasks that vary in perceptual difficulty and task demands. They also examined developmental differences in the ability to use visually salient speech cues and visual phonological knowledge. Method Twelve adults and 27 typically developing 3- and 4-year-old children completed 3 audiovisual (AV) speech integration tasks: matching, discrimination, and recognition. The authors compared AV benefit for visually salient and less visually salient speech discrimination contrasts and assessed the visual saliency of consonant confusions in auditory-only and AV word recognition. Results Four-year-olds and adults demonstrated visual influence on all measures. Three-year-olds demonstrated visual influence on speech discrimination and recognition measures. All groups demonstrated greater AV benefit for the visually salient discrimination contrasts. AV recognition benefit in 4-year-olds and adults depended on the visual saliency of speech sounds. Conclusions Preschoolers can demonstrate AV speech integration. Their AV benefit results from efficient use of visually salient speech cues. Four-year-olds, but not 3-year-olds, used visual phonological knowledge to take advantage of visually salient speech cues, suggesting possible developmental differences in the mechanisms of AV benefit. PMID:25322336

  13. Building Adaptive Capacity with the Delphi Method and Mediated Modeling for Water Quality and Climate Change Adaptation in Lake Champlain Basin

    NASA Astrophysics Data System (ADS)

    Coleman, S.; Hurley, S.; Koliba, C.; Zia, A.; Exler, S.

    2014-12-01

    Eutrophication and nutrient pollution of surface waters occur within complex governance, social, hydrologic and biophysical basin contexts. The pervasive and perennial nutrient pollution in Lake Champlain Basin, despite decades of efforts, exemplifies problems found across the world's surface waters. Stakeholders with diverse values, interests, and forms of explicit and tacit knowledge determine water quality impacts through land use, agricultural and water resource decisions. Uncertainty, ambiguity and dynamic feedback further complicate the ability to promote the continual provision of water quality and ecosystem services. Adaptive management of water resources and land use requires mechanisms to allow for learning and integration of new information over time. The transdisciplinary Research on Adaptation to Climate Change (RACC) team is working to build regional adaptive capacity in Lake Champlain Basin while studying and integrating governance, land use, hydrological, and biophysical systems to evaluate implications for adaptive management. The RACC team has engaged stakeholders through mediated modeling workshops, online forums, surveys, focus groups and interviews. In March 2014, CSS2CC.org, an interactive online forum to source and identify adaptive interventions from a group of stakeholders across sectors was launched. The forum, based on the Delphi Method, brings forward the collective wisdom of stakeholders and experts to identify potential interventions and governance designs in response to scientific uncertainty and ambiguity surrounding the effectiveness of any strategy, climate change impacts, and the social and natural systems governing water quality and eutrophication. A Mediated Modeling Workshop followed the forum in May 2014, where participants refined and identified plausible interventions under different governance, policy and resource scenarios. Results from the online forum and workshop can identify emerging consensus across scales and sectors

  14. Practical Method of Adaptive Radiotherapy for Prostate Cancer Using Real-Time Electromagnetic Tracking

    SciTech Connect

    Olsen, Jeffrey R.; Noel, Camille E.; Baker, Kenneth; Santanam, Lakshmi; Michalski, Jeff M.; Parikh, Parag J.

    2012-04-01

    Purpose: We have created an automated process using real-time tracking data to evaluate the adequacy of planning target volume (PTV) margins in prostate cancer, allowing a process of adaptive radiotherapy with minimal physician workload. We present an analysis of PTV adequacy and a proposed adaptive process. Methods and Materials: Tracking data were analyzed for 15 patients who underwent step-and-shoot multi-leaf collimation (SMLC) intensity-modulated radiation therapy (IMRT) with uniform 5-mm PTV margins for prostate cancer using the Calypso Registered-Sign Localization System. Additional plans were generated with 0- and 3-mm margins. A custom software application using the planned dose distribution and structure location from computed tomography (CT) simulation was developed to evaluate the dosimetric impact to the target due to motion. The dose delivered to the prostate was calculated for the initial three, five, and 10 fractions, and for the entire treatment. Treatment was accepted as adequate if the minimum delivered prostate dose (D{sub min}) was at least 98% of the planned D{sub min}. Results: For 0-, 3-, and 5-mm PTV margins, adequate treatment was obtained in 3 of 15, 12 of 15, and 15 of 15 patients, and the delivered D{sub min} ranged from 78% to 99%, 96% to 100%, and 99% to 100% of the planned D{sub min}. Changes in D{sub min} did not correlate with magnitude of prostate motion. Treatment adequacy during the first 10 fractions predicted sufficient dose delivery for the entire treatment for all patients and margins. Conclusions: Our adaptive process successfully used real-time tracking data to predict the need for PTV modifications, without the added burden of physician contouring and image analysis. Our methods are applicable to other uses of real-time tracking, including hypofractionated treatment.

  15. The Adaptive Biasing Force Method: Everything You Always Wanted To Know but Were Afraid To Ask

    PubMed Central

    2014-01-01

    In the host of numerical schemes devised to calculate free energy differences by way of geometric transformations, the adaptive biasing force algorithm has emerged as a promising route to map complex free-energy landscapes. It relies upon the simple concept that as a simulation progresses, a continuously updated biasing force is added to the equations of motion, such that in the long-time limit it yields a Hamiltonian devoid of an average force acting along the transition coordinate of interest. This means that sampling proceeds uniformly on a flat free-energy surface, thus providing reliable free-energy estimates. Much of the appeal of the algorithm to the practitioner is in its physically intuitive underlying ideas and the absence of any requirements for prior knowledge about free-energy landscapes. Since its inception in 2001, the adaptive biasing force scheme has been the subject of considerable attention, from in-depth mathematical analysis of convergence properties to novel developments and extensions. The method has also been successfully applied to many challenging problems in chemistry and biology. In this contribution, the method is presented in a comprehensive, self-contained fashion, discussing with a critical eye its properties, applicability, and inherent limitations, as well as introducing novel extensions. Through free-energy calculations of prototypical molecular systems, many methodological aspects are examined, from stratification strategies to overcoming the so-called hidden barriers in orthogonal space, relevant not only to the adaptive biasing force algorithm but also to other importance-sampling schemes. On the basis of the discussions in this paper, a number of good practices for improving the efficiency and reliability of the computed free-energy differences are proposed. PMID:25247823

  16. Compact integration factor methods for complex domains and adaptive mesh refinement.

    PubMed

    Liu, Xinfeng; Nie, Qing

    2010-08-10

    Implicit integration factor (IIF) method, a class of efficient semi-implicit temporal scheme, was introduced recently for stiff reaction-diffusion equations. To reduce cost of IIF, compact implicit integration factor (cIIF) method was later developed for efficient storage and calculation of exponential matrices associated with the diffusion operators in two and three spatial dimensions for Cartesian coordinates with regular meshes. Unlike IIF, cIIF cannot be directly extended to other curvilinear coordinates, such as polar and spherical coordinate, due to the compact representation for the diffusion terms in cIIF. In this paper, we present a method to generalize cIIF for other curvilinear coordinates through examples of polar and spherical coordinates. The new cIIF method in polar and spherical coordinates has similar computational efficiency and stability properties as the cIIF in Cartesian coordinate. In addition, we present a method for integrating cIIF with adaptive mesh refinement (AMR) to take advantage of the excellent stability condition for cIIF. Because the second order cIIF is unconditionally stable, it allows large time steps for AMR, unlike a typical explicit temporal scheme whose time step is severely restricted by the smallest mesh size in the entire spatial domain. Finally, we apply those methods to simulating a cell signaling system described by a system of stiff reaction-diffusion equations in both two and three spatial dimensions using AMR, curvilinear and Cartesian coordinates. Excellent performance of the new methods is observed.

  17. An adaptive multifluid interface-capturing method for compressible flow in complex geometries

    SciTech Connect

    Greenough, J.A.; Beckner, V.; Pember, R.B.; Crutchfield, W.Y.; Bell, J.B.; Colella, P.

    1995-04-01

    We present a numerical method for solving the multifluid equations of gas dynamics using an operator-split second-order Godunov method for flow in complex geometries in two and three dimensions. The multifluid system treats the fluid components as thermodynamically distinct entities and correctly models fluids with different compressibilities. This treatment allows a general equation-of-state (EOS) specification and the method is implemented so that the EOS references are minimized. The current method is complementary to volume-of-fluid (VOF) methods in the sense that a VOF representation is used, but no interface reconstruction is performed. The Godunov integrator captures the interface during the solution process. The basic multifluid integrator is coupled to a Cartesian grid algorithm that also uses a VOF representation of the fluid-body interface. This representation of the fluid-body interface allows the algorithm to easily accommodate arbitrarily complex geometries. The resulting single grid multifluid-Cartesian grid integration scheme is coupled to a local adaptive mesh refinement algorithm that dynamically refines selected regions of the computational grid to achieve a desired level of accuracy. The overall method is fully conservative with respect to the total mixture. The method will be used for a simple nozzle problem in two-dimensional axisymmetric coordinates.

  18. Compact integration factor methods for complex domains and adaptive mesh refinement

    PubMed Central

    Liu, Xinfeng; Nie, Qing

    2010-01-01

    Implicit integration factor (IIF) method, a class of efficient semi-implicit temporal scheme, was introduced recently for stiff reaction-diffusion equations. To reduce cost of IIF, compact implicit integration factor (cIIF) method was later developed for efficient storage and calculation of exponential matrices associated with the diffusion operators in two and three spatial dimensions for Cartesian coordinates with regular meshes. Unlike IIF, cIIF cannot be directly extended to other curvilinear coordinates, such as polar and spherical coordinate, due to the compact representation for the diffusion terms in cIIF. In this paper, we present a method to generalize cIIF for other curvilinear coordinates through examples of polar and spherical coordinates. The new cIIF method in polar and spherical coordinates has similar computational efficiency and stability properties as the cIIF in Cartesian coordinate. In addition, we present a method for integrating cIIF with adaptive mesh refinement (AMR) to take advantage of the excellent stability condition for cIIF. Because the second order cIIF is unconditionally stable, it allows large time steps for AMR, unlike a typical explicit temporal scheme whose time step is severely restricted by the smallest mesh size in the entire spatial domain. Finally, we apply those methods to simulating a cell signaling system described by a system of stiff reaction-diffusion equations in both two and three spatial dimensions using AMR, curvilinear and Cartesian coordinates. Excellent performance of the new methods is observed. PMID:20543883

  19. Adaptive and robust statistical methods for processing near-field scanning microwave microscopy images.

    PubMed

    Coakley, K J; Imtiaz, A; Wallis, T M; Weber, J C; Berweger, S; Kabos, P

    2015-03-01

    Near-field scanning microwave microscopy offers great potential to facilitate characterization, development and modeling of materials. By acquiring microwave images at multiple frequencies and amplitudes (along with the other modalities) one can study material and device physics at different lateral and depth scales. Images are typically noisy and contaminated by artifacts that can vary from scan line to scan line and planar-like trends due to sample tilt errors. Here, we level images based on an estimate of a smooth 2-d trend determined with a robust implementation of a local regression method. In this robust approach, features and outliers which are not due to the trend are automatically downweighted. We denoise images with the Adaptive Weights Smoothing method. This method smooths out additive noise while preserving edge-like features in images. We demonstrate the feasibility of our methods on topography images and microwave |S11| images. For one challenging test case, we demonstrate that our method outperforms alternative methods from the scanning probe microscopy data analysis software package Gwyddion. Our methods should be useful for massive image data sets where manual selection of landmarks or image subsets by a user is impractical.

  20. Bias-free double judgment accuracy during spatial attention cueing: performance enhancement from voluntary and involuntary attention.

    PubMed

    Pack, Weston; Klein, Stanley A; Carney, Thom

    2014-12-01

    Recent research has demonstrated that involuntary attention improves target identification accuracy for letters using non-predictive peripheral cues, helping to resolve some of the controversy over performance enhancement from involuntary attention. While various cueing studies have demonstrated that their reported cueing effects were not due to response bias to the cue, very few investigations have quantified the extent of any response bias or developed methods of removing bias from observed results in a double judgment accuracy task. We have devised a method to quantify and remove response bias to cued locations in a double judgment accuracy cueing task, revealing the true, unbiased performance enhancement from involuntary and voluntary attention. In a 7-alternative forced choice cueing task using backward masked stimuli to temporally constrain stimulus processing, non-predictive cueing increased target detection and discrimination at cued locations relative to uncued locations even after cue location bias had been corrected.

  1. A Wavelet-Based ECG Delineation Method: Adaptation to an Experimental Electrograms with Manifested Global Ischemia.

    PubMed

    Hejč, Jakub; Vítek, Martin; Ronzhina, Marina; Nováková, Marie; Kolářová, Jana

    2015-09-01

    We present a novel wavelet-based ECG delineation method with robust classification of P wave and T wave. The work is aimed on an adaptation of the method to long-term experimental electrograms (EGs) measured on isolated rabbit heart and to evaluate the effect of global ischemia in experimental EGs on delineation performance. The algorithm was tested on a set of 263 rabbit EGs with established reference points and on human signals using standard Common Standards for Quantitative Electrocardiography Standard Database (CSEDB). On CSEDB, standard deviation (SD) of measured errors satisfies given criterions in each point and the results are comparable to other published works. In rabbit signals, our QRS detector reached sensitivity of 99.87% and positive predictivity of 99.89% despite an overlay of spectral components of QRS complex, P wave and power line noise. The algorithm shows great performance in suppressing J-point elevation and reached low overall error in both, QRS onset (SD = 2.8 ms) and QRS offset (SD = 4.3 ms) delineation. T wave offset is detected with acceptable error (SD = 12.9 ms) and sensitivity nearly 99%. Variance of the errors during global ischemia remains relatively stable, however more failures in detection of T wave and P wave occur. Due to differences in spectral and timing characteristics parameters of rabbit based algorithm have to be highly adaptable and set more precisely than in human ECG signals to reach acceptable performance. PMID:26577367

  2. An Efficient Adaptive Window Size Selection Method for Improving Spectrogram Visualization

    PubMed Central

    Khan, Omar Usman

    2016-01-01

    Short Time Fourier Transform (STFT) is an important technique for the time-frequency analysis of a time varying signal. The basic approach behind it involves the application of a Fast Fourier Transform (FFT) to a signal multiplied with an appropriate window function with fixed resolution. The selection of an appropriate window size is difficult when no background information about the input signal is known. In this paper, a novel empirical model is proposed that adaptively adjusts the window size for a narrow band-signal using spectrum sensing technique. For wide-band signals, where a fixed time-frequency resolution is undesirable, the approach adapts the constant Q transform (CQT). Unlike the STFT, the CQT provides a varying time-frequency resolution. This results in a high spectral resolution at low frequencies and high temporal resolution at high frequencies. In this paper, a simple but effective switching framework is provided between both STFT and CQT. The proposed method also allows for the dynamic construction of a filter bank according to user-defined parameters. This helps in reducing redundant entries in the filter bank. Results obtained from the proposed method not only improve the spectrogram visualization but also reduce the computation cost and achieves 87.71% of the appropriate window length selection.

  3. An Adaptive Fast Multipole Boundary Element Method for Poisson-Boltzmann Electrostatics

    SciTech Connect

    Lu, Benzhuo; Cheng, Xiaolin; Huang, Jingfang; McCammon, Jonathan

    2009-01-01

    The numerical solution of the Poisson Boltzmann (PB) equation is a useful but a computationally demanding tool for studying electrostatic solvation effects in chemical and biomolecular systems. Recently, we have described a boundary integral equation-based PB solver accelerated by a new version of the fast multipole method (FMM). The overall algorithm shows an order N complexity in both the computational cost and memory usage. Here, we present an updated version of the solver by using an adaptive FMM for accelerating the convolution type matrix-vector multiplications. The adaptive algorithm, when compared to our previous nonadaptive one, not only significantly improves the performance of the overall memory usage but also remarkably speeds the calculation because of an improved load balancing between the local- and far-field calculations. We have also implemented a node-patch discretization scheme that leads to a reduction of unknowns by a factor of 2 relative to the constant element method without sacrificing accuracy. As a result of these improvements, the new solver makes the PB calculation truly feasible for large-scale biomolecular systems such as a 30S ribosome molecule even on a typical 2008 desktop computer.

  4. An Efficient Adaptive Window Size Selection Method for Improving Spectrogram Visualization.

    PubMed

    Nisar, Shibli; Khan, Omar Usman; Tariq, Muhammad

    2016-01-01

    Short Time Fourier Transform (STFT) is an important technique for the time-frequency analysis of a time varying signal. The basic approach behind it involves the application of a Fast Fourier Transform (FFT) to a signal multiplied with an appropriate window function with fixed resolution. The selection of an appropriate window size is difficult when no background information about the input signal is known. In this paper, a novel empirical model is proposed that adaptively adjusts the window size for a narrow band-signal using spectrum sensing technique. For wide-band signals, where a fixed time-frequency resolution is undesirable, the approach adapts the constant Q transform (CQT). Unlike the STFT, the CQT provides a varying time-frequency resolution. This results in a high spectral resolution at low frequencies and high temporal resolution at high frequencies. In this paper, a simple but effective switching framework is provided between both STFT and CQT. The proposed method also allows for the dynamic construction of a filter bank according to user-defined parameters. This helps in reducing redundant entries in the filter bank. Results obtained from the proposed method not only improve the spectrogram visualization but also reduce the computation cost and achieves 87.71% of the appropriate window length selection. PMID:27642291

  5. Adaptive Controls Method Demonstrated for the Active Suppression of Instabilities in Engine Combustors

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2004-01-01

    An adaptive feedback control method was demonstrated that suppresses thermoacoustic instabilities in a liquid-fueled combustor of a type used in aircraft engines. Extensive research has been done to develop lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle to reduce the environmental impact of aerospace propulsion systems. However, these lean-burning combustors are susceptible to thermoacoustic instabilities (high-frequency pressure waves), which can fatigue combustor components and even the downstream turbine blades. This can significantly decrease the safe operating lives of the combustor and turbine. Thus, suppressing the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors under NASA's Propulsion and Power Program. This control methodology has been developed and tested in a partnership of the NASA Glenn Research Center, Pratt & Whitney, United Technologies Research Center, and the Georgia Institute of Technology. Initial combustor rig testing of the controls algorithm was completed during 2002. Subsequently, the test results were analyzed and improvements to the method were incorporated in 2003, which culminated in the final status of this controls algorithm. This control methodology is based on adaptive phase shifting. The combustor pressure oscillations are sensed and phase shifted, and a high-frequency fuel valve is actuated to put pressure oscillations into the combustor to cancel pressure oscillations produced by the instability.

  6. Simulating Multi-scale Fluid Flows Using Adaptive Mesh Refinement Methods

    NASA Astrophysics Data System (ADS)

    Rowe, Kristopher; Lamb, Kevin

    2015-11-01

    When modelling flows with disparate length scales one must use a computational mesh that is fine enough to capture the smallest phenomena of interest. Traditional computational fluid dynamics models apply a mesh of uniform resolution to the entire computational domain; however, if the smallest scales of interest are isolated much of the computational resources used in these simulations will be wasted in regions where they are not needed. Adaptive mesh refinement methods seek to only apply resolution where it is needed. Beginning with a single coarse grid, a nested hierarchy of block structured grids is built in regions of the fluid flow where more resolution is necessary. As the fluid flow varies in time this hierarchy of grids is dynamically rebuilt to follow the phenomena of interest. Through the modelling of the interaction of vortices with wall boundary layers, it will be demonstrated that adaptive mesh refinement methods will produce equivalent results to traditional single resolution codes while using less processors, memory, and wall-clock time. Additionally, it is possible to model such flows to higher Reynolds numbers than have been feasible previously. This work was supported by NSERC and SHARCNET.

  7. An Efficient Adaptive Window Size Selection Method for Improving Spectrogram Visualization

    PubMed Central

    Khan, Omar Usman

    2016-01-01

    Short Time Fourier Transform (STFT) is an important technique for the time-frequency analysis of a time varying signal. The basic approach behind it involves the application of a Fast Fourier Transform (FFT) to a signal multiplied with an appropriate window function with fixed resolution. The selection of an appropriate window size is difficult when no background information about the input signal is known. In this paper, a novel empirical model is proposed that adaptively adjusts the window size for a narrow band-signal using spectrum sensing technique. For wide-band signals, where a fixed time-frequency resolution is undesirable, the approach adapts the constant Q transform (CQT). Unlike the STFT, the CQT provides a varying time-frequency resolution. This results in a high spectral resolution at low frequencies and high temporal resolution at high frequencies. In this paper, a simple but effective switching framework is provided between both STFT and CQT. The proposed method also allows for the dynamic construction of a filter bank according to user-defined parameters. This helps in reducing redundant entries in the filter bank. Results obtained from the proposed method not only improve the spectrogram visualization but also reduce the computation cost and achieves 87.71% of the appropriate window length selection. PMID:27642291

  8. Grid coupling mechanism in the semi-implicit adaptive Multi-Level Multi-Domain method

    NASA Astrophysics Data System (ADS)

    Innocenti, M. E.; Tronci, C.; Markidis, S.; Lapenta, G.

    2016-05-01

    The Multi-Level Multi-Domain (MLMD) method is a semi-implicit adaptive method for Particle-In-Cell plasma simulations. It has been demonstrated in the past in simulations of Maxwellian plasmas, electrostatic and electromagnetic instabilities, plasma expansion in vacuum, magnetic reconnection [1, 2, 3]. In multiple occasions, it has been commented on the coupling between the coarse and the refined grid solutions. The coupling mechanism itself, however, has never been explored in depth. Here, we investigate the theoretical bases of grid coupling in the MLMD system. We obtain an evolution law for the electric field solution in the overlap area of the MLMD system which highlights a dependance on the densities and currents from both the coarse and the refined grid, rather than from the coarse grid alone: grid coupling is obtained via densities and currents.

  9. Numerical Relativistic Magnetohydrodynamics with ADER Discontinuous Galerkin methods on adaptively refined meshes.

    NASA Astrophysics Data System (ADS)

    Zanotti, O.; Dumbser, M.; Fambri, F.

    2016-05-01

    We describe a new method for the solution of the ideal MHD equations in special relativity which adopts the following strategy: (i) the main scheme is based on Discontinuous Galerkin (DG) methods, allowing for an arbitrary accuracy of order N+1, where N is the degree of the basis polynomials; (ii) in order to cope with oscillations at discontinuities, an ”a-posteriori” sub-cell limiter is activated, which scatters the DG polynomials of the previous time-step onto a set of 2N+1 sub-cells, over which the solution is recomputed by means of a robust finite volume scheme; (iii) a local spacetime Discontinuous-Galerkin predictor is applied both on the main grid of the DG scheme and on the sub-grid of the finite volume scheme; (iv) adaptive mesh refinement (AMR) with local time-stepping is used. We validate the new scheme and comment on its potential applications in high energy astrophysics.

  10. Adaptive ultrasonic imaging with the total focusing method for inspection of complex components immersed in water

    NASA Astrophysics Data System (ADS)

    Le Jeune, L.; Robert, S.; Dumas, P.; Membre, A.; Prada, C.

    2015-03-01

    In this paper, we propose an ultrasonic adaptive imaging method based on the phased-array technology and the synthetic focusing algorithm Total Focusing Method (TFM). The general principle is to image the surface by applying the TFM algorithm in a semi-infinite water medium. Then, the reconstructed surface is taken into account to make a second TFM image inside the component. In the surface reconstruction step, the TFM algorithm has been optimized to decrease computation time and to limit noise in water. In the second step, the ultrasonic paths through the reconstructed surface are calculated by the Fermat's principle and an iterative algorithm, and the classical TFM is applied to obtain an image inside the component. This paper presents several results of TFM imaging in components of different geometries, and a result obtained with a new technology of probes equipped with a flexible wedge filled with water (manufactured by Imasonic).

  11. An Arbitrary Lagrangian-Eulerian Method with Local Adaptive Mesh Refinement for Modeling Compressible Flow

    NASA Astrophysics Data System (ADS)

    Anderson, Robert; Pember, Richard; Elliott, Noah

    2001-11-01

    We present a method, ALE-AMR, for modeling unsteady compressible flow that combines a staggered grid arbitrary Lagrangian-Eulerian (ALE) scheme with structured local adaptive mesh refinement (AMR). The ALE method is a three step scheme on a staggered grid of quadrilateral cells: Lagrangian advance, mesh relaxation, and remap. The AMR scheme uses a mesh hierarchy that is dynamic in time and is composed of nested structured grids of varying resolution. The integration algorithm on the hierarchy is a recursive procedure in which the coarse grids are advanced a single time step, the fine grids are advanced to the same time, and the coarse and fine grid solutions are synchronized. The novel details of ALE-AMR are primarily motivated by the need to reconcile and extend AMR techniques typically employed for stationary rectangular meshes with cell-centered quantities to the moving quadrilateral meshes with staggered quantities used in the ALE scheme. Solutions of several test problems are discussed.

  12. 3D Continuum Radiative Transfer. An adaptive grid construction algorithm based on the Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Niccolini, G.; Alcolea, J.

    Solving the radiative transfer problem is a common problematic to may fields in astrophysics. With the increasing angular resolution of spatial or ground-based telescopes (VLTI, HST) but also with the next decade instruments (NGST, ALMA, ...), astrophysical objects reveal and will certainly reveal complex spatial structures. Consequently, it is necessary to develop numerical tools being able to solve the radiative transfer equation in three dimensions in order to model and interpret these observations. I present a 3D radiative transfer program, using a new method for the construction of an adaptive spatial grid, based on the Monte Claro method. With the help of this tools, one can solve the continuum radiative transfer problem (e.g. a dusty medium), computes the temperature structure of the considered medium and obtain the flux of the object (SED and images).

  13. Adaptive neural network nonlinear control for BTT missile based on the differential geometry method

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Wang, Yongji; Xu, Jiangsheng

    2007-11-01

    A new nonlinear control strategy incorporated the differential geometry method with adaptive neural networks is presented for the nonlinear coupling system of Bank-to-Turn missile in reentry phase. The basic control law is designed using the differential geometry feedback linearization method, and the online learning neural networks are used to compensate the system errors due to aerodynamic parameter errors and external disturbance in view of the arbitrary nonlinear mapping and rapid online learning ability for multi-layer neural networks. The online weights and thresholds tuning rules are deduced according to the tracking error performance functions by Levenberg-Marquardt algorithm, which will make the learning process faster and more stable. The six degree of freedom simulation results show that the attitude angles can track the desired trajectory precisely. It means that the proposed strategy effectively enhance the stability, the tracking performance and the robustness of the control system.

  14. Identifying minefields and verifying clearance: adapting statistical methods for UXO target detection

    NASA Astrophysics Data System (ADS)

    Gilbert, Richard O.; O'Brien, Robert F.; Wilson, John E.; Pulsipher, Brent A.; McKinstry, Craig A.

    2003-09-01

    It may not be feasible to completely survey large tracts of land suspected of containing minefields. It is desirable to develop a characterization protocol that will confidently identify minefields within these large land tracts if they exist. Naturally, surveying areas of greatest concern and most likely locations would be necessary but will not provide the needed confidence that an unknown minefield had not eluded detection. Once minefields are detected, methods are needed to bound the area that will require detailed mine detection surveys. The US Department of Defense Strategic Environmental Research and Development Program (SERDP) is sponsoring the development of statistical survey methods and tools for detecting potential UXO targets. These methods may be directly applicable to demining efforts. Statistical methods are employed to determine the optimal geophysical survey transect spacing to have confidence of detecting target areas of a critical size, shape, and anomaly density. Other methods under development determine the proportion of a land area that must be surveyed to confidently conclude that there are no UXO present. Adaptive sampling schemes are also being developed as an approach for bounding the target areas. These methods and tools will be presented and the status of relevant research in this area will be discussed.

  15. An Adaptive Fisher’s Combination Method for Joint Analysis of Multiple Phenotypes in Association Studies

    PubMed Central

    Liang, Xiaoyu; Wang, Zhenchuan; Sha, Qiuying; Zhang, Shuanglin

    2016-01-01

    Currently, the analyses of most genome-wide association studies (GWAS) have been performed on a single phenotype. There is increasing evidence showing that pleiotropy is a widespread phenomenon in complex diseases. Therefore, using only one single phenotype may lose statistical power to identify the underlying genetic mechanism. There is an increasing need to develop and apply powerful statistical tests to detect association between multiple phenotypes and a genetic variant. In this paper, we develop an Adaptive Fisher’s Combination (AFC) method for joint analysis of multiple phenotypes in association studies. The AFC method combines p-values obtained in standard univariate GWAS by using the optimal number of p-values which is determined by the data. We perform extensive simulations to evaluate the performance of the AFC method and compare the power of our method with the powers of TATES, Tippett’s method, Fisher’s combination test, MANOVA, MultiPhen, and SUMSCORE. Our simulation studies show that the proposed method has correct type I error rates and is either the most powerful test or comparable with the most powerful test. Finally, we illustrate our proposed methodology by analyzing whole-genome genotyping data from a lung function study. PMID:27694844

  16. Augmented Reality Cues and Elderly Driver Hazard Perception

    PubMed Central

    Schall, Mark C.; Rusch, Michelle L.; Lee, John D.; Dawson, Jeffrey D.; Thomas, Geb; Aksan, Nazan; Rizzo, Matthew

    2013-01-01

    Objective Evaluate the effectiveness of augmented reality (AR) cues in improving driving safety in elderly drivers who are at increased crash risk due to cognitive impairments. Background Cognitively challenging driving environments pose a particular crash risk for elderly drivers. AR cueing is a promising technology to mitigate risk by directing driver attention to roadway hazards. This study investigates whether AR cues improve or interfere with hazard perception in elderly drivers with age-related cognitive decline. Methods Twenty elderly (Mean= 73 years, SD= 5 years), licensed drivers with a range of cognitive abilities measured by a speed of processing (SOP) composite participated in a one-hour drive in an interactive, fixed-base driving simulator. Each participant drove through six, straight, six-mile-long rural roadway scenarios following a lead vehicle. AR cues directed attention to potential roadside hazards in three of the scenarios, and the other three were uncued (baseline) drives. Effects of AR cueing were evaluated with respect to: 1) detection of hazardous target objects, 2) interference with detecting nonhazardous secondary objects, and 3) impairment in maintaining safe distance behind a lead vehicle. Results AR cueing improved the detection of hazardous target objects of low visibility. AR cues did not interfere with detection of nonhazardous secondary objects and did not impair ability to maintain safe distance behind a lead vehicle. SOP capacity did not moderate those effects. Conclusion AR cues show promise for improving elderly driver safety by increasing hazard detection likelihood without interfering with other driving tasks such as maintaining safe headway. PMID:23829037

  17. An Investigation of Nonverbal Cue Combinations and the Validity of Aggregation Measurement Techniques in a Spontaneous Persuasive Interaction.

    ERIC Educational Resources Information Center

    Buller, David B.

    A study was conducted to examine the presence and composition of nonverbal cues exhibited in a spontaneous dyadic interaction and to investigate the assumption that cue variation is inconsequential to the effect of nonverbal behavior implicit in methods that aggregate cue incidence across interactions. Subjects, 110 college undergraduates, worked…

  18. AD/HD and the Capture of Attention by Briefly Exposed Delay-Related Cues: Evidence from a Conditioning Paradigm

    ERIC Educational Resources Information Center

    Sonuga-Barke, Edmund J. S.; De Houwer, Jan; De Ruiter, Karen; Ajzenstzen, Michal; Holland, Sarah

    2004-01-01

    Background: The selective attention of children with attention deficit/hyperactivity disorder (AD/HD) to briefly exposed delay-related cues was examined in two experiments using a dot-probe conditioning paradigm. Method: Colour cues were paired with negatively (i.e., imposition of delay) and positively valenced cues (i.e., escape from or avoidance…

  19. Information integration in multiple cue judgment: a division of labor hypothesis.

    PubMed

    Juslin, Peter; Karlsson, Linnea; Olsson, Henrik

    2008-01-01

    There is considerable evidence that judgment is constrained to additive integration of information. The authors propose an explanation of why serial and additive cognitive integration can produce accurate multiple cue judgment both in additive and non-additive environments in terms of an adaptive division of labor between multiple representations. It is hypothesized that, whereas the additive, independent linear effect of each cue can be explicitly abstracted and integrated by a serial, additive judgment process, a variety of sophisticated task properties, like non-additive cue combination, non-linear relations, and inter-cue correlation, are carried implicitly by exemplar memory. Three experiments investigating the effect of additive versus non-additive cue combination verify the predicted shift in cognitive representations as a function of the underlying combination rule. PMID:17376423

  20. They can take a hint: Older adults effectively integrate memory cues during recognition.

    PubMed

    Konkel, Alex; Selmeczy, Diana; Dobbins, Ian G

    2015-12-01

    Adaptively biasing recognition judgments in light of environmental cues improves net accuracy. Based on previous work suggesting that strategically shifting biases on a trial-wise basis should be cognitively demanding, the authors predicted that older adults would not achieve the same accuracy benefits from environmental cues as the young. However, despite showing clear declines in cognitive control as indexed by complex span, older adults demonstrated similar accuracy gains and similar alterations of response probabilities with cues of 75% reliability (Experiment 1) and more complex cues spanning 3 levels of reliability (Experiment 2). Despite preserved gains in accuracy, older adults clearly demonstrated disproportionate slowing that was specific to trials in which cues were invalid. This slowing may reflect impairments in behavioral inhibition that could impinge upon accuracy were responding increasingly sped and future work manipulating response speed and measures of inhibition may yield further insights. PMID:26652722

  1. P-method post hoc test for adaptive trimmed mean, HQ

    NASA Astrophysics Data System (ADS)

    Low, Joon Khim; Yahaya, Sharipah Soaad Syed; Abdullah, Suhaida; Yusof, Zahayu Md; Othman, Abdul Rahman

    2014-12-01

    Adaptive trimmed mean, HQ, which is one of the latest additions in robust estimators, had been proven to be good in controlling Type I error in omnibus test. However, post hoc (pairwise multiple comparison) procedure for HQ was yet to be developed then. Thus, we have taken the initiative to develop post hoc procedure for HQ. Percentile bootstrap method or P-Method was proposed as it was proven to be effective in controlling Type I error rate even when the sample size was small. This paper deliberates on the effectiveness of P-Method on HQ, denoted as P-HQ. The strength and weakness of the proposed method were put to test on various conditions created by manipulating several variables such as shape of distributions, number of groups, sample sizes, degree of variance heterogeneity and pairing of sample sizes and group variances. For such, a simulation study on 2000 datasets was conducted using SAS/IML Version 9.2. The performance of the method on various conditions was based on its ability in controlling Type I error which was benchmarked using Bradley's criterion of robustness. The finding revealed that P-HQ could effectively control Type I error for almost all the conditions investigated.

  2. An adaptive cut-cell method for animal-locomotion fluid mechanics

    NASA Astrophysics Data System (ADS)

    Pederzani, Jean-Noel; Haj-Hariri, H.

    2011-11-01

    In this work we present a numerical method for solving the incompressible Navier-Stokes equation for biomimetic fluid-structure interaction problems. The method is designed to study the flow generated by interaction with arbitrarily complex motion of a self-propelling animal. We consider the specific case of a manta ray. The method combines the embedded-boundary (or cut-cell) method for complex geometry with moving boundaries, and block-structured adaptive mesh refinement (AMR). The control volumes are formed by the intersection of the irregular boundary with Cartesian grid cells. These control volumes fit naturally within parallelizable, disjoint-block data structures, and permit dynamic AMR coarsening and refinement as the simulation progresses. We present two- and three-dimensional results to illustrate the accuracy of the method. Results are compared with experimental results for a flapping elliptical fin that mimics the natural motion of a manta ray. In particular the hydrodynamic signature of the vortex structure behind the fin is studied for its effect on swimming performance.

  3. An improved human visual system based reversible data hiding method using adaptive histogram modification

    NASA Astrophysics Data System (ADS)

    Hong, Wien; Chen, Tung-Shou; Wu, Mei-Chen

    2013-03-01

    Jung et al., IEEE Signal Processing Letters, 18, 2, 95, 2011 proposed a reversible data hiding method considering the human visual system (HVS). They employed the mean of visited neighboring pixels to predict the current pixel value, and estimated the just noticeable difference (JND) of the current pixel. Message bits are then embedded by adjusting the embedding level according to the calculated JND. Jung et al.'s method achieved excellent image quality. However, the embedding algorithm they used may result in over modification of pixel values and a large location map, which may deteriorate the image quality and decrease the pure payload. The proposed method exploits the nearest neighboring pixels to predict the visited pixel value and to estimate the corresponding JND. The cover pixels are preprocessed adaptively to reduce the size of the location map. We also employ an embedding level selection mechanism to prevent near-saturated pixels from being over modified. Experimental results show that the image quality of the proposed method is higher than that of Jung et al.'s method, and the payload can also be increased due to the reduction of the location map.

  4. Simulation of traffic flow and control using conventional, fuzzy, and adaptive methods

    SciTech Connect

    Bisset, K.R.; Kelsey, R.L.

    1992-01-01

    This paper describes the graphical simulation of a traffic environment. The environment includes streets leading to an intersection, the intersection, vehicle traffic, and signal lights in the intersection controlled by different methods. The simulation allows for the study of parameters affecting traffic environments and the study of different control strategies for traffic signal lights, including conventional, fuzzy, and adaptive control methods. Realistic traffic environments are simulated including a cross intersection, with one or more lanes of traffic in each direction, with and without turn lanes. Vehicle traffic patterns are a mixture of cars going straight and making right or left turns. The free velocities of vehicles follow a normal distribution with a mean of the posted'' speed limit. Actual velocities depend on such factors as the proximity and velocity of surrounding traffic, approaches to intersections, and human response time. The simulation proves the be a useful tool for evaluating controller methods. Preliminary results show that larger quantities of traffic are handled'' by fuzzy control methods then by conventional control methods. Also, the average time spent waiting in traffic decreases with the use of fuzzy control versus conventional control.

  5. Simulation of traffic flow and control using conventional, fuzzy, and adaptive methods

    SciTech Connect

    Bisset, K.R.; Kelsey, R.L.

    1992-06-01

    This paper describes the graphical simulation of a traffic environment. The environment includes streets leading to an intersection, the intersection, vehicle traffic, and signal lights in the intersection controlled by different methods. The simulation allows for the study of parameters affecting traffic environments and the study of different control strategies for traffic signal lights, including conventional, fuzzy, and adaptive control methods. Realistic traffic environments are simulated including a cross intersection, with one or more lanes of traffic in each direction, with and without turn lanes. Vehicle traffic patterns are a mixture of cars going straight and making right or left turns. The free velocities of vehicles follow a normal distribution with a mean of the ``posted`` speed limit. Actual velocities depend on such factors as the proximity and velocity of surrounding traffic, approaches to intersections, and human response time. The simulation proves the be a useful tool for evaluating controller methods. Preliminary results show that larger quantities of traffic are ``handled`` by fuzzy control methods then by conventional control methods. Also, the average time spent waiting in traffic decreases with the use of fuzzy control versus conventional control.

  6. Eulerian adaptive finite-difference method for high-velocity impact and penetration problems

    SciTech Connect

    Barton, Philip T.; Deiterding, Ralf; Meiron, Daniel I.; Pullin, Dale I

    2013-01-01

    Owing to the complex processes involved, faithful prediction of high-velocity impact events demands a simulation method delivering efficient calculations based on comprehensively formulated constitutive models. Such an approach is presented herein, employing a weighted essentially non-oscillatory (WENO) method within an adaptive mesh refinement (AMR) framework for the numerical solution of hyperbolic partial differential equations. Applied widely in computational fluid dynamics, these methods are well suited to the involved locally non-smooth finite deformations, circumventing any requirement for artificial viscosity functions for shock capturing. Application of the methods is facilitated through using a model of solid dynamics based upon hyper-elastic theory comprising kinematic evolution equations for the elastic distortion tensor. The model for finite inelastic deformations is phenomenologically equivalent to Maxwell s model of tangential stress relaxation. Closure relations tailored to the expected high-pressure states are proposed and calibrated for the materials of interest. Sharp interface resolution is achieved by employing level-set functions to track boundary motion, along with a ghost material method to capture the necessary internal boundary conditions for material interactions and stress-free surfaces. The approach is demonstrated for the simulation of high velocity impacts of steel projectiles on aluminium target plates in two and three dimensions.

  7. Dynamic Adaptive Runtime Systems for Advanced Multipole Method-based Science Achievement

    NASA Astrophysics Data System (ADS)

    Debuhr, Jackson; Anderson, Matthew; Sterling, Thomas; Zhang, Bo

    2015-04-01

    Multipole methods are a key computational kernel for a large class of scientific applications spanning multiple disciplines. Yet many of these applications are strong scaling constrained when using conventional programming practices. Hardware parallelism continues to grow, emphasizing medium and fine-grained thread parallelism rather than the coarse-grained process parallelism favored by conventional programming practices. Emerging, dynamic task management execution models can go beyond these conventional practices to significantly improve both efficiency and scalability for algorithms like multipole methods which exhibit irregular and time-varying execution properties. We present a new scientific library, DASHMM, built on the ParalleX HPX-5 runtime system, which explores the use of dynamic adaptive runtime techniques to improve scalability and efficiency for multipole-method based scientific computing. DASHMM allows application scientists to rapidly create custom, scalable, and efficient multipole methods, especially targeting the Fast Multipole Method and the Barnes-Hut N-body algorithm. After a discussion of the system and its goals, some application examples will be presented.

  8. A hybrid and adaptive segmentation method using color and texture information

    NASA Astrophysics Data System (ADS)

    Meurie, C.; Ruichek, Y.; Cohen, A.; Marais, J.

    2010-01-01

    This paper presents a new image segmentation method based on the combination of texture and color informations. The method first computes the morphological color and texture gradients. The color gradient is analyzed taking into account the different color spaces. The texture gradient is computed using the luminance component of the HSL color space. The texture gradient procedure is achieved using a morphological filter and a granulometric and local energy analysis. To overcome the limitations of a linear/barycentric combination, the two morphological gradients are then mixed using a gradient component fusion strategy (to fuse the three components of the color gradient and the unique component of the texture gradient) and an adaptive technique to choose the weighting coefficients. The segmentation process is finally performed by applying the watershed technique using different type of germ images. The segmentation method is evaluated in different object classification applications using the k-means algorithm. The obtained results are compared with other known segmentation methods. The evaluation analysis shows that the proposed method gives better results, especially with hard image acquisition conditions.

  9. Adaptive contour-based statistical background subtraction method for moving target detection in infrared video sequences

    NASA Astrophysics Data System (ADS)

    Akula, Aparna; Khanna, Nidhi; Ghosh, Ripul; Kumar, Satish; Das, Amitava; Sardana, H. K.

    2014-03-01

    A robust contour-based statistical background subtraction method for detection of non-uniform thermal targets in infrared imagery is presented. The foremost step of the method comprises of generation of background frame using statistical information of an initial set of frames not containing any targets. The generated background frame is made adaptive by continuously updating the background using the motion information of the scene. The background subtraction method followed by a clutter rejection stage ensure the detection of foreground objects. The next step comprises of detection of contours and distinguishing the target boundaries from the noisy background. This is achieved by using the Canny edge detector that extracts the contours followed by a k-means clustering approach to differentiate the object contour from the background contours. The post processing step comprises of morphological edge linking approach to close any broken contours and finally flood fill is performed to generate the silhouettes of moving targets. This method is validated on infrared video data consisting of a variety of moving targets. Experimental results demonstrate a high detection rate with minimal false alarms establishing the robustness of the proposed method.

  10. Adaptive spacetime method using Riemann jump conditions for coupled atomistic-continuum dynamics

    NASA Astrophysics Data System (ADS)

    Kraczek, B.; Miller, S. T.; Haber, R. B.; Johnson, D. D.

    2010-03-01

    We combine the Spacetime Discontinuous Galerkin (SDG) method for elastodynamics with the mathematically consistent Atomistic Discontinuous Galerkin (ADG) method in a new scheme that concurrently couples continuum and atomistic models of dynamic response in solids. The formulation couples non-overlapping continuum and atomistic models across sharp interfaces by weakly enforcing jump conditions, for both momentum balance and kinematic compatibility, using Riemann values to preserve the characteristic structure of the underlying hyperbolic system. Momentum balances to within machine-precision accuracy over every element, on each atom, and over the coupled system, with small, controllable energy dissipation in the continuum region that ensures numerical stability. When implemented on suitable unstructured spacetime grids, the continuum SDG model offers linear computational complexity in the number of elements and powerful adaptive analysis capabilities that readily bridge between atomic and continuum scales in both space and time. A special trace operator for the atomic velocities and an associated atomistic traction field enter the jump conditions at the coupling interface. The trace operator depends on parameters that specify, at the scale of the atomic spacing, the position of the coupling interface relative to the atoms. In a key finding, we demonstrate that optimizing these parameters suppresses spurious reflections at the coupling interface without the use of non-physical damping or special boundary conditions. We formulate the implicit SDG-ADG coupling scheme in up to three spatial dimensions, and describe an efficient iterative solution scheme that outperforms common explicit schemes, such as the Velocity Verlet integrator. Numerical examples, in 1d×time and employing both linear and nonlinear potentials, demonstrate the performance of the SDG-ADG method and show how adaptive spacetime meshing reconciles disparate time steps and resolves atomic-scale signals

  11. TU-C-17A-07: FusionARC Treatment with Adaptive Beam Selection Method

    SciTech Connect

    Kim, H; Li, R; Xing, L; Lee, R

    2014-06-15

    Purpose: Recently, a new treatment scheme, FusionARC, has been introduced to compensate for the pitfalls in single-arc VMAT planning. It basically allows for the static field treatment in selected locations, while the remaining is treated by single-rotational arc delivery. The important issue is how to choose the directions for static field treatment. This study presents an adaptive beam selection method to formulate fusionARC treatment scheme. Methods: The optimal plan for single-rotational arc treatment is obtained from two-step approach based on the reweighted total-variation (TV) minimization. To choose the directions for static field treatment with extra segments, a value of our proposed cost function at each field is computed on the new fluence-map, which adds an extra segment to the designated field location only. The cost function is defined as a summation of equivalent uniform dose (EUD) of all structures with the fluence-map, while assuming that the lower cost function value implies the enhancement of plan quality. Finally, the extra segments for static field treatment would be added to the selected directions with low cost function values. A prostate patient data was applied and evaluated with three different plans: conventional VMAT, fusionARC, and static IMRT. Results: The 7 field locations, corresponding to the lowest cost function values, are chosen to insert extra segment for step-and-shoot dose delivery. Our proposed fusionARC plan with the selected angles improves the dose sparing to the critical organs, relative to static IMRT and conventional VMAT plans. The dose conformity to the target is significantly enhanced at the small expense of treatment time, compared with VMAT plan. Its estimated treatment time, however, is still much faster than IMRT. Conclusion: The fusionARC treatment with adaptive beam selection method could improve the plan quality with insignificant damage in the treatment time, relative to the conventional VMAT.

  12. Adaptive spacetime method using Riemann jump conditions for coupled atomistic-continuum dynamics

    SciTech Connect

    Kraczek, B. Miller, S.T. Haber, R.B. Johnson, D.D.

    2010-03-20

    We combine the Spacetime Discontinuous Galerkin (SDG) method for elastodynamics with the mathematically consistent Atomistic Discontinuous Galerkin (ADG) method in a new scheme that concurrently couples continuum and atomistic models of dynamic response in solids. The formulation couples non-overlapping continuum and atomistic models across sharp interfaces by weakly enforcing jump conditions, for both momentum balance and kinematic compatibility, using Riemann values to preserve the characteristic structure of the underlying hyperbolic system. Momentum balances to within machine-precision accuracy over every element, on each atom, and over the coupled system, with small, controllable energy dissipation in the continuum region that ensures numerical stability. When implemented on suitable unstructured spacetime grids, the continuum SDG model offers linear computational complexity in the number of elements and powerful adaptive analysis capabilities that readily bridge between atomic and continuum scales in both space and time. A special trace operator for the atomic velocities and an associated atomistic traction field enter the jump conditions at the coupling interface. The trace operator depends on parameters that specify, at the scale of the atomic spacing, the position of the coupling interface relative to the atoms. In a key finding, we demonstrate that optimizing these parameters suppresses spurious reflections at the coupling interface without the use of non-physical damping or special boundary conditions. We formulate the implicit SDG-ADG coupling scheme in up to three spatial dimensions, and describe an efficient iterative solution scheme that outperforms common explicit schemes, such as the Velocity Verlet integrator. Numerical examples, in 1dxtime and employing both linear and nonlinear potentials, demonstrate the performance of the SDG-ADG method and show how adaptive spacetime meshing reconciles disparate time steps and resolves atomic-scale signals in

  13. Auditory cueing in Parkinson's patients with freezing of gait. What matters most: Action-relevance or cue-continuity?

    PubMed

    Young, William R; Shreve, Lauren; Quinn, Emma Jane; Craig, Cathy; Bronte-Stewart, Helen

    2016-07-01

    Gait disturbances are a common feature of Parkinson's disease, one of the most severe being freezing of gait. Sensory cueing is a common method used to facilitate stepping in people with Parkinson's. Recent work has shown that, compared to walking to a metronome, Parkinson's patients without freezing of gait (nFOG) showed reduced gait variability when imitating recorded sounds of footsteps made on gravel. However, it is not known if these benefits are realised through the continuity of the acoustic information or the action-relevance. Furthermore, no study has examined if these benefits extend to PD with freezing of gait. We prepared four different auditory cues (varying in action-relevance and acoustic continuity) and asked 19 Parkinson's patients (10 nFOG, 9 with freezing of gait (FOG)) to step in place to each cue. Results showed a superiority of action-relevant cues (regardless of cue-continuity) for inducing reductions in Step coefficient of variation (CV). Acoustic continuity was associated with a significant reduction in Swing CV. Neither cue-continuity nor action-relevance was independently sufficient to increase the time spent stepping before freezing. However, combining both attributes in the same cue did yield significant improvements. This study demonstrates the potential of using action-sounds as sensory cues for Parkinson's patients with freezing of gait. We suggest that the improvements shown might be considered audio-motor 'priming' (i.e., listening to the sounds of footsteps will engage sensorimotor circuitry relevant to the production of that same action, thus effectively bypassing the defective basal ganglia). PMID:27163397

  14. A Domain-Decomposed Multilevel Method for Adaptively Refined Cartesian Grids with Embedded Boundaries

    NASA Technical Reports Server (NTRS)

    Aftosmis, M. J.; Berger, M. J.; Adomavicius, G.

    2000-01-01

    Preliminary verification and validation of an efficient Euler solver for adaptively refined Cartesian meshes with embedded boundaries is presented. The parallel, multilevel method makes use of a new on-the-fly parallel domain decomposition strategy based upon the use of space-filling curves, and automatically generates a sequence of coarse meshes for processing by the multigrid smoother. The coarse mesh generation algorithm produces grids which completely cover the computational domain at every level in the mesh hierarchy. A series of examples on realistically complex three-dimensional configurations demonstrate that this new coarsening algorithm reliably achieves mesh coarsening ratios in excess of 7 on adaptively refined meshes. Numerical investigations of the scheme's local truncation error demonstrate an achieved order of accuracy between 1.82 and 1.88. Convergence results for the multigrid scheme are presented for both subsonic and transonic test cases and demonstrate W-cycle multigrid convergence rates between 0.84 and 0.94. Preliminary parallel scalability tests on both simple wing and complex complete aircraft geometries shows a computational speedup of 52 on 64 processors using the run-time mesh partitioner.

  15. An adaptive 6-DOF tracking method by hybrid sensing for ultrasonic endoscopes.

    PubMed

    Du, Chengyang; Chen, Xiaodong; Wang, Yi; Li, Junwei; Yu, Daoyin

    2014-01-01

    In this paper, a novel hybrid sensing method for tracking an ultrasonic endoscope within the gastrointestinal (GI) track is presented, and the prototype of the tracking system is also developed. We implement 6-DOF localization by sensing integration and information fusion. On the hardware level, a tri-axis gyroscope and accelerometer, and a magnetic angular rate and gravity (MARG) sensor array are attached at the end of endoscopes, and three symmetric cylindrical coils are placed around patients' abdomens. On the algorithm level, an adaptive fast quaternion convergence (AFQC) algorithm is introduced to determine the orientation by fusing inertial/magnetic measurements, in which the effects of magnetic disturbance and acceleration are estimated to gain an adaptive convergence output. A simplified electro-magnetic tracking (SEMT) algorithm for dimensional position is also implemented, which can easily integrate the AFQC's results and magnetic measurements. Subsequently, the average position error is under 0.3 cm by reasonable setting, and the average orientation error is 1° without noise. If magnetic disturbance or acceleration exists, the average orientation error can be controlled to less than 3.5°. PMID:24915179

  16. A New Feedback-Based Method for Parameter Adaptation in Image Processing Routines

    PubMed Central

    Mikut, Ralf; Reischl, Markus

    2016-01-01

    The parametrization of automatic image processing routines is time-consuming if a lot of image processing parameters are involved. An expert can tune parameters sequentially to get desired results. This may not be productive for applications with difficult image analysis tasks, e.g. when high noise and shading levels in an image are present or images vary in their characteristics due to different acquisition conditions. Parameters are required to be tuned simultaneously. We propose a framework to improve standard image segmentation methods by using feedback-based automatic parameter adaptation. Moreover, we compare algorithms by implementing them in a feedforward fashion and then adapting their parameters. This comparison is proposed to be evaluated by a benchmark data set that contains challenging image distortions in an increasing fashion. This promptly enables us to compare different standard image segmentation algorithms in a feedback vs. feedforward implementation by evaluating their segmentation quality and robustness. We also propose an efficient way of performing automatic image analysis when only abstract ground truth is present. Such a framework evaluates robustness of different image processing pipelines using a graded data set. This is useful for both end-users and experts. PMID:27764213

  17. An Adaptive 6-DOF Tracking Method by Hybrid Sensing for Ultrasonic Endoscopes

    PubMed Central

    Du, Chengyang; Chen, Xiaodong; Wang, Yi; Li, Junwei; Yu, Daoyin

    2014-01-01

    In this paper, a novel hybrid sensing method for tracking an ultrasonic endoscope within the gastrointestinal (GI) track is presented, and the prototype of the tracking system is also developed. We implement 6-DOF localization by sensing integration and information fusion. On the hardware level, a tri-axis gyroscope and accelerometer, and a magnetic angular rate and gravity (MARG) sensor array are attached at the end of endoscopes, and three symmetric cylindrical coils are placed around patients' abdomens. On the algorithm level, an adaptive fast quaternion convergence (AFQC) algorithm is introduced to determine the orientation by fusing inertial/magnetic measurements, in which the effects of magnetic disturbance and acceleration are estimated to gain an adaptive convergence output. A simplified electro-magnetic tracking (SEMT) algorithm for dimensional position is also implemented, which can easily integrate the AFQC's results and magnetic measurements. Subsequently, the average position error is under 0.3 cm by reasonable setting, and the average orientation error is 1° without noise. If magnetic disturbance or acceleration exists, the average orientation error can be controlled to less than 3.5°. PMID:24915179

  18. Adaptive model-based control systems and methods for controlling a gas turbine

    NASA Technical Reports Server (NTRS)

    Brunell, Brent Jerome (Inventor); Mathews, Jr., Harry Kirk (Inventor); Kumar, Aditya (Inventor)

    2004-01-01

    Adaptive model-based control systems and methods are described so that performance and/or operability of a gas turbine in an aircraft engine, power plant, marine propulsion, or industrial application can be optimized under normal, deteriorated, faulted, failed and/or damaged operation. First, a model of each relevant system or component is created, and the model is adapted to the engine. Then, if/when deterioration, a fault, a failure or some kind of damage to an engine component or system is detected, that information is input to the model-based control as changes to the model, constraints, objective function, or other control parameters. With all the information about the engine condition, and state and directives on the control goals in terms of an objective function and constraints, the control then solves an optimization so the optimal control action can be determined and taken. This model and control may be updated in real-time to account for engine-to-engine variation, deterioration, damage, faults and/or failures using optimal corrective control action command(s).

  19. Behavioral Cues of Interpersonal Warmth

    ERIC Educational Resources Information Center

    Bayes, Marjorie A.

    1972-01-01

    The results of this study suggest, first, that interpersonal warmth does seem to be a personality dimension which can be reliably judged and, second, that it was possible to define and demonstrate the relevance of a number of behavioral cues for warmth. (Author)

  20. Optimal cue integration in ants.

    PubMed

    Wystrach, Antoine; Mangan, Michael; Webb, Barbara

    2015-10-01

    In situations with redundant or competing sensory information, humans have been shown to perform cue integration, weighting different cues according to their certainty in a quantifiably optimal manner. Ants have been shown to merge the directional information available from their path integration (PI) and visual memory, but as yet it is not clear that they do so in a way that reflects the relative certainty of the cues. In this study, we manipulate the variance of the PI home vector by allowing ants (Cataglyphis velox) to run different distances and testing their directional choice when the PI vector direction is put in competition with visual memory. Ants show progressively stronger weighting of their PI direction as PI length increases. The weighting is quantitatively predicted by modelling the expected directional variance of home vectors of different lengths and assuming optimal cue integration. However, a subsequent experiment suggests ants may not actually compute an internal estimate of the PI certainty, but are using the PI home vector length as a proxy.

  1. Improving Cognitive Diagnostic Computerized Adaptive Testing by Balancing Attribute Coverage: The Modified Maximum Global Discrimination Index Method

    ERIC Educational Resources Information Center

    Cheng, Ying

    2010-01-01

    This article proposes a new item selection method, namely, the modified maximum global discrimination index (MMGDI) method, for cognitive diagnostic computerized adaptive testing (CD-CAT). The new method captures two aspects of the appeal of an item: (a) the amount of contribution it can make toward adequate coverage of every attribute and (b) the…

  2. Learning, memorizing and apparent forgetting of chemical cues from new predators by Iberian green frog tadpoles.

    PubMed

    Gonzalo, Adega; López, Pilar; Martín, José

    2009-09-01

    Many antipredator adaptations are induced by the prey's ability to recognize chemical cues from predators. However, predator recognition often requires learning by prey individuals. Iberian green frog tadpoles (Pelophylax perezi) have the ability to learn new potential predators. Here, we tested the memory capabilities of Iberian green frog tadpoles. We conditioned tadpoles with chemicals cues from a non-predatory fish in conjunction with conspecific alarm cues, and examined whether tadpoles retained their conditioned response (reduction of activity level). We found that conditioned tadpoles reduced their activity levels in subsequent exposures to the non-predatory fish cues alone. Tadpoles were able to remember this association and reduced movement rate at least for 9 days after. The ability to learn and memorize potential predators may be especially important for the survivorship of prey species that are likely to find a high variety of predators. However, after those 9 days, there was a lack of response to the non-predatory fish cues alone in the absence of reinforcement. This could be explained if tadpoles behave according to the threat-sensitive predator avoidance hypothesis, and the perceived risk to the learning cue diminished over time, or it could be due to an apparent forgetting process to avoid non-adaptative responses to chemical cues of non-dangerous species that were randomly paired with alarm cues. Thus, this study demonstrates that green frog tadpoles in the absence of reinforcement remember the chemical cues of a learned predator only for a limited time that may be adaptative in a threat-sensitive context. PMID:19449191

  3. Experimental Design and Primary Data Analysis Methods for Comparing Adaptive Interventions

    ERIC Educational Resources Information Center

    Nahum-Shani, Inbal; Qian, Min; Almirall, Daniel; Pelham, William E.; Gnagy, Beth; Fabiano, Gregory A.; Waxmonsky, James G.; Yu, Jihnhee; Murphy, Susan A.

    2012-01-01

    In recent years, research in the area of intervention development has been shifting from the traditional fixed-intervention approach to "adaptive interventions," which allow greater individualization and adaptation of intervention options (i.e., intervention type and/or dosage) over time. Adaptive interventions are operationalized via a sequence…

  4. Comparing Methods of Assessing Differential Item Functioning in a Computerized Adaptive Testing Environment

    ERIC Educational Resources Information Center

    Lei, Pui-Wa; Chen, Shu-Ying; Yu, Lan

    2006-01-01

    Mantel-Haenszel and SIBTEST, which have known difficulty in detecting non-unidirectional differential item functioning (DIF), have been adapted with some success for computerized adaptive testing (CAT). This study adapts logistic regression (LR) and the item-response-theory-likelihood-ratio test (IRT-LRT), capable of detecting both unidirectional…

  5. Q-Learning: A Data Analysis Method for Constructing Adaptive Interventions

    ERIC Educational Resources Information Center

    Nahum-Shani, Inbal; Qian, Min; Almirall, Daniel; Pelham, William E.; Gnagy, Beth; Fabiano, Gregory A.; Waxmonsky, James G.; Yu, Jihnhee; Murphy, Susan A.

    2012-01-01

    Increasing interest in individualizing and adapting intervention services over time has led to the development of adaptive interventions. Adaptive interventions operationalize the individualization of a sequence of intervention options over time via the use of decision rules that input participant information and output intervention…

  6. Effects of providing advance cues during a soccer penalty kick on the kicker's rate of success.

    PubMed

    Núñez, F Javier; Oño, Antonio; Raya, Antonio; Bilbao, Alfonso

    2010-12-01

    The effect of explicitly providing goalkeeper's movement advanced cue to the kicker during a real penalty kick task was assessed. 32 expert soccer players (M age= 23.2 yr.), who were divided into four groups: an experimental group, a discovery group, a placebo group, and a control group, participated. Rate of success in the task was assessed, as well as goals, decision times, and ball flight times. Providing an advance cue significantly improved the players' rate of success relative to players without the advance cue; this difference was still present after 1 and 7 days without training. The experimental group adapted better to the time range within which the response could be effective, while the discovery group showed adaptations. Explicit instructions about the advance cues available from goalkeepers' actions before the dive during practice can improve penalty kick performance.

  7. Evaluation of intrinsic respiratory signal determination methods for 4D CBCT adapted for mice

    SciTech Connect

    Martin, Rachael; Pan, Tinsu; Rubinstein, Ashley; Court, Laurence; Ahmad, Moiz

    2015-01-15

    Purpose: 4D CT imaging in mice is important in a variety of areas including studies of lung function and tumor motion. A necessary step in 4D imaging is obtaining a respiratory signal, which can be done through an external system or intrinsically through the projection images. A number of methods have been developed that can successfully determine the respiratory signal from cone-beam projection images of humans, however only a few have been utilized in a preclinical setting and most of these rely on step-and-shoot style imaging. The purpose of this work is to assess and make adaptions of several successful methods developed for humans for an image-guided preclinical radiation therapy system. Methods: Respiratory signals were determined from the projection images of free-breathing mice scanned on the X-RAD system using four methods: the so-called Amsterdam shroud method, a method based on the phase of the Fourier transform, a pixel intensity method, and a center of mass method. The Amsterdam shroud method was modified so the sharp inspiration peaks associated with anesthetized mouse breathing could be detected. Respiratory signals were used to sort projections into phase bins and 4D images were reconstructed. Error and standard deviation in the assignment of phase bins for the four methods compared to a manual method considered to be ground truth were calculated for a range of region of interest (ROI) sizes. Qualitative comparisons were additionally made between the 4D images obtained using each of the methods and the manual method. Results: 4D images were successfully created for all mice with each of the respiratory signal extraction methods. Only minimal qualitative differences were noted between each of the methods and the manual method. The average error (and standard deviation) in phase bin assignment was 0.24 ± 0.08 (0.49 ± 0.11) phase bins for the Fourier transform method, 0.09 ± 0.03 (0.31 ± 0.08) phase bins for the modified Amsterdam shroud method, 0

  8. Estimating Location without External Cues

    PubMed Central

    Cheung, Allen

    2014-01-01

    The ability to determine one's location is fundamental to spatial navigation. Here, it is shown that localization is theoretically possible without the use of external cues, and without knowledge of initial position or orientation. With only error-prone self-motion estimates as input, a fully disoriented agent can, in principle, determine its location in familiar spaces with 1-fold rotational symmetry. Surprisingly, localization does not require the sensing of any external cue, including the boundary. The combination of self-motion estimates and an internal map of the arena provide enough information for localization. This stands in conflict with the supposition that 2D arenas are analogous to open fields. Using a rodent error model, it is shown that the localization performance which can be achieved is enough to initiate and maintain stable firing patterns like those of grid cells, starting from full disorientation. Successful localization was achieved when the rotational asymmetry was due to the external boundary, an interior barrier or a void space within an arena. Optimal localization performance was found to depend on arena shape, arena size, local and global rotational asymmetry, and the structure of the path taken during localization. Since allothetic cues including visual and boundary contact cues were not present, localization necessarily relied on the fusion of idiothetic self-motion cues and memory of the boundary. Implications for spatial navigation mechanisms are discussed, including possible relationships with place field overdispersion and hippocampal reverse replay. Based on these results, experiments are suggested to identify if and where information fusion occurs in the mammalian spatial memory system. PMID:25356642

  9. Systematic review and meta-analysis of method comparison studies of Masimo pulse co-oximeters (Radical-7™ or Pronto-7™) and HemoCue® absorption spectrometers (B-Hemoglobin or 201+) with laboratory haemoglobin estimation.

    PubMed

    Hiscock, R; Kumar, D; Simmons, S W

    2015-05-01

    We assessed agreement in haemoglobin measurement between Masimo pulse co-oximeters (Rad-7™ and Pronto-7™) and HemoCue® photometers (201+ or B-Hemoglobin) with laboratory-based determination and identified 39 relevant studies (2915 patients in Masimo group and 3084 patients in HemoCue group). In the Masimo group, the overall mean difference was -0.03 g/dl (95% prediction interval -0.30 to 0.23) and 95% limits of agreement -3.0 to 2.9 g/dl compared to 0.08 g/dl (95% prediction interval -0.04 to 0.20) and 95% limits of agreement -1.3 to 1.4 g/dl in the HemoCue group. Only B-Hemoglobin exhibited bias (0.53, 95% prediction interval 0.27 to 0.78). The overall standard deviation of difference was larger (1.42 g/dl versus 0.64 g/dl) for Masimo pulse co-oximeters compared to HemoCue photometers. Masimo devices and HemoCue 201+ both provide an unbiased, pooled estimate of laboratory haemoglobin. However, Masimo devices have lower precision and wider 95% limits of agreement than HemoCue devices. Clinicians should carefully consider these limits of agreement before basing transfusion or other clinical decisions on these point-of-care measurements alone.

  10. A trust region method in adaptive finite element framework for bioluminescence tomography.

    PubMed

    Zhang, Bo; Yang, Xin; Qin, Chenghu; Liu, Dan; Zhu, Shouping; Feng, Jinchao; Sun, Li; Liu, Kai; Han, Dong; Ma, Xibo; Zhang, Xing; Zhong, Jianghong; Li, Xiuli; Yang, Xiang; Tian, Jie

    2010-03-29

    Bioluminescence tomography (BLT) is an effective molecular imaging (MI) modality. Because of the ill-posedness, the inverse problem of BLT is still open. We present a trust region method (TRM) for BLT source reconstruction. The TRM is applied in the source reconstruction procedure of BLT for the first time. The results of both numerical simulations and the experiments of cube phantom and nude mouse draw us to the conclusion that based on the adaptive finite element (AFE) framework, the TRM works in the source reconstruction procedure of BLT. To make our conclusion more reliable, we also compare the performance of the TRM and that of the famous Tikhonov regularization method after only one step of mesh refinement of the AFE framework. The conclusion is that the TRM can get faster and better results after only one mesh refinement step of AFE framework than the Tikhonov regularization method when handling large scale data. In the TRM, all the parameters are fixed, while in the Tikhonov method the regularization parameter needs to be well selected.

  11. New adaptive methods for sensing of chemical components and biological agents

    NASA Astrophysics Data System (ADS)

    Yatsenko, Vitaliy A.; Chiarini, Bruno H.; Pardalos, Panos M.

    2004-02-01

    It is known that leaf reflectance spectra can be used to estimate the contents of chemical components in vegetation. Recent novel applications include the detection of harmful biological agents that can originate from agricultural bioterrorism attacks. Such attacks have been identified as a major threat to the United States" agriculture. Nevertheless, the usefulness of such approach is currently limited by distorting factors, in particular soil reflectance. The quantitative analysis of the spectral curves from the reflection of plant leaves may be the basis for the development of new methods for interpreting the data obtained by the remote measurement of plants. We consider the problem of characterizing the chemical composition from noisy spectral data using an experimental optical method. Using our experience in signal processing and optimization of complex systems we propose a new mathematical model for sensing of chemical components in vegetation. Estimates are defined as minimizers of penalized cost functionals with sequential quadratic programming (SQR) methods. A deviation measure used in risk analysis is also considered. This framework is demonstrated for different agricultural plants using adaptive filtration, principal components analysis, and optimization techniques for classification of spectral curves of chemical components. Various estimation problems will be considered to illustrate the computational aspects of the proposed method.

  12. An Adaptive and Implicit Immersed Boundary Method for Cardiovascular Device Modeling

    NASA Astrophysics Data System (ADS)

    Bhalla, Amneet Pal S.; Griffith, Boyce E.

    2015-11-01

    Computer models and numerical simulations are playing an increasingly important role in understanding the mechanics of fluid-structure interactions (FSI) in cardiovascular devices. To model cardiac devices realistically, there is a need to solve the classical fluid-structure interaction equations efficiently. Peskin's explicit immersed boundary method is one such approach to model FSI equations for elastic structures efficiently. However, in the presence of rigid structures the IB method faces a severe timestep restriction. To overcome this limitation, we are developing an implicit version of immersed boundary method on adaptive Cartesian grids. Higher grid resolution is employed in spatial regions occupying the structure while relatively coarser discretization is used elsewhere. The resulting discrete system is solved using geometric multigrid solver for the combined Stokes and elasticity operators. We use a rediscretization approach for standard finite difference approximations to the divergence, gradient, and viscous stress. In contrast, coarse grid versions of the Eulerian elasticity operator are constructed via a Galerkin approach. The implicit IB method is tested for a pulse duplicator cardiac device system that consists of both rigid mountings and elastic membrane.

  13. SuBSENSE: a universal change detection method with local adaptive sensitivity.

    PubMed

    St-Charles, Pierre-Luc; Bilodeau, Guillaume-Alexandre; Bergevin, Robert

    2015-01-01

    Foreground/background segmentation via change detection in video sequences is often used as a stepping stone in high-level analytics and applications. Despite the wide variety of methods that have been proposed for this problem, none has been able to fully address the complex nature of dynamic scenes in real surveillance tasks. In this paper, we present a universal pixel-level segmentation method that relies on spatiotemporal binary features as well as color information to detect changes. This allows camouflaged foreground objects to be detected more easily while most illumination variations are ignored. Besides, instead of using manually set, frame-wide constants to dictate model sensitivity and adaptation speed, we use pixel-level feedback loops to dynamically adjust our method's internal parameters without user intervention. These adjustments are based on the continuous monitoring of model fidelity and local segmentation noise levels. This new approach enables us to outperform all 32 previously tested state-of-the-art methods on the 2012 and 2014 versions of the ChangeDetection.net dataset in terms of overall F-Measure. The use of local binary image descriptors for pixel-level modeling also facilitates high-speed parallel implementations: our own version, which used no low-level or architecture-specific instruction, reached real-time processing speed on a midlevel desktop CPU. A complete C++ implementation based on OpenCV is available online.

  14. SuBSENSE: a universal change detection method with local adaptive sensitivity.

    PubMed

    St-Charles, Pierre-Luc; Bilodeau, Guillaume-Alexandre; Bergevin, Robert

    2015-01-01

    Foreground/background segmentation via change detection in video sequences is often used as a stepping stone in high-level analytics and applications. Despite the wide variety of methods that have been proposed for this problem, none has been able to fully address the complex nature of dynamic scenes in real surveillance tasks. In this paper, we present a universal pixel-level segmentation method that relies on spatiotemporal binary features as well as color information to detect changes. This allows camouflaged foreground objects to be detected more easily while most illumination variations are ignored. Besides, instead of using manually set, frame-wide constants to dictate model sensitivity and adaptation speed, we use pixel-level feedback loops to dynamically adjust our method's internal parameters without user intervention. These adjustments are based on the continuous monitoring of model fidelity and local segmentation noise levels. This new approach enables us to outperform all 32 previously tested state-of-the-art methods on the 2012 and 2014 versions of the ChangeDetection.net dataset in terms of overall F-Measure. The use of local binary image descriptors for pixel-level modeling also facilitates high-speed parallel implementations: our own version, which used no low-level or architecture-specific instruction, reached real-time processing speed on a midlevel desktop CPU. A complete C++ implementation based on OpenCV is available online. PMID:25494507

  15. An efficient contents-adaptive backlight control method for mobile devices

    NASA Astrophysics Data System (ADS)

    Chen, Qiao Song; Yan, Ya Xing; Zhang, Xiao Mou; Cai, Hua; Deng, Xin; Wang, Jin

    2015-03-01

    For most of mobile devices with a large screen, image quality and power consumption are both of the major factors affecting the consumers' preference. Contents-adaptive backlight control (CABC) method can be utilized to adjust the backlight and promote the performance of mobile devices. Unlike the previous works mostly focusing on the reduction of power consumption, both of image quality and power consumption are taken into account in the proposed method. Firstly, region of interest (ROI) is detected to divide image into two parts: ROI and non-ROI. Then, three attributes including entropy, luminance, and saturation information in ROI are calculated. To achieve high perceived image quality in mobile devices, optimal value of backlight can be calculated by a linear combination of the aforementioned attributes. Coefficients of the linear combination are determined by applying the linear regression to the subjective scores of human visual experiments and objective values of the attributes. Based on the optimal value of backlight, displayed image data are processed brightly and backlight is darkened to reduce the power consumption of backlight later. Here, the ratios of increasing image data and decreasing backlight functionally depend on the luminance information of displayed image. Also, the proposed method is hardware implemented. Experimental results indicate that the proposed technique exhibits better performance compared to the conventional methods.

  16. A method of adaptive wavelet filtering of the peripheral blood flow oscillations under stationary and non-stationary conditions.

    PubMed

    Tankanag, Arina V; Chemeris, Nikolay K

    2009-10-01

    The paper describes an original method for analysis of the peripheral blood flow oscillations measured with the laser Doppler flowmetry (LDF) technique. The method is based on the continuous wavelet transform and adaptive wavelet theory and applies an adaptive wavelet filtering to the LDF data. The method developed allows one to examine the dynamics of amplitude oscillations in a wide frequency range (from 0.007 to 2 Hz) and to process both stationary and non-stationary short (6 min) signals. The capabilities of the method have been demonstrated by analyzing LDF signals registered in the state of rest and upon humeral occlusion. The paper shows the main advantage of the method proposed, which is the significant reduction of 'border effects', as compared to the traditional wavelet analysis. It was found that the low-frequency amplitudes obtained by adaptive wavelets are significantly higher than those obtained by non-adaptive ones. The method suggested would be useful for the analysis of low-frequency components of the short-living transitional processes under the conditions of functional tests. The method of adaptive wavelet filtering can be used to process stationary and non-stationary biomedical signals (cardiograms, encephalograms, myograms, etc), as well as signals studied in the other fields of science and engineering.

  17. An Adaptive Sensor Data Segments Selection Method for Wearable Health Care Services.

    PubMed

    Chen, Shih-Yeh; Lai, Chin-Feng; Hwang, Ren-Hung; Lai, Ying-Hsun; Wang, Ming-Shi

    2015-12-01

    As cloud computing and wearable devices technologies mature, relevant services have grown more and more popular in recent years. The healthcare field is one of the popular services for this technology that adopts wearable devices to sense signals of negative physiological events, and to notify users. The development and implementation of long-term healthcare monitoring that can prevent or quickly respond to the occurrence of disease and accidents present an interesting challenge for computing power and energy limits. This study proposed an adaptive sensor data segments selection method for wearable health care services, and considered the sensing frequency of the various signals from human body, as well as the data transmission among the devices. The healthcare service regulates the sensing frequency of devices by considering the overall cloud computing environment and the sensing variations of wearable health care services. The experimental results show that the proposed service can effectively transmit the sensing data and prolong the overall lifetime of health care services.

  18. Predictive wind turbine simulation with an adaptive lattice Boltzmann method for moving boundaries

    NASA Astrophysics Data System (ADS)

    Deiterding, Ralf; Wood, Stephen L.

    2016-09-01

    Operating horizontal axis wind turbines create large-scale turbulent wake structures that affect the power output of downwind turbines considerably. The computational prediction of this phenomenon is challenging as efficient low dissipation schemes are necessary that represent the vorticity production by the moving structures accurately and that are able to transport wakes without significant artificial decay over distances of several rotor diameters. We have developed a parallel adaptive lattice Boltzmann method for large eddy simulation of turbulent weakly compressible flows with embedded moving structures that considers these requirements rather naturally and enables first principle simulations of wake-turbine interaction phenomena at reasonable computational costs. The paper describes the employed computational techniques and presents validation simulations for the Mexnext benchmark experiments as well as simulations of the wake propagation in the Scaled Wind Farm Technology (SWIFT) array consisting of three Vestas V27 turbines in triangular arrangement.

  19. Adaptive Forward Modeling Method for Analysis and Reconstructions of Orientation Image Map

    2014-06-01

    IceNine is a MPI-parallel orientation reconstruction and microstructure analysis code. It's primary purpose is to reconstruct a spatially resolved orientation map given a set of diffraction images from a high energy x-ray diffraction microscopy (HEDM) experiment (1). In particular, IceNine implements the adaptive version of the forward modeling method (2, 3). Part of IceNine is a library used to for conbined analysis of the microstructure with the experimentally measured diffraction signal. The libraries is alsomore » designed for tapid prototyping of new reconstruction and analysis algorithms. IceNine is also built with a simulator of diffraction images with an input microstructure.« less

  20. Higher-order schemes with CIP method and adaptive Soroban grid towards mesh-free scheme

    NASA Astrophysics Data System (ADS)

    Yabe, Takashi; Mizoe, Hiroki; Takizawa, Kenji; Moriki, Hiroshi; Im, Hyo-Nam; Ogata, Youichi

    2004-02-01

    A new class of body-fitted grid system that can keep the third-order accuracy in time and space is proposed with the help of the CIP (constrained interpolation profile/cubic interpolated propagation) method. The grid system consists of the straight lines and grid points moving along these lines like abacus - Soroban in Japanese. The length of each line and the number of grid points in each line can be different. The CIP scheme is suitable to this mesh system and the calculation of large CFL (>10) at locally refined mesh is easily performed. Mesh generation and searching of upstream departure point are very simple and almost mesh-free treatment is possible. Adaptive grid movement and local mesh refinement are demonstrated.

  1. Practical improvements of multi-grid iteration for adaptive mesh refinement method

    NASA Astrophysics Data System (ADS)

    Miyashita, Hisashi; Yamada, Yoshiyuki

    2005-03-01

    Adaptive mesh refinement(AMR) is a powerful tool to efficiently solve multi-scaled problems. However, the vanilla AMR method has a well-known critical demerit, i.e., it cannot be applied to non-local problems. Although multi-grid iteration (MGI) can be regarded as a good remedy for a non-local problem such as the Poisson equation, we observed fundamental difficulties in applying the MGI technique in AMR to realistic problems under complicated mesh layouts because it does not converge or it requires too many iterations even if it does converge. To cope with the problem, when updating the next approximation in the MGI process, we calculate the precise total corrections that are relatively accurate to the current residual by introducing a new iteration for such a total correction. This procedure greatly accelerates the MGI convergence speed especially under complicated mesh layouts.

  2. Innovative Adaptive Control Method Demonstrated for Active Suppression of Instabilities in Engine Combustors

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2005-01-01

    This year, an improved adaptive-feedback control method was demonstrated that suppresses thermoacoustic instabilities in a liquid-fueled combustor of a type used in aircraft engines. Extensive research has been done to develop lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle to reduce the environmental impact of aerospace propulsion systems. However, these lean-burning combustors are susceptible to thermoacoustic instabilities (high-frequency pressure waves), which can fatigue combustor components and even downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppressing the thermoacoustic combustor instabilities is an enabling technology for meeting the low-emission goals of the NASA Ultra-Efficient Engine Technology (UEET) Project.

  3. A Space-Time Adaptive Method for Simulating Complex Cardiac Dynamics

    NASA Astrophysics Data System (ADS)

    Cherry, E. M.; Greenside, H. S.; Henriquez, C. S.

    2000-03-01

    A new space-time adaptive mesh refinement algorithm (AMRA) is presented and analyzed which, by automatically adding and deleting local patches of higher-resolution Cartesian meshes, can simulate quantitatively accurate models of cardiac electrical dynamics efficiently in large domains. We find in two space dimensions that the AMRA is able to achieve a factor of 5 speedup and a factor of 5 reduction in memory while achieving the same accuracy compared to a code based on a uniform space-time mesh at the highest resolution of the AMRA method. We summarize applications of the code to the Luo-Rudy 1 cardiac model in large two- and three-dimensional domains and discuss the implications of our results for understanding the initiation of arrhythmias.

  4. Combined 3-D auditory-visual cueing for a visual target acquisition task

    NASA Astrophysics Data System (ADS)

    Westergren, Rachael L.; Havig, Paul R.; Heft, Eric L.

    2007-04-01

    Previous studies have shown that helmet-mounted displays (HMDs) are advantageous in maintaining situation awareness and increasing the amount of time pilots spend looking off-boresight (Geiselman & Osgood, 1994; Geiselman & Osgood, 1995). However, space is also limited on a HMD and any symbology that is presented takes up valuable space and can occlude a pilot's vision. There has been much research in the area of visual cueing and visual search as they relate to seeking out visual targets in the sky. However, the idea of localized auditory cueing, as it could apply in the realm of air-to-air targeting, is an area less studied. One question is how can we present information such that a pilot's attention will be directed to the object of interest the most quickly? Some different types of target location cueing symbology have been studied to find such aspects of symbology that will aid a pilot most in acquiring a target. The purpose of this study is to determine the best method of cueing a person to visual targets in the shortest amount of time possible using auditory and visual cues in combination. Specifically, participants were presented with different combinations of reflected line cues, standard line cues, and localized auditory cues for primary and secondary targets. The cues were presented using an HMD and 3-D auditory headphones, with a magnetic head tracker used to determine when the participant had visually acquired the targets. The possible benefits of these cues based on the times to acquire are discussed.

  5. Gender Differences in Responses to Cues Presented in the Natural Environment of Cigarette Smokers

    PubMed Central

    Gray, Kevin M.; McClure, Erin A.; Carpenter, Matthew J.; Tiffany, Stephen T.; Saladin, Michael E.

    2015-01-01

    Introduction: Although the evidence is mixed, female smokers appear to have more difficulty quitting smoking than male smokers. Craving, stress, and negative affect have been hypothesized as potential factors underlying gender differences in quit rates. Methods: In the current study, the cue-reactivity paradigm was used to assess craving, stress, and negative affect in response to cues presented in the natural environment of cigarette smokers using ecological momentary assessment. Seventy-six daily smokers (42% female) responded to photographs (smoking, stress, and neutral) presented 4 times per day on an iPhone over the course of 2 weeks. Results: Both smoking and stress cues elicited stronger cigarette craving and stress responses compared to neutral cues. Compared with males, females reported higher levels of post-stress cue craving, stress, and negative affect, but response to smoking cues did not differ by gender. Discussion: Findings from this project were largely consistent with results from laboratory-based research and extend previous work by measuring response to cues in the natural environment of cigarette smokers. This study extends previous cue reactivity ecological momentary assessment research by using a new platform and by measuring response to stress cues outside of the laboratory. Findings from this project highlight the importance of addressing coping in response to stress cues in clinical settings, especially when working with female smokers. PMID:25762753

  6. Adaptive hybrid likelihood model for visual tracking based on Gaussian particle filter

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Tan, Yihua; Tian, Jinwen

    2010-07-01

    We present a new scheme based on multiple-cue integration for visual tracking within a Gaussian particle filter framework. The proposed method integrates the color, shape, and texture cues of an object to construct a hybrid likelihood model. During the measurement step, the likelihood model can be switched adaptively according to environmental changes, which improves the object representation to deal with the complex disturbances, such as appearance changes, partial occlusions, and significant clutter. Moreover, the confidence weights of the cues are adjusted online through the estimation using a particle filter, which ensures the tracking accuracy and reliability. Experiments are conducted on several real video sequences, and the results demonstrate that the proposed method can effectively track objects in complex scenarios. Compared with previous similar approaches through some quantitative and qualitative evaluations, the proposed method performs better in terms of tracking robustness and precision.

  7. Effects of Spatial Cueing on Representational Momentum

    ERIC Educational Resources Information Center

    Hubbard, Timothy L.; Kumar, Anuradha Mohan; Carp, Charlotte L.

    2009-01-01

    Effects of a spatial cue on representational momentum were examined. If a cue was present during or after target motion and indicated the location at which the target would vanish or had vanished, forward displacement of that target decreased. The decrease in forward displacement was larger when cues were present after target motion than when cues…

  8. When Symbolic Spatial Cues Go before Numbers

    ERIC Educational Resources Information Center

    Herrera, Amparo; Macizo, Pedro

    2011-01-01

    This work explores the effect of spatial cueing on number processing. Participants performed a parity judgment task. However, shortly before the target number, a cue (arrow pointing to left, arrow pointing to right or a cross) was centrally presented. In Experiment 1, in which responses were lateralized, the cue direction modulated the interaction…

  9. Cue salience influences the use of height cues in reorientation in pigeons (Columba livia).

    PubMed

    Du, Yu; Mahdi, Nuha; Paul, Breanne; Spetch, Marcia L

    2016-07-01

    Although orienting ability has been examined with numerous types of cues, most research has focused only on cues from the horizontal plane. The current study investigated pigeons' use of wall height, a vertical cue, in an open-field task and compared it with their use of horizontal cues. Pigeons were trained to locate food in 2 diagonal corners of a rectangular enclosure with 2 opposite high walls as height cues. Before each trial, pigeons were rotated to disorient them. In training, pigeons could use either the horizontal cues from the rectangular enclosure or the height information from the walls to locate the food. In testing, the apparatus was modified to provide (a) horizontal cues only, (b) height cues only, and (c) both height and horizontal cues in conflict. In Experiment 1 the lower and high walls, respectively, were 40 and 80 cm, whereas in Experiment 2 they were made more perceptually salient by shortening them to 20 and 40 cm. Pigeons accurately located the goal corners with horizontal cues alone in both experiments, but they searched accurately with height cues alone only in Experiment 2. When the height cues conflicted with horizontal cues, pigeons preferred the horizontal cues over the height cues in Experiment 1 but not in Experiment 2, suggesting that perceptual salience influences the relative weighting of cues. (PsycINFO Database Record

  10. The Influence of Cue Reliability and Cue Representation on Spatial Reorientation in Young Children

    ERIC Educational Resources Information Center

    Lyons, Ian M.; Huttenlocher, Janellen; Ratliff, Kristin R.

    2014-01-01

    Previous studies of children's reorientation have focused on cue representation (e.g., whether cues are geometric) as a predictor of performance but have not addressed cue reliability (the regularity of the relation between a given cue and an outcome) as a predictor of performance. Here we address both factors within the same series of…

  11. Vibration-based structural health monitoring using adaptive statistical method under varying environmental condition

    NASA Astrophysics Data System (ADS)

    Jin, Seung-Seop; Jung, Hyung-Jo

    2014-03-01

    It is well known that the dynamic properties of a structure such as natural frequencies depend not only on damage but also on environmental condition (e.g., temperature). The variation in dynamic characteristics of a structure due to environmental condition may mask damage of the structure. Without taking the change of environmental condition into account, false-positive or false-negative damage diagnosis may occur so that structural health monitoring becomes unreliable. In order to address this problem, an approach to construct a regression model based on structural responses considering environmental factors has been usually used by many researchers. The key to success of this approach is the formulation between the input and output variables of the regression model to take into account the environmental variations. However, it is quite challenging to determine proper environmental variables and measurement locations in advance for fully representing the relationship between the structural responses and the environmental variations. One alternative (i.e., novelty detection) is to remove the variations caused by environmental factors from the structural responses by using multivariate statistical analysis (e.g., principal component analysis (PCA), factor analysis, etc.). The success of this method is deeply depending on the accuracy of the description of normal condition. Generally, there is no prior information on normal condition during data acquisition, so that the normal condition is determined by subjective perspective with human-intervention. The proposed method is a novel adaptive multivariate statistical analysis for monitoring of structural damage detection under environmental change. One advantage of this method is the ability of a generative learning to capture the intrinsic characteristics of the normal condition. The proposed method is tested on numerically simulated data for a range of noise in measurement under environmental variation. A comparative

  12. Interactive rhythmic cue facilitates gait relearning in patients with Parkinson's disease.

    PubMed

    Uchitomi, Hirotaka; Ota, Leo; Ogawa, Ken-ichiro; Orimo, Satoshi; Miyake, Yoshihiro

    2013-01-01

    To develop a method for cooperative human gait training, we investigated whether interactive rhythmic cues could improve the gait performance of Parkinson's disease patients. The interactive rhythmic cues ware generated based on the mutual entrainment between the patient's gait rhythms and the cue rhythms input to the patient while the patient walked. Previously, we found that the dynamic characteristics of stride interval fluctuation in Parkinson's disease patients were improved to a healthy 1/f fluctuation level using interactive rhythmic cues and that this effect was maintained in the short term. However, two problems remained in our previous study. First, it was not clear whether the key factor underpinning the effect was the mutual entrainment between the gait rhythms and the cue rhythms or the rhythmic cue fluctuation itself. Second, it was not clear whether or not the gait restoration was maintained longitudinally and was relearned after repeating the cue-based gait training. Thus, the present study clarified these issues using 32 patients who participated in a four-day experimental program. The patients were assigned randomly to one of four experimental groups with the following rhythmic cues: (a) interactive rhythmic cue, (b) fixed tempo cue, (c) 1/f fluctuating tempo cue, and (d) no cue. It has been reported that the 1/f fluctuation of stride interval in healthy gait is absent in Parkinson's disease patients. Therefore, we used this dynamic characteristic as an evaluation index to analyze gait relearning in the four different conditions. We observed a significant effect in condition (a) that the gait fluctuation of the patients gradually returned to a healthy 1/f fluctuation level, whereas this did not occur in the other conditions. This result suggests that the mutual entrainment can facilitate gait relearning effectively. It is expected that interactive rhythmic cues will be widely applicable in the fields of rehabilitation and assistive technology.

  13. FMM-Yukawa: An adaptive fast multipole method for screened Coulomb interactions

    NASA Astrophysics Data System (ADS)

    Huang, Jingfang; Jia, Jun; Zhang, Bo

    2009-11-01

    A Fortran program package is introduced for the rapid evaluation of the screened Coulomb interactions of N particles in three dimensions. The method utilizes an adaptive oct-tree structure, and is based on the new version of fast multipole method in which the exponential expansions are used to diagonalize the multipole-to-local translations. The program and its full description, as well as several closely related packages are also available at http://www.fastmultipole.org/. This paper is a brief review of the program and its performance. Catalogue identifier: AEEQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL 2.0 No. of lines in distributed program, including test data, etc.: 12 385 No. of bytes in distributed program, including test data, etc.: 79 222 Distribution format: tar.gz Programming language: Fortran77 and Fortran90 Computer: Any Operating system: Any RAM: Depends on the number of particles, their distribution, and the adaptive tree structure Classification: 4.8, 4.12 Nature of problem: To evaluate the screened Coulomb potential and force field of N charged particles, and to evaluate a convolution type integral where the Green's function is the fundamental solution of the modified Helmholtz equation. Solution method: An adaptive oct-tree is generated, and a new version of fast multipole method is applied in which the "multipole-to-local" translation operator is diagonalized. Restrictions: Only three and six significant digits accuracy options are provided in this version. Unusual features: Most of the codes are written in

  14. Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter and Diagnostic Bayesian Network

    PubMed Central

    Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing

    2016-01-01

    A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method. PMID:26761006

  15. Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter and Diagnostic Bayesian Network.

    PubMed

    Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing

    2016-01-01

    A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method.

  16. Adaptive region of interest method for analytical micro-CT reconstruction.

    PubMed

    Yang, Wanneng; Xu, Xiaochun; Bi, Kun; Zeng, Shaoqun; Liu, Qian; Chen, Shangbin

    2011-01-01

    The real-time imaging is important in automatic successive inspection with micro-computerized tomography (micro-CT). Generally, the size of the detector is chosen according to the most probable size of the measured object to acquire all the projection data. Given enough imaging area and imaging resolution of X-ray detector, the detector is larger than specimen projection area, which results in redundant data in the Sinogram. The process of real-time micro-CT is computation-intensive because of the large amounts of source and destination data. The speed of the reconstruction algorithm can't always meet the requirements of real-time applications. A preprocessing method called adaptive region of interest (AROI), which detects the object's boundaries automatically to focus the active Sinogram regions, is introduced into the analytical reconstruction algorithm in this paper. The AROI method reduces the volume of the reconstructing data and thus directly accelerates the reconstruction process. It has been further shown that image quality is not compromised when applying AROI, while the reconstruction speed is increased as the square of the ratio of the sizes of the detector and the specimen slice. In practice, the conch reconstruction experiment indicated that the process is accelerated by 5.2 times with AROI and the imaging quality is not degraded. Therefore, the AROI method improves the speed of analytical micro-CT reconstruction significantly.

  17. Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter and Diagnostic Bayesian Network.

    PubMed

    Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing

    2016-01-01

    A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method. PMID:26761006

  18. Adaptive region of interest method for analytical micro-CT reconstruction.

    PubMed

    Yang, Wanneng; Xu, Xiaochun; Bi, Kun; Zeng, Shaoqun; Liu, Qian; Chen, Shangbin

    2011-01-01

    The real-time imaging is important in automatic successive inspection with micro-computerized tomography (micro-CT). Generally, the size of the detector is chosen according to the most probable size of the measured object to acquire all the projection data. Given enough imaging area and imaging resolution of X-ray detector, the detector is larger than specimen projection area, which results in redundant data in the Sinogram. The process of real-time micro-CT is computation-intensive because of the large amounts of source and destination data. The speed of the reconstruction algorithm can't always meet the requirements of real-time applications. A preprocessing method called adaptive region of interest (AROI), which detects the object's boundaries automatically to focus the active Sinogram regions, is introduced into the analytical reconstruction algorithm in this paper. The AROI method reduces the volume of the reconstructing data and thus directly accelerates the reconstruction process. It has been further shown that image quality is not compromised when applying AROI, while the reconstruction speed is increased as the square of the ratio of the sizes of the detector and the specimen slice. In practice, the conch reconstruction experiment indicated that the process is accelerated by 5.2 times with AROI and the imaging quality is not degraded. Therefore, the AROI method improves the speed of analytical micro-CT reconstruction significantly. PMID:21422587

  19. An adaptive MR-CT registration method for MRI-guided prostate cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Zhong, Hualiang; Wen, Ning; Gordon, James J.; Elshaikh, Mohamed A.; Movsas, Benjamin; Chetty, Indrin J.

    2015-04-01

    Magnetic Resonance images (MRI) have superior soft tissue contrast compared with CT images. Therefore, MRI might be a better imaging modality to differentiate the prostate from surrounding normal organs. Methods to accurately register MRI to simulation CT images are essential, as we transition the use of MRI into the routine clinic setting. In this study, we present a finite element method (FEM) to improve the performance of a commercially available, B-spline-based registration algorithm in the prostate region. Specifically, prostate contours were delineated independently on ten MRI and CT images using the Eclipse treatment planning system. Each pair of MRI and CT images was registered with the B-spline-based algorithm implemented in the VelocityAI system. A bounding box that contains the prostate volume in the CT image was selected and partitioned into a tetrahedral mesh. An adaptive finite element method was then developed to adjust the displacement vector fields (DVFs) of the B-spline-based registrations within the box. The B-spline and FEM-based registrations were evaluated based on the variations of prostate volume and tumor centroid, the unbalanced energy of the generated DVFs, and the clarity of the reconstructed anatomical structures. The results showed that the volumes of the prostate contours warped with the B-spline-based DVFs changed 10.2% on average, relative to the volumes of the prostate contours on the original MR images. This discrepancy was reduced to 1.5% for the FEM-based DVFs. The average unbalanced energy was 2.65 and 0.38 mJ cm-3, and the prostate centroid deviation was 0.37 and 0.28 cm, for the B-spline and FEM-based registrations, respectively. Different from the B-spline-warped MR images, the FEM-warped MR images have clear boundaries between prostates and bladders, and their internal prostatic structures are consistent with those of the original MR images. In summary, the developed adaptive FEM method preserves the prostate volume

  20. Motion cue analysis for parkinsonian gait recognition.

    PubMed

    Khan, Taha; Westin, Jerker; Dougherty, Mark

    2013-01-01

    This paper presents a computer-vision based marker-free method for gait-impairment detection in Patients with Parkinson's disease (PWP). The system is based upon the idea that a normal human body attains equilibrium during the gait by aligning the body posture with Axis-of-Gravity (AOG) using feet as the base of support. In contrast, PWP appear to be falling forward as they are less-able to align their body with AOG due to rigid muscular tone. A normal gait exhibits periodic stride-cycles with stride-angle around 45o between the legs, whereas PWP walk with shortened stride-angle with high variability between the stride-cycles. In order to analyze Parkinsonian-gait (PG), subjects were videotaped with several gait-cycles. The subject's body was segmented using a color-segmentation method to form a silhouette. The silhouette was skeletonized for motion cues extraction. The motion cues analyzed were stride-cycles (based on the cyclic leg motion of skeleton) and posture lean (based on the angle between leaned torso of skeleton and AOG). Cosine similarity between an imaginary perfect gait pattern and the subject gait patterns produced 100% recognition rate of PG for 4 normal-controls and 3 PWP. Results suggested that the method is a promising tool to be used for PG assessment in home-environment. PMID:23407764