Science.gov

Sample records for adaptive developmental regulations

  1. Cold adaptation overrides developmental regulation of sarcolipin expression in mice skeletal muscle: SOS for muscle-based thermogenesis?

    PubMed

    Pant, Meghna; Bal, Naresh C; Periasamy, Muthu

    2015-08-01

    Neonatal mice have a greater thermogenic need than adult mice and may require additional means of heat production, other than the established mechanism of brown adipose tissue (BAT). We and others recently discovered a novel mediator of skeletal muscle-based thermogenesis called sarcolipin (SLN) that acts by uncoupling sarcoendoplasmic reticulum Ca(2+)-ATPase (SERCA). In addition, we have shown that SLN expression is downregulated during neonatal development in rats. In this study we probed two questions: (1) is SLN expression developmentally regulated in neonatal mice?; and (2) if so, will cold adaptation override this? Our data show that SLN expression is higher during early neonatal stages and is gradually downregulated in fast twitch skeletal muscles. Interestingly, we demonstrate that cold acclimation of neonatal mice can prevent downregulation of SLN expression. This observation suggests that SLN-mediated thermogenesis can be recruited to a greater extent during extreme physiological need, in addition to BAT.

  2. Developmental trends in adaptive memory.

    PubMed

    Otgaar, Henry; Howe, Mark L; Smeets, Tom; Garner, Sarah R

    2014-01-01

    Recent studies have revealed that memory is enhanced when information is processed for fitness-related purposes. The main objective of the current experiments was to test developmental trends in the evolutionary foundation of memory using different types of stimuli and paradigms. In Experiment 1, 11-year-olds and adults were presented with neutral, negative, and survival-related DRM word lists. We found a memory benefit for the survival-related words and showed that false memories were more likely to be elicited for the survival-related word lists than for the other lists. Experiment 2 examined developmental trends in the survival processing paradigm using neutral, negative, and survival-related pictures. A survival processing advantage was found for survival-related pictures in adults, for negative pictures in 11/12-year-olds, and for neutral pictures in 7/8-year-olds. In Experiment 3, 11/12-year-olds and adults had to imagine the standard survival scenario or an adapted survival condition (or pleasantness condition) that was designed to reduce the possibilities for elaborative processing. We found superior memory retention for both survival scenarios in children and adults. Collectively, our results evidently show that the survival processing advantage is developmentally invariant and that certain proximate mechanisms (elaboration and distinctiveness) underlie these developmental trends.

  3. Reconceptualizing Family Adaptation to Developmental Delay.

    PubMed

    Pedersen, Anita L; Crnic, Keith A; Baker, Bruce L; Blacher, Jan

    2015-07-01

    This study explores accurate conceptualization of the adaptation construct in families of children with developmental delay aged 3 to 8 years. Parents' self-reported measures of adaptation and observed dyadic relationship variables were examined. Confirmatory factor analysis and longitudinal growth modeling were used to evaluate the nature of adaptational processes. Results indicate that adaptational processes vary across adaptation index, child developmental level, and parent gender. Adaptation indices did not load onto a single construct at any time point. Several adaptational processes remained stable across time, although others showed linear or quadratic change. The findings of the current study indicate that it is time for a change in how adaptation is conceived for families of children with developmental delay.

  4. Adaptation with transcriptional regulation

    NASA Astrophysics Data System (ADS)

    Shi, Wenjia; Ma, Wenzhe; Xiong, Liyang; Zhang, Mingyue; Tang, Chao

    2017-02-01

    Biochemical adaptation is one of the basic functions that are widely implemented in biological systems for a variety of purposes such as signal sensing, stress response and homeostasis. The adaptation time scales span from milliseconds to days, involving different regulatory machineries in different processes. The adaptive networks with enzymatic regulation (ERNs) have been investigated in detail. But it remains unclear if and how other forms of regulation will impact the network topology and other features of the function. Here, we systematically studied three-node transcriptional regulatory networks (TRNs), with three different types of gene regulation logics. We found that the topologies of adaptive gene regulatory networks can still be grouped into two general classes: negative feedback loop (NFBL) and incoherent feed-forward loop (IFFL), but with some distinct topological features comparing to the enzymatic networks. Specifically, an auto-activation loop on the buffer node is necessary for the NFBL class. For IFFL class, the control node can be either a proportional node or an inversely-proportional node. Furthermore, the tunability of adaptive behavior differs between TRNs and ERNs. Our findings highlight the role of regulation forms in network topology, implementation and dynamics.

  5. Adaptation with transcriptional regulation.

    PubMed

    Shi, Wenjia; Ma, Wenzhe; Xiong, Liyang; Zhang, Mingyue; Tang, Chao

    2017-02-24

    Biochemical adaptation is one of the basic functions that are widely implemented in biological systems for a variety of purposes such as signal sensing, stress response and homeostasis. The adaptation time scales span from milliseconds to days, involving different regulatory machineries in different processes. The adaptive networks with enzymatic regulation (ERNs) have been investigated in detail. But it remains unclear if and how other forms of regulation will impact the network topology and other features of the function. Here, we systematically studied three-node transcriptional regulatory networks (TRNs), with three different types of gene regulation logics. We found that the topologies of adaptive gene regulatory networks can still be grouped into two general classes: negative feedback loop (NFBL) and incoherent feed-forward loop (IFFL), but with some distinct topological features comparing to the enzymatic networks. Specifically, an auto-activation loop on the buffer node is necessary for the NFBL class. For IFFL class, the control node can be either a proportional node or an inversely-proportional node. Furthermore, the tunability of adaptive behavior differs between TRNs and ERNs. Our findings highlight the role of regulation forms in network topology, implementation and dynamics.

  6. Adaptation with transcriptional regulation

    PubMed Central

    Shi, Wenjia; Ma, Wenzhe; Xiong, Liyang; Zhang, Mingyue; Tang, Chao

    2017-01-01

    Biochemical adaptation is one of the basic functions that are widely implemented in biological systems for a variety of purposes such as signal sensing, stress response and homeostasis. The adaptation time scales span from milliseconds to days, involving different regulatory machineries in different processes. The adaptive networks with enzymatic regulation (ERNs) have been investigated in detail. But it remains unclear if and how other forms of regulation will impact the network topology and other features of the function. Here, we systematically studied three-node transcriptional regulatory networks (TRNs), with three different types of gene regulation logics. We found that the topologies of adaptive gene regulatory networks can still be grouped into two general classes: negative feedback loop (NFBL) and incoherent feed-forward loop (IFFL), but with some distinct topological features comparing to the enzymatic networks. Specifically, an auto-activation loop on the buffer node is necessary for the NFBL class. For IFFL class, the control node can be either a proportional node or an inversely-proportional node. Furthermore, the tunability of adaptive behavior differs between TRNs and ERNs. Our findings highlight the role of regulation forms in network topology, implementation and dynamics. PMID:28233824

  7. Developmental functional adaptation to high altitude: review.

    PubMed

    Frisancho, A Roberto

    2013-01-01

    Various approaches have been used to understand the origins of the functional traits that characterize the Andean high-altitude native. Based on the conceptual framework of developmental functional adaptation which postulates that environmental influences during the period of growth and development have long lasting effects that may be expressed during adulthood, we initiated a series of studies addressed at determining the pattern of physical growth and the contribution of growth and development to the attainment of full functional adaptation to high-altitude of low and high altitude natives living under rural and urban conditions. Current research indicate that: (a) the pattern of growth at high altitude due to limited nutritional resources, physical growth in body size is delayed but growth in lung volumes is accelerated because of hypoxic stress); (b) low-altitude male and female urban natives can attain a full functional adaptation to high altitude by exposure to high-altitude hypoxia during the period of growth and development; (c) both experimental studies on animals and comparative human studies indicate that exposure to high altitude during the period of growth and development results in the attainment of a large residual lung volume; (d) this developmentally acquired enlarged residual lung volume and its associated increase in alveolar area when combined with the increased tissue capillarization and moderate increase in red blood cells and hemoglobin concentration contributes to the successful functional adaptation of the Andean high-altitude native to hypoxia; and (e) any specific genetic traits that are related to the successful functional adaptation of Andean high-altitude natives have yet to be identified.

  8. Modeling Developmental Transitions in Adaptive Resonance Theory

    ERIC Educational Resources Information Center

    Raijmakers, Maartje E. J.; Molenaar, Peter C. M.

    2004-01-01

    Neural networks are applied to a theoretical subject in developmental psychology: modeling developmental transitions. Two issues that are involved will be discussed: discontinuities and acquiring qualitatively new knowledge. We will argue that by the appearance of a bifurcation, a neural network can show discontinuities and may acquire…

  9. Developmental regulation of embryonic genes in plants

    SciTech Connect

    Borkird, C.; Choi, Jung, H.; Jin, Zhenghua; Franz, G.; Hatzopoulos, P.; Chorneaus, R.; Bonas, U.; Pelegri, F.; Sung, Z.R.

    1988-09-01

    Somatic embryogenesis from cultured carrot cells progresses through successive morphogenetic stages termed globular, heart, and torpedo. To understand the molecular mechanisms underlying plant embryogenesis, the authors isolated two genes differentially expressed during embryo development. The expression of these two genes is associated with heart-stage embryogenesis. By altering the culture conditions and examining their expressions in a developmental variant cell line, they found that these genes were controlled by the developmental program of embryogenesis and were not directly regulated by 2,4-dichlorophenoxyacetic acid, the growth regulator that promotes unorganized growth of cultured cells and suppresses embryo morphogenesis. These genes are also expressed in carrot zygotic embryos but not in seedlings or mature plants.

  10. Developmental Regulation of the Collagenase-3 Promoter in Osteoblasts

    NASA Technical Reports Server (NTRS)

    Partridge, N. C.; Yang, Y.; DAlonzo, R. C.; Winchester, S. K.

    1999-01-01

    Previously, we have shown that collagenase-3 MRNA is developmentally expressed in normal, differentiating rat osteoblasts. In vivo, the gene is expressed in a tissue-specific fashion in hypertrophic chondrocytes and osteoblasts and developmentally regulated. Our studies aim at determining the promoter elements and proteins binding to the promoter responsible for tissue and developmental regulation of collagenase-3.

  11. Developmental adaptations to gravity in animals

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.

    1991-01-01

    Terrestrial animals have adapted to a constant gravitational stress over millions of years. Tissues of the cardiovascular system and lumbar spine in tall species of animals such as the giraffe are particularly well adapted to high and variable vectors of gravitational force. Swelling of the leg tissues in the giraffe is prevented by a variety of physiological mechanisms including (1) a natural 'antigravity suit', (2) impermeable capillaries, (3) arterial-wall hypertrophy, (4) variable blood pressures during normal activity, and (5) a large-capacity lymphatic system. These adaptations, as well as a natural hypertension, maintain blood perfusion to the giraffe's brain. The intervertebral disk is another tissue that is uniquely adapted to gravitational stress. Tall and large terrestrial animals have higher swelling pressures than their smaller or aquatic counterparts. Finally, the meniscus of the rabbit knee provides information on the effects of aging and load-bearing on cartilaginous tissues. Such tissues within the joints of animals are important for load-bearing on Earth; these connective tissues may degenerate during long-duration space flight.

  12. Adapting Evidence-Based Interventions for Students with Developmental Disabilities

    ERIC Educational Resources Information Center

    Gilmore, Linda; Campbell, Marilyn; Shochet, Ian

    2016-01-01

    Students with developmental disabilities have many challenges with learning and adaptive behaviour, as well as a higher prevalence rate of mental health problems. Although there is a substantial body of evidence for effcacious interventions for enhancing resilience and promoting mental health in typically developing children, very few programs…

  13. When Do Adaptive Developmental Mechanisms Yield Maladaptive Outcomes?

    ERIC Educational Resources Information Center

    Frankenhuis, Willem E.; Del Giudice, Marco

    2012-01-01

    This article discusses 3 ways in which adaptive developmental mechanisms may produce maladaptive outcomes. First, natural selection may favor risky strategies that enhance fitness on average but which have detrimental consequences for a subset of individuals. Second, mismatch may result when organisms experience environmental change during…

  14. Cellular and developmental adaptations to hypoxia: a Drosophila perspective.

    PubMed

    Romero, Nuria Magdalena; Dekanty, Andrés; Wappner, Pablo

    2007-01-01

    The fruit fly Drosophila melanogaster, a widely utilized genetic model, is highly resistant to oxygen starvation and is beginning to be used for studying physiological, developmental, and cellular adaptations to hypoxia. The Drosophila respiratory (tracheal) system has features in common with the mammalian circulatory system so that an angiogenesis-like response occurs upon exposure of Drosophila larvae to hypoxia. A hypoxia-responsive system homologous to mammalian hypoxia-inducible factor (HIF) has been described in the fruit fly, where Fatiga is a Drosophila oxygen-dependent HIF prolyl hydroxylase, and the basic helix-loop-helix Per/ARNT/Sim (bHLH-PAS) proteins Sima and Tango are, respectively, the Drosophila homologues of mammalian HIF-alpha (alpha) and HIF-beta (beta). Tango is constitutively expressed regardless of oxygen tension and, like in mammalian cells, Sima is controlled at the level of protein degradation and subcellular localization. Sima is critically required for development in hypoxia, but, unlike mammalian model systems, it is dispensable for development in normoxia. In contrast, fatiga mutant alleles are all lethal; however, strikingly, viability to adulthood is restored in fatiga sima double mutants, although these double mutants are not entirely normal, suggesting that Fatiga has Sima-independent functions in fly development. Studies in cell culture and in vivo have revealed that Sima is activated by the insulin receptor (InR) and target-of-rapamycin (TOR) pathways. Paradoxically, Sima is a negative regulator of growth. This suggests that Sima is engaged in a negative feedback loop that limits growth upon stimulation of InR/TOR pathways.

  15. Developmental evidence for obstetric adaptation of the human female pelvis

    PubMed Central

    Huseynov, Alik; Zollikofer, Christoph P. E.; Coudyzer, Walter; Gascho, Dominic; Kellenberger, Christian; Hinzpeter, Ricarda; Ponce de León, Marcia S.

    2016-01-01

    The bony pelvis of adult humans exhibits marked sexual dimorphism, which is traditionally interpreted in the framework of the “obstetrical dilemma” hypothesis: Giving birth to large-brained/large-bodied babies requires a wide pelvis, whereas efficient bipedal locomotion requires a narrow pelvis. This hypothesis has been challenged recently on biomechanical, metabolic, and biocultural grounds, so that it remains unclear which factors are responsible for sex-specific differences in adult pelvic morphology. Here we address this issue from a developmental perspective. We use methods of biomedical imaging and geometric morphometrics to analyze changes in pelvic morphology from late fetal stages to adulthood in a known-age/known-sex forensic/clinical sample. Results show that, until puberty, female and male pelves exhibit only moderate sexual dimorphism and follow largely similar developmental trajectories. With the onset of puberty, however, the female trajectory diverges substantially from the common course, resulting in rapid expansion of obstetrically relevant pelvic dimensions up to the age of 25–30 y. From 40 y onward females resume a mode of pelvic development similar to males, resulting in significant reduction of obstetric dimensions. This complex developmental trajectory is likely linked to the pubertal rise and premenopausal fall of estradiol levels and results in the obstetrically most adequate pelvic morphology during the time of maximum female fertility. The evidence that hormones mediate female pelvic development and morphology supports the view that solutions of the obstetrical dilemma depend not only on selection and adaptation but also on developmental plasticity as a response to ecological/nutritional factors during a female’s lifetime. PMID:27114515

  16. Inflammatory and Immune Activation in Intestinal Myofibroblasts Is Developmentally Regulated

    PubMed Central

    Zawahir, Sharmila; Li, Guanghui; Banerjee, Aditi; Shiu, Jessica; Blanchard, Thomas G.

    2015-01-01

    We previously demonstrated that intestinal myofibroblasts from immature tissue produce excessive IL-8 in response to Escherichia coli lipopolysaccharide (LPS) compared to cells from mature tissue. However, it is unknown whether other cytokines and TLR agonists contribute to this developmentally regulated response. The aim of this study was to further characterize differences in inflammatory signaling in human primary intestinal fibroblasts from fetal (FIF) and infant (IIF) tissue and examine their potential to activate the adaptive immune response in vitro. Cytokine profiles of LPS-stimulated FIF and IIF were assessed by cytokine profile array. IL-8, IL-6, and IL-10 production in response to TLR2, TLR2/6, TLR4, and TLR5 agonists was determined by quantitative ELISA. The potential of activated myofibroblasts to activate adaptive immunity was determined by measuring surface class II MHC expression using flow cytometry. LPS-stimulated FIF produced a distinct proinflammatory cytokine profile consisting of MCP-1, GRO-alpha, IL-6, and IL-8 expression. FIF produced significant IL-8 and IL-6 in response to TLR4 agonist. IIF produced significant levels of IL-8 and IL-6 in the presence of TLR5 and TLR2 agonists. IFN-γ-treated FIF expressed greater HLA-DR levels compared to unstimulated controls and IFN-γ- and LPS-treated IIF. Activated FIF produce a more diverse inflammatory cytokine profile and greater levels of IL-8 and IL-6 in response to TLR4 stimulation compared to IIF. FIF express class II MHC proteins associated with activation of the adaptive immune response. These data suggest that FIF may contribute to bacterial-associated gut inflammation in the immature intestine. PMID:26101946

  17. Developmental Regulation across the Life Span: Toward a New Synthesis

    ERIC Educational Resources Information Center

    Haase, Claudia M.; Heckhausen, Jutta; Wrosch, Carsten

    2013-01-01

    How can individuals regulate their own development to live happy, healthy, and productive lives? Major theories of developmental regulation across the life span have been proposed (e.g., dual-process model of assimilation and accommodation; motivational theory of life-span development; model of selection, optimization, and compensation), but they…

  18. Prothoracicotropic hormone regulates developmental timing and body size in Drosophila

    PubMed Central

    McBrayer, Zofeyah; Ono, Hajime; Shimell, MaryJane; Parvy, Jean-Philippe; Beckstead, Robert B.; Warren, James T.; Thummel, Carl S.; Dauphin-Villemant, Chantal; Gilbert, Lawrence I.; O’Connor, Michael B.

    2008-01-01

    Summary In insects, control of body size is intimately linked to nutritional quality as well as environmental and genetic cues that regulate the timing of developmental transitions. Prothoracicotropic hormone (PTTH) has been proposed to play an essential role in regulating the production and/or release of ecdysone, a steroid hormone that stimulates molting and metamorphosis. In this report we examine the consequences on Drosophila development of ablating the PTTH-producing neurons. Surprisingly, PTTH production is not essential for molting or metamorphosis. Instead, loss of PTTH results in delayed larval development and eclosion of larger flies with more cells. Prolonged feeding, without changing the rate of growth, causes the developmental delay and is a consequence of low ecdysteroid titers. These results indicate that final body size in insects is determined by a balance between growth rate regulators such as insulin and developmental timing cues such as PTTH that set the duration of the feeding interval. PMID:18061567

  19. Understanding developmental and adaptive cues in pine through metabolite profiling and co-expression network analysis

    PubMed Central

    Cañas, Rafael A.; Canales, Javier; Muñoz-Hernández, Carmen; Granados, Jose M.; Ávila, Concepción; García-Martín, María L.; Cánovas, Francisco M.

    2015-01-01

    Conifers include long-lived evergreen trees of great economic and ecological importance, including pines and spruces. During their long lives conifers must respond to seasonal environmental changes, adapt to unpredictable environmental stresses, and co-ordinate their adaptive adjustments with internal developmental programmes. To gain insights into these responses, we examined metabolite and transcriptomic profiles of needles from naturally growing 25-year-old maritime pine (Pinus pinaster L. Aiton) trees over a year. The effect of environmental parameters such as temperature and rain on needle development were studied. Our results show that seasonal changes in the metabolite profiles were mainly affected by the needles’ age and acclimation for winter, but changes in transcript profiles were mainly dependent on climatic factors. The relative abundance of most transcripts correlated well with temperature, particularly for genes involved in photosynthesis or winter acclimation. Gene network analysis revealed relationships between 14 co-expressed gene modules and development and adaptation to environmental stimuli. Novel Myb transcription factors were identified as candidate regulators during needle development. Our systems-based analysis provides integrated data of the seasonal regulation of maritime pine growth, opening new perspectives for understanding the complex regulatory mechanisms underlying conifers’ adaptive responses. Taken together, our results suggest that the environment regulates the transcriptome for fine tuning of the metabolome during development. PMID:25873654

  20. Developmental regulation of X-chromosome inactivation.

    PubMed

    Payer, Bernhard

    2016-08-01

    With the emergence of sex-determination by sex chromosomes, which differ in composition and number between males and females, appeared the need to equalize X-chromosomal gene dosage between the sexes. Mammals have devised the strategy of X-chromosome inactivation (XCI), in which one of the two X-chromosomes is rendered transcriptionally silent in females. In the mouse, the best-studied model organism with respect to XCI, this inactivation process occurs in different forms, imprinted and random, interspersed by periods of X-chromosome reactivation (XCR), which is needed to switch between the different modes of XCI. In this review, I describe the recent advances with respect to the developmental control of XCI and XCR and in particular their link to differentiation and pluripotency. Furthermore, I review the mechanisms, which influence the timing and choice, with which one of the two X-chromosomes is chosen for inactivation during random XCI. This has an impact on how females are mosaics with regard to which X-chromosome is active in different cells, which has implications on the severity of diseases caused by X-linked mutations.

  1. Developmental Gene Regulation and Mechanisms of Evolution

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Marine Biological Laboratory and the National Aeronautics and Space Administration have established a cooperative agreement with the formation of a Center for Advanced Studies 'in the Space Life Sciences (CASSLS) at the MBL. This Center serves as an interface between NASA and the basic science community, addressing issues of mutual interest. The Center for Advanced Studies 'in the Space Life Sciences provides a forum for scientists to think and discuss, often for the first time, the role that gravity and aspects of spaceflight may play 'in fundamental cellular and physiologic processes. In addition the Center will sponsor discussions on evolutionary biology. These interactions will inform the community of research opportunities that are of interest to NASA. This workshop is one of a series of symposia, workshops and seminars that will be held at the MBL to advise NASA on a wide variety of topics in the life sciences, including cell biology, developmental biology, mg evolutionary biology, molecular biology, neurobiology, plant biology and systems biology.

  2. Developmental College Student Self-Regulation: Results from Two Measures

    ERIC Educational Resources Information Center

    Young, Dawn; Ley, Kathryn

    2005-01-01

    This study compared 34 lower-achieving (developmental) first-time college students' self-reported self-regulation strategies from a Likert scale to those they reported in structured interviews. Likert scales have offered convenient administration and evaluation and have been used to identify what and how learners study. The reported study activity…

  3. Flowering Locus C’s Lessons: Conserved Chromatin Switches Underpinning Developmental Timing and Adaptation1

    PubMed Central

    Hepworth, Jo; Dean, Caroline

    2015-01-01

    Analysis of how seasonal cues influence the timing of the floral transition has revealed many important principles for how epigenetic regulation can integrate a variety of environmental cues with developmental signals. The study of the pathways that necessitate overwintering in plants and their ability to respond to prolonged cold (the vernalization requirement and response pathways) has elaborated different chromatin regulatory pathways and the involvement of noncoding RNAs. The major target of these vernalization pathways in Arabidopsis (Arabidopsis thaliana) is Flowering Locus C (FLC). A relatively simple picture of FLC regulation is emerging of a few core complexes and mechanisms that antagonize each other’s actions. This balance provides a fine degree of control that has nevertheless permitted evolution of a wide range of natural variation in vernalization in Arabidopsis. Similar simple routes of adaptation may underlie life history variation between species. PMID:26149571

  4. Adaptive Function in Preschoolers in Relation to Developmental Delay and Diagnosis of Autism Spectrum Disorders: Insights from a Clinical Sample

    ERIC Educational Resources Information Center

    Milne, Susan L.; McDonald, Jenny L.; Comino, Elizabeth J.

    2013-01-01

    This study aims to explore the relationship between developmental ability, autism and adaptive skills in preschoolers. Adaptive function was assessed in 152 preschoolers with autism, with and without developmental delay, and without autism, with and without developmental delay. Their overall adaptive function, measured by the general adaptive…

  5. Developmental regulation of the human antibody repertoire.

    PubMed

    Schroeder, H W; Mortari, F; Shiokawa, S; Kirkham, P M; Elgavish, R A; Bertrand, F E

    1995-09-29

    The ability to respond to antigen develops in a programmed fashion during ontogeny. In human, "fetal" immunoglobulin gene segment utilization appears biased towards a small set of evolutionarily conserved V gene segments. Many of these gene segments are also used in antibodies with antigen specificities that do not arise until after infancy. The human fetus primarily regulates the diversity of the antibody repertoire through control of the H (heavy) chain CDR 3, which is generated by VDJ joining and forms the center of the antigen-binding site. Molecular modeling suggests that limitations in the length and composition of fetal CDR 3 intervals result in antibodies that contain a relatively "flat" antigen-binding surface that could serve to maximize the number of different interactions possible between the antibody and potential antigens. We propose that these limitations in the sequence and structure of H chain CDR 3 contribute to the low affinity and multireactivity of fetal antibody repertoires. The specific mechanisms used to generate a restricted fetal repertoire appear to differ between human and mouse. Nevertheless, included in the final products of both human and mouse fetal B cells will be antibodies that are quite homologous in composition and structure. The precise role that these antibodies play in the development of immunocompetence remains to be elucidated.

  6. Developmentally Regulated Sphingolipid Synthesis in African Trypanosomes

    PubMed Central

    Sutterwala, Shaheen S.; Hsu, Fong Fu; Sevova, Elitza S.; Schwartz, Kevin J.; Zhang, Kai; Key, Phillip; Turk, John; Beverley, Stephen M.; Bangs, James D.

    2008-01-01

    Sphingolipids are essential components of eukaryotic membranes, and many unicellular eukaryotes, including kinetoplastid protozoa, are thought to synthesize exclusively inositol phosphorylceramide (IPC). Here we characterize sphingolipids from Trypanosoma brucei, and a trypanosome sphingolipid synthase gene family (TbSLS1-4) that is orthologous to Leishmania IPC synthase. Procyclic trypanosomes contain IPC, but also sphingomyelin, while surprisingly bloodstream stage parasites contain sphingomyelin and ethanolamine phosphorylceramide (EPC), but no detectable IPC. In vivo fluorescent ceramide labeling confirmed stage specific biosynthesis of both sphingomyelin and IPC. Expression of TbSLS4 in Leishmania resulted in production of sphingomyelin and EPC suggesting that the TbSLS gene family has bi-functional synthase activity. RNAi silencing of TbSLS1-4 in bloodstream trypanosomes led to rapid growth arrest and eventual cell death. Ceramide levels were increased >3-fold by silencing suggesting a toxic downstream effect mediated by this potent intracellular messenger. Topology predictions support a revised six transmembrane domain model for the kinetoplastid sphingolipid synthases consistent with the proposed mammalian SM synthase structure. This work reveals novel diversity and regulation in sphingolipid metabolism in this important group of human parasites. PMID:18699867

  7. Vineland Adaptive Behavior Profiles in Children with Autism and Moderate to Severe Developmental Delay.

    ERIC Educational Resources Information Center

    Fenton, Gemma; D'Ardia, Caterina; Valente, Donatella; Vecchio, Ilaria del; Fabrizi, Anna; Bernabei, Paola

    2003-01-01

    A study examined adaptive behavior profiles in children (ages 21-108 months) with moderate to severe developmental delay and autism (n=23) and without autism (n=27). The Vineland Adaptive Behavior Scales was administered, and contrary to initial predictions, the sample presented fairly homogeneous adaptive behavior profiles. (Contains references.)…

  8. Proximal and Distal Influences on Development: The Model of Developmental Adaptation.

    ERIC Educational Resources Information Center

    Martin, Peter; Martin, Mike

    2002-01-01

    Presents a model of developmental adaptation that explains the process of adaptation to life stress on the basis of adverse childhood events and paternal care, and internal and external resources available for adaptation to current life events. The appraisal of past and current events, as well as coping behaviors, are hypothesized to influence the…

  9. Reflections on multiple personality disorder as a developmentally complex adaptation.

    PubMed

    Armstrong, J G

    1994-01-01

    Recent advances in the understanding of multiple personality disorder provide the groundwork for its creative reconciliation with psychoanalysis. This paper uses psychoanalytic, modern developmental, and psychological assessment perspectives to conceptualize multiple personality disorder as a developmentally protective response to chronic childhood trauma. Implications of this theory for clinical work with these patients are discussed.

  10. Adaptation to a Myocardial Infarction from a Developmental Perspective.

    ERIC Educational Resources Information Center

    Meyer, Robert

    1983-01-01

    Explored the interactional effect between victims' (N=30) adult developmental stage and their coping and emotional reactions following a myocardial infarction (MI). The findings point to the usefulness of adult developmental psychology in understanding the divergent emotional and coping reactions of MI patients across the life-cycle. (Author/JAC)

  11. School Readiness and Self-Regulation: A Developmental Psychobiological Approach

    PubMed Central

    Blair, Clancy; Raver, C. Cybele

    2015-01-01

    Research on the development of self-regulation in young children provides a unifying framework for the study of school readiness. Self-regulation abilities allow for engagement in learning activities and provide the foundation for adjustment to school. A focus on readiness as self-regulation does not supplant interest in the development of acquired ability, such as early knowledge of letters and numbers; it sets the stage for it. In this article, we review research and theory indicating that self-regulation and consequently school readiness are the product of integrated developmental processes at the biological and behavioral levels that are shaped by the contexts in which development is occurring. In doing so, we illustrate the idea that research on self-regulation powerfully highlights ways in which gaps in school readiness and later achievement are linked to poverty and social and economic inequality and points the way to effective approaches to counteract these conditions. PMID:25148852

  12. Endocytosis of cholera toxin by human enterocytes is developmentally regulated.

    PubMed

    Lu, Lei; Khan, Sameer; Lencer, Wayne; Walker, W Allan

    2005-08-01

    Many secretory diarrheas including cholera are more prevalent and fulminant in young infants than in older children and adults. Cholera toxin (CT) elicits a cAMP-dependent chloride secretory response in intestinal epithelia, which accounts for the fundamental pathogenesis of this toxigenic diarrhea. We have previously reported that the action of this bacterial enterotoxin is excessive in immature enterocytes and under developmental regulation. In this study, we tested the hypothesis that enhanced endocytosis by immature human enterocytes may, in part, account for the excessive secretory response to CT noted in the immature intestine and that enterocyte endocytosis of CT is developmentally regulated. To test this hypothesis, we used specific inhibitors to define endocytic pathways in mature and immature cell lines. We showed that internalization of CT in adult enterocytes is less and occurs via the caveolae/raft-mediated pathway in contrast to an enhanced immature human enterocyte CT uptake that occurs via a clathrin pathway. We also present evidence that this clathrin pathway is developmentally regulated as demonstrated by its response to corticosteroids, a known maturation factor that causes a decreased CT endocytosis by this pathway.

  13. Cross-Cultural Adaptation of a Developmental Assessment for Arabic-Speaking Children with Visual Impairment

    ERIC Educational Resources Information Center

    Macrine, Sheila L.; Heji, Hayat; Sabri, Amel; Dalton, Sara

    2015-01-01

    Developmental screening has become an established component of child health programs in many developed countries. The research objective of this project was to translate and adapt a developmental assessment (Oregon Project Skills Inventory) for use with young children with visual impairments who speak Arabic. The study was prompted by the lack of…

  14. Physiological Self-Regulation and Adaptive Automation

    NASA Technical Reports Server (NTRS)

    Prinzell, Lawrence J.; Pope, Alan T.; Freeman, Frederick G.

    2007-01-01

    Adaptive automation has been proposed as a solution to current problems of human-automation interaction. Past research has shown the potential of this advanced form of automation to enhance pilot engagement and lower cognitive workload. However, there have been concerns voiced regarding issues, such as automation surprises, associated with the use of adaptive automation. This study examined the use of psychophysiological self-regulation training with adaptive automation that may help pilots deal with these problems through the enhancement of cognitive resource management skills. Eighteen participants were assigned to 3 groups (self-regulation training, false feedback, and control) and performed resource management, monitoring, and tracking tasks from the Multiple Attribute Task Battery. The tracking task was cycled between 3 levels of task difficulty (automatic, adaptive aiding, manual) on the basis of the electroencephalogram-derived engagement index. The other two tasks remained in automatic mode that had a single automation failure. Those participants who had received self-regulation training performed significantly better and reported lower National Aeronautics and Space Administration Task Load Index scores than participants in the false feedback and control groups. The theoretical and practical implications of these results for adaptive automation are discussed.

  15. Resilience as Regulation of Developmental and Family Processes

    PubMed Central

    MacPhee, David; Lunkenheimer, Erika; Riggs, Nathaniel

    2015-01-01

    Resilience can be defined as establishing equilibrium subsequent to disturbances to a system caused by significant adversity. When families experience adversity or transitions, multiple regulatory processes may be involved in establishing equilibrium, including adaptability, regulation of negative affect, and effective problem-solving skills. The authors’ resilience-as-regulation perspective integrates insights about the regulation of individual development with processes that regulate family systems. This middle-range theory of family resilience focuses on regulatory processes across levels that are involved in adaptation: whole-family systems such as routines and sense of coherence; coregulation of dyads involving emotion regulation, structuring, and reciprocal influences between social partners; and individual self-regulation. Insights about resilience-as-regulation are then applied to family-strengthening interventions that are designed to promote adaptation to adversity. Unresolved issues are discussed in relation to resilience-as-regulation in families, in particular how risk exposure is assessed, interrelations among family regulatory mechanisms, and how families scaffold the development of children’s resilience. PMID:26568647

  16. Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance

    PubMed Central

    De Storme, Nico; Geelen, Danny

    2014-01-01

    Plasmodesmata are membrane-lined channels that are located in the plant cell wall and that physically interconnect the cytoplasm and the endoplasmic reticulum (ER) of adjacent cells. Operating as controllable gates, plasmodesmata regulate the symplastic trafficking of micro- and macromolecules, such as endogenous proteins [transcription factors (TFs)] and RNA-based signals (mRNA, siRNA, etc.), hence mediating direct cell-to-cell communication and long distance signaling. Besides this physiological role, plasmodesmata also form gateways through which viral genomes can pass, largely facilitating the pernicious spread of viral infections. Plasmodesmatal trafficking is either passive (e.g., diffusion) or active and responses both to developmental and environmental stimuli. In general, plasmodesmatal conductivity is regulated by the controlled build-up of callose at the plasmodesmatal neck, largely mediated by the antagonistic action of callose synthases (CalSs) and β-1,3-glucanases. Here, in this theory and hypothesis paper, we outline the importance of callose metabolism in PD SEL control, and highlight the main molecular factors involved. In addition, we also review other proteins that regulate symplastic PD transport, both in a developmental and stress-responsive framework, and discuss on their putative role in the modulation of PD callose turn-over. Finally, we hypothesize on the role of structural sterols in the regulation of (PD) callose deposition and outline putative mechanisms by which this regulation may occur. PMID:24795733

  17. Developmental regulation of fear learning and anxiety behavior by endocannabinoids

    PubMed Central

    Lee, Tiffany T.-Y.; Hill, Matthew N.; Lee, Francis S.

    2015-01-01

    The developing brain undergoes substantial maturation into adulthood and the development of specific neural structures occurs on differing timelines. Transient imbalances between developmental trajectories of corticolimbic structures, which are known to contribute to regulation over fear learning and anxiety, can leave an individual susceptible to mental illness, particularly anxiety disorders. There is a substantial body of literature indicating that the endocannabinoid system critically regulates stress responsivity and emotional behavior throughout the life span, making this system a novel therapeutic target for stress- and anxiety-related disorders. During early life and adolescence, corticolimbic endocannabinoid signaling changes dynamically and coincides with different sensitive periods of fear learning, suggesting that endocannabinoid signaling underlies age-specific fear learning responses. Moreover, perturbations to these normative fluctuations in corticolimbic endocannabinoid signaling, such as stress or cannabinoid exposure, could serve as a neural substrate contributing to alterations to the normative developmental trajectory of neural structures governing emotional behavior and fear learning. In this review, we first introduce the components of the endocannabinoid system and discuss clinical and rodent models demonstrating endocannabinoid regulation of fear learning and anxiety in adulthood. Next, we highlight distinct fear learning and regulation profiles throughout development and discuss the ontogeny of the endocannabinoid system in the central nervous system, and models of pharmacological augmentation of endocannabinoid signaling during development in the context of fear learning and anxiety. PMID:26419643

  18. Developmental regulation of fear learning and anxiety behavior by endocannabinoids.

    PubMed

    Lee, T T-Y; Hill, M N; Lee, F S

    2016-01-01

    The developing brain undergoes substantial maturation into adulthood and the development of specific neural structures occurs on differing timelines. Transient imbalances between developmental trajectories of corticolimbic structures, which are known to contribute to regulation over fear learning and anxiety, can leave an individual susceptible to mental illness, particularly anxiety disorders. There is a substantial body of literature indicating that the endocannabinoid (eCB) system critically regulates stress responsivity and emotional behavior throughout the life span, making this system a novel therapeutic target for stress- and anxiety-related disorders. During early life and adolescence, corticolimbic eCB signaling changes dynamically and coincides with different sensitive periods of fear learning, suggesting that eCB signaling underlies age-specific fear learning responses. Moreover, perturbations to these normative fluctuations in corticolimbic eCB signaling, such as stress or cannabinoid exposure, could serve as a neural substrate contributing to alterations to the normative developmental trajectory of neural structures governing emotional behavior and fear learning. In this review, we first introduce the components of the eCB system and discuss clinical and rodent models showing eCB regulation of fear learning and anxiety in adulthood. Next, we highlight distinct fear learning and regulation profiles throughout development and discuss the ontogeny of the eCB system in the central nervous system, and models of pharmacological augmentation of eCB signaling during development in the context of fear learning and anxiety.

  19. Adaptive regulation of intestinal nutrient transporters.

    PubMed Central

    Diamond, J M; Karasov, W H

    1987-01-01

    Because most eukaryotic somatic cells are bathed in a constant internal milieu, most of their proteins are constitutive, unlike the adaptive enzymes of bacteria. However, intestinal mucosal cells, like bacteria, face a varying milieu. Hence, we tested for adaptive regulation of intestinal nutrient transporters, sought its functional significance, and compared it with regulation of bacterial proteins. All 12 transporters studied proved to be regulated by dietary substrate levels. Regulation in the intestine is slower than in bacteria and shows lower peak-to-basal activity levels. Regulatory patterns vary greatly among transporters: two sugars and two nonessential amino acids monotonically up-regulate their transporters, two vitamins and three minerals monotonically down-regulate their transporters, and two transporters of essential amino acids respond nonmonotonically to levels of their substrates. These varied patterns arise from trade-offs among four factors: transporter costs, calories yielded by metabolizable substrates, fixed daily requirements of essential nutrients, and toxicity of certain nutrients in large amounts. Based on these trade-offs, we predict the form of regulatory pattern for intestinal transporters not yet studied. PMID:3470788

  20. Predictors and Correlates of Adaptive Functioning in Children with Developmental Disorders.

    ERIC Educational Resources Information Center

    Liss, Miriam; Harel, Brian; Fein, Deborah; Allen, Doris; Dunn, Michelle; Feinstein, Carl; Morris, Robin; Waterhouse, Lynn; Rapin, Isabel

    2001-01-01

    A study involving 35 children (age 9) with high-functioning autism, 31 children with developmental language disorder, 40 children with low-functioning autism, and 17 children with low IQ, found IQ was predictive of adaptive behavior in both low-functioning groups, but language and verbal memory predicted adaptive behavior in higher functioning…

  1. ADAPT: A Developmental, Asemantic, and Procedural Model for Transcoding From Verbal to Arabic Numerals

    ERIC Educational Resources Information Center

    Barrouillet, Pierre; Camos, Valerie; Perruchet, Pierre; Seron, Xavier

    2004-01-01

    This article presents a new model of transcoding numbers from verbal to arabic form. This model, called ADAPT, is developmental, asemantic, and procedural. The authors' main proposal is that the transcoding process shifts from an algorithmic strategy to the direct retrieval from memory of digital forms. Thus, the model is evolutive, adaptive, and…

  2. Plastoglobuli: Plastid Microcompartments with Integrated Functions in Metabolism, Plastid Developmental Transitions, and Environmental Adaptation.

    PubMed

    van Wijk, Klaas J; Kessler, Felix

    2017-01-25

    Plastoglobuli (PGs) are plastid lipoprotein particles surrounded by a membrane lipid monolayer. PGs contain small specialized proteomes and metabolomes. They are present in different plastid types (e.g., chloroplasts, chromoplasts, and elaioplasts) and are dynamic in size and shape in response to abiotic stress or developmental transitions. PGs in chromoplasts are highly enriched in carotenoid esters and enzymes involved in carotenoid metabolism. PGs in chloroplasts are associated with thylakoids and contain ∼30 core proteins (including six ABC1 kinases) as well as additional proteins recruited under specific conditions. Systems analysis has suggested that chloroplast PGs function in metabolism of prenyl lipids (e.g., tocopherols, plastoquinone, and phylloquinone); redox and photosynthetic regulation; plastid biogenesis; and senescence, including recycling of phytol, remobilization of thylakoid lipids, and metabolism of jasmonate. These functionalities contribute to chloroplast PGs' role in responses to stresses such as high light and nitrogen starvation. PGs are thus lipid microcompartments with multiple functions integrated into plastid metabolism, developmental transitions, and environmental adaptation. This review provides an in-depth overview of PG experimental observations, summarizes the present understanding of PG features and functions, and provides a conceptual framework for PG research and the realization of opportunities for crop improvement. Expected final online publication date for the Annual Review of Plant Biology Volume 68 is April 29, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  3. Retinoids regulate a developmental checkpoint for tissue regeneration in Drosophila

    PubMed Central

    Halme, Adrian; Cheng, Michelle; Hariharan, Iswar K.

    2010-01-01

    Summary Drosophila melanogaster larvae have a remarkable capacity for regenerative growth: Damage to their imaginal discs, the larval precursors of adult structures, elicits a robust proliferative response from the surviving tissue [1–4]. However, as in other organisms, developmental progression and differentiation can restrict regenerative capacity of Drosophila tissues. Experiments in Drosophila and other holometabolous insects have demonstrated that either damage to imaginal tissues [5, 6] or transplantation of a damaged imaginal disc [7, 8] delays the onset of metamorphosis, a time when the imaginal discs undergo morphogenesis and differentiation into their adult structures. Therefore, in Drosophila there appears to be a mechanism that senses tissue damage and extends the larval phase to coordinate tissue regeneration with the overall developmental program of the organism. However, how such a pathway functions remains unknown. Here we demonstrate that a developmental checkpoint extends larval growth after imaginal disc damage by inhibiting the transcription of the gene encoding PTTH, a neuropeptide that promotes the release of the steroid hormone ecdysone. Using a genetic screen, we identify a previously unsuspected role for retinoid biosynthesis in regulating PTTH expression and delaying development in response to tissue damage. Retinoid signaling plays an important, but poorly defined role in several vertebrate regeneration models [9–11]. Our findings demonstrate that retinoid biosynthesis in Drosophila is important for the maintenance of a permissive condition for regenerative growth. PMID:20189388

  4. Regulation of priority carcinogens and reproductive or developmental toxicants

    SciTech Connect

    Hooper, K.; LaDou, J.; Rosenbaum, J.S.; Book, S.A. )

    1992-01-01

    In California, 370 carcinogens and 112 reproductive/developmental toxicants have been identified as a result of the State's Safe Drinking Water and Toxic Enforcement Act of 1986. They include pesticides, solvents, metals, industrial intermediates, environmental mixtures, and reactive agents. Occupational, environmental, and consumer product exposures that involve these agents are regulated under the Act. At levels of concern, businesses must provide warnings for and limit discharges of those chemicals. The lists of chemicals were compiled following systematic review of published data, including technical reports from the U.S. Public Health Service--National Toxicology Program (NTP), and evaluation of recommendations from authoritative bodies such as the International Agency for Research on Cancer (IARC) and the U.S. Environmental Protection Agency (USEPA). Given the large number of chemicals that are carcinogens or reproductive/developmental toxicants, regulatory concerns should focus on those that have high potential for human exposure, e.g., widely distributed or easily absorbed solvents, metals, environmental mixtures, or reactive agents. In this paper, we present a list of 33 potential priority carcinogens and reproductive/developmental toxicants, including alcoholic beverages, asbestos, benzene, chlorinated solvents, formaldehyde, glycol ethers, lead, tobacco smoke, and toluene.

  5. DNA Methylation is Developmentally Regulated for Genes Essential for Cardiogenesis

    PubMed Central

    Chamberlain, Alyssa A.; Lin, Mingyan; Lister, Rolanda L.; Maslov, Alex A.; Wang, Yidong; Suzuki, Masako; Wu, Bingruo; Greally, John M.; Zheng, Deyou; Zhou, Bin

    2014-01-01

    Background DNA methylation is a major epigenetic mechanism altering gene expression in development and disease. However, its role in the regulation of gene expression during heart development is incompletely understood. The aim of this study is to reveal DNA methylation in mouse embryonic hearts and its role in regulating gene expression during heart development. Methods and Results We performed the genome‐wide DNA methylation profiling of mouse embryonic hearts using methyl‐sensitive, tiny fragment enrichment/massively parallel sequencing to determine methylation levels at ACGT sites. The results showed that while global methylation of 1.64 million ACGT sites in developing hearts remains stable between embryonic day (E) 11.5 and E14.5, a small fraction (2901) of them exhibit differential methylation. Gene Ontology analysis revealed that these sites are enriched at genes involved in heart development. Quantitative real‐time PCR analysis of 350 genes with differential DNA methylation showed that the expression of 181 genes is developmentally regulated, and 79 genes have correlative changes between methylation and expression, including hyaluronan synthase 2 (Has2). Required for heart valve formation, Has2 expression in the developing heart valves is downregulated at E14.5, accompanied with increased DNA methylation in its enhancer. Genetic knockout further showed that the downregulation of Has2 expression is dependent on DNA methyltransferase 3b, which is co‐expressed with Has2 in the forming heart valve region, indicating that the DNA methylation change may contribute to the Has2 enhancer's regulating function. Conclusions DNA methylation is developmentally regulated for genes essential to heart development, and abnormal DNA methylation may contribute to congenital heart disease. PMID:24947998

  6. Protein phosphorylation and regulation of adaptive responses in bacteria.

    PubMed Central

    Stock, J B; Ninfa, A J; Stock, A M

    1989-01-01

    Bacteria continuously adapt to changes in their environment. Responses are largely controlled by signal transduction systems that contain two central enzymatic components, a protein kinase that uses adenosine triphosphate to phosphorylate itself at a histidine residue and a response regulator that accepts phosphoryl groups from the kinase. This conserved phosphotransfer chemistry is found in a wide range of bacterial species and operates in diverse systems to provide different regulatory outputs. The histidine kinases are frequently membrane receptor proteins that respond to environmental signals and phosphorylate response regulators that control transcription. Four specific regulatory systems are discussed in detail: chemotaxis in response to attractant and repellent stimuli (Che), regulation of gene expression in response to nitrogen deprivation (Ntr), control of the expression of enzymes and transport systems that assimilate phosphorus (Pho), and regulation of outer membrane porin expression in response to osmolarity and other culture conditions (Omp). Several additional systems are also examined, including systems that control complex developmental processes such as sporulation and fruiting-body formation, systems required for virulent infections of plant or animal host tissues, and systems that regulate transport and metabolism. Finally, an attempt is made to understand how cross-talk between parallel phosphotransfer pathways can provide a global regulatory curcuitry. PMID:2556636

  7. Adaptive Developmental Delay in Chagas Disease Vectors: An Evolutionary Ecology Approach

    PubMed Central

    Menu, Frédéric; Ginoux, Marine; Rajon, Etienne; Lazzari, Claudio R.; Rabinovich, Jorge E.

    2010-01-01

    Background The developmental time of vector insects is important in population dynamics, evolutionary biology, epidemiology and in their responses to global climatic change. In the triatomines (Triatominae, Reduviidae), vectors of Chagas disease, evolutionary ecology concepts, which may allow for a better understanding of their biology, have not been applied. Despite delay in the molting in some individuals observed in triatomines, no effort was made to explain this variability. Methodology We applied four methods: (1) an e-mail survey sent to 30 researchers with experience in triatomines, (2) a statistical description of the developmental time of eleven triatomine species, (3) a relationship between development time pattern and climatic inter-annual variability, (4) a mathematical optimization model of evolution of developmental delay (diapause). Principal Findings 85.6% of responses informed on prolonged developmental times in 5th instar nymphs, with 20 species identified with remarkable developmental delays. The developmental time analysis showed some degree of bi-modal pattern of the development time of the 5th instars in nine out of eleven species but no trend between development time pattern and climatic inter-annual variability was observed. Our optimization model predicts that the developmental delays could be due to an adaptive risk-spreading diapause strategy, only if survival throughout the diapause period and the probability of random occurrence of “bad” environmental conditions are sufficiently high. Conclusions/Significance Developmental delay may not be a simple non-adaptive phenotypic plasticity in development time, and could be a form of adaptive diapause associated to a physiological mechanism related to the postponement of the initiation of reproduction, as an adaptation to environmental stochasticity through a spreading of risk (bet-hedging) strategy. We identify a series of parameters that can be measured in the field and laboratory to test

  8. Adaptive developmental plasticity: what is it, how can we recognize it and when can it evolve?

    PubMed Central

    Nettle, Daniel; Bateson, Melissa

    2015-01-01

    Developmental plasticity describes situations where a specific input during an individual's development produces a lasting alteration in phenotype. Some instances of developmental plasticity may be adaptive, meaning that the tendency to produce the phenotype conditional on having experienced the developmental input has been under positive selection. We discuss the necessary assumptions and predictions of hypotheses concerning adaptive developmental plasticity (ADP) and develop guidelines for how to test empirically whether a particular example is adaptive. Central to our analysis is the distinction between two kinds of ADP: informational, where the developmental input provides information about the future environment, and somatic state-based, where the developmental input enduringly alters some aspect of the individual's somatic state. Both types are likely to exist in nature, but evolve under different conditions. In all cases of ADP, the expected fitness of individuals who experience the input and develop the phenotype should be higher than that of those who experience the input and do not develop the phenotype, while the expected fitness of those who do not experience the input and do not develop the phenotype should be higher than those who do not experience the input and do develop the phenotype. We describe ancillary predictions that are specific to just one of the two types of ADP and thus distinguish between them. PMID:26203000

  9. Robust adaptive regulation without persistent excitation

    NASA Technical Reports Server (NTRS)

    Lozano-Leal, Rogelio

    1989-01-01

    A globally convergent adaptive regulator for minimum- or nonminimum-phase systems subject to bounded disturbances and unmodeled dynamics is presented. The control strategy is designed for a particular input-output representation obtained from the state space representation of the system. The leading coefficient of the representation is the product of the observability and controllability matrices of the system. The controller scheme uses a Least-Squares identification algorithm a with dead zone. The dead zone is chosen to obtain convergence properties on the estimates and on the covariance matrix as well. This allows the definition of modified estimates which secure well-conditioned matrices in the adaptive control law. Explicit bounds on the plant output are given.

  10. Robust adaptive regulation without persistent excitation

    NASA Technical Reports Server (NTRS)

    Lozano-Leal, Rogelio

    1988-01-01

    A globally convergent adaptive regulator for minimum or nonminimum phase systems subject to bounded distrubances and unmodeled dynamics is presented. The control strategy is designed for a particular input-output representation obtained from the state space representation of the system. The leading coefficient of the new representation is the product of the observability and controllability matrices of the system. The controller scheme uses a Least Squares identification algorithm with a dead zone. The dead zone is chosen to obtain convergence properties on the estimates and on the covariance matrix as well. This allows the definition of modified estimates which secure well-conditioned matrices in the adaptive control law. Explicit bounds on the plant output are given.

  11. Developmental regulation of key gluconeogenic molecules in nonhuman primates

    PubMed Central

    McGill‐Vargas, Lisa L.; Johnson‐Pais, Teresa; Johnson, Marney C.; Blanco, Cynthia L.

    2014-01-01

    Abstract Aberrant glucose regulation is common in preterm and full‐term neonates leading to short and long‐term morbidity/mortality; however, glucose metabolism in this population is understudied. The aim of this study was to investigate developmental differences in hepatic gluconeogenic pathways in fetal/newborn baboons. Fifteen fetal baboons were delivered at 125 day (d) gestational age (GA), 140d GA, and 175d GA (term = 185d GA) via cesarean section and sacrificed at birth. Term and healthy adult baboons were used as controls. Protein content and gene expression of key hepatic gluconeogenic molecules were measured: cytosolic and mitochondrial phosphoenolpyruvate carboxykinase (PEPCK‐C and PEPCK‐M), glucose‐6‐phosphatase‐alpha (G6Pase‐α), G6Pase‐β, fructose‐1,6‐bisphosphatase (FBPase), and forkhead box‐O1 (FOXO1). Protein content of PEPCK‐M increased with advancing gestation in fetal baboons (9.6 fold increase from 125d GA to 175d GA, P < 0.001). PEPCK‐C gene expression was consistent with these developmental differences. Phosphorylation of FOXO1 was significantly lower in preterm fetal baboons compared to adults, and gene expression of FOXO1 was lower in all neonates when compared to adults (10% and 62% of adults respectively, P < 0.05). The FOXO1 target gene G6Pase expression was higher in preterm animals compared to term animals. No significant differences were found in G6Pase‐α, G6Pase‐β, FOXO1, and FBPase during fetal development. In conclusion, significant developmental differences are found in hepatic gluconeogenic molecules in fetal and neonatal baboons, which may impact the responses to insulin during the neonatal period. Further studies under insulin‐stimulated conditions are required to understand the physiologic impact of these maturational differences. PMID:25524279

  12. Developmental regulation of nicotinic synapses on cochlear inner hair cells.

    PubMed

    Katz, Eleonora; Elgoyhen, Ana Belén; Gómez-Casati, María E; Knipper, Marlies; Vetter, Douglas E; Fuchs, Paul A; Glowatzki, Elisabeth

    2004-09-08

    In the mature cochlea, inner hair cells (IHCs) transduce acoustic signals into receptor potentials, communicating to the brain by synaptic contacts with afferent fibers. Before the onset of hearing, a transient efferent innervation is found on IHCs, mediated by a nicotinic cholinergic receptor that may contain both alpha9 and alpha10 subunits. Calcium influx through that receptor activates calcium-dependent (SK2-containing) potassium channels. This inhibitory synapse is thought to disappear after the onset of hearing [after postnatal day 12 (P12)]. We documented this developmental transition using whole-cell recordings from IHCs in apical turns of the rat organ of Corti. Acetylcholine elicited ionic currents in 88-100% of IHCs between P3 and P14, but in only 1 of 11 IHCs at P16-P22. Potassium depolarization of efferent terminals caused IPSCs in 67% of IHCs at P3, in 100% at P7-P9, in 93% at P10-P12, but in only 40% at P13-P14 and in none of the IHCs tested between P16 and P22. Earlier work had shown by in situ hybridization that alpha9 mRNA is expressed in adult IHCs but that alpha10 mRNA disappears after the onset of hearing. In the present study, antibodies to alpha10 and to the associated calcium-dependent (SK2) potassium channel showed a similar developmental loss. The correlated expression of these gene products with functional innervation suggests that Alpha10 and SK2, but not Alpha9, are regulated by synaptic activity. Furthermore, this developmental knock-out of alpha10, but not alpha9, supports the hypothesis that functional nicotinic acetylcholine receptors in hair cells are heteromers containing both these subunits.

  13. Becoming a Coach in Developmental Adaptive Sailing: A Lifelong Learning Perspective

    PubMed Central

    Duarte, Tiago; Culver, Diane M.

    2014-01-01

    Life-story methodology and innovative methods were used to explore the process of becoming a developmental adaptive sailing coach. Jarvis's (2009) lifelong learning theory framed the thematic analysis. The findings revealed that the coach, Jenny, was exposed from a young age to collaborative environments. Social interactions with others such as mentors, colleagues, and athletes made major contributions to her coaching knowledge. As Jenny was exposed to a mixture of challenges and learning situations, she advanced from recreational para-swimming instructor to developmental adaptive sailing coach. The conclusions inform future research in disability sport coaching, coach education, and applied sport psychology. PMID:25210408

  14. Special Physical Education: Adapted, Individualized, Developmental. Seventh Edition.

    ERIC Educational Resources Information Center

    Dunn, John M.

    This text on physical education for children and adolescents with disabilities attempts to bring together current research findings and best educational practices from the fields of adapted physical education, special education, psychology, medicine, physical therapy, occupational therapy, and therapeutic recreation. The book is organized into…

  15. Cellular manganese content is developmentally regulated in human dopaminergic neurons

    PubMed Central

    Kumar, Kevin K.; Lowe, Jr., Edward W.; Aboud, Asad A.; Neely, M. Diana; Redha, Rey; Bauer, Joshua A.; Odak, Mihir; Weaver, C. David; Meiler, Jens; Aschner, Michael; Bowman, Aaron B.

    2014-01-01

    Manganese (Mn) is both an essential biological cofactor and neurotoxicant. Disruption of Mn biology in the basal ganglia has been implicated in the pathogenesis of neurodegenerative disorders, such as parkinsonism and Huntington's disease. Handling of other essential metals (e.g. iron and zinc) occurs via complex intracellular signaling networks that link metal detection and transport systems. However, beyond several non-selective transporters, little is known about the intracellular processes regulating neuronal Mn homeostasis. We hypothesized that small molecules that modulate intracellular Mn could provide insight into cell-level Mn regulatory mechanisms. We performed a high throughput screen of 40,167 small molecules for modifiers of cellular Mn content in a mouse striatal neuron cell line. Following stringent validation assays and chemical informatics, we obtained a chemical ‘toolbox' of 41 small molecules with diverse structure-activity relationships that can alter intracellular Mn levels under biologically relevant Mn exposures. We utilized this toolbox to test for differential regulation of Mn handling in human floor-plate lineage dopaminergic neurons, a lineage especially vulnerable to environmental Mn exposure. We report differential Mn accumulation between developmental stages and stage-specific differences in the Mn-altering activity of individual small molecules. This work demonstrates cell-level regulation of Mn content across neuronal differentiation. PMID:25348053

  16. Cellular manganese content is developmentally regulated in human dopaminergic neurons

    NASA Astrophysics Data System (ADS)

    Kumar, Kevin K.; Lowe, Edward W., Jr.; Aboud, Asad A.; Neely, M. Diana; Redha, Rey; Bauer, Joshua A.; Odak, Mihir; Weaver, C. David; Meiler, Jens; Aschner, Michael; Bowman, Aaron B.

    2014-10-01

    Manganese (Mn) is both an essential biological cofactor and neurotoxicant. Disruption of Mn biology in the basal ganglia has been implicated in the pathogenesis of neurodegenerative disorders, such as parkinsonism and Huntington's disease. Handling of other essential metals (e.g. iron and zinc) occurs via complex intracellular signaling networks that link metal detection and transport systems. However, beyond several non-selective transporters, little is known about the intracellular processes regulating neuronal Mn homeostasis. We hypothesized that small molecules that modulate intracellular Mn could provide insight into cell-level Mn regulatory mechanisms. We performed a high throughput screen of 40,167 small molecules for modifiers of cellular Mn content in a mouse striatal neuron cell line. Following stringent validation assays and chemical informatics, we obtained a chemical `toolbox' of 41 small molecules with diverse structure-activity relationships that can alter intracellular Mn levels under biologically relevant Mn exposures. We utilized this toolbox to test for differential regulation of Mn handling in human floor-plate lineage dopaminergic neurons, a lineage especially vulnerable to environmental Mn exposure. We report differential Mn accumulation between developmental stages and stage-specific differences in the Mn-altering activity of individual small molecules. This work demonstrates cell-level regulation of Mn content across neuronal differentiation.

  17. Mothers and Fathers of Young Developmentally Disabled and Nondisabled Boys: Adaptation and Spousal Support.

    ERIC Educational Resources Information Center

    Bristol, Marie M.; And Others

    1988-01-01

    Assessed the extent to which the presence of a young developmentally disabled or nondisabled male child affected adaptation and family roles for mothers and fathers, using a multimethod approach. Proposes the concept of harmonic responsiveness to explain how proffered support must be tuned to the perceived needs and expectations of spouse. (RH)

  18. Cross-Cultural Adaptation of Developmental Criteria for Young Children: A Preliminary Psychometric Study

    ERIC Educational Resources Information Center

    Yunus, Faridah

    2014-01-01

    Authentic assessment approach applies naturalistic observation method to gather and analyse data about children's development that are socio-culturally appropriate to plan for individual teaching and learning needs. This article discusses the process of adapting an authentic developmental instrument for children of 3-6 years old. The instrument…

  19. The Nature and Control of Postural Adaptations of Boys with and without Developmental Coordination Disorder

    ERIC Educational Resources Information Center

    Przysucha, Eryk P.; Taylor, M. Jane; Weber, Douglas

    2008-01-01

    This study compared the nature of postural adaptations and control tendencies, between 7 (n = 9) and 11-year-old boys (n = 10) with Developmental Coordination Disorder (DCD) and age-matched, younger (n = 10) and older (n = 9) peers in a leaning task. Examination of anterior-posterior, medio-lateral, maximum and mean area of sway, and path length…

  20. Developmental Structuralist Approach to the Classification of Adaptive and Pathologic Personality Organizations: Infancy and Early Childhood.

    ERIC Educational Resources Information Center

    Greenspan, Stanley I.; Lourie, Reginald S.

    This paper applies a developmental structuralist approach to the classification of adaptive and pathologic personality organizations and behavior in infancy and early childhood, and it discusses implications of this approach for preventive intervention. In general, as development proceeds, the structural capacity of the developing infant and child…

  1. Project Adapt: A Developmental Approach to Psycho-Motor Transfer. A Guide to Movement and Learning.

    ERIC Educational Resources Information Center

    Steele, Wah-Leeta

    Described is Project ADAPT (A Developmental Approach to Psychomotor Transfer), a validated program used with 808 primary grade children, some with learning difficulties, over a 3-year period to enhance academic readiness and self esteem through psychomotor training. An introductory project summary explains program objectives, the needs assessment…

  2. 77 FR 66287 - Adaptation of Regulations To Incorporate Swaps

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-02

    ... November 2, 2012 Part III Commodity Futures Trading Commission 17 CFR Parts 1, 4, 5, et al. Adaptation of..., 15, 16, 18, 21, 22, 36, 38, 41, 140, 145, 155, and 166 RIN Number 3038-AD53 Adaptation of Regulations... in a final rule in a separate release. \\4\\ Adaptation of Regulations to Incorporate Swaps, 76...

  3. The developmentally regulated avian protein IFAPa-400 is transitin.

    PubMed

    Ma, X; Charron, F; Cole, G J; Savard, P E; Vincent, M

    1998-07-01

    Transitin and IFAPa-400 are developmentally regulated high M(r) proteins expressed transiently in early chick embryogenesis. Both are associated with radially oriented fibers in the developing CNS and with various neural and myogenic tissues before their down-regulation at later stages. Previous studies have shown that IFAPa-400 colocalized and copurified with intermediate filament proteins and recent molecular cloning has indicated that transitin is a member of this family of cytoskeletal proteins. Here, we provide evidence that IFAPa-400 and transitin are the same protein. The sequence of a composite cDNA corresponding to more than 700 amino acids of IFAPa-400 carboxy-terminal extremity is identical to that of transitin. Both proteins exhibit identical apparent M(r) and isoelectric point. Immunopurified IFAPa-400 reacts with different antibodies to transitin and vice-versa. The patterns of expression of both proteins show a perfect coincidence at the tissue level. At the subcellular level, most antibodies to IFAPa-400/transitin decorate a typical intermediate filament network. However, monoclonal antibody A2B11, at the origin of transitin identification, exhibits a staining more typical of a cortical component, suggesting that different populations of transitin exist within the cell.

  4. Aphid polyphenisms: trans-generational developmental regulation through viviparity

    PubMed Central

    Ogawa, Kota; Miura, Toru

    2013-01-01

    Polyphenism, in which multiple discrete phenotypes develop from a single genotype, is considered to have contributed to the evolutionary success of aphids. Of the various polyphenisms observed in the complex life cycle of aphids, the reproductive and wing polyphenisms seen in most aphid species are conspicuous. In reproductive polyphenism, the reproductive modes can change between viviparous parthenogenesis and sexual reproduction in response to the photoperiod. Under short-day conditions in autumn, sexual morphs (males and oviparous females) are produced parthenogenetically. Winged polyphenism is observed in viviparous generations during summer, when winged or wingless (flightless) aphids are produced depending on a variety of environmental conditions (e.g., density, predators). Here, we review the physiological mechanisms underlying reproductive and wing polyphenism in aphids. In reproductive polyphenism, morph determination (male, oviparous or viviparous female) within mother aphids is regulated by juvenile hormone (JH) titers in the mothers. In wing polyphenism, although JH is considered to play an important role in phenotype determination (winged or wingless), the role is still controversial. In both cases, the acquisition of viviparity in Aphididae is considered to be the basis for maternal regulation of these polyphenisms, and through which environmental cues can be transferred to developing embryos through the physiological state of the mother. Although the mechanisms by which mothers alter the developmental programs of their progeny have not yet been clarified, continued developments in molecular biology will likely unravel these questions. PMID:24478714

  5. The biology of developmental plasticity and the Predictive Adaptive Response hypothesis.

    PubMed

    Bateson, Patrick; Gluckman, Peter; Hanson, Mark

    2014-06-01

    Many forms of developmental plasticity have been observed and these are usually beneficial to the organism. The Predictive Adaptive Response (PAR) hypothesis refers to a form of developmental plasticity in which cues received in early life influence the development of a phenotype that is normally adapted to the environmental conditions of later life. When the predicted and actual environments differ, the mismatch between the individual's phenotype and the conditions in which it finds itself can have adverse consequences for Darwinian fitness and, later, for health. Numerous examples exist of the long-term effects of cues indicating a threatening environment affecting the subsequent phenotype of the individual organism. Other examples consist of the long-term effects of variations in environment within a normal range, particularly in the individual's nutritional environment. In mammals the cues to developing offspring are often provided by the mother's plane of nutrition, her body composition or stress levels. This hypothetical effect in humans is thought to be important by some scientists and controversial by others. In resolving the conflict, distinctions should be drawn between PARs induced by normative variations in the developmental environment and the ill effects on development of extremes in environment such as a very poor or very rich nutritional environment. Tests to distinguish between different developmental processes impacting on adult characteristics are proposed. Many of the mechanisms underlying developmental plasticity involve molecular epigenetic processes, and their elucidation in the context of PARs and more widely has implications for the revision of classical evolutionary theory.

  6. The biology of developmental plasticity and the Predictive Adaptive Response hypothesis

    PubMed Central

    Bateson, Patrick; Gluckman, Peter; Hanson, Mark

    2014-01-01

    Many forms of developmental plasticity have been observed and these are usually beneficial to the organism. The Predictive Adaptive Response (PAR) hypothesis refers to a form of developmental plasticity in which cues received in early life influence the development of a phenotype that is normally adapted to the environmental conditions of later life. When the predicted and actual environments differ, the mismatch between the individual's phenotype and the conditions in which it finds itself can have adverse consequences for Darwinian fitness and, later, for health. Numerous examples exist of the long-term effects of cues indicating a threatening environment affecting the subsequent phenotype of the individual organism. Other examples consist of the long-term effects of variations in environment within a normal range, particularly in the individual's nutritional environment. In mammals the cues to developing offspring are often provided by the mother's plane of nutrition, her body composition or stress levels. This hypothetical effect in humans is thought to be important by some scientists and controversial by others. In resolving the conflict, distinctions should be drawn between PARs induced by normative variations in the developmental environment and the ill effects on development of extremes in environment such as a very poor or very rich nutritional environment. Tests to distinguish between different developmental processes impacting on adult characteristics are proposed. Many of the mechanisms underlying developmental plasticity involve molecular epigenetic processes, and their elucidation in the context of PARs and more widely has implications for the revision of classical evolutionary theory. PMID:24882817

  7. Thermal plasticity of growth and development varies adaptively among alternative developmental pathways.

    PubMed

    Kivelä, Sami M; Svensson, Beatrice; Tiwe, Alma; Gotthard, Karl

    2015-09-01

    Polyphenism, the expression of discrete alternative phenotypes, is often a consequence of a developmental switch. Physiological changes induced by a developmental switch potentially affect reaction norms, but the evolution and existence of alternative reaction norms remains poorly understood. Here, we demonstrate that, in the butterfly Pieris napi (Lepidoptera: Pieridae), thermal reaction norms of several life history traits vary adaptively among switch-induced alternative developmental pathways of diapause and direct development. The switch was affected both by photoperiod and temperature, ambient temperature during late development having the potential to override earlier photoperiodic cues. Directly developing larvae had higher development and growth rates than diapausing ones across the studied thermal gradient. Reaction norm shapes also differed between the alternative developmental pathways, indicating pathway-specific selection on thermal sensitivity. Relative mass increments decreased linearly with increasing temperature and were higher under direct development than diapause. Contrary to predictions, population phenology did not explain trait variation or thermal sensitivity, but our experimental design probably lacks power for finding subtle phenology effects. We demonstrate adaptive differentiation in thermal reaction norms among alternative phenotypes, and suggest that the consequences of an environmentally dependent developmental switch primarily drive the evolution of alternative thermal reaction norms in P. napi.

  8. Successive Cambia: A Developmental Oddity or an Adaptive Structure?

    PubMed Central

    Robert, Elisabeth M. R.; Schmitz, Nele; Boeren, Ilse; Driessens, Tess; Herremans, Kristof; De Mey, Johan; Van de Casteele, Elke; Beeckman, Hans; Koedam, Nico

    2011-01-01

    Background Secondary growth by successive cambia is a rare phenomenon in woody plant species. Only few plant species, within different phylogenetic clades, have secondary growth by more than one vascular cambium. Often, these successive cambia are organised concentrically. In the mangrove genus Avicennia however, the successive cambia seem to have a more complex organisation. This study aimed (i) at understanding the development of successive cambia by giving a three-dimensional description of the hydraulic architecture of Avicennia and (ii) at unveiling the possible adaptive nature of growth by successive cambia through a study of the ecological distribution of plant species with concentric internal phloem. Results Avicennia had a complex network of non-cylindrical wood patches, the complexity of which increased with more stressful ecological conditions. As internal phloem has been suggested to play a role in water storage and embolism repair, the spatial organisation of Avicennia wood could provide advantages in the ecologically stressful conditions species of this mangrove genus are growing in. Furthermore, we could observe that 84.9% of the woody shrub and tree species with concentric internal phloem occurred in either dry or saline environments strengthening the hypothesis that successive cambia provide the necessary advantages for survival in harsh environmental conditions. Conclusions Successive cambia are an ecologically important characteristic, which seems strongly related with water-limited environments. PMID:21304983

  9. Regulated superinfection may help HIV adaptation on rugged landscape.

    PubMed

    Leontiev, Vladimir; Hadany, Lilach

    2010-05-01

    Human immunodeficiency virus (HIV) is highly adaptable to a, changing environment, including host immune response and antiviral drugs. Superinfection occurs when several HIV proviruses share the same host cell. We previously proposed that HIV may regulate the rate of its superinfection, which would help the virus to adapt (Leontiev et al., 2008). In this paper we, investigate the effect of regulated superinfection in HIV on complex, adaptation on rugged fitness landscapes. We present the results of our in silico experiments that suggest that regulated superinfection facilitates HIV, adaptation on rugged fitness landscapes and that the advantage of regulated, superinfection increases with the ruggedness of the landscape.

  10. Developmental stage-specific regulation of the circadian clock by temperature in zebrafish.

    PubMed

    Lahiri, Kajori; Froehlich, Nadine; Heyd, Andreas; Foulkes, Nicholas S; Vallone, Daniela

    2014-01-01

    The circadian clock enables animals to adapt their physiology and behaviour in anticipation of the day-night cycle. Light and temperature represent two key environmental timing cues (zeitgebers) able to reset this mechanism and so maintain its synchronization with the environmental cycle. One key challenge is to unravel how the regulation of the clock by zeitgebers matures during early development. The zebrafish is an ideal model for studying circadian clock ontogeny since the process of development occurs ex utero in an optically transparent chorion and many tools are available for genetic analysis. However, the role played by temperature in regulating the clock during zebrafish development is poorly understood. Here, we have established a clock-regulated luciferase reporter transgenic zebrafish line (Tg (-3.1) per1b::luc) to study the effects of temperature on clock entrainment. We reveal that under complete darkness, from an early developmental stage onwards (48 to 72 hpf), exposure to temperature cycles is a prerequisite for the establishment of self-sustaining rhythms of zfper1b, zfaanat2, and zfirbp expression and also for circadian cell cycle rhythms. Furthermore, we show that following the 5-9 somite stage, the expression of zfper1b is regulated by acute temperature shifts.

  11. Developmental regulation of human truncated nerve growth factor receptor

    SciTech Connect

    DiStefano, P.S.; Clagett-Dame, M.; Chelsea, D.M.; Loy, R. )

    1991-01-01

    Monoclonal antibodies (designated XIF1 and IIIG5) recognizing distinct epitopes of the human truncated nerve growth factor receptor (NGF-Rt) were used in a two-site radiometric immunosorbent assay to monitor levels of NGF-Rt in human urine as a function of age. Urine samples were collected from 70 neurologically normal subjects ranging in age from 1 month to 68 years. By using this sensitive two-site radiometric immunosorbent assay, NGF-Rt levels were found to be highest in urine from 1-month old subjects. By 2.5 months, NGF-Rt values were half of those seen at 1 month and decreased more gradually between 0.5 and 15 years. Between 15 and 68 years, urine NGF-Rt levels were relatively constant at 5% of 1-month values. No evidence for diurnal variation of adult NGF-Rt was apparent. Pregnant women in their third trimester showed significantly elevated urine NGF-Rt values compared with age-matched normals. Affinity labeling of NGF-Rt with 125I-NGF followed by immunoprecipitation with ME20.4-IgG and gel autoradiography indicated that neonatal urine contained high amounts of truncated receptor (Mr = 50 kd); decreasingly lower amounts of NGF-Rt were observed on gel autoradiograms with development, indicating that the two-site radiometric immunosorbent assay correlated well with the affinity labeling technique for measuring NGF-Rt. NGF-Rt in urines from 1-month-old and 36-year-old subjects showed no differences in affinities for NGF or for the monoclonal antibody IIIG5. These data show that NGF-Rt is developmentally regulated in human urine, and are discussed in relation to the development and maturation of the peripheral nervous system.

  12. SBIRT-A: Adapting SBIRT to Maximize Developmental Fit for Adolescents in Primary Care.

    PubMed

    Ozechowski, Timothy J; Becker, Sara J; Hogue, Aaron

    2016-03-01

    The Screening, Brief Intervention and Referral to Treatment (SBIRT) model is widely recommended as part of routine visits in pediatric primary care despite a dearth of evidence on its effectiveness, feasibility, and developmental appropriateness for adolescents in this setting. The purpose of this article is to explicate ways that SBIRT may be tailored to better serve adolescents in primary care under a set of recommended adaptations that we refer to collectively as SBIRT-A or Screening, Brief Intervention, and Referral to Treatment for Adolescents. Each component of the SBIRT-A framework incorporates recommendations to optimize developmental fit with adolescents based on extant empirical research, developmental theory, and well-documented barriers to service delivery in primary care. Commonalities across proposed adaptations include reliance upon proactive methods to identify and engage youth; innovation in service delivery aimed at improving the consistency and reach of interventions; and a family-focused approach to engagement, assessment, and intervention. Specific recommendations include taking advantage of every clinical encounter with the family to screen, involving caregivers in assessments and brief interventions, leveraging technology to administer brief interventions and booster sessions, and patient- and family-centered procedures for treatment referral and engagement. The adaptations proposed in this article have the potential to enhance the detection of adolescents with SU problems in primary care, the consistency of intervention provision, and engagement of this typically recalcitrant population into appropriate treatment.

  13. Adolescent Family Adversity and Mental Health Problems: The Role of Adaptive Self-Regulation Capacities. The TRAILS Study

    ERIC Educational Resources Information Center

    Bakker, Martin Paul; Ormel, Johan; Verhulst, Frank C.; Oldehinkel, Albertine J.

    2011-01-01

    Adolescent family adversity is a considerable adaptive challenge in an increasingly turbulent developmental period. Using data from a prospective population cohort of 2230 Dutch adolescents, we tested risk-buffering interactions between adolescent family adversity and self-regulation capacities on mental health. We used two adaptive…

  14. Checks and Balances: Rpd3 Issues Executive Orders in Developmental Enhancer Regulation.

    PubMed

    Martire, Sara; Banaszynski, Laura

    2017-02-27

    Stem cells use poised enhancers of developmental regulators to maintain pluripotency and for subsequent activation in differentiating progeny. In this issue of Developmental Cell, Janssens et al. (2017) demonstrate that the erm enhancer is maintained in a poised state in neural stem cells by the histone deacetylase Hdac1/Rpd3.

  15. Adaptation of an Interview-Based Protocol to Examine Close Relationships between Children with Developmental Disabilities and Peers

    ERIC Educational Resources Information Center

    Webster, Amanda A.; Carter, Mark

    2010-01-01

    The purpose of this study was to determine whether an interview protocol, based on the Friendship Quality Questionnaire, could be adapted to examine the close relationships of children with developmental disabilities in an inclusive school setting. Twenty-five children with developmental disabilities aged between approximately 5 and 12 years…

  16. Self-tuning regulators. [adaptive control research

    NASA Technical Reports Server (NTRS)

    Astrom, K. J.

    1975-01-01

    The results of a research project are discussed for self-tuning regulators for active control. An algorithm for the self-tuning regulator is described as being stochastic, nonlinear, time variable, and not trivial.

  17. Unique pattern of dietary adaptation in the dentition of Carnivora: its advantage and developmental origin

    PubMed Central

    Saito, Kazuyuki; Kishida, Takushi; Takahashi, Katsu; Bessho, Kazuhisa

    2016-01-01

    Carnivora is a successful taxon in terms of dietary diversity. We investigated the dietary adaptations of carnivoran dentition and the developmental background of their dental diversity, which may have contributed to the success of the lineage. A developmental model was tested and extended to explain the unique variability and exceptional phenotypes observed in carnivoran dentition. Carnivorous mammalian orders exhibited two distinct patterns of dietary adaptation in molars and only Carnivora evolved novel variability, exhibiting a high correlation between relative molar size and the shape of the first molar. Studies of Bmp7-hetero-deficient mice, which may exhibit lower Bmp7 expression, suggested that Bmp7 has pleiotropic effects on these two dental traits. Its effects are consistent with the pattern of dietary adaptation observed in Carnivora, but not that observed in other carnivorous mammals. A molecular evolutionary analysis revealed that Bmp7 sequence evolved by natural selection during ursid evolution, suggesting that it plays an evolutionary role in the variation of carnivoran dentition. Using mouse experiments and a molecular evolutionary analysis, we extrapolated the causal mechanism of the hitherto enigmatic ursid dentition (larger M2 than M1 and M3). Our results demonstrate how carnivorans acquired novel dental variability that benefits their dietary divergence.

  18. Effects of Risperidone and Parent Training on Adaptive Functioning in Children with Pervasive Developmental Disorders and Serious Behavioral Problems

    ERIC Educational Resources Information Center

    Scahill, Lawrence; McDougle, Christopher J.; Aman, Michael G.; Johnson, Cynthia; Handen, Benjamin; Bearss, Karen; Dziura, James; Butter, Eric; Swiezy, Naomi G.; Arnold, L. Eugene; Stigler, Kimberly A.; Sukhodolsky, Denis D.; Lecavalier, Luc; Pozdol, Stacie L.; Nikolov, Roumen; Hollway, Jill A.; Korzekwa, Patricia; Gavaletz, Allison; Kohn, Arlene E.; Koenig, Kathleen; Grinnon, Stacie; Mulick, James A.; Yu, Sunkyung; Vitiello, Benedetto

    2012-01-01

    Objective: Children with Pervasive Developmental Disorders (PDDs) have social interaction deficits, delayed communication, and repetitive behaviors as well as impairments in adaptive functioning. Many children actually show a decline in adaptive skills compared with age mates over time. Method: This 24-week, three-site, controlled clinical trial…

  19. Multisensory adaptation of spatial-to-motor transformations in children with developmental coordination disorder.

    PubMed

    King, Bradley R; Kagerer, Florian A; Harring, Jeffrey R; Contreras-Vidal, Jose L; Clark, Jane E

    2011-07-01

    Recent research has demonstrated that adaptation to a visuomotor distortion systematically influenced movements to auditory targets in adults and typically developing (TD) children, suggesting that the adaptation of spatial-to-motor transformations for reaching movements is multisensory (i.e., generalizable across sensory modalities). The multisensory characteristics of these transformations in children with developmental coordination disorder (DCD) have not been examined. Given that previous research has demonstrated that children with DCD have deficits in sensorimotor integration, these children may also have impairments in the formation of multisensory spatial-to-motor transformations for target-directed arm movements. To investigate this hypothesis, children with and without DCD executed discrete arm movements to visual and acoustic targets prior to and following exposure to an abrupt visual feedback rotation. Results demonstrated that the magnitudes of the visual aftereffects were equivalent in the TD children and the children with DCD, indicating that both groups of children adapted similarly to the visuomotor perturbation. Moreover, the influence of visuomotor adaptation on auditory-motor performance was similar in the two groups of children. This suggests that the multisensory processes underlying adaptation of spatial-to-motor transformations are similar in children with DCD and TD children.

  20. 76 FR 33065 - Adaptation of Regulations to Incorporate Swaps

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-07

    ... From the Federal Register Online via the Government Publishing Office ] Vol. 76 Tuesday, No. 109 June 7, 2011 Part III Commodity Futures Trading Commission 17 CFR Parts 1, 5, 7 et al. Adaptation of..., 36, 41, 140, 145, 155, and 166 RIN Number 3038-AD53 Adaptation of Regulations to Incorporate...

  1. Developmental regulation of motor function: an uncharted sea.

    PubMed

    O'Donovan, M J

    1985-02-01

    The field of developmental neurobiology is entering a very exciting phase, in which the application of new techniques promises to lead to major advances in our understanding of basic developmental processes. There is a need to apply much of this new knowledge to problems of spinal cord and muscle development, about which little is known at present. An understanding of the development of muscle fiber types and the spinal circuitry controlling locomotion would have a major impact on fundamental problems in motor control and exercise physiology. Significant progress is likely to be made in these areas in the next few years, but only if researchers interested in motor control and related areas take an interest in development. Among the most immediate problems that need to be addressed are: the lineage analysis of spinal neurons; identification of the factors controlling neuron differentiation; identification of the molecular basis for directed axon growth; and analysis of the factors controlling network assembly in the spinal cord. In muscle development, an understanding of how fiber type proportions are generated would have great significance for disciplines related to motor performance. The interaction and exchange of ideas between developmental biologists and exercise scientists promises to accelerate understanding and progress in both fields of endeavor.

  2. Formation and Regulation of Adaptive Response in Nematode Caenorhabditis elegans

    PubMed Central

    Zhao, Y.-L.; Wang, D.-Y.

    2012-01-01

    All organisms respond to environmental stresses (e.g., heavy metal, heat, UV irradiation, hyperoxia, food limitation, etc.) with coordinated adjustments in order to deal with the consequences and/or injuries caused by the severe stress. The nematode Caenorhabditis elegans often exerts adaptive responses if preconditioned with low concentrations of agents or stressor. In C. elegans, three types of adaptive responses can be formed: hormesis, cross-adaptation, and dietary restriction. Several factors influence the formation of adaptive responses in nematodes, and some mechanisms can explain their response formation. In particular, antioxidation system, heat-shock proteins, metallothioneins, glutathione, signaling transduction, and metabolic signals may play important roles in regulating the formation of adaptive responses. In this paper, we summarize the published evidence demonstrating that several types of adaptive responses have converged in C. elegans and discussed some possible alternative theories explaining the adaptive response control. PMID:22997543

  3. Driving Skills of Young Adults with Developmental Coordination Disorder: Regulating Speed and Coping with Distraction

    ERIC Educational Resources Information Center

    de Oliveira, Rita F.; Wann, John P.

    2011-01-01

    In two experiments, we used an automatic car simulator to examine the steering control, speed regulation and response to hazards of young adults with developmental coordination disorder (DCD) and limited driving experience. In Experiment 1 participants either used the accelerator pedal to regulate their speed, or used the brake pedal when they…

  4. Developmental changes in Ca2+ channel subtypes regulating endocytosis at the calyx of Held.

    PubMed

    Midorikawa, Mitsuharu; Okamoto, Yuji; Sakaba, Takeshi

    2014-08-15

    At the mammalian central synapse, Ca(2+) influx through Ca(2+) channels triggers neurotransmitter release by exocytosis of synaptic vesicles, which fuse with the presynaptic membrane and are subsequently retrieved by endocytosis. At the calyx of Held terminal, P/Q-type Ca(2+) channels mainly mediate exocytosis, while N- and R-type channels have a minor role in young terminals (postnatal days 8-11). The role of each Ca(2+) channel subtype in endocytosis remains to be elucidated; therefore, we examined the role of each type of Ca(2+) channel in endocytosis, by using whole-cell patch-clamp recordings in conjunction with capacitance measurement techniques. We found that at the young calyx terminal, when R-type Ca(2+) channels were blocked, the slow mode of endocytosis was further slowed, while blocking of either P/Q- or N-type Ca(2+) channels had no major effect. In more mature terminals (postnatal days 14-17), the slow mode of endocytosis was mainly triggered by P/Q-type Ca(2+) channels, suggesting developmental changes in the regulation of the slow mode of endocytosis by different Ca(2+) channel subtypes. In contrast, a fast mode of endocytosis was observed after strong stimulation in young terminals that was mediated mainly by P/Q-type, but not R- or N-type Ca(2+) channels. These results suggest that different types of Ca(2+) channels regulate the two different modes of endocytosis. The results may also suggest that exo- and endocytosis are regulated independently at different sites in young animals but are more tightly coupled in older animals, allowing more efficient synaptic vesicle cycling adapted for fast signalling.

  5. Developmental changes in Ca2+ channel subtypes regulating endocytosis at the calyx of Held

    PubMed Central

    Midorikawa, Mitsuharu; Okamoto, Yuji; Sakaba, Takeshi

    2014-01-01

    At the mammalian central synapse, Ca2+ influx through Ca2+ channels triggers neurotransmitter release by exocytosis of synaptic vesicles, which fuse with the presynaptic membrane and are subsequently retrieved by endocytosis. At the calyx of Held terminal, P/Q-type Ca2+ channels mainly mediate exocytosis, while N- and R-type channels have a minor role in young terminals (postnatal days 8–11). The role of each Ca2+ channel subtype in endocytosis remains to be elucidated; therefore, we examined the role of each type of Ca2+ channel in endocytosis, by using whole-cell patch-clamp recordings in conjunction with capacitance measurement techniques. We found that at the young calyx terminal, when R-type Ca2+ channels were blocked, the slow mode of endocytosis was further slowed, while blocking of either P/Q- or N-type Ca2+ channels had no major effect. In more mature terminals (postnatal days 14–17), the slow mode of endocytosis was mainly triggered by P/Q-type Ca2+ channels, suggesting developmental changes in the regulation of the slow mode of endocytosis by different Ca2+ channel subtypes. In contrast, a fast mode of endocytosis was observed after strong stimulation in young terminals that was mediated mainly by P/Q-type, but not R- or N-type Ca2+ channels. These results suggest that different types of Ca2+ channels regulate the two different modes of endocytosis. The results may also suggest that exo- and endocytosis are regulated independently at different sites in young animals but are more tightly coupled in older animals, allowing more efficient synaptic vesicle cycling adapted for fast signalling. PMID:24907302

  6. Irreversibility of a bad start: early exposure to osmotic stress limits growth and adaptive developmental plasticity.

    PubMed

    Wu, Chi-Shiun; Gomez-Mestre, Ivan; Kam, Yeong-Choy

    2012-05-01

    Harsh environments experienced early in development have immediate effects and potentially long-lasting consequences throughout ontogeny. We examined how salinity fluctuations affected survival, growth and development of Fejervarya limnocharis tadpoles. Specifically, we tested whether initial salinity effects on growth and rates of development were reversible and whether they affected the tadpoles' ability to adaptively accelerate development in response to deteriorating conditions later in development. Tadpoles were initially assigned to either low or high salinity, and then some were switched between salinity levels upon reaching either Gosner stage 30 (early switch) or 38 (late switch). All tadpoles initially experiencing low salinity survived whereas those initially experiencing high salinity had poor survival, even if switched to low salinity. Growth and developmental rates of tadpoles initially assigned to high salinity did not increase after osmotic stress release. Initial low salinity conditions allowed tadpoles to attain a fast pace of development even if exposed to high salinity afterwards. Tadpoles experiencing high salinity only late in development metamorphosed faster and at a smaller size, indicating an adaptive acceleration of development to avoid osmotic stress. Nonetheless, early exposure to high salinity precluded adaptive acceleration of development, always causing delayed metamorphosis relative to those in initially low salinity. Our results thus show that stressful environments experienced early in development can critically impact life history traits, having long-lasting or irreversible effects, and restricting their ability to produce adaptive plastic responses.

  7. A developmentally regulated lectin in Bufo arenarum embryos.

    PubMed

    Elola, M T; Fink-de-Cabutti, N E; Herkovits, H

    1987-01-01

    We report the levels of an endogenous beta-galactoside lectin activity from Bufo arenarum whole embryos extracts and specific inhibition by saccharides at different developmental stages. Specific activity measured against trypsinized rabbit red blood cells showed relatively high and fluctuating levels during early stages (up to about 76 h post-fertilization) which fell to significantly lower and more constant values at late stages (77-264 h post-fertilization). Lactose is the most potent inhibitor of this lectin activity, and saccharides having alpha-galactoside configurations are weaker inhibitors. At the last embryonic stage, the agglutinating activity showed a different sugar specificity which suggests either the modification of the preexistent lectin or the synthesis of another type of lectin. The possible physiological roles of these lectins in the blockage of polyspermy or in embryonic cell-cell interactions are discussed.

  8. DEVELOPMENTAL CHANGES IN SEROTONIN SIGNALING: IMPLICATIONS FOR EARLY BRAIN FUNCTION, BEHAVIOR AND ADAPTATION

    PubMed Central

    BRUMMELTE, S.; GLANAGHY, E. MC; BONNIN, A.; OBERLANDER, T. F.

    2017-01-01

    The neurotransmitter serotonin (5-HT) plays a central role in brain development, regulation of mood, stress reactivity and risk of psychiatric disorders, and thus alterations in 5-HT signaling early in life have critical implications for behavior and mental health across the life span. Drawing on preclinical and emerging human evidence this narrative review paper will examine three key aspects when considering the consequences of early life changes in 5-HT: (1) developmental origins of variations of 5-HT signaling; (2) influence of genetic and epigenetic factors; and (3) preclinical and clinical consequences of 5-HT-related changes associated with antidepressant exposure (SSRIs). The developmental consequences of altered prenatal 5-HT signaling varies greatly and outcomes depend on an ongoing interplay between biological (genetic/epigenetic variations) and environmental factors, both pre and postnatally. Emerging evidence suggests that variations in 5-HT signaling may increase sensitivity to risky home environments, but may also amplify a positive response to a nurturing environment. In this sense, factors that change central 5-HT levels may act as ‘plasticity’ rather than ‘risk’ factors associated with developmental vulnerability. Understanding the impact of early changes in 5-HT levels offers critical insights that might explain the variations in early typical brain development that underlies behavioral risk. PMID:26905950

  9. The GATA transcription factor GtaC regulates early developmental gene expression dynamics in Dictyostelium.

    PubMed

    Santhanam, Balaji; Cai, Huaqing; Devreotes, Peter N; Shaulsky, Gad; Katoh-Kurasawa, Mariko

    2015-07-06

    In many systems, including the social amoeba Dictyostelium discoideum, development is often marked by dynamic morphological and transcriptional changes orchestrated by key transcription factors. However, efforts to examine sequential genome-wide changes of gene regulation in developmental processes have been fairly limited. Here we report the developmental regulatory dynamics of GtaC, a GATA-type zinc-finger transcription factor, through the analyses of serial ChIP- and RNA-sequencing data. GtaC is essential for developmental progression, decoding extracellular cAMP pulses during early development and may play a role in mediating cell-type differentiation at later stages. We find that GtaC exhibits temporally distinctive DNA-binding patterns concordant with each developmental stage. We identify direct GtaC targets and observe cotemporaneous GtaC-binding and developmental expression regulation. Our results suggest that GtaC regulates multiple physiological processes as Dictyostelium transitions from a group of unicellular amoebae to an integrated multicellular organism.

  10. Adaptive PI Regulation of Blood Pressure of Hypertension patients.

    PubMed

    Zhu, K Y; Zheng, H; Lavanya, J

    2005-01-01

    This paper presents an adaptive PI control of mean blood pressure using vasoactive drugs like SNP. A new algorithm updating variations in time delay and sensitivity of the system is proposed and its effectiveness is discussed. For demonstration, simulations under clinical conditions are carried out and the results show that the adaptive control system can effectively handle the changes in patient's dynamics and provide satisfactory performance in regulation of blood pressure of hypertension patients.

  11. Absence of canonical active chromatin marks in developmentally regulated genes

    PubMed Central

    Ruiz-Romero, Marina; Corominas, Montserrat; Guigó, Roderic

    2015-01-01

    The interplay of active and repressive histone modifications is assumed to play a key role in the regulation of gene expression. In contrast to this generally accepted view, we show that transcription of genes temporally regulated during fly and worm development occurs in the absence of canonically active histone modifications. Conversely, strong chromatin marking is related to transcriptional and post-transcriptional stability, an association that we also observe in mammals. Our results support a model in which chromatin marking is associated to stable production of RNA, while unmarked chromatin would permit rapid gene activation and de-activation during development. In this case, regulation by transcription factors would play a comparatively more important regulatory role. PMID:26280901

  12. E2F and its developmental regulation in Xenopus laevis.

    PubMed Central

    Philpott, A; Friend, S H

    1994-01-01

    The transcription factor E2F has been implicated in cell cycle control by virtue of its association with cyclins, cyclin-dependent kinases, and pRb-related tumor suppressor gene products. Eggs and embryos from the frog Xenopus laevis have been used to investigate the characteristics of E2F-like molecules in the Xenopus cell cycle and throughout early development. We find multiple E2F species in Xenopus eggs, at least one of which is modified by phosphorylation. The vast majority of E2F remains in the free form throughout the very early embryonic cell cycle, and it also remains predominantly free until some time after the mid-blastula transition, the onset of zygotic transcription. At this time, E2F complexes significantly to pRb but not to cdk2, although cdk2 binding is found in tissue culture cells from a very advanced stage in embryogenesis. This suggests that the complexing of E2F to cyclins, cyclin-dependent kinases, and tumor suppressor gene products may be controlled separately in early Xenopus development. Thus, the association of E2F with other molecules may not result solely from processes affecting cell cycle progression but may also reflect developmental and differentiation cues. Images PMID:8007993

  13. Developmental regulation of. beta. -conglycinin in soybean axes and cotyledons

    SciTech Connect

    Ladin, B.F.; Tierney, M.L.; Meinke, D.W.; Hosangadi, P.; Veith, M.; Beachy, R.N.

    1987-05-01

    Analysis of the expression of genes encoding the ..beta..-conglycinin seed storage proteins in soybean has been used to extend the authors understanding of developmental gene expression in plants. The ..cap alpha..,..cap alpha..', and ..beta.. subunits of ..beta..-conglycinin are encoded by a multigene family which is organ-specific in its expression. In this study the authors report the differentially programmed accumulation of the ..cap alpha..,..cap alpha..', and ..beta.. subunits of ..beta..-conglycinin. Multiple isomeric forms of each subunit are present in the dry seed, but the timing of their accumulation is unique for each subunit. The previously reported variation in amount of ..cap alpha..' and ..cap alpha.. subunits in axis and cotyledons is also reflected in the amount of subunit specific mRNA which is present in each tissue. The ..beta.. subunit, previously undetected in soybean axes, is found to be synthesized but rapidly degraded. These differences in ..beta..-conglycinin protein accumulation may be reflected by the morphological differences observed in protein bodies between these two tissues.

  14. Hemodynamic forces regulate developmental patterning of atrial conduction.

    PubMed

    Bressan, Michael C; Louie, Jonathan D; Mikawa, Takashi

    2014-01-01

    Anomalous action potential conduction through the atrial chambers of the heart can lead to severe cardiac arrhythmia. To date, however, little is known regarding the mechanisms that pattern proper atrial conduction during development. Here we demonstrate that atrial muscle functionally diversifies into at least two heterogeneous subtypes, thin-walled myocardium and rapidly conducting muscle bundles, during a developmental window just following cardiac looping. During this process, atrial muscle bundles become enriched for the fast conduction markers Cx40 and Nav1.5, similar to the precursors of the fast conduction Purkinje fiber network located within the trabeculae of the ventricles. In contrast to the ventricular trabeculae, however, atrial muscle bundles display an increased proliferation rate when compared to the surrounding myocardium. Interestingly, mechanical loading of the embryonic atrial muscle resulted in an induction of Cx40, Nav1.5 and the cell cycle marker Cyclin D1, while decreasing atrial pressure via in vivo ligation of the vitelline blood vessels results in decreased atrial conduction velocity. Taken together, these data establish a novel model for atrial conduction patterning, whereby hemodynamic stretch coordinately induces proliferation and fast conduction marker expression, which in turn promotes the formation of large diameter muscle bundles to serve as preferential routes of conduction.

  15. Fractional adaptive control for an automatic voltage regulator.

    PubMed

    Aguila-Camacho, Norelys; Duarte-Mermoud, Manuel A

    2013-11-01

    This paper presents the application of a direct Fractional Order Model Reference Adaptive Controller (FOMRAC) to an Automatic Voltage Regulator (AVR). A direct FOMRAC is a direct Model Reference Adaptive Control (MRAC), whose controller parameters are adjusted using fractional order differential equations. Four realizations of the FOMRAC were designed in this work, each one considering different orders for the plant model. The design procedure consisted of determining the optimal values of the fractional order and the adaptive gains for each adaptive law, using Genetic algorithm optimization. Comparisons were made among the four FOMRAC designs, a fractional order PID (FOPID), a classical PID, and four Integer Order Model Reference Adaptive Controllers (IOMRAC), showing that the FOMRAC can improve the controlled system behavior and its robustness with respect to model uncertainties. Finally, some performance indices are presented here for the controlled schemes, in order to show the advantages and disadvantages of the FOMRAC.

  16. From tetrapods to primates: conserved developmental mechanisms in diverging ecological adaptations.

    PubMed

    Aboitiz, Francisco; Montiel, Juan F

    2012-01-01

    Primates are endowed with a brain about twice the size that of a mammal with the same body size, and humans have the largest brain relative to body size of all animals. This increase in brain size may be related to the acquisition of higher cognitive skills that permitted more complex social interactions, the evolution of culture, and the eventual ability to manipulate the environment. Nevertheless, in its internal structure, the primate brain shares a very conserved design with other mammals, being covered by a six-layered neocortex that, although expands disproportionately to other brain components, it does so following relatively well-defined allometric trends. Thus, the most fundamental events generating the basic design of the primate and human brain took place before the appearance of the first primate-like animal. Presumably, the earliest mammals already displayed a brain morphology radically different from that of their ancestors and that of their sister group, the reptiles, being characterized by the presence of an incipient neocortex that underwent an explosive growth in subsequent mammal evolution. In this chapter, we propose an integrative hypothesis for the origin of the mammalian neocortex, by considering the developmental modifications, functional networks, and ecological adaptations involved in the generation of this structure during the cretaceous period. Subsequently, the expansion of the primate brain is proposed to have relied on the amplification of the same, or very similar, developmental mechanisms as those involved in its primary origins, even in different ecological settings.

  17. Developmental regulation of aromatase activity in the rat hypothalamus

    SciTech Connect

    Lephart, E.D.

    1989-01-01

    The brain of all mammalian species studied thus far contain an enzymatic activity (aromatase) that catalyzes the conversion of androgens to estrogens. The activity is highest during prenatal development and contributes to the establishment of sex differences which determine adult gonadotropin secretion patterns and reproductive behavior. The studies presented in this dissertation represent a systematic effort to elucidate the mechanism(s) that control the initiation of and contribute to maintaining rat hypothalamic aromatase activity during pre- and postnatal development. Aromatase enzyme activity was measured by the {sup 3}H{sub 2}O release assay or by traditional estrogen product isolation. Brain aromatase mRNA was detected by hybridization to a cDNA encoding rat aromatase cytochrome P-450. In both males and females the time of puberty was associated with a decline in hypothalamic aromatase activity. This decline may represent a factor underlying the peri-pubertal decrease in the sensitivity to gonadal steroid feedback that accompanies completion of puberty. The results also indicate that androgens regulate brain aromatase levels during both the prepubertal and peri-pubertal stages of sexual development and that this regulation is transiently lost in young adults. Utilizing a hypothalamic organotypic culture system, aromatase activity in vitro was maintained for as long as two days. The results of studies of a variety of hormonal and metabolic regulators suggest that prenatal aromatase activity is regulated by factor(s) that function independently from the classical cyclic AMP and protein kinase C trans-membrane signaling pathways.

  18. Developmental programming of energy balance regulation: is physical activity more 'programmable' than food intake?

    PubMed

    Zhu, Shaoyu; Eclarinal, Jesse; Baker, Maria S; Li, Ge; Waterland, Robert A

    2016-02-01

    Extensive human and animal model data show that environmental influences during critical periods of prenatal and early postnatal development can cause persistent alterations in energy balance regulation. Although a potentially important factor in the worldwide obesity epidemic, the fundamental mechanisms underlying such developmental programming of energy balance are poorly understood, limiting our ability to intervene. Most studies of developmental programming of energy balance have focused on persistent alterations in the regulation of energy intake; energy expenditure has been relatively underemphasised. In particular, very few studies have evaluated developmental programming of physical activity. The aim of this review is to summarise recent evidence that early environment may have a profound impact on establishment of individual propensity for physical activity. Recently, we characterised two different mouse models of developmental programming of obesity; one models fetal growth restriction followed by catch-up growth, and the other models early postnatal overnutrition. In both studies, we observed alterations in body-weight regulation that persisted to adulthood, but no group differences in food intake. Rather, in both cases, programming of energy balance appeared to be due to persistent alterations in energy expenditure and spontaneous physical activity (SPA). These effects were stronger in female offspring. We are currently exploring the hypothesis that developmental programming of SPA occurs via induced sex-specific alterations in epigenetic regulation in the hypothalamus and other regions of the central nervous system. We will summarise the current progress towards testing this hypothesis. Early environmental influences on establishment of physical activity are likely an important factor in developmental programming of energy balance. Understanding the fundamental underlying mechanisms in appropriate animal models will help determine whether early life

  19. Adaptive Behavior in Autism and Pervasive Developmental Disorder-Not Otherwise Specified: Microanalysis of Scores on the Vineland Adaptive Behavior Scales

    ERIC Educational Resources Information Center

    Paul, Rhea; Miles, Stephanie; Cicchetti, Domenic; Sparrow, Sara; Klin, Ami; Volkmar, Fred; Coflin, Megan; Booker, Shelley

    2004-01-01

    The purpose of this study is to provide a microanalysis of differences in adaptive functioning seen between well-matched groups of school-aged children with autism and those diagnosed as having Pervasive Developmental Disorder-Not Otherwise Specified, all of whom functioned in the mild to moderate range of intellectual impairment. Findings…

  20. Developmental regulation of nicotinic acetylcholine receptors within midbrain dopamine neurons

    PubMed Central

    Azam, Layla; Chen, Yiling; Leslie, Frances M.

    2007-01-01

    We have combined anatomical and functional methodologies to provide a comprehensive analysis of the properties of nicotinic acetylcholine receptors (nAChRs) on developing dopamine (DA) neurons. Double-labeling in situ hybridization was used to examine the expression of nAChR subunit mRNAs within developing midbrain DA neurons. As brain maturation progressed there was a change in the pattern of subunit mRNA expression within DA neurons, such that α3 and α4 subunits declined and α6 mRNA increased. Although there were strong similarities in subunit mRNA expression in substantia nigra (SNc) and ventral tegmental area (VTA), there was higher expression of α4 mRNA in SNc than VTA at gestational day (G)15, and of α5, α6 and β3 mRNAs during postnatal development. Using a superfusion neurotransmitter release paradigm to functionally characterize nicotine-stimulated release of [3H]DA from striatal slices, the properties of the nAChRs on DA terminals were also found to change with age. Functional nAChRs were detected on striatal terminals at G18. There was a decrease in maximal release in the first postnatal week, followed by an increase in nicotine efficacy and potency during the second and third postnatal weeks. In the transition from adolescence (postnatal days (P) 30 and 40) to adulthood, there was a complex pattern of functional maturation of nAChRs in ventral, but not dorsal, striatum. In males, but not females, there were significant changes in both nicotine potency and efficacy during this developmental period. These findings suggest that nAChRs may play critical functional roles throughout DA neuronal maturation. PMID:17197101

  1. A Developmental Psychopathology Perspective on ADHD and Comorbid Conditions: The Role of Emotion Regulation.

    PubMed

    Steinberg, Elizabeth A; Drabick, Deborah A G

    2015-12-01

    Research investigating attention-deficit/hyperactivity disorder (ADHD) and co-occurring disorders such as oppositional defiant disorder, conduct disorder, anxiety, and depression has surged in popularity; however, the developmental relations between ADHD and these comorbid conditions remain poorly understood. The current paper uses a developmental psychopathology perspective to examine conditions commonly comorbid with ADHD during late childhood through adolescence. First, we present evidence for ADHD and comorbid disorders. Next, we discuss emotion regulation and its associations with ADHD. The role of parenting behaviors in the development and maintenance of emotion regulation difficulties and comorbid disorders among children with ADHD is explored. An illustrative example of emotion regulation and parenting over the course of development is provided to demonstrate bidirectional relations among these constructs. We then present an integrated conceptual model of emotion regulation as a shared risk process that may lead to different comorbid conditions among children with ADHD. Implications and directions for future research are presented.

  2. The Developmental Regulator SEEDSTICK Controls Structural and Mechanical Properties of the Arabidopsis Seed Coat.

    PubMed

    Ezquer, Ignacio; Mizzotti, Chiara; Nguema-Ona, Eric; Gotté, Maxime; Beauzamy, Léna; Viana, Vivian Ebeling; Dubrulle, Nelly; Costa de Oliveira, Antonio; Caporali, Elisabetta; Koroney, Abdoul-Salam; Boudaoud, Arezki; Driouich, Azeddine; Colombo, Lucia

    2016-10-01

    Although many transcription factors involved in cell wall morphogenesis have been identified and studied, it is still unknown how genetic and molecular regulation of cell wall biosynthesis is integrated into developmental programs. We demonstrate by molecular genetic studies that SEEDSTICK (STK), a transcription factor controlling ovule and seed integument identity, directly regulates PMEI6 and other genes involved in the biogenesis of the cellulose-pectin matrix of the cell wall. Based on atomic force microscopy, immunocytochemistry, and chemical analyses, we propose that structural modifications of the cell wall matrix in the stk mutant contribute to defects in mucilage release and seed germination under water-stress conditions. Our studies reveal a molecular network controlled by STK that regulates cell wall properties of the seed coat, demonstrating that developmental regulators controlling organ identity also coordinate specific aspects of cell wall characteristics.

  3. New Directions in Developmental Emotion Regulation Research across the Life Span: Introduction to the Special Section

    ERIC Educational Resources Information Center

    Zimmermann, Peter; Thompson, Ross A.

    2014-01-01

    Research on the development of emotion regulation has become a prominent topic in developmental science covering a broad age range from infancy to old age because of its theoretical importance and practical implications. This introductory essay of this special section includes reflections on some of the conceptual themes of this research field and…

  4. Molecular Analysis of the Developmental and Hormonal Systems Regulating Fruit Ripening

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ripening and development of fleshy fruits is regulated by environmental, hormonal and developmental cues. Ethylene is the key ripening hormone of climacteric fruits and can influence ripening in many non-climacteric fruits. Our laboratory uses tomato as a model system to understand ripening re...

  5. GLUCOCORTICOID RECEPTOR REGULATION IN THE RAT EMBRYO: A POTENTIAL SITE FOR DEVELOPMENTAL TOXICITY?

    EPA Science Inventory

    Glucocorticoid receptor regulation in the rat embryo: a potential site for developmental toxicity?

    Ghosh B, Wood CR, Held GA, Abbott BD, Lau C.

    National Research Council, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.

  6. SNAT2 and LAT1 transporter abundance is developmentally regulated in skeletal muscle of neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously, we demonstrated that the insulin and amino acid–induced activation of the mammalian target of rapamycin complex 1 (mTORC1), is developmentally regulated in neonatal pigs. Recent studies have indicated an important role of the System A transporters (SNAT2 and SLC1A5) and the L transporter...

  7. Developmental Regulation with Progressive Vision Loss: Use of Control Strategies and Affective Well-Being

    ERIC Educational Resources Information Center

    Schilling, Oliver K.; Wahl, Hans-Werner; Boerner, Kathrin; Horowitz, Amy; Reinhardt, Joann P.; Cimarolli, Verena R.; Brennan-Ing, Mark; Heckhausen, Jutta

    2016-01-01

    The present study addresses older adults' developmental regulation when faced with progressive and irreversible vision loss. We used the motivational theory of life span development as a conceptual framework and examined changes in older adults' striving for control over everyday goal achievement, and their association with affective well-being,…

  8. "Just Good Different Things": Specific Accommodations Families Make to Positively Adapt to Their Children with Developmental Disabilities

    ERIC Educational Resources Information Center

    Maul, Christine A.; Singer, George H. S.

    2009-01-01

    Fifteen parents and two grandparents of children with developmental disabilities (DD) were interviewed to discover common themes regarding specific ways in which they devised positive adaptations to their everyday routines to accommodate the needs of their children with DD, how they decided upon the accommodations, and how much help they felt they…

  9. Parental Adaptation to Out-of-Home Placement of a Child with Severe or Profound Developmental Disabilities

    ERIC Educational Resources Information Center

    Jackson, Jeffrey B.; Roper, Susanne Olsen

    2014-01-01

    Utilizing grounded theory qualitative research methods, a model was developed for describing parental adaptation after voluntary placement of a child with severe or profound developmental disabilities in out-of-home care. Interviews of parents from 20 families were analyzed. Parents' cognitive appraisals of placement outcomes were classified…

  10. Enhancer-core-promoter specificity separates developmental and housekeeping gene regulation.

    PubMed

    Zabidi, Muhammad A; Arnold, Cosmas D; Schernhuber, Katharina; Pagani, Michaela; Rath, Martina; Frank, Olga; Stark, Alexander

    2015-02-26

    Gene transcription in animals involves the assembly of RNA polymerase II at core promoters and its cell-type-specific activation by enhancers that can be located more distally. However, how ubiquitous expression of housekeeping genes is achieved has been less clear. In particular, it is unknown whether ubiquitously active enhancers exist and how developmental and housekeeping gene regulation is separated. An attractive hypothesis is that different core promoters might exhibit an intrinsic specificity to certain enhancers. This is conceivable, as various core promoter sequence elements are differentially distributed between genes of different functions, including elements that are predominantly found at either developmentally regulated or at housekeeping genes. Here we show that thousands of enhancers in Drosophila melanogaster S2 and ovarian somatic cells (OSCs) exhibit a marked specificity to one of two core promoters--one derived from a ubiquitously expressed ribosomal protein gene and another from a developmentally regulated transcription factor--and confirm the existence of these two classes for five additional core promoters from genes with diverse functions. Housekeeping enhancers are active across the two cell types, while developmental enhancers exhibit strong cell-type specificity. Both enhancer classes differ in their genomic distribution, the functions of neighbouring genes, and the core promoter elements of these neighbouring genes. In addition, we identify two transcription factors--Dref and Trl--that bind and activate housekeeping versus developmental enhancers, respectively. Our results provide evidence for a sequence-encoded enhancer-core-promoter specificity that separates developmental and housekeeping gene regulatory programs for thousands of enhancers and their target genes across the entire genome.

  11. Developmental regulation of cation pumps in skeletal and cardiac muscle.

    PubMed

    Dauncey, M J; Harrison, A P

    1996-03-01

    The prenatal and early postnatal periods are critical stages during which long-term development can be affected. For example, retardation of growth during these periods is closely linked to the occurrence of adult degenerative diseases. Appropriate development of muscle is essential for numerous functions, including movement, posture, thermogenesis, breathing and maintenance of the circulation. Defects in normal muscle development could thus impair any of these functions in the neonate and may also have long-term consequences for the health of the individual. Central to normal muscle structure and function is the appropriate development not only of the sarcomeric proteins but also of the sarcolemma, transverse-tubules, sarcoplasmic reticulum and associated membrane-bound ATPases. Long-term regulation of these ATPases is by changes in their concentration, whereas short-term regulation is mediated by alterations in enzyme activity. This review focuses on changes in total concentrations of Na+, K+, and Ca(2+)-ATPases during prenatal and postnatal life, in functionally diverse muscles of mammalian species born at different stages of maturity. Both these cation pumps belong to multigene families and changes in relative abundance of their specific isoforms are also considered because they may have important consequences for contractile performance during distinct stages of development. Finally, potential regulatory mechanisms which alter markedly during normal ontogeny are discussed. These include intrinsic factors such as hormones and contractile activity, extrinsic factors such as nutrition and environmental temperature, and interactions between these variables which are known to be especially important during postnatal development.

  12. Early development of Moniliophthora perniciosa basidiomata and developmentally regulated genes

    PubMed Central

    2009-01-01

    Background The hemibiotrophic fungus Moniliophthora perniciosa is the causal agent of Witches' broom, a disease of Theobroma cacao. The pathogen life cycle ends with the production of basidiocarps in dead tissues of the infected host. This structure generates millions of basidiospores that reinfect young tissues of the same or other plants. A deeper understanding of the mechanisms underlying the sexual phase of this fungus may help develop chemical, biological or genetic strategies to control the disease. Results Mycelium was morphologically analyzed prior to emergence of basidiomata by stereomicroscopy, light microscopy and scanning electron microscopy. The morphological changes in the mycelium before fructification show a pattern similar to other members of the order Agaricales. Changes and appearance of hyphae forming a surface layer by fusion were correlated with primordia emergence. The stages of hyphal nodules, aggregation, initial primordium and differentiated primordium were detected. The morphological analysis also allowed conclusions on morphogenetic aspects. To analyze the genes involved in basidiomata development, the expression of some selected EST genes from a non-normalized cDNA library, representative of the fruiting stage of M. perniciosa, was evaluated. A macroarray analysis was performed with 192 selected clones and hybridized with two distinct RNA pools extracted from mycelium in different phases of basidiomata formation. This analysis showed two groups of up and down-regulated genes in primordial phases of mycelia. Hydrophobin coding, glucose transporter, Rho-GEF, Rheb, extensin precursor and cytochrome p450 monooxygenase genes were grouped among the up-regulated. In the down-regulated group relevant genes clustered coding calmodulin, lanosterol 14 alpha demethylase and PIM1. In addition, 12 genes with more detailed expression profiles were analyzed by RT-qPCR. One aegerolysin gene had a peak of expression in mycelium with primordia and a

  13. The PIKE homolog Centaurin gamma regulates developmental timing in Drosophila.

    PubMed

    Gündner, Anna Lisa; Hahn, Ines; Sendscheid, Oliver; Aberle, Hermann; Hoch, Michael

    2014-01-01

    Phosphoinositide-3-kinase enhancer (PIKE) proteins encoded by the PIKE/CENTG1 gene are members of the gamma subgroup of the Centaurin superfamily of small GTPases. They are characterized by their chimeric protein domain architecture consisting of a pleckstrin homology (PH) domain, a GTPase-activating (GAP) domain, Ankyrin repeats as well as an intrinsic GTPase domain. In mammals, three PIKE isoforms with variations in protein structure and subcellular localization are encoded by the PIKE locus. PIKE inactivation in mice results in a broad range of defects, including neuronal cell death during brain development and misregulation of mammary gland development. PIKE -/- mutant mice are smaller, contain less white adipose tissue, and show insulin resistance due to misregulation of AMP-activated protein kinase (AMPK) and insulin receptor/Akt signaling. here, we have studied the role of PIKE proteins in metabolic regulation in the fly. We show that the Drosophila PIKE homolog, ceng1A, encodes functional GTPases whose internal GAP domains catalyze their GTPase activity. To elucidate the biological function of ceng1A in flies, we introduced a deletion in the ceng1A gene by homologous recombination that removes all predicted functional PIKE domains. We found that homozygous ceng1A mutant animals survive to adulthood. In contrast to PIKE -/- mouse mutants, genetic ablation of Drosophila ceng1A does not result in growth defects or weight reduction. Although metabolic pathways such as insulin signaling, sensitivity towards starvation and mobilization of lipids under high fed conditions are not perturbed in ceng1A mutants, homozygous ceng1A mutants show a prolonged development in second instar larval stage, leading to a late onset of pupariation. In line with these results we found that expression of ecdysone inducible genes is reduced in ceng1A mutants. Together, we propose a novel role for Drosophila Ceng1A in regulating ecdysone signaling-dependent second to third instar

  14. Transcription factor Wilms’ tumor 1 regulates developmental RNAs through 3′ UTR interaction

    PubMed Central

    Bharathavikru, Ruthrothaselvi; Dudnakova, Tatiana; Aitken, Stuart; Slight, Joan; Artibani, Mara; Hohenstein, Peter; Tollervey, David; Hastie, Nick

    2017-01-01

    Wilms’ tumor 1 (WT1) is essential for the development and homeostasis of multiple mesodermal tissues. Despite evidence for post-transcriptional roles, no endogenous WT1 target RNAs exist. Using RNA immunoprecipitation and UV cross-linking, we show that WT1 binds preferentially to 3′ untranslated regions (UTRs) of developmental targets. These target mRNAs are down-regulated upon WT1 depletion in cell culture and developing kidney mesenchyme. Wt1 deletion leads to rapid turnover of specific mRNAs. WT1 regulates reporter gene expression through interaction with 3′ UTR-binding sites. Combining experimental and computational analyses, we propose that WT1 influences key developmental and disease processes in part through regulating mRNA turnover. PMID:28289143

  15. Adaptive Equilibrium Regulation: A Balancing Act in Two Timescales.

    PubMed

    Boker, Steven M

    2015-03-01

    An equilibrium involves a balancing of forces. Just as one maintains upright posture in standing or walking, many self-regulatory and interpersonal behaviors can be framed as a balancing act between an ever changing environment and within-person processes. The emerging balance between person and environment, the equilibria, are dynamic and adaptive in response to development and learning. A distinction is made between equilibrium achieved solely due to a short timescale balancing of forces and a longer timescale preferred equilibrium which we define as a state towards which the system slowly adapts. Together, these are developed into a framework that this article calls Adaptive Equilibrium Regulation (ÆR), which separates a regulatory process into two timescales: a faster regulation that automatically balances forces and a slower timescale adaptation process that reconfigures the fast regulation so as to move the system towards its preferred equilibrium when an environmental force persists over the longer timescale. This way of thinking leads to novel models for the interplay between multiple timescales of behavior, learning, and development.

  16. Developmental regulation of transcription initiation: more than just changing the actors.

    PubMed

    Müller, Ferenc; Zaucker, Andreas; Tora, Làszlò

    2010-10-01

    The traditional model of transcription initiation nucleated by the TFIID complex has suffered significant erosion in the last decade. The discovery of cell-specific paralogs of TFIID subunits and a variety of complexes that replace TFIID in transcription initiation of protein coding genes have been paralleled by the description of diverse core promoter sequences. These observations suggest an additional level of regulation of developmental and tissue-specific gene expression at the core promoter level. Recent work suggests that this regulation may function through specific roles of distinct TBP-type factors and TBP-associated factors (TAFs), however the picture emerging is still far from complete. Here we summarize the proposed models of transcription initiation by alternative initiation complexes in distinct stages of developmental specialization during vertebrate ontogeny.

  17. Cyclic AMP stabilizes a class of developmentally regulated Dictyostelium discoideum mRNAs.

    PubMed

    Mangiarotti, G; Ceccarelli, A; Lodish, H F

    The stability of mRNA is an important facet of the regulation of protein synthesis. In mammalian cells most mRNAs have long half-lives (5-15 hours) but a substantial fraction are much less stable. There are few examples where the stability of a particular mRNA or class of mRNAs is specifically affected by environmental or developmental stimuli. Certain hormones cause specific stabilization of mRNAs species and preferential mRNA stability is important in the accumulation of globin and myosin mRNAs during the terminal stages of erythropoesis or myogenesis, respectively. Disaggregation of Dictyostelium discoideum aggregates induces the specific destabilization of a large class of developmentally regulated mRNAs; thus, this system is an excellent one in which to determine how such controls are effected. Here we show that addition of cyclic AMP to disaggregated cells specifically prevents the destabilization of these mRNAs.

  18. Light-independent developmental regulation of cab gene expression in Arabidopsis thaliana seedlings.

    PubMed Central

    Brusslan, J A; Tobin, E M

    1992-01-01

    We found a transient increase in the amount of mRNA for four nuclear genes encoding chloroplast proteins during early development of Arabidopsis thaliana. This increase began soon after germination as cotyledons emerged from the seed coat; it occurred in total darkness and was not affected by external factors, such as gibberellins or light treatments used to stimulate germination. Three members of the cab gene family and the rbcS-1A gene exhibited this expression pattern. Because timing of the increase coincided with cotyledon emergence and because it occurred independently of external stimuli, we suggest that this increase represents developmental regulation of these genes. Further, 1.34 kilobases of the cab1 promoter was sufficient to confer this expression pattern on a reporter gene in transgenic Arabidopsis seedlings. The ability of the cab genes to respond to phytochrome preceded this developmental increase, showing that these two types of regulation are independent. Images PMID:1380166

  19. Regulation of the adaptive immune system by innate lymphoid cells

    PubMed Central

    Hepworth, Matthew R.; Sonnenberg, Gregory F.

    2014-01-01

    Innate lymphoid cells (ILCs) are a group of lymphocytes that promote rapid cytokine-dependent innate immunity, inflammation and tissue repair. In addition, a growing body of evidence suggests ILCs can influence adaptive immune cell responses. During fetal development a subset of ILCs orchestrate the generation and maturation of secondary lymphoid tissues. Following birth, ILCs continue to modulate adaptive immune cell responses indirectly through interactions with stromal cells in lymphoid tissues and epithelial cells at barrier surfaces. In this review we summarize the current understanding of how ILCs modulate the magnitude and quality of adaptive immune cell responses, and in particular focus on recent evidence suggesting that ILCs can also directly regulate CD4+ T cells. Further, we discuss the implications that these pathways may have on human health and disease. PMID:24594491

  20. Circadian and light-driven regulation of rod dark adaptation.

    PubMed

    Xue, Yunlu; Shen, Susan Q; Corbo, Joseph C; Kefalov, Vladimir J

    2015-12-02

    Continuous visual perception and the dark adaptation of vertebrate photoreceptors after bright light exposure require recycling of their visual chromophore through a series of reactions in the retinal pigmented epithelium (RPE visual cycle). Light-driven chromophore consumption by photoreceptors is greater in daytime vs. nighttime, suggesting that correspondingly higher activity of the visual cycle may be required. However, as rod photoreceptors are saturated in bright light, the continuous turnover of their chromophore by the visual cycle throughout the day would not contribute to vision. Whether the recycling of chromophore that drives rod dark adaptation is regulated by the circadian clock and light exposure is unknown. Here, we demonstrate that mouse rod dark adaptation is slower during the day or after light pre-exposure. This surprising daytime suppression of the RPE visual cycle was accompanied by light-driven reduction in expression of Rpe65, a key enzyme of the RPE visual cycle. Notably, only rods in melatonin-proficient mice were affected by this daily visual cycle modulation. Our results demonstrate that the circadian clock and light exposure regulate the recycling of chromophore in the RPE visual cycle. This daily melatonin-driven modulation of rod dark adaptation could potentially protect the retina from light-induced damage during the day.

  1. Circadian and light-driven regulation of rod dark adaptation

    PubMed Central

    Xue, Yunlu; Shen, Susan Q.; Corbo, Joseph C.; Kefalov, Vladimir J.

    2015-01-01

    Continuous visual perception and the dark adaptation of vertebrate photoreceptors after bright light exposure require recycling of their visual chromophore through a series of reactions in the retinal pigmented epithelium (RPE visual cycle). Light-driven chromophore consumption by photoreceptors is greater in daytime vs. nighttime, suggesting that correspondingly higher activity of the visual cycle may be required. However, as rod photoreceptors are saturated in bright light, the continuous turnover of their chromophore by the visual cycle throughout the day would not contribute to vision. Whether the recycling of chromophore that drives rod dark adaptation is regulated by the circadian clock and light exposure is unknown. Here, we demonstrate that mouse rod dark adaptation is slower during the day or after light pre-exposure. This surprising daytime suppression of the RPE visual cycle was accompanied by light-driven reduction in expression of Rpe65, a key enzyme of the RPE visual cycle. Notably, only rods in melatonin-proficient mice were affected by this daily visual cycle modulation. Our results demonstrate that the circadian clock and light exposure regulate the recycling of chromophore in the RPE visual cycle. This daily melatonin-driven modulation of rod dark adaptation could potentially protect the retina from light-induced damage during the day. PMID:26626567

  2. INO80-dependent regression of ecdysone-induced transcriptional responses regulates developmental timing in Drosophila.

    PubMed

    Neuman, Sarah D; Ihry, Robert J; Gruetzmacher, Kelly M; Bashirullah, Arash

    2014-03-15

    Sequential pulses of the steroid hormone ecdysone regulate the major developmental transitions in Drosophila, and the duration of each developmental stage is determined by the length of time between ecdysone pulses. Ecdysone regulates biological responses by directly initiating target gene transcription. In turn, these transcriptional responses are known to be self-limiting, with mechanisms in place to ensure regression of hormone-dependent transcription. However, the biological significance of these transcriptional repression mechanisms remains unclear. Here we show that the chromatin remodeling protein INO80 facilitates transcriptional repression of ecdysone-regulated genes during prepupal development. In ino80 mutant animals, inefficient repression of transcriptional responses to the late larval ecdysone pulse delays the onset of the subsequent prepupal ecdysone pulse, resulting in a significantly longer prepupal stage. Conversely, increased expression of ino80 is sufficient to shorten the prepupal stage by increasing the rate of transcriptional repression. Furthermore, we demonstrate that enhancing the rate of regression of the mid-prepupal competence factor βFTZ-F1 is sufficient to determine the timing of head eversion and thus the duration of prepupal development. Although ino80 is conserved from yeast to humans, this study represents the first characterization of a bona fide ino80 mutation in any metazoan, raising the possibility that the functions of ino80 in transcriptional repression and developmental timing are evolutionarily conserved.

  3. Hedonic Hotspots Regulate Cingulate-driven Adaptation to Cognitive Demands.

    PubMed

    van Steenbergen, Henk; Band, Guido P H; Hommel, Bernhard; Rombouts, Serge A R B; Nieuwenhuis, Sander

    2015-07-01

    Positive hedonic states are known to attenuate the impact of demanding events on our body and brain, supporting adaptive behavior in response to changes in the environment. We used functional magnetic resonance imaging to examine the neural mechanism of this hedonic regulation. The effect of hedonic state (as induced by funny vs. neutral cartoons) on flexible behavioral and neural adaptation to cognitive demands was assessed in a flanker task in female volunteers. Behavioral results showed that humor reduced the compensatory adjustments to cognitive demands, as observed in sequential adaptations. This modulation was also reflected in midcingulate cortex (MCC; also known as the dorsal anterior cingulate cortex, ACC) activation. Furthermore, hedonic context increased activation in ventral striatum (VS) and ventral pallidum (VP). These hedonic hotspots attenuated the medial prefrontal cortex response to the cognitive demands in the ACC (also known as the rostral ACC). Activity in the ACC proved predictive of subsequent behavioral adaptation. Moreover, psychophysiological interaction analyses revealed that the MCC and the ACC were functionally connected with VS and VP, respectively. These observations reveal how MCC-VS and VP-ACC interactions are involved in the detection and hedonic modulation of behavioral adaptations to cognitive demands, which supports behavioral flexibility.

  4. Lifespan Development of Neuromodulation of Adaptive Control and Motivation as an Ontogenetic Mechanism for Developmental Niche Construction

    ERIC Educational Resources Information Center

    Li, Shu-Chen

    2013-01-01

    Instead of viewing organisms and individuals as passive recipients of their biological, ecological, and cultural inheritances, the developmental niche construction theory and the biocultural co-construction framework both emphasize that the individual's agency plays a key role in regulating how environmental and sociocontextual influences may…

  5. Feeding state-dependent regulation of developmental plasticity via CaMKI and neuroendocrine signaling

    PubMed Central

    Neal, Scott J; Takeishi, Asuka; O'Donnell, Michael P; Park, JiSoo; Hong, Myeongjin; Butcher, Rebecca A; Kim, Kyuhyung; Sengupta, Piali

    2015-01-01

    Information about nutrient availability is assessed via largely unknown mechanisms to drive developmental decisions, including the choice of Caenorhabditis elegans larvae to enter into the reproductive cycle or the dauer stage. In this study, we show that CMK-1 CaMKI regulates the dauer decision as a function of feeding state. CMK-1 acts cell-autonomously in the ASI, and non cell-autonomously in the AWC, sensory neurons to regulate expression of the growth promoting daf-7 TGF-β and daf-28 insulin-like peptide (ILP) genes, respectively. Feeding state regulates dynamic subcellular localization of CMK-1, and CMK-1-dependent expression of anti-dauer ILP genes, in AWC. A food-regulated balance between anti-dauer ILP signals from AWC and pro-dauer signals regulates neuroendocrine signaling and dauer entry; disruption of this balance in cmk-1 mutants drives inappropriate dauer formation under well-fed conditions. These results identify mechanisms by which nutrient information is integrated in a small neuronal network to modulate neuroendocrine signaling and developmental plasticity. DOI: http://dx.doi.org/10.7554/eLife.10110.001 PMID:26335407

  6. A novel adaptation of aldolase regulates virulence in Streptococcus pyogenes

    PubMed Central

    Loughman, Jennifer A; Caparon, Michael G

    2006-01-01

    Regulation of virulence factor expression is critical for pathogenic microorganisms that must sense and adapt to a dynamic host environment; yet, the signal transduction pathways that enable this process are generally poorly understood. Here, we identify LacD.1 as a global regulator of virulence factor expression in the versatile human pathogen, Streptococcus pyogenes. LacD.1 is derived from a class I tagatose-1,6-bisphosphate aldolase homologous to those involved in lactose and galactose metabolism in related prokaryotes. However, regulation of transcription by LacD.1 is not dependent on this enzymatic activity or the canonical catabolite repression pathway, but likely does require substrate recognition. Our results suggest that LacD.1 has been adapted as a metabolic sensor, and raise the possibility that regulation of gene expression by metabolic enzymes may be a novel mechanism by which Gram-positive bacteria, including S. pyogenes, coordinate multiple environmental cues, allowing essential transcription programs to be coupled with perceived nutritional status. PMID:17066081

  7. Developmental Trajectories of Adaptive Behaviors from Early Childhood to Adolescence in a Cohort of 152 Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Baghdadli, Amaria; Assouline, Brigitte; Sonie, Sandrine; Pernon, Eric; Darrou, Celine; Michelon, Cecile; Picot, Marie-Christine; Aussilloux, Charles; Pry, Rene

    2012-01-01

    This study examines change in 152 children over an almost 10-year period (T1: 4.9 (plus or minus 1.3) years; T2: 8.1 (plus or minus 1.3) years; T3: 15(plus or minus 1.6) years) using a group-based, semi-parametric method in order to identify distinct developmental trajectories. Important deficits remain at adolescence in the adaptive abilities of…

  8. Synchronization of Developmental Processes and Defense Signaling by Growth Regulating Transcription Factors

    PubMed Central

    Liu, Jinyi; Rice, J. Hollis; Chen, Nana; Baum, Thomas J.; Hewezi, Tarek

    2014-01-01

    Growth regulating factors (GRFs) are a conserved class of transcription factor in seed plants. GRFs are involved in various aspects of tissue differentiation and organ development. The implication of GRFs in biotic stress response has also been recently reported, suggesting a role of these transcription factors in coordinating the interaction between developmental processes and defense dynamics. However, the molecular mechanisms by which GRFs mediate the overlaps between defense signaling and developmental pathways are elusive. Here, we report large scale identification of putative target candidates of Arabidopsis GRF1 and GRF3 by comparing mRNA profiles of the grf1/grf2/grf3 triple mutant and those of the transgenic plants overexpressing miR396-resistant version of GRF1 or GRF3. We identified 1,098 and 600 genes as putative targets of GRF1 and GRF3, respectively. Functional classification of the potential target candidates revealed that GRF1 and GRF3 contribute to the regulation of various biological processes associated with defense response and disease resistance. GRF1 and GRF3 participate specifically in the regulation of defense-related transcription factors, cell-wall modifications, cytokinin biosynthesis and signaling, and secondary metabolites accumulation. GRF1 and GRF3 seem to fine-tune the crosstalk between miRNA signaling networks by regulating the expression of several miRNA target genes. In addition, our data suggest that GRF1 and GRF3 may function as negative regulators of gene expression through their association with other transcription factors. Collectively, our data provide new insights into how GRF1 and GRF3 might coordinate the interactions between defense signaling and plant growth and developmental pathways. PMID:24875638

  9. Developmental regulation of a proinsulin messenger RNA generated by intron retention

    PubMed Central

    Mansilla, Alicia; López-Sánchez, Carmen; de la Rosa, Enrique J; García-Martínez, Virginio; Martínez-Salas, Encarna; de Pablo, Flora; Hernández-Sánchez, Catalina

    2005-01-01

    Proinsulin gene expression regulation and function during early embryonic development differ remarkably from those found in postnatal organisms. The embryonic proinsulin protein content decreased from gastrulation to neurulation in contrast with the overall proinsulin messenger RNA increase. This is due to increasing levels of a proinsulin mRNA variant generated by intron 1 retention in the 5′ untranslated region. Inclusion of intron 1 inhibited proinsulin translation almost completely without affecting nuclear export or cytoplasmic decay. The novel proinsulin mRNA isoform expression was developmentally regulated and tissue specific. The proportion of intron retention increased from gastrulation to organogenesis, was highest in the heart tube and presomitic region, and could not be detected in the pancreas. Notably, proinsulin addition induced cardiac marker gene expression in the early embryonic stages when the translationally active transcript was expressed. We propose that regulated unproductive splicing and translation is a mechanism that regulates proinsulin expression in accordance with specific requirements in developing vertebrates. PMID:16179943

  10. Adaptation of Medicago truncatula to nitrogen limitation is modulated via local and systemic nodule developmental responses.

    PubMed

    Jeudy, Christian; Ruffel, Sandrine; Freixes, Sandra; Tillard, Pascal; Santoni, Anne Lise; Morel, Sylvain; Journet, Etienne-Pascal; Duc, Gérard; Gojon, Alain; Lepetit, Marc; Salon, Christophe

    2010-02-01

    Adaptation of Medicago truncatula to local nitrogen (N) limitation was investigated to provide new insights into local and systemic N signaling. The split-root technique allowed a characterization of the local and systemic responses of NO(3)(-) or N(2)-fed plants to localized N limitation. (15)N and (13)C labeling were used to monitor plant nutrition. Plants expressing pMtENOD11-GUS and the sunn-2 hypernodulating mutant were used to unravel mechanisms involved in these responses. Unlike NO(3)(-)-fed plants, N(2)-fixing plants lacked the ability to compensate rapidly for a localized N limitation by up-regulating the N(2)-fixation activity of roots supplied elsewhere with N. However they displayed a long-term response via a growth stimulation of pre-existing nodules, and the generation of new nodules, likely through a decreased abortion rate of early nodulation events. Both these responses involve systemic signaling. The latter response is abolished in the sunn mutant, but the mutation does not prevent the first response. Local but also systemic regulatory mechanisms related to plant N status regulate de novo nodule development in Mt, and SUNN is required for this systemic regulation. By contrast, the stimulation of nodule growth triggered by systemic N signaling does not involve SUNN, indicating SUNN-independent signaling.

  11. GABAergic synaptic plasticity during a developmentally regulated sleep-like state in C. elegans.

    PubMed

    Dabbish, Nooreen S; Raizen, David M

    2011-11-02

    Approximately one-fourth of the neurons in Caenorhabditis elegans adults are born during larval development, indicating tremendous plasticity in larval nervous system structure. Larval development shows cyclical expression of sleep-like quiescent behavior during lethargus periods, which occur at larval stage transitions. We studied plasticity at the neuromuscular junction during lethargus using the acetylcholinesterase inhibitor aldicarb. The rate of animal contraction when exposed to aldicarb is controlled by the balance between excitatory cholinergic and inhibitory GABAergic input on the muscle. During lethargus, there is an accelerated rate of contraction on aldicarb. Mutant analysis and optogenetic studies reveal that GABAergic synaptic transmission is reduced during lethargus. Worms in lethargus show partial resistance to GABA(A) receptor agonists, indicating that postsynaptic mechanisms contribute to lethargus-dependent plasticity. Using genetic manipulations that separate the quiescent state from the developmental stage, we show that the synaptic plasticity is dependent on developmental time and not on the behavioral state of the animal. We propose that the synaptic plasticity regulated by a developmental clock in C. elegans is analogous to synaptic plasticity regulated by the circadian clock in other species.

  12. Immune tolerance induction by integrating innate and adaptive immune regulators

    PubMed Central

    Suzuki, Jun; Ricordi, Camillo; Chen, Zhibin

    2009-01-01

    A diversity of immune tolerance mechanisms have evolved to protect normal tissues from immune damage. Immune regulatory cells are critical contributors to peripheral tolerance. These regulatory cells, exemplified by the CD4+Foxp3+ regulatory T (Treg) cells and a recently identified population named myeloid-derived suppressor cells (MDSCs), regulate immune responses and limiting immune-mediated pathology. In a chronic inflammatory setting, such as allograft-directed immunity, there may be a dynamic “crosstalk” between the innate and adaptive immunomodulatory mechanisms for an integrated control of immune damage. CTLA4-B7-based interaction between the two branches may function as a molecular “bridge” to facilitate such “crosstalk”. Understanding the interplays among Treg cells, innate suppressors and pathogenic effector T (Teff) cells will be critical in the future to assist in the development of therapeutic strategies to enhance and synergize physiological immunosuppressive elements in the innate and adaptive immune system. Successful development of localized strategies of regulatory cell therapies could circumvent the requirement for very high number of cells and decrease the risks associated with systemic immunosuppression. To realize the potential of innate and adaptive immune regulators for the still-elusive goal of immune tolerance induction, adoptive cell therapies may also need to be coupled with agents enhancing endogenous tolerance mechanisms. PMID:19919733

  13. Torso-like functions independently of Torso to regulate Drosophila growth and developmental timing.

    PubMed

    Johnson, Travis K; Crossman, Tova; Foote, Karyn A; Henstridge, Michelle A; Saligari, Melissa J; Forbes Beadle, Lauren; Herr, Anabel; Whisstock, James C; Warr, Coral G

    2013-09-03

    Activation of the Drosophila receptor tyrosine kinase Torso (Tor) only at the termini of the embryo is achieved by the localized expression of the maternal gene Torso-like (Tsl). Tor has a second function in the prothoracic gland as the receptor for prothoracicotropic hormone (PTTH) that initiates metamorphosis. Consistent with the function of Tor in this tissue, Tsl also localizes to the prothoracic gland and influences developmental timing. Despite these commonalities, in our studies of Tsl we unexpectedly found that tsl and tor have opposing effects on body size; tsl null mutants are smaller than normal, rather than larger as would be expected if the PTTH/Tor pathway was disrupted. We further found that whereas both genes regulate developmental timing, tsl does so independently of tor. Although tsl null mutants exhibit a similar length delay in time to pupariation to tor mutants, in tsl:tor double mutants this delay is strikingly enhanced. Thus, loss of tsl is additive rather than epistatic to loss of tor. We also find that phenotypes generated by ectopic PTTH expression are independent of tsl. Finally, we show that a modified form of tsl that can rescue developmental timing cannot rescue terminal patterning, indicating that Tsl can function via distinct mechanisms in different contexts. We conclude that Tsl is not just a specialized cue for Torso signaling but also acts independently of PTTH/Tor in the control of body size and the timing of developmental progression. These data highlight surprisingly diverse developmental functions for this sole Drosophila member of the perforin-like superfamily.

  14. The systemin precursor gene regulates both defensive and developmental genes in Solanum tuberosum.

    PubMed

    Narváez-Vasquez, Javier; Ryan, Clarence A

    2002-11-26

    Transformation of Solanum tuberosum, cv. Desiree, with the tomato prosystemin gene, regulated by the 35S cauliflower mosaic virus promoter, resulted in constitutive increase in defensive proteins in potato leaves, similar to its effects in tomato plants, but also resulted in a dramatic increase in storage protein levels in potato tubers. Tubers from selected transformed lines contained 4- to 5-fold increases in proteinase inhibitor I and II proteins, >50% more soluble and dry weight protein, and >50% more total nitrogen and total free amino acids than found in wild-type tubers. These results suggest that the prosystemin gene plays a dual role in potato plants in regulating proteinase inhibitor synthesis in leaves in response to wounding and in regulating storage protein synthesis in potato tubers in response to developmental cues. The results indicated that components of the systemin signaling pathway normally found in leaves have been recruited by potato plants to be developmentally regulated to synthesize and accumulate large quantities of storage proteins in tubers.

  15. Developmental Assets: Validating a Model of Successful Adaptation for Emerging Adults

    ERIC Educational Resources Information Center

    Pashak, Travis J.; Hagen, John W.; Allen, Jennifer M.; Selley, Ryan S.

    2014-01-01

    This brief report assesses the validity of applying the adolescent-based developmental assets model to emerging adults. Developmental assets are specific constructs which predict future success, including positive individual characteristics and environmental resources. The researchers developed a self-report survey based on a subset of the assets…

  16. Rigidity sensing and adaptation through regulation of integrin types

    PubMed Central

    Elosegui-Artola, Alberto; Bazellières, Elsa; Allen, Michael D.; Andreu, Ion; Oria, Roger; Sunyer, Raimon; Gomm, Jennifer J.; Marshall, John F.; Jones, J. Louise; Trepat, Xavier; Roca-Cusachs, Pere

    2014-01-01

    Tissue rigidity regulates processes in development, cancer and wound healing. However, how cells detect rigidity, and thereby modulate their behaviour, remains unknown. Here, we show that sensing and adaptation to matrix rigidity in breast myoepithelial cells is determined by the bond dynamics of different integrin types. Cell binding to fibronectin through either α5β1 integrins (constitutively expressed) or αvβ6 integrins (selectively expressed in cancer and development) adapts force generation, actin flow, and integrin recruitment to rigidities associated with healthy or malignant tissue, respectively. In vitro experiments and theoretical modelling further demonstrate that this behaviour is explained by the different binding and unbinding rates of both integrin types to fibronectin. Moreover, rigidity sensing through differences in integrin bond dynamics applies both when integrins bind separately and when they compete for binding to fibronectin. PMID:24793358

  17. The interferon-related developmental regulator 1 is used by human papillomavirus to suppress NFκB activation

    PubMed Central

    Tummers, Bart; Goedemans, Renske; Pelascini, Laetitia P. L.; Jordanova, Ekaterina S.; van Esch, Edith M. G.; Meyers, Craig; Melief, Cornelis J. M.; Boer, Judith M.; van der Burg, Sjoerd H.

    2015-01-01

    High-risk human papillomaviruses (hrHPVs) infect keratinocytes and successfully evade host immunity despite the fact that keratinocytes are well equipped to respond to innate and adaptive immune signals. Using non-infected and freshly established or persistent hrHPV-infected keratinocytes we show that hrHPV impairs the acetylation of NFκB/RelA K310 in keratinocytes. As a consequence, keratinocytes display a decreased pro-inflammatory cytokine production and immune cell attraction in response to stimuli of the innate or adaptive immune pathways. HPV accomplishes this by augmenting the expression of interferon-related developmental regulator 1 (IFRD1) in an EGFR-dependent manner. Restoration of NFκB/RelA acetylation by IFRD1 shRNA, cetuximab treatment or the HDAC1/3 inhibitor entinostat increases basal and induced cytokine expression. Similar observations are made in IFRD1-overexpressing HPV-induced cancer cells. Thus, our study reveals an EGFR–IFRD1-mediated viral immune evasion mechanism, which can also be exploited by cancer cells. PMID:26055519

  18. Enhancer of zeste acts as a major developmental regulator of Ciona intestinalis embryogenesis.

    PubMed

    Le Goff, Emilie; Martinand-Mari, Camille; Martin, Marianne; Feuillard, Jérôme; Boublik, Yvan; Godefroy, Nelly; Mangeat, Paul; Baghdiguian, Stephen; Cavalli, Giacomo

    2015-08-14

    The paradigm of developmental regulation by Polycomb group (PcG) proteins posits that they maintain silencing outside the spatial expression domains of their target genes, particularly of Hox genes, starting from mid embryogenesis. The Enhancer of zeste [E(z)] PcG protein is the catalytic subunit of the PRC2 complex, which silences its targets via deposition of the H3K27me3 mark. Here, we studied the ascidian Ciona intestinalis counterpart of E(z). Ci-E(z) is detected by immunohistochemistry as soon as the 2- and 4-cell stages as a cytoplasmic form and becomes exclusively nuclear thereafter, whereas the H3K27me3 mark is detected starting from the gastrula stage and later. Morpholino invalidation of Ci-E(z) leads to the total disappearance of both Ci-E(z) protein and its H3K27me3 mark. Ci-E(z) morphants display a severe phenotype. Strikingly, the earliest defects occur at the 4-cell stage with the dysregulation of cell positioning and mitotic impairment. At later stages, Ci-E(z)-deficient embryos are affected by terminal differentiation defects of neural, epidermal and muscle tissues, by the failure to form a notochord and by the absence of caudal nerve. These major phenotypic defects are specifically rescued by injection of a morpholino-resistant Ci-E(z) mRNA, which restores expression of Ci-E(z) protein and re-deposition of the H3K27me3 mark. As observed by qPCR analyses, Ci-E(z) invalidation leads to the early derepression of tissue-specific developmental genes, whereas late-acting developmental genes are generally down-regulated. Altogether, our results suggest that Ci-E(z) plays a major role during embryonic development in Ciona intestinalis by silencing early-acting developmental genes in a Hox-independent manner.

  19. FSH Regulates mRNA Translation in Mouse Oocytes and Promotes Developmental Competence.

    PubMed

    Franciosi, Federica; Manandhar, Shila; Conti, Marco

    2016-02-01

    A major challenge in assisted reproductive technology is to develop conditions for in vitro oocyte maturation yielding high-quality eggs. Efforts are underway to assess whether known hormonal and local factors play a role in oocyte developmental competence and to identify the molecular mechanism involved. Here we have tested the hypothesis that FSH improves oocyte developmental competence by regulating the translational program in the oocyte. Accumulation of oocyte proteins (targeting protein for the Xenopus kinesin xklp2 and IL-7) associated with improved oocyte quality is increased when cumulus-oocyte complexes are incubated with FSH. This increase is due to enhanced translation of the corresponding mRNAs, as indicated by microinjection of constructs in which the 3' untranslated region of the Tpx2 or Il7 transcripts is fused to the luciferase reporter. A transient activation of the phosphatidyl-inositol 3-phosphate/AKT cascade in the oocyte preceded the increase in translation. When the epidermal growth factor (EGF) receptor is down-regulated in follicular cells, the FSH-induced rate of maternal mRNA translation and AKT activation were lost, demonstrating that the effects of FSH are indirect and require EGF receptor signaling in the somatic compartment. Using Pten(fl/fl):Zp3cre oocytes in which the AKT is constitutively activated, translation of reporters was increased and was no longer sensitive to FSH stimulation. More importantly, the oocytes lacking the phosphate and tensin homolog gene showed increased developmental competence, even when cultured in the absence of FSH or growth factors. Thus, we demonstrate that FSH intersects with the follicular EGF network to activate the phosphatidyl-inositol 3-phosphate/AKT cascade in the oocyte to control translation and developmental competence. These findings provide a molecular rationale for the use of FSH to improve egg quality.

  20. Homeostatic regulation of memory systems and adaptive decisions.

    PubMed

    Mizumori, Sheri J Y; Jo, Yong Sang

    2013-11-01

    While it is clear that many brain areas process mnemonic information, understanding how their interactions result in continuously adaptive behaviors has been a challenge. A homeostatic-regulated prediction model of memory is presented that considers the existence of a single memory system that is based on a multilevel coordinated and integrated network (from cells to neural systems) that determines the extent to which events and outcomes occur as predicted. The "multiple memory systems of the brain" have in common output that signals errors in the prediction of events and/or their outcomes, although these signals differ in terms of what the error signal represents (e.g., hippocampus: context prediction errors vs. midbrain/striatum: reward prediction errors). The prefrontal cortex likely plays a pivotal role in the coordination of prediction analysis within and across prediction brain areas. By virtue of its widespread control and influence, and intrinsic working memory mechanisms. Thus, the prefrontal cortex supports the flexible processing needed to generate adaptive behaviors and predict future outcomes. It is proposed that prefrontal cortex continually and automatically produces adaptive responses according to homeostatic regulatory principles: prefrontal cortex may serve as a controller that is intrinsically driven to maintain in prediction areas an experience-dependent firing rate set point that ensures adaptive temporally and spatially resolved neural responses to future prediction errors. This same drive by prefrontal cortex may also restore set point firing rates after deviations (i.e. prediction errors) are detected. In this way, prefrontal cortex contributes to reducing uncertainty in prediction systems. An emergent outcome of this homeostatic view may be the flexible and adaptive control that prefrontal cortex is known to implement (i.e. working memory) in the most challenging of situations. Compromise to any of the prediction circuits should result in

  1. Homeostatic Regulation of Memory Systems and Adaptive Decisions

    PubMed Central

    Mizumori, Sheri JY; Jo, Yong Sang

    2013-01-01

    While it is clear that many brain areas process mnemonic information, understanding how their interactions result in continuously adaptive behaviors has been a challenge. A homeostatic-regulated prediction model of memory is presented that considers the existence of a single memory system that is based on a multilevel coordinated and integrated network (from cells to neural systems) that determines the extent to which events and outcomes occur as predicted. The “multiple memory systems of the brain” have in common output that signals errors in the prediction of events and/or their outcomes, although these signals differ in terms of what the error signal represents (e.g., hippocampus: context prediction errors vs. midbrain/striatum: reward prediction errors). The prefrontal cortex likely plays a pivotal role in the coordination of prediction analysis within and across prediction brain areas. By virtue of its widespread control and influence, and intrinsic working memory mechanisms. Thus, the prefrontal cortex supports the flexible processing needed to generate adaptive behaviors and predict future outcomes. It is proposed that prefrontal cortex continually and automatically produces adaptive responses according to homeostatic regulatory principles: prefrontal cortex may serve as a controller that is intrinsically driven to maintain in prediction areas an experience-dependent firing rate set point that ensures adaptive temporally and spatially resolved neural responses to future prediction errors. This same drive by prefrontal cortex may also restore set point firing rates after deviations (i.e. prediction errors) are detected. In this way, prefrontal cortex contributes to reducing uncertainty in prediction systems. An emergent outcome of this homeostatic view may be the flexible and adaptive control that prefrontal cortex is known to implement (i.e. working memory) in the most challenging of situations. Compromise to any of the prediction circuits should result

  2. Active Inference, homeostatic regulation and adaptive behavioural control.

    PubMed

    Pezzulo, Giovanni; Rigoli, Francesco; Friston, Karl

    2015-11-01

    We review a theory of homeostatic regulation and adaptive behavioural control within the Active Inference framework. Our aim is to connect two research streams that are usually considered independently; namely, Active Inference and associative learning theories of animal behaviour. The former uses a probabilistic (Bayesian) formulation of perception and action, while the latter calls on multiple (Pavlovian, habitual, goal-directed) processes for homeostatic and behavioural control. We offer a synthesis these classical processes and cast them as successive hierarchical contextualisations of sensorimotor constructs, using the generative models that underpin Active Inference. This dissolves any apparent mechanistic distinction between the optimization processes that mediate classical control or learning. Furthermore, we generalize the scope of Active Inference by emphasizing interoceptive inference and homeostatic regulation. The ensuing homeostatic (or allostatic) perspective provides an intuitive explanation for how priors act as drives or goals to enslave action, and emphasises the embodied nature of inference.

  3. Responding to color: the regulation of complementary chromatic adaptation.

    PubMed

    Kehoe, David M; Gutu, Andrian

    2006-01-01

    The acclimation of photosynthetic organisms to changes in light color is ubiquitous and may be best illustrated by the colorful process of complementary chromatic adaptation (CCA). During CCA, cyanobacterial cells change from brick red to bright blue green, depending on their light color environment. The apparent simplicity of this spectacular, photoreversible event belies the complexity of the cellular response to changes in light color. Recent results have shown that the regulation of CCA is also complex and involves at least three pathways. One is controlled by a phytochrome-class photoreceptor that is responsive to green and red light and a complex two-component signal transduction pathway, whereas another is based on sensing redox state. Studies of CCA are uncovering the strategies used by photosynthetic organisms during light acclimation and the means by which they regulate these responses.

  4. Active Inference, homeostatic regulation and adaptive behavioural control

    PubMed Central

    Pezzulo, Giovanni; Rigoli, Francesco; Friston, Karl

    2015-01-01

    We review a theory of homeostatic regulation and adaptive behavioural control within the Active Inference framework. Our aim is to connect two research streams that are usually considered independently; namely, Active Inference and associative learning theories of animal behaviour. The former uses a probabilistic (Bayesian) formulation of perception and action, while the latter calls on multiple (Pavlovian, habitual, goal-directed) processes for homeostatic and behavioural control. We offer a synthesis these classical processes and cast them as successive hierarchical contextualisations of sensorimotor constructs, using the generative models that underpin Active Inference. This dissolves any apparent mechanistic distinction between the optimization processes that mediate classical control or learning. Furthermore, we generalize the scope of Active Inference by emphasizing interoceptive inference and homeostatic regulation. The ensuing homeostatic (or allostatic) perspective provides an intuitive explanation for how priors act as drives or goals to enslave action, and emphasises the embodied nature of inference. PMID:26365173

  5. Adaptive behavior in autism and Pervasive Developmental Disorder-Not Otherwise Specified: microanalysis of scores on the Vineland Adaptive Behavior Scales.

    PubMed

    Paul, Rhea; Miles, Stephanie; Cicchetti, Domenic; Sparrow, Sara; Klin, Ami; Volkmar, Fred; Coflin, Megan; Booker, Shelley

    2004-04-01

    The purpose of this study is to provide a microanalysis of differences in adaptive functioning seen between well-matched groups of school-aged children with autism and those diagnosed as having Pervasive Developmental Disorder-Not Otherwise Specified, all of whom functioned in the mild to moderate range of intellectual impairment. Findings indicate that the major area of difference between children with autism and those with Pervasive Developmental Disorder-Not Otherwise Specified, was expressive communication; specifically, the use of elaborations in syntax and morphology and in pragmatic use of language to convey and to seek information in discourse. Linear discriminant function analysis revealed that scores on just three of these expressive communication item sets correctly identified subjects in the two diagnostic categories with 80% overall accuracy. Implications of these findings for both diagnosis and intervention with children with Autism Spectrum Disorders will be discussed.

  6. CDK8-Cyclin C Mediates Nutritional Regulation of Developmental Transitions through the Ecdysone Receptor in Drosophila

    PubMed Central

    Xie, Xiao-Jun; Hsu, Fu-Ning; Gao, Xinsheng; Xu, Wu; Ni, Jian-Quan; Xing, Yue; Huang, Liying; Hsiao, Hao-Ching; Zheng, Haiyan; Wang, Chenguang; Zheng, Yani; Xiaoli, Alus M.; Yang, Fajun; Bondos, Sarah E.; Ji, Jun-Yuan

    2015-01-01

    The steroid hormone ecdysone and its receptor (EcR) play critical roles in orchestrating developmental transitions in arthropods. However, the mechanism by which EcR integrates nutritional and developmental cues to correctly activate transcription remains poorly understood. Here, we show that EcR-dependent transcription, and thus, developmental timing in Drosophila, is regulated by CDK8 and its regulatory partner Cyclin C (CycC), and the level of CDK8 is affected by nutrient availability. We observed that cdk8 and cycC mutants resemble EcR mutants and EcR-target genes are systematically down-regulated in both mutants. Indeed, the ability of the EcR-Ultraspiracle (USP) heterodimer to bind to polytene chromosomes and the promoters of EcR target genes is also diminished. Mass spectrometry analysis of proteins that co-immunoprecipitate with EcR and USP identified multiple Mediator subunits, including CDK8 and CycC. Consistently, CDK8-CycC interacts with EcR-USP in vivo; in particular, CDK8 and Med14 can directly interact with the AF1 domain of EcR. These results suggest that CDK8-CycC may serve as transcriptional cofactors for EcR-dependent transcription. During the larval–pupal transition, the levels of CDK8 protein positively correlate with EcR and USP levels, but inversely correlate with the activity of sterol regulatory element binding protein (SREBP), the master regulator of intracellular lipid homeostasis. Likewise, starvation of early third instar larvae precociously increases the levels of CDK8, EcR and USP, yet down-regulates SREBP activity. Conversely, refeeding the starved larvae strongly reduces CDK8 levels but increases SREBP activity. Importantly, these changes correlate with the timing for the larval–pupal transition. Taken together, these results suggest that CDK8-CycC links nutrient intake to developmental transitions (EcR activity) and fat metabolism (SREBP activity) during the larval–pupal transition. PMID:26222308

  7. Postsynaptic FMRP bidirectionally regulates excitatory synapses as a function of developmental age and MEF2 activity.

    PubMed

    Zang, Tong; Maksimova, Marina A; Cowan, Christopher W; Bassel-Duby, Rhonda; Olson, Eric N; Huber, Kimberly M

    2013-09-01

    Rates of synapse formation and elimination change over the course of postnatal development, but little is known of molecular mechanisms that mediate this developmental switch. Here, we report that the dendritic RNA-binding protein fragile X mental retardation protein (FMRP) bidirectionally and cell autonomously regulates excitatory synaptic function, which depends on developmental age as well as function of the activity-dependent transcription factor myocyte enhancer factor 2 (MEF2). The acute postsynaptic expression of FMRP in CA1 neurons of hippocampal slice cultures (during the first postnatal week, P6-P7) promotes synapse function and maturation. In contrast, the acute expression of FMRP or endogenous FMRP in more mature neurons (during the second postnatal week; P13-P16) suppresses synapse number. The ability of neuronal depolarization to stimulate MEF2 transcriptional activity increases over this same developmental period. Knockout of endogenous MEF2 isoforms causes acute postsynaptic FMRP expression to promote, instead of eliminate, synapses onto 2-week-old neurons. Conversely, the expression of active MEF2 in neonatal neurons results in a precocious FMRP-dependent synapse elimination. Our findings suggest that FMRP and MEF2 function together to fine tune synapse formation and elimination rates in response to neuronal activity levels over the course of postnatal development.

  8. Selection and analysis of cloned developmentally-regulated Dictyostelium discoideum genes by hybridization-competition.

    PubMed Central

    Mangiarotti, G; Chung, S; Zuker, C; Lodish, H F

    1981-01-01

    We describe a new technique for selection of cloned gene segments which are expressed preferentially at one developmental stage but at a relatively low level. A nitrocellulose filter replica of plaques of lambda phage which contain approximately 8 KB inserts of genomic DNA is prepared; it is hybridized with a small amount of [32p] labeled mRNA prepared from one developmental stage, in the presence of a several-hundred fold excess of competitor RNA from a different stage. We show that clones of Dictyostelium nuclear DNA which form hybrids under these conditions indeed encode developmentally regulated mRNAs. Our previous analysis of Dictyostelium discoideum differentiation indicated that transcripts from about 12% of the genome appear in mRNA at one defined stage of differentiation - the formation of cell-cell aggregates. A number of our new clones are novel, in that they encode multiple discrete mRNA species all of which accumulate only at the cell aggregate stages; others encode one or more mRNAs which appear at the tight aggregate stage and also one or more which are present throughout differentiation. These latter clones, in particular, would be difficult to identify using other selection techniques. Images PMID:7232208

  9. Nucleus downscaling in mouse embryos is regulated by cooperative developmental and geometric programs

    PubMed Central

    Tsichlaki, Elina; FitzHarris, Greg

    2016-01-01

    Maintaining appropriate nucleus size is important for cell health, but the mechanisms by which this is achieved are poorly understood. Controlling nucleus size is a particular challenge in early development, where the nucleus must downscale in size with progressive reductive cell divisions. Here we use live and fixed imaging, micromanipulation approaches, and small molecule analyses during preimplantation mouse development to probe the mechanisms by which nucleus size is determined. We find a close correlation between cell and nuclear size at any given developmental stage, and show that experimental cytoplasmic reduction can alter nuclear size, together indicating that cell size helps dictate nuclear proportions. Additionally, however, by creating embryos with over-sized blastomeres we present evidence of a developmental program that drives nuclear downscaling independently of cell size. We show that this developmental program does not correspond with nuclear import rates, but provide evidence that PKC activity may contribute to this mechanism. We propose a model in which nuclear size regulation during early development is a multi-mode process wherein nucleus size is set by cytoplasmic factors, and fine-tuned on a cell-by-cell basis according to cell size. PMID:27320842

  10. ADAPTING THE MEDAKA EMBRYO ASSAY TO A HIGH-THROUGHPUT APPROACH FOR DEVELOPMENTAL TOXICITY TESTING.

    EPA Science Inventory

    Chemical exposure during embryonic development may cause persistent effects, yet developmental toxicity data exist for very few chemicals. Current testing procedures are time consuming and costly, underlining the need for rapid and low cost screening strategies. While in vitro ...

  11. Prenatal tobacco exposure and self-regulation in early childhood: Implications for developmental psychopathology.

    PubMed

    Wiebe, Sandra A; Clark, Caron A C; De Jong, Desiree M; Chevalier, Nicolas; Espy, Kimberly Andrews; Wakschlag, Lauren

    2015-05-01

    Prenatal tobacco exposure (PTE) has a well-documented association with disruptive behavior in childhood, but the neurocognitive effects of exposure that underlie this link are not sufficiently understood. The present study was designed to address this gap, through longitudinal follow-up in early childhood of a prospectively enrolled cohort with well-characterized prenatal exposure. Three-year-old children (n = 151) were assessed using a developmentally sensitive battery capturing both cognitive and motivational aspects of self-regulation. PTE was related to motivational self-regulation, where children had to delay approach to attractive rewards, but not cognitive self-regulation, where children had to hold information in mind and inhibit prepotent motor responses. Furthermore, PTE predicted motivational self-regulation more strongly in boys than in girls, and when propensity scores were covaried to control for confounding risk factors, the effect of PTE on motivational self-regulation was significant only in boys. These findings suggest that PTE's impact on neurodevelopment may be greater in boys than in girls, perhaps reflecting vulnerability in neural circuits that subserve reward sensitivity and emotion regulation, and may also help to explain why PTE is more consistently related to disruptive behavior disorders than attention problems.

  12. From parent-child mutuality to security to socialization outcomes: developmental cascade toward positive adaptation in preadolescence.

    PubMed

    Kim, Sanghag; Boldt, Lea J; Kochanska, Grazyna

    2015-01-01

    A developmental cascade from positive early parent-child relationship to child security with the parent to adaptive socialization outcomes, proposed in attachment theory and often implicitly accepted but rarely formally tested, was examined in 100 mothers, fathers, and children followed from toddler age to preadolescence. Parent-child Mutually Responsive Orientation (MRO) was observed in lengthy interactions at 38, 52, 67, and 80 months; children reported their security with parents at age eight. Socialization outcomes (parent- and child-reported cooperation with parental monitoring and teacher-reported school competence) were assessed at age 10. Mediation was tested with PROCESS. The parent-child history of MRO significantly predicted both mother-child and father-child security. For mother-child dyads, security mediated links between history of MRO and cooperation with maternal monitoring and school competence, controlling for developmental continuity of the studied constructs. For father-child dyads, the mediation effect was not evident.

  13. Early developmental gene regulation in Strongylocentrotus purpuratus embryos in response to elevated CO₂ seawater conditions.

    PubMed

    Hammond, LaTisha M; Hofmann, Gretchen E

    2012-07-15

    Ocean acidification, or the increased uptake of CO(2) by the ocean due to elevated atmospheric CO(2) concentrations, may variably impact marine early life history stages, as they may be especially susceptible to changes in ocean chemistry. Investigating the regulatory mechanisms of early development in an environmental context, or ecological development, will contribute to increased understanding of potential organismal responses to such rapid, large-scale environmental changes. We examined transcript-level responses to elevated seawater CO(2) during gastrulation and the initiation of spiculogenesis, two crucial developmental processes in the purple sea urchin, Strongylocentrotus purpuratus. Embryos were reared at the current, accepted oceanic CO(2) concentration of 380 microatmospheres (μatm), and at the elevated levels of 1000 and 1350 μatm, simulating predictions for oceans and upwelling regions, respectively. The seven genes of interest comprised a subset of pathways in the primary mesenchyme cell gene regulatory network (PMC GRN) shown to be necessary for the regulation and execution of gastrulation and spiculogenesis. Of the seven genes, qPCR analysis indicated that elevated CO(2) concentrations only had a significant but subtle effect on two genes, one important for early embryo patterning, Wnt8, and the other an integral component in spiculogenesis and biomineralization, SM30b. Protein levels of another spicule matrix component, SM50, demonstrated significant variable responses to elevated CO(2). These data link the regulation of crucial early developmental processes with the environment that these embryos would be developing within, situating the study of organismal responses to ocean acidification in a developmental context.

  14. Self-Regulation and Math Attitudes: Effects on Academic Performance in Developmental Math Courses at a Community College

    ERIC Educational Resources Information Center

    Otts, Cynthia D.

    2010-01-01

    The purpose of the study was to investigate the relationship among math attitudes, self-regulated learning, and course outcomes in developmental math. Math attitudes involved perceived usefulness of math and math anxiety. Self-regulated learning represented the ability of students to control cognitive, metacognitive, and behavioral aspects of…

  15. Developmental regulation of insulin-like growth factor-I and growth hormone receptor gene expression.

    PubMed

    Shoba, L; An, M R; Frank, S J; Lowe, W L

    1999-06-25

    During development, the insulin-like growth factor I (IGF-I) gene is expressed in a tissue specific manner; however, the molecular mechanisms governing its developmental regulation remain poorly defined. To examine the hypothesis that expression of the growth hormone (GH) receptor accounts, in part, for the tissue specific expression of the IGF-I gene during development, the developmental regulation of IGF-I and GH receptor gene expression in rat tissues was examined. The level of IGF-I and GH receptor mRNA was quantified in RNA prepared from rats between day 17 of gestation (E17) and 17 months of age (17M) using an RNase protection assay. Developmental regulation of IGF-I gene expression was tissue specific with four different patterns of expression seen. In liver, IGF-I mRNA levels increased markedly between E17 and postnatal day 45 (P45) and declined thereafter. In contrast, in brain, skeletal muscle and testis, IGF-I mRNA levels decreased between P5 and 4M but were relatively unchanged thereafter. In heart and kidney, a small increase in IGF-I mRNA levels was observed between the early postnatal period and 4 months, whereas in lung, minimal changes were observed during development. The changes in GH receptor mRNA levels were, in general, coordinate with the changes in IGF-I mRNA levels, except in skeletal muscle. Interestingly, quantification of GH receptor levels by Western blot analysis in skeletal muscle demonstrated changes coordinate with IGF-I mRNA levels. The levels of the proteins which mediate GH receptor signaling (STAT1, -3, and -5, and JAK2) were quantified by Western blot analysis. These proteins also are expressed in a tissue specific manner during development. In some cases, the pattern of expression was coordinate with IGF-I gene expression, whereas in others it was discordant. To further define molecular mechanisms for the developmental regulation of IGF-I gene expression, protein binding to IGFI-FP1, a protein binding site that is in the major

  16. Adapting Webster-Stratton’s Incredible Years Parent Training for Children with Developmental Delay

    PubMed Central

    Lee McIntyre, Laura

    2008-01-01

    Background Children with intellectual or developmental disabilities (ID/DD) are more likely than typically developing children to experience behaviour problems. Parent training, such as the Incredible Years Parent Training (IYPT) series, has been a widely used intervention to support families with children with or at-risk for behaviour problems; yet to date, this programme has not been used with parents with young children with developmental delay or disabilities. Method This preliminary treatment group only study assessed the feasibility of implementing a modified parent training programme (IYPT-DD) with 25 families with 2-5 year old children with developmental delay. Intervention consisted of 12 weekly (2 ½ hour) sessions with topics covering developmentally appropriate play, praise, rewards, limit setting, and handling challenging behaviour. Results Results suggest preliminary evidence of efficacy in reducing negative parent and child behaviour and increasing parental perceptions of child positive impact. Conclusions This study provides evidence for the feasibility of the DD modifications applied to the IYPT. Although this approach is promising, additional evidence is needed to address the efficacy of IYPT-DD in children with developmental delay. PMID:18671808

  17. A co-expression gene network associated with developmental regulation of apple fruit acidity.

    PubMed

    Bai, Yang; Dougherty, Laura; Cheng, Lailiang; Xu, Kenong

    2015-08-01

    Apple fruit acidity, which affects the fruit's overall taste and flavor to a large extent, is primarily determined by the concentration of malic acid. Previous studies demonstrated that the major QTL malic acid (Ma) on chromosome 16 is largely responsible for fruit acidity variations in apple. Recent advances suggested that a natural mutation that gives rise to a premature stop codon in one of the two aluminum-activated malate transporter (ALMT)-like genes (called Ma1) is the genetic causal element underlying Ma. However, the natural mutation does not explain the developmental changes of fruit malate levels in a given genotype. Using RNA-seq data from the fruit of 'Golden Delicious' taken at 14 developmental stages from 1 week after full-bloom (WAF01) to harvest (WAF20), we characterized their transcriptomes in groups of high (12.2 ± 1.6 mg/g fw, WAF03-WAF08), mid (7.4 ± 0.5 mg/g fw, WAF01-WAF02 and WAF10-WAF14) and low (5.4 ± 0.4 mg/g fw, WAF16-WAF20) malate concentrations. Detailed analyses showed that a set of 3,066 genes (including Ma1) were expressed not only differentially (P FDR < 0.05) between the high and low malate groups (or between the early and late developmental stages) but also in significant (P < 0.05) correlation with malate concentrations. The 3,066 genes fell in 648 MapMan (sub-) bins or functional classes, and 19 of them were significantly (P FDR < 0.05) co-enriched or co-suppressed in a malate dependent manner. Network inferring using the 363 genes encompassed in the 19 (sub-) bins, identified a major co-expression network of 239 genes. Since the 239 genes were also differentially expressed between the early (WAF03-WAF08) and late (WAF16-WAF20) developmental stages, the major network was considered to be associated with developmental regulation of apple fruit acidity in 'Golden Delicious'.

  18. 77 FR 75523 - Adaptation of Regulations To Incorporate Swaps-Records of Transactions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ... COMMISSION 17 CFR Part 1 RIN 3038-AD53 Adaptation of Regulations To Incorporate Swaps--Records of..., the Commission published in the Federal Register the Final Adaptation Rule.\\8\\ The Final Adaptation... Adaptation Rule, the Commission stated that it would address in a separate release certain of the...

  19. Developmental specialization of the left parietal cortex for the semantic representation of Arabic numerals: an fMR-adaptation study.

    PubMed

    Vogel, Stephan E; Goffin, Celia; Ansari, Daniel

    2015-04-01

    The way the human brain constructs representations of numerical symbols is poorly understood. While increasing evidence from neuroimaging studies has indicated that the intraparietal sulcus (IPS) becomes increasingly specialized for symbolic numerical magnitude representation over developmental time, the extent to which these changes are associated with age-related differences in symbolic numerical magnitude representation or with developmental changes in non-numerical processes, such as response selection, remains to be uncovered. To address these outstanding questions we investigated developmental changes in the cortical representation of symbolic numerical magnitude in 6- to 14-year-old children using a passive functional magnetic resonance imaging adaptation design, thereby mitigating the influence of response selection. A single-digit Arabic numeral was repeatedly presented on a computer screen and interspersed with the presentation of novel digits deviating as a function of numerical ratio (smaller/larger number). Results demonstrated a correlation between age and numerical ratio in the left IPS, suggesting an age-related increase in the extent to which numerical symbols are represented in the left IPS. Brain activation of the right IPS was modulated by numerical ratio but did not correlate with age, indicating hemispheric differences in IPS engagement during the development of symbolic numerical representation.

  20. Effects of Video Adaptations on Comprehension of Students with Intellectual and Developmental Disabilities

    ERIC Educational Resources Information Center

    Evmenova, Anna S.; Behrmann, Michael M.; Mastropieri, Margo A.; Baker, Pamela H.; Graff, Heidi J.

    2011-01-01

    This study investigated the effects of alternative narration, highlighted text, picture/word-based captions, and interactive video searching features for improving comprehension of nonfiction academic video clips by students with intellectual and developmental disabilities (ID/DD). Combined multiple baselines across participants and alternating…

  1. Postural Adaptations to a Suprapostural Memory Task among Children with and without Developmental Coordination Disorder

    ERIC Educational Resources Information Center

    Chen, Fu-Chen; Tsai, Chia-Liang; Stoffregen, Thomas A.; Chang, Chihu-Hui; Wade, Michael G.

    2012-01-01

    Aim: The present study investigated the effects of varying the cognitive demands of a memory task (a suprapostural task) while recording postural motion on two groups of children, one diagnosed with developmental coordination disorder (DCD) and an age-matched group of typically developing children. Method: Two groups, each comprising 38 child…

  2. Unliganded thyroid hormone receptor α regulates developmental timing via gene repression in Xenopus tropicalis.

    PubMed

    Choi, Jinyoung; Suzuki, Ken-Ichi T; Sakuma, Tetsushi; Shewade, Leena; Yamamoto, Takashi; Buchholz, Daniel R

    2015-02-01

    Thyroid hormone (TH) receptor (TR) expression begins early in development in all vertebrates when circulating TH levels are absent or minimal, yet few developmental roles for unliganded TRs have been established. Unliganded TRs are expected to repress TH-response genes, increase tissue responsivity to TH, and regulate the timing of developmental events. Here we examined the role of unliganded TRα in gene repression and development in Xenopus tropicalis. We used transcription activator-like effector nuclease gene disruption technology to generate founder animals with mutations in the TRα gene and bred them to produce F1 offspring with a normal phenotype and a mutant phenotype, characterized by precocious hind limb development. Offspring with a normal phenotype had zero or one disrupted TRα alleles, and tadpoles with the mutant hind limb phenotype had two truncated TRα alleles with frame shift mutations between the two zinc fingers followed by 40-50 mutant amino acids and then an out-of-frame stop codon. We examined TH-response gene expression and early larval development with and without exogenous TH in F1 offspring. As hypothesized, mutant phenotype tadpoles had increased expression of TH-response genes in the absence of TH and impaired induction of these same genes after exogenous TH treatment, compared with normal phenotype animals. Also, mutant hind limb phenotype animals had reduced hind limb and gill responsivity to exogenous TH. Similar results in methimazole-treated tadpoles showed that increased TH-response gene expression and precocious development were not due to early production of TH. These results indicate that unliganded TRα delays developmental progression by repressing TH-response genes.

  3. ATRX: A novel progesterone regulated biomarker of mammalian oocyte developmental potential.

    PubMed

    O'Shea, Lynne Clare; Daly, Edward; Hensey, Carmel; Fair, Trudee

    2017-03-01

    A multi-species meta-analysis of published transcriptomic data from models of oocyte competence identified the chromatin remodelling factor ATRX, as a putative biomarker of oocyte competence. The objective of the current study was to test the hypothesis that ATRX protein expression by cumulus oocyte complexes (COCs) reflects their intrinsic quality and developmental potential. In excess of 10,000 bovine COCs were utilized to test our hypothesis. COCs were in vitro matured (IVM) under conditions associated with reduced developmental potential: IVM in the presence or absence of (1) progesterone synthesis inhibitor (Trilostane); (2) nuclear progesterone receptor inhibitor (Aglepristone) or (3) an inducer of DNA damage (Staurosporine). ATRX protein expression and localization were determined using immunocytochemistry and Western blot analysis. A proportion of COCs matured in the presence or absence of Trilostane were in vitro fertilised and cultured, with subsequent embryo development characteristics analysed. In addition, ATRX expression was investigated in 40 human germinal vesicle stage COCs. Our results showed that ATRX is expressed in human and bovine germinal vesicle oocytes and cumulus cells. In bovine, expression decreases following IVM. However, this decline is not observed in COCs matured under sub-optimal conditions. Blastocyst development rate and cell number are decreased, whereas the incidence of abnormal metaphase phase spindle and chromosome alignment are increased, following IVM in the presence of Trilostane (P < 0.05). In conclusion, localization of ATRX to the cumulus cell nuclei and oocyte chromatin, post IVM, is associated with poor oocyte quality and low developmental potential. Furthermore, ATRX is dynamically regulated in response to progesterone signalling.

  4. Possible deletion of a developmentally regulated heavy-chain variable region gene in autoimmune diseases

    SciTech Connect

    Yang, Pei-Ming; Olee, Tsaiwei; Kozin, F.; Carson, D.A.; Chen, P.P. ); Olsen, N.J. ); Siminovitch, K.A. )

    1990-10-01

    Several autoantibody-associated variable region (V) genes are preferentially expressed during early ontogenic development, suggesting strongly that they are of developmental and physiological importance. As such, it is possible that polymorphisms in one or more of these genes may alter susceptibility to autoimmune disease. The authors have searched extensively for a probe related to a developmentally regulated V gene that has the power to differentiate among highly homologous V genes in human populations. Using such a probe (i.e., Humhv3005/P1) related to both anti-DNA and anti-IgG autoantibodies, they studied restriction fragment length polymorphisms in patients with rheumatoid arthritis and systemic lupus erythematosus and found an apparent heavy-chain V (V{sub H}) gene deletion that was nearly restricted to the autoimmune patients. These data suggest that deletions of physiologically important V{sub H} genes may increase the risk of autoimmunity through indirect effects on the development and homeostasis of the B-cell repertoire.

  5. Developmental role for endocannabinoid signaling in regulating glucose metabolism and growth.

    PubMed

    Li, Zhiying; Schmidt, Sarah F; Friedman, Jeffrey M

    2013-07-01

    Treatment of ob/ob (obese) mice with a cannabinoid receptor 1 (Cnr1) antagonist reduces food intake, suggesting a role for endocannabinoid signaling in leptin action. We further evaluated the role of endocannabinoid signaling by analyzing the phenotype of Cnr1 knockout ob/ob mice. Double mutant animals show a more severe growth retardation than ob/ob mice with similar levels of adiposity and reduced IGF-I levels without alterations of growth hormone (GH) levels. The double mutant mice are also significantly more glucose intolerant than ob/ob mice. This is in contrast to treatment of ob/ob mice with a Cnr1 antagonist that had no effect on glucose metabolism, suggesting a possible requirement for endocannabinoid signaling during development for normal glucose homeostasis. Double mutant animals also showed similar leptin sensitivity as ob/ob mice, suggesting that there are developmental changes that compensate for the loss of Cnr1 signaling. These data establish a role for Cnr1 during development and suggest that compensatory changes during development may mitigate the requirement for Cnr1 in mediating the effects of leptin. The data also suggest a developmental role for Cnr1 to promote growth, regulate the GH/IGF-I axis, and improve β-cell function and glucose homeostasis in the setting of leptin deficiency.

  6. ETOILE regulates developmental patterning in the filamentous brown alga Ectocarpus siliculosus.

    PubMed

    Le Bail, Aude; Billoud, Bernard; Le Panse, Sophie; Chenivesse, Sabine; Charrier, Bénédicte

    2011-04-01

    Brown algae are multicellular marine organisms evolutionarily distant from both metazoans and land plants. The molecular or cellular mechanisms that govern the developmental patterning in brown algae are poorly characterized. Here, we report the first morphogenetic mutant, étoile (etl), produced in the brown algal model Ectocarpus siliculosus. Genetic, cellular, and morphometric analyses showed that a single recessive locus, ETL, regulates cell differentiation: etl cells display thickening of the extracellular matrix (ECM), and the elongated, apical, and actively dividing E cells are underrepresented. As a result of this defect, the overrepresentation of round, branch-initiating R cells in the etl mutant leads to the rapid induction of the branching process at the expense of the uniaxial growth in the primary filament. Computational modeling allowed the simulation of the etl mutant phenotype by including a modified response to the neighborhood information in the division rules used to specify wild-type development. Microarray experiments supported the hypothesis of a defect in cell-cell communication, as primarily Lin-Notch-domain transmembrane proteins, which share similarities with metazoan Notch proteins involved in binary cell differentiation were repressed in etl. Thus, our study highlights the role of the ECM and of novel transmembrane proteins in cell-cell communication during the establishment of the developmental pattern in this brown alga.

  7. Tandemly repeated exons encode 81-base repeats in multiple, developmentally regulated Schistosoma mansoni transcripts.

    PubMed Central

    Davis, R E; Davis, A H; Carroll, S M; Rajkovic, A; Rottman, F M

    1988-01-01

    The adult Schistosoma mansoni cDNA clone 10-3 encodes an antigen that is recognized by sera from infected humans. We characterized multiple developmentally regulated transcripts homologous to the 10-3 cDNA and portions of the complex genomic loci encoding those transcripts. Transcripts of approximately 950, 870, and 780 nucleotides were expressed in adults, whereas only the 780-nucleotide transcript was observed in the larval stage. These transcripts were highly similar, containing variable numbers of identical direct tandem repeats of 81 bases. Although the sequence of the repeating elements and sequences 3' to them were identical in all the transcripts, sequences 5' of the repeating elements exhibited variations, including a 27-base insertion, alternative start sites for transcription, and alternate 5' exon usage. These transcripts appeared to be derived in part by the developmentally controlled alternative splicing of small exons and the use of alternative transcription initiation sites from the one or two complex loci of at least 40 kilobase pairs. Each 81-base repeat in the transcripts was encoded by three dispersed 27-base-pair exons. These 27-base-pair exons were contained within highly conserved, reiterated 3-kilobase-pair genomic tandem arrays. Images PMID:3211127

  8. The early embryo response to intracellular reactive oxygen species is developmentally regulated.

    PubMed

    Bain, Nathan T; Madan, Pavneesh; Betts, Dean H

    2011-01-01

    In vitro embryo production (IVP) suffers from excessive developmental failure. Its inefficiency is linked, in part, to reactive oxygen species (ROS) brought on by high ex vivo oxygen (O(2)) tensions. To further delineate the effects of ROS on IVP, the intracellular ROS levels of early bovine embryos were modulated by: (1) varying O(2) tension; (2) exogenous H(2)O(2) treatment; and (3) antioxidant supplementation. Although O(2) tension did not significantly affect blastocyst frequencies (P>0.05), 20% O(2) accelerated the rate of first cleavage division and significantly decreased and increased the proportion of permanently arrested 2- to 4-cell embryos and apoptotic 9- to 16-cell embryos, respectively, compared with embryos cultured in 5% O(2) tension. Treatment with H(2)O(2), when applied separately to oocytes, zygotes, 2- to 4-cell embryos or 9- to 16-cell embryos, resulted in a significant (P<0.05) dose-dependent decrease in blastocyst development in conjunction with a corresponding increase in the induction of either permanent embryo arrest or apoptosis in a stage-dependent manner. Polyethylene glycol-catalase supplementation reduced ROS-induced embryo arrest and/or death, resulting in a significant (P<0.05) increase in blastocyst frequencies under high O(2) culture conditions. Together, these results indicate that intracellular ROS may be signalling molecules that, outside an optimal range, result in various developmentally regulated modes of embryo demise.

  9. Analysis of genes developmentally regulated during storage root formation of sweet potato.

    PubMed

    Tanaka, Masaru; Takahata, Yasuhiro; Nakatani, Makoto

    2005-01-01

    To identify the genes involved in storage root formation of sweet potato (Ipomoea batatas), we performed a simplified differential display analysis on adventitious roots at different developmental stages of the storage root. The expression patterns were confirmed by semiquantitative RT-PCR analyses. As a result, 10 genes were identified as being developmentally regulated and were named SRF1-SRF10. The expression of SRF1, SRF2, SRF3, SRF5, SRF6, SRF7, and SRF9 increased during storage root formation, whereas the expression of SRF4, SRF8, and SRF10 decreased. For further characterization, a full-length cDNA of SRF6 was isolated from the cDNA library of the storage root. SRF6 encoded a receptor-like kinase (RLK), which was structurally similar to the leucine-rich repeat (LRR) II RLK family of Arabidopsis thaliana. RNA gel blot analysis showed that the mRNA of SRF6 was most abundantly expressed in the storage roots, although a certain amount of expression was also observed in other vegetative organs. Tissue print mRNA blot analysis of the storage root showed that the mRNA of SRF6 was localized around the primary cambium and meristems in the xylem, which consist of actively dividing cells and cause the thickening of the storage root.

  10. Cold adaptation mechanisms in the ghost moth Hepialus xiaojinensis: Metabolic regulation and thermal compensation.

    PubMed

    Zhu, Wei; Zhang, Huan; Li, Xuan; Meng, Qian; Shu, Ruihao; Wang, Menglong; Zhou, Guiling; Wang, Hongtuo; Miao, Lin; Zhang, Jihong; Qin, Qilian

    2016-02-01

    Ghost moths (Lepidoptera: Hepialidae) are cold-adapted stenothermal species inhabiting alpine meadows on the Tibetan Plateau. They have an optimal developmental temperature of 12-16 °C but can maintain feeding and growth at 0 °C. Their survival strategies have received little attention, but these insects are a promising model for environmental adaptation. Here, biochemical adaptations and energy metabolism in response to cold were investigated in larvae of the ghost moth Hepialus xiaojinensis. Metabolic rate and respiratory quotient decreased dramatically with decreasing temperature (15-4 °C), suggesting that the energy metabolism of ghost moths, especially glycometabolism, was sensitive to cold. However, the metabolic rate at 4 °C increased with the duration of cold exposure, indicating thermal compensation to sustain energy budgets under cold conditions. Underlying regulation strategies were studied by analyzing metabolic differences between cold-acclimated (4 °C for 48 h) and control larvae (15 °C). In cold-acclimated larvae, the energy generating pathways of carbohydrates, instead of the overall consumption of carbohydrates, was compensated in the fat body by improving the transcription of related enzymes. The mobilization of lipids was also promoted, with higher diacylglycerol, monoacylglycerol and free fatty acid content in hemolymph. These results indicated that cold acclimation induced a reorganization on metabolic structure to prioritise energy metabolism. Within the aerobic process, flux throughout the tricarboxylic acid (TCA) cycle was encouraged in the fat body, and the activity of α-ketoglutarate dehydrogenase was the likely compensation target. Increased mitochondrial cristae density was observed in the midgut of cold-acclimated larvae. The thermal compensation strategies in this ghost moth span the entire process of energy metabolism, including degration of metabolic substrate, TCA cycle and oxidative phosphorylation, and from an energy budget

  11. Assessing Adaptive Functioning in Preschoolers Referred for Diagnosis of Developmental Disabilities

    ERIC Educational Resources Information Center

    Milne, Susan; McDonald, Jenny

    2015-01-01

    Adaptive function is an essential dimension in the diagnosis of neurodevelopmental conditions in young children, assisting in determining the pattern of intellectual function and the amount and type of support required. Yet, little information is available on the accuracy of currently used adaptive function assessments for preschool children. This…

  12. Cells of a common developmental origin regulate REM/non-REM sleep and wakefulness in mice.

    PubMed

    Hayashi, Yu; Kashiwagi, Mitsuaki; Yasuda, Kosuke; Ando, Reiko; Kanuka, Mika; Sakai, Kazuya; Itohara, Shigeyoshi

    2015-11-20

    Mammalian sleep comprises rapid eye movement (REM) sleep and non-REM (NREM) sleep. To functionally isolate from the complex mixture of neurons populating the brainstem pons those involved in switching between REM and NREM sleep, we chemogenetically manipulated neurons of a specific embryonic cell lineage in mice. We identified excitatory glutamatergic neurons that inhibit REM sleep and promote NREM sleep. These neurons shared a common developmental origin with neurons promoting wakefulness; both derived from a pool of proneural hindbrain cells expressing Atoh1 at embryonic day 10.5. We also identified inhibitory γ-aminobutyric acid-releasing neurons that act downstream to inhibit REM sleep. Artificial reduction or prolongation of REM sleep in turn affected slow-wave activity during subsequent NREM sleep, implicating REM sleep in the regulation of NREM sleep.

  13. Light and developmental regulation of the Anp-controlled anthocyanin phenotype of bean pods.

    PubMed

    Gantet, P; Bettini, P; Dron, M

    1993-10-01

    In the presence of the dominant allele of the Anp gene, bean pods present a purple-mottled phenotype. The purple pigmentation is variable from cell to cell in the pod epidermal layer and develops as a random mosaic. Three anthocyanidins, delphinidin, petunidin and malvidin, are involved in this purple pigmentation. Anthocyanins accumulated in vacuoles; anthocyanoplasts and cristal bodies were also observed occasionally. A developmental switch is a prerequisite for anthocyanin accumulation in the pods. This does not occur before day 4 after pollination and is controlled by light in competent pods. mRNAs for PAL, CHS, CHI, DFR and UFGT are induced in the pods, indicating that the general anthocyanin biosynthetic pathway is well conserved at both the biochemical and molecular levels in this species. mRNA steady-state level studies of PAL and CHS suggest that the light regulation occurs at the transcriptional level.

  14. A developmentally regulated MAP kinase activated by hydration in tobacco pollen.

    PubMed Central

    Wilson, C; Voronin, V; Touraev, A; Vicente, O; Heberle-Bors, E

    1997-01-01

    A novel mitogen-activated protein (MAP) kinase signaling pathway has been identified in tobacco. This pathway is developmentally regulated during pollen maturation and is activated by hydration during pollen germination. Analysis of different stages of pollen development showed that transcriptional and translational induction of MAP kinase synthesis occurs at the mid-bicellular stage of pollen maturation. However, the MAP kinase is stored in an inactive form in the mature, dry pollen grain. Kinase activation is very rapid after hydration of the dry pollen, peaking at approximately 5 min and decreasing thereafter. Immunoprecipitation of the kinase activity by an anti-phosphotyrosine antibody is consistent with the activation of a MAP kinase. The kinetics of activation suggest that the MAP kinase plays a role in the activation of the pollen grain after hydration rather than in pollen tube growth. PMID:9401129

  15. Retinoic acid is enriched in Hensen's node and is developmentally regulated in the early chicken embryo.

    PubMed Central

    Chen, Y; Huang, L; Russo, A F; Solursh, M

    1992-01-01

    Retinoic acid (RA) has been considered as a potential morphogen in the chicken limb and has also been suggested to be involved in early embryonic development. On the basis of biological activity, previous reports suggest that Hensen's node, the anatomical equivalent in the chicken of the Spemann's organizer, may contain RA. Here, by using a molecular assay system, we demonstrate that Hensen's node contains retinoids in a concentration approximately 20 times more than that in the neighboring tissues. Furthermore, stage 6 Hensen's node contains approximately 3 times more retinoid than that of stage 4 embryos. These endogenous retinoids may establish a concentration gradient from Hensen's node to adjacent tissues and play a role in establishing the primary embryonic axis in the vertebrate. The results also suggest that the retinoid concentration in Hensen's node is developmentally regulated. Images PMID:1438194

  16. Retinoic acid is enriched in Hensen's node and is developmentally regulated in the early chicken embryo.

    PubMed

    Chen, Y; Huang, L; Russo, A F; Solursh, M

    1992-11-01

    Retinoic acid (RA) has been considered as a potential morphogen in the chicken limb and has also been suggested to be involved in early embryonic development. On the basis of biological activity, previous reports suggest that Hensen's node, the anatomical equivalent in the chicken of the Spemann's organizer, may contain RA. Here, by using a molecular assay system, we demonstrate that Hensen's node contains retinoids in a concentration approximately 20 times more than that in the neighboring tissues. Furthermore, stage 6 Hensen's node contains approximately 3 times more retinoid than that of stage 4 embryos. These endogenous retinoids may establish a concentration gradient from Hensen's node to adjacent tissues and play a role in establishing the primary embryonic axis in the vertebrate. The results also suggest that the retinoid concentration in Hensen's node is developmentally regulated.

  17. Interpersonal Stress Regulation and the Development of Anxiety Disorders: An Attachment-Based Developmental Framework

    PubMed Central

    Nolte, Tobias; Guiney, Jo; Fonagy, Peter; Mayes, Linda C.; Luyten, Patrick

    2011-01-01

    Anxiety disorders represent a common but often debilitating form of psychopathology in both children and adults. While there is a growing understanding of the etiology and maintenance of these disorders across various research domains, only recently have integrative accounts been proposed. While classical attachment history has been a traditional core construct in psychological models of anxiety, contemporary attachment theory has the potential to integrate neurobiological and behavioral findings within a multidisciplinary developmental framework. The current paper proposes a modern attachment theory-based developmental model grounded in relevant literature from multiple disciplines including social neuroscience, genetics, neuroendocrinology, and the study of family factors involved in the development of anxiety disorders. Recent accounts of stress regulation have highlighted the interplay between stress, anxiety, and activation of the attachment system. This interplay directly affects the development of social–cognitive and mentalizing capacities that are acquired in the interpersonal context of early attachment relationships. Early attachment experiences are conceptualized as the key organizer of a complex interplay between genetic, environmental, and epigenetic contributions to the development of anxiety disorders – a multifactorial etiology resulting from dysfunctional co-regulation of fear and stress states. These risk-conferring processes are characterized by hyperactivation strategies in the face of anxiety. The cumulative allostatic load and subsequent “wear and tear” effects associated with hyperactivation strategies converge on the neural pathways of anxiety and stress. Attachment experiences further influence the development of anxiety as potential moderators of risk factors, differentially impacting on genetic vulnerability and relevant neurobiological pathways. Implications for further research and potential treatments are outlined. PMID

  18. Interpersonal stress regulation and the development of anxiety disorders: an attachment-based developmental framework.

    PubMed

    Nolte, Tobias; Guiney, Jo; Fonagy, Peter; Mayes, Linda C; Luyten, Patrick

    2011-01-01

    Anxiety disorders represent a common but often debilitating form of psychopathology in both children and adults. While there is a growing understanding of the etiology and maintenance of these disorders across various research domains, only recently have integrative accounts been proposed. While classical attachment history has been a traditional core construct in psychological models of anxiety, contemporary attachment theory has the potential to integrate neurobiological and behavioral findings within a multidisciplinary developmental framework. The current paper proposes a modern attachment theory-based developmental model grounded in relevant literature from multiple disciplines including social neuroscience, genetics, neuroendocrinology, and the study of family factors involved in the development of anxiety disorders. Recent accounts of stress regulation have highlighted the interplay between stress, anxiety, and activation of the attachment system. This interplay directly affects the development of social-cognitive and mentalizing capacities that are acquired in the interpersonal context of early attachment relationships. Early attachment experiences are conceptualized as the key organizer of a complex interplay between genetic, environmental, and epigenetic contributions to the development of anxiety disorders - a multifactorial etiology resulting from dysfunctional co-regulation of fear and stress states. These risk-conferring processes are characterized by hyperactivation strategies in the face of anxiety. The cumulative allostatic load and subsequent "wear and tear" effects associated with hyperactivation strategies converge on the neural pathways of anxiety and stress. Attachment experiences further influence the development of anxiety as potential moderators of risk factors, differentially impacting on genetic vulnerability and relevant neurobiological pathways. Implications for further research and potential treatments are outlined.

  19. Driving skills of young adults with developmental coordination disorder: regulating speed and coping with distraction.

    PubMed

    de Oliveira, Rita F; Wann, John P

    2011-01-01

    In two experiments, we used an automatic car simulator to examine the steering control, speed regulation and response to hazards of young adults with developmental coordination disorder (DCD) and limited driving experience. In Experiment 1 participants either used the accelerator pedal to regulate their speed, or used the brake pedal when they needed to slow down from a pre-set speed. In Experiment 2, we introduced an auditory distraction condition that shared similarities with maintaining a conversation. Overall, the DCD group produced a larger variance in heading and needed more steering adjustments on straight roads, compared to age-matched controls. When turning bends, the DCD group showed greater difficulty in controlling steering while regulating their speed with the accelerator pedal but this was less problematic when using the brake. The DCD group also responded slower than the control group to pedestrians who walked towards their path. The auditory distraction in Experiment 2 had no visible effects on steering control but increased the reaction times to pedestrians in both groups. We discuss the results in terms of the visuomotor control in steering and the learning of optimal mappings between optic flow and vehicle control.

  20. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration

    PubMed Central

    Goessling, Wolfram; North, Trista E.; Loewer, Sabine; Lord, Allegra M.; Lee, Sang; Stoick-Cooper, Cristi L.; Weidinger, Gilbert; Puder, Mark; Daley, George Q.; Moon, Randall T.; Zon, Leonard I.

    2009-01-01

    Summary Interactions between developmental signaling pathways govern the formation and function of stem cells. Prostaglandin (PG) E2 regulates vertebrate hematopoietic stem cells (HSC). Similarly, the Wnt signaling pathway controls HSC self-renewal and bone marrow repopulation. Here, we show that wnt reporter activity in zebrafish HSCs is responsive to PGE2 modulation, demonstrating a direct interaction in vivo. Inhibition of PGE2 synthesis blocked wnt-induced alterations in HSC formation. PGE2 modified the wnt signaling cascade at the level of β-catenin degradation through cAMP/PKA-mediated stabilizing phosphorylation events. The PGE2/Wnt interaction regulated murine stem and progenitor populations in vitro in hematopoietic ES cell assays and in vivo following transplantation. The relationship between PGE2 and Wnt was also conserved during regeneration of other organ systems. Our work provides the first in vivo evidence that Wnt activation in stem cells requires PGE2, and suggests the PGE2/Wnt interaction is a master regulator of vertebrate regeneration and recovery. PMID:19303855

  1. REN: a novel, developmentally regulated gene that promotes neural cell differentiation.

    PubMed

    Gallo, Rita; Zazzeroni, Francesca; Alesse, Edoardo; Mincione, Claudia; Borello, Ugo; Buanne, Pasquale; D'Eugenio, Roberta; Mackay, Andrew R; Argenti, Beatrice; Gradini, Roberto; Russo, Matteo A; Maroder, Marella; Cossu, Giulio; Frati, Luigi; Screpanti, Isabella; Gulino, Alberto

    2002-08-19

    Expansion and fate choice of pluripotent stem cells along the neuroectodermal lineage is regulated by a number of signals, including EGF, retinoic acid, and NGF, which also control the proliferation and differentiation of central nervous system (CNS) and peripheral nervous system (PNS) neural progenitor cells. We report here the identification of a novel gene, REN, upregulated by neurogenic signals (retinoic acid, EGF, and NGF) in pluripotent embryonal stem (ES) cells and neural progenitor cell lines in association with neurotypic differentiation. Consistent with a role in neural promotion, REN overexpression induced neuronal differentiation as well as growth arrest and p27Kip1 expression in CNS and PNS neural progenitor cell lines, and its inhibition impaired retinoic acid induction of neurogenin-1 and NeuroD expression. REN expression is developmentally regulated, initially detected in the neural fold epithelium of the mouse embryo during gastrulation, and subsequently throughout the ventral neural tube, the outer layer of the ventricular encephalic neuroepithelium and in neural crest derivatives including dorsal root ganglia. We propose that REN represents a novel component of the neurogenic signaling cascade induced by retinoic acid, EGF, and NGF, and is both a marker and a regulator of neuronal differentiation.

  2. Apoplastic and intracellular plant sugars regulate developmental transitions in witches' broom disease of cacao.

    PubMed

    Barau, Joan; Grandis, Adriana; Carvalho, Vinicius Miessler de Andrade; Teixeira, Gleidson Silva; Zaparoli, Gustavo Henrique Alcalá; do Rio, Maria Carolina Scatolin; Rincones, Johana; Buckeridge, Marcos Silveira; Pereira, Gonçalo Amarante Guimarães

    2015-03-01

    Witches' broom disease (WBD) of cacao differs from other typical hemibiotrophic plant diseases by its unusually long biotrophic phase. Plant carbon sources have been proposed to regulate WBD developmental transitions; however, nothing is known about their availability at the plant-fungus interface, the apoplastic fluid of cacao. Data are provided supporting a role for the dynamics of soluble carbon in the apoplastic fluid in prompting the end of the biotrophic phase of infection. Carbon depletion and the consequent fungal sensing of starvation were identified as key signalling factors at the apoplast. MpNEP2, a fungal effector of host necrosis, was found to be up-regulated in an autophagic-like response to carbon starvation in vitro. In addition, the in vivo artificial manipulation of carbon availability in the apoplastic fluid considerably modulated both its expression and plant necrosis rate. Strikingly, infected cacao tissues accumulated intracellular hexoses, and showed stunted photosynthesis and the up-regulation of senescence markers immediately prior to the transition to the necrotrophic phase. These opposite findings of carbon depletion and accumulation in different host cell compartments are discussed within the frame of WBD development. A model is suggested to explain phase transition as a synergic outcome of fungal-related factors released upon sensing of extracellular carbon starvation, and an early senescence of infected tissues probably triggered by intracellular sugar accumulation.

  3. Apoplastic and intracellular plant sugars regulate developmental transitions in witches’ broom disease of cacao

    PubMed Central

    Barau, Joan; Grandis, Adriana; Carvalho, Vinicius Miessler de Andrade; Teixeira, Gleidson Silva; Zaparoli, Gustavo Henrique Alcalá; do Rio, Maria Carolina Scatolin; Rincones, Johana; Buckeridge, Marcos Silveira; Pereira, Gonçalo Amarante Guimarães

    2015-01-01

    Witches’ broom disease (WBD) of cacao differs from other typical hemibiotrophic plant diseases by its unusually long biotrophic phase. Plant carbon sources have been proposed to regulate WBD developmental transitions; however, nothing is known about their availability at the plant–fungus interface, the apoplastic fluid of cacao. Data are provided supporting a role for the dynamics of soluble carbon in the apoplastic fluid in prompting the end of the biotrophic phase of infection. Carbon depletion and the consequent fungal sensing of starvation were identified as key signalling factors at the apoplast. MpNEP2, a fungal effector of host necrosis, was found to be up-regulated in an autophagic-like response to carbon starvation in vitro. In addition, the in vivo artificial manipulation of carbon availability in the apoplastic fluid considerably modulated both its expression and plant necrosis rate. Strikingly, infected cacao tissues accumulated intracellular hexoses, and showed stunted photosynthesis and the up-regulation of senescence markers immediately prior to the transition to the necrotrophic phase. These opposite findings of carbon depletion and accumulation in different host cell compartments are discussed within the frame of WBD development. A model is suggested to explain phase transition as a synergic outcome of fungal-related factors released upon sensing of extracellular carbon starvation, and an early senescence of infected tissues probably triggered by intracellular sugar accumulation. PMID:25540440

  4. Unusual organization of a developmentally regulated mitochondrial RNA polymerase (TBMTRNAP) gene in Trypanosoma brucei

    PubMed Central

    Clement, Sandra L.; Koslowsky, Donna J.

    2009-01-01

    We report here the characterization of a developmentally regulated mitochondrial RNA polymerase transcript in the parasitic protozoan, Trypanosoma brucei. The 3822 bp protein-coding region of the T. brucei mitochondrial RNA polymerase (TBMTRNAP) gene is predicted to encode a 1274 amino acid polypeptide, the carboxyl-terminal domain of which exhibits 29–37% identity with the mitochondrial RNA polymerases from other organisms in the molecular databases. Interestingly, the TBMTRNAP mRNA is one of several mature mRNA species post-transcriptionally processed from a stable, polycistronic precursor. Alternative polyadenylation of the TBMTRNAP mRNA produces two mature transcripts that differ by 500 nt and that show stage-specific differences in abundance during the T. brucei life cycle. This alternative polyadenylation event appears to be accompanied by the alternative splicing of a high abundance, non-coding downstream transcript of unknown function. Our finding that the TBMTRNAP gene is transcribed into two distinct mRNAs subject to differential regulation during the T. brucei life cycle suggests that mitochondrial differentiation might be achieved in part through the regulated expression of this gene. PMID:11470527

  5. miR-14 regulates autophagy during developmental cell death by targeting ip3-kinase 2.

    PubMed

    Nelson, Charles; Ambros, Victor; Baehrecke, Eric H

    2014-11-06

    Macroautophagy (autophagy) is a lysosome-dependent degradation process that has been implicated in age-associated diseases. Autophagy is involved in both cell survival and cell death, but little is known about the mechanisms that distinguish its use during these distinct cell fates. Here, we identify the microRNA miR-14 as being both necessary and sufficient for autophagy during developmentally regulated cell death in Drosophila. Loss of miR-14 prevented induction of autophagy during salivary gland cell death, but had no effect on starvation-induced autophagy in the fat body. Moreover, misexpression of miR-14 was sufficient to prematurely induce autophagy in salivary glands, but not in the fat body. Importantly, miR-14 regulates this context-specific autophagy through its target, inositol 1,4,5-trisphosphate kinase 2 (ip3k2), thereby affecting inositol 1,4,5-trisphosphate (IP3) signaling and calcium levels during salivary gland cell death. This study provides in vivo evidence of microRNA regulation of autophagy through modulation of IP3 signaling.

  6. CRTR-1, a developmentally regulated transcriptional repressor related to the CP2 family of transcription factors.

    PubMed

    Rodda, S; Sharma, S; Scherer, M; Chapman, G; Rathjen, P

    2001-02-02

    CP2-related proteins comprise a family of DNA-binding transcription factors that are generally activators of transcription and expressed ubiquitously. We reported a differential display polymerase chain reaction fragment, Psc2, which was expressed in a regulated fashion in mouse pluripotent cells in vitro and in vivo. Here, we report further characterization of the Psc2 cDNA and function. The Psc2 cDNA contained an open reading frame homologous to CP2 family proteins. Regions implicated in DNA binding and oligomeric complex formation, but not transcription activation, were conserved. Psc2 expression in vivo during embryogenesis and in the adult mouse demonstrated tight spatial and temporal regulation, with the highest levels of expression in the epithelial lining of distal convoluted tubules in embryonic and adult kidneys. Functional analysis demonstrated that PSC2 repressed transcription 2.5-15-fold when bound to a heterologous promoter in ES, 293T, and COS-1 cells. The N-terminal 52 amino acids of PSC2 were shown to be necessary and sufficient for this activity and did not share obvious homology with reported repressor motifs. These results represent the first report of a CP2 family member that is expressed in a developmentally regulated fashion in vivo and that acts as a direct repressor of transcription. Accordingly, the protein has been named CP2-Related Transcriptional Repressor-1 (CRTR-1).

  7. Effects of risperidone and parent training on adaptive functioning in children with pervasive developmental disorders and serious behavioral problems

    PubMed Central

    Scahill, Lawrence; McDougle, Christopher J.; Aman, Michael G.; Johnson, Cynthia; Handen, Benjamin; Bearss, Karen; Dziura, James; Butter, Eric; Swiezy, Naomi B.; Arnold, L. Eugene; Stigler, Kimberly A.; Sukhodolsky, Denis D.; Lecavalier, Luc; Pozdol, Stacie L.; Nikolov, Roumen; Ritz, Louise; Hollway, Jill A.; Korzekwa, Patrcia; Gavaletz, Allison; Kohn, Arlene E.; Koenig, Kathleen; Grinnon, Stacie; Mulick, James A.; Yu, Sunkyung; Vitiello, Benedetto

    2012-01-01

    Objective Children with Pervasive Developmental Disorders (PDDs) have deficits in social interaction, delayed communication and repetitive behavior as well as impairments in adaptive functioning. Many children actually show decline in adaptive skills compared to age mates over time. Method This 24-week, three-site, controlled clinical trial randomized 124 children (4 through 13 years of age) with PDDs and serious behavior problems to medication alone (MED; N=49; risperidone 0.5 to 3.5 mg/day (if ineffective, switch to aripiprazole was permitted) or medication plus parent training (PT) (COMB; N=75). Parents of children in COMB received an average of 11.4 PT sessions. Standard scores and Age Equivalent scores on Vineland Adaptive Behavior Scales were the outcome measures of primary interest. Results Seventeen subjects did not have a post-randomization Vineland. Thus, we used a mixed model with outcome conditioned on the baseline Vineland scores. Both groups showed improvement over the 24-week trial on all Vineland domains. Compared to MED, Vineland Socialization and Adaptive Composite Standard scores showed greater improvement in the COMB group (p = 0.01 and 0.05; effect sizes = 0.35.and 0.22, respectively). On Age Equivalent scores, Socialization and Communication domains showed greater improvement in COMB versus MED (p=0.03, 0.05; effect sizes = 0.33 and 0.14 respectively). Using logistic regression, children in the COMB group were twice as likely to make at least 6 months gain (equal to the passage of time) in the Vineland Communication Age Equivalent score compared to MED (p = 0.02). After controlling for IQ, this difference was no longer significant. Conclusion Reduction of serious maladaptive behavior promotes improvement in adaptive behavior. Medication plus PT shows modest additional benefit over medication alone. PMID:22265360

  8. Adaptation.

    PubMed

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  9. Chinese Adaptation and Psychometric Properties of the Child Version of the Cognitive Emotion Regulation Questionnaire

    PubMed Central

    Liu, Wen; Chen, Liang; Blue, Philip R.

    2016-01-01

    This study aimed to validate a Chinese’s adaption of the Cognitive Emotion Regulation Questionnaire for children (CERQ-Ck). This self-report instrument evaluates nine cognitive emotion regulation strategies that can be used by children after experiencing a negative life event. The CERQ-Ck was evaluated in a sample of 1403 elementary students between the ages of 9 and 11 by using cluster sampling. All the item-correlation coefficients for CERQ-Ck were above 0.30. The internal consistencies of the nine factors suggested moderate reliability (0.66 to 0.73). Confirmatory factor analysis (CFA) indicated that the current version had the same structure as the original instrument (Tucker–Lewis index = 0.912, comparative fit index = 0.922, root mean square error of approximation = 0.032, standardized root mean square residual = 0.044). A second-order factor and a third-order factor structure were also found. Test–retest correlations (0.53 to 0.70, ps < 0.01) over a period of 1 month, which ranged from acceptable to moderately strong were obtained from a random and stratified subsample of elementary students (N = 76). In addition, we analyzed convergent validity in relation to CERQ-Ck and the Chinese version of the Children’s Depression Inventory model dimensions with a subsample of 1083 elementary students. Multiple-group CFA confirmed the measurement invariance for both the male and female groups (ΔCFI < 0.01, ΔRMSEA < 0.015). Overall, results indicate that CERQ-Ck has similar psychometric properties to the original instrument as well as with adequate reliability and validity to investigate the nine cognitive emotion regulation strategies during late childhood developmental periods. PMID:26925586

  10. PNUTS/PP1 Regulates RNAPII-Mediated Gene Expression and Is Necessary for Developmental Growth

    PubMed Central

    Ciurciu, Anita; Duncalf, Louise; Jonchere, Vincent; Lansdale, Nick; Vasieva, Olga; Glenday, Peter; Rudenko, Andreii; Vissi, Emese; Cobbe, Neville; Alphey, Luke; Bennett, Daimark

    2013-01-01

    In multicellular organisms, tight regulation of gene expression ensures appropriate tissue and organismal growth throughout development. Reversible phosphorylation of the RNA Polymerase II (RNAPII) C-terminal domain (CTD) is critical for the regulation of gene expression states, but how phosphorylation is actively modified in a developmental context remains poorly understood. Protein phosphatase 1 (PP1) is one of several enzymes that has been reported to dephosphorylate the RNAPII CTD. However, PP1's contribution to transcriptional regulation during animal development and the mechanisms by which its activity is targeted to RNAPII have not been fully elucidated. Here we show that the Drosophila orthologue of the PP1 Nuclear Targeting Subunit (dPNUTS) is essential for organismal development and is cell autonomously required for growth of developing tissues. The function of dPNUTS in tissue development depends on its binding to PP1, which we show is targeted by dPNUTS to RNAPII at many active sites of transcription on chromosomes. Loss of dPNUTS function or specific disruption of its ability to bind PP1 results in hyperphosphorylation of the RNAPII CTD in whole animal extracts and on chromosomes. Consistent with dPNUTS being a global transcriptional regulator, we find that loss of dPNUTS function affects the expression of the majority of genes in developing 1st instar larvae, including those that promote proliferative growth. Together, these findings shed light on the in vivo role of the PNUTS-PP1 holoenzyme and its contribution to the control of gene expression during early Drosophila development. PMID:24204300

  11. Roles of the Developmental Regulator unc-62/Homothorax in Limiting Longevity in Caenorhabditis elegans

    PubMed Central

    Van Nostrand, Eric L.; Sánchez-Blanco, Adolfo; Wu, Beijing; Nguyen, Andy; Kim, Stuart K.

    2013-01-01

    The normal aging process is associated with stereotyped changes in gene expression, but the regulators responsible for these age-dependent changes are poorly understood. Using a novel genomics approach, we identified HOX co-factor unc-62 (Homothorax) as a developmental regulator that binds proximal to age-regulated genes and modulates lifespan. Although unc-62 is expressed in diverse tissues, its functions in the intestine play a particularly important role in modulating lifespan, as intestine-specific knockdown of unc-62 by RNAi increases lifespan. An alternatively-spliced, tissue-specific isoform of unc-62 is expressed exclusively in the intestine and declines with age. Through analysis of the downstream consequences of unc-62 knockdown, we identify multiple effects linked to aging. First, unc-62 RNAi decreases the expression of yolk proteins (vitellogenins) that aggregate in the body cavity in old age. Second, unc-62 RNAi results in a broad increase in expression of intestinal genes that typically decrease expression with age, suggesting that unc-62 activity balances intestinal resource allocation between yolk protein expression and fertility on the one hand and somatic functions on the other. Finally, in old age, the intestine shows increased expression of several aberrant genes; these UNC-62 targets are expressed predominantly in neuronal cells in developing animals, but surprisingly show increased expression in the intestine of old animals. Intestinal expression of some of these genes during aging is detrimental for longevity; notably, increased expression of insulin ins-7 limits lifespan by repressing activity of insulin pathway response factor DAF-16/FOXO in aged animals. These results illustrate how unc-62 regulation of intestinal gene expression is responsible for limiting lifespan during the normal aging process. PMID:23468654

  12. An Atypical Phr Peptide Regulates the Developmental Switch Protein RapH ▿ †

    PubMed Central

    Mirouze, Nicolas; Parashar, Vijay; Baker, Melinda D.; Dubnau, David A.; Neiditch, Matthew B.

    2011-01-01

    Under conditions of nutrient limitation and high population density, the bacterium Bacillus subtilis can initiate a variety of developmental pathways. The signaling systems regulating B. subtilis differentiation are tightly controlled by switch proteins called Raps, named after the founding members of the family, which were shown to be response regulator aspartate phosphatases. A phr gene encoding a secreted pentapeptide that regulates the activity of its associated Rap protein was previously identified downstream of 8 of the chromosomally encoded rap genes. We identify and validate here the sequence of an atypical Phr peptide, PhrH, by in vivo and in vitro analyses. Using a luciferase reporter bioassay combined with in vitro experiments, we found that PhrH is a hexapeptide (TDRNTT), in contrast to the other characterized Phr pentapeptides. We also determined that phrH expression is driven by a promoter lying within rapH. Unlike the previously identified dedicated σH-driven phr promoters, it appears that phrH expression most likely requires σA. Furthermore, we show that PhrH can antagonize both of the known activities of RapH: the dephosphorylation of Spo0F and the sequestration of ComA, thus promoting the development of spores and the competent state. Finally, we propose that PhrH is the prototype of a newly identified class of Phr signaling molecules consisting of six amino acids. This class likely includes PhrI, which regulates RapI and the expression, excision, and transfer of the mobile genetic element ICEBs1. PMID:21908671

  13. Peer Relations and Emotion Regulation of Children with Emotional and Behavioural Difficulties with and without a Developmental Disorder

    ERIC Educational Resources Information Center

    Lynn, Sasha; Carroll, Annemaree; Houghton, Stephen; Cobham, Vanessa

    2013-01-01

    Children with emotional and behavioural difficulties (EBD) and those who also have developmental disorders, such as attention deficit hyperactivity disorder (ADHD) or autism spectrum disorder (ASD), can experience the same adverse consequences in their peer interactions and relationships. This present study compared the emotion regulation and peer…

  14. The Role of Intentional Self Regulation, Lower Neighborhood Ecological Assets, and Activity Involvement in Youth Developmental Outcomes

    ERIC Educational Resources Information Center

    Urban, Jennifer Brown; Lewin-Bizan, Selva; Lerner, Richard M.

    2010-01-01

    Extracurricular activities provide a key context for youth development, and participation has been linked with positive developmental outcomes. Using data from the 4-H Study of Positive Youth Development (PYD), this study explored how the intentional self regulation ability of youth interacted with participation in extracurricular activities to…

  15. The Effects of Self-Regulated Learning Training on Community College Students' Metacognition and Achievement in Developmental Math Courses

    ERIC Educational Resources Information Center

    Bol, Linda; Campbell, Karen D. Y.; Perez, Tony; Yen, Cherng-Jyh

    2016-01-01

    The effects of training in self-regulation on metacognition and math achievement were investigated. The participants were 116 community college students enrolled in developmental math courses. Students enrolled in 16 classrooms were randomly assigned to the treatment and control groups. Participants in the treatment group completed four…

  16. Using Formative Assessment and Self-Regulated Learning to Help Developmental Mathematics Students Achieve: A Multi-Campus Program

    ERIC Educational Resources Information Center

    Hudesman, John; Crosby, Sara; Ziehmke, Niesha; Everson, Howard; Issac, Sharlene; Flugman, Bert; Zimmerman, Barry; Moylan, Adam

    2014-01-01

    The authors describe an Enhanced Formative Assessment and Self-Regulated Learning (EFA-SRL) program designed to improve the achievement of community college students enrolled in developmental mathematics courses. Their model includes the use of specially formatted quizzes designed to assess both the students' mathematics and metacognitive skill…

  17. Adaptive Flow Management in Regulated Rivers: Successes and Challenges (Invited)

    NASA Astrophysics Data System (ADS)

    Robinson, C. T.; Melis, T. S.; Kennedy, T.; Korman, J.; Ortlepp, J.

    2013-12-01

    Experimental high flows are becoming common management actions in rivers affected by large dams. When implemented under clear objectives and goals, experimental flows provide opportunities for long-term ecological successes but also impose various ecological challenges as systems shift under environmental change or from human-related actions. We present case studies from long-term adaptive flow management programs on the River Spöl, Switzerland and the Colorado River, USA, both of which are regulated by high dams and flow through National Parks. The management goals in each system differ thus reflecting the different high flow practices implemented over time. Regulated flows in the Spöl reflect a compromise between hydropower needs and ecology (native brown trout fishery), whereas Glen Canyon Dam flows have mainly been directed towards maintenance of river beaches in Grand Canyon National Park with co-management of both nonnative rainbow trout in the tailwater immediately below the dam and downstream endangered native fish of Grand Canyon also an objective. Some 24 experimental floods have occurred on the Spöl over the last 13 years, resulting in a positive effect on the trout fishery and a zoobenthic assemblage having a more typical alpine stream composition. The system has experienced various shifts in assemblage composition over time with the last shift occurring 7 years after the initial floods. A major challenge occurred in spring 2013 with an accidental release of fine sediments from the reservoir behind Punt dal Gall Dam, causing high fish mortality and smothering of the river bottom. Results showed that the effect was pronounced near the dam and gradually lessened downriver to the lower reservoir. Zoobenthic assemblages displayed relatively high resistance to the event and some fish found refugia in the lower reservoir and larger side tributaries, thus projecting a faster recovery than initially thought. Below Glen Canyon dam, benefits to sandbars have

  18. Core Mechanisms Regulating Developmentally Timed and Environmentally Triggered Abscission[OPEN

    PubMed Central

    2016-01-01

    Drought-triggered abscission is a strategy used by plants to avoid the full consequences of drought; however, it is poorly understood at the molecular genetic level. Here, we show that Arabidopsis (Arabidopsis thaliana) can be used to elucidate the pathway controlling drought-triggered leaf shedding. We further show that much of the pathway regulating developmentally timed floral organ abscission is conserved in regulating drought-triggered leaf abscission. Gene expression of HAESA (HAE) and INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) is induced in cauline leaf abscission zones when the leaves become wilted in response to limited water and HAE continues to accumulate in the leaf abscission zones through the abscission process. The genes that encode HAE/HAESA-LIKE2, IDA, NEVERSHED, and MAPK KINASE4 and 5 are all necessary for drought-induced leaf abscission. Our findings offer a molecular mechanism explaining drought-triggered leaf abscission. Furthermore, the ability to study leaf abscission in Arabidopsis opens up a new avenue to tease apart mechanisms involved in abscission that have been difficult to separate from flower development as well as for understanding the mechanistic role of water and turgor pressure in abscission. PMID:27468996

  19. Mechanisms regulating nutrition-dependent developmental plasticity through organ-specific effects in insects

    PubMed Central

    Koyama, Takashi; Mendes, Cláudia C.; Mirth, Christen K.

    2013-01-01

    Nutrition, via the insulin/insulin-like growth factor (IIS)/Target of Rapamycin (TOR) signaling pathway, can provide a strong molding force for determining animal size and shape. For instance, nutrition induces a disproportionate increase in the size of male horns in dung and rhinoceros beetles, or mandibles in staghorn or horned flour beetles, relative to body size. In these species, well-fed male larvae produce adults with greatly enlarged horns or mandibles, whereas males that are starved or poorly fed as larvae bear much more modest appendages. Changes in IIS/TOR signaling plays a key role in appendage development by regulating growth in the horn and mandible primordia. In contrast, changes in the IIS/TOR pathway produce minimal effects on the size of other adult structures, such as the male genitalia in fruit flies and dung beetles. The horn, mandible and genitalia illustrate that although all tissues are exposed to the same hormonal environment within the larval body, the extent to which insulin can induce growth is organ specific. In addition, the IIS/TOR pathway affects body size and shape by controlling production of metamorphic hormones important for regulating developmental timing, like the steroid molting hormone ecdysone and sesquiterpenoid hormone juvenile hormone. In this review, we discuss recent results from Drosophila and other insects that highlight mechanisms allowing tissues to differ in their sensitivity to IIS/TOR and the potential consequences of these differences on body size and shape. PMID:24133450

  20. Developmental Trajectories of Emotion Regulation Across Infancy: Do Age and the Social Partner Influence Temporal Patterns?

    PubMed

    Ekas, Naomi V; Lickenbrock, Diane M; Braungart-Rieker, Julia M

    2013-09-01

    The ability to effectively regulate emotions is a critical component of early socio-emotional development. This longitudinal study examined the developmental trajectories of emotion regulation in a sample of 3-, 5-, and 7-month-olds during an interaction with mothers and fathers. Infants' negative affect and use of behavioral strategies, including distraction, self-soothing, and high intensity motor behaviors were rated during the still-face episode of the Still-Face Paradigm. Longitudinal mixed-effects models were tested to determine whether strategies were followed by an increase or decrease in negative affect. Results from mother-infant and father-infant dyads indicated that focusing attention away from the unresponsive parent and engaging in self-soothing behaviors were associated with a subsequent decline in negative affect and the strength of these temporal associations were stable across infancy. In contrast, high-intensity motor behaviors were followed by an increase in negative affect and this effect declined over time. No significant effects were found for the behavioral strategy of looking at the parent. Results underscore the importance of considering infant age and the social partner when studying the effectiveness of emotion regulatory strategies in early infancy.

  1. On the Developmental and Environmental Regulation of Secondary Metabolism in Vaccinium spp. Berries

    PubMed Central

    Karppinen, Katja; Zoratti, Laura; Nguyenquynh, Nga; Häggman, Hely; Jaakola, Laura

    2016-01-01

    Secondary metabolites have important defense and signaling roles, and they contribute to the overall quality of developing and ripening fruits. Blueberries, bilberries, cranberries, and other Vaccinium berries are fleshy berry fruits recognized for the high levels of bioactive compounds, especially anthocyanin pigments. Besides anthocyanins and other products of the phenylpropanoid and flavonoid pathways, these berries also contain other metabolites of interest, such as carotenoid derivatives, vitamins and flavor compounds. Recently, new information has been achieved on the mechanisms related with developmental, environmental, and genetic factors involved in the regulation of secondary metabolism in Vaccinium fruits. Especially light conditions and temperature are demonstrated to have a prominent role on the composition of phenolic compounds. The present review focuses on the studies on mechanisms associated with the regulation of key secondary metabolites, mainly phenolic compounds, in Vaccinium berries. The advances in the research concerning biosynthesis of phenolic compounds in Vaccinium species, including specific studies with mutant genotypes in addition to controlled and field experiments on the genotype × environment (G×E) interaction, are discussed. The recently published Vaccinium transcriptome and genome databases provide new tools for the studies on the metabolic routes. PMID:27242856

  2. Alternatives to restrictive feeding practices to promote self-regulation in childhood: a developmental perspective.

    PubMed

    Rollins, B Y; Savage, J S; Fisher, J O; Birch, L L

    2016-10-01

    Intake of energy-dense snack foods is high among US children. Although the use of restrictive feeding practices has been shown to be counterproductive, there is very limited evidence for effective alternatives to restriction that help children moderate their intake of these foods and that facilitate the development of self-regulation in childhood. The developmental literature on parenting and child outcomes may provide insights into alternatives to restrictive feeding practices. This review paper uses a model of parental control from the child development and parenting literatures to (i) operationally define restrictive feeding practices; (ii) summarize current evidence for antecedents and effects of parental restriction use on children's eating behaviours and weight status, and (iii) highlight alternative feeding practices that may facilitate the development of children's self-regulation and moderate children's intake of palatable snack foods. We also discuss recent empirical evidence highlighting the role of child temperament and food motivation related behaviours as factors that prompt parents to use restrictive feeding practices and, yet, may increase children's dysregulated intake of forbidden foods.

  3. Developmentally Regulated Expression of the Nerve Growth Factor Receptor Gene in the Periphery and Brain

    NASA Astrophysics Data System (ADS)

    Buck, C. R.; Martinez, Humberto J.; Black, Ira B.; Chao, Moses V.

    1987-05-01

    Nerve growth factor (NGF) regulates development and maintenance of function of peripheral sympathetic and sensory neurons. A potential role for the trophic factor in brain has been detected only recently. The ability of a cell to respond to NGF is due, in part, to expression of specific receptors on the cell surface. To study tissue-specific expression of the NGF receptor gene, we have used sensitive cRNA probes for detection of NGF receptor mRNA. Our studies indicate that the receptor gene is selectively and specifically expressed in sympathetic (superior cervical) and sensory (dorsal root) ganglia in the periphery, and by the septum-basal forebrain centrally, in the neonatal rat in vivo. Moreover, examination of tissues from neonatal and adult rats reveals a marked reduction in steady-state NGF receptor mRNA levels in sensory ganglia. In contrast, a 2- to 4-fold increase was observed in the basal forebrain and in the sympathetic ganglia over the same time period. Our observations suggest that NGF receptor mRNA expression is developmentally regulated in specific areas of the nervous system in a differential fashion.

  4. A developmentally regulated translational control pathway establishes the meiotic chromosome segregation pattern

    PubMed Central

    Berchowitz, Luke E.; Gajadhar, Aaron S.; van Werven, Folkert J.; De Rosa, Alexandra A.; Samoylova, Mariya L.; Brar, Gloria A.; Xu, Yifeng; Xiao, Che; Futcher, Bruce; Weissman, Jonathan S.; White, Forest M.; Amon, Angelika

    2013-01-01

    Production of haploid gametes from diploid progenitor cells is mediated by a specialized cell division, meiosis, where two divisions, meiosis I and II, follow a single S phase. Errors in progression from meiosis I to meiosis II lead to aneuploid and polyploid gametes, but the regulatory mechanisms controlling this transition are poorly understood. Here, we demonstrate that the conserved kinase Ime2 regulates the timing and order of the meiotic divisions by controlling translation. Ime2 coordinates translational activation of a cluster of genes at the meiosis I–meiosis II transition, including the critical determinant of the meiotic chromosome segregation pattern CLB3. We further show that Ime2 mediates translational control through the meiosis-specific RNA-binding protein Rim4. Rim4 inhibits translation of CLB3 during meiosis I by interacting with the 5′ untranslated region (UTR) of CLB3. At the onset of meiosis II, Ime2 kinase activity rises and triggers a decrease in Rim4 protein levels, thereby alleviating translational repression. Our results elucidate a novel developmentally regulated translational control pathway that establishes the meiotic chromosome segregation pattern. PMID:24115771

  5. Arabidopsis ribosomal proteins control vacuole trafficking and developmental programs through the regulation of lipid metabolism

    DOE PAGES

    Li, Ruixi; Sun, Ruobai; Hicks, Glenn R.; ...

    2014-12-22

    The vacuole is the most prominent compartment in plant cells and is important for ion and protein storage. In our effort to search for key regulators in the plant vacuole sorting pathway, ribosomal large subunit 4 (rpl4d) was identified as a translational mutant defective in both vacuole trafficking and normal development. Polysome profiling of the rpl4d mutant showed reduction in polysome-bound mRNA compared with wild-type, but no significant change in the general mRNA distribution pattern. Ribsomal profiling data indicated that genes in the lipid metabolism pathways were translationally down-regulated in the rpl4d mutant. Live imaging studies by Nile red stainingmore » suggested that both polar and nonpolar lipid accumulation was reduced in meristem tissues of rpl4d mutants. Pharmacological evidence showed that sterol and sphingolipid biosynthetic inhibitors can phenocopy the defects of the rpl4d mutant, including an altered vacuole trafficking pattern. Genetic evidence from lipid biosynthetic mutants indicates that alteration in the metabolism of either sterol or sphingolipid biosynthesis resulted in vacuole trafficking defects, similar to the rpl4d mutant. Tissue-specific complementation with key enzymes from lipid biosynthesis pathways can partially rescue both vacuole trafficking and auxin-related developmental defects in the rpl4d mutant. These results indicate that lipid metabolism modulates auxin-mediated tissue differentiation and endomembrane trafficking pathways downstream of ribosomal protein function.« less

  6. Developmental and stress regulation of gene expression for plastid and cytosolic isoprenoid pathways in pepper fruits.

    PubMed Central

    Hugueney, P; Bouvier, F; Badillo, A; Quennemet, J; d'Harlingue, A; Camara, B

    1996-01-01

    Plant cells synthesize a myriad of isoprenoid compounds in different subcellular compartments, which include the plastid, the mitochondria, and the endoplasmic reticulum cytosol. To start the study of the regulation of these parallel pathways, we used pepper (Capsicum annuum) fruit as a model. Using different isoprenoid biosynthetic gene probes from cloned cDNAs, we showed that only genes encoding the plastid enzymes (geranylgeranyl pyrophosphate synthase, phytoene synthase, phytoene desaturase, and capasanthin-capsorubin synthase) are specifically triggered during the normal period of development, at the ripening stage. This pattern of expression can be mimicked and precociously induced by a simple wounding stress. Concerning the cytosol-located enzymes, we observed that the expression of the gene encoding farnesyl pyrophosphate synthase is constitutive, whereas that of farnesyl pyrophosphate cyclase (5-epi-aristolochene synthase) is undetectable during the normal development of the fruit. The expression of these later genes are, however, only selectively triggered after elicitor treatment. The results provide evidence for developmental control of isoprenoid biosynthesis occurring in plastids and that cytoplasmic isoprenoid biosynthesis is regulated, in part, by environmental signals. PMID:8787029

  7. Identification of a developmentally regulated iron superoxide dismutase of Trypanosoma brucei.

    PubMed Central

    Kabiri, M; Steverding, D

    2001-01-01

    An iron superoxide dismutase (FeSOD) gene of the protozoan parasite Trypanosoma brucei has been cloned and its gene product functionally characterized. The gene encodes a protein of 198 residues which shows 80% identity with FeSODs from other trypanosomatids. Inhibitor studies with purified recombinant FeSOD expressed in Escherichia coli confirmed that the enzyme is an iron-containing SOD. The FeSOD is developmentally regulated in the parasite, expression being lowest in the cell-cycle-arrested, short stumpy bloodstream forms. Differential expression of the FeSOD protein contrasts with only minor quantitative changes in the FeSOD mRNA, indicating post-transcriptional regulation of the enzyme. As the level of FeSOD increases during differentiation of cell-cycle-arrested short stumpy into dividing procyclic forms, it is suggested that the enzyme is only required in proliferating stages of the parasite for the elimination of superoxide radicals which are released during the generation of the iron-tyrosyl free-radical centre in the small subunit of ribonucleotide reductase. PMID:11696005

  8. 78 FR 21045 - Adaptation of Regulations to Incorporate Swaps-Records of Transactions; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... From the Federal Register Online via the Government Publishing Office COMMODITY FUTURES TRADING COMMISSION 17 CFR Part 1 RIN 3038-AD53 Adaptation of Regulations to Incorporate Swaps--Records of... published in the Federal Register of December 21, 2012 (77 FR 75523), regarding Adaptation of Regulations...

  9. Developmental and environmental regulation of antifreeze proteins in the mealworm beetle Tenebrio molitor.

    PubMed

    Graham, L A; Walker, V K; Davies, P L

    2000-11-01

    The yellow mealworm beetle, Tenebrio molitor, contains a family of small Cys-rich and Thr-rich thermal hysteresis proteins that depress the hemolymph freezing point below the melting point by as much as 5. 5 degrees C (DeltaT = thermal hysteresis). Thermal hysteresis protein expression was evaluated throughout development and after exposure to altered environmental conditions. Under favorable growth conditions, small larvae (11-13 mg) had only low levels of thermal hysteresis proteins or thermal hysteresis protein message, but these levels increased 10-fold and 18-fold, respectively, by the final larval instar (> 190 mg), resulting in thermal hysteresis > 3 degrees C. Exposure of small larvae (11-13 mg) to 4 weeks of cold (4 degrees C) caused an approximately 20-fold increase in thermal hysteresis protein concentration, well in excess of the less than threefold developmental increase seen after 4 weeks at 22 degrees C. Exposure of large larvae (100-120 mg) to cold caused 12-fold and sixfold increases in thermal hysteresis protein message and protein levels, respectively, approximately double the maximum levels they would have attained in the final larval instar at 22 degrees C. Thus, thermal hysteresis increased to similar levels (> 4 degrees C) in the cold, irrespective of the size of the larvae (the overwintering stage). At pupation, thermal hysteresis protein message levels decreased > 20-fold and remained low thereafter, but thermal hysteresis activity decreased much more slowly. Exposure to cold did not reverse this decline. Desiccation or starvation of larvae had comparable effects to cold exposure, but surprisingly, short daylength photoperiod or total darkness had no effect on either thermal hysteresis or message levels. As all environmental conditions that caused increased thermal hysteresis also inhibited growth, we postulate that developmental arrest is a primary factor in the regulation of T. molitor thermal hysteresis proteins.

  10. Developmental strategies and regulation of cell-free enzyme system for ethanol production: a molecular prospective.

    PubMed

    Khattak, Waleed Ahmad; Ullah, Muhammad Wajid; Ul-Islam, Mazhar; Khan, Shaukat; Kim, Minah; Kim, Yeji; Park, Joong Kon

    2014-12-01

    Most biomanufacturing systems developed for the production of biocommodities are based on whole-cell systems. However, with the advent of innovative technologies, the focus has shifted from whole-cell towards cell-free enzyme system. Since more than a century, researchers are using the cell-free extract containing the required enzymes and their respective cofactors in order to study the fundamental aspects of biological systems, particularly fermentation. Although yeast cell-free enzyme system is known since long ago, it is rarely been studied and characterized in detail. In this review, we hope to describe the major pitfalls encountered by whole-cell system and introduce possible solutions to them using cell-free enzyme systems. We have discussed the glycolytic and fermentative pathways and their regulation at both transcription and translational levels. Moreover, several strategies employed for development of cell-free enzyme system have been described with their potential merits and shortcomings associated with these developmental approaches. We also described in detail the various developmental approaches of synthetic cell-free enzyme system such as compartmentalization, metabolic channeling, protein fusion, and co-immobilization strategies. Additionally, we portrayed the novel cell-free enzyme technologies based on encapsulation and immobilization techniques and their development and commercialization. Through this review, we have presented the basics of cell-free enzyme system, the strategies involved in development and operation, and the advantages over conventional processes. Finally, we have addressed some potential directions for the future development and industrialization of cell-free enzyme system.

  11. Myosin Va is developmentally regulated and expressed in the human cerebellum from birth to old age

    PubMed Central

    Souza, C.C.R.; Dombroski, T.C.D.; Machado, H.R.; Oliveira, R.S.; Rocha, L.B.; Rodrigues, A.R.A.; Neder, L.; Chimelli, L.; Corrêa, V.M.A.; Larson, R.E.; Martins, A.R.

    2013-01-01

    Myosin Va functions as a processive, actin-based motor molecule highly enriched in the nervous system, which transports and/or tethers organelles, vesicles, and mRNA and protein translation machinery. Mutation of myosin Va leads to Griscelli disease that is associated with severe neurological deficits and a short life span. Despite playing a critical role in development, the expression of myosin Va in the central nervous system throughout the human life span has not been reported. To address this issue, the cerebellar expression of myosin Va from newborns to elderly humans was studied by immunohistochemistry using an affinity-purified anti-myosin Va antibody. Myosin Va was expressed at all ages from the 10th postnatal day to the 98th year of life, in molecular, Purkinje and granular cerebellar layers. Cerebellar myosin Va expression did not differ essentially in localization or intensity from childhood to old age, except during the postnatal developmental period. Structures resembling granules and climbing fibers in Purkinje cells were deeply stained. In dentate neurons, long processes were deeply stained by anti-myosin Va, as were punctate nuclear structures. During the first postnatal year, myosin Va was differentially expressed in the external granular layer (EGL). In the EGL, proliferating prospective granule cells were not stained by anti-myosin Va antibody. In contrast, premigratory granule cells in the EGL stained moderately. Granule cells exhibiting a migratory profile in the molecular layer were also moderately stained. In conclusion, neuronal myosin Va is developmentally regulated, and appears to be required for cerebellar function from early postnatal life to senescence. PMID:23558932

  12. Is it adaptive to disengage from demands of social change? Adjustment to developmental barriers in opportunity-deprived regions

    PubMed Central

    Silbereisen, Rainer K.; Heckhausen, Jutta

    2010-01-01

    This paper investigates how individuals deal with demands of social and economic change in the domains of work and family when opportunities for their mastery are unfavorable. Theoretical considerations and empirical research suggest that with unattainable goals and unmanageable demands motivational disengagement and self-protective cognitions bring about superior outcomes than continued goal striving. Building on research on developmental deadlines, this paper introduces the concept of developmental barriers to address socioeconomic conditions of severely constrained opportunities in certain geographical regions. Mixed-effects methods were used to model cross-level interactions between individual-level compensatory secondary control and regional-level opportunity structures in terms of social indicators for the economic prosperity and family friendliness. Results showed that disengagement was positively associated with general life satisfaction in regions that were economically devastated and has less than average services for families. In regions that were economically well off and family-friendly, the association was negative. Similar results were found for self-protection concerning domain-specific satisfaction with life. These findings suggest that compensatory secondary control can be an adaptive way of mastering a demand when primary control is not possible. PMID:21170393

  13. Adaptive developmental plasticity in methylene tetrahydrofolate reductase (MTHFR) C677T polymorphism limits its frequency in South Indians.

    PubMed

    Naushad, Shaik Mohammad; Krishnaprasad, Chintakindi; Devi, Akella Radha Rama

    2014-05-01

    Methylene tetrahydrofolate reductase (MTHFR) C677T polymorphism shows considerable heterogeneity in its distribution in humans worldwide. The current study was conducted to investigate whether this polymorphism exhibited adaptive developmental plasticity in the control of the TT-genotype frequency. We screened 1,818 South Indian subjects (895 males and 923 females) for MTHFR C677T polymorphism using PCR-restriction fragment length polymorphism approach. MTHFR 677T-allele frequency in males and females was 9.1 and 11.0%, respectively. Compared to females, males had lower frequency of TT-genotype [odds ratio 0.31, 95% confidence interval (CI) 0.08-1.01]. The frequency of MTHFR 677T-allele was highest in the age group of 20-40 years and it gradually decreased from 40-60 to 60-80 years (P trend<0.0001). MTHFR 677TT-genotype was associated with 7.02-folds (95% CI: 2.12-25.63, P<0.0001) cumulative risk for recurrent pregnancy loss (RPL), neural tube defects (NTDs) and deep vein thrombosis (DVT). Linear regression model suggested that male gender exhibited increased homocysteine levels by 9.35 μmol/L while each MTHFR 677T-allele contributed to 4.63 μmol/L increase in homocysteine. Plasma homocysteine showed inverse correlation with dietary folate (r=-0.17, P<0.0001), B2 (r=-0.14, P<0.0001) and B6 (r=-0.07, P=0.03). Examination of the spontaneously aborted fetuses (n=35) showed no significant association of fetal genotype on its in utero viability. From the current study, it was concluded that C677T seemed to have acquired adaptive developmental plasticity among South Indians due to environmental influences thus contributing to hyperhomocysteinemia and its associated complications such as RPL, NTDs, DVT, etc.

  14. Developmental regulation of voltage-sensitive sodium channels in rat skeletal muscle

    SciTech Connect

    Sherman, S.J.

    1985-01-01

    The developmental regulation of the voltage-sensitive Na/sup +/ channel in rat skeletal muscle was studied in vivo and in vitro. In triceps surae muscle developing in vivo the development of TTX-sensitive Na/sup +/ channel occurred primarily during the first three postnatal weeks as determined by the specific binding of (/sup 3/H)saxitoxin. This development proceeded in two separate phases. The first phase occurs independently of continuing motor neuron innervation and accounts for 60% of the adult density of TTX-sensitive Na/sup +/ channels. The second phase, which begins about day 11, requires innervation. Muscle cells in primary culture were found to have both TTX-sensitive and insensitive Na/sup +/ channels. The development of the TTX-sensitive channel, in vitro, paralleled the initial innervation-independent phase of development observed in vivo. The density of TTX-sensitive Na/sup +/ channels in cultured muscle cells was regulated by electrical activity and cytosolic Ca/sup + +/ levels. Pharmacological blockade of the spontaneous electrical activity present in these cells lead to a nearly 2-fold increase in the surface density of TTX-sensitive channels. The turnover time of the TTX-sensitive Na/sup +/ channel was measured by blocking the incorporation of newly synthesized channels with tunicamycin, an inhibitor of N-linked protein glycosylation. The regulation of channel density by electrical activity, cytosolic Ca/sup + +/levels, and agents affecting cyclic neucleotide levels had no effect on the turnover time of the TTX-sensitive Na/sup +/ channel, indicating that these regulatory agents instead affect the synthesis of the channel.

  15. Developmental Regulation of Genes Encoding Universal Stress Proteins in Schistosoma mansoni

    PubMed Central

    Isokpehi, Raphael D.; Mahmud, Ousman; Mbah, Andreas N.; Simmons, Shaneka S.; Avelar, Lívia; Rajnarayanan, Rajendram V.; Udensi, Udensi K.; Ayensu, Wellington K.; Cohly, Hari H.; Brown, Shyretha D.; Dates, Centdrika R.; Hentz, Sonya D.; Hughes, Shawntae J.; Smith-McInnis, Dominique R.; Patterson, Carvey O.; Sims, Jennifer N.; Turner, Kelisha T.; Williams, Baraka S.; Johnson, Matilda O.; Adubi, Taiwo; Mbuh, Judith V.; Anumudu, Chiaka I.; Adeoye, Grace O.; Thomas, Bolaji N.; Nashiru, Oyekanmi; Oliveira, Guilherme

    2011-01-01

    The draft nuclear genome sequence of the snail-transmitted, dimorphic, parasitic, platyhelminth Schistosoma mansoni revealed eight genes encoding proteins that contain the Universal Stress Protein (USP) domain. Schistosoma mansoni is a causative agent of human schistosomiasis, a severe and debilitating Neglected Tropical Disease (NTD) of poverty, which is endemic in at least 76 countries. The availability of the genome sequences of Schistosoma species presents opportunities for bioinformatics and genomics analyses of associated gene families that could be targets for understanding schistosomiasis ecology, intervention, prevention and control. Proteins with the USP domain are known to provide bacteria, archaea, fungi, protists and plants with the ability to respond to diverse environmental stresses. In this research investigation, the functional annotations of the USP genes and predicted nucleotide and protein sequences were initially verified. Subsequently, sequence clusters and distinctive features of the sequences were determined. A total of twelve ligand binding sites were predicted based on alignment to the ATP-binding universal stress protein from Methanocaldococcus jannaschii. In addition, six USP sequences showed the presence of ATP-binding motif residues indicating that they may be regulated by ATP. Public domain gene expression data and RT-PCR assays confirmed that all the S. mansoni USP genes were transcribed in at least one of the developmental life cycle stages of the helminth. Six of these genes were up-regulated in the miracidium, a free-swimming stage that is critical for transmission to the snail intermediate host. It is possible that during the intra-snail stages, S. mansoni gene transcripts for universal stress proteins are low abundant and are induced to perform specialized functions triggered by environmental stressors such as oxidative stress due to hydrogen peroxide that is present in the snail hemocytes. This report serves to catalyze the

  16. Children's Conscience during Toddler and Preschool Years, Moral Self, and a Competent, Adaptive Developmental Trajectory

    ERIC Educational Resources Information Center

    Kochanska, Grazyna; Koenig, Jamie L.; Barry, Robin A.; Kim, Sanghag; Yoon, Jeung Eun

    2010-01-01

    We investigated whether children's robust conscience, formed during early family socialization, promotes their future adaptive and competent functioning in expanded ecologies. We assessed two dimensions of conscience in young children (N = 100) at 25, 38, and 52 months in scripted laboratory contexts: internalization of their mothers' and fathers'…

  17. Reciprocity in the developmental regulation of aquaporins 1, 3 and 5 during pregnancy and lactation in the rat.

    PubMed

    Nazemi, Sasan; Rahbek, Mette; Parhamifar, Ladan; Moghimi, Seyed Moein; Babamoradi, Hamid; Mehrdana, Foojan; Klærke, Dan Arne; Knight, Christopher H

    2014-01-01

    Milk secretion involves significant flux of water, driven largely by synthesis of lactose within the Golgi apparatus. It has not been determined whether this flux is simply a passive consequence of the osmotic potential between cytosol and Golgi, or whether it involves regulated flow. Aquaporins (AQPs) are membrane water channels that regulate water flux. AQP1, AQP3 and AQP5 have previously been detected in mammary tissue, but evidence of developmental regulation (altered expression according to the developmental and physiological state of the mammary gland) is lacking and their cellular/subcellular location is not well understood. In this paper we present evidence of developmental regulation of all three of these AQPs. Further, there was evidence of reciprocity since expression of the rather abundant AQP3 and less abundant AQP1 increased significantly from pregnancy into lactation, whereas expression of the least abundant AQP5 decreased. It would be tempting to suggest that AQP3 and AQP1 are involved in the secretion of water into milk. Paradoxically, however, it was AQP5 that demonstrated most evidence of expression located at the apical (secretory) membrane. The possibility is discussed that AQP5 is synthesized during pregnancy as a stable protein that functions to regulate water secretion during lactation. AQP3 was identified primarily at the basal and lateral membranes of the secretory cells, suggesting a possible involvement in regulated uptake of water and glycerol. AQP1 was identified primarily at the capillary and secretory cell cytoplasmic level and may again be more concerned with uptake and hence milk synthesis, rather than secretion. The fact that expression was developmentally regulated supports, but does not prove, a regulatory involvement of AQPs in water flux through the milk secretory cell.

  18. Cold adaptation regulated by cryptic prophage excision in Shewanella oneidensis.

    PubMed

    Zeng, Zhenshun; Liu, Xiaoxiao; Yao, Jianyun; Guo, Yunxue; Li, Baiyuan; Li, Yangmei; Jiao, Nianzhi; Wang, Xiaoxue

    2016-12-01

    Among the environmental stresses experienced by bacteria, temperature shifts are one of the most important. In this study, we discovered a novel cold adaptation mechanism in Shewanella oneidensis that occurs at the DNA level and is regulated by cryptic prophage excision. Previous studies on bacterial cold tolerance mainly focus on the structural change of cell membrane and changes at the RNA and protein levels. Whether or not genomic change can also contribute to this process has not been explored. Here we employed a whole-genome deep-sequencing method to probe the changes at DNA level in a model psychrotrophic bacteria strain. We found that temperature downshift induced a 10 000-fold increase of the excision of a novel P4-like cryptic prophage. Importantly, although prophage excision only occurred in a relatively small population of bacteria, it was able to facilitate biofilm formation and promote the survival of the entire population. This prophage excision affected cell physiology by disrupting a critical gene encoding transfer-messenger RNA (tmRNA). In addition, we found that the histone-like nucleoid-structuring protein (H-NS) could silence prophage excision via binding to the promoter of the putative excisionase gene at warm temperatures. H-NS level was reduced at cold temperatures, leading to de-repression of prophage excision. Collectively, our results reveal that cryptic prophage excision acts as a regulatory switch to enable the survival of the host at low temperature by controlling the activity of tmRNA and biofilm formation.

  19. Cold adaptation regulated by cryptic prophage excision in Shewanella oneidensis

    PubMed Central

    Zeng, Zhenshun; Liu, Xiaoxiao; Yao, Jianyun; Guo, Yunxue; Li, Baiyuan; Li, Yangmei; Jiao, Nianzhi; Wang, Xiaoxue

    2016-01-01

    Among the environmental stresses experienced by bacteria, temperature shifts are one of the most important. In this study, we discovered a novel cold adaptation mechanism in Shewanella oneidensis that occurs at the DNA level and is regulated by cryptic prophage excision. Previous studies on bacterial cold tolerance mainly focus on the structural change of cell membrane and changes at the RNA and protein levels. Whether or not genomic change can also contribute to this process has not been explored. Here we employed a whole-genome deep-sequencing method to probe the changes at DNA level in a model psychrotrophic bacteria strain. We found that temperature downshift induced a 10 000-fold increase of the excision of a novel P4-like cryptic prophage. Importantly, although prophage excision only occurred in a relatively small population of bacteria, it was able to facilitate biofilm formation and promote the survival of the entire population. This prophage excision affected cell physiology by disrupting a critical gene encoding transfer-messenger RNA (tmRNA). In addition, we found that the histone-like nucleoid-structuring protein (H-NS) could silence prophage excision via binding to the promoter of the putative excisionase gene at warm temperatures. H-NS level was reduced at cold temperatures, leading to de-repression of prophage excision. Collectively, our results reveal that cryptic prophage excision acts as a regulatory switch to enable the survival of the host at low temperature by controlling the activity of tmRNA and biofilm formation. PMID:27482926

  20. A general rule for the dependence of developmental rate on temperature in ectothermic animals.

    PubMed

    Jarosík, Vojtech; Kratochvíl, Lukás; Honek, Alois; Dixon, Anthony F G

    2004-05-07

    In animals that do not regulate their body temperature by the production of heat, the proportion of the total developmental time spent in a particular developmental stage does not change with temperature. In the quasi-linear region of the relationship between developmental rate and temperature, all of the developmental stages appear to have the same species-specific lower developmental threshold. This trait, which is called developmental isomorphy, constrains developmental adaptations of ectotherms to their environments and facilitates the precise timing of life-history events.

  1. Activity-dependent repression of Cbln1 expression: mechanism for developmental and homeostatic regulation of synapses in the cerebellum.

    PubMed

    Iijima, Takatoshi; Emi, Kyoichi; Yuzaki, Michisuke

    2009-04-29

    Cbln1, which belongs to the C1q/tumor necrosis factor superfamily, is released from cerebellar granule cells and plays a crucial role in forming and maintaining excitatory synapses between parallel fibers (PFs; axons of granule cells) and Purkinje cells not only during development but also in the adult cerebellum. Although neuronal activity is known to cause morphological changes at synapses, how Cbln1 signaling is affected by neuronal activity remains unclear. Here, we show that chronic stimulation of neuronal activity by elevating extracellular K(+) levels or by adding kainate decreased the expression of cbln1 mRNA within several hours in mature granule cells in a manner dependent on L-type voltage-dependent Ca(2+) channels and calcineurin. Chronic activity also reduced Cbln1 protein levels within a few days, during which time the number of excitatory synapses on Purkinje cell dendrites was reduced; this activity-induced reduction of synapses was prevented by the addition of exogenous Cbln1 to the culture medium. Therefore, the activity-dependent downregulation of cbln1 may serve as a new presynaptic mechanism by which PF-Purkinje cell synapses adapt to chronically elevated activity, thereby maintaining homeostasis. In addition, the expression of cbln1 mRNA was prevented when immature granule cells were maintained in high-K(+) medium. Since immature granule cells are chronically depolarized before migrating to the internal granule layer, this depolarization-dependent regulation of cbln1 mRNA expression may also serve as a developmental switch to facilitate PF synapse formation in mature granule cells in the internal granule layer.

  2. Egocentric speech: an adaptive function applied to developmental disabilities in occupational therapy.

    PubMed

    Burnell, D P

    1979-03-01

    This paper reviews egocentric speech as a theoretical postulate of change relevant to the practice of occupational therapy. Egocentric speech, an important adaptive behavior in normal development, designates the verbalizations that usually occur while a child between the ages of two and seven performs an adaptive task and thereby increases problem-solving abilities. The behavior is first discussed as it relates to the structures of assimilation and accommodation in Piaget's earlier sensorimotor stage, then as it appears in the preoperatory level of the concrete operations stage of intelligence. The importance of the behavior as a foundation for the inner language and thinking capacities of the adult is supported by the research of Soviet scientists Vygotsky and Luria. Finally, three case studies are presented in which egocentric speech is used in conjunction with problem-solving tasks in occupational therapy.

  3. Molecular identification of rapidly adapting mechanoreceptors and their developmental dependence on ret signaling.

    PubMed

    Luo, Wenqin; Enomoto, Hideki; Rice, Frank L; Milbrandt, Jeffrey; Ginty, David D

    2009-12-24

    In mammals, the first step in the perception of form and texture is the activation of trigeminal or dorsal root ganglion (DRG) mechanosensory neurons, which are classified as either rapidly (RA) or slowly adapting (SA) according to their rates of adaptation to sustained stimuli. The molecular identities and mechanisms of development of RA and SA mechanoreceptors are largely unknown. We found that the "early Ret(+)" DRG neurons are RA mechanoreceptors, which form Meissner corpuscles, Pacinian corpuscles, and longitudinal lanceolate endings. The central projections of these RA mechanoreceptors innervate layers III through V of the spinal cord and terminate within discrete subdomains of the dorsal column nuclei. Moreover, mice lacking Ret signaling components are devoid of Pacinian corpuscles and exhibit a dramatic disruption of RA mechanoreceptor projections to both the spinal cord and medulla. Thus, the early Ret(+) neurons are RA mechanoreceptors and Ret signaling is required for the assembly of neural circuits underlying touch perception.

  4. Adaptive regulation or governmentality: patient safety and the changing regulation of medicine.

    PubMed

    Waring, Justin

    2007-03-01

    This paper explores how current 'patient safety' reforms offer to change the regulation of medicine. Drawing on existing literature, it is argued that this policy agenda represents a new frontier in medical/managerial relations, introducing a disciplinary expertise within the health service that provides managers with the knowledge and legitimacy to survey and scrutinise medical performance, made real through procedures for incident reporting and root-cause analysis. The extent of regulatory change is investigated, drawing on an ethnographic case study of one hospital. It is shown that, as with other organisational and managerial reforms, doctors are resisting managerial prerogatives through seeking to subvert and 'capture' components of reform. I describe this as 'adaptive regulation' to account for how doctors seek to maintain their regulatory monopoly and limit managerial encroachment. It is speculated, however, that this process could signal the future 'modernisation' of medical professionalism where emerging managerial discourses, within the wider context of public sector reform, are increasingly internalised with medical practice and culture. This leads to new and rearticulated forms of self-surveillance, self-management or 'governmentality', ultimately negating the need for external groups to explicitly manage or regulate professional practice.

  5. Developmental expression and regulation of flavin-containing monooxygenase by the unfolded protein response in Japanese medaka (Oryzias latipes).

    PubMed

    Kupsco, Allison; Schlenk, Daniel

    2017-01-01

    Flavin-containing monooxygenases (FMOs) play a key role in xenobiotic metabolism, are regulated by environmental conditions, and are differentially regulated during mammalian development. Japanese medaka (Oryzias latipes) are a common model organism for toxicological studies. The goal of the current research was to characterize developmental expression and regulation of FMOs in Japanese medaka embryos to better understand the role of FMOs in this model species. Five putative medaka fmos were characterized from the medaka genome through the National Center for Biotechnology Information (NCBI) database by protein motifs and alignments, then identified as fmo4, fmo5A, fmo5B, fmo5C and fmo5D for the current study. Fmo gene expression was analyzed at 1dpf, 3dpf, 6dpf and 9dpf and distinct developmental patterns of expression were observed. Fmo4 and fmo5D increased 3-fold during mid organogenesis (6dpf), while fmo5B and fmo5C decreased significantly in early organogenesis (3dpf) and fmo5A was unaltered. Promoter analysis was performed for transcription factor binding sites and indicated regulation by developmental factors and a role for the unfolded protein response in fmo modulation. Fmo regulation by the UPR was assessed with treatments of 1μg/ml, 2μg/ml, and 4μg/ml Tunicamycin (Tm), and 2mM and 4mM dithiothreitol (DTT), well-known inducers of endoplasmic reticulum stress, for 24h from 5-6dpf. High concentrations to Tm induced fmo4 and fmo5A up to two-fold, while DTT significantly decreased expression of fmo5A, fmo5B, and fmo5C. Results suggest that medaka fmos are variably regulated by the UPR during organogenesis with variable developmental expression, and suggesting potential stage-dependent activation or detoxification of xenobiotics.

  6. The Adaptation of a School-Based Health Promotion Programme for Youth with Intellectual and Developmental Disabilities: A Community-Engaged Research Process

    ERIC Educational Resources Information Center

    Hubbard, Kristie L.; Bandini, Linda G.; Folta, Sara C.; Wansink, Brian; Must, Aviva

    2014-01-01

    Background: Evidenced-based health promotion programmes for youth with intellectual and developmental disabilities (I/DD) are notably absent. Barriers include a lack of understanding of how to adapt existing evidence-based programmes to their needs, maximize inclusion and support mutual goals of health and autonomy. Methods: We undertook a…

  7. Normal perception of Mooney faces in developmental prosopagnosia: Evidence from the N170 component and rapid neural adaptation.

    PubMed

    Towler, John; Gosling, Angela; Duchaine, Bradley; Eimer, Martin

    2016-03-01

    Individuals with developmental prosopagnosia (DP) have a severe difficulty recognizing the faces of known individuals in the absence of any history of neurological damage. These recognition problems may be linked to selective deficits in the holistic/configural processing of faces. We used two-tone Mooney images to study the processing of faces versus non-face objects in DP when it is based on holistic information (or the facial gestalt) in the absence of obvious local cues about facial features. A rapid adaptation procedure was employed for a group of 16 DPs. Naturalistic photographs of upright faces were preceded by upright or inverted Mooney faces or by Mooney houses. DPs showed face-sensitive N170 components in response to Mooney faces versus houses, and N170 amplitude reductions for inverted as compared to upright Mooney faces. They also showed the typical pattern of N170 adaptation effects, with reduced N170 components when upright naturalistic test faces were preceded by upright Mooney faces, demonstrating that the perception of Mooney and naturalistic faces recruits shared neural populations. Our findings demonstrate that individuals with DP can utilize global information about face configurations for categorical discriminations between faces and non-face objects, and suggest that face processing deficits emerge primarily at more fine-grained higher level stages of face perception.

  8. The developmental and environmental regulation of gravitropic setpoint angle in Arabidopsis and bean

    PubMed Central

    Roychoudhry, Suruchi; Kieffer, Martin; Del Bianco, Marta; Liao, Che-Yang; Weijers, Dolf; Kepinski, Stefan

    2017-01-01

    Root and shoot branches are major determinants of plant form and critical for the effective capture of resources below and above ground. These branches are often maintained at specific angles with respect to gravity, known as gravitropic set point angles (GSAs). We have previously shown that the mechanism permitting the maintenance of non-vertical GSAs is highly auxin-dependent and here we investigate the developmental and environmental regulation of root and shoot branch GSA. We show that nitrogen and phosphorous deficiency have opposing, auxin signalling-dependent effects on lateral root GSA in Arabidopsis: while low nitrate induces less vertical lateral root GSA, phosphate deficiency results in a more vertical lateral root growth angle, a finding that contrasts with the previously reported growth angle response of bean adventitious roots. We find that this root-class-specific discrepancy in GSA response to low phosphorus is mirrored by similar differences in growth angle response to auxin treatment between these root types. Finally we show that both shaded, low red/far-red light conditions and high temperature induce more vertical growth in Arabidopsis shoot branches. We discuss the significance of these findings in the context of efforts to improve crop performance via the manipulation of root and shoot branch growth angle. PMID:28256503

  9. Clique of functional hubs orchestrates population bursts in developmentally regulated neural networks

    NASA Astrophysics Data System (ADS)

    Torcini, Alessandro; Luccioli, Stefano; Bonifazi, Paolo; Ben-Jacob, Eshel; Barzilai, Ari

    2015-03-01

    It has recently been discovered that single neuron stimulation can impact network dynamics in immature and adult neuronal circuits. Here we report a novel mechanism which can explain in developing neuronal circuits, typically composed of only excitatory cells, the peculiar role played by a few specific neurons in promoting/arresting the population activity. For this purpose, we consider a standard neuronal network model, with short-term synaptic plasticity, whose population activity is characterized by bursting behavior. The addition of developmentally regulated constraints on single neuron excitability and connectivity leads to the emergence of functional hub neurons, whose stimulation/deletion is critical for the network activity. Functional hubs form a clique, where a precise sequential activation of the neurons is essential to ignite collective events without any need for a specific topological architecture. Unsupervised time-lagged firings of supra-threshold cells, in connection with coordinated entrainments of near-threshold neurons, are the key ingredients to orchestrate population activity. This work is part of the activity of the Joint Italian-Israeli Laboratory on Integrative Network Neuroscience supported by the Italian Ministry of Foreign Affairs.

  10. Developmental profiling of postnatal dentate gyrus progenitors provides evidence for dynamic cell-autonomous regulation

    PubMed Central

    Gilley, Jennifer A.; Yang, Cui-Ping; Kernie, Steven G.

    2009-01-01

    The dentate gyrus of the hippocampus is one of the most prominent regions in the postnatal mammalian brain where neurogenesis continues throughout life. There is tremendous speculation regarding the potential implications of adult hippocampal neurogenesis, though it remains unclear to what extent this ability becomes attenuated during normal aging, and what genetic changes in the progenitor population ensue over time. Using defined elements of the nestin promoter, we developed a transgenic mouse that reliably labels neural stem and early progenitors with green fluorescent protein (GFP). Using a combination of immunohistochemical and flow cytometry techniques, we characterized the progenitor cells within the dentate gyrus and created a developmental profile from postnatal day 7 (P7) until 6 months of age. In addition, we demonstrate that the proliferative potential of these progenitors is controlled at least in part by cell-autonomous cues. Finally, in order to identify what may underlie these differences, we performed stem cell-specific microarrays on GFP-expressing sorted cells from isolated P7 and postnatal day 28 (P28) dentate gyrus. We identified several differentially expressed genes that may underlie the functional differences that we observe in neurosphere assays from sorted cells and differentiation assays at these different ages. These data suggest that neural progenitors from the dentate gyrus are differentially regulated by cell-autonomous factors that change over time. PMID:20014381

  11. Mitochondria Are Linked to Calcium Stores in Striated Muscle by Developmentally Regulated Tethering Structures

    PubMed Central

    Boncompagni, Simona; Rossi, Ann E.; Micaroni, Massimo; Beznoussenko, Galina V.; Polishchuk, Roman S.; Dirksen, Robert T.

    2009-01-01

    Bi-directional calcium (Ca2+) signaling between mitochondria and intracellular stores (endoplasmic/sarcoplasmic reticulum) underlies important cellular functions, including oxidative ATP production. In striated muscle, this coupling is achieved by mitochondria being located adjacent to Ca2+ stores (sarcoplasmic reticulum [SR]) and in proximity of release sites (Ca2+ release units [CRUs]). However, limited information is available with regard to the mechanisms of mitochondrial-SR coupling. Using electron microscopy and electron tomography, we identified small bridges, or tethers, that link the outer mitochondrial membrane to the intracellular Ca2+ stores of muscle. This association is sufficiently strong that treatment with hypotonic solution results in stretching of the SR membrane in correspondence of tethers. We also show that the association of mitochondria to the SR is 1) developmentally regulated, 2) involves a progressive shift from a longitudinal clustering at birth to a specific CRU-coupled transversal orientation in adult, and 3) results in a change in the mitochondrial polarization state, as shown by confocal imaging after JC1 staining. Our results suggest that tethers 1) establish and maintain SR–mitochondrial association during postnatal maturation and in adult muscle and 2) likely provide a structural framework for bi-directional signaling between the two organelles in striated muscle. PMID:19037102

  12. Developmental Wiring of Specific Neurons Is Regulated by RET-1/Nogo-A in Caenorhabditis elegans

    PubMed Central

    Torpe, Nanna; Nørgaard, Steffen; Høye, Anette M.; Pocock, Roger

    2017-01-01

    Nogo-A is a membrane-bound protein that functions to inhibit neuronal migration, adhesion, and neurite outgrowth during development. In the mature nervous system, Nogo-A stabilizes neuronal wiring to inhibit neuronal plasticity and regeneration after injury. Here, we show that RET-1, the sole Nogo-A homolog in Caenorhabditis elegans, is required to control developmental wiring of a specific subset of neurons. In ret-1 deletion mutant animals, specific ventral nerve cord axons are misguided where they fail to respect the ventral midline boundary. We found that ret-1 is expressed in multiple neurons during development, and, through mosaic analysis, showed that ret-1 controls axon guidance in a cell-autonomous manner. Finally, as in mammals, ret-1 regulates ephrin expression, and dysregulation of the ephrin ligand VAB-2 is partially responsible for the ret-1 mutant axonal defects. Together, our data present a previously unidentified function for RET-1 in the nervous system of C. elegans. PMID:27821431

  13. Sequential evolution of bacterial morphology by co-option of a developmental regulator.

    PubMed

    Jiang, Chao; Brown, Pamela J B; Ducret, Adrien; Brun, Yves V

    2014-02-27

    What mechanisms underlie the transitions responsible for the diverse shapes observed in the living world? Although bacteria exhibit a myriad of morphologies, the mechanisms responsible for the evolution of bacterial cell shape are not understood. We investigated morphological diversity in a group of bacteria that synthesize an appendage-like extension of the cell envelope called the stalk. The location and number of stalks varies among species, as exemplified by three distinct subcellular positions of stalks within a rod-shaped cell body: polar in the genus Caulobacter and subpolar or bilateral in the genus Asticcacaulis. Here we show that a developmental regulator of Caulobacter crescentus, SpmX, is co-opted in the genus Asticcacaulis to specify stalk synthesis either at the subpolar or bilateral positions. We also show that stepwise evolution of a specific region of SpmX led to the gain of a new function and localization of this protein, which drove the sequential transition in stalk positioning. Our results indicate that changes in protein function, co-option and modularity are key elements in the evolution of bacterial morphology. Therefore, similar evolutionary principles of morphological transitions apply to both single-celled prokaryotes and multicellular eukaryotes.

  14. Sequential evolution of bacterial morphology by co-option of a developmental regulator

    NASA Astrophysics Data System (ADS)

    Jiang, Chao; Brown, Pamela J. B.; Ducret, Adrien; Brun, Yves V.

    2014-02-01

    What mechanisms underlie the transitions responsible for the diverse shapes observed in the living world? Although bacteria exhibit a myriad of morphologies, the mechanisms responsible for the evolution of bacterial cell shape are not understood. We investigated morphological diversity in a group of bacteria that synthesize an appendage-like extension of the cell envelope called the stalk. The location and number of stalks varies among species, as exemplified by three distinct subcellular positions of stalks within a rod-shaped cell body: polar in the genus Caulobacter and subpolar or bilateral in the genus Asticcacaulis. Here we show that a developmental regulator of Caulobacter crescentus, SpmX, is co-opted in the genus Asticcacaulis to specify stalk synthesis either at the subpolar or bilateral positions. We also show that stepwise evolution of a specific region of SpmX led to the gain of a new function and localization of this protein, which drove the sequential transition in stalk positioning. Our results indicate that changes in protein function, co-option and modularity are key elements in the evolution of bacterial morphology. Therefore, similar evolutionary principles of morphological transitions apply to both single-celled prokaryotes and multicellular eukaryotes.

  15. Sequential evolution of bacterial morphology by co-option of a developmental regulator

    PubMed Central

    Jiang, Chao; Brown, Pamela J.B.; Ducret, Adrien; Brun1, Yves V.

    2014-01-01

    What mechanisms underlie the transitions responsible for the diverse shapes observed in the living world? While bacteria display a myriad of morphologies1, the mechanisms responsible for the evolution of bacterial cell shape are not understood. We investigated morphological diversity in a group of bacteria that synthesize an appendage-like extension of the cell envelope called the stalk2,3. The location and number of stalks varies among species, as exemplified by three distinct sub-cellular positions of stalks within a rod-shaped cell body: polar in the Caulobacter genus, and sub-polar or bi-lateral in the Asticcacaulis genus4. Here we show that a developmental regulator of Caulobacter crescentus, SpmX5, was co-opted in the Asticcacaulis genus to specify stalk synthesis at either the sub-polar or bi-lateral positions. We show that stepwise evolution of a specific region of SpmX led to the gain of a new function and localization of this protein, which drove the sequential transition in stalk positioning. Our results indicate that evolution of protein function, co-option, and modularity are key elements in the evolution of bacterial morphology. Therefore, similar evolutionary principles of morphological transitions apply to both single-celled prokaryotes and multicellular eukaryotes. PMID:24463524

  16. MicroRNA-101 Regulates Multiple Developmental Programs to Constrain Excitation in Adult Neural Networks.

    PubMed

    Lippi, Giordano; Fernandes, Catarina C; Ewell, Laura A; John, Danielle; Romoli, Benedetto; Curia, Giulia; Taylor, Seth R; Frady, E Paxon; Jensen, Anne B; Liu, Jerry C; Chaabane, Melanie M; Belal, Cherine; Nathanson, Jason L; Zoli, Michele; Leutgeb, Jill K; Biagini, Giuseppe; Yeo, Gene W; Berg, Darwin K

    2016-12-21

    A critical feature of neural networks is that they balance excitation and inhibition to prevent pathological dysfunction. How this is achieved is largely unknown, although deficits in the balance contribute to many neurological disorders. We show here that a microRNA (miR-101) is a key orchestrator of this essential feature, shaping the developing network to constrain excitation in the adult. Transient early blockade of miR-101 induces long-lasting hyper-excitability and persistent memory deficits. Using target site blockers in vivo, we identify multiple developmental programs regulated in parallel by miR-101 to achieve balanced networks. Repression of one target, NKCC1, initiates the switch in γ-aminobutyric acid (GABA) signaling, limits early spontaneous activity, and constrains dendritic growth. Kif1a and Ank2 are targeted to prevent excessive synapse formation. Simultaneous de-repression of these three targets completely phenocopies major dysfunctions produced by miR-101 blockade. Our results provide new mechanistic insight into brain development and suggest novel candidates for therapeutic intervention.

  17. The transactional relationship between parenting and emotion regulation in children with or without developmental delays.

    PubMed

    Norona, Amanda N; Baker, Bruce L

    2014-12-01

    Researchers have identified numerous internal and external factors that contribute to individual differences in emotion regulation (ER) abilities. To extend these findings, we examined the longitudinal effects of a significant external predictor (parenting) on children's ER abilities in the context of an internal predictor (intellectual functioning). We used cross-lagged panel modeling to investigate the transactional relationship between parenting and ER in children with or without developmental delays (DD) across three time points in early and middle childhood (age 3, 5, and 8). Participants were 225 families in the Collaborative Family Study, a longitudinal study of young children with or without DD. Child ER ability and maternal scaffolding skills were coded from mother-child interactions at ages 3, 5, and 8. Compared to children with typical development (TD), children with DD were significantly more dysregulated at all time points, and their mothers exhibited fewer scaffolding behaviors in early childhood. In addition, cross-lagged panel models revealed a significant bidirectional relationship between maternal scaffolding and ER from ages 3 to 5 in the DD group but not the TD group. These findings suggest that scaffolding may be a crucial parenting skill to target in the early treatment of children with ER difficulties.

  18. Calmodulin-binding proteins are developmentally regulated in gametes and embryos of fucoid algae

    SciTech Connect

    Brawley, S.H.; Roberts, D.M.

    1989-02-01

    Calcium-binding proteins and calmodulin-binding proteins were identified in gametes and zygotes of the marine brown algae Fucus vesiculosus, Fucus distichus, and Pelvetia fastigiata using gel (SDS-PAGE) overlay techniques. A calcium current appears to be important during cell polarization in fucoid zygotes, but there are no biochemical data on calcium-binding proteins in these algae. By using a sensitive 45Ca2+ overlay method designed to detect high-affinity calcium-binding proteins, at least 9-11 polypeptides were detected in extracts of fucoid gametes and zygotes. All samples had calcium-binding proteins with apparent molecular weights of about 17 and 30 kDa. A 17-kDa calcium-binding protein was purified by calcium-dependent hydrophobic chromatography and was identified as calmodulin by immunological and enzyme activator criteria. A 125I-calmodulin overlay assay was used to identify potential targets of calmodulin action. Sperm contained one major calmodulin-binding protein of about 45 kDa. Eggs lacked major calmodulin-binding activity. A 72-kDa calmodulin-binding protein was prominent in zygotes from 1-65 hr postfertilization. Both calmodulin-binding proteins showed calcium-dependent binding activity. Overall, the data suggest that the appearance and distribution of certain calcium-binding and calmodulin-binding proteins are under developmental regulation, and may reflect the different roles of calcium during fertilization and early embryogenesis.

  19. RNA editing of the Drosophila para Na(+) channel transcript. Evolutionary conservation and developmental regulation.

    PubMed Central

    Hanrahan, C J; Palladino, M J; Ganetzky, B; Reenan, R A

    2000-01-01

    Post-transcriptional editing of pre-mRNAs through the action of dsRNA adenosine deaminases results in the modification of particular adenosine (A) residues to inosine (I), which can alter the coding potential of the modified transcripts. We describe here three sites in the para transcript, which encodes the major voltage-activated Na(+) channel polypeptide in Drosophila, where RNA editing occurs. The occurrence of RNA editing at the three sites was found to be developmentally regulated. Editing at two of these sites was also conserved across species between the D. melanogaster and D. virilis. In each case, a highly conserved region was found in the intron downstream of the editing site and this region was shown to be complementary to the region of the exonic editing site. Thus, editing at these sites would appear to involve a mechanism whereby the edited exon forms a base-paired secondary structure with the distant conserved noncoding sequences located in adjacent downstream introns, similar to the mechanism shown for A-to-I RNA editing of mammalian glutamate receptor subunits (GluRs). For the third site, neither RNA editing nor the predicted RNA secondary structures were evolutionarily conserved. Transcripts from transgenic Drosophila expressing a minimal editing site construct for this site were shown to faithfully undergo RNA editing. These results demonstrate that Na(+) channel diversity in Drosophila is increased by RNA editing via a mechanism analogous to that described for transcripts encoding mammalian GluRs. PMID:10880477

  20. Developmental regulation of expression of schizophrenia susceptibility genes in the primate hippocampal formation.

    PubMed

    Favre, G; Banta Lavenex, P; Lavenex, P

    2012-10-23

    The hippocampal formation is essential for normal memory function and is implicated in many neurodevelopmental, neurodegenerative and neuropsychiatric disorders. In particular, abnormalities in hippocampal structure and function have been identified in schizophrenic subjects. Schizophrenia has a strong polygenic component, but the role of numerous susceptibility genes in normal brain development and function has yet to be investigated. Here we described the expression of schizophrenia susceptibility genes in distinct regions of the monkey hippocampal formation during early postnatal development. We found that, as compared with other genes, schizophrenia susceptibility genes exhibit a differential regulation of expression in the dentate gyrus, CA3 and CA1, over the course of postnatal development. A number of these genes involved in synaptic transmission and dendritic morphology exhibit a developmental decrease of expression in CA3. Abnormal CA3 synaptic organization observed in schizophrenics might be related to some specific symptoms, such as loosening of association. Interestingly, changes in gene expression in CA3 might occur at a time possibly corresponding to the late appearance of the first clinical symptoms. We also found earlier changes in expression of schizophrenia susceptibility genes in CA1, which might be linked to prodromal psychotic symptoms. A number of schizophrenia susceptibility genes including APOE, BDNF, MTHFR and SLC6A4 are involved in other disorders, and thus likely contribute to nonspecific changes in hippocampal structure and function that must be combined with the dysregulation of other genes in order to lead to schizophrenia pathogenesis.

  1. TFIIS-Dependent Non-coding Transcription Regulates Developmental Genome Rearrangements.

    PubMed

    Maliszewska-Olejniczak, Kamila; Gruchota, Julita; Gromadka, Robert; Denby Wilkes, Cyril; Arnaiz, Olivier; Mathy, Nathalie; Duharcourt, Sandra; Bétermier, Mireille; Nowak, Jacek K

    2015-07-01

    Because of their nuclear dimorphism, ciliates provide a unique opportunity to study the role of non-coding RNAs (ncRNAs) in the communication between germline and somatic lineages. In these unicellular eukaryotes, a new somatic nucleus develops at each sexual cycle from a copy of the zygotic (germline) nucleus, while the old somatic nucleus degenerates. In the ciliate Paramecium tetraurelia, the genome is massively rearranged during this process through the reproducible elimination of repeated sequences and the precise excision of over 45,000 short, single-copy Internal Eliminated Sequences (IESs). Different types of ncRNAs resulting from genome-wide transcription were shown to be involved in the epigenetic regulation of genome rearrangements. To understand how ncRNAs are produced from the entire genome, we have focused on a homolog of the TFIIS elongation factor, which regulates RNA polymerase II transcriptional pausing. Six TFIIS-paralogs, representing four distinct families, can be found in P. tetraurelia genome. Using RNA interference, we showed that TFIIS4, which encodes a development-specific TFIIS protein, is essential for the formation of a functional somatic genome. Molecular analyses and high-throughput DNA sequencing upon TFIIS4 RNAi demonstrated that TFIIS4 is involved in all kinds of genome rearrangements, including excision of ~48% of IESs. Localization of a GFP-TFIIS4 fusion revealed that TFIIS4 appears specifically in the new somatic nucleus at an early developmental stage, before IES excision. RT-PCR experiments showed that TFIIS4 is necessary for the synthesis of IES-containing non-coding transcripts. We propose that these IES+ transcripts originate from the developing somatic nucleus and serve as pairing substrates for germline-specific short RNAs that target elimination of their homologous sequences. Our study, therefore, connects the onset of zygotic non coding transcription to the control of genome plasticity in Paramecium, and establishes for

  2. Identification, functional characterization and developmental regulation of sesquiterpene synthases from sunflower capitate glandular trichomes

    PubMed Central

    Göpfert, Jens C; MacNevin, Gillian; Ro, Dae-Kyun; Spring, Otmar

    2009-01-01

    Background Sesquiterpene lactones are characteristic metabolites of Asteraceae (or Compositae) which often display potent bioactivities and are sequestered in specialized organs such as laticifers, resin ducts, and trichomes. For characterization of sunflower sesquiterpene synthases we employed a simple method to isolate pure trichomes from anther appendages which facilitated the identification of these genes and investigation of their enzymatic functions and expression patterns during trichome development. Results Glandular trichomes of sunflower (Helianthus annuus L.) were isolated, and their RNA was extracted to investigate the initial steps of sesquiterpene lactone biosynthesis. Reverse transcription-PCR experiments led to the identification of three sesquiterpene synthases. By combination of in vitro and in vivo characterization of sesquiterpene synthase gene products in Escherichia coli and Saccharomyces cerevisiae, respectively, two enzymes were identified as germacrene A synthases, the key enzymes of sesquiterpene lactone biosynthesis. Due to the very low in vitro activity, the third enzyme was expressed in vivo in yeast as a thioredoxin-fusion protein for functional characterization. In in vivo assays, it was identified as a multiproduct enzyme with the volatile sesquiterpene hydrocarbon δ-cadinene as one of the two main products with α-muuorlene, β-caryophyllene, α-humulene and α-copaene as minor products. The second main compound remained unidentified. For expression studies, glandular trichomes from the anther appendages of sunflower florets were isolated in particular developmental stages from the pre- to the post-secretory phase. All three sesquiterpene synthases were solely upregulated during the biosynthetically active stages of the trichomes. Expression in different aerial plant parts coincided with occurrence and maturity of trichomes. Young roots with root hairs showed expression of the sesquiterpene synthase genes as well. Conclusion This

  3. FKBPL Is a Critical Antiangiogenic Regulator of Developmental and Pathological Angiogenesis

    PubMed Central

    Yakkundi, Anita; Bennett, Rachel; Hernández-Negrete, Ivette; Delalande, Jean-Marie; Hanna, Mary; Lyubomska, Oksana; Arthur, Kenneth; Short, Amy; McKeen, Hayley; Nelson, Laura; McCrudden, Cian M.; McNally, Ross; McClements, Lana; McCarthy, Helen O.; Burns, Alan J.; Bicknell, Roy; Kissenpfennig, Adrien

    2015-01-01

    Objective— The antitumor effects of FK506-binding protein like (FKBPL) and its extracellular role in angiogenesis are well characterized; however, its role in physiological/developmental angiogenesis and the effect of FKBPL ablation has not been evaluated. This is important as effects of some angiogenic proteins are dosage dependent. Here we evaluate the regulation of FKBPL secretion under angiogenic stimuli, as well as the effect of FKBPL ablation in angiogenesis using mouse and zebrafish models. Approach and Results— FKBPL is secreted maximally by human microvascular endothelial cells and fibroblasts, and this was specifically downregulated by proangiogenic hypoxic signals, but not by the angiogenic cytokines, VEGF or IL8. FKBPL’s critical role in angiogenesis was supported by our inability to generate an Fkbpl knockout mouse, with embryonic lethality occurring before E8.5. However, whilst Fkbpl heterozygotic embryos showed some vasculature irregularities, the mice developed normally. In murine angiogenesis models, including the ex vivo aortic ring assay, in vivo sponge assay, and tumor growth assay, Fkbpl+/− mice exhibited increased sprouting, enhanced vessel recruitment, and faster tumor growth, respectively, supporting the antiangiogenic function of FKBPL. In zebrafish, knockdown of zFkbpl using morpholinos disrupted the vasculature, and the phenotype was rescued with hFKBPL. Interestingly, this vessel disruption was ineffective when zcd44 was knocked-down, supporting the dependency of zFkbpl on zCd44 in zebrafish. Conclusions— FKBPL is an important regulator of angiogenesis, having an essential role in murine and zebrafish blood vessel development. Mouse models of angiogenesis demonstrated a proangiogenic phenotype in Fkbpl heterozygotes. PMID:25767277

  4. Stepping strategies for regulating gait adaptability and stability.

    PubMed

    Hak, Laura; Houdijk, Han; Steenbrink, Frans; Mert, Agali; van der Wurff, Peter; Beek, Peter J; van Dieën, Jaap H

    2013-03-15

    Besides a stable gait pattern, gait in daily life requires the capability to adapt this pattern in response to environmental conditions. The purpose of this study was to elucidate the anticipatory strategies used by able-bodied people to attain an adaptive gait pattern, and how these strategies interact with strategies used to maintain gait stability. Ten healthy subjects walked in a Computer Assisted Rehabilitation ENvironment (CAREN). To provoke an adaptive gait pattern, subjects had to hit virtual targets, with markers guided by their knees, while walking on a self-paced treadmill. The effects of walking with and without this task on walking speed, step length, step frequency, step width and the margins of stability (MoS) were assessed. Furthermore, these trials were performed with and without additional continuous ML platform translations. When an adaptive gait pattern was required, subjects decreased step length (p<0.01), tended to increase step width (p=0.074), and decreased walking speed while maintaining similar step frequency compared to unconstrained walking. These adaptations resulted in the preservation of equal MoS between trials, despite the disturbing influence of the gait adaptability task. When the gait adaptability task was combined with the balance perturbation subjects further decreased step length, as evidenced by a significant interaction between both manipulations (p=0.012). In conclusion, able-bodied people reduce step length and increase step width during walking conditions requiring a high level of both stability and adaptability. Although an increase in step frequency has previously been found to enhance stability, a faster movement, which would coincide with a higher step frequency, hampers accuracy and may consequently limit gait adaptability.

  5. Deciphering RNA Regulatory Elements Involved in the Developmental and Environmental Gene Regulation of Trypanosoma brucei.

    PubMed

    Gazestani, Vahid H; Salavati, Reza

    2015-01-01

    Trypanosoma brucei is a vector-borne parasite with intricate life cycle that can cause serious diseases in humans and animals. This pathogen relies on fine regulation of gene expression to respond and adapt to variable environments, with implications in transmission and infectivity. However, the involved regulatory elements and their mechanisms of actions are largely unknown. Here, benefiting from a new graph-based approach for finding functional regulatory elements in RNA (GRAFFER), we have predicted 88 new RNA regulatory elements that are potentially involved in the gene regulatory network of T. brucei. We show that many of these newly predicted elements are responsive to both transcriptomic and proteomic changes during the life cycle of the parasite. Moreover, we found that 11 of predicted elements strikingly resemble previously identified regulatory elements for the parasite. Additionally, comparison with previously predicted motifs on T. brucei suggested the superior performance of our approach based on the current limited knowledge of regulatory elements in T. brucei.

  6. Developmental Cascade Effects of the New Beginnings Program on Adolescent Adaptation Outcomes

    PubMed Central

    Bonds, Darya D.; Wolchik, Sharlene A.; Winslow, Emily; Tein, Jenn-Yun; Sandler, Irwin N.; Millsap, Roger E.

    2010-01-01

    Using data from a 6-year longitudinal follow-up sample of 240 youth who participated in a randomized experimental trial of a preventive intervention for divorced families with children ages 9–12, the current study tested alternative cascading pathways by which the intervention decreased symptoms of internalizing disorders, symptoms of externalizing disorders, substance use, and risky sexual behavior, and increased self-esteem and academic performance in mid-to late-adolescence (15–19 years old). It was hypothesized that the impact of the program on adolescent adaptation outcomes would be explained by progressive associations between program-induced changes in parenting and youth adaptation outcomes. The results supported a cascading model of program effects in which the program was related to increased mother-child relationship quality, which was related to subsequent decreases in child internalizing problems, which then was related to subsequent increases in self-esteem and decreases in symptoms of internalizing disorders in adolescence. The results also were consistent with a model in which the program was related to increased maternal effective discipline, which was related to subsequent decreases in child externalizing problems, which then was related to subsequent decreases in symptoms of externalizing disorders, less substance use and better academic performance in adolescence. There were no significant differences in the model based on level of baseline risk or adolescent gender. These results provide support for a cascading pathways model of child and adolescent development. PMID:20883581

  7. Developmental and stress regulation of gene expression for a 9-cis-epoxycarotenoid dioxygenase, CstNCED, isolated from Crocus sativus stigmas.

    PubMed

    Ahrazem, Oussama; Rubio-Moraga, Angela; Trapero, Almudena; Gómez-Gómez, Lourdes

    2012-01-01

    Oxidative cleavage of cis-epoxycarotenoids by 9-cis-epoxycarotenoid dioxygenase (NCED) is the critical step in the regulation of abscisic acid (ABA) synthesis in higher plants. ABA has been associated with dormancy and flower senescence, while also regulating plant adaptive responses to various environmental stresses. An NCED gene, CstNCED, was cloned from Crocus sativus stigmas. The deduced amino acid sequence of the CstNCED protein shared high identity with other monocot NCEDs, and was closely related to the liliopsida enzymes. At the N-terminus of CstNCED a chloroplast transit peptide sequence is located. However, its expression in chloroplast-free tissues suggested localization in other plastid types. The relationship between expression of CstNCED and the endogenous ABA level was investigated in the stigma and corms, where it was developmentally regulated. The senescence of the unpollinated stigma is preceded by an increase in ABA levels and CstNCED expression. In corms, a correlation was observed between CstNCED expression and dormancy. Furthermore, CstNCED expression was correlated with the presence of zeaxanthin in the dormant corms. When detached C. sativus leaves and stigmas were water and salt stressed, increases in CstNCED mRNA were observed. The results provided evidence of the involvement of CstNCED in the regulation of ABA-associated processes such as flower senescence and corm dormancy in monocotyledonous saffron.

  8. Estrogen modulates developmentally regulated gene expression in the fetal baboon liver.

    PubMed

    Rosenthal, Miriam D; Albrecht, Eugene D; Pepe, Gerald J

    2004-01-01

    Although estrogen plays a central integrative role in regulating key aspects of placental and fetal endocrine development in the primate, our understanding of the regulation of maturation of the fetal liver is incomplete. In adults, estrogen modulates several aspects of hepatic function. Therefore, the current study determined whether fetal hepatic gene expression development was modulated by estrogen. mRNA differential display was used to identify genes whose expression was altered in fetal livers obtained on d 165 of gestation (term = d 184) from baboons that were untreated or treated on d 60-164 with the aromatase inhibitor CGS 20267 (2 mg/d; sc), which suppressed estrogen levels in the fetus by >95% (p < 0.01). As confirmed by Northern blot, the mRNA levels (ratio to 18s RNA) of metallothionein I (MT-I), porphobilinogen deaminase (PBG-D), and cytochrome P450 2C8 (CYP 2C8) in the livers of estrogen-deprived fetuses were 5-, 12-, and 3-fold higher (p < 0.05) than respective values of untreated fetuses. Moreover, mRNA levels of MT-I and PBG-D, expressed as a ratio to 18s RNA, were 3-fold and 26-fold higher (p < 0.05) on d 60-100 of gestation than on d 165 and in the adult. In contrast, CYP 2C8 mRNA increased 10-fold between d 100 and 165 and was not further altered in adult liver. Immunohistochemistry confirmed expression of MT-I in hepatocytes. Erythropoietic cells, normally present in the fetal baboon liver on d 100 but not on d 165, were also detected on d 165 in animals treated with the aromatase inhibitor. Thus, upregulation of PBG-D mRNA in estrogen-deprived baboons may reflect prolongation of the erythropoietic role of the fetal liver. In summary, these results indicate that the normal developmental change in MT-I, PBG-D, and CYP 2C8 mRNA expression in baboon fetal liver with advancing gestation are dependent on increased secretion of estrogen into the fetus. We suggest, therefore, that estrogen regulates normal development of the primate fetal liver.

  9. Threat of resource loss: The role of self-regulation in adaptive task performance.

    PubMed

    Niessen, Cornelia; Jimmieson, Nerina L

    2016-03-01

    Changes at work are often accompanied with the threat of, or actual, resource loss. Through an experiment, we investigated the detrimental effect of the threat of resource loss on adaptive task performance. Self-regulation (i.e., task focus and emotion control) was hypothesized to buffer the negative relationship between the threat of resource loss and adaptive task performance. Adaptation was conceptualized as relearning after a change in task execution rules. Threat of resource loss was manipulated for 100 participants undertaking an air traffic control task. Using discontinuous growth curve modeling, 2 kinds of adaptation--transition adaptation and reacquisition adaptation--were differentiated. The results showed that individuals who experienced the threat of resource loss had a stronger drop in performance (less transition adaptation) and a subsequent slower recovery (less reacquisition adaptation) compared with the control group who experienced no threat. Emotion control (but not task focus) moderated the relationship between the threat of resource loss and transition adaptation. In this respect, individuals who felt threatened but regulated their emotions performed better immediately after the task change (but not later on) compared with those individuals who felt threatened and did not regulate their emotions as well. However, later on, relearning (reacquisition adaptation) under the threat of resource loss was facilitated when individuals concentrated on the task at hand.

  10. Trauma adapted family connections: reducing developmental and complex trauma symptomatology to prevent child abuse and neglect.

    PubMed

    Collins, Kathryn S; Strieder, Frederick H; DePanfilis, Diane; Tabor, Maureen; Freeman, Pamela A Clarkson; Linde, Linnea; Greenberg, Patty

    2011-01-01

    Families living in urban poverty, enduring chronic and complex traumatic stress, and having difficulty meeting their children's basic needs have significant child maltreatment risk factors. There is a paucity of family focused, trauma-informed evidence-based interventions aimed to alleviate trauma symptomatology, strengthen family functioning, and prevent child abuse and neglect. Trauma Adapted Family Connections (TA-FC) is a manualized trauma-focused practice rooted in the principles of Family Connections (FC), an evidence supported preventive intervention developed to address the glaring gap in services for this specific, growing, and underserved population. This paper describes the science based development of TA-FC, its phases and essential components, which are based on theories of attachment, neglect, trauma, and family interaction within a comprehensive community-based family focused intervention framework.

  11. Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment.

    PubMed

    Anschütz, Uta; Becker, Dirk; Shabala, Sergey

    2014-05-15

    Partially and fully completed plant genome sequencing projects in both lower and higher plants allow drawing a comprehensive picture of the molecular and structural diversities of plant potassium transporter genes and their encoded proteins. While the early focus of the research in this field was aimed on the structure-function studies and understanding of the molecular mechanisms underlying K(+) transport, availability of Arabidopsis thaliana mutant collections in combination with micro-array techniques have significantly advanced our understanding of K(+) channel physiology, providing novel insights into the transcriptional regulation of potassium homeostasis in plants. More recently, posttranslational regulation of potassium transport systems has moved into the center stage of potassium transport research. The current review is focused on the most exciting developments in this field. By summarizing recent work on potassium transporter regulation we show that potassium transport in general, and potassium channels in particular, represent important targets and are mediators of the cellular responses during different developmental stages in a plant's life cycle. We show that regulation of intracellular K(+) homeostasis is essential to mediate plant adaptive responses to a broad range of abiotic and biotic stresses including drought, salinity, and oxidative stress. We further link post-translational regulation of K(+) channels with programmed cell death and show that K(+) plays a critical role in controlling the latter process. Thus, is appears that K(+) is not just the essential nutrient required to support optimal plant growth and yield but is also an important signaling agent mediating a wide range of plant adaptive responses to environment.

  12. Arousal regulation and affective adaptation to human responsiveness by a robot that explores and learns a novel environment.

    PubMed

    Hiolle, Antoine; Lewis, Matthew; Cañamero, Lola

    2014-01-01

    In the context of our work in developmental robotics regarding robot-human caregiver interactions, in this paper we investigate how a "baby" robot that explores and learns novel environments can adapt its affective regulatory behavior of soliciting help from a "caregiver" to the preferences shown by the caregiver in terms of varying responsiveness. We build on two strands of previous work that assessed independently (a) the differences between two "idealized" robot profiles-a "needy" and an "independent" robot-in terms of their use of a caregiver as a means to regulate the "stress" (arousal) produced by the exploration and learning of a novel environment, and (b) the effects on the robot behaviors of two caregiving profiles varying in their responsiveness-"responsive" and "non-responsive"-to the regulatory requests of the robot. Going beyond previous work, in this paper we (a) assess the effects that the varying regulatory behavior of the two robot profiles has on the exploratory and learning patterns of the robots; (b) bring together the two strands previously investigated in isolation and take a step further by endowing the robot with the capability to adapt its regulatory behavior along the "needy" and "independent" axis as a function of the varying responsiveness of the caregiver; and (c) analyze the effects that the varying regulatory behavior has on the exploratory and learning patterns of the adaptive robot.

  13. Arousal regulation and affective adaptation to human responsiveness by a robot that explores and learns a novel environment

    PubMed Central

    Hiolle, Antoine; Lewis, Matthew; Cañamero, Lola

    2014-01-01

    In the context of our work in developmental robotics regarding robot–human caregiver interactions, in this paper we investigate how a “baby” robot that explores and learns novel environments can adapt its affective regulatory behavior of soliciting help from a “caregiver” to the preferences shown by the caregiver in terms of varying responsiveness. We build on two strands of previous work that assessed independently (a) the differences between two “idealized” robot profiles—a “needy” and an “independent” robot—in terms of their use of a caregiver as a means to regulate the “stress” (arousal) produced by the exploration and learning of a novel environment, and (b) the effects on the robot behaviors of two caregiving profiles varying in their responsiveness—“responsive” and “non-responsive”—to the regulatory requests of the robot. Going beyond previous work, in this paper we (a) assess the effects that the varying regulatory behavior of the two robot profiles has on the exploratory and learning patterns of the robots; (b) bring together the two strands previously investigated in isolation and take a step further by endowing the robot with the capability to adapt its regulatory behavior along the “needy” and “independent” axis as a function of the varying responsiveness of the caregiver; and (c) analyze the effects that the varying regulatory behavior has on the exploratory and learning patterns of the adaptive robot. PMID:24860492

  14. Developmental regulation of the gene for chimeric calcium/calmodulin-dependent protein kinase in anthers

    NASA Technical Reports Server (NTRS)

    Poovaiah, B. W.; Xia, M.; Liu, Z.; Wang, W.; Yang, T.; Sathyanarayanan, P. V.; Franceschi, V. R.

    1999-01-01

    Chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK) was cloned from developing anthers of lily (Lilium longiflorum Thumb. cv. Nellie White) and tobacco (Nicotiana tabacum L. cv. Xanthi). Previous biochemical characterization and structure/function studies had revealed that CCaMK has dual modes of regulation by Ca(2+) and Ca(2+)/calmodulin. The unique structural features of CCaMK include a catalytic domain, a calmodulin-binding domain, and a neural visinin-like Ca(2+)-binding domain. The existence of these three features in a single polypeptide distinguishes it from other kinases. Western analysis revealed that CCaMK is expressed in a stage-specific manner in developing anthers. Expression of CCaMK was first detected in pollen mother cells and continued to increase, reaching a peak around the tetrad stage of meiosis. Following microsporogenesis, CCaMK expression rapidly decreased and at later stages of microspore development, no expression was detected. A tobacco genomic clone of CCaMK was isolated and transgenic tobacco plants were produced carrying the CCaMK promoter fused to the beta-glucuronidase reporter gene. Both CCaMK mRNA and protein were detected in the pollen sac and their localizations were restricted to the pollen mother cells and tapetal cells. Consistent results showing a stage-specific expression pattern were obtained by beta-glucuronidase analysis, in-situ hybridization and immunolocalization. The stage- and tissue-specific appearance of CCaMK in anthers suggests that it could play a role in sensing transient changes in free Ca(2+) concentration in target cells, thereby controlling developmental events in the anther.

  15. Developmental Regulation of Diacylglycerol Acyltransferase Family Gene Expression in Tung Tree Tissues

    PubMed Central

    Cao, Heping; Shockey, Jay M.; Klasson, K. Thomas; Chapital, Dorselyn C.; Mason, Catherine B.; Scheffler, Brian E.

    2013-01-01

    Diacylglycerol acyltransferases (DGAT) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. DGAT genes have been identified in numerous organisms. Multiple isoforms of DGAT are present in eukaryotes. We previously cloned DGAT1 and DGAT2 genes of tung tree (Vernicia fordii), whose novel seed TAGs are useful in a wide range of industrial applications. The objective of this study was to understand the developmental regulation of DGAT family gene expression in tung tree. To this end, we first cloned a tung tree gene encoding DGAT3, a putatively soluble form of DGAT that possesses 11 completely conserved amino acid residues shared among 27 DGAT3s from 19 plant species. Unlike DGAT1 and DGAT2 subfamilies, DGAT3 is absent from animals. We then used TaqMan and SYBR Green quantitative real-time PCR, along with northern and western blotting, to study the expression patterns of the three DGAT genes in tung tree tissues. Expression results demonstrate that 1) all three isoforms of DGAT genes are expressed in developing seeds, leaves and flowers; 2) DGAT2 is the major DGAT mRNA in tung seeds, whose expression profile is well-coordinated with the oil profile in developing tung seeds; and 3) DGAT3 is the major form of DGAT mRNA in tung leaves, flowers and immature seeds prior to active tung oil biosynthesis. These results suggest that DGAT2 is probably the major TAG biosynthetic isoform in tung seeds and that DGAT3 gene likely plays a significant role in TAG metabolism in other tissues. Therefore, DGAT2 should be a primary target for tung oil engineering in transgenic organisms. PMID:24146944

  16. Alcohol induced epigenetic alterations to developmentally crucial genes regulating neural stemness and differentiation

    PubMed Central

    Veazey, Kylee J.; Carnahan, Mindy N.; Muller, Daria; Miranda, Rajesh C.; Golding, Michael C.

    2013-01-01

    Background From studies using a diverse range of model organisms, we now acknowledge that epigenetic changes to chromatin structure provide a plausible link between environmental teratogens and alterations in gene expression leading to disease. Observations from a number of independent laboratories indicate ethanol has the capacity to act as a powerful epigenetic disruptor and potentially derail the coordinated processes of cellular differentiation. In this study, we sought to examine whether primary neurospheres cultured under conditions maintaining stemness were susceptible to alcohol-induced alterations of the histone code. We focused our studies on trimethylated histone 3 lysine 4 and trimethylated histone 3 lysine 27, as these are two of the most prominent post-translational histone modifications regulating stem cell maintenance and neural differentiation. Methods Primary neurosphere cultures were maintained under conditions promoting the stem cell state and treated with ethanol for five days. Control and ethanol treated cellular extracts were examined using a combination of quantitative RT-PCR and chromatin immunoprecipitation techniques. Results We find that the regulatory regions of genes controlling both neural precursor cell identity and processes of differentiation exhibited significant declines in the enrichment of the chromatin marks examined. Despite these widespread changes in chromatin structure, only a small subset of genes including Dlx2, Fabp7, Nestin, Olig2, and Pax6 displayed ethanol induced alterations in transcription. Unexpectedly, the majority of chromatin modifying enzymes examined including members of the Polycomb Repressive Complex displayed minimal changes in expression and localization. Only transcripts encoding Dnmt1, Uhrf1, Ehmt1, Ash2l, Wdr5, and Kdm1b exhibited significant differences. Conclusions Our results indicate primary neurospheres maintained as stem cells in vitro are susceptible to alcohol-induced perturbation of the

  17. Evidence that developmentally regulated control of gene expression by a parvoviral allotropic determinant is particle mediated.

    PubMed Central

    Gardiner, E M; Tattersall, P

    1988-01-01

    An infectious molecular clone of the immunosuppressive strain of the autonomous parvovirus minute virus of mice [MVM(i)] was constructed deriving left-hand terminal sequences from a rare encapsidated plus strand. Progeny virus was shown to package the same proportions of plus and minus strands as did authentic MVM(i) virions. Rescue of virus from this clone also resulted in the repair of a 21-base truncation at the junction between the right-hand end of the viral insert and the vector and generated the same heterogeneous 5' end as is present in standard MVM(i) DNA. Progeny virus rescued by transfection of this clone into mouse cell lines displayed the lymphotropic phenotype characteristic of the parental MVM(i) virus from which it was derived. However, analysis of viral RNA from transfected mouse fibroblasts revealed that the MVM(i) and MVM(p) genomic clones are transcribed at the same low level. Furthermore, transfected fibroblasts yielded similar numbers of infectious centers regardless of which MVM clone was introduced. These results contrast markedly with the different infectivities of MVM(i) and MVM(p) particles and with the observation that viral transcription in fibroblasts productively infected with MVM(p) virions is 100-fold greater than that seen in the restrictive MVM(i) particle-mediated infection. These results suggest that the developmentally regulated intracellular factors controlling host cell susceptibility at the level of viral transcription interact with a component of the incoming viral capsid, rather than with a sequence within the viral DNA. Images PMID:3357208

  18. OLA1, a Translational Regulator of p21, Maintains Optimal Cell Proliferation Necessary for Developmental Progression

    PubMed Central

    Ding, Zonghui; Liu, Yue; Rubio, Valentina; He, Jinjie; Minze, Laurie J.

    2016-01-01

    OLA1, an Obg-family GTPase, has been implicated in eukaryotic initiation factor 2 (eIF2)-mediated translational control, but its physiological functions remain obscure. Here we report that mouse embryos lacking OLA1 have stunted growth, delayed development leading to immature organs—especially lungs—at birth, and frequent perinatal lethality. Proliferation of primary Ola1−/− mouse embryonic fibroblasts (MEFs) is impaired due to defective cell cycle progression, associated with reduced cyclins D1 and E1, attenuated Rb phosphorylation, and increased p21Cip1/Waf1. Accumulation of p21 in Ola1−/− MEFs is due to enhanced mRNA translation and can be prevented by either reconstitution of OLA1 expression or treatment with an eIF2α dephosphorylation inhibitor, suggesting that OLA1 regulates p21 through a translational mechanism involving eIF2. With immunohistochemistry, overexpression of p21 protein was detected in Ola1-null embryos with reduced cell proliferation. Moreover, we have generated p21−/− Ola1−/− mice and found that knockout of p21 can partially rescue the growth retardation defect of Ola1−/− embryos but fails to rescue them from developmental delay and the lethality. These data demonstrate, for the first time, that OLA1 is required for normal progression of mammalian development. OLA1 plays an important role in promoting cell proliferation at least in part through suppression of p21 and organogenesis via factors yet to be discovered. PMID:27481995

  19. The promoter of the CD11b gene directs myeloid-specific and developmentally regulated expression.

    PubMed Central

    Shelley, C S; Arnaout, M A

    1991-01-01

    Human CD11b/CD18 (complement receptor type 3) is a member of the beta 2 integrin subfamily which also includes the heterodimers CD11a/CD18 and CD11c/CD18. The CD11 molecules and the common CD18 are the products of different genes that exhibit distinct though overlapping patterns of tissue- and developmental-specific expression. Whereas expression of CD11b and CD11c is almost exclusively restricted to cells of the myeloid lineage, that of CD11a and CD18 is panleukocytic. To begin to understand the mechanisms by which expression of these gene products is restricted to leukocytes and leukocyte subpopulations and to elucidate the mechanisms by which their expression is coordinated, we have cloned and characterized the promoter region of the CD11b gene. A single transcription initiation site has been identified and the region extending 242 base pairs upstream and 71 base pairs downstream of this site has been shown to be sufficient to direct tissue-, cell-, and development-specific expression in vitro, which mimics that of the CD11b gene in vivo. Within this region there are potential binding sites for transcription factors known to be involved in hematopoietic-specific and phorbol ester-inducible gene expression. Further analysis of this region of the CD11b gene and comparison with the promoters of the CD11a, CD11c, and CD18 genes should lead to significant insights into the molecular mechanisms by which these genes are regulated during hematopoietic development and upon activation. Images PMID:1683702

  20. Identity of the NMDA receptor coagonist is synapse specific and developmentally regulated in the hippocampus.

    PubMed

    Le Bail, Matildé; Martineau, Magalie; Sacchi, Silvia; Yatsenko, Natalia; Radzishevsky, Inna; Conrod, Sandrine; Ait Ouares, Karima; Wolosker, Herman; Pollegioni, Loredano; Billard, Jean-Marie; Mothet, Jean-Pierre

    2015-01-13

    NMDA receptors (NMDARs) require the coagonists D-serine or glycine for their activation, but whether the identity of the coagonist could be synapse specific and developmentally regulated remains elusive. We therefore investigated the contribution of D-serine and glycine by recording NMDAR-mediated responses at hippocampal Schaffer collaterals (SC)-CA1 and medial perforant path-dentate gyrus (mPP-DG) synapses in juvenile and adult rats. Selective depletion of endogenous coagonists with enzymatic scavengers as well as pharmacological inhibition of endogenous D-amino acid oxidase activity revealed that D-serine is the preferred coagonist at SC-CA1 mature synapses, whereas, unexpectedly, glycine is mainly involved at mPP-DG synapses. Nevertheless, both coagonist functions are driven by the levels of synaptic activity as inferred by recording long-term potentiation generated at both connections. This regional compartmentalization in the coagonist identity is associated to different GluN1/GluN2A to GluN1/GluN2B subunit composition of synaptic NMDARs. During postnatal development, the replacement of GluN2B- by GluN2A-containing NMDARs at SC-CA1 synapses parallels a change in the identity of the coagonist from glycine to D-serine. In contrast, NMDARs subunit composition at mPP-DG synapses is not altered and glycine remains the main coagonist throughout postnatal development. Altogether, our observations disclose an unprecedented relationship in the identity of the coagonist not only with the GluN2 subunit composition at synaptic NMDARs but also with astrocyte activity in the developing and mature hippocampus that reconciles the complementary functions of D-serine And Glycine In Modulating Nmdars During The Maturation Of Tripartite Glutamatergic Synapses.

  1. Have studies of the developmental regulation of behavioral phenotypes revealed the mechanisms of gene-environment interactions?

    PubMed Central

    Hall, F. Scott; Perona, Maria T. G.

    2012-01-01

    This review addresses the recent convergence of our long-standing knowledge of the regulation of behavioral phenotypes by developmental experience with recent advances in our understanding of mechanisms regulating gene expression. This review supports a particular perspective on the developmental regulation of behavioral phenotypes: That the role of common developmental experiences (e.g. maternal interactions, peer interactions, exposure to a complex environment, etc.) is to fit individuals to the circumstances of their lives within bounds determined by long-standing (evolutionary) mechanisms that have shaped responses to critical and fundamental types of experience via those aspects of gene structure that regulate gene expression. The phenotype of a given species is not absolute for a given genotype but rather variable within bounds that are determined by mechanisms regulated by experience (e.g. epigenetic mechanisms). This phenotypic variation is not necessarily random, or evenly distributed along a continuum of description or measurement, but often highly disjointed, producing distinct, even opposing, phenotypes. The potentiality for these varying phenotypes is itself the product of evolution, the potential for alternative phenotypes itself conveying evolutionary advantage. Examples of such phenotypic variation, resulting from environmental or experiential influences, have a long history of study in neurobiology, and a number of these will be discussed in this review: neurodevelopmental experiences that produce phenotypic variation in visual perception, cognitive function, and emotional behavior. Although other examples will be discussed, particular emphasis will be made on the role of social behavior on neurodevelopment and phenotypic determination. It will be argued that an important purpose of some aspects of social behavior is regulation of neurobehavioral phenotypes by experience via genetic regulatory mechanisms. PMID:22643448

  2. Paradoxical cardiovascular effects of implementing adaptive emotion regulation strategies in generalized anxiety disorder.

    PubMed

    Aldao, Amelia; Mennin, Douglas S

    2012-02-01

    Recent models of generalized anxiety disorder (GAD) have expanded on Borkovec's avoidance theory by delineating emotion regulation deficits associated with the excessive worry characteristic of this disorder (see Behar, DiMarco, Hekler, Mohlman, & Staples, 2009). However, it has been difficult to determine whether emotion regulation is simply a useful heuristic for the avoidant properties of worry or an important extension to conceptualizations of GAD. Some of this difficulty may arise from a focus on purported maladaptive regulation strategies, which may be confounded with symptomatic distress components of the disorder (such as worry). We examined the implementation of adaptive regulation strategies by participants with and without a diagnosis of GAD while watching emotion-eliciting film clips. In a between-subjects design, participants were randomly assigned to accept, reappraise, or were not given specific regulation instructions. Implementation of adaptive regulation strategies produced differential effects in the physiological (but not subjective) domain across diagnostic groups. Whereas participants with GAD demonstrated lower cardiac flexibility when implementing adaptive regulation strategies than when not given specific instructions on how to regulate, healthy controls showed the opposite pattern, suggesting they benefited from the use of adaptive regulation strategies. We discuss the implications of these findings for the delineation of emotion regulation deficits in psychopathology.

  3. Torpedo electromotor system development: developmentally regulated neuronotrophic activities of electric organ tissue.

    PubMed

    Richardson, G P; Rinschen, B; Fox, G Q

    1985-01-15

    Explant cultures of electric lobe from 45-60 mm stage Torpedo embryos and both ganglionic and dissociated cell cultures prepared from 8-day chick ciliary ganglia have been used to determine whether the electric organs of Torpedo marmorata contain developmentally regulated neuronotrophic activity. Electric lobe explants were evaluated by measuring their neurone density, choline acetyltransferase (CAT0, and low salt, Triton X-100-soluble protein contents. Addition of soluble extracts prepared from the electric organs of late stage embryos (85-105 mm) to standard medium results in the maintenance of nearly theoretical neurone densities in electric lobe explants during a 7-day culture period. Soluble electric organ extracts from early embryonic stages (42-59 mm) do not increase neurone density relative to control cultures but cause an elevation in the CAT content of the explants over control values. On the basis of this analysis it is concluded (1) that late embryonic stage and adult electric organs contain neuronotrophic activity that allows electromotor neurones to survive in vitro and (2) that activity increases rapidly in the electric organs between the 59 nd 72 mm stages of development at a time when rapid increases in postsynaptic membrane markers in the electric organs occur and when peripheral synaptogenesis begins. The activity of late stage embryonic electric organs is heat stable and lost on dialysis. Using ciliary ganglion explants and evaluating both the initial fibre outgrowth and the CAT content after 4 days in vitro, trophic activity is found to be maximal at early embryonic stages (45-55 mm) and to decline thereafter. It is shown that the decline in activity is not due to an increase in toxicity. Using established dissociated ganglionic cell survival assays the specific activity of neuronotrophic factors allowing survival is constant between the 45 and 73 mm stages in the electric organs and then rapidly declines, but activity per electric organ

  4. TFIIS-Dependent Non-coding Transcription Regulates Developmental Genome Rearrangements

    PubMed Central

    Maliszewska-Olejniczak, Kamila; Gruchota, Julita; Gromadka, Robert; Denby Wilkes, Cyril; Arnaiz, Olivier; Mathy, Nathalie; Duharcourt, Sandra; Bétermier, Mireille; Nowak, Jacek K.

    2015-01-01

    Because of their nuclear dimorphism, ciliates provide a unique opportunity to study the role of non-coding RNAs (ncRNAs) in the communication between germline and somatic lineages. In these unicellular eukaryotes, a new somatic nucleus develops at each sexual cycle from a copy of the zygotic (germline) nucleus, while the old somatic nucleus degenerates. In the ciliate Paramecium tetraurelia, the genome is massively rearranged during this process through the reproducible elimination of repeated sequences and the precise excision of over 45,000 short, single-copy Internal Eliminated Sequences (IESs). Different types of ncRNAs resulting from genome-wide transcription were shown to be involved in the epigenetic regulation of genome rearrangements. To understand how ncRNAs are produced from the entire genome, we have focused on a homolog of the TFIIS elongation factor, which regulates RNA polymerase II transcriptional pausing. Six TFIIS-paralogs, representing four distinct families, can be found in P. tetraurelia genome. Using RNA interference, we showed that TFIIS4, which encodes a development-specific TFIIS protein, is essential for the formation of a functional somatic genome. Molecular analyses and high-throughput DNA sequencing upon TFIIS4 RNAi demonstrated that TFIIS4 is involved in all kinds of genome rearrangements, including excision of ~48% of IESs. Localization of a GFP-TFIIS4 fusion revealed that TFIIS4 appears specifically in the new somatic nucleus at an early developmental stage, before IES excision. RT-PCR experiments showed that TFIIS4 is necessary for the synthesis of IES-containing non-coding transcripts. We propose that these IES+ transcripts originate from the developing somatic nucleus and serve as pairing substrates for germline-specific short RNAs that target elimination of their homologous sequences. Our study, therefore, connects the onset of zygotic non coding transcription to the control of genome plasticity in Paramecium, and establishes for

  5. Developmental adaptation of withdrawal reflexes to early alteration of peripheral innervation in the rat.

    PubMed

    Holmberg, H; Schouenborg, J

    1996-09-01

    1. In adult decerebrate spinal rats whose plantar nerves (PLN) had been transected at either postnatal day 1 (P1) or P21 the nociceptive withdrawal reflexes (NWR) of musculi extensor digitorum longus (EDL), peroneus longus (PER) and semitendinosus (ST) were characterized with respect to receptive field (RF) organization, magnitude and time course, using electromyography. Thermal (short CO2 laser pulses) and mechanical (calibrated pinch) stimulation were used. The innervation patterns in normal and lesioned adult rats were assessed by acute nerve lesions. 2. The spatial organization of the mean mechano- and thermonociceptive RFs of all the muscles studied was similar to normal in both P1- and P21-lesioned rats, although in some P21-lesioned rats atypical EDL RFs were encountered. 3. In P1-lesioned rats thermo-NWR of PER and EDL had normal magnitudes, while mechano-NWR were reduced. In P21-lesioned rats both thermo- and mechano-NWR of these muscles had reduced magnitudes. Except for thermo-NWR of ST in P1-lesioned rats, which were increased, NWR of ST had normal magnitudes in both P1- and P21-lesioned rats. The time course of thermonociceptive NWR of the muscles studied were near normal in both P1- and P21-lesioned rats. 4. Acute nerve lesions in adult P1-lesioned rats revealed an essentially abolished contribution to NWR from the PLN. Instead, the contribution to NWR from other hindpaw nerves, such as the superficial and deep peroneal nerves, was dramatically increased. By contrast, in P21-lesioned rats, the regenerated PLN contributed significantly to the NWR. 5. It is concluded that despite profound alterations of plantar hindpaw innervation induced by early PLN transection the cutaneous nociceptive input to NWR attained an essentially normal spatial organization. An experience-dependent mechanism is suggested to be instrumental in adapting the reflex connectivity to the peripheral innervation.

  6. Assessment of Reproductive and Developmental Toxicity of Mixtures of Regulated Drinking Water Chlorination By-Products in a Multigenerational Rat Bioassay

    EPA Science Inventory

    Epidemiological and animal toxicity studies have raised concerns regarding possible adverse reproductive and developmental effects of disinfection by-products (DBPs) in drinking water. To address these concerns, we provided mixtures of the regulated trihalomethanes (THMs; chlorof...

  7. Research on Individual Differences within a Sociocultural Perspective: Co-Regulation and Adaptive Learning

    ERIC Educational Resources Information Center

    McCaslin, Mary; Burross, Heidi Legg

    2011-01-01

    Background/Context: Research is presented on teacher-centered instruction and individual differences among students within a sociocultural perspective specifically, within a co-regulation model. Purpose of Study: To determine the utility of a co-regulation model for understanding teacher and student adaptation to the press of cultural and social…

  8. Developmental regulation and modulation of apoptotic genes expression in sheep oocytes and embryos cultured in vitro with L-carnitine.

    PubMed

    Mishra, A; Reddy, I J; Gupta, Psp; Mondal, S

    2016-12-01

    The objective of this study was to find out the impact of L-carnitine (10 mM) on developmental regulation of preimplantation sheep embryos cultured in vitro when supplemented in maturation medium and post-fertilization medium separately. Subsequent objective was to observe the L-carnitine-mediated alteration in expression of apoptotic genes (Bcl2, Bax, Casp3 and PCNA) in sheep oocytes and developing embryos produced in vitro. Oocytes matured with L-carnitine showed significantly (p < .05) higher cleavage (67.23% vs 43.12%), morula (47.65% vs 28.58%) and blastocysts (32.12% vs 13.24%) percentage as compared to presumptive zygotes cultured with L-carnitine during post-fertilization period. So it is suggested to use L-carnitine during maturation than post-fertilization period. Antiapoptotic and proliferative effects of L-carnitine were confirmed by inducing culture medium with actinomycin D (apoptotic agent) and TNFα (antiproliferative agent), respectively, with and without L-carnitine. Oocytes and embryos cultured with actinomycin D and TNFα showed developmental arrest with significant (p < .05) decrease in morula and blastocysts percentage but supplementation of L-carnitine to actinomycin D and TNFα induced culture medium showed similar result as that of control. L-carnitine supplementation during IVM significantly (p < .05) upregulated the expression of Bcl2 and PCNA genes in majority of the developmental stages. Although L-carnitine upregulated the expression of Bax in initial developmental stages but downregulated at latter part, whereas the expression of Casp3 was upregulated upto 16-cell stage but after that there was no difference in expression. Expression of GAPDH gene was not affected by L-carnitine supplementation. In conclusion, L-carnitine acted as an antiapoptotic and proliferative compound during embryo development and supplementation of L-carnitine during IVM altered the expression of apoptotic genes in the developmental stages of embryos.

  9. Mutations in global regulators lead to metabolic selection during adaptation to complex environments

    DOE PAGES

    Saxer, Gerda; Krepps, Michael D.; Merkley, Eric D.; ...

    2014-12-11

    Adaptation to ecologically complex environments can provide insights into the evolutionary dynamics and functional constraints encountered by organisms during natural selection. Unlike adaptation to a single limiting resource, adaptation to a new environment with abundant and varied resources can be difficult to achieve by small incremental changes since many mutations are required to achieve even modest gains in fitness. Since changing complex environments are quite common in nature, we investigated how such an epistatic bottleneck can be avoided to allow rapid adaptation. We show that adaptive mutations arise repeatedly in independently evolved populations in the context of greatly increased geneticmore » and phenotypic diversity. We go on to show that weak selection requiring substantial metabolic reprogramming can be readily achieved by mutations in the global response regulator arcA and the stress response regulator rpoS. We identified 46 unique single-nucleotide variants of arcA and 18 mutations in rpoS, nine of which resulted in stop codons or large deletions, suggesting that a subtle modulation of ArcA function and knockouts of rpoS are largely responsible for the metabolic shifts leading to adaptation. These mutations allow a higher order “metabolic selection” that eliminates epistatic bottlenecks, which could occur when many changes would be required. Proteomic and carbohydrate analysis of adapting E. coli populations revealed an up-regulation of enzymes associated with the TCA cycle and amino acid metabolism and an increase in the secretion of putrescine. The overall effect of adaptation across populations is to redirect and efficiently utilize uptake and catabolism of abundant amino acids. Concomitantly, there is a pronounced spread of more ecologically limited strains that results from specialization through metabolic erosion. Remarkably, the global regulators arcA and rpoS can provide a “one-step” mechanism of adaptation to a novel

  10. Developmental link between sex and nutrition; doublesex regulates sex-specific mandible growth via juvenile hormone signaling in stag beetles.

    PubMed

    Gotoh, Hiroki; Miyakawa, Hitoshi; Ishikawa, Asano; Ishikawa, Yuki; Sugime, Yasuhiro; Emlen, Douglas J; Lavine, Laura C; Miura, Toru

    2014-01-01

    Sexual dimorphisms in trait expression are widespread among animals and are especially pronounced in ornaments and weapons of sexual selection, which can attain exaggerated sizes. Expression of exaggerated traits is usually male-specific and nutrition sensitive. Consequently, the developmental mechanisms generating sexually dimorphic growth and nutrition-dependent phenotypic plasticity are each likely to regulate the expression of extreme structures. Yet we know little about how either of these mechanisms work, much less how they might interact with each other. We investigated the developmental mechanisms of sex-specific mandible growth in the stag beetle Cyclommatus metallifer, focusing on doublesex gene function and its interaction with juvenile hormone (JH) signaling. doublesex genes encode transcription factors that orchestrate male and female specific trait development, and JH acts as a mediator between nutrition and mandible growth. We found that the Cmdsx gene regulates sex differentiation in the stag beetle. Knockdown of Cmdsx by RNA-interference in both males and females produced intersex phenotypes, indicating a role for Cmdsx in sex-specific trait growth. By combining knockdown of Cmdsx with JH treatment, we showed that female-specific splice variants of Cmdsx contribute to the insensitivity of female mandibles to JH: knockdown of Cmdsx reversed this pattern, so that mandibles in knockdown females were stimulated to grow by JH treatment. In contrast, mandibles in knockdown males retained some sensitivity to JH, though mandibles in these individuals did not attain the full sizes of wild type males. We suggest that moderate JH sensitivity of mandibular cells may be the default developmental state for both sexes, with sex-specific Dsx protein decreasing sensitivity in females, and increasing it in males. This study is the first to demonstrate a causal link between the sex determination and JH signaling pathways, which clearly interact to determine the

  11. Developmental Link between Sex and Nutrition; doublesex Regulates Sex-Specific Mandible Growth via Juvenile Hormone Signaling in Stag Beetles

    PubMed Central

    Gotoh, Hiroki; Miyakawa, Hitoshi; Ishikawa, Asano; Ishikawa, Yuki; Sugime, Yasuhiro; Emlen, Douglas J.; Lavine, Laura C.; Miura, Toru

    2014-01-01

    Sexual dimorphisms in trait expression are widespread among animals and are especially pronounced in ornaments and weapons of sexual selection, which can attain exaggerated sizes. Expression of exaggerated traits is usually male-specific and nutrition sensitive. Consequently, the developmental mechanisms generating sexually dimorphic growth and nutrition-dependent phenotypic plasticity are each likely to regulate the expression of extreme structures. Yet we know little about how either of these mechanisms work, much less how they might interact with each other. We investigated the developmental mechanisms of sex-specific mandible growth in the stag beetle Cyclommatus metallifer, focusing on doublesex gene function and its interaction with juvenile hormone (JH) signaling. doublesex genes encode transcription factors that orchestrate male and female specific trait development, and JH acts as a mediator between nutrition and mandible growth. We found that the Cmdsx gene regulates sex differentiation in the stag beetle. Knockdown of Cmdsx by RNA-interference in both males and females produced intersex phenotypes, indicating a role for Cmdsx in sex-specific trait growth. By combining knockdown of Cmdsx with JH treatment, we showed that female-specific splice variants of Cmdsx contribute to the insensitivity of female mandibles to JH: knockdown of Cmdsx reversed this pattern, so that mandibles in knockdown females were stimulated to grow by JH treatment. In contrast, mandibles in knockdown males retained some sensitivity to JH, though mandibles in these individuals did not attain the full sizes of wild type males. We suggest that moderate JH sensitivity of mandibular cells may be the default developmental state for both sexes, with sex-specific Dsx protein decreasing sensitivity in females, and increasing it in males. This study is the first to demonstrate a causal link between the sex determination and JH signaling pathways, which clearly interact to determine the

  12. Organizational changes to thyroid regulation in Alligator mississippiensis: evidence for predictive adaptive responses.

    PubMed

    Boggs, Ashley S P; Lowers, Russell H; Cloy-McCoy, Jessica A; Guillette, Louis J

    2013-01-01

    During embryonic development, organisms are sensitive to changes in thyroid hormone signaling which can reset the hypothalamic-pituitary-thyroid axis. It has been hypothesized that this developmental programming is a 'predictive adaptive response', a physiological adjustment in accordance with the embryonic environment that will best aid an individual's survival in a similar postnatal environment. When the embryonic environment is a poor predictor of the external environment, the developmental changes are no longer adaptive and can result in disease states. We predicted that endocrine disrupting chemicals (EDCs) and environmentally-based iodide imbalance could lead to developmental changes to the thyroid axis. To explore whether iodide or EDCs could alter developmental programming, we collected American alligator eggs from an estuarine environment with high iodide availability and elevated thyroid-specific EDCs, a freshwater environment contaminated with elevated agriculturally derived EDCs, and a reference freshwater environment. We then incubated them under identical conditions. We examined plasma thyroxine and triiodothyronine concentrations, thyroid gland histology, plasma inorganic iodide, and somatic growth at one week (before external nutrition) and ten months after hatching (on identical diets). Neonates from the estuarine environment were thyrotoxic, expressing follicular cell hyperplasia (p = 0.01) and elevated plasma triiodothyronine concentrations (p = 0.0006) closely tied to plasma iodide concentrations (p = 0.003). Neonates from the freshwater contaminated site were hypothyroid, expressing thyroid follicular cell hyperplasia (p = 0.01) and depressed plasma thyroxine concentrations (p = 0.008). Following a ten month growth period under identical conditions, thyroid histology (hyperplasia p = 0.04; colloid depletion p = 0.01) and somatic growth (body mass p<0.0001; length p = 0.02) remained altered among the contaminated

  13. Mutations in Global Regulators Lead to Metabolic Selection during Adaptation to Complex Environments

    PubMed Central

    Saxer, Gerda; Krepps, Michael D.; Merkley, Eric D.; Ansong, Charles; Deatherage Kaiser, Brooke L.; Valovska, Marie-Thérèse; Ristic, Nikola; Yeh, Ping T.; Prakash, Vittal P.; Leiser, Owen P.; Nakhleh, Luay; Gibbons, Henry S.; Kreuzer, Helen W.; Shamoo, Yousif

    2014-01-01

    Adaptation to ecologically complex environments can provide insights into the evolutionary dynamics and functional constraints encountered by organisms during natural selection. Adaptation to a new environment with abundant and varied resources can be difficult to achieve by small incremental changes if many mutations are required to achieve even modest gains in fitness. Since changing complex environments are quite common in nature, we investigated how such an epistatic bottleneck can be avoided to allow rapid adaptation. We show that adaptive mutations arise repeatedly in independently evolved populations in the context of greatly increased genetic and phenotypic diversity. We go on to show that weak selection requiring substantial metabolic reprogramming can be readily achieved by mutations in the global response regulator arcA and the stress response regulator rpoS. We identified 46 unique single-nucleotide variants of arcA and 18 mutations in rpoS, nine of which resulted in stop codons or large deletions, suggesting that subtle modulations of ArcA function and knockouts of rpoS are largely responsible for the metabolic shifts leading to adaptation. These mutations allow a higher order metabolic selection that eliminates epistatic bottlenecks, which could occur when many changes would be required. Proteomic and carbohydrate analysis of adapting E. coli populations revealed an up-regulation of enzymes associated with the TCA cycle and amino acid metabolism, and an increase in the secretion of putrescine. The overall effect of adaptation across populations is to redirect and efficiently utilize uptake and catabolism of abundant amino acids. Concomitantly, there is a pronounced spread of more ecologically limited strains that results from specialization through metabolic erosion. Remarkably, the global regulators arcA and rpoS can provide a “one-step” mechanism of adaptation to a novel environment, which highlights the importance of global resource management

  14. Mitochondria in the regulation of innate and adaptive immunity.

    PubMed

    Weinberg, Samuel E; Sena, Laura A; Chandel, Navdeep S

    2015-03-17

    Mitochondria are well appreciated for their role as biosynthetic and bioenergetic organelles. In the past two decades, mitochondria have emerged as signaling organelles that contribute critical decisions about cell proliferation, death, and differentiation. Mitochondria not only sustain immune cell phenotypes but also are necessary for establishing immune cell phenotype and their function. Mitochondria can rapidly switch from primarily being catabolic organelles generating ATP to anabolic organelles that generate both ATP and building blocks for macromolecule synthesis. This enables them to fulfill appropriate metabolic demands of different immune cells. Mitochondria have multiple mechanisms that allow them to activate signaling pathways in the cytosol including altering in AMP/ATP ratio, the release of ROS and TCA cycle metabolites, as well as the localization of immune regulatory proteins on the outer mitochondrial membrane. In this Review, we discuss the evidence and mechanisms that mitochondrial dependent signaling controls innate and adaptive immune responses.

  15. Chromatin remodelling and antisense-mediated up-regulation of the developmental switch gene eud-1 control predatory feeding plasticity

    PubMed Central

    Serobyan, Vahan; Xiao, Hua; Namdeo, Suryesh; Rödelsperger, Christian; Sieriebriennikov, Bogdan; Witte, Hanh; Röseler, Waltraud; Sommer, Ralf J.

    2016-01-01

    Phenotypic plasticity has been suggested to act through developmental switches, but little is known about associated molecular mechanisms. In the nematode Pristionchus pacificus, the sulfatase eud-1 was identified as part of a developmental switch controlling mouth-form plasticity governing a predatory versus bacteriovorous mouth-form decision. Here we show that mutations in the conserved histone-acetyltransferase Ppa-lsy-12 and the methyl-binding-protein Ppa-mbd-2 mimic the eud-1 phenotype, resulting in the absence of one mouth-form. Mutations in both genes cause histone modification defects and reduced eud-1 expression. Surprisingly, Ppa-lsy-12 mutants also result in the down-regulation of an antisense-eud-1 RNA. eud-1 and antisense-eud-1 are co-expressed and further experiments suggest that antisense-eud-1 acts through eud-1 itself. Indeed, overexpression of the antisense-eud-1 RNA increases the eud-1-sensitive mouth-form and extends eud-1 expression. In contrast, this effect is absent in eud-1 mutants indicating that antisense-eud-1 positively regulates eud-1. Thus, chromatin remodelling and antisense-mediated up-regulation of eud-1 control feeding plasticity in Pristionchus. PMID:27487725

  16. Improving child self-regulation and parenting in families of pre-kindergarten children with developmental disabilities and behavioral difficulties.

    PubMed

    Pears, Katherine C; Kim, Hyoun K; Healey, Cynthia V; Yoerger, Karen; Fisher, Philip A

    2015-02-01

    The transition to school may be particularly difficult for children with developmental disabilities and behavioral difficulties. Such children are likely to experience problems with self-regulation skills, which are critical to school adjustment. Additionally, inconsistent discipline practices and low parental involvement in children's schooling may contribute to a poor transition to school. This study employed a randomized clinical trial to examine the effects of a school readiness intervention that focused on children's self-regulation skills as well as parenting and parental involvement in school. Results showed that the intervention had positive effects on children's self-regulation in kindergarten as measured by teacher and observer reports. Additionally, the intervention significantly reduced ineffective parenting prior to school entry, which in turn affected parental involvement. This finding is significant because it demonstrates that parental involvement in school may be increased by efforts to improve parenting skills in general. Overall, the study demonstrated that school adjustment across kindergarten among children with developmental disabilities and behavioral difficulties can be enhanced through an intervention aimed specifically at improving school readiness skills.

  17. Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise

    PubMed Central

    Jørgensen, Sebastian B; Richter, Erik A; Wojtaszewski, Jørgen F P

    2006-01-01

    The 5′-AMP-activated protein kinase (AMPK) is a potent regulator of skeletal muscle metabolism and gene expression. AMPK is activated both in response to in vivo exercise and ex vivo contraction. AMPK is therefore believed to be an important signalling molecule in regulating muscle metabolism during exercise as well as in adaptation of skeletal muscle to exercise training. The first part of this review is focused on different mechanisms regulating AMPK activity during muscle work such as alterations in nucleotide concentrations, availability of energy substrates and upstream AMPK kinases. We furthermore discuss the possible role of AMPK as a master switch in skeletal muscle metabolism with the main focus on AMPK in metabolic regulation during muscle work. Finally, AMPK has a well established role in regulating expression of genes encoding various enzymes in muscle, and this issue is discussed in relation to adaptation of skeletal muscle to exercise training. PMID:16690705

  18. Immune Regulation by Pericytes: Modulating Innate and Adaptive Immunity

    PubMed Central

    Navarro, Rocío; Compte, Marta; Álvarez-Vallina, Luis; Sanz, Laura

    2016-01-01

    Pericytes (PC) are mural cells that surround endothelial cells in small blood vessels. PC have traditionally been credited with structural functions, being essential for vessel maturation and stabilization. However, an accumulating body of evidence suggests that PC also display immune properties. They can respond to a series of pro-inflammatory stimuli and are able to sense different types of danger due to their expression of functional pattern-recognition receptors, contributing to the onset of innate immune responses. In this context, PC not only secrete a variety of chemokines but also overexpress adhesion molecules such as ICAM-1 and VCAM-1 involved in the control of immune cell trafficking across vessel walls. In addition to their role in innate immunity, PC are involved in adaptive immunity. It has been reported that interaction with PC anergizes T cells, which is attributed, at least in part, to the expression of PD-L1. As components of the tumor microenvironment, PC can also modulate the antitumor immune response. However, their role is complex, and further studies will be required to better understand the crosstalk of PC with immune cells in order to consider them as potential therapeutic targets. In any case, PC will be looked at with new eyes by immunologists from now on. PMID:27867386

  19. Parental Influences on Children's Self-Regulation of Energy Intake: Insights from Developmental Literature on Emotion Regulation

    PubMed Central

    Frankel, Leslie A.; Hughes, Sheryl O.; O'Connor, Teresia M.; Power, Thomas G.; Fisher, Jennifer O.; Hazen, Nancy L.

    2012-01-01

    The following article examines the role of parents in the development of children's self-regulation of energy intake. Various paths of parental influence are offered based on the literature on parental influences on children's emotion self-regulation. The parental paths include modeling, responses to children's behavior, assistance in helping children self-regulate, and motivating children through rewards and punishments. Additionally, sources of variation in parental influences on regulation are examined, including parenting style, child temperament, and child-parent attachment security. Parallels in the nature of parents' role in socializing children's regulation of emotions and energy intake are examined. Implications for future research are discussed. PMID:22545206

  20. Developmental fluoxetine exposure increases behavioral despair and alters epigenetic regulation of the hippocampal BDNF gene in adult female offspring.

    PubMed

    Boulle, Fabien; Pawluski, Jodi L; Homberg, Judith R; Machiels, Barbie; Kroeze, Yvet; Kumar, Neha; Steinbusch, Harry W M; Kenis, Gunter; van den Hove, Daniel L A

    2016-04-01

    A growing number of infants are exposed to selective serotonin reuptake inhibitor (SSRI) medications during the perinatal period. Perinatal exposure to SSRI medications alter neuroplasticity and increase depressive- and anxiety-related behaviors, particularly in male offspring as little work has been done in female offspring to date. The long-term effects of SSRI on development can also differ with previous exposure to prenatal stress, a model of maternal depression. Because of the limited work done on the role of developmental SSRI exposure on neurobehavioral outcomes in female offspring, the aim of the present study was to investigate how developmental fluoxetine exposure affects anxiety and depression-like behavior, as well as the regulation of hippocampal brain-derived neurotrophic factor (BDNF) signaling in the hippocampus of adult female offspring. To do this female Sprague-Dawley rat offspring were exposed to prenatal stress and fluoxetine via the dam, for a total of four groups of female offspring: 1) No Stress+Vehicle, 2) No Stress+Fluoxetine, 3) Prenatal Stress+Vehicle, and 4) Prenatal Stress+Fluoxetine. Primary results show that, in adult female offspring, developmental SSRI exposure significantly increases behavioral despair measures on the forced swim test, decreases hippocampal BDNF exon IV mRNA levels, and increases levels of the repressive histone 3 lysine 27 tri-methylated mark at the corresponding promoter. There was also a significant negative correlation between hippocampal BDNF exon IV mRNA levels and immobility in the forced swim test. No effects of prenatal stress or developmental fluoxetine exposure were seen on tests of anxiety-like behavior. This research provides important evidence for the long-term programming effects of early-life exposure to SSRIs on female offspring, particularily with regard to affect-related behaviors and their underlying molecular mechanisms.

  1. Embryonic Mechanical and Soluble Cues Regulate Tendon Progenitor Cell Gene Expression as a Function of Developmental Stage and Anatomical Origin

    PubMed Central

    Brown, Jeffrey P; Finley, Violet G; Kuo, Catherine K

    2014-01-01

    Stem cell-based engineering strategies for tendons have yet to yield a normal functional tissue, due in part to a need for tenogenic factors. Additionally, the ability to evaluate differentiation has been challenged by a lack of markers for differentiation. We propose to inform tendon regeneration with developmental cues involved in normal tissue formation and with phenotypic markers that are characteristic of differentiating tendon progenitor cells (TPCs). Mechanical forces, fibroblast growth factor (FGF)-4 and transforming growth factor (TGF)-β2 are implicated in embryonic tendon development, yet the isolated effects of these factors on differentiating TPCs are unknown. Additionally, developmental mechanisms vary between limb and axial tendons, suggesting the respective cell types are programmed to respond uniquely to exogenous factors. To characterize developmental cues and benchmarks for differentiation toward limb vs. axial phenotypes, we dynamically loaded and treated TPCs with growth factors and assessed gene expression profiles as a function of developmental stage and anatomical origin. Based on scleraxis expression, TGFβ2 was tenogenic for TPCs at all stages, while loading was for late-stage cells only, and FGF4 had no effect despite regulation of other genes. When factors were combined, TGF 2 continued to be tenogenic, while FGF4 appeared anti-tenogenic. Various treatments elicited distinct responses by axial vs. limb TPCs of specific stages. These results identified tenogenic factors, suggest tendon engineering strategies should be customized for tissues by anatomical origin, and provide stage-specific gene expression profiles of limb and axial TPCs as benchmarks with which to monitor tenogenic differentiation of stem cells. PMID:24231248

  2. Chinese adaptation of Emotion Regulation Questionnaire for Children and Adolescents (ERQ-CCA): A psychometric evaluation in Chinese children.

    PubMed

    Liu, Wen; Chen, Liang; Tu, Xintian

    2015-11-26

    This study validated a Chinese adaptation of the Emotion Regulation Questionnaire for Children and Adolescents (ERQ-CCA), a self-report instrument that evaluates two emotion regulation (ER) strategies, based on the process model of ER. The ERQ-CCA was evaluated using a sample of 1381 Chinese children aged between 7 and 12 years. The internal consistencies of the two factors indicated adequate reliability. Confirmatory factor analysis (CFA) revealed good support as the structure proved to be identical with that of the original instrument. Multigroup CFA supported an invariant factor solution of the ERQ-CCA across several demographic variations (gender, age, registered permanent residence and migrant status) in different groups. Test-retest correlations over a 2-month period were calculated using a subsample of children (N = 70). Convergent validity was evaluated in relation to the model dimensions of the ERQ-CCA, Chinese version of the Children's Depression Inventory, and Chinese version of the Eysenck Personality Questionnaire for Children and Adolescents. Results indicated that the ERQ-CCA has generally satisfactory reliability and validity in investigating the use of two ER strategies during the middle childhood developmental period.

  3. Bioenergetic adaptation in response to autophagy regulators during rotenone exposure

    PubMed Central

    Giordano, Samantha; Dodson, Matthew; Ravi, Saranya; Redmann, Matthew; Ouyang, Xiaosen; Usmar, Victor M Darley; Zhang, Jianhua

    2015-01-01

    Parkinson’s disease (PD) is the second most common neurodegenerative disorder with both mitochondrial dysfunction and insufficient autophagy playing a key role in its pathogenesis. Among the risk factors, exposure to the environmental neurotoxin rotenone increases the probability of developing PD. We previously reported that in differentiated SH-SY5Y cells, rotenone-induced cell death is directly related to inhibition of mitochondrial function. How rotenone at nM concentrations inhibits mitochondrial function, and whether it can engage the autophagy pathway necessary to remove damaged proteins and organelles, is unknown. We tested the hypothesis that autophagy plays a protective role against rotenone toxicity in primary neurons. We found that rotenone (10–100 nM) immediately inhibited cellular bioenergetics. Concentrations that decreased mitochondrial function at 2 hr, caused cell death at 24 hr with an LD50 of 10 nM. Overall autophagic flux was decreased by 10 nM rotenone at both 2 and 24 hr, but surprisingly mitophagy, or autophagy of the mitochondria, was increased at 24 hr, suggesting that a mitochondrial-specific lysosomal degradation pathway may be activated. Upregulation of autophagy by rapamycin protected against cell death while inhibition of autophagy by 3-methyladenine (3-MA) exacerbated cell death. Interestingly, while 3-MA exacerbated the rotenone-dependent effects on bioenergetics, rapamycin did not prevent rotenone-induced mitochondrial dysfunction, but caused reprogramming of mitochondrial substrate usage associated with both complex I and complex II activities. Taken together, these data demonstrate that autophagy can play a protective role in primary neuron survival in response to rotenone; moreover, surviving neurons exhibit bioenergetic adaptations to this metabolic stressor. PMID:25081478

  4. Implications of epigenetics and stress regulation on research and developmental care of preterm infants.

    PubMed

    Montirosso, Rosario; Provenzi, Livio

    2015-01-01

    Epigenetics refers to chemical modifications leading to changes in gene expression without any alteration of the DNA structure. We suggest ways through which epigenetic mechanisms might contribute to alter developmental trajectories in preterm infants. Although theoretical and methodological issues still need to be addressed, we discuss how epigenetics might be an emergent research field with potential innovative insights for researchers and clinicians involved in the neonatal care of preterm infants.

  5. Functional adaptation to loading of a single bone is neuronally regulated and involves multiple bones.

    PubMed

    Sample, Susannah J; Behan, Mary; Smith, Lesley; Oldenhoff, William E; Markel, Mark D; Kalscheur, Vicki L; Hao, Zhengling; Miletic, Vjekoslav; Muir, Peter

    2008-09-01

    Regulation of load-induced bone formation is considered a local phenomenon controlled by osteocytes, although it has also been hypothesized that functional adaptation may be neuronally regulated. The aim of this study was to examine bone formation in multiple bones, in response to loading of a single bone, and to determine whether adaptation may be neuronally regulated. Load-induced responses in the left and right ulnas and humeri were determined after loading of the right ulna in male Sprague-Dawley rats (69 +/- 16 days of age). After a single period of loading at -760-, -2000-, or -3750-microepsilon initial peak strain, rats were given calcein to label new bone formation. Bone formation and bone neuropeptide concentrations were determined at 10 days. In one group, temporary neuronal blocking was achieved by perineural anesthesia of the brachial plexus with bupivicaine during loading. We found right ulna loading induces adaptive responses in other bones in both thoracic limbs compared with Sham controls and that neuronal blocking during loading abrogated bone formation in the loaded ulna and other thoracic limb bones. Skeletal adaptation was more evident in distal long bones compared with proximal long bones. We also found that the single period of loading modulated bone neuropeptide concentrations persistently for 10 days. We conclude that functional adaptation to loading of a single bone in young rapidly growing rats is neuronally regulated and involves multiple bones. Persistent changes in bone neuropeptide concentrations after a single loading period suggest that plasticity exists in the innervation of bone.

  6. The influence of context on the implementation of adaptive emotion regulation strategies.

    PubMed

    Aldao, Amelia; Nolen-Hoeksema, Susan

    2012-08-01

    Putatively adaptive emotion regulation strategies (e.g., acceptance, problem solving, reappraisal) show weaker associations with psychopathology than putatively maladaptive strategies (e.g., avoidance, self-criticism, hiding expression, suppression of experience, worry, rumination). This is puzzling, given the central role that adaptive strategies play in a wide range of psychotherapeutic approaches. We explored this asymmetry by examining the effects of context (i.e., emotion intensity, type of emotion, social vs. academic circumstances) on the implementation of adaptive and maladaptive strategies. We asked 111 participants to describe 8 emotion-eliciting situations and identify which strategies they used in order to regulate their affect. We found support for a contextual model of emotion regulation, in which adaptive strategies were implemented with more cross-situational variability than maladaptive strategies. In addition, the variability in implementation of two adaptive strategies (acceptance, problem solving) predicted lower levels of psychopathology, suggesting that flexible implementation of such strategies in line with contextual demands is associated with better mental health. We discuss these findings by underscoring the importance of adopting a functional approach to the delineation of contextual factors that influence the implementation of emotion regulation strategies.

  7. Intragenic DNA methylation status down-regulates bovine IGF2 gene expression in different developmental stages.

    PubMed

    Huang, Yong-Zhen; Zhan, Zhao-Yang; Sun, Yu-Jia; Cao, Xiu-Kai; Li, Ming-Xun; Wang, Jing; Lan, Xian-Yong; Lei, Chu-Zhao; Zhang, Chun-Lei; Chen, Hong

    2014-01-25

    DNA methylation is a key epigenetic modification in mammals and has an essential and important role in muscle development. Insulin-like growth factor 2 (IGF2) is a fetal growth and differentiation factor that plays an important role in muscle growth and in myoblast proliferation and differentiation. The aim of this study was to evaluate the expression of IGF2 and the methylation pattern on the differentially methylated region (DMR) of the last exon of IGF2 in six tissues with two different developmental stages. The DNA methylation pattern was compared using bisulfite sequencing polymerase chain reaction (BSP) and combined bisulfite restriction analysis (COBRA). The quantitative real-time PCR (qPCR) analysis indicated that IGF2 has a broad tissue distribution and the adult bovine group showed significant lower mRNA expression levels than that in the fetal bovine group (P<0.05 or P<0.01). Moreover, the DNA methylation level analysis showed that the adult bovine group exhibited a significantly higher DNA methylation levels than that in the fetal bovine group (P<0.05 or P<0.01). These results indicate that IGF2 expression levels were negatively associated with the methylation status of the IGF2 DMR during the two developmental stages. Our results suggest that the methylation pattern in this DMR may be a useful parameter to investigate as a marker-assisted selection for muscle developmental in beef cattle breeding program and as a model for studies in other species.

  8. Epigenetic regulation of adaptive responses of forest tree species to the environment

    PubMed Central

    Bräutigam, Katharina; Vining, Kelly J; Lafon-Placette, Clément; Fossdal, Carl G; Mirouze, Marie; Marcos, José Gutiérrez; Fluch, Silvia; Fraga, Mario Fernández; Guevara, M Ángeles; Abarca, Dolores; Johnsen, Øystein; Maury, Stéphane; Strauss, Steven H; Campbell, Malcolm M; Rohde, Antje; Díaz-Sala, Carmen; Cervera, María-Teresa

    2013-01-01

    Epigenetic variation is likely to contribute to the phenotypic plasticity and adaptative capacity of plant species, and may be especially important for long-lived organisms with complex life cycles, including forest trees. Diverse environmental stresses and hybridization/polyploidization events can create reversible heritable epigenetic marks that can be transmitted to subsequent generations as a form of molecular “memory”. Epigenetic changes might also contribute to the ability of plants to colonize or persist in variable environments. In this review, we provide an overview of recent data on epigenetic mechanisms involved in developmental processes and responses to environmental cues in plant, with a focus on forest tree species. We consider the possible role of forest tree epigenetics as a new source of adaptive traits in plant breeding, biotechnology, and ecosystem conservation under rapid climate change. PMID:23467802

  9. Implications of Childhood Experiences for the Health and Adaptation of Lesbian, Gay, and Bisexual Individuals: Sensitivity to Developmental Process in Future Research

    PubMed Central

    Rosario, Margaret

    2015-01-01

    The empirical literature on lesbian, gay, and bisexual (LGB) individuals has predominantly focused on sexual-orientation disparities between LGB and heterosexual individuals on health and adaptation, as well as on the role of gay-related or minority stress in the health and adaptation of LGB individuals. Aside from demographic control variables, the initial predictor is a marker of sexual orientation or LGB-related experience (e.g., minority stress). Missing are potential strengths and vulnerabilities that LGB individuals develop over time and bring to bear on their sexual identity development and other LGB-related experiences. Those strengths and vulnerabilities may have profound consequences for the sexual identity development, health, and adaptation of LGB individuals. Here, I focus on one such set of strengths and vulnerabilities derived from attachment. I conclude by emphasizing the importance of attachment in the lives of LGB individuals and the need to identify other developmental processes that may be equally consequential. PMID:26900586

  10. A developmentally regulated membrane protein gene in Dictyostelium discoideum is also induced by heat shock and cold shock.

    PubMed Central

    Maniak, M; Nellen, W

    1988-01-01

    We have analyzed the expression of the Dictyostelium gene P8A7 which had been isolated as a cDNA clone from an early developmentally regulated gene. The single genomic copy generated two mRNAs which were subject to different control mechanisms: while one mRNA (P8A7S) was regulated like the cell-type-nonspecific late genes, the other one (P8A7L) was induced during development, when cells were allowed to attach to a substrate, and when cells were subjected to stress, such as heat shock and cadmium. Interestingly the same induction was also observed with cold shock. RNA processing was inhibited by heat and cold shock, leading to nuclear accumulation of a precursor. The translated region of the cDNA was common to both mRNAs and encoded an unusually hydrophobic peptide with the characteristics of a membrane protein. Images PMID:3336356

  11. Regulation of nucleosome positioning by a CHD Type III chromatin remodeler and its relationship to developmental gene expression in Dictyostelium

    PubMed Central

    Platt, James L.; Kent, Nicholas A.; Kimmel, Alan R.

    2017-01-01

    Nucleosome placement and repositioning can direct transcription of individual genes; however, the precise interactions of these events are complex and largely unresolved at the whole-genome level. The Chromodomain-Helicase-DNA binding (CHD) Type III proteins are a subfamily of SWI2/SNF2 proteins that control nucleosome positioning and are associated with several complex human disorders, including CHARGE syndrome and autism. Type III CHDs are required for multicellular development of animals and Dictyostelium but are absent in plants and yeast. These CHDs can mediate nucleosome translocation in vitro, but their in vivo mechanism is unknown. Here, we use genome-wide analysis of nucleosome positioning and transcription profiling to investigate the in vivo relationship between nucleosome positioning and gene expression during development of wild-type (WT) Dictyostelium and mutant cells lacking ChdC, a Type III CHD protein ortholog. We demonstrate major nucleosome positional changes associated with developmental gene regulation in WT. Loss of chdC caused an increase of intragenic nucleosome spacing and misregulation of gene expression, affecting ∼50% of the genes that are repositioned during WT development. These analyses demonstrate active nucleosome repositioning during Dictyostelium multicellular development, establish an in vivo function of CHD Type III chromatin remodeling proteins in this process, and reveal the detailed relationship between nucleosome positioning and gene regulation, as cells transition between developmental states. PMID:28330902

  12. Regulation of early T-lineage gene expression and developmental progression by the progenitor cell transcription factor PU.1

    PubMed Central

    Champhekar, Ameya; Damle, Sagar S.; Freedman, George; Carotta, Sebastian; Nutt, Stephen L.

    2015-01-01

    The ETS family transcription factor PU.1 is essential for the development of several blood lineages, including T cells, but its function in intrathymic T-cell precursors has been poorly defined. In the thymus, high PU.1 expression persists through multiple cell divisions in early stages but then falls sharply during T-cell lineage commitment. PU.1 silencing is critical for T-cell commitment, but it has remained unknown how PU.1 activities could contribute positively to T-cell development. Here we employed conditional knockout and modified antagonist PU.1 constructs to perturb PU.1 function stage-specifically in early T cells. We show that PU.1 is needed for full proliferation, restricting access to some non-T fates, and controlling the timing of T-cell developmental progression such that removal or antagonism of endogenous PU.1 allows precocious access to T-cell differentiation. Dominant-negative effects reveal that this repression by PU.1 is mediated indirectly. Genome-wide transcriptome analysis identifies novel targets of PU.1 positive and negative regulation affecting progenitor cell signaling and cell biology and indicating distinct regulatory effects on different subsets of progenitor cell transcription factors. Thus, in addition to supporting early T-cell proliferation, PU.1 regulates the timing of activation of the core T-lineage developmental program. PMID:25846797

  13. Challenges to Developmental Regulation across the Life Course: What Are They and Which Individual Differences Matter?

    ERIC Educational Resources Information Center

    Heckhausen, Jutta; Wrosch, Carsten

    2016-01-01

    We discuss the major processes involved in individuals' motivation and self-regulation of goal striving throughout the life course. While much is regulated based on the biological and societal scaffolding of lifespan development, certain challenges for motivation and self-regulation are more substantial and need to be managed by the individual,…

  14. Merging of Research and Teaching in Developmental Biology: Adaptation of Current Scientific Research Papers for Use in Undergraduate Laboratory Exercises

    ERIC Educational Resources Information Center

    Lee, H. H.; and others

    1970-01-01

    Describes two laboratory exercises adopted from current research papers for use in an undergraduate developmental biology course. Gives methods, summary of student results, and student comments. Lists lecture topics, text and reprint assignments, and laboratory exercises for course. (EB)

  15. Parental influences on children's self-regulation of energy intake: Insights from developmental literature on emotion regulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article examines the role of parents in the development of children's self-regulation of energy intake. Various paths of parental influence are offered based on the literature on parental influences on children's emotion self-regulation. The parental paths include modeling, responses to childre...

  16. An adaptive-control switching buck regulator - Implementation, analysis, and design

    NASA Technical Reports Server (NTRS)

    Lee, F. C.; Yu, Y.

    1980-01-01

    Describing-function techniques and averaging methods have been employed to characterize a multiloop switching buck regulator by three functional blocks: power stage, analog signal processor, and pulse modulator. The model is employed to explore possible forms of pole-zero cancellation and the adaptive nature of the control to filter parameter changes. Analysis-based design guidelines are provided including a suggested additional RC-compensation loop to optimize regulator performances such as stability, audiosusceptibility, output impedance, and load transient response.

  17. Genome-Wide Ultrabithorax Binding Analysis Reveals Highly Targeted Genomic Loci at Developmental Regulators and a Potential Connection to Polycomb-Mediated Regulation

    PubMed Central

    Meireles-Filho, Antonio C. A.; Pagani, Michaela; Stark, Alexander

    2016-01-01

    Hox homeodomain transcription factors are key regulators of animal development. They specify the identity of segments along the anterior-posterior body axis in metazoans by controlling the expression of diverse downstream targets, including transcription factors and signaling pathway components. The Drosophila melanogaster Hox factor Ultrabithorax (Ubx) directs the development of thoracic and abdominal segments and appendages, and loss of Ubx function can lead for example to the transformation of third thoracic segment appendages (e.g. halters) into second thoracic segment appendages (e.g. wings), resulting in a characteristic four-wing phenotype. Here we present a Drosophila melanogaster strain with a V5-epitope tagged Ubx allele, which we employed to obtain a high quality genome-wide map of Ubx binding sites using ChIP-seq. We confirm the sensitivity of the V5 ChIP-seq by recovering 7/8 of well-studied Ubx-dependent cis-regulatory regions. Moreover, we show that Ubx binding is predictive of enhancer activity as suggested by comparison with a genome-scale resource of in vivo tested enhancer candidates. We observed densely clustered Ubx binding sites at 12 extended genomic loci that included ANTP-C, BX-C, Polycomb complex genes, and other regulators and the clustered binding sites were frequently active enhancers. Furthermore, Ubx binding was detected at known Polycomb response elements (PREs) and was associated with significant enrichments of Pc and Pho ChIP signals in contrast to binding sites of other developmental TFs. Together, our results show that Ubx targets developmental regulators via strongly clustered binding sites and allow us to hypothesize that regulation by Ubx might involve Polycomb group proteins to maintain specific regulatory states in cooperative or mutually exclusive fashion, an attractive model that combines two groups of proteins with prominent gene regulatory roles during animal development. PMID:27575958

  18. Mutations in global regulators lead to metabolic selection during adaptation to complex environments

    SciTech Connect

    Saxer, Gerda; Krepps, Michael D.; Merkley, Eric D.; Ansong, Charles; Deatherage Kaiser, Brooke L.; Valovska, Marie -Thérèse; Ristic, Nikola; Yeh, Ping T.; Prakash, Vittal P.; Leiser, Owen P.; Nakhleh, Luay; Gibbons, Henry S.; Kreuzer, Helen W.; Shamoo, Yousif; Matic, Ivan

    2014-12-11

    Adaptation to ecologically complex environments can provide insights into the evolutionary dynamics and functional constraints encountered by organisms during natural selection. Unlike adaptation to a single limiting resource, adaptation to a new environment with abundant and varied resources can be difficult to achieve by small incremental changes since many mutations are required to achieve even modest gains in fitness. Since changing complex environments are quite common in nature, we investigated how such an epistatic bottleneck can be avoided to allow rapid adaptation. We show that adaptive mutations arise repeatedly in independently evolved populations in the context of greatly increased genetic and phenotypic diversity. We go on to show that weak selection requiring substantial metabolic reprogramming can be readily achieved by mutations in the global response regulator arcA and the stress response regulator rpoS. We identified 46 unique single-nucleotide variants of arcA and 18 mutations in rpoS, nine of which resulted in stop codons or large deletions, suggesting that a subtle modulation of ArcA function and knockouts of rpoS are largely responsible for the metabolic shifts leading to adaptation. These mutations allow a higher order “metabolic selection” that eliminates epistatic bottlenecks, which could occur when many changes would be required. Proteomic and carbohydrate analysis of adapting E. coli populations revealed an up-regulation of enzymes associated with the TCA cycle and amino acid metabolism and an increase in the secretion of putrescine. The overall effect of adaptation across populations is to redirect and efficiently utilize uptake and catabolism of abundant amino acids. Concomitantly, there is a pronounced spread of more ecologically limited strains that results from specialization through metabolic erosion. Remarkably, the global regulators arcA and rpoS can provide a

  19. ADHD and Adaptability: The Roles of Cognitive, Behavioural, and Emotional Regulation

    ERIC Educational Resources Information Center

    Burns, Emma; Martin, Andrew J.

    2014-01-01

    Adaptability has been recently proposed as cognitive, behavioural, and emotional regulation assisting individuals to effectively respond to change, uncertainty and novelty. Given students with attention-deficit/hyperactivity disorder (ADHD) have known impairments with regulatory functions, they may be at particular disadvantage as they seek to…

  20. Does Adaptive Scaffolding Facilitate Students' Ability to Regulate their Learning with Hypermedia?

    ERIC Educational Resources Information Center

    Azevedo, Roger; Cromley, Jennifer G.; Seibert, Diane

    2004-01-01

    Is adaptive scaffolding effective in facilitating students' ability to regulate their learning of complex science topics with hypermedia? We examined the role of different scaffolding instructional interventions in facilitating students' shift to more sophisticated mental models as indicated by both performance and process data. Undergraduate…

  1. Characteristics of Social-Psychological Adaptation and Self-Regulation in Patients with Diabetes Mellitus

    ERIC Educational Resources Information Center

    Tsv?tkova, Nadezhda A.; Aleksandrova, Marina I.; Rybakova, Anna Igorevna; Starovoitova, Larisa I.; Kononova, Tatiana B.

    2016-01-01

    The article presents the results of searching for answers to the following questions: Which are the characteristics of socio-psychological adaptation and self-regulation behavior in patients with diabetes mellitus type II? What is the nature of the relationship between these personal characteristics? In particular, it contains results of…

  2. Constructive, Self-Regulated, Situated, and Collaborative Learning: An Approach for the Acquisition of Adaptive Competence

    ERIC Educational Resources Information Center

    de Corte, Erik

    2012-01-01

    In today's learning society, education must focus on fostering adaptive competence (AC) defined as the ability to apply knowledge and skills flexibly in different contexts. In this article, four major types of learning are discussed--constructive, self-regulated, situated, and collaborative--in relation to what students must learn in order to…

  3. Adaptive Failure Compensation for Aircraft Flight Control Using Engine Differentials: Regulation

    NASA Technical Reports Server (NTRS)

    Yu, Liu; Xidong, Tang; Gang, Tao; Joshi, Suresh M.

    2005-01-01

    The problem of using engine thrust differentials to compensate for rudder and aileron failures in aircraft flight control is addressed in this paper in a new framework. A nonlinear aircraft model that incorporates engine di erentials in the dynamic equations is employed and linearized to describe the aircraft s longitudinal and lateral motion. In this model two engine thrusts of an aircraft can be adjusted independently so as to provide the control flexibility for rudder or aileron failure compensation. A direct adaptive compensation scheme for asymptotic regulation is developed to handle uncertain actuator failures in the linearized system. A design condition is specified to characterize the system redundancy needed for failure compensation. The adaptive regulation control scheme is applied to the linearized model of a large transport aircraft in which the longitudinal and lateral motions are coupled as the result of using engine thrust differentials. Simulation results are presented to demonstrate the effectiveness of the adaptive compensation scheme.

  4. The adaptive immune system as a fundamental regulator of adipose tissue inflammation and insulin resistance.

    PubMed

    Winer, Shawn; Winer, Daniel A

    2012-09-01

    Over the past decade, chronic inflammation in visceral adipose tissue (VAT) has gained acceptance as a lead promoter of insulin resistance in obesity. A great deal of evidence has pointed to the role of adipokines and innate immune cells, in particular, adipose tissue macrophages, in the regulation of fat inflammation and glucose homeostasis. However, more recently, cells of the adaptive immune system, specifically B and T lymphocytes, have emerged as unexpected promoters and controllers of insulin resistance. These adaptive immune cells infiltrate obesity expanded VAT and through cytokine secretion and macrophage modulation dictate the extent of the local inflammatory response, thereby directly impacting insulin resistance. The remarkable ability of our adaptive immune system to regulate insulin sensitivity and metabolism has unmasked a novel physiological function of this system, and promises new diagnostic and therapeutic strategies to manage the disease. This review highlights critical roles of adipose tissue lymphocytes in governing glucose homeostasis.

  5. Developmental effects of antiepileptic drugs and the need for improved regulations

    PubMed Central

    Loring, David W.

    2016-01-01

    Antiepileptic drugs (AEDs) are among the most common teratogenic drugs prescribed to women of childbearing age. AEDs can induce both anatomical (malformations) and behavioral (cognitive/behavioral deficits) teratogenicity. Only in the last decade have we begun to truly discriminate differential AED developmental effects. Fetal valproate exposure carries a special risk for both anatomical and behavioral teratogenic abnormalities, but the mechanisms and reasons for individual variability are unknown. Intermediate anatomical risks exist for phenobarbital and topiramate. Several AEDs (e.g., lamotrigine and levetiracetam) appear to possess low risks for both anatomical and behavioral teratogenesis. Despite advances in the past decade, our knowledge of the teratogenic risks for most AEDs and the underlying mechanisms remain inadequate. Further, the long-term effects of AEDs in neonates and older children remain uncertain. The pace of progress is slow given the lifelong consequences of diminished developmental outcomes, exposing children unnecessarily to potential adverse effects. It is imperative that new approaches be employed to determine risks more expediently. Our recommendations include a national reporting system for congenital malformations, federal funding of the North American AED Pregnancy Registry, routine meta-analyses of cohort studies to detect teratogenic signals, monitoring of AED prescription practices for women, routine preclinical testing of all new AEDs for neurodevelopmental effects, more specific Food and Drug Administration requirements to establish differential AED cognitive effects in children, and improved funding of basic and clinical research to fully delineate risks and underlying mechanisms for AED-induced anatomical and behavioral teratogenesis. PMID:26519545

  6. Estrogen target gene regulation and coactivator expression in rat uterus after developmental exposure to the ultraviolet filter 4-methylbenzylidene camphor.

    PubMed

    Durrer, Stefan; Maerkel, Kirsten; Schlumpf, Margret; Lichtensteiger, Walter

    2005-05-01

    Because the estrogen receptor (ER) ligand type influences transactivation, it is important to obtain information on molecular actions of nonclassical ER agonists. UV filters from cosmetics represent new classes of endocrine active chemicals, including the preferential ER beta ligands 4-methylbenzylidene camphor (4-MBC) and 3-benzylidene camphor. We studied estrogen target gene expression in uterus of Long Evans rats after developmental exposure to 4-MBC (0.7, 7, 24, and 47 mg/kg x d) administered in feed to the parent generation before mating, during pregnancy and lactation, and to the offspring until adulthood. 4-MBC altered steady-state levels of mRNAs encoding for ER alpha, ER beta, progesterone receptor (PR), IGF-I, androgen receptor, determined by real-time RT-PCR in uterus of 12-wk-old offspring. Western-blot analyses of the same tissue homogenates indicated changes in ER alpha and PR but not ER beta proteins. To assess sensitivity to estradiol (E2), offspring were ovariectomized on d 70, injected with E2 (10 or 50 microg/kg sc) on d 84, and killed 6 h later. Acute up-regulation of PR and IGF-I and down-regulation of ER alpha and androgen receptor by E2 were dose-dependently reduced in 4-MBC-exposed rats. The reduced response to E2 was accompanied by reduced coactivator SRC-1 mRNA and protein levels. Our data indicate that developmental exposure to 4-MBC affects the regulation of estrogen target genes and the expression of nuclear receptor coregulators in uterus at mRNA and protein levels.

  7. Organizational Changes to Thyroid Regulation in Alligator mississippiensis: Evidence for Predictive Adaptive Responses

    PubMed Central

    Boggs, Ashley S. P.; Lowers, Russell H.; Cloy-McCoy, Jessica A.; Guillette, Louis J.

    2013-01-01

    During embryonic development, organisms are sensitive to changes in thyroid hormone signaling which can reset the hypothalamic-pituitary-thyroid axis. It has been hypothesized that this developmental programming is a ‘predictive adaptive response’, a physiological adjustment in accordance with the embryonic environment that will best aid an individual's survival in a similar postnatal environment. When the embryonic environment is a poor predictor of the external environment, the developmental changes are no longer adaptive and can result in disease states. We predicted that endocrine disrupting chemicals (EDCs) and environmentally-based iodide imbalance could lead to developmental changes to the thyroid axis. To explore whether iodide or EDCs could alter developmental programming, we collected American alligator eggs from an estuarine environment with high iodide availability and elevated thyroid-specific EDCs, a freshwater environment contaminated with elevated agriculturally derived EDCs, and a reference freshwater environment. We then incubated them under identical conditions. We examined plasma thyroxine and triiodothyronine concentrations, thyroid gland histology, plasma inorganic iodide, and somatic growth at one week (before external nutrition) and ten months after hatching (on identical diets). Neonates from the estuarine environment were thyrotoxic, expressing follicular cell hyperplasia (p = 0.01) and elevated plasma triiodothyronine concentrations (p = 0.0006) closely tied to plasma iodide concentrations (p = 0.003). Neonates from the freshwater contaminated site were hypothyroid, expressing thyroid follicular cell hyperplasia (p = 0.01) and depressed plasma thyroxine concentrations (p = 0.008). Following a ten month growth period under identical conditions, thyroid histology (hyperplasia p = 0.04; colloid depletion p = 0.01) and somatic growth (body mass p<0.0001; length p = 0.02) remained altered among the

  8. The Role of Adaptation in Body Load-Regulating Mechanisms During Locomotion

    NASA Technical Reports Server (NTRS)

    Ruttley, Tara; Holt, Christopher; Mulavara, Ajitkumar; Bloomberg, Jacob

    2010-01-01

    Body loading is a fundamental parameter that modulates motor output during locomotion, and is especially important for controlling the generation of stepping patterns, dynamic balance, and termination of locomotion. Load receptors that regulate and control posture and stance in locomotion include the Golgi tendon organs and muscle spindles at the hip, knee, and ankle joints, and the Ruffini endings and the Pacinian corpuscles in the soles of the feet. Increased body weight support (BWS) during locomotion results in an immediate reorganization of locomotor control, such as a reduction in stance and double support duration and decreased hip, ankle, and knee angles during the gait cycle. Previous studies on the effect during exposure to increased BWS while walking showed a reduction in lower limb joint angles and gait cycle timing that represents a reorganization of locomotor control. Until now, no studies have investigated how locomotor control responds after a period of exposure to adaptive modification in the body load sensing system. The goal of this research was to determine the adaptive properties of body load-regulating mechanisms in locomotor control during locomotion. We hypothesized that body load-regulating mechanisms contribute to locomotor control, and adaptive changes in these load-regulating mechanisms require reorganization to maintain forward locomotion. Head-torso coordination, lower limb movement patterns, and gait cycle timing were evaluated before and after a 30-minute adaptation session during which subjects walked on a treadmill at 5.4 km/hr with 40% body weight support (BWS). Before and after the adaptation period, head-torso and lower limb 3D kinematic data were obtained while performing a goal directed task during locomotion with 0% BWS using a video-based motion analysis system, and gait cycle timing parameters were collected by foot switches positioned under the heel and toe of the subjects shoes. Subjects showed adaptive modification in

  9. Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the Arabidopsis root apex.

    PubMed

    Rigas, Stamatis; Ditengou, Franck Anicet; Ljung, Karin; Daras, Gerasimos; Tietz, Olaf; Palme, Klaus; Hatzopoulos, Polydefkis

    2013-03-01

    Active polar transport establishes directional auxin flow and the generation of local auxin gradients implicated in plant responses and development. Auxin modulates gravitropism at the root tip and root hair morphogenesis at the differentiation zone. Genetic and biochemical analyses provide evidence for defective basipetal auxin transport in trh1 roots. The trh1, pin2, axr2 and aux1 mutants, and transgenic plants overexpressing PIN1, all showing impaired gravity response and root hair development, revealed ectopic PIN1 localization. The auxin antagonist hypaphorine blocked root hair elongation and caused moderate agravitropic root growth, also leading to PIN1 mislocalization. These results suggest that auxin imbalance leads to proximal and distal developmental defects in Arabidopsis root apex, associated with agravitropic root growth and root hair phenotype, respectively, providing evidence that these two auxin-regulated processes are coupled. Cell-specific subcellular localization of TRH1-YFP in stele and epidermis supports TRH1 engagement in auxin transport, and hence impaired function in trh1 causes dual defects of auxin imbalance. The interplay between intrinsic cues determining root epidermal cell fate through the TTG/GL2 pathway and environmental cues including abiotic stresses modulates root hair morphogenesis. As a consequence of auxin imbalance in Arabidopsis root apex, ectopic PIN1 mislocalization could be a risk aversion mechanism to trigger root developmental responses ensuring root growth plasticity.

  10. Developmentally regulated enzymes and cyclic AMP-binding sites in Dictyostelium discoideum cells blocked during development by alpha-chymotrypsin.

    PubMed Central

    Schmidt, J A; Stirling, J L

    1982-01-01

    When cells of the slime mould Dictyostelium discoideum are allowed to starve in the presence of alpha-chymotrypsin, they are blocked in development at the stage where tight aggregates form tips. Analysis of developmentally regulated enzymes has shown that alpha-mannosidase, beta-N-acetylglucosaminidase, threonine deaminase, tyrosine aminotransferase, beta-glucosidase and the carbohydrate-binding protein discoidin are unaffected, but enzymes that show an increase in specific activity during post-aggregative development, namely glycogen phosphorylase, UDP-glucose pyrophosphorylase, UDP-galactose 4-epimerase, UDP-galactose polysaccharide transferase and alkaline phosphatase, did not show the characteristic increase when development was blocked by alpha-chymotrypsin. Recovery of cells from the effects of alpha-chymotrypsin was accompanied by the formation of fruiting bodies and a concomitant increase in the specific activity of UDP-glucose pyrophosphorylase. Uptake or efflux of 45Ca2+ was not altered in the presence of alpha-chymotrypsin. Cells allowed to develop in alpha-chymotrypsin, or treated with the enzyme for 15 min, had a markedly reduced ability to bind cyclic AMP with low affinity; high-affinity binding was unaffected. Pronase had a similar effect on cyclic AMP binding, but trypsin, which does not alter developmental processes, has no effect on cyclic AMP binding to D. discoideum cells. PMID:7150239

  11. MicroRNAs in Breastmilk and the Lactating Breast: Potential Immunoprotectors and Developmental Regulators for the Infant and the Mother

    PubMed Central

    Alsaweed, Mohammed; Hartmann, Peter E.; Geddes, Donna T.; Kakulas, Foteini

    2015-01-01

    Human milk (HM) is the optimal source of nutrition, protection and developmental programming for infants. It is species-specific and consists of various bioactive components, including microRNAs, small non-coding RNAs regulating gene expression at the post-transcriptional level. microRNAs are both intra- and extra-cellular and are present in body fluids of humans and animals. Of these body fluids, HM appears to be one of the richest sources of microRNA, which are highly conserved in its different fractions, with milk cells containing more microRNAs than milk lipids, followed by skim milk. Potential effects of exogenous food-derived microRNAs on gene expression have been demonstrated, together with the stability of milk-derived microRNAs in the gastrointestinal tract. Taken together, these strongly support the notion that milk microRNAs enter the systemic circulation of the HM fed infant and exert tissue-specific immunoprotective and developmental functions. This has initiated intensive research on the origin, fate and functional significance of milk microRNAs. Importantly, recent studies have provided evidence of endogenous synthesis of HM microRNA within the human lactating mammary epithelium. These findings will now form the basis for investigations of the role of microRNA in the epigenetic control of normal and aberrant mammary development, and particularly lactation performance. PMID:26529003

  12. Developmental effects on ureide levels are mediated by tissue-specific regulation of allantoinase in Phaseolus vulgaris L.

    PubMed

    Díaz-Leal, Juan Luis; Gálvez-Valdivieso, Gregorio; Fernández, Javier; Pineda, Manuel; Alamillo, Josefa M

    2012-06-01

    The ureides allantoin and allantoate are key molecules in the transport and storage of nitrogen in ureide legumes. In shoots and leaves from Phaseolus vulgaris plants using symbiotically fixed nitrogen as the sole nitrogen source, ureide levels were roughly equivalent to those of nitrate-supported plants during the whole vegetative stage, but they exhibited a sudden increase at the onset of flowering. This rise in the level of ureides, mainly in the form of allantoate, was accompanied by increases in allantoinase gene expression and enzyme activity, consistent with developmental regulation of ureide levels mainly through the tissue-specific induction of allantoate synthesis catalysed by allantoinase. Moreover, surprisingly high levels of ureides were also found in non-nodulated plants fertilized with nitrate, at both early and late developmental stages. The results suggest that remobilized N from lower leaves is probably involved in the sharp rise in ureides in shoots and leaves during early pod filling in N(2)-fixing plants and in the significant amounts of ureides observed in non-nodulated plants.

  13. Emotional Self-Regulation, Peer Rejection, and Antisocial Behavior: Developmental Associations from Early Childhood to Early Adolescence

    PubMed Central

    Trentacosta, Christopher J.; Shaw, Daniel S.

    2009-01-01

    This study examined relations among emotional self-regulation, peer rejection, and antisocial behavior in a sample of 122 boys from low-income families who participated in a summer camp and were followed longitudinally from early childhood to early adolescence. Emotional self- regulation strategies were coded in early childhood from a waiting task, measures of peer rejection were collected during middle childhood at the summer camp, and reports of antisocial behavior were obtained during early adolescence. Structural equation modeling was utilized to examine longitudinal relations among these constructs, with results supporting a negative association between use of active distraction and peer rejection and a positive association between peer rejection and antisocial behavior. Furthermore, an indirect effect of active distraction on antisocial behavior was found through peer rejection. Thus, adaptive self-regulation strategy use in early childhood demonstrated direct longitudinal relations with peer rejection and an indirect association with antisocial behavior in early adolescence. Results have implications for early prevention and intervention efforts to foster adaptive self-regulation of emotion and reduce risk for later social problems and delinquency. PMID:20161105

  14. Multiple developmental roles for CRAC, a cytosolic regulator of adenylyl cyclase.

    PubMed

    Wang, B; Shaulsky, G; Kuspa, A

    1999-04-01

    Receptor-mediated activation of adenylyl cyclase (ACA) in Dictyostelium requires CRAC protein. Upon translocation to the membrane, this pleckstrin homology (PH) domain protein stimulates ACA and thereby mediates developmental aggregation. CRAC may also have roles later in development since CRAC-null cells can respond to chemotactic signals and participate in developmental aggregation when admixed with wild-type cells, but they do not complete development within such chimeras. To test whether the role of CRAC in postaggregative development is related to the activation of ACA, chemotactic aggregation was bypassed in CRAC-null cells by activating the cAMP-dependent protein kinase (PKA). While such strains formed mounds, they did not complete fruiting body morphogenesis or form spores. Expression of CRAC in the prespore cells of these strains rescued sporulation and fruiting body formation. This later function of CRAC does not appear to require its PH domain since the C-terminal portion of the protein (CRAC-DeltaPH) can substitute for full-length CRAC in promoting spore cell formation and morphogenesis. No detectable ACA activation was observed in any of the CRAC-null strains rescued by PKA activation and expression of CRAC-DeltaPH. Finally, we found that the development of CRAC-null ACA-null double mutants could be rescued by the activation of PKA together with the expression of CRAC-DeltaPH. Thus, there appears to be a required function for CRAC in postaggregative development that is independent of its previously described function in the ACA activation pathway.

  15. Developmental programming of energy balance regulation: Is physical activity more "programmable" than food intake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extensive human and animal model data show that environmental influences during critical periods of prenatal and early postnatal development can cause persistent alterations in energy balance regulation. Although a potentially important factor in the worldwide obesity epidemic, the fundamental mecha...

  16. Identifying Developmental Cascades among Differentiated Dimensions of Social Competence and Emotion Regulation

    PubMed Central

    Blair, Bethany L.; Perry, Nicole B.; O'Brien, Marion; Calkins, Susan D.; Keane, Susan P.; Shanahan, Lilly

    2015-01-01

    This study utilized data from 356 children, their mothers, teachers, and peers, to examine the longitudinal and dynamic associations among three dimensions of social competence derived from Hinde's (1987) framework of social complexity: social skills, peer group acceptance, and friendship quality. Direct and indirect associations among each discrete dimension of social competence and emotion regulation were also examined. Results suggest that there are important distinctions among the dimensions of social competence as they relate to one another and to emotion regulation. Model comparisons provided evidence of cascade and reciprocal effects among the variables, demonstrating complex associations that are ongoing across middle childhood. Specifically, there were cascading effects from emotion regulation abilities at age 5 to social skills at age 7, which was then associated with age 10 outcomes of more positive friendship quality, greater peer acceptance, and greater emotion regulation. PMID:26147773

  17. Independent AMP and NAD signaling regulates C2C12 differentiation and metabolic adaptation.

    PubMed

    Hsu, Chia George; Burkholder, Thomas J

    2016-12-01

    The balance of ATP production and consumption is reflected in adenosine monophosphate (AMP) and nicotinamide adenine dinucleotide (NAD) content and has been associated with phenotypic plasticity in striated muscle. Some studies have suggested that AMPK-dependent plasticity may be an indirect consequence of increased NAD synthesis and SIRT1 activity. The primary goal of this study was to assess the interaction of AMP- and NAD-dependent signaling in adaptation of C2C12 myotubes. Changes in myotube developmental and metabolic gene expression were compared following incubation with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) and nicotinamide mononucleotide (NMN) to activate AMPK- and NAD-related signaling. AICAR showed no effect on NAD pool or nampt expression but significantly reduced histone H3 acetylation and GLUT1, cytochrome C oxidase subunit 2 (COX2), and MYH3 expression. In contrast, NMN supplementation for 24 h increased NAD pool by 45 % but did not reduce histone H3 acetylation nor promote mitochondrial gene expression. The combination of AMP and NAD signaling did not induce further metabolic adaptation, but NMN ameliorated AICAR-induced myotube reduction. We interpret these results as indication that AMP and NAD contribute to C2C12 differentiation and metabolic adaptation independently.

  18. Cardiovascular regulation profile predicts developmental trajectory of BMI and pediatric obesity.

    PubMed

    Graziano, Paulo A; Calkins, Susan D; Keane, Susan P; O'Brien, Marion

    2011-09-01

    The present study examined the role of cardiovascular regulation in predicting pediatric obesity. Participants for this study included 268 children (141 girls) obtained from a larger ongoing longitudinal study. To assess cardiac vagal regulation, resting measures of respiratory sinus arrhythmia (RSA) and RSA change (vagal withdrawal) to three cognitively challenging tasks were derived when children were 5.5 years of age. Heart period (HP) and HP change (heart rate (HR) acceleration) were also examined. Height and weight measures were collected when children were 5.5, 7.5, and 10.5 years of age. Results indicated that physiological regulation at age 5.5 was predictive of both normal variations in BMI development and pediatric obesity at age 10.5. Specifically, children with a cardiovascular regulation profile characterized by lower levels of RSA suppression and HP change experienced significantly greater levels of BMI growth and were more likely to be classified as overweight/at-risk for overweight at age 10.5 compared to children with a cardiovascular regulation profile characterized by high levels of RSA suppression and HP change. However, a significant interaction with racial status was found suggesting that the association between cardiovascular regulation profile and BMI growth and pediatric obesity was only significant for African-American children. An autonomic cardiovascular regulation profile consisting of low parasympathetic activity represents a significant individual risk factor for the development of pediatric obesity, but only for African-American children. Mechanisms by which early physiological regulation difficulties may contribute to the development of pediatric obesity are discussed.

  19. The developmentally regulated expression of Menkes protein ATP7A suggests a role in axon extension and synaptogenesis.

    PubMed

    El Meskini, Rajaâ; Cline, Laura B; Eipper, Betty A; Ronnett, Gabriele V

    2005-01-01

    Menkes disease (MD) is a neurodegenerative disorder caused by mutation of the copper transporter ATP7A. While several enzymes expressed in mature neurons require copper, MD neurodegenerative changes cannot be explained by known requirements for ATP7A in neuronal development. To investigate additional roles for ATP7A during development, we characterized its pattern of expression using the olfactory system as a neurodevelopmental model. ATP7A expression in neurons was developmentally regulated rather than constitutively. Initially expressed in the cell bodies of developing neurons, ATP7A protein later shifted to extending axons, peaking prior to synaptogenesis. Similarly, after injury-stimulated neurogenesis, ATP7A expression increased in neurons and axons preceding synaptogenesis. Interestingly, copper-transport-deficient ATP7A still exhibits axonal localization. These results support a role for ATP7A in axon extension, which may contribute to the severe neurodegeneration characteristic of MD.

  20. Expression Profiling Reveals Developmentally Regulated lncRNA Repertoire in the Mouse Male Germline1

    PubMed Central

    Bao, Jianqiang; Wu, Jingwen; Schuster, Andrew S.; Hennig, Grant W.; Yan, Wei

    2013-01-01

    ABSTRACT In mammals, the transcriptome of large noncoding RNAs (lncRNAs) is believed to be greater than that of messenger RNAs (mRNAs). Some lncRNAs, especially large intergenic noncoding RNAs (lincRNAs), participate in epigenetic regulation by binding chromatin-modifying protein complexes and regulating protein-coding gene expression. Given that epigenetic regulation plays a critical role in male germline development, we embarked on expression profiling of both lncRNAs and mRNAs during male germline reprogramming and postnatal development using microarray analyses. We identified thousands of lncRNAs and hundreds of lincRNAs that are either up- or downregulated at six critical time points during male germ cell development. In addition, highly regulated lncRNAs were correlated with nearby (<30 kb) mRNA gene clusters, which were also significantly up- or downregulated. Large ncRNAs can be localized to both the nucleus and cytoplasm, with nuclear lncRNAs mostly associated with key components of the chromatin-remodeling protein complexes. Our data indicate that expression of lncRNAs is dynamically regulated during male germline development and that lncRNAs may function to regulate gene expression at both transcriptional and posttranscriptional levels via genetic and epigenetic mechanisms. PMID:24048575

  1. Coordinated regulation of genes for secretion in tobacco at late developmental stages: association with resistance against oomycetes.

    PubMed

    Hugot, Karine; Rivière, Marie-Pierre; Moreilhon, Chimène; Dayem, Manal A; Cozzitorto, Joseph; Arbiol, Gilles; Barbry, Pascal; Weiss, Catherine; Galiana, Eric

    2004-02-01

    Besides the systemic acquired resistance (SAR) induced in response to microbial stimulation, host plants may also acquire resistance to pathogens in response to endogenous stimuli associated with their own development. In tobacco (Nicotiana tabacum), the vegetative-to-flowering transition comes along with a susceptibility-to-resistance transition to the causal agent of black shank disease, the oomycete Phytophthora parasitica. This resistance affects infection effectiveness and hyphal expansion and is associated with extracellular accumulation of a cytotoxic activity that provokes in vitro cell death of P. parasitica zoospores. As a strategy to determine the extracellular events important for restriction of pathogen growth, we screened the tobacco genome for genes encoding secreted or membrane-bound proteins expressed in leaves of flowering plants. Using a signal sequence trap approach in yeast (Saccharomyces cerevisiae), 298 clones were selected that appear to encode for apoplastic, cell wall, or membrane-bound proteins involved in stress response, in plant defense, or in cell wall modifications. Microarray and northern-blot analyses revealed that, at late developmental stages, leaves were characterized by the coordinate up-regulation of genes involved in SAR and in peroxidative cross-linking of structural proteins to cell wall. This suggests the potential involvement of these genes in extracellular events that govern the expression of developmental resistance. The analysis of the influence of salicylic acid on mRNA accumulation also indicates a more complex network for regulation of gene expression at a later stage of tobacco development than during SAR. Further characterization of these genes will permit the formulation of hypotheses to explain resistance and to establish the connection with development.

  2. Developmental regulation of neuraminidase-sensitive lectin-binding glycoproteins during myogenesis of rat L6 myoblasts.

    PubMed Central

    Holland, P C; Pena, S D; Guerin, C W

    1984-01-01

    Intact monolayers of L6 myoblasts were treated with neuraminidase, with the aim of selectively removing sialic acid residues of cell-surface glycoproteins. Neuraminidase treatment unmasked binding sites for Ricinus communis agglutinin I and peanut agglutinin, thus allowing the identification of the major binding proteins for these lectins. For Ricinus communis agglutinin I these neuraminidase-sensitive glycoproteins had apparent Mr values of 136000, 115000, 87000, 83000 and 49000. For peanut agglutinin the major neuraminidase-sensitive glycoproteins had apparent Mr values of 200000, 136000, 87000 and 83000. We found highly reproducible, developmentally regulated, changes in the lectin-binding capacity of certain of these glycoproteins as L6 myoblasts differentiated into myotubes. Coincident with myoblast fusion there was a co-ordinate decrease in Ricinus communis agglutinin I binding by glycoproteins of apparent Mr of 136000 and 49000. There was also a co-ordinate shift in mobility of the broad band of glycoprotein, centred at an apparent Mr of 115000 in myoblasts, to a new average apparent Mr of 107000 in mid-fusion cultures and myotube cultures. Peanut agglutinin binding by the major protein of apparent Mr 136000 also decreased at the mid-fusion stage of myogenesis, and was barely detectable in 7-day-old fused cultures. These developmentally regulated changes in neuraminidase-sensitive glycoproteins were all inhibited by growth of myoblasts in 6.4 microM-5-bromo-2'-deoxyuridine, indicating that they are associated with myoblast differentiation. In contrast, an increase in fibronectin was seen in mid-fusion cultures, which was not inhibited by growth of myoblasts in 5-bromo-2'-deoxyuridine. This initial increase in fibronectin is, therefore, unlikely to be directly related to myoblast fusion or differentiation. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:6712625

  3. The mouse Crx 5'-upstream transgene sequence directs cell-specific and developmentally regulated expression in retinal photoreceptor cells.

    PubMed

    Furukawa, Akiko; Koike, Chieko; Lippincott, Pia; Cepko, Constance L; Furukawa, Takahisa

    2002-03-01

    Crx, an Otx-like homeobox gene, is expressed primarily in the photoreceptors of the retina and in the pinealocytes of the pineal gland. The CRX homeodomain protein is a transactivator of many photoreceptor/pineal-specific genes in vivo, such as rhodopsin and the cone opsins. Mutations in Crx are associated with the retinal diseases, cone-rod dystrophy-2, retinitis pigmentosa, and Leber's congenital amaurosis, which lead to loss of vision. We have generated transgenic mice, using 5'- and/or 3'-flanking sequences from the mouse Crx homeobox gene fused to the beta-galactosidase (lacZ) reporter gene, and we have investigated the promoter function of the cell-specific and developmentally regulated expression of Crx. All of the independent transgenic lines commonly showed lacZ expression in the photoreceptor cells of the retina and in the pinealocytes of the pineal gland. We characterized the transgenic lines in detail for cell-specific lacZ expression patterns by 5-bromo-4-chloro-3-indolyl beta-D-galactoside staining and lacZ immunostaining. The lacZ expression was observed in developing and developed photoreceptor cells. This observation was confirmed by coimmunostaining of dissociated retinal cells with the lacZ and opsin antibodies. The ontogeny analysis indicated that the lacZ expression completely agrees with a temporal expression pattern of Crx during retinal development. This study demonstrates that the mouse Crx 5'-upstream genomic sequence is capable of directing a cell-specific and developmentally regulated expression of Crx in photoreceptor cells.

  4. Developmental time rather than local environment regulates the schedule of epithelial polarization in the zebrafish neural rod

    PubMed Central

    2013-01-01

    Background Morphogenesis requires developmental processes to occur both at the right time and in the right place. During neural tube formation in the zebrafish embryo, the generation of the apical specializations of the lumen must occur in the center of the neural rod after the neural cells have undergone convergence, invagination and interdigitation across the midline. How this coordination is achieved is uncertain. One possibility is that environmental signaling at the midline of the neural rod controls the schedule of apical polarization. Alternatively, polarization could be regulated by a timing mechanism and then independent morphogenetic processes ensure the cells are in the correct spatial location. Results Ectopic transplantation demonstrates the local environment of the neural midline is not required for neural cell polarization. Neural cells can self-organize into epithelial cysts in ectopic locations in the embryo and also in three-dimensional gel cultures. Heterochronic transplants demonstrate that the schedule of polarization and the specialized cell divisions characteristic of the neural rod are more strongly regulated by time than local environmental signals. The cells’ schedule for polarization is set prior to gastrulation, is stable through several rounds of cell division and appears independent of the morphogenetic movements of gastrulation and neurulation. Conclusions Time rather than local environment regulates the schedule of epithelial polarization in zebrafish neural rod. PMID:23521850

  5. Machine learning classification of cell-specific cardiac enhancers uncovers developmental subnetworks regulating progenitor cell division and cell fate specification.

    PubMed

    Ahmad, Shaad M; Busser, Brian W; Huang, Di; Cozart, Elizabeth J; Michaud, Sébastien; Zhu, Xianmin; Jeffries, Neal; Aboukhalil, Anton; Bulyk, Martha L; Ovcharenko, Ivan; Michelson, Alan M

    2014-02-01

    The Drosophila heart is composed of two distinct cell types, the contractile cardial cells (CCs) and the surrounding non-muscle pericardial cells (PCs), development of which is regulated by a network of conserved signaling molecules and transcription factors (TFs). Here, we used machine learning with array-based chromatin immunoprecipitation (ChIP) data and TF sequence motifs to computationally classify cell type-specific cardiac enhancers. Extensive testing of predicted enhancers at single-cell resolution revealed the added value of ChIP data for modeling cell type-specific activities. Furthermore, clustering the top-scoring classifier sequence features identified novel cardiac and cell type-specific regulatory motifs. For example, we found that the Myb motif learned by the classifier is crucial for CC activity, and the Myb TF acts in concert with two forkhead domain TFs and Polo kinase to regulate cardiac progenitor cell divisions. In addition, differential motif enrichment and cis-trans genetic studies revealed that the Notch signaling pathway TF Suppressor of Hairless [Su(H)] discriminates PC from CC enhancer activities. Collectively, these studies elucidate molecular pathways used in the regulatory decisions for proliferation and differentiation of cardiac progenitor cells, implicate Su(H) in regulating cell fate decisions of these progenitors, and document the utility of enhancer modeling in uncovering developmental regulatory subnetworks.

  6. Machine learning classification of cell-specific cardiac enhancers uncovers developmental subnetworks regulating progenitor cell division and cell fate specification

    PubMed Central

    Ahmad, Shaad M.; Busser, Brian W.; Huang, Di; Cozart, Elizabeth J.; Michaud, Sébastien; Zhu, Xianmin; Jeffries, Neal; Aboukhalil, Anton; Bulyk, Martha L.; Ovcharenko, Ivan; Michelson, Alan M.

    2014-01-01

    The Drosophila heart is composed of two distinct cell types, the contractile cardial cells (CCs) and the surrounding non-muscle pericardial cells (PCs), development of which is regulated by a network of conserved signaling molecules and transcription factors (TFs). Here, we used machine learning with array-based chromatin immunoprecipitation (ChIP) data and TF sequence motifs to computationally classify cell type-specific cardiac enhancers. Extensive testing of predicted enhancers at single-cell resolution revealed the added value of ChIP data for modeling cell type-specific activities. Furthermore, clustering the top-scoring classifier sequence features identified novel cardiac and cell type-specific regulatory motifs. For example, we found that the Myb motif learned by the classifier is crucial for CC activity, and the Myb TF acts in concert with two forkhead domain TFs and Polo kinase to regulate cardiac progenitor cell divisions. In addition, differential motif enrichment and cis-trans genetic studies revealed that the Notch signaling pathway TF Suppressor of Hairless [Su(H)] discriminates PC from CC enhancer activities. Collectively, these studies elucidate molecular pathways used in the regulatory decisions for proliferation and differentiation of cardiac progenitor cells, implicate Su(H) in regulating cell fate decisions of these progenitors, and document the utility of enhancer modeling in uncovering developmental regulatory subnetworks. PMID:24496624

  7. Histone acetyltransferase AtGCN5/HAG1 is a versatile regulator of developmental and inducible gene expression in Arabidopsis.

    PubMed

    Servet, Caroline; Conde e Silva, Natalia; Zhou, Dao-Xiu

    2010-07-01

    Histone acetylation/deacetylation is a dynamic process and plays an important role in gene regulation. Histone acetylation homeostasis is regulated by antagonist actions of histone acetyltransferases (HAT) and deacetylases (HDAC). Plant genome encodes multiple HATs and HDACs. The Arabidopsis HAT gene AtGCN5/HAG1plays an essential role in many plant development processes, such as meristem function, cell differentiation, leaf and floral organogenesis, and responses to environmental conditions such as light and cold, indicating an important role of this HAT in the regulation of both long-term developmental switches and short-term inducible gene expression. AtGCN5 targets to a large number of promoters and is required for acetylation of several histone H3 lysine residues. Recruitment of AtGCN5 to target promoters is likely to be mediated by direct or indirect interaction with DNA-binding transcription factors and/or by interaction with acetylated histone lysine residues on the targets. Interplay between AtGCN5 and other HAT and HDAC is demonstrated to control specific regulatory pathways. Analysis of the role of AtGCN5 in light-inducible gene expression suggests a function of AtGCN5 in preparing chromatin commitment for priming inducible gene activation in plants.

  8. Chronic up-regulation of the SHH pathway normalizes some developmental effects of trisomy in Ts65Dn mice

    PubMed Central

    Dutka, Tara; Hallberg, Dorothy; Reeves, Roger H.

    2014-01-01

    Down Syndrome (DS) is a highly complex developmental genetic disorder caused by trisomy for human chromosome 21 (Hsa21). All individuals with DS exhibit some degree of brain structural changes and cognitive impairment; mouse models such as Ts65Dn have been instrumental in understanding the underlying mechanisms. Several phenotypes of DS might arise from a reduced response of trisomic cells to the Sonic Hedgehog (SHH) growth factor. If all trisomic cells show a similar reduced response to SHH, then up-regulation of the pathway in trisomic cells might ameliorate multiple DS phenotypes. We crossed Ptch1tm1Mps/+ mice, in which the canonical SHH pathway is expected to be up-regulated in every SHH-responsive cell due to the loss of function of one allele of the pathway suppressor, Ptch1, to the Ts65Dn DS model and assessed the progeny for possible rescue of multiple DS-related phenotypes. Down-regulation of Ptch produced several previously unreported effects on development by itself, complicating interpretation of some phenotypes, and a number structural or behavioral effects of trisomy were not compensated by SHH signaling. However, a deficit in a nest-building task was partially restored in Ts;Ptch+/− mice, as were structural anomalies of the cerebellum in Ts65Dn mice. These results extend the body of evidence indicating that reduced response to SHH in trisomic cells and tissues contributes to various aspects of the trisomic phenotype. PMID:25511459

  9. Molecular cloning and characterization of CFT1, a developmentally regulated avian alpha(1,3)-fucosyltransferase gene.

    PubMed

    Lee, K P; Carlson, L M; Woodcock, J B; Ramachandra, N; Schultz, T L; Davis, T A; Lowe, J B; Thompson, C B; Larsen, R D

    1996-12-20

    Although coordinate expression of carbohydrate epitopes during development is well described, mechanisms which regulate this expression remain largely unknown. In this study we demonstrate that developing chicken B cells express the LewisX terminal oligosaccharide structure in a stage-specific manner. To examine regulation of this expression, we have cloned and expressed the chicken alpha(1,3)-fucosyltransferase gene involved in LewisX biosynthesis, naming it chicken fucosyltransferase 1 (CFT1). CFT1 is characterized by a single long open reading frame of 356 amino acids encoding a type II transmembrane glycoprotein. The domain structure and predicted amino acid sequence are highly conserved between CFT1 and mammalian FucTIV genes (52.8% and 46.3% identity to mouse and human respectively). In vitro CFT1 fucosyltransferase activity utilizes LacNAc > 3'sialyl-LacNAc acceptors with almost no utilization of other neutral type II (lactose, 2-fucosyllactose), or type I (lacto-N-biose I) acceptors. CFT1-transfected cells make cell surface LewisX (COS-7) and LewisX + VIM-2 structures (Chinese hamster ovary). CFT1 gene expression is tissue-specific and includes embryonic thymus and bursa. Furthermore, expression of the CFT1 gene and cell surface LewisX structures are closely linked during B cell development. These findings reveal the evolutionary conservation between nonmammalian and mammalian alpha(1,3)-fucosyltransferase genes and demonstrate a role for fucosyltransferase gene regulation in the developmental expression of oligosaccharide structures.

  10. Adopting and Adapting Compression Strategies: A Practitioner Brief. Right from the Start: An Institutional Perspective on Developmental Education Reform

    ERIC Educational Resources Information Center

    Lass, Leslie; Powell, David S.

    2014-01-01

    This brief summarizes efforts to reform developmental education at Zane State College and the Community College of Baltimore County (CCBC). Focused on accelerating student success and progress, the two schools pursued distinctive approaches to reform that aligned with their institutional missions and student populations. Recognizing that the…

  11. Adopting and Adapting Contextualization Strategies: A Practitioner Brief. Right from the Start: An Institutional Perspective on Developmental Education Reform

    ERIC Educational Resources Information Center

    Lass, Leslie; Zandt, Alyson

    2014-01-01

    As described in this brief, Tacoma Community College and South Texas College each focused on contextualization as a cornerstone of developmental education reform, albeit with different approaches. With a comprehensive look at the experience at Tacoma Community College and a supplementary example from South Texas College, we begin to understand how…

  12. Chromatin remodeling regulates catalase expression during cancer cells adaptation to chronic oxidative stress.

    PubMed

    Glorieux, Christophe; Sandoval, Juan Marcelo; Fattaccioli, Antoine; Dejeans, Nicolas; Garbe, James C; Dieu, Marc; Verrax, Julien; Renard, Patricia; Huang, Peng; Calderon, Pedro Buc

    2016-10-01

    Regulation of ROS metabolism plays a major role in cellular adaptation to oxidative stress in cancer cells, but the molecular mechanism that regulates catalase, a key antioxidant enzyme responsible for conversion of hydrogen peroxide to water and oxygen, remains to be elucidated. Therefore, we investigated the transcriptional regulatory mechanism controlling catalase expression in three human mammary cell lines: the normal mammary epithelial 250MK primary cells, the breast adenocarcinoma MCF-7 cells and an experimental model of MCF-7 cells resistant against oxidative stress resulting from chronic exposure to H2O2 (Resox), in which catalase was overexpressed. Here we identify a novel promoter region responsible for the regulation of catalase expression at -1518/-1226 locus and the key molecules that interact with this promoter and affect catalase transcription. We show that the AP-1 family member JunB and retinoic acid receptor alpha (RARα) mediate catalase transcriptional activation and repression, respectively, by controlling chromatin remodeling through a histone deacetylases-dependent mechanism. This regulatory mechanism plays an important role in redox adaptation to chronic exposure to H2O2 in breast cancer cells. Our study suggests that cancer adaptation to oxidative stress may be regulated by transcriptional factors through chromatin remodeling, and reveals a potential new mechanism to target cancer cells.

  13. Ca2+-activated K+ currents regulate odor adaptation by modulating spike encoding of olfactory receptor cells.

    PubMed Central

    Kawai, Fusao

    2002-01-01

    The olfactory system is thought to accomplish odor adaptation through the ciliary transduction machinery in olfactory receptor cells (ORCs). However, ORCs that have lost their cilia can exhibit spike frequency accommodation in which the action potential frequency decreases with time despite a steady depolarizing stimulus. This raises the possibility that somatic ionic channels in ORCs might serve for odor adaptation at the level of spike encoding, because spiking responses in ORCs encode the odor information. Here I investigate the adaptational mechanism at the somatic membrane using conventional and dynamic patch-clamp recording techniques, which enable the ciliary mechanism to be bypassed. A conditioning stimulus with an odorant-induced current markedly shifted the response range of action potentials induced by the same test stimulus to higher concentrations of the odorant, indicating odor adaptation. This effect was inhibited by charybdotoxin and iberiotoxin, Ca2+-activated K+ channel blockers, suggesting that somatic Ca2+-activated K+ currents regulate odor adaptation by modulating spike encoding. I conclude that not only the ciliary machinery but also the somatic membrane currents are crucial to odor adaptation. PMID:11916858

  14. Regulation of Life Cycle Checkpoints and Developmental Activation of Infective Larvae in Strongyloides stercoralis by Dafachronic Acid

    PubMed Central

    Pilgrim, Adeiye A.; Nolan, Thomas J.; Wang, Zhu; Kliewer, Steven A.; Mangelsdorf, David J.; Lok, James B.

    2016-01-01

    The complex life cycle of the parasitic nematode Strongyloides stercoralis leads to either developmental arrest of infectious third-stage larvae (iL3) or growth to reproductive adults. In the free-living nematode Caenorhabditis elegans, analogous determination between dauer arrest and reproductive growth is governed by dafachronic acids (DAs), a class of steroid hormones that are ligands for the nuclear hormone receptor DAF-12. Biosynthesis of DAs requires the cytochrome P450 (CYP) DAF-9. We tested the hypothesis that DAs also regulate S. stercoralis development via DAF-12 signaling at three points. First, we found that 1 μM Δ7-DA stimulated 100% of post-parasitic first-stage larvae (L1s) to develop to free-living adults instead of iL3 at 37°C, while 69.4±12.0% (SD) of post-parasitic L1s developed to iL3 in controls. Second, we found that 1 μM Δ7-DA prevented post-free-living iL3 arrest and stimulated 85.2±16.9% of larvae to develop to free-living rhabditiform third- and fourth-stages, compared to 0% in the control. This induction required 24–48 hours of Δ7-DA exposure. Third, we found that the CYP inhibitor ketoconazole prevented iL3 feeding in host-like conditions, with only 5.6±2.9% of iL3 feeding in 40 μM ketoconazole, compared to 98.8±0.4% in the positive control. This inhibition was partially rescued by Δ7-DA, with 71.2±16.4% of iL3 feeding in 400 nM Δ7-DA and 35 μM ketoconazole, providing the first evidence of endogenous DA production in S. stercoralis. We then characterized the 26 CYP-encoding genes in S. stercoralis and identified a homolog with sequence and developmental regulation similar to DAF-9. Overall, these data demonstrate that DAF-12 signaling regulates S. stercoralis development, showing that in the post-parasitic generation, loss of DAF-12 signaling favors iL3 arrest, while increased DAF-12 signaling favors reproductive development; that in the post-free-living generation, absence of DAF-12 signaling is crucial for iL3 arrest

  15. Intentional self-regulation, ecological assets, and thriving in adolescence: a developmental systems model.

    PubMed

    Gestsdottir, Steinunn; Urban, Jennifer Brown; Bowers, Edmond P; Lerner, Jacqueline V; Lerner, Richard M

    2011-01-01

    The positive youth development (PYD) perspective emphasizes that thriving occurs when individual ↔context relations involve the alignment of adolescent strengths with the resources in their contexts. The authors propose that a key component of this relational process is the strength that youth possess in the form of self-regulatory processes; these processes optimize opportunities to obtain ecological resources that enhance the probability of PYD.  They use the selection, optimization, and compensation (SOC) model of intentional self-regulation to discuss the role of self-regulation in the PYD perspective among diverse youth.

  16. Divergent strategies for adaptations to stress resistance in two tropical Drosophila species: effects of developmental acclimation in D. bipectinata and the invasive species D. malerkotliana.

    PubMed

    Parkash, Ravi; Singh, Divya; Lambhod, Chanderkala

    2014-03-15

    Previous studies on two tropical Drosophila species (D. malerkotliana and D. bipectinata) have shown lower resistance to stress-related traits but the rapid colonization of D. malerkotliana in the past few decades is not consistent with its sensitivity to desiccation and cold stress. We tested the hypothesis that developmental acclimation at two growth temperatures (17 and 25°C) can confer adaptations to desiccation and thermal stresses. We found divergence in developmental plastic effects on cuticular traits, i.e. a significant increase of body melanisation (~2-fold) and of cuticular lipid mass (~3-fold) in D. malerkotliana but only 1.5-fold higher cuticular lipid mass in D. bipectinata when grown at 17°C compared with 25°C. A comparison of the water budget of these two species showed significantly higher effects of developmental acclimation on body water content, rate of water loss and dehydration tolerance resulting in higher desiccation resistance in D. malerkotliana than in D. bipectinata. When grown in cooler conditions (17°C), D. malerkotliana had greater resistance to cold as well as desiccation stress. In contrast, heat resistance of D. bipectinata was higher when grown at 25°C. These laboratory observations are supported by data on seasonally varying populations. Furthermore, adult D. malerkotliana acclimated to different stresses showed greater resistance to those stresses than D. bipectinata adults. Thus, significant increase in stress resistance of D. malerkotliana through developmental acclimation may be responsible for its invasion and ecological success on different continents compared with D. bipectinata.

  17. Developmentally regulated impediments to skin reinnervation by injured peripheral sensory axon terminals.

    PubMed

    O'Brien, Georgeann S; Martin, Seanna M; Söllner, Christian; Wright, Gavin J; Becker, Catherina G; Portera-Cailliau, Carlos; Sagasti, Alvaro

    2009-12-29

    The structural plasticity of neurites in the central nervous system (CNS) diminishes dramatically after initial development, but the peripheral nervous system (PNS) retains substantial plasticity into adulthood. Nevertheless, functional reinnervation by injured peripheral sensory neurons is often incomplete [1-6]. To investigate the developmental control of skin reinnervation, we imaged the regeneration of trigeminal sensory axon terminals in live zebrafish larvae following laser axotomy. When axons were injured during early stages of outgrowth, regenerating and uninjured axons grew into denervated skin and competed with one another for territory. At later stages, after the establishment of peripheral arbor territories, the ability of uninjured neighbors to sprout diminished severely, and although injured axons reinitiated growth, they were repelled by denervated skin. Regenerating axons were repelled specifically by their former territories, suggesting that local inhibitory factors persist in these regions. Antagonizing the function of several members of the Nogo receptor (NgR)/RhoA pathway improved the capacity of injured axons to grow into denervated skin. Thus, as in the CNS, impediments to reinnervation in the PNS arise after initial establishment of axon arbor structure.

  18. Clique of functional hubs orchestrates population bursts in developmentally regulated neural networks.

    PubMed

    Luccioli, Stefano; Ben-Jacob, Eshel; Barzilai, Ari; Bonifazi, Paolo; Torcini, Alessandro

    2014-09-01

    It has recently been discovered that single neuron stimulation can impact network dynamics in immature and adult neuronal circuits. Here we report a novel mechanism which can explain in neuronal circuits, at an early stage of development, the peculiar role played by a few specific neurons in promoting/arresting the population activity. For this purpose, we consider a standard neuronal network model, with short-term synaptic plasticity, whose population activity is characterized by bursting behavior. The addition of developmentally inspired constraints and correlations in the distribution of the neuronal connectivities and excitabilities leads to the emergence of functional hub neurons, whose stimulation/deletion is critical for the network activity. Functional hubs form a clique, where a precise sequential activation of the neurons is essential to ignite collective events without any need for a specific topological architecture. Unsupervised time-lagged firings of supra-threshold cells, in connection with coordinated entrainments of near-threshold neurons, are the key ingredients to orchestrate population activity.

  19. Mutational analyses of fs(1)Ya, an essential, developmentally regulated, nuclear envelope protein in Drosophila

    SciTech Connect

    Liu, Jun; Song, Kiwon; Wolfner, M.F.

    1995-12-01

    The fs(1)Ya protein (YA) is an essential, maternally encoded, nuclear lamina protein that is under both developmental and cell cycle control. A strong Ya mutation results in early arrest of embryos. To define the function of YA in the nuclear envelope during early embryonic development, we characterized the phenotypes of four Ya mutant alleles and determined their molecular lesions. Ya mutant embryos arrest with abnormal nuclear envelopes prior to the first mitotic division; a proportion of embryos from two leaky Ya mutants proceed beyond this but arrest after several abnormal divisions. Ya unfertilized eggs contain nuclei of different sizes and condensation states, apparently due to abnormal fusion of the meiotic products immediately after meiosis. Lamin is localized at the periphery of the uncondensed nuclei in these eggs. These results suggest that Ya function is required during and after egg maturation to facilitate proper chromatin condensation, rather than to allow a lamin-containing nuclear envelope to form. Two leaky Ya alleles that partially complement have lesions at opposite ends of the YA protein, suggesting that the N- and C-termini are important for YA function might interact with itself either directly or indirectly. 27 refs., 6 figs.

  20. Developmental Regulation Is Altered in the Calyx during in Vitro Ovary Culture of Tomato.

    PubMed

    Ishida, B. K.

    1991-03-01

    To develop a system with which to study fruit ripening, in vitro ovary cultures were initiated from tomato flowers. As reported previously [Nitsch, J.P. (1951). Am. J. Bot. 38, 566-577], tomato fruit ripened after 6 to 7 weeks, but calyces swelled unexpectedly, lost their green color, and gradually became red and succulent. Investigations were conducted, therefore, to verify the occurrence of the ripening process in the calyx. Ethylene production increased in both ripening fruit and red calyx, as did tissue contents of its immediate precursor, 1-aminocyclopropane-1-carboxylic acid. In addition, an increase in the mRNA of polygalacturonase [poly(1,4-[alpha]-D-galacturonide) glucanohydrolase, EC 3.2.1.15], an enzyme that in tomato is present in large amounts only in ripening fruit, was established in both ripe fruit and red calyx by RNA gel blot analysis. Ultrastructural studies showed that the disruption of cell walls in red calyx was indistinguishable from that occurring in ripe tomato fruit. Thus, the developmental program of the calyx changed in several aspects to resemble that of tomato fruit.

  1. A Manual for Single Switch and Adaptive Software Programming. Computer Applications for Students with Physical, Sensory, Developmental, and Learning Disabilities.

    ERIC Educational Resources Information Center

    Burns, Edward

    This manual is intended as a guide and source of ideas for using single switches in adaptive software programming for people with disabilities who cannot use a traditional keyboard. The manual and associated program disk are comprised of over 100 programs, routines and files illustrating various uses of single switch and adaptive input devices.…

  2. NeuroD1: developmental expression and regulated genes in the rodent pineal gland.

    PubMed

    Muñoz, Estela M; Bailey, Michael J; Rath, Martin F; Shi, Qiong; Morin, Fabrice; Coon, Steven L; Møller, Morten; Klein, David C

    2007-08-01

    NeuroD1/BETA2, a member of the bHLH transcription factor family, is known to influence the fate of specific neuronal, endocrine and retinal cells. We report here that NeuroD1 mRNA is highly abundant in the developing and adult rat pineal gland. Pineal expression begins in the 17-day embryo at which time it is also detectable in other brain regions. Expression in the pineal gland increases during the embryonic period and is maintained thereafter at levels equivalent to those found in the cerebellum and retina. In contrast, NeuroD1 mRNA decreases markedly in non-cerebellar brain regions during development. Pineal NeuroD1 levels are similar during the day and night, and do not appear to be influenced by sympathetic neural input. Gene expression analysis of the pineal glands from neonatal NeuroD1 knockout mice identifies 127 transcripts that are down-regulated (>twofold, p < 0.05) and 16 that are up-regulated (>twofold, p < 0.05). According to quantitative RT-PCR, the most dramatically down-regulated gene is kinesin family member 5C ( approximately 100-fold) and the most dramatically up-regulated gene is glutamic acid decarboxylase 1 ( approximately fourfold). Other impacted transcripts encode proteins involved in differentiation, development, signal transduction and trafficking. These findings represent the first step toward elucidating the role of NeuroD1 in the rodent pinealocyte.

  3. Toward a Developmental Model of Child Compliance: The Role of Emotion Regulation in Infancy.

    ERIC Educational Resources Information Center

    Stifter, Cynthia A.; Spinrad, Tracy L.; Braungart-Rieker, Julia M.

    1999-01-01

    Examined relationship between emotion regulation at ages 5, 10, and 18 months, and compliance at 30 months. Found that infants with low levels of regulatory behavior were more likely to be noncompliant as toddlers. High cardiac vagal tone was related to noncompliance to toy clean-up, whereas low cardiac vagal tone was related to noncompliance to…

  4. The History of Legislation and Regulations Related to Children with Developmental Disabilities: Implications for School Nursing Practice Today

    ERIC Educational Resources Information Center

    Dang, Michelle T.

    2010-01-01

    A significant number of children in the United States have developmental disabilities. Historically, many children with developmental disabilities were institutionalized and rarely seen in public. Currently, children with developmental disabilities are entitled to education and health-related support services that permit them access to public…

  5. Adaptive and maladaptive emotion regulation strategies: interactive effects during CBT for social anxiety disorder.

    PubMed

    Aldao, Amelia; Jazaieri, Hooria; Goldin, Philippe R; Gross, James J

    2014-05-01

    There has been a increasing interest in understanding emotion regulation deficits in social anxiety disorder (SAD; e.g., Hofmann, Sawyer, Fang, & Asnaani, 2012). However, much remains to be understood about the patterns of associations among regulation strategies in the repertoire. Doing so is important in light of the growing recognition that people's ability to flexibly implement strategies is associated with better mental health (e.g., Kashdan et al., 2014). Based on previous work (Aldao & Nolen-Hoeksema, 2012), we examined whether putatively adaptive and maladaptive emotion regulation strategies interacted with each other in the prediction of social anxiety symptoms in a sample of 71 participants undergoing CBT for SAD. We found that strategies interacted with each other and that this interaction was qualified by a three-way interaction with a contextual factor, namely treatment study phase. Consequently, these findings underscore the importance of modeling contextual factors when seeking to understand emotion regulation deficits in SAD.

  6. Developmental exposure to a complex PAH mixture causes persistent behavioral effects in naive Fundulus heteroclitus (killifish) but not in a population of PAH-adapted killifish

    PubMed Central

    DR, Brown; JM, Bailey; AN, Oliveri; ED, Levin; RT, Di Giulio

    2015-01-01

    Acute exposures to some individual polycyclic aromatic hydrocarbons (PAHs) and complex PAH mixtures are known to cause cardiac malformations and edema in the developing fish embryo. However, the heart is not the only organ impacted by developmental PAH exposure. The developing brain is also affected, resulting in lasting behavioral dysfunction. While acute exposures to some PAHs are teratogenically lethal in fish, little is known about the later life consequences of early life, lower dose subteratogenic PAH exposures. We sought to determine and characterize the long-term behavioral consequences of subteratogenic developmental PAH mixture exposure in both naive killifish and PAH-adapted killifish using sediment pore water derived from the Atlantic Wood Industries Superfund Site. Killifish offspring were embryonically treated with two low-level PAH mixture dilutions of Elizabeth River sediment extract (ERSE) (TPAH 5.04 μg/L and 50.4 μg/L) at 24 hours post fertilization. Following exposure, killifish were raised to larval, juvenile, and adult life stages and subjected to a series of behavioral tests including: a locomotor activity test (4 days post-hatch), a sensorimotor response tap/habituation test (3 months post hatch), and a novel tank diving and exploration test (3 months post hatch). Killifish were also monitored for survival at 1, 2, and 5 months over 5-month rearing period. Developmental PAH exposure caused short-term as well as persistent behavioral impairments in naïve killifish. In contrast, the PAH-adapted killifish did not show behavioral alterations following PAH exposure. PAH mixture exposure caused increased mortality in reference killifish over time; yet, the PAH-adapted killifish, while demonstrating long-term rearing mortality, had no significant changes in mortality associated with ERSE exposure. This study demonstrated that early embryonic exposure to PAH-contaminated sediment pore water caused long-term locomotor and behavioral alterations in

  7. Developmental exposure to a complex PAH mixture causes persistent behavioral effects in naive Fundulus heteroclitus (killifish) but not in a population of PAH-adapted killifish.

    PubMed

    Brown, D R; Bailey, J M; Oliveri, A N; Levin, E D; Di Giulio, R T

    2016-01-01

    Acute exposures to some individual polycyclic aromatic hydrocarbons (PAHs) and complex PAH mixtures are known to cause cardiac malformations and edema in the developing fish embryo. However, the heart is not the only organ impacted by developmental PAH exposure. The developing brain is also affected, resulting in lasting behavioral dysfunction. While acute exposures to some PAHs are teratogenically lethal in fish, little is known about the later life consequences of early life, lower dose subteratogenic PAH exposures. We sought to determine and characterize the long-term behavioral consequences of subteratogenic developmental PAH mixture exposure in both naive killifish and PAH-adapted killifish using sediment pore water derived from the Atlantic Wood Industries Superfund Site. Killifish offspring were embryonically treated with two low-level PAH mixture dilutions of Elizabeth River sediment extract (ERSE) (TPAH 5.04 μg/L and 50.4 μg/L) at 24h post fertilization. Following exposure, killifish were raised to larval, juvenile, and adult life stages and subjected to a series of behavioral tests including: a locomotor activity test (4 days post-hatch), a sensorimotor response tap/habituation test (3 months post hatch), and a novel tank diving and exploration test (3months post hatch). Killifish were also monitored for survival at 1, 2, and 5 months over 5-month rearing period. Developmental PAH exposure caused short-term as well as persistent behavioral impairments in naive killifish. In contrast, the PAH-adapted killifish did not show behavioral alterations following PAH exposure. PAH mixture exposure caused increased mortality in reference killifish over time; yet, the PAH-adapted killifish, while demonstrating long-term rearing mortality, had no significant changes in mortality associated with ERSE exposure. This study demonstrated that early embryonic exposure to PAH-contaminated sediment pore water caused long-term locomotor and behavioral alterations in

  8. Brain phosphorylation of MeCP2 at serine 164 is developmentally regulated and globally alters its chromatin association

    PubMed Central

    Stefanelli, Gilda; Gandaglia, Anna; Costa, Mario; Cheema, Manjinder S.; Di Marino, Daniele; Barbiero, Isabella; Kilstrup-Nielsen, Charlotte; Ausió, Juan; Landsberger, Nicoletta

    2016-01-01

    MeCP2 is a transcriptional regulator whose functional alterations are responsible for several autism spectrum and mental disorders. Post-translational modifications (PTMs), and particularly differential phosphorylation, modulate MeCP2 function in response to diverse stimuli. Understanding the detailed role of MeCP2 phosphorylation is thus instrumental to ascertain how MeCP2 integrates the environmental signals and directs its adaptive transcriptional responses. The evolutionarily conserved serine 164 (S164) was found phosphorylated in rodent brain but its functional role has remained uncharacterized. We show here that phosphorylation of S164 in brain is dynamically regulated during neuronal maturation. S164 phosphorylation highly impairs MeCP2 binding to DNA in vitro and largely affects its nucleosome binding and chromatin affinity in vivo. Strikingly, the chromatin-binding properties of the global MeCP2 appear also extensively altered during the course of brain maturation. Functional assays reveal that proper temporal regulation of S164 phosphorylation controls the ability of MeCP2 to regulate neuronal morphology. Altogether, our results support the hypothesis of a complex PTM-mediated functional regulation of MeCP2 potentially involving a still poorly characterized epigenetic code. Furthermore, they demonstrate the relevance of the Intervening Domain of MeCP2 for binding to DNA. PMID:27323888

  9. Gene regulation, alternative splicing, and posttranslational modification of troponin subunits in cardiac development and adaptation: a focused review.

    PubMed

    Sheng, Juan-Juan; Jin, Jian-Ping

    2014-01-01

    Troponin plays a central role in regulating the contraction and relaxation of vertebrate striated muscles. This review focuses on the isoform gene regulation, alternative RNA splicing, and posttranslational modifications of troponin subunits in cardiac development and adaptation. Transcriptional and posttranscriptional regulations such as phosphorylation and proteolysis modifications, and structure-function relationships of troponin subunit proteins are summarized. The physiological and pathophysiological significances are discussed for impacts on cardiac muscle contractility, heart function, and adaptations in health and diseases.

  10. Cyclic compressive stress-induced scinderin regulates progress of developmental dysplasia of the hip.

    PubMed

    Wang, Cheng-Long; Wang, Hui; Xiao, Fei; Wang, Chuan-Dong; Hu, Guo-Li; Zhu, Jun-Feng; Shen, Chao; Zuo, Bin; Cui, Yi-Min; Li, De; Yuan-Gao; Zhang, Xiao-Ling; Chen, Xiao-Dong

    2017-02-14

    Developmental dysplasia of the hip (DDH) is a common musculoskeletal disorder characterized by a mismatch between acetabulum and femoral head. Mechanical force plays an important role during the occurrence and development of abnormities in acetabulum and femoral head. In this study, we established a mechanical force model named cyclic compressive stress (Ccs). To analyze the effect of Ccs on DDH, we detected special genes in chondrocytes and osteoblasts. Results showed that Ccs downregulated chondrogenesis of ADTC5 in a concentration-dependent manner. Moreover, the mRNA level of Scinderin (Scin) considerably increased. We established lentivirus-SCIN(GV144-SCIN) to transfect hBMSCs, which were treated with different Ccs levels (0.25 Hz*5 cm, 0.5 Hz*5 cm, and 1 Hz*10 cm); the result showed that overexpression of Scin upregulated osteogenesis and osteoclastogenesis. By contrast, expression of chondrocyte-specific genes, including ACAN, COL-2A, and Sox9, decreased. Further molecular investigation demonstrated that Scin promoted osteogenesis and osteoclastogenesis through activation of the p-Smad1/5/8, NF-κB, and MAPK P38 signaling pathways, as well as stimulated the expression of key osteoclast transcriptional factors NFATc1 and c-Fos. Moreover, Scin-induced osteogenesis outweighed osteoclastogenesis in defective femur in vivo. The results of the analysis of Micro-CT confirmed these findings. Overall, Ccs influenced the development of DDH by promoting osteogenesis and cartilage degradation. In addition, Scin played a vital role in the development of DDH.

  11. Structural and Functional Features of a Developmentally Regulated Lipopolysaccharide-Binding Protein

    PubMed Central

    Krasity, Benjamin C.; Troll, Joshua V.; Lehnert, Erik M.; Hackett, Kathleen T.; Dillard, Joseph P.; Apicella, Michael A.; Goldman, William E.

    2015-01-01

    ABSTRACT Mammalian lipopolysaccharide (LPS) binding proteins (LBPs) occur mainly in extracellular fluids and promote LPS delivery to specific host cell receptors. The function of LBPs has been studied principally in the context of host defense; the possible role of LBPs in nonpathogenic host-microbe interactions has not been well characterized. Using the Euprymna scolopes-Vibrio fischeri model, we analyzed the structure and function of an LBP family protein, E. scolopes LBP1 (EsLBP1), and provide evidence for its role in triggering a symbiont-induced host developmental program. Previous studies showed that, during initial host colonization, the LPS of V. fischeri synergizes with peptidoglycan (PGN) monomer to induce morphogenesis of epithelial tissues of the host animal. Computationally modeled EsLBP1 shares some but not all structural features of mammalian LBPs that are thought important for LPS binding. Similar to human LBP, recombinant EsLBP1 expressed in insect cells bound V. fischeri LPS and Neisseria meningitidis lipooligosaccharide (LOS) with nanomolar or greater affinity but bound Francisella tularensis LPS only weakly and did not bind PGN monomer. Unlike human LBP, EsLBP1 did not bind N. meningitidis LOS:CD14 complexes. The eslbp1 transcript was upregulated ~22-fold by V. fischeri at 24 h postinoculation. Surprisingly, this upregulation was not induced by exposure to LPS but, rather, to the PGN monomer alone. Hybridization chain reaction-fluorescent in situ hybridization (HCR-FISH) and immunocytochemistry (ICC) localized eslbp1 transcript and protein in crypt epithelia, where V. fischeri induces morphogenesis. The data presented here provide a window into the evolution of LBPs and the scope of their roles in animal symbioses. PMID:26463160

  12. Astroglial cells regulate the developmental timeline of human neurons differentiated from induced pluripotent stem cells.

    PubMed

    Tang, Xin; Zhou, Li; Wagner, Alecia M; Marchetto, Maria C N; Muotri, Alysson R; Gage, Fred H; Chen, Gong

    2013-09-01

    Neurons derived from human induced-pluripotent stem cells (hiPSCs) have been used to model a variety of neurological disorders. Different protocols have been used to differentiate hiPSCs into neurons, but their functional maturation process has varied greatly among different studies. Here, we demonstrate that laminin, a commonly used substrate for iPSC cultures, was inefficient to promote fully functional maturation of hiPSC-derived neurons. In contrast, astroglial substrate greatly accelerated neurodevelopmental processes of hiPSC-derived neurons. We have monitored the neural differentiation and maturation process for up to two months after plating hiPSC-derived neuroprogenitor cells (hNPCs) on laminin or astrocytes. We found that one week after plating hNPCs, there were 21-fold more newly differentiated neurons on astrocytes than on laminin. Two weeks after plating hNPCs, there were 12-fold more dendritic branches in neurons cultured on astrocytes than on laminin. Six weeks after plating hNPCs, the Na(+) and K(+) currents, as well as glutamate and GABA receptor currents, were 3-fold larger in neurons cultured on astrocytes than on laminin. And two months after plating hNPCs, the spontaneous synaptic events were 8-fold more in neurons cultured on astrocytes than on laminin. These results highlight a critical role of astrocytes in promoting neural differentiation and functional maturation of human neurons derived from hiPSCs. Moreover, our data presents a thorough developmental timeline of hiPSC-derived neurons in culture, providing important benchmarks for future studies on disease modeling and drug screening.

  13. Astroglial cells regulate the developmental timeline of human neurons differentiated from induced pluripotent stem cells

    PubMed Central

    Tang, Xin; Zhou, Li; Wagner, Alecia M.; Marchetto, Maria C.N.; Muotri, Alysson R.; Gage, Fred H.; Chen, Gong

    2014-01-01

    Neurons derived from human induced-pluripotent stem cells (hiPSCs) have been used to model a variety of neurological disorders. Different protocols have been used to differentiate hiPSCs into neurons, but their functional maturation process has varied greatly among different studies. Here, we demonstrate that laminin, a commonly used substrate for iPSC cultures, was inefficient to promote fully functional maturation of hiPSC-derived neurons. In contrast, astroglial substrate greatly accelerated neurodevelopmental processes of hiPSC-derived neurons. We have monitored the neural differentiation and maturation process for up to two months after plating hiPSC-derived neuroprogenitor cells (hNPCs) on laminin or astrocytes. We found that one week after plating hNPCs, there were 21-fold more newly differentiated neurons on astrocytes than on laminin. Two weeks after plating hNPCs, there were 12-fold more dendritic branches in neurons cultured on astrocytes than on laminin. Six weeks after plating hNPCs, the Na+ and K+ currents, as well as glutamate and GABA receptor currents, were 3-fold larger in neurons cultured on astrocytes than on laminin. And two months after plating hNPCs, the spontaneous synaptic events were 8-fold more in neurons cultured on astrocytes than on laminin. These results highlight a critical role of astrocytes in promoting neural differentiation and functional maturation of human neurons derived from hiPSCs. Moreover, our data presents a thorough developmental timeline of hiPSC-derived neurons in culture, providing important benchmarks for future studies on disease modeling and drug screening. PMID:23759711

  14. Abundance of amino acid transporters involved in mTORC1 activation in skeletal muscle of neonatal pigs is developmentally regulated

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously we demonstrated that the insulinand amino acid-induced activation of the mammalian target of rapamycin complex 1 (mTORC1) is developmentally regulated in neonatal pigs. Recent studies have indicated that members of the System A transporter (SNAT2), the System N transporter (SNAT3), the Sy...

  15. Transcriptome Analysis of Green Peach Aphid (Myzus persicae): Insight into Developmental Regulation and Inter-Species Divergence

    PubMed Central

    Ji, Rui; Wang, Yujun; Cheng, Yanbin; Zhang, Meiping; Zhang, Hong-Bin; Zhu, Li; Fang, Jichao; Zhu-Salzman, Keyan

    2016-01-01

    Green peach aphid (Myzus persicae) and pea aphid (Acyrthosiphon pisum) are two phylogenetically closely related agricultural pests. While pea aphid is restricted to Fabaceae, green peach aphid feeds on hundreds of plant species from more than 40 families. Transcriptome comparison could shed light on the genetic factors underlying the difference in host range between the two species. Furthermore, a large scale study contrasting gene expression between immature nymphs and fully developed adult aphids would fill a previous knowledge gap. Here, we obtained transcriptomic sequences of green peach aphid nymphs and adults, respectively, using Illumina sequencing technology. A total of 2244 genes were found to be differentially expressed between the two developmental stages, many of which were associated with detoxification, hormone production, cuticle formation, metabolism, food digestion, and absorption. When searched against publically available pea aphid mRNA sequences, 13,752 unigenes were found to have no homologous counterparts. Interestingly, many of these unigenes that could be annotated in other databases were involved in the “xenobiotics biodegradation and metabolism” pathway, suggesting the two aphids differ in their adaptation to secondary metabolites of host plants. Conversely, 3989 orthologous gene pairs between the two species were subjected to calculations of synonymous and nonsynonymous substitutions, and 148 of the genes potentially evolved in response to positive selection. Some of these genes were predicted to be associated with insect-plant interactions. Our study has revealed certain molecular events related to aphid development, and provided some insight into biological variations in two aphid species, possibly as a result of host plant adaptation. PMID:27812361

  16. Transcriptome Analysis of Green Peach Aphid (Myzus persicae): Insight into Developmental Regulation and Inter-Species Divergence.

    PubMed

    Ji, Rui; Wang, Yujun; Cheng, Yanbin; Zhang, Meiping; Zhang, Hong-Bin; Zhu, Li; Fang, Jichao; Zhu-Salzman, Keyan

    2016-01-01

    Green peach aphid (Myzus persicae) and pea aphid (Acyrthosiphon pisum) are two phylogenetically closely related agricultural pests. While pea aphid is restricted to Fabaceae, green peach aphid feeds on hundreds of plant species from more than 40 families. Transcriptome comparison could shed light on the genetic factors underlying the difference in host range between the two species. Furthermore, a large scale study contrasting gene expression between immature nymphs and fully developed adult aphids would fill a previous knowledge gap. Here, we obtained transcriptomic sequences of green peach aphid nymphs and adults, respectively, using Illumina sequencing technology. A total of 2244 genes were found to be differentially expressed between the two developmental stages, many of which were associated with detoxification, hormone production, cuticle formation, metabolism, food digestion, and absorption. When searched against publically available pea aphid mRNA sequences, 13,752 unigenes were found to have no homologous counterparts. Interestingly, many of these unigenes that could be annotated in other databases were involved in the "xenobiotics biodegradation and metabolism" pathway, suggesting the two aphids differ in their adaptation to secondary metabolites of host plants. Conversely, 3989 orthologous gene pairs between the two species were subjected to calculations of synonymous and nonsynonymous substitutions, and 148 of the genes potentially evolved in response to positive selection. Some of these genes were predicted to be associated with insect-plant interactions. Our study has revealed certain molecular events related to aphid development, and provided some insight into biological variations in two aphid species, possibly as a result of host plant adaptation.

  17. Chromatin boundary elements organize genomic architecture and developmental gene regulation in Drosophila Hox clusters

    PubMed Central

    Ma, Zhibo; Li, Mo; Roy, Sharmila; Liu, Kevin J; Romine, Matthew L; Lane, Derrick C; Patel, Sapna K; Cai, Haini N

    2016-01-01

    The three-dimensional (3D) organization of the eukaryotic genome is critical for its proper function. Evidence suggests that extensive chromatin loops form the building blocks of the genomic architecture, separating genes and gene clusters into distinct functional domains. These loops are anchored in part by a special type of DNA elements called chromatin boundary elements (CBEs). CBEs were originally found to insulate neighboring genes by blocking influences of transcriptional enhancers or the spread of silent chromatin. However, recent results show that chromatin loops can also play a positive role in gene regulation by looping out intervening DNA and “delivering” remote enhancers to gene promoters. In addition, studies from human and model organisms indicate that the configuration of chromatin loops, many of which are tethered by CBEs, is dynamically regulated during cell differentiation. In particular, a recent work by Li et al has shown that the SF1 boundary, located in the Drosophila Hox cluster, regulates local genes by tethering different subsets of chromatin loops: One subset enclose a neighboring gene ftz, limiting its access by the surrounding Scr enhancers and restrict the spread of repressive histones during early embryogenesis; and the other loops subdivide the Scr regulatory region into independent domains of enhancer accessibility. The enhancer-blocking activity of these CBE elements varies greatly in strength and tissue distribution. Further, tandem pairing of SF1 and SF2 facilitate the bypass of distal enhancers in transgenic flies, providing a mechanism for endogenous enhancers to circumvent genomic interruptions resulting from chromosomal rearrangement. This study demonstrates how a network of chromatin boundaries, centrally organized by SF1, can remodel the 3D genome to facilitate gene regulation during development. PMID:27621770

  18. General up regulation of Spodoptera frugiperda trypsins and chymotrypsins allows its adaptation to soybean proteinase inhibitor.

    PubMed

    Brioschi, Daniela; Nadalini, Larissa D; Bengtson, Mario H; Sogayar, Mari Cleide; Moura, Daniel S; Silva-Filho, Marcio C

    2007-12-01

    The existence of a diverse serine proteinase gene family in lepidopteran insects suggests they play a significant role in the insect adaptation to plant proteinase inhibitors. These proteinases have been shown to be involved in the process of proteolytic digestion in insect larvae. We carried out a selective transcriptome study of midguts from Spodoptera frugiperda larvae fed on a diet supplemented with soybean proteinase inhibitor (SPI). Using subtracted cDNA libraries made of gut-expressed transcripts, a total of 2100 partial sequences were obtained, of those 38% were related to digestive process. Two large and diverse groups of chymotrypsins and trypsins were obtained, and some of these proteinase-encoding genes were further characterized by quantitative RT-PCR. The transcription analyses revealed two groups: one group of genes constitutively expressed in the control larvae that is up regulated by introducing SPI to the diet, and a second group that is absent in the control but is induced by the SPI-rich diet. This observation suggests that adaptation of S. frugiperda to SPI involves de novo synthesis and also up regulation of existing enzymes. Proteases from intestines of larvae reared on a diet with SPI showed insensitivity to the inhibitor. The proteases were also insensitive to a broad-spectrum potato proteinase inhibitor preparation. We propose that adaptation of S. frugiperda to SPI follows a "shotgun" approach, based on a general up regulation of a large set of endoproteinases.

  19. Developmentally regulated expression of the regulator of G-protein signaling gene 2 (Rgs2) in the embryonic mouse pituitary.

    PubMed

    Wilson, L D; Ross, S A; Lepore, D A; Wada, T; Penninger, J M; Thomas, P Q

    2005-02-01

    During the development of the anterior pituitary gland, five distinct hormone-producing cell types emerge in a spatially and temporally regulated pattern from an invagination of oral ectoderm termed Rathke's Pouch. Evidence from mouse knockout and ectopic expression studies indicates that 12.5 days post coitum (dpc) to 14.5 dpc is a critical period for the expansion of the progenitor cell pool and the determination of most hormone-secreting cell types. While signaling proteins and transcription factors have been identified as having key roles in pituitary cell differentiation, little is known about the identity and function of proteins that mediate signal transduction in progenitor cells. To identify genes that are enriched in the embryonic pituitary gland, we compared gene expression in 14.5 dpc pituitary and 14.5 dpc embryo minus pituitary tissues using the NIA 15K microarray. Analysis of the data using the R program revealed that the Regulator of G Protein Signaling 2 (Rgs2) gene was 3.9-fold more abundant in the 14.5 dpc pituitary. In situ hybridisation confirmed this finding, and showed that Rgs2 expression in midline tissues was restricted to the pituitary and discrete regions of the nervous system. Within the pituitary, Rgs2 was expressed in undifferentiated cells, and was downregulated at the completion of the hormone cell differentiation. To investigate Rgs2 function in the pituitary, we examined hormone cell differentiation in Rgs2 null neonate mice. Pituitary cell differentiation and morphology appeared normal in the Rgs2 mutant animals, suggesting that other Rgs family members with similar activities may be present in the developing pituitary.

  20. Developmental Toxicity of Diclofenac and Elucidation of Gene Regulation in zebrafish (Danio rerio)

    NASA Astrophysics Data System (ADS)

    Chen, Jia-Bin; Gao, Hong-Wen; Zhang, Ya-Lei; Zhang, Yong; Zhou, Xue-Fei; Li, Chun-Qi; Gao, Hai-Ping

    2014-05-01

    Environmental pollution by emerging contaminants, e.g. pharmaceuticals, has become a matter of widespread concern in recent years. We investigated the membrane transport of diclofenac and its toxic effects on gene expression and the development of zebrafish embryos. The association of diclofenac with the embryos conformed to the general partition model at low concentration, the partition coefficient being 0.0033 ml per embryo. At high concentration, the interaction fitted the Freundlich model. Most of the diclofenac remained in the extracellular aqueous solution with less than 5% interacting with the embryo, about half of which was adsorbed on the membranes while the rest entered the cytoplasm. Concentrations of diclofenac over 10.13 μM were lethal to all the embryos, while 3.78 μM diclofenac was teratogenic. The development abnormalities at 4 day post treatment (dpt) include shorter body length, smaller eye, pericardial and body edema, lack of liver, intestine and circulation, muscle degeneration, and abnormal pigmentation. The portion of the diclofenac transferred into the embryo altered the expression of certain genes, e.g. down-regulation of Wnt3a and Gata4 and up-regulation of Wnt8a. The alteration of expression of such genes or the regulation of downstream genes could cause defects in the cardiovascular and nervous systems.

  1. Developmental expression of the SRF co-activator MAL in brain: role in regulating dendritic morphology.

    PubMed

    Shiota, Jun; Ishikawa, Mitsuru; Sakagami, Hiroyuki; Tsuda, Masaaki; Baraban, Jay M; Tabuchi, Akiko

    2006-09-01

    The dynamic changes in dendritic morphology displayed by developing and mature neurons have stimulated interest in deciphering the signaling pathways involved. Recent studies have identified megakaryocytic acute leukemia (MAL), a serum response factor (SRF) co-activator, as a key component of a signaling pathway linking changes in the actin cytoskeleton to SRF-mediated transcription. To help define the role of this pathway in regulating dendritic morphology, we have characterized the pattern of MAL expression in the developing and adult brain, and have examined its role in regulating dendritic morphology in cultured cortical neurons. In histological studies of mouse brain, we found prominent expression of MAL in neurons in adult hippocampus and cerebral cortex. MAL immunostaining revealed localization of this protein in neuronal cell bodies and apical dendrites. During development, an increase in MAL expression occurs during the second post-natal week. Expression of dominant negative MAL constructs or MAL siRNA in cortical neurons grown in primary culture reduces the number of dendritic processes and decreases the basal level of SRF-mediated transcription. Taken together, these findings indicate that the MAL-SRF signaling pathway plays a key role in regulating dendritic morphology.

  2. Spatial Regulation of Root Growth: Placing the Plant TOR Pathway in a Developmental Perspective.

    PubMed

    Barrada, Adam; Montané, Marie-Hélène; Robaglia, Christophe; Menand, Benoît

    2015-08-19

    Plant cells contain specialized structures, such as a cell wall and a large vacuole, which play a major role in cell growth. Roots follow an organized pattern of development, making them the organs of choice for studying the spatio-temporal regulation of cell proliferation and growth in plants. During root growth, cells originate from the initials surrounding the quiescent center, proliferate in the division zone of the meristem, and then increase in length in the elongation zone, reaching their final size and differentiation stage in the mature zone. Phytohormones, especially auxins and cytokinins, control the dynamic balance between cell division and differentiation and therefore organ size. Plant growth is also regulated by metabolites and nutrients, such as the sugars produced by photosynthesis or nitrate assimilated from the soil. Recent literature has shown that the conserved eukaryotic TOR (target of rapamycin) kinase pathway plays an important role in orchestrating plant growth. We will summarize how the regulation of cell proliferation and cell expansion by phytohormones are at the heart of root growth and then discuss recent data indicating that the TOR pathway integrates hormonal and nutritive signals to orchestrate root growth.

  3. The Developmental Intestinal Regulator ELT-2 Controls p38-Dependent Immune Responses in Adult C. elegans

    PubMed Central

    Block, Dena H. S.; Twumasi-Boateng, Kwame; Kang, Hae Sung; Carlisle, Jolie A.; Hanganu, Alexandru; Lai, Ty Yu-Jen; Shapira, Michael

    2015-01-01

    GATA transcription factors play critical roles in cellular differentiation and development. However, their roles in mature tissues are less understood. In C. elegans larvae, the transcription factor ELT-2 regulates terminal differentiation of the intestine. It is also expressed in the adult intestine, where it was suggested to maintain intestinal structure and function, and where it was additionally shown to contribute to infection resistance. To study the function of elt-2 in adults we characterized elt-2-dependent gene expression following its knock-down specifically in adults. Microarray analysis identified two ELT-2-regulated gene subsets: one, enriched for hydrolytic enzymes, pointed at regulation of constitutive digestive functions as a dominant role of adult elt-2; the second was enriched for immune genes that are induced in response to Pseudomonas aeruginosa infection. Focusing on the latter, we used genetic analyses coupled to survival assays and quantitative RT-PCR to interrogate the mechanism(s) through which elt-2 contributes to immunity. We show that elt-2 controls p38-dependent gene induction, cooperating with two p38-activated transcription factors, ATF-7 and SKN-1. This demonstrates a mechanism through which the constitutively nuclear elt-2 can impact induced responses, and play a dominant role in C. elegans immunity. PMID:26016853

  4. The Developmental Basis of Epigenetic Regulation of HTR2A and Psychiatric Outcomes

    PubMed Central

    Paquette, Alison G.; Marsit, Carmen J.

    2014-01-01

    The serotonin receptor 5-HT2A (encoded by HTR2A) is an important regulator of fetal brain development and adult cognitive function. Environmental signals that induce epigenetic changes of serotonin response genes, including HTR2A, have been implicated in adverse mental health outcomes. The objective of this perspective article is to address the medical implications of HTR2A epigenetic regulation, which has been associated with both infant neurobehavioral outcomes and adult mental health. Ongoing research has identified a region of the HTR2A promoter that has been associated with a number of medical outcomes in adults and infants, including bipolar disorder, schizophrenia, chronic fatigue syndrome, borderline personality disorder, suicidality, and neurobehavioral outcomes. Epigenetic regulation of HTR2A has been studied in several different types of tissues, including the placenta. The placenta is an important source of serotonin during fetal neurodevelopment, and placental epigenetic variation of HTR2A has been associated with infant neurobehavioral outcomes, which may represent the basis of adult mental health disorders. Further analysis is needed to identify intrinsic and extrinsic factors modulate HTR2A methylation, and the mechanism by which this epigenetic variation influences fetal growth and leads to altered brain development, manifesting in psychiatric disorders. PMID:25043477

  5. Developmental Toxicity of Diclofenac and Elucidation of Gene Regulation in zebrafish (Danio rerio)

    PubMed Central

    Chen, Jia-Bin; Gao, Hong-Wen; Zhang, Ya-Lei; Zhang, Yong; Zhou, Xue-Fei; Li, Chun-Qi; Gao, Hai-Ping

    2014-01-01

    Environmental pollution by emerging contaminants, e.g. pharmaceuticals, has become a matter of widespread concern in recent years. We investigated the membrane transport of diclofenac and its toxic effects on gene expression and the development of zebrafish embryos. The association of diclofenac with the embryos conformed to the general partition model at low concentration, the partition coefficient being 0.0033 ml per embryo. At high concentration, the interaction fitted the Freundlich model. Most of the diclofenac remained in the extracellular aqueous solution with less than 5% interacting with the embryo, about half of which was adsorbed on the membranes while the rest entered the cytoplasm. Concentrations of diclofenac over 10.13 μM were lethal to all the embryos, while 3.78 μM diclofenac was teratogenic. The development abnormalities at 4 day post treatment (dpt) include shorter body length, smaller eye, pericardial and body edema, lack of liver, intestine and circulation, muscle degeneration, and abnormal pigmentation. The portion of the diclofenac transferred into the embryo altered the expression of certain genes, e.g. down-regulation of Wnt3a and Gata4 and up-regulation of Wnt8a. The alteration of expression of such genes or the regulation of downstream genes could cause defects in the cardiovascular and nervous systems. PMID:24788080

  6. Developmental regulation of N-terminal H2B methylation in Drosophila melanogaster

    PubMed Central

    Villar-Garea, Ana; Forne, Ignasi; Vetter, Irene; Kremmer, Elisabeth; Thomae, Andreas; Imhof, Axel

    2012-01-01

    Histone post-translational modifications play an important role in regulating chromatin structure and gene expression in vivo. Extensive studies investigated the post-translational modifications of the core histones H3 and H4 or the linker histone H1. Much less is known on the regulation of H2A and H2B modifications. Here, we show that a major modification of H2B in Drosophila melanogaster is the methylation of the N-terminal proline, which increases during fly development. Experiments performed in cultured cells revealed higher levels of H2B methylation when cells are dense, regardless of their cell cycle distribution. We identified dNTMT (CG1675) as the enzyme responsible for H2B methylation. We also found that the level of N-terminal methylation is regulated by dART8, an arginine methyltransferase that physically interacts with dNTMT and asymmetrically methylates H3R2. Our results demonstrate the existence of a complex containing two methyltransferases enzymes, which negatively influence each other’s activity. PMID:22053083

  7. The Developmental Intestinal Regulator ELT-2 Controls p38-Dependent Immune Responses in Adult C. elegans.

    PubMed

    Block, Dena H S; Twumasi-Boateng, Kwame; Kang, Hae Sung; Carlisle, Jolie A; Hanganu, Alexandru; Lai, Ty Yu-Jen; Shapira, Michael

    2015-05-01

    GATA transcription factors play critical roles in cellular differentiation and development. However, their roles in mature tissues are less understood. In C. elegans larvae, the transcription factor ELT-2 regulates terminal differentiation of the intestine. It is also expressed in the adult intestine, where it was suggested to maintain intestinal structure and function, and where it was additionally shown to contribute to infection resistance. To study the function of elt-2 in adults we characterized elt-2-dependent gene expression following its knock-down specifically in adults. Microarray analysis identified two ELT-2-regulated gene subsets: one, enriched for hydrolytic enzymes, pointed at regulation of constitutive digestive functions as a dominant role of adult elt-2; the second was enriched for immune genes that are induced in response to Pseudomonas aeruginosa infection. Focusing on the latter, we used genetic analyses coupled to survival assays and quantitative RT-PCR to interrogate the mechanism(s) through which elt-2 contributes to immunity. We show that elt-2 controls p38-dependent gene induction, cooperating with two p38-activated transcription factors, ATF-7 and SKN-1. This demonstrates a mechanism through which the constitutively nuclear elt-2 can impact induced responses, and play a dominant role in C. elegans immunity.

  8. Spatial Regulation of Root Growth: Placing the Plant TOR Pathway in a Developmental Perspective

    PubMed Central

    Barrada, Adam; Montané, Marie-Hélène; Robaglia, Christophe; Menand, Benoît

    2015-01-01

    Plant cells contain specialized structures, such as a cell wall and a large vacuole, which play a major role in cell growth. Roots follow an organized pattern of development, making them the organs of choice for studying the spatio-temporal regulation of cell proliferation and growth in plants. During root growth, cells originate from the initials surrounding the quiescent center, proliferate in the division zone of the meristem, and then increase in length in the elongation zone, reaching their final size and differentiation stage in the mature zone. Phytohormones, especially auxins and cytokinins, control the dynamic balance between cell division and differentiation and therefore organ size. Plant growth is also regulated by metabolites and nutrients, such as the sugars produced by photosynthesis or nitrate assimilated from the soil. Recent literature has shown that the conserved eukaryotic TOR (target of rapamycin) kinase pathway plays an important role in orchestrating plant growth. We will summarize how the regulation of cell proliferation and cell expansion by phytohormones are at the heart of root growth and then discuss recent data indicating that the TOR pathway integrates hormonal and nutritive signals to orchestrate root growth. PMID:26295391

  9. The Homeodomain Iroquois Proteins Control Cell Cycle Progression and Regulate the Size of Developmental Fields.

    PubMed

    Barrios, Natalia; González-Pérez, Esther; Hernández, Rosario; Campuzano, Sonsoles

    2015-08-01

    During development, proper differentiation and final organ size rely on the control of territorial specification and cell proliferation. Although many regulators of these processes have been identified, how both are coordinated remains largely unknown. The homeodomain Iroquois/Irx proteins play a key, evolutionarily conserved, role in territorial specification. Here we show that in the imaginal discs, reduced function of Iroquois genes promotes cell proliferation by accelerating the G1 to S transition. Conversely, their increased expression causes cell-cycle arrest, down-regulating the activity of the Cyclin E/Cdk2 complex. We demonstrate that physical interaction of the Iroquois protein Caupolican with Cyclin E-containing protein complexes, through its IRO box and Cyclin-binding domains, underlies its activity in cell-cycle control. Thus, Drosophila Iroquois proteins are able to regulate cell-autonomously the growth of the territories they specify. Moreover, our results provide a molecular mechanism for a role of Iroquois/Irx genes as tumour suppressors.

  10. Physarum polycephalum mutants in the photocontrol of sporulation display altered patterns in the correlated expression of developmentally regulated genes.

    PubMed

    Rätzel, Viktoria; Ebeling, Britta; Hoffmann, Xenia-Katharina; Tesmer, Jens; Marwan, Wolfgang

    2013-02-01

    Physarum polycephalum is a lower eukaryote belonging to the amoebozoa group of organisms that forms macroscopic, multinucleate plasmodial cells during its developmental cycle. Plasmodia can exit proliferative growth and differentiate by forming fruiting bodies containing mononucleate, haploid spores. This process, called sporulation, is controlled by starvation and visible light. To genetically dissect the regulatory control of the commitment to sporulation, we have isolated plasmodial mutants that are altered in the photocontrol of sporulation in a phenotypic screen of N-ethyl-N-nitrosourea (ENU) mutagenized cells. Several non-sporulating mutants were analyzed by measuring the light-induced change in the expression pattern of a set of 35 genes using GeXP multiplex reverse transcription-polymerase chain reaction with RNA isolated from individual plasmodial cells. Mutants showed altered patterns of differentially regulated genes in response to light stimulation. Some genes clearly displayed pairwise correlation in terms of their expression level as measured in individual plasmodial cells. The pattern of pairwise correlation differed in various mutants, suggesting that different upstream regulators were disabled in the different mutants. We propose that patterns of pairwise correlation in gene expression might be useful to infer the underlying gene regulatory network.

  11. Differential Accumulation of Sunflower Tetraubiquitin mRNAs during Zygotic Embryogenesis and Developmental Regulation of Their Heat-Shock Response.

    PubMed Central

    Almoguera, C.; Coca, M. A.; Jordano, J.

    1995-01-01

    We have isolated and sequenced Ha UbiS, a cDNA for a dry-seed-stored mRNA that encodes tetraubiquitin. We have observed differential accumulation of tetraubiquitin mRNAs during sunflower (Helianthus annuus L.) zygotic embryogenesis. These mRNAs were up-regulated during late embryogenesis and reached higher prevalence in the dry seed, where they were found to be associated mainly with provascular tissue. UbiS mRNA, as confirmed by Rnase A protection experiments, accumulated also in response to heat shock, but only in leaves and later during postgerminative development. These novel observations demonstrate expression during seed maturation of specific plant polyubiquitin transcripts and developmental regulation of their heat-shock response. Using ubiquitin antibodies we also detected discrete, seed-specific proteins with distinct temporal expression patterns during zygotic embryogenesis. Some of these patterns were concurrent with UbiS mRNA accumulation in seeds. The most abundant ubiquitin-reacting proteins found in mature seeds were small (16-22 kD) and acidic (isoelectric points of 6.1-7.4). Possible functional implications for UbiS expression elicited from these observations are discussed. PMID:12228401

  12. Developmentally regulated expression of the novel cancer anti-apoptosis gene survivin in human and mouse differentiation.

    PubMed Central

    Adida, C.; Crotty, P. L.; McGrath, J.; Berrebi, D.; Diebold, J.; Altieri, D. C.

    1998-01-01

    Inhibitors of programmed cell death (apoptosis) may regulate tissue differentiation and aberrantly promote cell survival in neoplasia. A novel apoptosis inhibitor of the IAP gene family, designated survivin, was recently found in all of the most common human cancers but not in normal, terminally differentiated adult tissues. The expression of survivin in embryonic and fetal development was investigated. Immunohistochemistry and in situ hybridization studies demonstrated strong expression of survivin in several apoptosis-regulated fetal tissues, including the stem cell layer of stratified epithelia, endocrine pancreas, and thymic medulla, with a pattern that did not overlap with that of another apoptosis inhibitor, bcl-2. A sequence-specific antibody to survivin immunoblotted a single approximately 16.5-kd survivin band in human fetal lung, liver, heart, kidney, and gastrointestinal tract. In mouse embryo, prominent and nearly ubiquitous distribution of survivin was found at embryonic day (E)11.5, whereas at E15 to -21, survivin expression was restricted to the distal bronchiolar epithelium of the lung and neural-crest-derived cells, including dorsal root ganglion neurons, hypophysis, and the choroid plexus. These data suggest that expression of survivin in embryonic and fetal development may contribute to tissue homeostasis and differentiation independently of bcl-2. Aberrations of this developmental pathway may result in prominent re-expression of survivin in neoplasia and abnormally prolonged cell viability. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9422522

  13. Arabidopsis ribosomal proteins control vacuole trafficking and developmental programs through the regulation of lipid metabolism

    SciTech Connect

    Li, Ruixi; Sun, Ruobai; Hicks, Glenn R.; Raikhel, Natasha V.

    2014-12-22

    The vacuole is the most prominent compartment in plant cells and is important for ion and protein storage. In our effort to search for key regulators in the plant vacuole sorting pathway, ribosomal large subunit 4 (rpl4d) was identified as a translational mutant defective in both vacuole trafficking and normal development. Polysome profiling of the rpl4d mutant showed reduction in polysome-bound mRNA compared with wild-type, but no significant change in the general mRNA distribution pattern. Ribsomal profiling data indicated that genes in the lipid metabolism pathways were translationally down-regulated in the rpl4d mutant. Live imaging studies by Nile red staining suggested that both polar and nonpolar lipid accumulation was reduced in meristem tissues of rpl4d mutants. Pharmacological evidence showed that sterol and sphingolipid biosynthetic inhibitors can phenocopy the defects of the rpl4d mutant, including an altered vacuole trafficking pattern. Genetic evidence from lipid biosynthetic mutants indicates that alteration in the metabolism of either sterol or sphingolipid biosynthesis resulted in vacuole trafficking defects, similar to the rpl4d mutant. Tissue-specific complementation with key enzymes from lipid biosynthesis pathways can partially rescue both vacuole trafficking and auxin-related developmental defects in the rpl4d mutant. These results indicate that lipid metabolism modulates auxin-mediated tissue differentiation and endomembrane trafficking pathways downstream of ribosomal protein function.

  14. Developmental regulation of N-methyl-D-aspartate- and kainate-type glutamate receptor expression in the rat spinal cord

    NASA Technical Reports Server (NTRS)

    Stegenga, S. L.; Kalb, R. G.

    2001-01-01

    Spinal motor neurons undergo experience-dependent development during a critical period in early postnatal life. It has been suggested that the repertoire of glutamate receptor subunits differs between young and mature motor neurons and contributes to this activity-dependent development. In the present study we examined the expression patterns of N-methyl-D-aspartate- and kainate-type glutamate receptor subunits during the postnatal maturation of the spinal cord. Young motor neurons express much higher levels of the N-methyl-D-aspartate receptor subunit NR1 than do adult motor neurons. Although there are eight potential splice variants of NR1, only a subgroup is expressed by motor neurons. With respect to NR2 receptor subunits, young motor neurons express NR2A and C, while adult motor neurons express only NR2A. Young motor neurons express kainate receptor subunits GluR5, 6 and KA2 but we are unable to detect these or any other kainate receptor subunits in the adult spinal cord. Other spinal cord regions display a distinct pattern of developmental regulation of N-methyl-D-aspartate and kainate receptor subunit expression in comparison to motor neurons. Our findings indicate a precise spatio-temporal regulation of individual subunit expression in the developing spinal cord. Specific combinations of subunits in developing neurons influence their excitable properties and could participate in the emergence of adult neuronal form and function.

  15. Developmental gene regulation by an ancient intercellular communication system in social amoebae.

    PubMed

    Asghar, Asma; Groth, Marco; Siol, Oliver; Gaube, Friedemann; Enzensperger, Christoph; Glöckner, Gernot; Winckler, Thomas

    2012-01-01

    The social amoebae (Dictyostelia) use quorum sensing-like communication systems to coordinate the periodic transition from uni- to multicellularity. The monophyletic descent of the Dictyostelia provides a unique opportunity to study the origin and adaptive evolution of such intercellular communication systems. We determined that the ability of aggregation-competent cells to respond to the intercellular messenger glorin occurred in the most ancient taxa of the Dictyostelia. We show using Illumina sequencing technology that glorin mediates rapid changes in gene expression at the transition from vegetative growth to aggregation. We conclude that peptide-based communication is the most ancient form of intercellular signaling in the evolution of multicellularity in the social amoebae, but has been repeatedly replaced by other communication systems during the monophyletic evolution of the social amoebae. Glorin communication has parallels with quorum sensing in that the molecule diffuses into the field, stimulates gene expression in receptive cells and coordinates a population-wide response.

  16. Arabidopsis COLD SHOCK DOMAIN PROTEIN2 is a RNA chaperone that is regulated by cold and developmental signals

    SciTech Connect

    Sasaki, Kentaro; Kim, Myung-Hee; Imai, Ryozo

    2007-12-21

    Bacterial cold shock proteins (CSPs) are RNA chaperones that unwind RNA secondary structures. Arabidopsis COLD SHOCK DOMAIN PROTEIN2 (AtCSP2) contains a domain that is shared with bacterial CSPs. Here we showed that AtCSP2 binds to RNA and unwinds nucleic acid duplex. Heterologous expression of AtCSP2 complemented cold sensitivity of an Escherichia coli csp quadruple mutant, indicating that AtCSP2 function as a RNA chaperone in E. coli. AtCSP2 mRNA and protein levels increased during cold acclimation, but the protein accumulation was most prominent after 10 days of cold treatment. AtCSP2 promoter::GUS transgenic plants revealed that AtCSP2 is expressed only in root and shoot apical regions during vegetative growth but is expressed in reproductive organs such as pollens, ovules and embryos. These data indicated that AtCSP2 is involved in developmental processes as well as cold adaptation. Localization of AtCSP2::GFP in nucleolus and cytoplasm suggested different nuclear and cytosolic RNA targets.

  17. Mild Developmental Foreign Accent Syndrome and Psychiatric Comorbidity: Altered White Matter Integrity in Speech and Emotion Regulation Networks.

    PubMed

    Berthier, Marcelo L; Roé-Vellvé, Núria; Moreno-Torres, Ignacio; Falcon, Carles; Thurnhofer-Hemsi, Karl; Paredes-Pacheco, José; Torres-Prioris, María J; De-Torres, Irene; Alfaro, Francisco; Gutiérrez-Cardo, Antonio L; Baquero, Miquel; Ruiz-Cruces, Rafael; Dávila, Guadalupe

    2016-01-01

    Foreign accent syndrome (FAS) is a speech disorder that is defined by the emergence of a peculiar manner of articulation and intonation which is perceived as foreign. In most cases of acquired FAS (AFAS) the new accent is secondary to small focal lesions involving components of the bilaterally distributed neural network for speech production. In the past few years FAS has also been described in different psychiatric conditions (conversion disorder, bipolar disorder, and schizophrenia) as well as in developmental disorders (specific language impairment, apraxia of speech). In the present study, two adult males, one with atypical phonetic production and the other one with cluttering, reported having developmental FAS (DFAS) since their adolescence. Perceptual analysis by naïve judges could not confirm the presence of foreign accent, possibly due to the mildness of the speech disorder. However, detailed linguistic analysis provided evidence of prosodic and segmental errors previously reported in AFAS cases. Cognitive testing showed reduced communication in activities of daily living and mild deficits related to psychiatric disorders. Psychiatric evaluation revealed long-lasting internalizing disorders (neuroticism, anxiety, obsessive-compulsive disorder, social phobia, depression, alexithymia, hopelessness, and apathy) in both subjects. Diffusion tensor imaging (DTI) data from each subject with DFAS were compared with data from a group of 21 age- and gender-matched healthy control subjects. Diffusion parameters (MD, AD, and RD) in predefined regions of interest showed changes of white matter microstructure in regions previously related with AFAS and psychiatric disorders. In conclusion, the present findings militate against the possibility that these two subjects have FAS of psychogenic origin. Rather, our findings provide evidence that mild DFAS occurring in the context of subtle, yet persistent, developmental speech disorders may be associated with structural brain

  18. Mild Developmental Foreign Accent Syndrome and Psychiatric Comorbidity: Altered White Matter Integrity in Speech and Emotion Regulation Networks

    PubMed Central

    Berthier, Marcelo L.; Roé-Vellvé, Núria; Moreno-Torres, Ignacio; Falcon, Carles; Thurnhofer-Hemsi, Karl; Paredes-Pacheco, José; Torres-Prioris, María J.; De-Torres, Irene; Alfaro, Francisco; Gutiérrez-Cardo, Antonio L.; Baquero, Miquel; Ruiz-Cruces, Rafael; Dávila, Guadalupe

    2016-01-01

    Foreign accent syndrome (FAS) is a speech disorder that is defined by the emergence of a peculiar manner of articulation and intonation which is perceived as foreign. In most cases of acquired FAS (AFAS) the new accent is secondary to small focal lesions involving components of the bilaterally distributed neural network for speech production. In the past few years FAS has also been described in different psychiatric conditions (conversion disorder, bipolar disorder, and schizophrenia) as well as in developmental disorders (specific language impairment, apraxia of speech). In the present study, two adult males, one with atypical phonetic production and the other one with cluttering, reported having developmental FAS (DFAS) since their adolescence. Perceptual analysis by naïve judges could not confirm the presence of foreign accent, possibly due to the mildness of the speech disorder. However, detailed linguistic analysis provided evidence of prosodic and segmental errors previously reported in AFAS cases. Cognitive testing showed reduced communication in activities of daily living and mild deficits related to psychiatric disorders. Psychiatric evaluation revealed long-lasting internalizing disorders (neuroticism, anxiety, obsessive-compulsive disorder, social phobia, depression, alexithymia, hopelessness, and apathy) in both subjects. Diffusion tensor imaging (DTI) data from each subject with DFAS were compared with data from a group of 21 age- and gender-matched healthy control subjects. Diffusion parameters (MD, AD, and RD) in predefined regions of interest showed changes of white matter microstructure in regions previously related with AFAS and psychiatric disorders. In conclusion, the present findings militate against the possibility that these two subjects have FAS of psychogenic origin. Rather, our findings provide evidence that mild DFAS occurring in the context of subtle, yet persistent, developmental speech disorders may be associated with structural brain

  19. Developmental Regulation and Induction of Cytochrome P450 2W1, an Enzyme Expressed in Colon Tumors

    PubMed Central

    Choong, Eva; Guo, Jia; Persson, Anna; Virding, Susanne; Johansson, Inger; Mkrtchian, Souren; Ingelman-Sundberg, Magnus

    2015-01-01

    Cytochrome P450 2W1 (CYP2W1) is expressed predominantly in colorectal and also in hepatic tumors, whereas the levels are insignificant in the corresponding normal human adult tissues. CYP2W1 has been proposed as an attractive target for colorectal cancer (CRC) therapy by exploiting its ability to activate duocarmycin prodrugs to cytotoxic metabolites. However, its endogenous function, regulation and developmental pattern of expression remain unexplored. Here we report the CYP2W1 developmental expression in the murine and human gastrointestinal tissues. The gene expression in the colon and small intestine commence at early stages of embryonic life and is completely silenced shortly after the birth. Immunohistochemical analysis of human fetal colon revealed that CYP2W1 expression is restricted to the crypt cells. The silencing of CYP2W1 after birth correlates with the increased methylation of CpG-rich regions in both murine and human CYP2W1 genes. Analysis of CYP2W1 expression in the colon adenocarcinoma cell line HCC2998 revealed that the gene expression can be induced by e.g. the antitumor agent imatinib, linoleic acid and its derivatives. The imatinib mediated induction of CYP2W1 suggests an adjuvant therapy to treatment with duocarmycins that thus would involve induction of tumor CYP2W1 levels followed by the CYP2W1 activated duocarmycin prodrugs. Taken together these data strongly support further exploration of CYP2W1 as a specific drug target in CRC. PMID:25844926

  20. Developmental Functions of miR156-Regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) Genes in Arabidopsis thaliana

    PubMed Central

    Hu, Tieqiang; Park, Mee-Yeon; Earley, Keith W.; Wu, Gang; Yang, Li

    2016-01-01

    Correct developmental timing is essential for plant fitness and reproductive success. Two important transitions in shoot development—the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition—are mediated by a group of genes targeted by miR156, SQUAMOSA PROMOTER BINDING PROTEIN (SBP) genes. To determine the developmental functions of these genes in Arabidopsis thaliana, we characterized their expression patterns, and their gain-of-function and loss-of-function phenotypes. Our results reveal that SBP-LIKE (SPL) genes in Arabidopsis can be divided into three functionally distinct groups: 1) SPL2, SPL9, SPL10, SPL11, SPL13 and SPL15 contribute to both the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition, with SPL9, SP13 and SPL15 being more important for these processes than SPL2, SPL10 and SPL11; 2) SPL3, SPL4 and SPL5 do not play a major role in vegetative phase change or floral induction, but promote the floral meristem identity transition; 3) SPL6 does not have a major function in shoot morphogenesis, but may be important for certain physiological processes. We also found that miR156-regulated SPL genes repress adventitious root development, providing an explanation for the observation that the capacity for adventitious root production declines as the shoot ages. miR156 is expressed at very high levels in young seedlings, and declines in abundance as the shoot develops. It completely blocks the expression of its SPL targets in the first two leaves of the rosette, and represses these genes to different degrees at later stages of development, primarily by promoting their translational repression. These results provide a framework for future studies of this multifunctional family of transcription factors, and offer new insights into the role of miR156 in Arabidopsis development. PMID:27541584

  1. Identification of a novel microtubule binding and assembly domain in the developmentally regulated inter-repeat region of tau

    PubMed Central

    1994-01-01

    Tau is a developmentally regulated microtubule-associated protein that influences microtubule behavior by directly associating with tubulin. The carboxyl terminus of tau contains multiple 18-amino acid repeats that bind microtubules and are separated by 13-14-amino acid inter- repeat (IR) regions previously thought to function as "linkers." Here, we have performed a high resolution deletion analysis of tau and identified the IR region located between repeats 1 and 2 (the R1-R2 IR) as a unique microtubule binding site with more than twice the binding affinity of any individual repeat. Truncation analyses and site- directed mutagenesis reveal that the binding activity of this site is derived primarily from lys265 and lys272, with a lesser contribution from lys271. These results predict strong, discrete electrostatic interactions between the R1-R2 IR and tubulin, in contrast to the distributed array of weak interactions thought to underlie the association between 18-amino acid repeats and microtubules (Butner, K. A., and M. W. Kirschner. J. Cell Biol. 115:717-730). Moreover, competition assays suggest that the R1-R2 IR associates with microtubules at tubulin site(s) distinct from those bound by the repeats. Finally, a synthetic peptide corresponding to just 10 amino acids of the R1-R2 IR is sufficient to promote tubulin polymerization in a sequence-dependent manner. Since the R1-R2 IR is specifically expressed in adult tau, its action may underlie some of the developmental transitions observed in neuronal microtubule organization. We suggest that the R1-R2 IR may establish an adult- specific, high affinity anchor that tethers the otherwise mobile tau molecule to the tubulin lattice, thereby increasing microtubule stability. Moreover, the absence of R1-R2 IR expression during early development may allow for the cytoskeletal plasticity required of immature neurons. PMID:8120098

  2. Identification of a novel microtubule binding and assembly domain in the developmentally regulated inter-repeat region of tau.

    PubMed

    Goode, B L; Feinstein, S C

    1994-03-01

    Tau is a developmentally regulated microtubule-associated protein that influences microtubule behavior by directly associating with tubulin. The carboxyl terminus of tau contains multiple 18-amino acid repeats that bind microtubules and are separated by 13-14-amino acid inter-repeat (IR) regions previously thought to function as "linkers." Here, we have performed a high resolution deletion analysis of tau and identified the IR region located between repeats 1 and 2 (the R1-R2 IR) as a unique microtubule binding site with more than twice the binding affinity of any individual repeat. Truncation analyses and site-directed mutagenesis reveal that the binding activity of this site is derived primarily from lys265 and lys272, with a lesser contribution from lys271. These results predict strong, discrete electrostatic interactions between the R1-R2 IR and tubulin, in contrast to the distributed array of weak interactions thought to underlie the association between 18-amino acid repeats and microtubules (Butner, K. A., and M. W. Kirschner. J. Cell Biol. 115:717-730). Moreover, competition assays suggest that the R1-R2 IR associates with microtubules at tubulin site(s) distinct from those bound by the repeats. Finally, a synthetic peptide corresponding to just 10 amino acids of the R1-R2 IR is sufficient to promote tubulin polymerization in a sequence-dependent manner. Since the R1-R2 IR is specifically expressed in adult tau, its action may underlie some of the developmental transitions observed in neuronal microtubule organization. We suggest that the R1-R2 IR may establish an adult-specific, high affinity anchor that tethers the otherwise mobile tau molecule to the tubulin lattice, thereby increasing microtubule stability. Moreover, the absence of R1-R2 IR expression during early development may allow for the cytoskeletal plasticity required of immature neurons.

  3. Autonomous regulation of sex-specific developmental programming in mouse fetal germ cells.

    PubMed

    Iwahashi, Kazuhiro; Yoshioka, Hirotaka; Low, Eleanor W; McCarrey, John R; Yanagimachi, Ryuzo; Yamazaki, Yukiko

    2007-10-01

    In mice, unique events regulating epigenetic programming (e.g., genomic imprinting) and replication state (mitosis versus meiosis) occur during fetal germ cell development. To determine whether these processes are autonomously programmed in fetal germ cells or are dependent upon ongoing instructive interactions with surrounding gonadal somatic cells, we isolated male and female germ cells at 13.5 days postcoitum (dpc) and maintained them in culture for 6 days, either alone or in the presence of feeder cells or gonadal somatic cells. We examined allele-specific DNA methylation in the imprinted H19 and Snrpn genes, and we also determined whether these cells remained mitotic or entered meiosis. Our results show that isolated male germ cells are able to establish a characteristic "paternal" methylation pattern at imprinted genes in the absence of any support from somatic cells. On the other hand, cultured female germ cells maintain a hypomethylated status at these loci, characteristic of the normal "maternal" methylation pattern in endogenous female germ cells before birth. Further, the surviving female germ cells entered first meiotic prophase and reached the pachytene stage, whereas male germ cells entered mitotic arrest. These results indicate that mechanisms controlling both epigenetic programming and replication state are autonomously regulated in fetal germ cells that have been exposed to the genital ridge prior to 13.5 dpc.

  4. Developmentally regulated cleavage of tRNAs in the bacterium Streptomyces coelicolor

    PubMed Central

    Haiser, Henry J.; Karginov, Fedor V.; Hannon, Gregory J.; Elliot, Marie A.

    2008-01-01

    The ability to sense and respond to environmental and physiological signals is critical for the survival of the soil-dwelling Gram-positive bacterium Streptomyces coelicolor. Nutrient deprivation triggers the onset of a complex morphological differentiation process that involves the raising of aerial hyphae and formation of spore chains, and coincides with the production of a diverse array of clinically relevant antibiotics and other secondary metabolites. These processes are tightly regulated; however, the genes and signals involved have not been fully elucidated. Here, we report a novel tRNA cleavage event that follows the same temporal regulation as morphological and physiological differentiation, and is growth medium dependent. All tRNAs appear to be susceptible to cleavage; however, there appears to be a bias towards increased cleavage of those tRNAs that specify highly utilized codons. In contrast to what has been observed in eukaryotes, accumulation of tRNA halves in S. coelicolor is not significantly affected by amino acid starvation, and is also not affected by induction of the stringent response or inhibition of ribosome function. Mutants defective in aerial development and antibiotic production exhibit altered tRNA cleavage profiles relative to wild-type strains. PMID:18084030

  5. Role of primary afferents in the developmental regulation of motor axon synapse numbers on Renshaw cells.

    PubMed

    Siembab, Valerie C; Gomez-Perez, Laura; Rotterman, Travis M; Shneider, Neil A; Alvarez, Francisco J

    2016-06-15

    Motor function in mammalian species depends on the maturation of spinal circuits formed by a large variety of interneurons that regulate motoneuron firing and motor output. Interneuron activity is in turn modulated by the organization of their synaptic inputs, but the principles governing the development of specific synaptic architectures unique to each premotor interneuron are unknown. For example, Renshaw cells receive, at least in the neonate, convergent inputs from sensory afferents (likely Ia) and motor axons, raising the question of whether they interact during Renshaw cell development. In other well-studied neurons, such as Purkinje cells, heterosynaptic competition between inputs from different sources shapes synaptic organization. To examine the possibility that sensory afferents modulate synaptic maturation on developing Renshaw cells, we used three animal models in which afferent inputs in the ventral horn are dramatically reduced (ER81(-/-) knockout), weakened (Egr3(-/-) knockout), or strengthened (mlcNT3(+/-) transgenic). We demonstrate that increasing the strength of sensory inputs on Renshaw cells prevents their deselection and reduces motor axon synaptic density, and, in contrast, absent or diminished sensory afferent inputs correlate with increased densities of motor axons synapses. No effects were observed on other glutamatergic inputs. We conclude that the early strength of Ia synapses influences their maintenance or weakening during later development and that heterosynaptic influences from sensory synapses during early development regulates the density and organization of motor inputs on mature Renshaw cells.

  6. Caudal, a key developmental regulator, is a DPE-specific transcriptional factor.

    PubMed

    Juven-Gershon, Tamar; Hsu, Jer-Yuan; Kadonaga, James T

    2008-10-15

    The regulation of gene transcription is critical for the proper development and growth of an organism. The transcription of protein-coding genes initiates at the RNA polymerase II core promoter, which is a diverse module that can be controlled by many different elements such as the TATA box and downstream core promoter element (DPE). To understand the basis for core promoter diversity, we explored potential biological functions of the DPE. We found that nearly all of the Drosophila homeotic (Hox) gene promoters, which lack TATA-box elements, contain functionally important DPE motifs that are conserved from Drosophila melanogaster to Drosophila virilis. We then discovered that Caudal, a sequence-specific transcription factor and key regulator of the Hox gene network, activates transcription with a distinct preference for the DPE relative to the TATA box. The specificity of Caudal activation for the DPE is particularly striking when a BRE(u) core promoter motif is associated with the TATA box. These findings show that Caudal is a DPE-specific activator and exemplify how core promoter diversity can be used to establish complex regulatory networks.

  7. Coordinate developmental regulation of purine catabolic enzyme expression in gastrointestinal and postimplantation reproductive tracts

    PubMed Central

    1991-01-01

    Using histochemical detection, we have visualized in situ the complete metabolic pathway for the degradation of purine nucleotides. From the tongue to the ileum, diverse epithelial cell types lining the lumen of the mouse gastrointestinal (GI) tract strongly coexpress each of the five key purine catabolic enzymes. Dramatic increases in the expression of each enzyme occurred during postnatal maturation of the GI tract. Using in situ hybridization, an intense accumulation of adenosine deaminase (ADA) mRNA was detected only within GI epithelial cells undergoing postmitotic differentiation. In a similar manner, at the developing maternal-fetal interface, high level expression of the purine catabolic pathway also occurred in a unique subset of maternal decidual cells previously known to express high levels of alkaline phosphatase and ADA. This induction occurred almost immediately after implantation in the periembryonic maternal decidual cells, shortly thereafter in antimesometrial decidual cells, and later in cells of the placental decidua basalis: all of which contain cell types thought to be undergoing programmed cell death. The expression of the pathway at the site of embryo implantation appears to be critical because its pharmacologic inhibition during pregnancy has been found to be embryolethal or teratogenic. Purine destruction at these nutritional interfaces (placenta and gastrointestinal tract) seem to override any potential economy of purine salvage, and may represent biochemical adaptation to nucleic acid breakdown occurring in the context of dietary digestion or extensive programmed cell death. PMID:1918135

  8. Developmentally regulated ceramide synthase 6 increases mitochondrial Ca2+ loading capacity and promotes apoptosis.

    PubMed

    Novgorodov, Sergei A; Chudakova, Daria A; Wheeler, Brian W; Bielawski, Jacek; Kindy, Mark S; Obeid, Lina M; Gudz, Tatyana I

    2011-02-11

    Ceramides, which are membrane sphingolipids and key mediators of cell-stress responses, are generated by a family of (dihydro) ceramide synthases (Lass1-6/CerS1-6). Here, we report that brain development features significant increases in sphingomyelin, sphingosine, and most ceramide species. In contrast, C(16:0)-ceramide was gradually reduced and CerS6 was down-regulated in mitochondria, thereby implicating CerS6 as a primary ceramide synthase generating C(16:0)-ceramide. Investigations into the role of CerS6 in mitochondria revealed that ceramide synthase down-regulation is associated with dramatically decreased mitochondrial Ca(2+)-loading capacity, which could be rescued by addition of ceramide. Selective CerS6 complexing with the inner membrane component of the mitochondrial permeability transition pore was detected by immunoprecipitation. This suggests that CerS6-generated ceramide could prevent mitochondrial permeability transition pore opening, leading to increased Ca(2+) accumulation in the mitochondrial matrix. We examined the effect of high CerS6 expression on cell survival in primary oligodendrocyte (OL) precursor cells, which undergo apoptotic cell death during early postnatal brain development. Exposure of OLs to glutamate resulted in apoptosis that was prevented by inhibitors of de novo ceramide biosynthesis, myriocin and fumonisin B1. Knockdown of CerS6 with siRNA reduced glutamate-triggered OL apoptosis, whereas knockdown of CerS5 had no effect: the pro-apoptotic role of CerS6 was not stimulus-specific. Knockdown of CerS6 with siRNA improved cell survival in response to nerve growth factor-induced OL apoptosis. Also, blocking mitochondrial Ca(2+) uptake or decreasing Ca(2+)-dependent protease calpain activity with specific inhibitors prevented OL apoptosis. Finally, knocking down CerS6 decreased calpain activation. Thus, our data suggest a novel role for CerS6 in the regulation of both mitochondrial Ca(2+) homeostasis and calpain, which appears to

  9. Adaptive Control Model Reveals Systematic Feedback and Key Molecules in Metabolic Pathway Regulation

    PubMed Central

    Moffitt, Richard A.; Merrill, Alfred H.; Wang, May D.

    2011-01-01

    Abstract Robust behavior in metabolic pathways resembles stabilized performance in systems under autonomous control. This suggests we can apply control theory to study existing regulation in these cellular networks. Here, we use model-reference adaptive control (MRAC) to investigate the dynamics of de novo sphingolipid synthesis regulation in a combined theoretical and experimental case study. The effects of serine palmitoyltransferase over-expression on this pathway are studied in vitro using human embryonic kidney cells. We report two key results from comparing numerical simulations with observed data. First, MRAC simulations of pathway dynamics are comparable to simulations from a standard model using mass action kinetics. The root-sum-square (RSS) between data and simulations in both cases differ by less than 5%. Second, MRAC simulations suggest systematic pathway regulation in terms of adaptive feedback from individual molecules. In response to increased metabolite levels available for de novo sphingolipid synthesis, feedback from molecules along the main artery of the pathway is regulated more frequently and with greater amplitude than from other molecules along the branches. These biological insights are consistent with current knowledge while being new that they may guide future research in sphingolipid biology. In summary, we report a novel approach to study regulation in cellular networks by applying control theory in the context of robust metabolic pathways. We do this to uncover potential insight into the dynamics of regulation and the reverse engineering of cellular networks for systems biology. This new modeling approach and the implementation routines designed for this case study may be extended to other systems. Supplementary Material is available at www.liebertonline.com/cmb. PMID:21314456

  10. Developmental plasticity and acclimation both contribute to adaptive responses to alternating seasons of plenty and of stress in Bicyclus butterflies.

    PubMed

    Brakefield, Paul M; Pijpe, Jeroen; Zwaan, Bas J

    2007-04-01

    Plasticity is a crucial component of the life cycle of invertebrates that live as active adults throughout wet and dry seasons in the tropics. Such plasticity is seen in the numerous species of Bicyclus butterflies in Africa which exhibit seasonal polyphenism with sequential generations of adults with one or other of two alternative phenotypes. These differ not only in wing pattern but in many other traits. This divergence across a broad complex of traits is associated with survival and reproduction either in a wet season that is favourable in terms of resources, or mainly in a dry season that is more stressful. This phenomenon has led us to examine the bases of the developmental plasticity in a model species, B.anynana, and also the evolution of key adult life history traits, including starvation resistance and longevity. We now understand something about the processes that generate variation in the phenotype,and also about the ecological context of responses to environmental stress. The responses clearly involve a mix of developmental plasticity as cued by different environments in pre-adult development,and the acclimation of life history traits in adults to their prevailing environment.

  11. Epilepsy gene LGI1 regulates postnatal developmental remodeling of retinogeniculate synapses.

    PubMed

    Zhou, Yu-Dong; Zhang, Dawei; Ozkaynak, Ekim; Wang, Xuan; Kasper, Ekkehard M; Leguern, Eric; Baulac, Stéphanie; Anderson, Matthew P

    2012-01-18

    Retinogeniculate connections undergo postnatal refinement in the developing visual system. Here we report that non-ion channel epilepsy gene LGI1 (leucine-rich glioma-inactivated), mutated in human autosomal dominant lateral temporal lobe epilepsy (ADLTE), regulates postnatal pruning of retinal axons in visual relay thalamus. By introducing an ADLTE-associated truncated mutant LGI1 (836delC) or excess full-length LGI1 into transgenic mice, we found that mutant LGI1 blocks, whereas excess LGI1 accelerates, retinogeniculate axon pruning. The normal postnatal single fiber strengthening was arrested by mutant LGI1 and, contrastingly, was enhanced by excess wild-type LGI1. The maximum response of the retinogeniculate synapses, conversely, remained the same in mature LGI1 transgenic mice, indicating that mutant LGI1 blocks, whereas excess wild-type LGI1 promotes, weak axon fiber elimination. Heterozygous deletion of the LGI1 gene, as found in ADLTE patients, inhibited postnatal retinogeniculate synapse elimination, an effect similar to the ADLTE truncated mutant LGI1. The results identify sensory axon remodeling defects in a sensory aura-associated human epilepsy disorder.

  12. Developmental Regulation of Lectin and Alliinase Synthesis in Garlic Bulbs and Leaves.

    PubMed Central

    Smeets, K.; Van Damme, EJM.; Peumans, W. J.

    1997-01-01

    Using a combination of northern blot analysis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, a detailed study was made of the temporal and spatial regulation of garlic (Allium sativum L.) lectins and alliinase throughout the life cycle of the plant. The two bulb-specific lectins (ASAI and ASAII), which are the most predominant bulb proteins, accumulate exclusively in the developing garlic cloves and progressively disappear when the old clove is consumed by the plant. On the basis of these observations, ASAI and ASAII can be regarded as typical vegetative storage proteins. The leaf-specific lectin (ASAL), on the contrary, is specifically synthesized in young leaves and remains present until withering. Because ASAL is only a minor protein, it probably fulfills a specific function in the plant. Unlike the lectins, alliinase is present in large quantities in bulbs as well as in leaves. Moreover, intact alliinase mRNAs are present in both tissues as long as they contain living cells. The latter observation is in good agreement with the possible involvement of alliinase in the plant's defense against pathogens and/or predators. PMID:12223641

  13. Developmental epigenetic modification regulates stochastic expression of clustered protocadherin genes, generating single neuron diversity.

    PubMed

    Toyoda, Shunsuke; Kawaguchi, Masahumi; Kobayashi, Toshihiro; Tarusawa, Etsuko; Toyama, Tomoko; Okano, Masaki; Oda, Masaaki; Nakauchi, Hiromitsu; Yoshimura, Yumiko; Sanbo, Makoto; Hirabayashi, Masumi; Hirayama, Teruyoshi; Hirabayashi, Takahiro; Yagi, Takeshi

    2014-04-02

    In the brain, enormous numbers of neurons have functional individuality and distinct circuit specificities. Clustered Protocadherins (Pcdhs), diversified cell-surface proteins, are stochastically expressed by alternative promoter choice and affect dendritic arborization in individual neurons. Here we found that the Pcdh promoters are differentially methylated by the de novo DNA methyltransferase Dnmt3b during early embryogenesis. To determine this methylation's role in neurons, we produced chimeric mice from Dnmt3b-deficient induced pluripotent stem cells (iPSCs). Single-cell expression analysis revealed that individual Dnmt3b-deficient Purkinje cells expressed increased numbers of Pcdh isoforms; in vivo, they exhibited abnormal dendritic arborization. These results indicate that DNA methylation by Dnmt3b at early embryonic stages regulates the probability of expression for the stochastically expressed Pcdh isoforms. They also suggest a mechanism for a rare human recessive disease, the ICF (Immunodeficiency, Centromere instability, and Facial anomalies) syndrome, which is caused by Dnmt3b mutations.

  14. Developmental Regulation of a Plasma Membrane Arabinogalactan Protein Epitope in Oilseed Rape Flowers.

    PubMed Central

    Pennell, RI; Janniche, L; Kjellbom, P; Scofield, GN; Peart, JM; Roberts, K

    1991-01-01

    We have identified and characterized the temporal and spatial regulation of a plasma membrane arabinogalactan protein epitope during development of the aerial parts of oilseed rape using the monoclonal antibody JIM8. The JIM8 epitope is expressed by the first cells of the embryo and by certain cells in the sexual organs of flowers. During embryogenesis, the JIM8 epitope ceases to be expressed by the embryo proper but is still found in the suspensor. During differentiation of the stamens and carpels, expression of the JIM8 epitope progresses from one cell type to another, ultimately specifying the endothecium and sperm cells, the nucellar epidermis, synergid cells, and the egg cell. This complex temporal sequence demonstrates rapid turnover of the JIM8 epitope. There is no direct evidence for any cell-inductive process in plant development. However, if cell-cell interactions exist in plants and participate in flower development, the JIM8 epitope may be a marker for one set of them. PMID:12324592

  15. Developmental and tumoral vascularization is regulated by G protein–coupled receptor kinase 2

    PubMed Central

    Rivas, Verónica; Carmona, Rita; Muñoz-Chápuli, Ramón; Mendiola, Marta; Nogués, Laura; Reglero, Clara; Miguel-Martín, María; García-Escudero, Ramón; Dorn, Gerald W.; Hardisson, David; Mayor, Federico; Penela, Petronila

    2013-01-01

    Tumor vessel dysfunction is a pivotal event in cancer progression. Using an in vivo neovascularization model, we identified G protein–coupled receptor kinase 2 (GRK2) as a key angiogenesis regulator. An impaired angiogenic response involving immature vessels was observed in mice hemizygous for Grk2 or in animals with endothelium-specific Grk2 silencing. ECs isolated from these animals displayed intrinsic alterations in migration, TGF-β signaling, and formation of tubular networks. Remarkably, an altered pattern of vessel growth and maturation was detected in postnatal retinas from endothelium-specific Grk2 knockout animals. Mouse embryos with systemic or endothelium-selective Grk2 ablation had marked vascular malformations involving impaired recruitment of mural cells. Moreover, decreased endothelial Grk2 dosage accelerated tumor growth in mice, along with reduced pericyte vessel coverage and enhanced macrophage infiltration, and this transformed environment promoted decreased GRK2 in ECs and human breast cancer vessels. Our study suggests that GRK2 downregulation is a relevant event in the tumoral angiogenic switch. PMID:24135140

  16. Developmental expression of the N-myc downstream regulated gene (Ndrg) family during Xenopus tropicalis embryogenesis.

    PubMed

    Zhong, Chao; Zhou, Yan-Kuan; Yang, Shan-Shan; Zhao, Jun-Fang; Zhu, Xiao-Long; Chen, Hen-Huang; Chen, Pei-Chao; Huang, Li-Quan; Huang, Xiao

    2015-01-01

    The N-myc downstream regulated gene (Ndrg) family consists of four main members Ndrg1, 2, 3, and 4. The Ndrg genes are involved in many vital biological events including development. However, comprehensive expression patterns of this gene family during vertebrate embryogenesis remain largely unknown. Here, we analyzed the Ndrg family from the evolutionary perspective and examined the expression patterns of the Ndrg genes during Xenopus tropicalis embryogenesis. Different Ndrg family members of vertebrates are separated into different homology clusters which can be further classified into two groups and each Ndrg family member is well conserved during evolution. The temporal and spatial expression patterns of Ndrg1, 2, 3 and 4 are different during early Xenopus tropicalis development. Ndrg1, 2 and 4 are maternally expressed genes while Ndrg3 is a zygotically expressed gene. The Ndrg genes are differentially expressed in the developing central nervous system, the developing sensory organs, and the developing excretory organs. Moreover, they also show other specific expression domains. Our results indicate that the Ndrg genes exhibit specific expression patterns and may play different roles during vertebrate embryogenesis.

  17. The beta 1 integrin distal promoter is developmentally regulated in transgenic mice.

    PubMed

    Hirsch, E; Balzac, F; Pastore, C; Tarone, G; Silengo, L; Altruda, F

    1993-12-01

    Transgenic mice harbouring 5' flanking sequences of the human beta 1 integrin gene linked to the Escherichia coli lacZ gene have been generated to examine spatial and temporal distribution of the promoter activity during development. Our previous data showed that this regulatory region is composed by two promoters, called distal and proximal, located closely on the human genome. To determine the role of each promoter region during development we generated transgenic mice using these two sequences linked to the lacZ reporter gene. Their analysis shows that these two sequences, as determined by in vitro studies, have different efficiencies in promoting transcription. Actually mice carrying the proximal promoter region exhibit a weak lacZ expression resulting in an undetectable beta-galactosidase activity in both embryonic and adult tissues. On the other hand, transgenic mice carrying the distal promoter express beta-galactosidase at high efficiency during embryonic development. The pattern of transgene expression is consistent with the localization of beta 1 protein on mouse embryos evidenced by immunohistochemistry. Moreover the distal promoter is subjected to a temporal modulation since in adult transgenic mice lacZ expression decreases to a level detected only by RT-PCR analysis. We have determined a similar down-regulation analysing by Northern blot beta 1 mRNA in adult and embryonic organs such as heart and gut.

  18. Suppression subtractive hybridization and comparative expression analysis to identify developmentally regulated genes in filamentous fungi.

    PubMed

    Gesing, Stefan; Schindler, Daniel; Nowrousian, Minou

    2013-09-01

    Ascomycetes differentiate four major morphological types of fruiting bodies (apothecia, perithecia, pseudothecia and cleistothecia) that are derived from an ancestral fruiting body. Thus, fruiting body differentiation is most likely controlled by a set of common core genes. One way to identify such genes is to search for genes with evolutionary conserved expression patterns. Using suppression subtractive hybridization (SSH), we selected differentially expressed transcripts in Pyronema confluens (Pezizales) by comparing two cDNA libraries specific for sexual and for vegetative development, respectively. The expression patterns of selected genes from both libraries were verified by quantitative real time PCR. Expression of several corresponding homologous genes was found to be conserved in two members of the Sordariales (Sordaria macrospora and Neurospora crassa), a derived group of ascomycetes that is only distantly related to the Pezizales. Knockout studies with N. crassa orthologues of differentially regulated genes revealed a functional role during fruiting body development for the gene NCU05079, encoding a putative MFS peptide transporter. These data indicate conserved gene expression patterns and a functional role of the corresponding genes during fruiting body development; such genes are candidates of choice for further functional analysis.

  19. Quantitative proteomics identify DAB2 as a cardiac developmental regulator that inhibits WNT/β-catenin signaling.

    PubMed

    Hofsteen, Peter; Robitaille, Aaron M; Chapman, Daniel Patrick; Moon, Randall T; Murry, Charles E

    2016-01-26

    To reveal the molecular mechanisms involved in cardiac lineage determination and differentiation, we quantified the proteome of human embryonic stem cells (hESCs), cardiac progenitor cells (CPCs), and cardiomyocytes during a time course of directed differentiation by label-free quantitative proteomics. This approach correctly identified known stage-specific markers of cardiomyocyte differentiation, including SRY-box2 (SOX2), GATA binding protein 4 (GATA4), and myosin heavy chain 6 (MYH6). This led us to determine whether our proteomic screen could reveal previously unidentified mediators of heart development. We identified Disabled 2 (DAB2) as one of the most dynamically expressed proteins in hESCs, CPCs, and cardiomyocytes. We used clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) mutagenesis in zebrafish to assess whether DAB2 plays a functional role during cardiomyocyte differentiation. We found that deletion of Dab2 in zebrafish embryos led to a significant reduction in cardiomyocyte number and increased endogenous WNT/β-catenin signaling. Furthermore, the Dab2-deficient defects in cardiomyocyte number could be suppressed by overexpression of dickkopf 1 (DKK1), an inhibitor of WNT/β-catenin signaling. Thus, inhibition of WNT/β-catenin signaling by DAB2 is essential for establishing the correct number of cardiomyocytes in the developing heart. Our work demonstrates that quantifying the proteome of human stem cells can identify previously unknown developmental regulators.

  20. A novel microtubule-based motor protein (KIF4) for organelle transports, whose expression is regulated developmentally

    PubMed Central

    1994-01-01

    To understand the mechanisms of transport for organelles in the axon, we isolated and sequenced the cDNA encoding KIF4 from murine brain, and characterized the molecule biochemically and immunocytochemically. Complete amino acid sequence analysis of KIF4 and ultrastructural studies of KIF4 molecules expressed in Sf9 cells revealed that the protein contains 1,231 amino acid residues (M(r) 139,550) and that the molecule (116-nm rod with globular heads and tail) consists of three domains: an NH2-terminal globular motor domain, a central alpha-helical stalk domain and a COOH-terminal tail domain. KIF4 protein has the property of nucleotide-dependent binding to microtubules, microtubule- activated ATPase activity, and microtubule plus-end-directed motility. Northern blot analysis and in situ hybridization demonstrated that KIF4 is strongly expressed in juvenile tissues including differentiated young neurons, while its expression is decreased considerably in adult mice except in spleen. Immunocytochemical studies revealed that KIF4 colocalized with membranous organelles both in growth cones of differentiated neurons and in the cytoplasm of cultured fibroblasts. During mitotic phase of cell cycle, KIF4 appears to colocalize with membranous organelles in the mitotic spindle. Hence we conclude that KIF4 is a novel microtubule-associated anterograde motor protein for membranous organelles, the expression of which is regulated developmentally. PMID:7929562

  1. Developmental regulation of an snRNP core protein epitope during pig embryogenesis and after nuclear transfer for cloning.

    PubMed

    Prather, R S; Rickords, L F

    1992-10-01

    The appearance and stabilization of a core protein epitope of the snRNP is developmentally regulated during pig embryogenesis. The epitope recognized by the monoclonal antibody Y12 is present in the germinal vesicle of mature oocytes and interphase nuclei of late 4-cell stage (24 to 30 hours post cleavage to the 4-cell stage) to blastocyst stage embryos. There was no antibody localization within pronuclei, or nuclei of 2-cell or early 4-cell stage embryos. Zygotes or 2-cell stage embryos cultured in the presence of alpha-amanitin to the late 4-cell stage showed no immunoreactivity, whereas control embryos had immunoreactivity. Thus antibody localization was correlated with RNA synthesis and RNA processing that begins by 24 hours post cleavage to the 4-cell stage. A final experiment showed no detectable immunoreactivity in 16-cell stage nuclei that had been transferred to enucleated activated meiotic metaphase II oocytes. Since immunoreactivity is associated with active RNA synthesis and RNA processing, it suggests that the 16-cell stage nucleus, which is RNA synthetically active, does not process RNA after nuclear transfer to an enucleated activated meiotic metaphase II oocyte.

  2. The microRNA bantam regulates a developmental transition in epithelial cells that restricts sensory dendrite growth.

    PubMed

    Jiang, Nan; Soba, Peter; Parker, Edward; Kim, Charles C; Parrish, Jay Z

    2014-07-01

    As animals grow, many early born structures grow by cell expansion rather than cell addition; thus growth of distinct structures must be coordinated to maintain proportionality. This phenomenon is particularly widespread in the nervous system, with dendrite arbors of many neurons expanding in concert with their substrate to sustain connectivity and maintain receptive field coverage as animals grow. After rapidly growing to establish body wall coverage, dendrites of Drosophila class IV dendrite arborization (C4da) neurons grow synchronously with their substrate, the body wall epithelium, providing a system to study how proportionality is maintained during animal growth. Here, we show that the microRNA bantam (ban) ensures coordinated growth of C4da dendrites and the epithelium through regulation of epithelial endoreplication, a modified cell cycle that entails genome amplification without cell division. In Drosophila larvae, epithelial endoreplication leads to progressive changes in dendrite-extracellular matrix (ECM) and dendrite-epithelium contacts, coupling dendrite/substrate expansion and restricting dendrite growth beyond established boundaries. Moreover, changes in epithelial expression of cell adhesion molecules, including the beta-integrin myospheroid (mys), accompany this developmental transition. Finally, endoreplication and the accompanying changes in epithelial mys expression are required to constrain late-stage dendrite growth and structural plasticity. Hence, modulating epithelium-ECM attachment probably influences substrate permissivity for dendrite growth and contributes to the dendrite-substrate coupling that ensures proportional expansion of the two cell types.

  3. Characterization of RBP9 and RBP10, two developmentally regulated RNA-binding proteins in Trypanosoma brucei.

    PubMed

    De Pablos, Luis Miguel; Kelly, Steve; de Freitas Nascimento, Janaina; Sunter, Jack; Carrington, Mark

    2017-04-01

    The fate of an mRNA is determined by its interaction with proteins and small RNAs within dynamic complexes called ribonucleoprotein complexes (mRNPs). In Trypanosoma brucei and related kinetoplastids, responses to internal and external signals are mainly mediated by post-transcriptional processes. Here, we used proximity-dependent biotin identification (BioID) combined with RNA-seq to investigate the changes resulting from ectopic expression of RBP10 and RBP9, two developmentally regulated RNA-binding proteins (RBPs). Both RBPs have reduced expression in insect procyclic forms (PCFs) compared with bloodstream forms (BSFs). Upon overexpression in PCFs, both proteins were recruited to cytoplasmic foci, co-localizing with the processing body marker SCD6. Further, both RBPs altered the transcriptome from a PCF- to a BSF-like pattern. Notably, upon expression of BirA*-RBP9 and BirA*-RBP10, BioID yielded more than 200 high confidence protein interactors (more than 10-fold enriched); 45 (RBP9) and 31 (RBP10) were directly related to mRNA metabolism. This study validates the use of BioID for investigating mRNP components but also illustrates the complexity of mRNP function.

  4. Developmental regulation and extracellular release of a VSG expression-site-associated gene product from Trypanosoma brucei bloodstream forms.

    PubMed

    Barnwell, Eleanor M; van Deursen, Frederick J; Jeacock, Laura; Smith, Katherine A; Maizels, Rick M; Acosta-Serrano, Alvaro; Matthews, Keith

    2010-10-01

    Trypanosomes evade host immunity by exchanging variant surface glycoprotein (VSG) coats. VSG genes are transcribed from telomeric expression sites, which contain a diverse family of expression-site-associated genes (ESAGs). We have discovered that the mRNAs for one ESAG family, ESAG9, are strongly developmentally regulated, being enriched in stumpy forms, a life-cycle stage in the mammalian bloodstream that is important for the maintenance of chronic parasite infections and for tsetse transmission. ESAG9 gene sequences are highly diverse in the genome and encode proteins with weak similarity to the massively diverse MASP proteins in Trypanosoma cruzi. We demonstrate that ESAG9 proteins are modified by N-glycosylation and can be shed to the external milieu, this being dependent upon coexpression with at least one other family member. The expression profile and extracellular release of ESAG9 proteins represents a novel and unexpected aspect of the transmission biology of trypanosomes in their mammalian host. We suggest that these molecules might interact with the external environment, with possible implications for infection chronicity or parasite transmission.

  5. The Developmentally Regulated alb1 Gene of Aspergillus fumigatus: Its Role in Modulation of Conidial Morphology and Virulence

    PubMed Central

    Tsai, Huei-Fung; Chang, Yun C.; Washburn, Ronald G.; Wheeler, Michael H.; Kwon-Chung, K. J.

    1998-01-01

    Aspergillus fumigatus, an important opportunistic pathogen which commonly affects neutropenic patients, produces conidia with a bluish-green color. We identified a gene, alb1, which is required for conidial pigmentation. The alb1 gene encodes a putative polyketide synthase, and disruption of alb1 resulted in an albino conidial phenotype. Expression of alb1 is developmentally regulated, and the 7-kb transcript is detected only during the conidiation stage. The alb1 mutation was found to block 1,3,6,8-tetrahydroxynaphthalene production, indicating that alb1 is involved in dihydroxynaphthalene-melanin biosynthesis. Scanning electron microscopy studies showed that the alb1 disruptant exhibited a smooth conidial surface, whereas complementation of the alb1 deletion restored the echinulate wild-type surface. Disruption of alb1 resulted in a significant increase in C3 binding on conidial surfaces, and the conidia of the alb1 disruptant were ingested by human neutrophils at a higher rate than were those of the wild type. The alb1-complemented strain producing bluish-green conidia exhibited inefficient C3 binding and neutrophil-mediated phagocytosis quantitatively similar to those of the wild type. Importantly, the alb1 disruptant had a statistically significant loss of virulence compared to the wild-type and alb1-complemented strains in a murine model. These results suggest that disruption of alb1 causes pleiotropic effects on conidial morphology and fungal virulence. PMID:9620950

  6. Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers

    PubMed Central

    Giorno, Filomena; Wolters-Arts, Mieke; Grillo, Stefania; Scharf, Klaus-Dieter; Vriezen, Wim H.; Mariani, Celestina

    2010-01-01

    The high sensitivity of male reproductive cells to high temperatures may be due to an inadequate heat stress response. The results of a comprehensive expression analysis of HsfA2 and Hsp17-CII, two important members of the heat stress system, in the developing anthers of a heat-tolerant tomato genotype are reported here. A transcriptional analysis at different developmental anther/pollen stages was performed using semi-quantitative and real-time PCR. The messengers were localized using in situ RNA hybridization, and protein accumulation was monitored using immunoblot analysis. Based on the analysis of the gene and protein expression profiles, HsfA2 and Hsp17-CII are finely regulated during anther development and are further induced under both short and prolonged heat stress conditions. These data suggest that HsfA2 may be directly involved in the activation of protection mechanisms in the tomato anther during heat stress and, thereby, may contribute to tomato fruit set under adverse temperatures. PMID:19854799

  7. Developmental and environmental regulation of a phenylalanine ammonia-lyase-beta-glucuronidase gene fusion in transgenic tobacco plants.

    PubMed Central

    Liang, X W; Dron, M; Schmid, J; Dixon, R A; Lamb, C J

    1989-01-01

    A 1.1-kilobase promoter fragment of the bean (Phaseolus vulgaris L.) phenylalanine ammonia-lyase (EC 4.3.1.5) gene PAL2 was translationally fused to the beta-glucuronidase reporter gene and transferred to tobacco by Agrobacterium tumefaciens-mediated leaf disk transformation. The distribution of beta-glucuronidase activity in these transgenic plants is very similar to that of endogenous PAL2 transcripts in bean, with very high levels in petals; marked accumulation in anthers, stigmas, roots, and shoots; and low levels in sepals, ovaries, and leaves. Histochemical analysis of the spatial pattern of beta-glucuronidase activity showed that the PAL2 promoter is highly active in the shoot apical meristem, the zone of cell proliferation immediately adjacent to the root apical meristem, and in the early stages of vascular development at the inception of xylem differentiation. Wounding and light evoke specific changes in the spatial pattern of beta-glucuronidase activity in stems, including induction in the epidermis. These data indicate that the PAL2 promoter transduces a complex set of developmental and environmental cues into an integrated spatial and temporal program of gene expression to regulate the synthesis of a diverse array of phenylpropanoid natural products. Images PMID:2594769

  8. Adaptation from Paper-Pencil to Web-Based Administration of a Parent-Completed Developmental Questionnaire for Young Children

    ERIC Educational Resources Information Center

    Yovanoff, Paul; Squires, Jane; McManus, Suzanne

    2013-01-01

    Adapting traditional paper-pencil instruments to computer-based environments has received considerable attention from the research community due to the possible administration mode effects on obtained measures. When differences due to mode of completion (i.e., paper-pencil, computer-based) are present, threats to measurement validity are posed. In…

  9. Adaptive Immune Regulation of Glial Homeostasis as an Immunization Strategy for Neurodegenerative Diseases

    PubMed Central

    Kosloski, Lisa M.; Ha, Duy M.; Stone, David K.; Hutter, Jessica A. L.; Pichler, Michael R.; Reynolds, Ashley D.; Gendelman, Howard E.; Mosley, R. Lee

    2010-01-01

    Neurodegenerative diseases, notably Alzheimer's and Parkinson's diseases, are amongst the most devastating disorders afflicting the elderly. Currently, no curative treatments or treatments that interdict disease progression exist. Over the past decade, immunization strategies have been proposed to combat disease progression. Such strategies induce humoral immune responses against misfolded protein aggregates to facilitate their clearance. Robust adaptive immunity against misfolded proteins, however, accelerates disease progression, precipitated by induced effector T cell responses that lead to encephalitis and neuronal death. Since then, mechanisms that attenuate such adaptive neurotoxic immune responses have been sought. We propose that shifting the balance between effector and regulatory T cell activity can attenuate neurotoxic inflammatory events. This review summarizes advances in immune regulation to achieve a homeostatic glial response for therapeutic gain. Promising new ways to optimize immunization schemes and measure their clinical efficacy are also discussed. PMID:20524958

  10. Regulation of Adaptive Immunity in Health and Disease by Cholesterol Metabolism

    PubMed Central

    Fessler, Michael B.

    2015-01-01

    Four decades ago, it was observed that stimulation of T cells induces rapid changes in cellular cholesterol that are required before proliferation can commence. Investigators returning to this phenomenon have finally revealed its molecular underpinnings. Cholesterol trafficking and its dysregulation are now also recognized to strongly influence dendritic cell function, T cell polarization, and antibody responses. In this review, the state of the literature is reviewed on how cholesterol and its trafficking regulate the cells of the adaptive immune response and in vivo disease phenotypes of dysregulated adaptive immunity, including allergy, asthma, and autoimmune disease. Emerging evidence supporting a potential role for statins and other lipid-targeted therapies in the treatment of these diseases is presented. Just as vascular biologists have embraced immunity in the pathogenesis and treatment of atherosclerosis, so should basic and clinical immunologists in allergy, pulmonology, and other disciplines seek to encompass a basic understanding of lipid science. PMID:26149587

  11. Developmental regulation of the late phase of long-term potentiation (L-LTP) and metaplasticity in hippocampal area CA1 of the rat

    PubMed Central

    Cao, Guan

    2012-01-01

    Long-term potentiation (LTP) is a form of synaptic plasticity thought to underlie memory; thus knowing its developmental profile is fundamental to understanding function. Like memory, LTP has multiple phases with distinct timing and mechanisms. The late phase of LTP (L-LTP), lasting longer than 3 h, is protein synthesis dependent and involves changes in the structure and content of dendritic spines, the major sites of excitatory synapses. In previous work, tetanic stimulation first produced L-LTP at postnatal day 15 (P15) in area CA1 of rat hippocampus. Here we used a more robust induction paradigm involving theta-burst stimulation (TBS) in acute slices and found the developmental onset of L-LTP to be 3 days earlier at P12. In contrast, at P8–11, TBS only reversed the synaptic depression that occurs from test-pulse stimulation in developing (P8–15) hippocampus. A second bout of TBS delivered 30–180 min later produced L-LTP at P10–11 but not at P8–9 and enhanced L-LTP at P12–15. Both the developmental onset and the enhanced L-LTP produced by repeated bouts of TBS were blocked by the N-methyl-d-aspartate receptor antagonist dl-2-amino-5-phosphonovaleric acid. Thus the developmental onset age is P12 for L-LTP induced by the more robust and perhaps more naturalistic TBS induction paradigm. Metaplasticity produced by repeated bouts of TBS is developmentally regulated, advancing the capacity for L-LTP from P12 to P10, but not to younger ages. Together these findings provide a new basis from which to investigate mechanisms that regulate the developmental onset of this important form of synaptic plasticity. PMID:22114158

  12. Developmental regulation of glucogenesis in the sheep fetus during late gestation.

    PubMed

    Fowden, A L; Mundy, L; Silver, M

    1998-05-01

    1. Using tracer methodology, endogenous glucose production was measured in twenty-six chronically catheterized sheep fetuses during normal fed conditions and in response to a 48 h period of maternal fasting at different gestational ages during the last 10-15 days of gestation (term, 145 +/- 2 days). 2. In normal fed conditions, the rate of fetal glucose production was negligible until 143-145 days when it rose significantly to account for 50 % of the glucose used by the fetus. The rise in fetal glucogenesis towards term closely parallelled the normal prepartum rise in fetal plasma cortisol and catecholamines. 3. Maternal fasting for 48 h induced endogenous glucose production in fetuses at 139-141 days but not at 133-135 days of gestation. Maternal fasting also induced increases in the plasma cortisol and noradrenaline levels in all the fetuses studied. Fetal plasma cortisol levels at the end of the fast and the increment in fetal plasma cortisol during maternal fasting were significantly greater in the older groups of fasted animals. 4. When the data from all the fetuses were combined, partial correlation analysis of fetal glucose production and the log plasma concentrations of cortisol and total catecholamines showed that plasma cortisol was the predominant regulator of fetal glucogenesis during late gestation. However, once plasma cortisol levels exceeded 17.5 ng ml-1, plasma catecholamines were a major influence on fetal glucogenesis. 5. The results show that glucogenesis occurs in fetal sheep during late gestation in conditions in which the fetal plasma concentrations of cortisol and catecholamines are elevated. They also suggest that cortisol enhances the capacity for glucogenesis in utero, while catecholamines actually activate glucose production in sheep fetuses close to term.

  13. Alternate transcripts of a floral developmental regulator have both distinct and redundant functions in opium poppy

    PubMed Central

    Hands, Philip; Vosnakis, Nikolaos; Betts, Donna; Irish, Vivian F.; Drea, Sinéad

    2011-01-01

    Background and Aims The MADS-box transcription factor AGAMOUS (AG) is an important regulator of stamen and fruit identity as well as floral meristem determinacy in a number of core eudicots and monocots. However, its role outside of these groups has not been assessed explicitly. Examining its role in opium poppy, a basal eudicot, could uncover much about the evolution and development of flower and fruit development in the angiosperms. Methods AG orthologues were isolated by degenerate RT-PCR and the gene sequence and structure examined; gene expression was characterized using in situ hybridization and the function assessed using virus-induced gene silencing. Key Results In opium poppy, a basal eudicot, the AGAMOUS orthologue is alternatively spliced to produce encoded products that vary at the C-terminus, termed PapsAG-1 and PapsAG-2. Both transcripts are expressed at high levels in stamens and carpels. The functional implications of this alternative transcription were examined using virus-induced gene silencing and the results show that PapsAG-1 has roles in stamen and carpel identity, reflecting those found for Arabidopsis AG. In contrast, PapsAG-2, while displaying redundancy in these functions, has a distinctive role in aspects of carpel development reflected in septae, ovule and stigma defects seen in the loss-of-function line generated. Conclusions These results describe the first explicit functional analysis of an AG-clade gene in a basal eudicot; illustrate one of the few examples of the functional consequences of alternative splicing in transcription factors and reveal the importance of alternative transcription, as well as gene duplication, as a driving force in evolution. PMID:21385783

  14. Postnatal developmental expression of regulator of G protein signaling 14 (RGS14) in the mouse brain.

    PubMed

    Evans, Paul R; Lee, Sarah E; Smith, Yoland; Hepler, John R

    2014-01-01

    Regulator of G protein signaling 14 (RGS14) is a multifunctional scaffolding protein that integrates G protein and mitogen-activated protein kinase (MAPK) signaling pathways. In the adult mouse brain, RGS14 mRNA and protein are found almost exclusively in hippocampal CA2 neurons. We have shown that RGS14 is a natural suppressor of CA2 synaptic plasticity and hippocampal-dependent learning and memory. However, the protein distribution and spatiotemporal expression patterns of RGS14 in mouse brain during postnatal development are unknown. Here, using a newly characterized monoclonal anti-RGS14 antibody, we demonstrate that RGS14 protein immunoreactivity is undetectable at birth (P0), with very low mRNA expression in the brain. However, RGS14 protein and mRNA are upregulated during early postnatal development, with protein first detected at P7, and both increasing over time until reaching highest sustained levels throughout adulthood. Our immunoperoxidase data demonstrate that RGS14 protein is expressed in regions outside of hippocampal CA2 during development including the primary olfactory areas, the anterior olfactory nucleus and piriform cortex, and the olfactory associated orbital and entorhinal cortices. RGS14 is also transiently expressed in neocortical layers II/III and V during postnatal development. Finally, we show that RGS14 protein is first detected in the hippocampus at P7, with strongest immunoreactivity in CA2 and fasciola cinerea and sporadic immunoreactivity in CA1; labeling intensity in hippocampus increases until adulthood. These results show that RGS14 mRNA and protein are upregulated throughout postnatal mouse development, and RGS14 protein exhibits a dynamic localization pattern that is enriched in hippocampus and primary olfactory cortex in the adult mouse brain.

  15. Transcriptome Sequencing and Developmental Regulation of Gene Expression in Anopheles aquasalis

    PubMed Central

    Silva, Maria C. P.; Lopes, Adriana R.; Barros, Michele S.; Sá-Nunes, Anderson; Kojin, Bianca B.; Carvalho, Eneas; Suesdek, Lincoln; Silva-Neto, Mário Alberto C.; James, Anthony A.; Capurro, Margareth L.

    2014-01-01

    Background Anopheles aquasalis is a major malaria vector in coastal areas of South and Central America where it breeds preferentially in brackish water. This species is very susceptible to Plasmodium vivax and it has been already incriminated as responsible vector in malaria outbreaks. There has been no high-throughput investigation into the sequencing of An. aquasalis genes, transcripts and proteins despite its epidemiological relevance. Here we describe the sequencing, assembly and annotation of the An. aquasalis transcriptome. Methodology/Principal Findings A total of 419 thousand cDNA sequence reads, encompassing 164 million nucleotides, were assembled in 7544 contigs of ≥2 sequences, and 1999 singletons. The majority of the An. aquasalis transcripts encode proteins with their closest counterparts in another neotropical malaria vector, An. darlingi. Several analyses in different protein databases were used to annotate and predict the putative functions of the deduced An. aquasalis proteins. Larval and adult-specific transcripts were represented by 121 and 424 contig sequences, respectively. Fifty-one transcripts were only detected in blood-fed females. The data also reveal a list of transcripts up- or down-regulated in adult females after a blood meal. Transcripts associated with immunity, signaling networks and blood feeding and digestion are discussed. Conclusions/Significance This study represents the first large-scale effort to sequence the transcriptome of An. aquasalis. It provides valuable information that will facilitate studies on the biology of this species and may lead to novel strategies to reduce malaria transmission on the South American continent. The An. aquasalis transcriptome is accessible at http://exon.niaid.nih.gov/transcriptome/An_aquasalis/Anaquexcel.xlsx. PMID:25033462

  16. Developmental expression, differential hormonal regulation and evolution of thyroid and glucocorticoid receptor variants in a marine acanthomorph teleost (Sciaenops ocellatus).

    PubMed

    Applebaum, Scott L; Finn, Roderick Nigel; Faulk, Cynthia K; Joan Holt, G; Scott Nunez, B

    2012-03-01

    Interactions between the thyroid hormone (TH) and corticosteroid (CS) hormone axes are suggested to regulate developmental processes in vertebrates with a larval phase. To investigate this hypothesis, we isolated three nuclear receptors from a larval acanthomorph teleost, the red drum (Sciaenops ocellatus), and established their orthologies as thraa, thrb-L and gra-L using phylogenomic and functional analyses. Functional characterization of the TH receptors in COS-1 cells revealed that Thraa and Thrb-L exhibit dose-dependent transactivation of a luciferase reporter in response to T3, while SoThraa is constitutively active at a low level in the absence of ligand. To test whether interactions between the TH and CS systems occur during development, we initially quantified the in vivo receptor transcript expression levels, and then examined their response to treatment with triiodothyronine (T3) or cortisol. We find that sothraa and sothrb-L are autoregulated in response to exogenous T3 only during early larval development. T3 did not affect sogra-L expression levels, nor did cortisol alter levels of sothraa or sothrb-L at any stage. While differential expression of the receptors in response to non-canonical ligand hormone was not observed under the conditions in this study, the correlation between sothraa and sogra-L transcript abundance during development suggests a coordinated function of the TH and CS systems. By comparing the findings in the present study to earlier investigations, we suggest that the up-regulation of thraa may be a specific feature of metamorphosis in acanthomorph teleosts.

  17. Identification of a developmentally-regulated and psychostimulant-inducible novel rat gene mrt3 in the neocortex.

    PubMed

    Yamamoto, Naoki; Muraoka, Shin-ichiro; Kajii, Yasushi; Umino, Asami; Nishikawa, Toru

    2014-10-01

    The psychotomimetic effects of stimulant drugs including amphetamines and cocaine are known to change during the postnatal development in humans and experimental animals. To obtain an insight into the molecular basis of the onset of stimulant-induced psychosis, we have explored the gene transcripts that differentially respond to methamphetamine (MAP) in the developing rat brains using a differential cloning technique, the RNA arbitrarily-primed PCR. We identified from the rat neocortex a novel and developmentally regulated MAP-inducible gene mrt3 (MAP responsive transcript 3) that is transcribed to a presumable non-coding RNA of 3.8kb and is located on the reverse strand of the F-box/LRR-repeat protein 17-like gene mapped on the rat chromosome Xq12. The mrt3 mRNAs are predominantly expressed in the brain and lung. Acute MAP injection upregulated the mrt3 expression in the neocortex at postnatal day 50, but not days 8, 15 and 23, in a D1 receptor antagonist-sensitive manner. This upregulation was mimicked by another stimulant, cocaine, whereas pentobarbital and D1 antagonist failed to alter the mrt3 expression. Moreover, repeated treatment with MAP for 5 days inhibited the ability of the challenge dose of MAP or cocaine to increase the neocortical mrt3 expression without affecting the basal mrt3 mRNA levels on day 14 of withdrawal. These late-developing, cocaine-cross reactive, D1 antagonist-sensitive and long-term regulations of mrt3 by MAP are similar to those of stimulant-induced behavioral sensitization, a model of the onset and relapse of stimulant-induced psychosis and schizophrenia, and therefore may be associated with the pathophysiology of the model.

  18. The fragile X mental retardation protein developmentally regulates the strength and fidelity of calcium signaling in Drosophila mushroom body neurons.

    PubMed

    Tessier, Charles R; Broadie, Kendal

    2011-01-01

    Fragile X syndrome (FXS) is a broad-spectrum neurological disorder characterized by hypersensitivity to sensory stimuli, hyperactivity and severe cognitive impairment. FXS is caused by loss of the fragile X mental retardation 1 (FMR1) gene, whose FMRP product regulates mRNA translation downstream of synaptic activity to modulate changes in synaptic architecture, function and plasticity. Null Drosophila FMR1 (dfmr1) mutants exhibit reduced learning and loss of protein synthesis-dependent memory consolidation, which is dependent on the brain mushroom body (MB) learning and memory center. We targeted a transgenic GFP-based calcium reporter to the MB in order to analyze calcium dynamics downstream of neuronal activation. In the dfmr1 null MB, there was significant augmentation of the calcium transients induced by membrane depolarization, as well as elevated release of calcium from intracellular organelle stores. The severity of these calcium signaling defects increased with developmental age, although early stages were characterized by highly variable, low fidelity calcium regulation. At the single neuron level, both calcium transient and calcium store release defects were exhibited by dfmr1 null MB neurons in primary culture. Null dfmr1 mutants exhibit reduced brain mRNA expression of calcium-binding proteins, including calcium buffers calmodulin and calbindin, predicting that the inability to appropriately sequester cytosolic calcium may be the common mechanistic defect causing calcium accumulation following both influx and store release. Changes in the magnitude and fidelity of calcium signals in the absence of dFMRP likely contribute to defects in neuronal structure/function, leading to the hallmark learning and memory dysfunction of FXS.

  19. Screening for Developmental Disabilities

    PubMed Central

    Foster, Carol; Duran-Flores, Deborah; Dumars, Kenneth W.; Stills, Stanley

    1985-01-01

    Developmental disabilities are responsible for a combination of severe physical, mental, psychological and social deficits. They develop before age 22 years and involve a little more than 1% of the population. Screening for developmental disabilities is the first step in their prevention. Various screening instruments are available for use throughout the developmental years that are designed to detect the wide variety of developmental problems that interfere with a developing person's optimal adaptation to his or her environment. The screening instruments must be inexpensive, reproducible, widely available and cost effective to the child, family and society. PMID:2413633

  20. Developmental profile and hormonal regulation of the transcription factors broad and Krüppel homolog 1 in hemimetabolous thrips.

    PubMed

    Minakuchi, Chieka; Tanaka, Miho; Miura, Ken; Tanaka, Toshiharu

    2011-02-01

    In holometabolous insects, Krüppel homolog 1 (Kr-h1) and broad (br) are key players in the juvenile hormone (JH) regulation of metamorphosis: Kr-h1 is an early JH-response gene, while br is a transcription factor that directs pupal development. Thrips (Thysanoptera) are classified as hemimetabolous insects that develop directly from nymph to adult, but they have quiescent and non-feeding stages called propupa and pupa. We analyzed the developmental profiles of br and Kr-h1 in the western flower thrips Frankliniella occidentalis (Thripidae) that has one propupal instar and one pupal instar, and Haplothrips brevitubus (Phlaeothripidae) that has one propupal instar and two pupal instars, i.e. pupa I and pupa II. In F. occidentalis, the br mRNA levels were moderate in the embryonic stage, high at the larva-propupa transition, and low in the pre-final larval instar and the pupal stage, while Kr-h1 mRNA levels were high in the embryonic stage, remained at a moderate level in the larval and propupal stages, and low in the pupal stage. The expression profiles in H. brevitubus were very similar to those in F. occidentalis, except that the increase of br expression in the final larval stage occurs more slowly in H. brevitubus, and that the mRNA levels of br and Kr-h1 remained high in pupa I of H. brevitubus and then decreased. These profiles of br and Kr-h1 were comparable to those in holometabolous insects, although br expression found in thrips' embryogenesis is reminiscent of several hemimetabolous species. Treatment with an exogenous JH mimic (JHM) in distinct developmental stages consistently resulted in lethality as pupa of F. occidentalis or pupa II of H. brevitubus. Treatment with JHM to newly molted propupae caused prolonged expression of Kr-h1 and br in both species, suggesting that Kr-h1 and br could be involved in mediating anti-metamorphic signals of JHM.

  1. Developmental regulation of {beta}-hexosaminidase {alpha}- and {beta}-subunit gene expression in the rat reproductive system

    SciTech Connect

    Trasler, J.M.; Wakamatsu, N.; Gravel, R.A.; Benoit, G.

    1994-09-01

    {beta}-Hexosaminidase is an essential lysosomal enzyme whose absence in man results in a group of disorders, the G{sub M2} gangliosidoses. Enzyme activity for {beta}-hexosaminidase is many fold higher in the epididymis than in other tissues, is present in sperm and is postulated to be required for mammalian fertilization. To better understand how {beta}-hexosaminidase is regulated in the reproductive system, we quantitated the mRNA expression of the {alpha}- and {beta}-subunits (Hex {alpha} and Hex {beta}) of the enzyme in the developing rat testis and epididymis. Hex {alpha} mRNA was differentially expressed and abundant in adult rat testis and epididymis, 13- and 2-fold brain levels, respectively. In contrast, Hex {beta} mRNA levels in the testis and epididymis were .3- and 5-fold brain levels. Within the epididymis both Hex {alpha} and Hex {beta} mRNA concentrations were highest in the corpus, 1.5-fold and 9-fold initial segment values, respectively. During testis development from 7-91 days of age, testis levels of Hex {alpha} mRNA increased 10-fold and coincided with the appearance of spermatocytes and spermatids in the epithelium. In isolated male germ cells, Hex {alpha} expression was most abundant in haploid round spermatids. Hex {alpha} mRNA was undetectable after hypophysectomy and returned to normal after testosterone administration and the return of advanced germ cells to the testis. Hex {beta} mRNA was expressed at constant low levels throughout testis development. In the caput-corpus and cauda regions of the epididymis Hex {alpha} mRNA levels increased 2-fold between 14 and 91 days; during the same developmental period epididymal Hex {beta} mRNA levels increased dramatically, by 10-20 fold. In summary, Hex {alpha} and Hex {beta} mRNAs are differentially and developmentally expressed at high levels in the rat testis and epididymis and augur for an important role for {beta}-hexosaminidase in normal male reproductive function.

  2. Adaptive thermogenesis in human body weight regulation: more of a concept than a measurable entity?

    PubMed

    Dulloo, A G; Jacquet, J; Montani, J-P; Schutz, Y

    2012-12-01

    According to Lavoisier, 'Life is combustion'. But to what extent humans adapt to changes in food intake through adaptive thermogenesis--by turning down the rate of heat production during energy deficit (so as to conserve energy) or turning it up during overnutrition (so as to dissipate excess calories)--has been one of the most controversial issues in nutritional sciences over the past 100 years. The debate nowadays is not whether adaptive thermogenesis exists or not, but rather about its quantitative importance in weight homoeostasis and its clinical relevance to the pathogenesis and management of obesity. Such uncertainties are likely to persist in the foreseeable future primarily because of limitations to unobtrusively measure changes in energy expenditure and body composition with high enough accuracy and precision, particularly when even small inter-individual variations in thermogenesis can, in dynamic systems and over the long term, be important in the determining weight maintenance in some and obesity and weight regain in others. This paper reviews the considerable body of evidence, albeit fragmentary, suggesting the existence of quantitatively important adaptive thermogenesis in several compartments of energy expenditure in response to altered food intake. It then discusses the various limitations that lead to over- or underestimations in its assessment, including definitional and semantics, technical and methodological, analytical and statistical. While the role of adaptive thermogenesis in human weight regulation is likely to remain more a concept than a strictly 'quantifiable' entity in the foreseeable future, the evolution of this concept continues to fuel exciting hypothesis-driven mechanistic research which contributes to advance knowledge in human metabolism and which is bound to result in improved strategies for the management of a healthy body weight.

  3. Vagal Regulation of Heart Rate in the Prediction of Developmental Outcome for Very Low Birth Weight Preterm Infants.

    ERIC Educational Resources Information Center

    Doussard-Roosevelt, Jane A.; And Others

    1997-01-01

    Used heart rate and respiratory sinus arrhythmia (RSA) assessed at 33 to 35 weeks gestational age to predict developmental outcome at 3 years for very low birth weight infants. Found that RSA measures predicted developmental outcome beyond effects of birth weight, medical risk, and socioeconomic status. For infants < 1,000 grams, RSA maturation…

  4. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  5. Neuroticism and responsiveness to error feedback: adaptive self-regulation versus affective reactivity.

    PubMed

    Robinson, Michael D; Moeller, Sara K; Fetterman, Adam K

    2010-10-01

    Responsiveness to negative feedback has been seen as functional by those who emphasize the value of reflecting on such feedback in self-regulating problematic behaviors. On the other hand, the very same responsiveness has been viewed as dysfunctional by its link to punishment sensitivity and reactivity. The present 4 studies, involving 203 undergraduate participants, sought to reconcile such discrepant views in the context of the trait of neuroticism. In cognitive tasks, individuals were given error feedback when they made mistakes. It was found that greater tendencies to slow down following error feedback were associated with higher levels of accuracy at low levels of neuroticism but lower levels of accuracy at high levels of neuroticism. Individual differences in neuroticism thus appear crucial in understanding whether behavioral alterations following negative feedback reflect proactive versus reactive mechanisms and processes. Implications for understanding the processing basis of neuroticism and adaptive self-regulation are discussed.

  6. Ca2+-Dependent Regulations and Signaling in Skeletal Muscle: From Electro-Mechanical Coupling to Adaptation

    PubMed Central

    Gehlert, Sebastian; Bloch, Wilhelm; Suhr, Frank

    2015-01-01

    Calcium (Ca2+) plays a pivotal role in almost all cellular processes and ensures the functionality of an organism. In skeletal muscle fibers, Ca2+ is critically involved in the innervation of skeletal muscle fibers that results in the exertion of an action potential along the muscle fiber membrane, the prerequisite for skeletal muscle contraction. Furthermore and among others, Ca2+ regulates also intracellular processes, such as myosin-actin cross bridging, protein synthesis, protein degradation and fiber type shifting by the control of Ca2+-sensitive proteases and transcription factors, as well as mitochondrial adaptations, plasticity and respiration. These data highlight the overwhelming significance of Ca2+ ions for the integrity of skeletal muscle tissue. In this review, we address the major functions of Ca2+ ions in adult muscle but also highlight recent findings of critical Ca2+-dependent mechanisms essential for skeletal muscle-regulation and maintenance. PMID:25569087

  7. The Transcriptional Modulator Interferon-Related Developmental Regulator 1 in Osteoblasts Suppresses Bone Formation and Promotes Bone Resorption.

    PubMed

    Iezaki, Takashi; Onishi, Yuki; Ozaki, Kakeru; Fukasawa, Kazuya; Takahata, Yoshifumi; Nakamura, Yukari; Fujikawa, Koichi; Takarada, Takeshi; Yoneda, Yukio; Yamashita, Yui; Shioi, Go; Hinoi, Eiichi

    2016-03-01

    Bone homeostasis is maintained by the synergistic actions of bone-resorbing osteoclasts and bone-forming osteoblasts. Although interferon-related developmental regulator 1 (Ifrd1) has been identified as a transcriptional coactivator/repressor in various cells, little attention has been paid to its role in osteoblastogenesis and bone homeostasis thus far. Here, we show that Ifrd1 is a critical mediator of both the cell-autonomous regulation of osteoblastogenesis and osteoblast-dependent regulation of osteoclastogenesis. Osteoblast-specific deletion of murine Ifrd1 increased bone formation and decreased bone resorption, causing high bone mass. Ifrd1 deficiency enhanced osteoblast differentiation and maturation along with increased expression of Runx2 and osterix (Osx). Mechanistically, Ifrd1 deficiency increased the acetylation status of p65, a component of NF-κB, at residues K122 and K123 via the attenuation of the interaction between p65 and histone deacetylase (HDAC). This led to the nuclear export of p65 and a decrease in NF-κB-dependent Smad7 expression and the subsequent enhancement of Smad1/Smad5/Smad8-dependent transcription. Moreover, a high bone mass phenotype in the osteoblast-specific deletion of Ifrd1 was markedly rescued by the introduction of one Osx-floxed allele but not of Runx2-floxed allele. Coculture experiments revealed that Ifrd1-deficient osteoblasts have a higher osteoprotegerin (OPG) expression and a lower ability to support osteoclastogenesis. Ifrd1 deficiency attenuated the interaction between β-catenin and HDAC, subsequently increasing the acetylation of β-catenin at K49, leading to its nuclear accumulation and the activation of the β-catenin-dependent transcription of OPG. Collectively, the expression of Ifrd1 in osteoblasts repressed osteoblastogenesis and activated osteoclastogenesis through modulating the NF-κB/Smad/Osx and β-catenin/OPG pathways, respectively. These findings suggest that Ifrd1 has a pivotal role in bone

  8. A Decentralized Multivariable Robust Adaptive Voltage and Speed Regulator for Large-Scale Power Systems

    NASA Astrophysics Data System (ADS)

    Okou, Francis A.; Akhrif, Ouassima; Dessaint, Louis A.; Bouchard, Derrick

    2013-05-01

    This papter introduces a decentralized multivariable robust adaptive voltage and frequency regulator to ensure the stability of large-scale interconnnected generators. Interconnection parameters (i.e. load, line and transormer parameters) are assumed to be unknown. The proposed design approach requires the reformulation of conventiaonal power system models into a multivariable model with generator terminal voltages as state variables, and excitation and turbine valve inputs as control signals. This model, while suitable for the application of modern control methods, introduces problems with regards to current design techniques for large-scale systems. Interconnection terms, which are treated as perturbations, do not meet the common matching condition assumption. A new adaptive method for a certain class of large-scale systems is therefore introduces that does not require the matching condition. The proposed controller consists of nonlinear inputs that cancel some nonlinearities of the model. Auxiliary controls with linear and nonlinear components are used to stabilize the system. They compensate unknown parametes of the model by updating both the nonlinear component gains and excitation parameters. The adaptation algorithms involve the sigma-modification approach for auxiliary control gains, and the projection approach for excitation parameters to prevent estimation drift. The computation of the matrix-gain of the controller linear component requires the resolution of an algebraic Riccati equation and helps to solve the perturbation-mismatching problem. A realistic power system is used to assess the proposed controller performance. The results show that both stability and transient performance are considerably improved following a severe contingency.

  9. Targeting the TLR9-MyD88 pathway in the regulation of adaptive immune responses

    PubMed Central

    Huang, Xiaopei; Yang, Yiping

    2010-01-01

    IMPORTANCE OF THE FIELD Toll-like receptors (TLRs) are innate immune receptors critical in the innate immune defense against invading pathogens. Recent advances also reveal a crucial role for TLRs in shaping adaptive immune responses, conferring a potential therapeutic value to their modulation in the treatment of diseases. AREAS COVERED IN THIS REVIEW The aim of this review is to discuss TLR9, the TLR9-MyD88 signaling pathway and its role in regulation of adaptive immune responses, as well as potential therapeutic implications by targeting this pathway. WHAT THE READER WILL GAIN This review shows that the TLR9-MyD88 signaling pathway plays a critical role in promoting adaptive immune responses and that modulation of this pathway may have enormous therapeutic potential in enhancing vaccine potency, controlling autoimmunity, as well as improving the outcome of viral vector-mediated gene therapy. TAKE HOME MESSAGE Although TLR9 agonists have been used as adjuvants for enhancing vaccine potency, further exploitation of the TLR9-MyD88 pathway and its dynamic interaction with the immune system in vivo is needed to provide more effective therapeutic inventions in the design of vaccines for infectious diseases, allergies and cancer, in the control of autoimmunity, as well as in the improvement of viral vector-mediated gene therapy. PMID:20560798

  10. CD22 Regulates Adaptive and Innate Immune Responses of B Cells

    PubMed Central

    Kawasaki, Norihito; Rademacher, Christoph; Paulson, James C.

    2011-01-01

    B cells sense microenvironments through the B cell receptor (BCR) and Toll-like receptors (TLRs). While signals from BCR and TLRs synergize to distinguish self from nonself, inappropriate regulation can result in development of autoimmune disease. Here we show that CD22, an inhibitory co-receptor of BCR, also negatively regulates TLR signaling in B cells. CD22-deficient (Cd22–/–) B cells exhibit hyperactivation in response to ligands of TLRs 3, 4 and 9. Evidence suggests that this results from impaired induction of suppressors of cytokine signaling 1 and 3, well-known suppressors of TLR signaling. Antibody-mediated sequestration of CD22 on wild-type (WT) B cells augments proliferation by TLR ligands. Conversely, expression of CD22 in a Cd22–/– B cell line blunts responses to TLR ligands. We also show that lipopolysaccharide-induced transcription by nuclear factor-κB is inhibited by ectopic expression of CD22 in a TLR4 reporter cell line. Taken together, these results suggest that negative regulation of TLR signaling is an intrinsic property of CD22. Since TLRs and BCR activate B cells through different signaling pathways, and are differentially localized in B cells, CD22 exhibits a broader regulation of receptors that mediate adaptive and innate immune responses of B cells than previously recognized. PMID:21178327

  11. The Contribution of Children's Self-Regulation and Classroom Quality to Children's Adaptive Behaviors in the Kindergarten Classroom

    ERIC Educational Resources Information Center

    Rimm-Kaufman, Sara E.; Curby, Tim W.; Grimm, Kevin J.; Brock, Laura L.; Nathanson, Lori

    2009-01-01

    In this study, the authors examined the extent to which children's self-regulation upon kindergarten entrance and classroom quality in kindergarten contributed to children's adaptive classroom behavior. Children's self-regulation was assessed using a direct assessment upon entrance into kindergarten. Classroom quality was measured on the basis of…

  12. Exploring the Interplay of Adaptive and Maladaptive Strategies: Prevalence and Functionality of Anger Regulation Profiles in Early Adolescence

    ERIC Educational Resources Information Center

    Otterpohl, Nantje; Schwinger, Malte; Wild, Elke

    2016-01-01

    In emotion regulation research, it is common to distinguish adaptive from maladaptive emotion regulation strategies. However, little is known about their interactional impact (compensational or interfering effects) on adolescents' adjustment. We collected longitudinal, multiple informant questionnaire data from N = 608 adolescents and their…

  13. Arabidopsis CYP98A3 Mediating Aromatic 3-Hydroxylation. Developmental Regulation of the Gene, and Expression in Yeast1

    PubMed Central

    Nair, Ramesh B.; Xia, Qun; Kartha, Cyril J.; Kurylo, Eugen; Hirji, Rozina N.; Datla, Raju; Selvaraj, Gopalan

    2002-01-01

    The general phenylpropanoid pathways generate a wide array of aromatic secondary metabolites that range from monolignols, which are ubiquitous in all plants, to sinapine, which is confined to crucifer seeds. The biosynthesis of these compounds involves hydroxylated and methoxylated cinnamyl acid, aldehyde, or alcohol intermediates. Of the three enzymes originally proposed to hydroxylate the 4-, 3-, and 5-positions of the aromatic ring, cinnamate 4-hydroxylase (C4H), which converts trans-cinnamic acid to p-coumaric acid, is the best characterized and is also the archetypal plant P450 monooxygenase. Ferulic acid 5-hydroxylase (F5H), a P450 that catalyzes 5-hydroxylation, has also been studied, but the presumptive 3-hydroxylase converting p-coumarate to caffeate has been elusive. We have found that Arabidopsis CYP98A3, also a P450, could hydroxylate p-coumaric acid to caffeic acid in vivo when expressed in yeast (Saccharomyces cerevisiae) cells, albeit very slowly. CYP98A3 transcript was found in Arabidopsis stem and silique, resembling both C4H and F5H in this respect. CYP98A3 showed further resemblance to C4H in being highly active in root, but differed from F5H in this regard. In transgenic Arabidopsis, the promoters of CYP98A3 and C4H showed wound inducibility and a comparable developmental regulation throughout the life cycle, except in seeds, where the CYP98A3 promoter construct was inactive while remaining active in silique walls. Within stem and root tissue, the gene product and the promoter activity of CYP98A3 were most abundant in lignifying cells. Collectively, these studies show involvement of CYP98A3 in the general phenylpropanoid metabolism, and suggest a downstream function for CYP98A3 relative to the broader and upstream role of C4H. PMID:12226501

  14. Expression and developmental regulation of oxytocin (OT) and oxytocin receptors (OTR) in the enteric nervous system (ENS) and intestinal epithelium.

    PubMed

    Welch, Martha G; Tamir, Hadassah; Gross, Kara J; Chen, Jason; Anwar, Muhammad; Gershon, Michael D

    2009-01-10

    Although oxytocin (OT) and oxytocin receptor (OTR) are known for roles in parturition and milk let-down, they are not hypothalamus-restricted. OT is important in nurturing and opposition to stress. Transcripts encoding OT and OTR have been reported in adult human gut, and OT affects intestinal motility. We tested the hypotheses that OT is endogenous to the enteric nervous system (ENS) and that OTR signaling may participate in enteric neurophysiology. Reverse transcriptase polymerase chain reaction confirmed OT and OTR transcripts in adult mouse and rat gut and in precursors of enteric neurons immunoselected from fetal rats. Enteric OT and OTR expression continued through adulthood but was developmentally regulated, peaking at postnatal day 7. Coincidence of the immunoreactivities of OTR and the neural marker Hu was 100% in the P3 and 71% in the adult myenteric plexus, when submucosal neurons were also OTR-immunoreactive. Co-localization with NeuN established that intrinsic primary afferent neurons are OTR-expressing. Because OTR transcripts and protein were detected in the nodose ganglia, OT signaling might also affect extrinsic primary afferent neurons. Although OT immunoreactivity was found only in approximately 1% of myenteric neurons, extensive OT-immunoreactive varicosities surrounded many others. Villus enterocytes were OTR-immunoreactive through postnatal day 17; however, by postnatal day 19, immunoreactivity waned to become restricted to crypts and concentrated at crypt-villus junctions. Immunoelectron microscopy revealed plasmalemmal OTR at enterocyte adherens junctions. We suggest that OT and OTR signaling might be important in ENS development and function and might play roles in visceral sensory perception and neural modulation of epithelial biology.

  15. DNA methyltransferase expressions in Japanese rice fish (Oryzias latipes) embryogenesis is developmentally regulated and modulated by ethanol and 5-azacytidine.

    PubMed

    Dasmahapatra, Asok K; Khan, Ikhlas A

    2015-01-01

    We aimed to investigate the impact of the epigenome in inducting fetal alcohol spectrum disorder (FASD) phenotypes in Japanese rice fish embryogenesis. One of the significant events in epigenome is DNA methylation which is catalyzed by DNA methyltransferase (DNMT) enzymes. We analyzed DNMT enzyme mRNA expressions in Japanese rice fish development starting from fertilized eggs to hatching and also in embryos exposed for first 48h of development either to ethanol (300mM) or to 5-azacytidine (5-azaC; 2mM), an inhibitor of DNMT enzyme activity. As observed in FASD phenotypes, 5-azaC exposure was able to induce microcephaly and craniofacial cartilage deformities in Japanese rice fish. Moreover, we have observed that expression of DNMTs (dnmt1, dnmt3aa, and dnmt3bb.1) are developmentally regulated; high mRNA copies were found in early stages (1-2day-post-fertilization, dpf), followed by gradual reduction until hatched. In ethanol-treated embryos, compared to controls, dnmt1 mRNA is in reduced level in 2dpf and in enhanced level in 6dpf embryos. While dnmt3aa and 3bb.1 remained unaltered. In contrast, embryos exposed to 5-azaC have an enhanced level of dnmt1 and dnmt3bb.1 mRNAs both in 2 and 6dpf embryos while dnmt3aa is enhanced only in 6dpf embryos. Moreover, endocannabinoid receptor 1a (cnr1a) mRNA which was found to be reduced by ethanol remained unaltered and cnr1b and cnr2 mRNAs, which were remained unaltered by ethanol, were increased significantly by 5-azaC in 6dpf embryos. This study indicates that the craniofacial defects observed in FASD phenotypes are the results of dysregulations in DNMT expressions.

  16. Astrocytes regulate developmental changes in the chloride ion gradient of embryonic rat ventral spinal cord neurons in culture

    PubMed Central

    Li, Yong-Xin; Schaffner, Anne E; Walton, Marc K; Barker, Jeffery L

    1998-01-01

    Embryonic rat ventral spinal cord neurons were dissociated at day 15 and grown on: (i) poly-D-lysine (PDL); (ii) a confluent monolayer of type I astrocytes; or (iii) PDL in astrocyte-conditioned medium (ACM) to examine the influence of astroglia on the regulation of GABAA receptor/Cl− channel properties. Potentiometric oxonol dye recordings of intact cells indicated that embryonic neurons were uniformly depolarized by muscimol. The depolarizing effects disappeared in cells dissociated during the early postnatal period and recovered in culture for 24 h. Similar recordings using the calcium-imaging dye fura-2 AM revealed that GABA or muscimol triggered a sustained rise in cytosolic Ca2+ (Cac2+) in embryonic neurons that was dependent on extracellular Ca2+, blocked by bicuculline and nifedipine and sensitive to changes in extracellular chloride. The incidence and amplitude of the Ca2+ response decreased with time in vitro and was accelerated in neurons cultured on astrocytes compared with those on PDL. Perforated patch-clamp recordings revealed that GABA depolarized neurons in a Cl−-dependent and bicuculline-sensitive manner. Both the resting membrane potential and the GABA equilibrium potential became more hyperpolarized with time in vitro. Astrocytes and ACM accelerated the transformation of GABAergic potential responses from depolarizing to hyperpolarizing. The change occurred over the first 4 days in co-culture or in ACM but took more than 2 weeks in neurons cultured on PDL alone. The intrinsic, elementary properties of GABAA receptor/Cl− channels including open time and unitary conductance changed independently of the presence of astrocytes or ACM. Mean open time of the dominant kinetic component decreased and conductance increased with time in vitro. In sum, astrocytes accelerate the developmental change in the Cl− ion gradient extrinsic to GABAA receptor/Cl− channels, which is critical for triggering Ca2+ entry, without influencing parallel changes in

  17. Developmentally Regulated SCN5A Splice Variant Potentiates Dysfunction of a Novel Mutation Associated with Severe Fetal Arrhythmia

    PubMed Central

    Murphy, Lisa L.; Moon-Grady, Anita J.; Cuneo, Bettina F.; Wakai, Ronald T.; Yu, Suhong; Kunic, Jennifer D.; Benson, D. Woodrow; George, Alfred L.

    2011-01-01

    Background Congenital long-QT syndrome (LQTS) may present during fetal development and can be life-threatening. The molecular mechanism for the unusual early onset of LQTS during fetal development is unknown. Objective We sought to elucidate the molecular basis for severe fetal LQTS presenting at 19-weeks gestation, the earliest known presentation of this disease. Methods Fetal magnetocardiography was used to demonstrated torsade de pointes and a prolonged rate-corrected QT interval. In vitro electrophysiological studies were performed to determine functional consequences of a novel SCN5A mutation found in the fetus. Results The fetus presented with episodes of ventricular ectopy progressing to incessant ventricular tachycardia and hydrops fetalis. Genetic analysis disclosed a novel, de novo heterozygous mutation in SCN5A (L409P) and a homozygous common variant (R558). In vitro electrophysiological studies demonstrated that the mutation in combination with R558 caused significant depolarized shifts in voltage-dependence of inactivation and activation, faster recovery from inactivation and a 7-fold greater level of persistent current. When the mutation was engineered in a fetal-expressed SCN5A splice isoform, channel dysfunction was markedly potentiated. Also, R558 alone in the fetal splice isoform evoked a large persistent current, hence both alleles were dysfunctional. Conclusion We report the earliest confirmed diagnosis of symptomatic LQTS, and present evidence that mutant cardiac sodium channel dysfunction is potentiated by a developmentally regulated alternative splicing event in SCN5A. Our findings provide a plausible mechanism for the unusual severity and early onset of cardiac arrhythmia in fetal LQTS. PMID:22064211

  18. Expression and Developmental Regulation of Oxytocin (OT) and Oxytocin Receptors (OTR) in the Enteric Nervous System (ENS) and Intestinal Epithelium

    PubMed Central

    Welch, Martha G.; Tamir, Hadassah; Gross, Kara J.; Chen, Jason; Anwar, Muhammad; Gershon, Michael D.

    2011-01-01

    Although oxytocin (OT) and oxytocin receptor (OTR) are known for roles in parturition and milk let-down, they are not hypothalamus-restricted. OT is important in nurturing and opposition to stress. Transcripts encoding OT and OTR have been reported in adult human gut, and OT affects intestinal motility. We tested the hypotheses that OT is endogenous to the enteric nervous system (ENS) and that OTR signaling may participate in enteric neurophysiology. Reverse transcriptase polymerase chain reaction confirmed OT and OTR transcripts in adult mouse and rat gut and in precursors of enteric neurons immunoselected from fetal rats. Enteric OT and OTR expression continued through adulthood but was developmentally regulated, peaking at postnatal day 7. Coincidence of the immunoreactivities of OTR and the neural marker Hu was 100% in the P3 and 71% in the adult myenteric plexus, when submucosal neurons were also OTR-immunoreactive. Co-localization with NeuN established that intrinsic primary afferent neurons are OTR-expressing. Because OTR transcripts and protein were detected in the nodose ganglia, OT signaling might also affect extrinsic primary afferent neurons. Although OT immunoreactivity was found only in ~1% of myenteric neurons, extensive OT-immunoreactive varicosities surrounded many others. Villus enterocytes were OTR-immunoreactive through postnatal day 17; however, by postnatal day 19, immunoreactivity waned to become restricted to crypts and concentrated at crypt-villus junctions. Immunoelectron microscopy revealed plasmalemmal OTR at enterocyte adherens junctions. We suggest that OT and OTR signaling might be important in ENS development and function and might play roles in visceral sensory perception and neural modulation of epithelial biology. PMID:19003903

  19. Developmental regulation of G protein-gated inwardly-rectifying K+ (GIRK/KIR3) channel subunits in the brain

    PubMed Central

    Fernández-Alacid, Laura; Watanabe, Masahiko; Molnár, Elek; Wickman, Kevin; Luján, Rafael

    2013-01-01

    G protein-gated inwardly-rectifying K+ (GIRK/family 3 of inwardly-rectifying K+) channels are coupled to neurotransmitter action and can play important roles in modulating neuronal excitability. We investigated the temporal and spatial expression of GIRK1, GIRK2 and GIRK3 subunits in the developing and adult rodent brain using biochemical, immunohistochemical and immunoelectron microscopic techniques. At all ages analysed, the overall distribution patterns of GIRK1-3 were very similar, with high expression levels in the neocortex, cerebellum, hippocampus and thalamus. Focusing on the hippocampus, histoblotting and immunohistochemistry showed that GIRK1-3 protein levels increased with age, and this was accompanied by a shift in the subcellular localization of the subunits. Early in development (postnatal day 5), GIRK subunits were predominantly localized to the endoplasmic reticulum in the pyramidal cells, but by postnatal day 60 they were mostly found along the plasma membrane. During development, GIRK1 and GIRK2 were found primarily at postsynaptic sites, whereas GIRK3 was predominantly detected at presynaptic sites. In addition, GIRK1 and GIRK2 expression on the spine plasma membrane showed identical proximal-to-distal gradients that differed from GIRK3 distribution. Furthermore, although GIRK1 was never found within the postsynaptic density (PSD), the level of GIRK2 in the PSD progressively increased and GIRK3 did not change in the PSD during development. Together, these findings shed new light on the developmental regulation and subcellular diversity of neuronal GIRK channels, and support the contention that distinct subpopulations of GIRK channels exert separable influences on neuronal excitability. The ability to selectively target specific subpopulations of GIRK channels may prove effective in the treatment of disorders of excitability. PMID:22098295

  20. The GATA factor elt-1 regulates C. elegans developmental timing by promoting expression of the let-7 family microRNAs.

    PubMed

    Cohen, Max L; Kim, Sunhong; Morita, Kiyokazu; Kim, Seong Heon; Han, Min

    2015-03-01

    Postembryonic development in Caenorhabditis elegans is a powerful model for the study of the temporal regulation of development and for the roles of microRNAs in controlling gene expression. Stable switch-like changes in gene expression occur during development as stage-specific microRNAs are expressed and subsequently down-regulate other stage-specific factors, driving developmental progression. Key genes in this regulatory network are phylogenetically conserved and include the post-transcriptional microRNA repressor LIN-28; the nuclear hormone receptor DAF-12; and the microRNAs LIN-4, LET-7, and the three LET-7 family miRNAs (miR-48, miR-84, and miR-241). DAF-12 is known to regulate transcription of miR-48, miR-84 and miR-241, but its contribution is insufficient to account for all of the transcriptional regulation implied by the mutant phenotypes. In this work, the GATA-family transcription factor ELT-1 is identified from a genetic enhancer screen as a regulator of developmental timing in parallel to DAF-12, and is shown to do so by promoting the expression of the LET-7, miR-48, miR-84, and miR-241 microRNAs. The role of ELT-1 in developmental timing is shown to be separate from its role in cell-fate maintenance during post-embryonic development. In addition, analysis of Chromatin Immnoprecipitation (ChIP) data from the modENCODE project and this work suggest that the contribution of ELT-1 to the control of let-7 family microRNA expression is likely through direct transcription regulation.

  1. The GATA Factor elt-1 Regulates C. elegans Developmental Timing by Promoting Expression of the let-7 Family MicroRNAs

    PubMed Central

    Cohen, Max L.; Kim, Sunhong; Morita, Kiyokazu; Kim, Seong Heon; Han, Min

    2015-01-01

    Postembryonic development in Caenorhabditis elegans is a powerful model for the study of the temporal regulation of development and for the roles of microRNAs in controlling gene expression. Stable switch-like changes in gene expression occur during development as stage-specific microRNAs are expressed and subsequently down-regulate other stage-specific factors, driving developmental progression. Key genes in this regulatory network are phylogenetically conserved and include the post-transcriptional microRNA repressor LIN-28; the nuclear hormone receptor DAF-12; and the microRNAs LIN-4, LET-7, and the three LET-7 family miRNAs (miR-48, miR-84, and miR-241). DAF-12 is known to regulate transcription of miR-48, miR-84 and miR-241, but its contribution is insufficient to account for all of the transcriptional regulation implied by the mutant phenotypes. In this work, the GATA-family transcription factor ELT-1 is identified from a genetic enhancer screen as a regulator of developmental timing in parallel to DAF-12, and is shown to do so by promoting the expression of the LET-7, miR-48, miR-84, and miR-241 microRNAs. The role of ELT-1 in developmental timing is shown to be separate from its role in cell-fate maintenance during post-embryonic development. In addition, analysis of Chromatin Immnoprecipitation (ChIP) data from the modENCODE project and this work suggest that the contribution of ELT-1 to the control of let-7 family microRNA expression is likely through direct transcription regulation. PMID:25816370

  2. In-silico analysis and expression profiling implicate diverse role of EPSPS family genes in regulating developmental and metabolic processes

    PubMed Central

    2014-01-01

    Background The EPSPS, EC 2.5.1.19 (5-enolpyruvylshikimate −3-phosphate synthase) is considered as one of the crucial enzyme in the shikimate pathway for the biosynthesis of essential aromatic amino acids and secondary metabolites in plants, fungi along with microorganisms. It is also proved as a specific target of broad spectrum herbicide glyphosate. Results On the basis of structure analysis, this EPSPS gene family comprises the presence of EPSPS I domain, which is highly conserved among different plant species. Here, we followed an in-silico approach to identify and characterize the EPSPS genes from different plant species. On the basis of their phylogeny and sequence conservation, we divided them in to two groups. Moreover, the interacting partners and co-expression data of the gene revealed the importance of this gene family in maintaining cellular and metabolic functions in the cell. The present study also highlighted the highest accumulation of EPSPS transcript in mature leaves followed by young leaves, shoot and roots of tobacco. In order to gain the more knowledge about gene family, we searched for the previously reported motifs and studied its structural importance on the basis of homology modelling. Conclusions The results presented here is a first detailed in-silico study to explore the role of EPSPS gene in forefront of different plant species. The results revealed a great deal for the diversification and conservation of EPSPS gene family across different plant species. Moreover, some of the EPSPS from different plant species may have a common evolutionary origin and may contain same conserved motifs with related and important molecular function. Most importantly, overall analysis of EPSPS gene elucidated its pivotal role in immense function within the plant, both in regulating plant growth as well its development throughout the life cycle of plant. Since EPSPS is a direct target of herbicide glyphosate, understanding its mechanism for regulating

  3. Alternative splicing and developmental and hormonal regulation of porcine comparative gene identification-58 (CGI-58) mRNA.

    PubMed

    Li, X; Suh, Y; Kim, E; Moeller, S J; Lee, K

    2012-12-01

    The process of lipolysis is essential for regulating the catabolism of cellular fat stores. Therefore, knowledge of lipolysis contributes to improving porcine production, such as reducing back fat, enhancing lean meat, and controlling marbling. Comparative gene identification-58 (CGI-58) plays an important role in the multi-enzyme-mediated process of lipolysis. It was identified as the co-activator of adipose triglyceride lipase (ATGL), which performs the first step in breaking down triacylglycerol and generating diacylglycerol and NEFA. We cloned and sequenced the CGI-58 cDNA and deduced the AA sequences in 3 breeds of swine (Duroc, Berkshire, and Landrace). Homologies were found with the human, mouse, and chicken for the lipid droplet binding domain, the α/β hydrolase domain, and the lysophosphatidic acid acyltransferase (LPAAT) domain, which demonstrates conservation of CGI-58 across species. An alternatively spliced isoform with an exon 3 deletion was identified. Interestingly, this unique isoform contains the lipid droplet-binding domain but lacks the LPAAT domain due to an open reading frame (ORF) shift that creates a premature stop codon. Furthermore, porcine CGI-58 is expressed in multiple organs and tissues but is most predominant in adipose tissue. Porcine adipose and stromal-vascular (SV) cell fractionation reveals that CGI-58 and ATGL are highly expressed (P < 0.01) in mature adipocytes. The expressions of both CGI-58 and ATGL mRNA were found to increase (P < 0.05) at d 6 of SV cell culture, confirming their upregulation during adipogenesis and differentiation. Also, the results from in vitro cell culture showed that insulin decreased (P < 0.05) the expressions of both CGI-58 and ATGL in a dose-dependent manner. Overall, these results report the cDNA and AA sequences of porcine CGI-58 with identification of its unique alternatively spliced variant. The results of the study also reveal the developmental and hormonal regulation of porcine CGI-58 gene

  4. Multilevel risk factors and developmental assets for internalizing symptoms and self-esteem in disadvantaged adolescents: modeling longitudinal trajectories from the Rural Adaptation Project.

    PubMed

    Smokowski, Paul R; Guo, Shenyang; Rose, Roderick; Evans, Caroline B R; Cotter, Katie L; Bacallao, Martica

    2014-11-01

    The current study filled significant gaps in our knowledge of developmental psychopathology by examining the influence of multilevel risk factors and developmental assets on longitudinal trajectories of internalizing symptoms and self-esteem in an exceptionally culturally diverse sample of rural adolescents. Integrating ecological and social capital theories, we explored if positive microsystem transactions are associated with self-esteem while negative microsystem transactions increase the chances of internalizing problems. Data came from the Rural Adaptation Project, a 5-year longitudinal panel study of more than 4,000 middle school students from 28 public schools in two rural, disadvantaged counties in North Carolina. Three-level hierarchical linear modeling models were estimated to predict internalizing symptoms (e.g., depression, anxiety) and self-esteem. Relative to other students, risk for internalizing problems and low self-esteem was elevated for aggressive adolescents, students who were hassled or bullied at school, and those who were rejected by peers or in conflict with their parents. Internalizing problems were also more common among adolescents from socioeconomically disadvantaged families and neighborhoods, among those in schools with more suspensions, in students who reported being pressured by peers, and in youth who required more teacher support. It is likely that these experiences left adolescents disengaged from developing social capital from ecological microsystems (e.g., family, school, peers). On the positive side, support from parents and friends and optimism about the future were key assets associated with lower internalizing symptoms and higher self-esteem. Self-esteem was also positively related to religious orientation, school satisfaction, and future optimism. These variables show active engagement with ecological microsystems. The implications and limitations were discussed.

  5. Developmental screening in a Canadian First Nation (Mohawk): psychometric properties and adaptations of ages & stages questionnaires (2nd edition)

    PubMed Central

    2014-01-01

    Background The need for early intervention tools adapted to the First Nation culture is well documented. However, standards derived from First Nation communities are absent from the literature. This study examines the psychometric properties of an adaptation of a caregiver-completed screening tool, the Ages & Stages Questionnaires (ASQ), for the Mohawk population. Methods Participants who completed the questionnaires include 17 teachers, along with the parents of 282 children (130 girls and 152 boys) between the ages of 9 and 66 months who attend the Child and Family Center Mohawk Territory, Quebec. Results For the internal consistency of the four questionnaires (36-, 42-, 48- and 54-month intervals), Cronbach’s alphas varied between .61 and .84. Five results were below 0.60: “gross motor” (Q36 and Q42), “problem solving” (Q36) and “personal-social” (Q36 and Q42). A comparison of the results shows that parents and teachers agreed in 85% of the cases concerning the referral of the child for further evaluation. Moreover, the group discussion with the parents revealed that the use of the questionnaire was appreciated and was deemed appropriate for use within the community. Conclusion The results show that the ASQ is a screening test that may be appropriate for use with children from communities that are seemingly very different in terms of geographic, climatic and cultural backgrounds. This preliminary study with the Child and Family Center appears to support further study and the use of the ASQ with the Mohawk population. PMID:24467769

  6. Developmental regulation of neuroligin genes in Japanese ricefish (Oryzias latipes) embryogenesis maintains the rhythm during ethanol-induced fetal alcohol spectrum disorder.

    PubMed

    Haron, Mona H; Khan, Ikhlas A; Dasmahapatra, Asok K

    2014-01-01

    Although prenatal alcohol exposure is the potential cause of fetal alcohol spectrum disorder (FASD) in humans, the molecular mechanism(s) of FASD is yet unknown. We have used Japanese ricefish (Oryzias latipes) embryogenesis as an animal model of FASD and reported that this model has effectively generated several phenotypic features in the cardiovasculature and neurocranial cartilages by developmental ethanol exposure which is analogous to human FASD phenotypes. As FASD is a neurobehavioral disorder, we are searching for a molecular target of ethanol that alters neurological functions. In this communication, we have focused on neuroligin genes (nlgn) which are known to be active at the postsynaptic side of both excitatory and inhibitory synapses of the central nervous system. There are six human NLGN homologs of Japanese ricefish reported in public data bases. We have partially cloned these genes and analyzed their expression pattern during normal development and also after exposing the embryos to ethanol. Our data indicate that the expression of all six nlgn genes in Japanese ricefish embryos is developmentally regulated. Although ethanol is able to induce developmental abnormalities in Japanese ricefish embryogenesis comparable to the FASD phenotypes, quantitative real-time PCR (qPCR) analysis of nlgn mRNAs indicate unresponsiveness of these genes to ethanol. We conclude that the disruption of the developmental rhythm of Japanese ricefish embryogenesis by ethanol that leads to FASD may not affect the nlgn gene expression at the message level.

  7. Relationships among adaptive and maladaptive emotion regulation strategies and psychopathology during the treatment of comorbid anxiety and alcohol use disorders.

    PubMed

    Conklin, Laren R; Cassiello-Robbins, Clair; Brake, C Alex; Sauer-Zavala, Shannon; Farchione, Todd J; Ciraulo, Domenic A; Barlow, David H

    2015-10-01

    Both maladaptive and adaptive emotion regulation strategies have been linked with psychopathology. However, previous studies have largely examined them separately, and little research has examined the interplay of these strategies cross-sectionally or longitudinally in patients undergoing psychological treatment. This study examined the use and interplay of adaptive and maladaptive emotion regulation strategies in 81 patients receiving cognitive-behavioral interventions for comorbid alcohol use and anxiety disorders. Patients completed measures of emotion regulation strategy use and symptoms of psychopathology pre- and post-treatment. Cross-sectionally, higher use of maladaptive strategies (e.g., denial) was significantly related to higher psychopathology pre- and post-treatment, whereas higher use of adaptive strategies (e.g., acceptance) only significantly related to lower psychopathology post-treatment. Prospectively, changes in maladaptive strategies, but not changes in adaptive strategies, were significantly associated with post-treatment psychopathology. However, for patients with higher pre-treatment maladaptive strategy use, gains in adaptive strategies were significantly associated with lower post-treatment psychopathology. These findings suggest that psychological treatments may maximize efficacy by considering patient skill use at treatment outset. By better understanding a patient's initial emotion regulation skills, clinicians may be better able to optimize treatment outcomes by emphasizing maladaptive strategy use reduction predominately, or in conjunction with increasing adaptive skill use.

  8. Mast cells as effector cells of innate immunity and regulators of adaptive immunity.

    PubMed

    Cardamone, Chiara; Parente, Roberta; Feo, Giulia De; Triggiani, Massimo

    2016-10-01

    Mast cells are widely distributed in human organs and tissues and they are particularly abundant at major body interfaces with the external environment such as the skin, the lung and the gastrointestinal tract. Moreover, mast cells are located around blood vessels and are highly represented within central and peripheral lymphoid organs. The strategic distribution of mast cells closely reflects the primary role of these cells in providing first-line defense against environmental dangers, in regulating local and systemic inflammatory reactions and in shaping innate and adaptive immune responses. Human mast cells have pleiotropic and multivalent functions that make them highly versatile cells able to rapidly adapt responses to microenvironmental changes. They express a wide variety of surface receptors including immunoglobulin receptors, pathogen-associated molecular pattern receptors and danger signal receptors. The abundance of these receptors makes mast cells unique and effective surveillance cells able to detect promptly aggression by viral, bacterial and parasitic agents. In addition, mast cells express multiple receptors for cytokines and chemokines that confer them the capacity of being recruited and activated at sites of inflammation. Once activated by immunological or nonimmunological stimuli mast cells secrete a wide spectrum of preformed (early) and de novo synthesized (late) mediators. Preformed mediators are stored within granules and are rapidly released in the extracellular environment to provide a fast vascular response that promotes inflammation and local recruitment of other innate immunity cells such as neutrophils, eosinophils, basophils and monocyte/macrophages. Later on, delayed release of multiple cytokines and chemokines from mast cells further induce modulation of cells of adaptive immunity and regulates tissue injury and, eventually, resolution of inflammation. Finally, mast cells express several costimulatory and inhibitory surface molecules

  9. CK2 inhibition induced PDK4-AMPK axis regulates metabolic adaptation and survival responses in glioma.

    PubMed

    Dixit, Deobrat; Ahmad, Fahim; Ghildiyal, Ruchi; Joshi, Shanker Datt; Sen, Ellora

    2016-05-15

    Understanding mechanisms that link aberrant metabolic adaptation and pro-survival responses in glioma cells is crucial towards the development of new anti-glioma therapies. As we have previously reported that CK2 is associated with glioma cell survival, we evaluated its involvement in the regulation of glucose metabolism. Inhibition of CK2 increased the expression of metabolic regulators, PDK4 and AMPK along with the key cellular energy sensor CREB. This increase was concomitant with altered metabolic profile as characterized by decreased glucose uptake in a PDK4 and AMPK dependent manner. Increased PDK4 expression was CREB dependent, as exogenous inhibition of CREB functions abrogated CK2 inhibitor mediated increase in PDK4 expression. Interestingly, PDK4 regulated AMPK phosphorylation which in turn affected cell viability in CK2 inhibitor treated glioma cells. CK2 inhibitor 4,5,6,7-Tetrabromobenzotriazole (TBB) significantly retarded the growth of glioma xenografts in athymic nude mouse model. Coherent with the in vitro findings, elevated senescence, pAMPK and PDK4 levels were also observed in TBB-treated xenograft tissue. Taken together, CK2 inhibition in glioma cells drives the PDK4-AMPK axis to affect metabolic profile that has a strong bearing on their survival.

  10. Epigenetic regulation of muscle phenotype and adaptation: a potential role in COPD muscle dysfunction.

    PubMed

    Barreiro, Esther; Sznajder, Jacob I

    2013-05-01

    Quadriceps muscle dysfunction occurs in one-third of patients with chronic obstructive pulmonary disease (COPD) in very early stages of their condition, even prior to the development of airway obstruction. Among several factors, deconditioning and muscle mass loss are the most relevant contributing factors leading to this dysfunction. Moreover, epigenetics, defined as the process whereby gene expression is regulated by heritable mechanisms that do not affect DNA sequence, could be involved in the susceptibility to muscle dysfunction, pathogenesis, and progression. Herein, we review the role of epigenetic mechanisms in muscle development and adaptation to environmental factors such as immobilization and exercise, and their implications in the pathophysiology and susceptibility to muscle dysfunction in COPD. The epigenetic modifications identified so far include DNA methylation, histone acetylation and methylation, and non-coding RNAs such as microRNAs (miRNAs). In the present review, we describe the specific contribution of epigenetic mechanisms to the regulation of embryonic myogenesis, muscle structure and metabolism, immobilization, and exercise, and in muscles of COPD patients. Events related to muscle development and regeneration and the response to exercise and immobilization are tightly regulated by epigenetic mechanisms. These environmental factors play a key role in the outcome of muscle mass and function as well as in the susceptibility to muscle dysfunction in COPD. Future research remains to be done to shed light on the specific target pathways of miRNA function and other epigenetic mechanisms in the susceptibility, pathogenesis, and progression of COPD muscle dysfunction.

  11. Adaptation of Cryptococcus neoformans to mammalian hosts: integrated regulation of metabolism and virulence.

    PubMed

    Kronstad, Jim; Saikia, Sanjay; Nielson, Erik David; Kretschmer, Matthias; Jung, Wonhee; Hu, Guanggan; Geddes, Jennifer M H; Griffiths, Emma J; Choi, Jaehyuk; Cadieux, Brigitte; Caza, Mélissa; Attarian, Rodgoun

    2012-02-01

    The basidiomycete fungus Cryptococcus neoformans infects humans via inhalation of desiccated yeast cells or spores from the environment. In the absence of effective immune containment, the initial pulmonary infection often spreads to the central nervous system to result in meningoencephalitis. The fungus must therefore make the transition from the environment to different mammalian niches that include the intracellular locale of phagocytic cells and extracellular sites in the lung, bloodstream, and central nervous system. Recent studies provide insights into mechanisms of adaptation during this transition that include the expression of antiphagocytic functions, the remodeling of central carbon metabolism, the expression of specific nutrient acquisition systems, and the response to hypoxia. Specific transcription factors regulate these functions as well as the expression of one or more of the major known virulence factors of C. neoformans. Therefore, virulence factor expression is to a large extent embedded in the regulation of a variety of functions needed for growth in mammalian hosts. In this regard, the complex integration of these processes is reminiscent of the master regulators of virulence in bacterial pathogens.

  12. Multilevel regulation and signalling processes associated with adaptation to terminal drought in wild emmer wheat.

    PubMed

    Krugman, Tamar; Chagué, Véronique; Peleg, Zvi; Balzergue, Sandrine; Just, Jérémy; Korol, Abraham B; Nevo, Eviatar; Saranga, Yehoshua; Chalhoub, Boulos; Fahima, Tzion

    2010-05-01

    Low water availability is the major environmental factor limiting crop productivity. Transcriptome analysis was used to study terminal drought response in wild emmer wheat, Triticum dicoccoides, genotypes contrasting in their productivity and yield stability under drought stress. A total of 5,892 differentially regulated transcripts were identified between drought and well-watered control and/or between drought resistant (R) and drought susceptible (S) genotypes. Functional enrichment analyses revealed that multilevel regulatory and signalling processes were significantly enriched among the drought-induced transcripts, in particular in the R genotype. Therefore, further analyses were focused on selected 221 uniquely expressed or highly abundant transcripts in the R genotype, as potential candidates for drought resistance genes. Annotation of the 221 genes revealed that 26% of them are involved in multilevel regulation, including: transcriptional regulation, RNA binding, kinase activity and calcium and abscisic acid signalling implicated in stomatal closure. Differential expression patterns were also identified in genes known to be involved in drought adaptation pathways, such as: cell wall adjustment, cuticular wax deposition, lignification, osmoregulation, redox homeostasis, dehydration protection and drought-induced senescence. These results demonstrate the potential of wild emmer wheat as a source for candidate genes for improving drought resistance.

  13. A mutation in cnot8, component of the Ccr4-not complex regulating transcript stability, affects expression levels of developmental regulators and reveals a role of Fgf3 in development of caudal hypothalamic dopaminergic neurons.

    PubMed

    Koch, Peter; Löhr, Heiko B; Driever, Wolfgang

    2014-01-01

    While regulation of the activity of developmental control genes at the transcriptional level as well as by specific miRNA-based degradation are intensively studied, little is known whether general cellular mechanisms controlling mRNA decay may contribute to differential stability of mRNAs of developmental control genes. Here, we investigate whether a mutation in the deadenylation dependent mRNA decay pathway may reveal differential effects on developmental mechanisms, using dopaminergic differentiation in the zebrafish brain as model system. In a zebrafish genetic screen aimed at identifying genes controlling dopaminergic neuron development we isolated the m1061 mutation that selectively caused increased dopaminergic differentiation in the caudal hypothalamus, while other dopaminergic groups were not affected. Positional cloning revealed that m1061 causes a premature stop codon in the cnot8 open reading frame. Cnot8 is a component of the Ccr4-Not complex and displays deadenylase activity, which is required for removal of the poly (A) tail in bulk mRNA turnover. Analyses of expression of developmental regulators indicate that loss of Cnot8 activity results in increased mRNA in situ hybridization signal levels for a subset of developmental control genes. We show that in the area of caudal hypothalamic dopaminergic differentiation, mRNA levels for several components of the FGF signaling pathway, including Fgf3, FGF receptors, and FGF target genes, are increased. Pharmacological inhibition of FGF signaling or a mutation in the fgf3 gene can compensate the gain of caudal hypothalamic dopaminergic neurons in cnot8m1061 mutants, indicating a role for Fgf3 in control of development of this dopaminergic population. The cnot8m1061 mutant phenotype provides an in vivo system to study roles of the Cnot8 deadenylase component of the mRNA decay pathway in vertebrate development. Our data indicate that attenuation of Cnot8 activity differentially affects mRNA levels of

  14. A Mutation in cnot8, Component of the Ccr4-Not Complex Regulating Transcript Stability, Affects Expression Levels of Developmental Regulators and Reveals a Role of Fgf3 in Development of Caudal Hypothalamic Dopaminergic Neurons

    PubMed Central

    Koch, Peter; Löhr, Heiko B.; Driever, Wolfgang

    2014-01-01

    While regulation of the activity of developmental control genes at the transcriptional level as well as by specific miRNA-based degradation are intensively studied, little is known whether general cellular mechanisms controlling mRNA decay may contribute to differential stability of mRNAs of developmental control genes. Here, we investigate whether a mutation in the deadenylation dependent mRNA decay pathway may reveal differential effects on developmental mechanisms, using dopaminergic differentiation in the zebrafish brain as model system. In a zebrafish genetic screen aimed at identifying genes controlling dopaminergic neuron development we isolated the m1061 mutation that selectively caused increased dopaminergic differentiation in the caudal hypothalamus, while other dopaminergic groups were not affected. Positional cloning revealed that m1061 causes a premature stop codon in the cnot8 open reading frame. Cnot8 is a component of the Ccr4-Not complex and displays deadenylase activity, which is required for removal of the poly (A) tail in bulk mRNA turnover. Analyses of expression of developmental regulators indicate that loss of Cnot8 activity results in increased mRNA in situ hybridization signal levels for a subset of developmental control genes. We show that in the area of caudal hypothalamic dopaminergic differentiation, mRNA levels for several components of the FGF signaling pathway, including Fgf3, FGF receptors, and FGF target genes, are increased. Pharmacological inhibition of FGF signaling or a mutation in the fgf3 gene can compensate the gain of caudal hypothalamic dopaminergic neurons in cnot8m1061 mutants, indicating a role for Fgf3 in control of development of this dopaminergic population. The cnot8m1061 mutant phenotype provides an in vivo system to study roles of the Cnot8 deadenylase component of the mRNA decay pathway in vertebrate development. Our data indicate that attenuation of Cnot8 activity differentially affects mRNA levels of

  15. Developmental Toxicology##

    EPA Science Inventory

    Developmental toxicology encompasses the study of developmental exposures, pharmacokinetics, mechanisms, pathogenesis, and outcomes potentially leading to adverse health effects. Manifestations of developmental toxicity include structural malformations, growth retardation, functi...

  16. Cooperative Adaptive Output Regulation for Second-Order Nonlinear Multiagent Systems With Jointly Connected Switching Networks.

    PubMed

    Liu, Wei; Huang, Jie

    2017-01-11

    This paper studies the cooperative global robust output regulation problem for a class of heterogeneous second-order nonlinear uncertain multiagent systems with jointly connected switching networks. The main contributions consist of the following three aspects. First, we generalize the result of the adaptive distributed observer from undirected jointly connected switching networks to directed jointly connected switching networks. Second, by performing a new coordinate and input transformation, we convert our problem into the cooperative global robust stabilization problem of a more complex augmented system via the distributed internal model principle. Third, we solve the stabilization problem by a distributed state feedback control law. Our result is illustrated by the leader-following consensus problem for a group of Van der Pol oscillators.

  17. hnRNP I regulates neonatal immune adaptation and prevents colitis and colorectal cancer

    PubMed Central

    Liang, Feng

    2017-01-01

    The intestinal epithelium plays a critical role in host-microbe homeostasis by sensing gut microbes and subsequently initiating proper immune responses. During the neonatal stage, the intestinal epithelium is under immune repression, allowing the transition for newborns from a relatively sterile intra-uterine environment to one that is rich in foreign antigens. The mechanism underlying such immune repression remains largely unclear, but involves downregulation of IRAK1 (interleukin-1 receptor-associated kinase), an essential component of toll-like receptor-mediated NF-κB signaling. We report here that heterogeneous nuclear ribonucleoprotein I (hnRNPI), an RNA binding protein, is essential for regulating neonatal immune adaptation. We generated a mouse model in which hnRNPI is ablated specifically in the intestinal epithelial cells, and characterized intestinal defects in the knockout mice. We found that loss of hnRNPI function in mouse intestinal epithelial cells results in early onset of spontaneous colitis followed by development of invasive colorectal cancer. Strikingly, the epithelium-specific hnRNPI knockout neonates contain aberrantly high IRAK1 protein levels in the colons and fail to develop immune tolerance to environmental microbes. Our results demonstrate that hnRNPI plays a critical role in establishing neonatal immune adaptation and preventing colitis and colorectal cancer. PMID:28296893

  18. Local Adaptation of Sun-Exposure-Dependent Gene Expression Regulation in Human Skin

    PubMed Central

    Kita, Ryosuke; Fraser, Hunter B.

    2016-01-01

    Sun-exposure is a key environmental variable in the study of human evolution. Several skin-pigmentation genes serve as classical examples of positive selection, suggesting that sun-exposure has significantly shaped worldwide genomic variation. Here we investigate the interaction between genetic variation and sun-exposure, and how this impacts gene expression regulation. Using RNA-Seq data from 607 human skin samples, we identified thousands of transcripts that are differentially expressed between sun-exposed skin and non-sun-exposed skin. We then tested whether genetic variants may influence each individual’s gene expression response to sun-exposure. Our analysis revealed 10 sun-exposure-dependent gene expression quantitative trait loci (se-eQTLs), including genes involved in skin pigmentation (SLC45A2) and epidermal differentiation (RASSF9). The allele frequencies of the RASSF9 se-eQTL across diverse populations correlate with the magnitude of solar radiation experienced by these populations, suggesting local adaptation to varying levels of sunlight. These results provide the first examples of sun-exposure-dependent regulatory variation and suggest that this variation has contributed to recent human adaptation. PMID:27760139

  19. Transposon-mediated epigenetic regulation contributes to phenotypic diversity and environmental adaptation in rice.

    PubMed

    Song, Xianwei; Cao, Xiaofeng

    2017-03-05

    Transposable elements (TEs) have long been regarded as 'selfish DNA', and are generally silenced by epigenetic mechanisms. However, work in the past decade has identified positive roles for TEs in generating genomic novelty and diversity in plants. In particular, recent studies suggested that TE-induced epigenetic alterations and modification of gene expression contribute to phenotypic variation and adaptation to geography or stress. These findings have led many to regard TEs, not as junk DNA, but as sources of control elements and genomic diversity. As a staple food crop and model system for genomic research on monocot plants, rice (Oryza sativa) has a modest-sized genome that harbors massive numbers of DNA transposons (class II transposable elements) scattered across the genome, which may make TE regulation of genes more prevalent. In this review, we summarize recent progress in research on the functions of rice TEs in modulating gene expression and creating new genes. We also examine the contributions of TEs to phenotypic diversity and adaptation to environmental conditions.

  20. The stringent response regulates adaptation to darkness in the cyanobacterium Synechococcus elongatus

    PubMed Central

    Hood, Rachel D.; Higgins, Sean A.; Flamholz, Avi; Nichols, Robert J.

    2016-01-01

    The cyanobacterium Synechococcus elongatus relies upon photosynthesis to drive metabolism and growth. During darkness, Synechococcus stops growing, derives energy from its glycogen stores, and greatly decreases rates of macromolecular synthesis via unknown mechanisms. Here, we show that the stringent response, a stress response pathway whose genes are conserved across bacteria and plant plastids, contributes to this dark adaptation. Levels of the stringent response alarmone guanosine 3′-diphosphate 5′-diphosphate (ppGpp) rise after a shift from light to dark, indicating that darkness triggers the same response in cyanobacteria as starvation in heterotrophic bacteria. High levels of ppGpp are sufficient to stop growth and dramatically alter many aspects of cellular physiology, including levels of photosynthetic pigments and polyphosphate, DNA content, and the rate of translation. Cells unable to synthesize ppGpp display pronounced growth defects after exposure to darkness. The stringent response regulates expression of a number of genes in Synechococcus, including ribosomal hibernation promoting factor (hpf), which causes ribosomes to dimerize in the dark and may contribute to decreased translation. Although the metabolism of Synechococcus differentiates it from other model bacterial systems, the logic of the stringent response remains remarkably conserved, while at the same time having adapted to the unique stresses of the photosynthetic lifestyle. PMID:27486247

  1. Adaptive Regulation of the Northern California Reservoir System for Water, Energy, and Environmental Management

    NASA Astrophysics Data System (ADS)

    Georgakakos, A. P.; Kistenmacher, M.; Yao, H.; Georgakakos, K. P.

    2014-12-01

    The 2014 National Climate Assessment of the US Global Change Research Program emphasizes that water resources managers and planners in most US regions will have to cope with new risks, vulnerabilities, and opportunities, and recommends the development of adaptive capacity to effectively respond to the new water resources planning and management challenges. In the face of these challenges, adaptive reservoir regulation is becoming all the more ncessary. Water resources management in Northern California relies on the coordinated operation of several multi-objective reservoirs on the Trinity, Sacramento, American, Feather, and San Joaquin Rivers. To be effective, reservoir regulation must be able to (a) account for forecast uncertainty; (b) assess changing tradeoffs among water uses and regions; and (c) adjust management policies as conditions change; and (d) evaluate the socio-economic and environmental benefits and risks of forecasts and policies for each region and for the system as a whole. The Integrated Forecast and Reservoir Management (INFORM) prototype demonstration project operated in Northern California through the collaboration of several forecast and management agencies has shown that decision support systems (DSS) with these attributes add value to stakeholder decision processes compared to current, less flexible management practices. Key features of the INFORM DSS include: (a) dynamically downscaled operational forecasts and climate projections that maintain the spatio-temporal coherence of the downscaled land surface forcing fields within synoptic scales; (b) use of ensemble forecast methodologies for reservoir inflows; (c) assessment of relevant tradeoffs among water uses on regional and local scales; (d) development and evaluation of dynamic reservoir policies with explicit consideration of hydro-climatic forecast uncertainties; and (e) focus on stakeholder information needs.This article discusses the INFORM integrated design concept, underlying

  2. Survival response to increased ceramide involves metabolic adaptation through novel regulators of glycolysis and lipolysis.

    PubMed

    Nirala, Niraj K; Rahman, Motiur; Walls, Stanley M; Singh, Alka; Zhu, Lihua Julie; Bamba, Takeshi; Fukusaki, Eiichiro; Srideshikan, Sargur M; Harris, Greg L; Ip, Y Tony; Bodmer, Rolf; Acharya, Usha R

    2013-06-01

    The sphingolipid ceramide elicits several stress responses, however, organisms survive despite increased ceramide but how they do so is poorly understood. We demonstrate here that the AKT/FOXO pathway regulates survival in increased ceramide environment by metabolic adaptation involving changes in glycolysis and lipolysis through novel downstream targets. We show that ceramide kinase mutants accumulate ceramide and this leads to reduction in energy levels due to compromised oxidative phosphorylation. Mutants show increased activation of Akt and a consequent decrease in FOXO levels. These changes lead to enhanced glycolysis by upregulating the activity of phosphoglyceromutase, enolase, pyruvate kinase, and lactate dehydrogenase to provide energy. A second major consequence of AKT/FOXO reprogramming in the mutants is the increased mobilization of lipid from the gut through novel lipase targets, CG8093 and CG6277 for energy contribution. Ubiquitous reduction of these targets by knockdown experiments results in semi or total lethality of the mutants, demonstrating the importance of activating them. The efficiency of these adaptive mechanisms decreases with age and leads to reduction in adult life span of the mutants. In particular, mutants develop cardiac dysfunction with age, likely reflecting the high energy requirement of a well-functioning heart. The lipases also regulate physiological triacylglycerol homeostasis and are important for energy metabolism since midgut specific reduction of them in wild type flies results in increased sensitivity to starvation and accumulation of triglycerides leading to cardiac defects. The central findings of increased AKT activation, decreased FOXO level and activation of phosphoglyceromutase and pyruvate kinase are also observed in mice heterozygous for ceramide transfer protein suggesting a conserved role of this pathway in mammals. These data reveal novel glycolytic and non-autonomous lipolytic pathways in response to increased

  3. Isolation of two novel ras genes in Dictyostelium discoideum; evidence for a complex, developmentally regulated ras gene subfamily.

    PubMed

    Daniel, J; Bush, J; Cardelli, J; Spiegelman, G B; Weeks, G

    1994-02-01

    In Dictyostelium discoideum, three ras genes (rasD, rasG and rasB) and one ras-related gene (rap1) have been previously isolated and characterized, and the deduced amino acid sequence of their predicted protein products share at least 50% sequence identity with the human H-Ras protein. We have now cloned and characterized two additional members of the ras gene subfamily in Dictyostelium, rasC and rasS. These genes are developmentally regulated and unlike the previously isolated Dictyostelium ras genes, maximum levels of their transcripts were detected during aggregation, suggesting that the encoded proteins have distinct functions during aggregation. The rasC cDNA encodes a 189 amino acid protein that is 65% identical to the Dictyostelium RasD and RasG proteins and 56% identical to the human H-Ras protein. The predicted 194 amino acid gene product encoded by rasS is 60% identical to the Dictyostelium RasD and RasG proteins and 54% identical to the human H-Ras protein. Whereas RasD, RasG, RasB and Rap1 are totally conserved in their putative effector domains relative to H-Ras, RasC and RasS have single amino acid substitutions in their effector domains, consistent with the idea that they have unique functions. In RasC, aspartic acid-38 has been replaced by asparagine (D38N), and in RasS, isoleucine-36 has been replaced by leucine (I36L). In addition, both proteins have several differences in the effector-proximal domain, a domain which is believed to play a role in Ras target activation. In RasC, there is a single conservative amino acid change in the canonical sequence of the binding site for the Ras-specific monoclonal antibody Y13-259, and consequently, RasC is less immunoreactive with the antibody than either of the Dictyostelium RasD or RasG proteins. In contrast, RasS, which has three substitutions in the Y13-259 binding site, does not react with the Y13-259 antibody.

  4. Female-specific gene expression in dioecious liverwort Pellia endiviifolia is developmentally regulated and connected to archegonia production

    PubMed Central

    2014-01-01

    developmentally regulated. The contribution of the identified genes may be crucial for successful liverwort sexual reproduction. PMID:24939387

  5. DHN melanin biosynthesis in the plant pathogenic fungus Botrytis cinerea is based on two developmentally regulated key enzyme (PKS)-encoding genes.

    PubMed

    Schumacher, Julia

    2016-02-01

    Botrytis cinerea is the causal agent of gray mold disease in various plant species and produces grayish macroconidia and/or black sclerotia at the end of the infection cycle. It has been suggested that the pigmentation is due to the accumulation of 1,8-dihydroxynaphthalene (DHN) melanin. To unravel its basis and regulation, the putative melanogenic and regulatory genes were identified and functionally characterized. Unlike other DHN melanin-producing fungi, B. cinerea and other Leotiomycetes contain two key enzyme (PKS)-encoding enzymes. Bcpks12 and bcpks13 are developmentally regulated and are required for melanogenesis in sclerotia and conidia respectively. BcYGH1 converts the BcPKS13 product and contributes thereby to conidial melanogenesis. In contrast, enzymes acting downstream in conversion of the PKS products (BcBRN2, BcSCD1 and BcBRN1) are required for both, sclerotial and conidial melanogenesis, suggesting that DHN melanogenesis in B. cinerea follows a non-linear pathway that is rather unusual for secondary metabolic pathways. Regulation of the melanogenic genes involves three pathway-specific transcription factors (TFs) that are clustered with bcpks12 or bcpks13 and other developmental regulators such as light-responsive TFs. Melanogenic genes are dispensable in vegetative mycelia for proper growth and virulence. However, DHN melanin is considered to contribute to the longevity of the reproduction structures.

  6. Adaptive evolution of genes involved in the regulation of germline stem cells in Drosophila melanogaster and D. simulans.

    PubMed

    Flores, Heather A; DuMont, Vanessa L Bauer; Fatoo, Aalya; Hubbard, Diana; Hijji, Mohammed; Barbash, Daniel A; Aquadro, Charles F

    2015-02-09

    Population genetic and comparative analyses in diverse taxa have shown that numerous genes involved in reproduction are adaptively evolving. Two genes involved in germline stem cell regulation, bag of marbles (bam) and benign gonial cell neoplasm (bgcn), have been shown previously to experience recurrent, adaptive evolution in both Drosophila melanogaster and D. simulans. Here we report a population genetic survey on eight additional genes involved in germline stem cell regulation in D. melanogaster and D. simulans that reveals all eight of these genes reject a neutral model of evolution in at least one test and one species after correction for multiple testing using a false-discovery rate of 0.05. These genes play diverse roles in the regulation of germline stem cells, suggesting that positive selection in response to several evolutionary pressures may be acting to drive the adaptive evolution of these genes.

  7. DEVELOPMENTAL DIVERSITY OF AMPHIBIANS

    PubMed Central

    Elinson, Richard P.; del Pino, Eugenia M.

    2011-01-01

    The current model amphibian, Xenopus laevis, develops rapidly in water to a tadpole which metamorphoses into a frog. Many amphibians deviate from the X. laevis developmental pattern. Among other adaptations, their embryos develop in foam nests on land or in pouches on their mother’s back or on a leaf guarded by a parent. The diversity of developmental patterns includes multinucleated oogenesis, lack of RNA localization, huge non-pigmented eggs, and asynchronous, irregular early cleavages. Variations in patterns of gastrulation highlight the modularity of this critical developmental period. Many species have eliminated the larva or tadpole and directly develop to the adult. The wealth of developmental diversity among amphibian