Science.gov

Sample records for adaptive dictionary learning

  1. Adaptive dictionary learning in sparse gradient domain for image recovery.

    PubMed

    Liu, Qiegen; Wang, Shanshan; Ying, Leslie; Peng, Xi; Zhu, Yanjie; Liang, Dong

    2013-12-01

    Image recovery from undersampled data has always been challenging due to its implicit ill-posed nature but becomes fascinating with the emerging compressed sensing (CS) theory. This paper proposes a novel gradient based dictionary learning method for image recovery, which effectively integrates the popular total variation (TV) and dictionary learning technique into the same framework. Specifically, we first train dictionaries from the horizontal and vertical gradients of the image and then reconstruct the desired image using the sparse representations of both derivatives. The proposed method enables local features in the gradient images to be captured effectively, and can be viewed as an adaptive extension of the TV regularization. The results of various experiments on MR images consistently demonstrate that the proposed algorithm efficiently recovers images and presents advantages over the current leading CS reconstruction approaches.

  2. Blind separation of image sources via adaptive dictionary learning.

    PubMed

    Abolghasemi, Vahid; Ferdowsi, Saideh; Sanei, Saeid

    2012-06-01

    Sparsity has been shown to be very useful in source separation of multichannel observations. However, in most cases, the sources of interest are not sparse in their current domain and one needs to sparsify them using a known transform or dictionary. If such a priori about the underlying sparse domain of the sources is not available, then the current algorithms will fail to successfully recover the sources. In this paper, we address this problem and attempt to give a solution via fusing the dictionary learning into the source separation. We first define a cost function based on this idea and propose an extension of the denoising method in the work of Elad and Aharon to minimize it. Due to impracticality of such direct extension, we then propose a feasible approach. In the proposed hierarchical method, a local dictionary is adaptively learned for each source along with separation. This process improves the quality of source separation even in noisy situations. In another part of this paper, we explore the possibility of adding global priors to the proposed method. The results of our experiments are promising and confirm the strength of the proposed approach.

  3. Adaptive sparse signal processing of on-orbit lightning data using learned dictionaries

    NASA Astrophysics Data System (ADS)

    Moody, Daniela I.; Smith, David A.; Hamlin, Timothy D.; Light, Tess E.; Suszcynsky, David M.

    2013-05-01

    For the past two decades, there has been an ongoing research effort at Los Alamos National Laboratory to learn more about the Earth's radiofrequency (RF) background utilizing satellite-based RF observations of terrestrial lightning. The Fast On-orbit Recording of Transient Events (FORTE) satellite provided a rich RF lighting database, comprising of five years of data recorded from its two RF payloads. While some classification work has been done previously on the FORTE RF database, application of modern pattern recognition techniques may advance lightning research in the scientific community and potentially improve on-orbit processing and event discrimination capabilities for future satellite payloads. We now develop and implement new event classification capability on the FORTE database using state-of-the-art adaptive signal processing combined with compressive sensing and machine learning techniques. The focus of our work is improved feature extraction using sparse representations in learned dictionaries. Conventional localized data representations for RF transients using analytical dictionaries, such as a short-time Fourier basis or wavelets, can be suitable for analyzing some types of signals, but not others. Instead, we learn RF dictionaries directly from data, without relying on analytical constraints or additional knowledge about the signal characteristics, using several established machine learning algorithms. Sparse classification features are extracted via matching pursuit search over the learned dictionaries, and used in conjunction with a statistical classifier to distinguish between lightning types. We present preliminary results of our work and discuss classification scenarios and future development.

  4. Adaptive sparse signal processing of on-orbit lightning data using learned dictionaries

    NASA Astrophysics Data System (ADS)

    Moody, D. I.; Hamlin, T.; Light, T. E.; Loveland, R. C.; Smith, D. A.; Suszcynsky, D. M.

    2012-12-01

    For the past two decades, there has been an ongoing research effort at Los Alamos National Laboratory (LANL) to learn more about the Earth's radiofrequency (RF) background utilizing satellite-based RF observations of terrestrial lightning. Arguably the richest satellite lightning database ever recorded is that from the Fast On-orbit Recording of Transient Events (FORTE) satellite, which returned at least five years of data from its two RF payloads after launch in 1997. While some classification work has been done previously on the LANL FORTE RF database, application of modern pattern recognition techniques may further lightning research in the scientific community and potentially improve on-orbit processing and event discrimination capabilities for future satellite payloads. We now develop and implement new event classification capability on the FORTE database using state-of-the-art adaptive signal processing combined with compressive sensing and machine learning techniques. The focus of our work is improved feature extraction using sparse representations in learned dictionaries. Extracting classification features from RF signals typically relies on knowledge of the application domain in order to find feature vectors unique to a signal class and robust against background noise. Conventional localized data representations for RF transients using analytical dictionaries, such as a short-time Fourier basis or wavelets, can be suitable for analyzing some types of signals, but not others. Instead, we learn RF dictionaries directly from data, without relying on analytical constraints or additional knowledge about the signal characteristics, using several established machine learning algorithms. Sparse classification features are extracted via matching pursuit search over the learned dictionaries, and used in conjunction with a statistical classifier to distinguish between lightning types. We present preliminary results of our work and discuss classification performance

  5. MO-G-17A-05: PET Image Deblurring Using Adaptive Dictionary Learning

    SciTech Connect

    Valiollahzadeh, S; Clark, J; Mawlawi, O

    2014-06-15

    Purpose: The aim of this work is to deblur PET images while suppressing Poisson noise effects using adaptive dictionary learning (DL) techniques. Methods: The model that relates a blurred and noisy PET image to the desired image is described as a linear transform y=Hm+n where m is the desired image, H is a blur kernel, n is Poisson noise and y is the blurred image. The approach we follow to recover m involves the sparse representation of y over a learned dictionary, since the image has lots of repeated patterns, edges, textures and smooth regions. The recovery is based on an optimization of a cost function having four major terms: adaptive dictionary learning term, sparsity term, regularization term, and MLEM Poisson noise estimation term. The optimization is solved by a variable splitting method that introduces additional variables. We simulated a 128×128 Hoffman brain PET image (baseline) with varying kernel types and sizes (Gaussian 9×9, σ=5.4mm; Uniform 5×5, σ=2.9mm) with additive Poisson noise (Blurred). Image recovery was performed once when the kernel type was included in the model optimization and once with the model blinded to kernel type. The recovered image was compared to the baseline as well as another recovery algorithm PIDSPLIT+ (Setzer et. al.) by calculating PSNR (Peak SNR) and normalized average differences in pixel intensities (NADPI) of line profiles across the images. Results: For known kernel types, the PSNR of the Gaussian (Uniform) was 28.73 (25.1) and 25.18 (23.4) for DL and PIDSPLIT+ respectively. For blinded deblurring the PSNRs were 25.32 and 22.86 for DL and PIDSPLIT+ respectively. NADPI between baseline and DL, and baseline and blurred for the Gaussian kernel was 2.5 and 10.8 respectively. Conclusion: PET image deblurring using dictionary learning seems to be a good approach to restore image resolution in presence of Poisson noise. GE Health Care.

  6. Multivariate temporal dictionary learning for EEG.

    PubMed

    Barthélemy, Q; Gouy-Pailler, C; Isaac, Y; Souloumiac, A; Larue, A; Mars, J I

    2013-04-30

    This article addresses the issue of representing electroencephalographic (EEG) signals in an efficient way. While classical approaches use a fixed Gabor dictionary to analyze EEG signals, this article proposes a data-driven method to obtain an adapted dictionary. To reach an efficient dictionary learning, appropriate spatial and temporal modeling is required. Inter-channels links are taken into account in the spatial multivariate model, and shift-invariance is used for the temporal model. Multivariate learned kernels are informative (a few atoms code plentiful energy) and interpretable (the atoms can have a physiological meaning). Using real EEG data, the proposed method is shown to outperform the classical multichannel matching pursuit used with a Gabor dictionary, as measured by the representative power of the learned dictionary and its spatial flexibility. Moreover, dictionary learning can capture interpretable patterns: this ability is illustrated on real data, learning a P300 evoked potential.

  7. Supervised Dictionary Learning

    DTIC Science & Technology

    2008-11-01

    recently led to state-of-the-art results for numerous low-level image processing tasks such as denoising [2], show- ing that sparse models are well... denoising via sparse and redundant representations over learned dictio- naries. IEEE Trans. IP, 54(12), 2006. [3] K. Huang and S. Aviyente. Sparse...2006. [19] M. Aharon, M. Elad, and A. M. Bruckstein. The K- SVD : An algorithm for designing of overcomplete dictionaries for sparse representations

  8. Compositional Dictionaries for Domain Adaptive Face Recognition.

    PubMed

    Qiang Qiu; Chellappa, Rama

    2015-12-01

    We present a dictionary learning approach to compensate for the transformation of faces due to the changes in view point, illumination, resolution, and so on. The key idea of our approach is to force domain-invariant sparse coding, i.e., designing a consistent sparse representation of the same face in different domains. In this way, the classifiers trained on the sparse codes in the source domain consisting of frontal faces can be applied to the target domain (consisting of faces in different poses, illumination conditions, and so on) without much loss in recognition accuracy. The approach is to first learn a domain base dictionary, and then describe each domain shift (identity, pose, and illumination) using a sparse representation over the base dictionary. The dictionary adapted to each domain is expressed as the sparse linear combinations of the base dictionary. In the context of face recognition, with the proposed compositional dictionary approach, a face image can be decomposed into sparse representations for a given subject, pose, and illumination. This approach has three advantages. First, the extracted sparse representation for a subject is consistent across domains, and enables pose and illumination insensitive face recognition. Second, sparse representations for pose and illumination can be subsequently used to estimate the pose and illumination condition of a face image. Last, by composing sparse representations for the subject and the different domains, we can also perform pose alignment and illumination normalization. Extensive experiments using two public face data sets are presented to demonstrate the effectiveness of the proposed approach for face recognition.

  9. Learning Stable Multilevel Dictionaries for Sparse Representations.

    PubMed

    Thiagarajan, Jayaraman J; Ramamurthy, Karthikeyan Natesan; Spanias, Andreas

    2015-09-01

    Sparse representations using learned dictionaries are being increasingly used with success in several data processing and machine learning applications. The increasing need for learning sparse models in large-scale applications motivates the development of efficient, robust, and provably good dictionary learning algorithms. Algorithmic stability and generalizability are desirable characteristics for dictionary learning algorithms that aim to build global dictionaries, which can efficiently model any test data similar to the training samples. In this paper, we propose an algorithm to learn dictionaries for sparse representations from large scale data, and prove that the proposed learning algorithm is stable and generalizable asymptotically. The algorithm employs a 1-D subspace clustering procedure, the K-hyperline clustering, to learn a hierarchical dictionary with multiple levels. We also propose an information-theoretic scheme to estimate the number of atoms needed in each level of learning and develop an ensemble approach to learn robust dictionaries. Using the proposed dictionaries, the sparse code for novel test data can be computed using a low-complexity pursuit procedure. We demonstrate the stability and generalization characteristics of the proposed algorithm using simulations. We also evaluate the utility of the multilevel dictionaries in compressed recovery and subspace learning applications.

  10. Orthogonal Procrustes Analysis for Dictionary Learning in Sparse Linear Representation

    PubMed Central

    Grossi, Giuliano; Lin, Jianyi

    2017-01-01

    In the sparse representation model, the design of overcomplete dictionaries plays a key role for the effectiveness and applicability in different domains. Recent research has produced several dictionary learning approaches, being proven that dictionaries learnt by data examples significantly outperform structured ones, e.g. wavelet transforms. In this context, learning consists in adapting the dictionary atoms to a set of training signals in order to promote a sparse representation that minimizes the reconstruction error. Finding the best fitting dictionary remains a very difficult task, leaving the question still open. A well-established heuristic method for tackling this problem is an iterative alternating scheme, adopted for instance in the well-known K-SVD algorithm. Essentially, it consists in repeating two stages; the former promotes sparse coding of the training set and the latter adapts the dictionary to reduce the error. In this paper we present R-SVD, a new method that, while maintaining the alternating scheme, adopts the Orthogonal Procrustes analysis to update the dictionary atoms suitably arranged into groups. Comparative experiments on synthetic data prove the effectiveness of R-SVD with respect to well known dictionary learning algorithms such as K-SVD, ILS-DLA and the online method OSDL. Moreover, experiments on natural data such as ECG compression, EEG sparse representation, and image modeling confirm R-SVD’s robustness and wide applicability. PMID:28103283

  11. Active dictionary learning for image representation

    NASA Astrophysics Data System (ADS)

    Wu, Tong; Sarwate, Anand D.; Bajwa, Waheed U.

    2015-05-01

    Sparse representations of images in overcomplete bases (i.e., redundant dictionaries) have many applications in computer vision and image processing. Recent works have demonstrated improvements in image representations by learning a dictionary from training data instead of using a predefined one. But learning a sparsifying dictionary can be computationally expensive in the case of a massive training set. This paper proposes a new approach, termed active screening, to overcome this challenge. Active screening sequentially selects subsets of training samples using a simple heuristic and adds the selected samples to a "learning pool," which is then used to learn a newer dictionary for improved representation performance. The performance of the proposed active dictionary learning approach is evaluated through numerical experiments on real-world image data; the results of these experiments demonstrate the effectiveness of the proposed method.

  12. Discriminative Learned Dictionaries for Local Image Analysis

    DTIC Science & Technology

    2008-06-01

    A number of practical algorithms have been developed for learning such dictionaries like the K- SVD al- gorithm [2] and the method of optimal... denoising , inpainting, demosaicing [6, 19], and texture synthesis [27]. Alternative models that learn im- 5WILLOW project-team, Laboratoire...for reconstruction 2.1. Learning reconstructive dictionaries We now briefly describe for completeness the K- SVD [2] and MOD [7] algorithms for learning

  13. Regularized spherical polar fourier diffusion MRI with optimal dictionary learning.

    PubMed

    Cheng, Jian; Jiang, Tianzi; Deriche, Rachid; Shen, Dinggang; Yap, Pew-Thian

    2013-01-01

    Compressed Sensing (CS) takes advantage of signal sparsity or compressibility and allows superb signal reconstruction from relatively few measurements. Based on CS theory, a suitable dictionary for sparse representation of the signal is required. In diffusion MRI (dMRI), CS methods proposed for reconstruction of diffusion-weighted signal and the Ensemble Average Propagator (EAP) utilize two kinds of Dictionary Learning (DL) methods: 1) Discrete Representation DL (DR-DL), and 2) Continuous Representation DL (CR-DL). DR-DL is susceptible to numerical inaccuracy owing to interpolation and regridding errors in a discretized q-space. In this paper, we propose a novel CR-DL approach, called Dictionary Learning - Spherical Polar Fourier Imaging (DL-SPFI) for effective compressed-sensing reconstruction of the q-space diffusion-weighted signal and the EAP. In DL-SPFI, a dictionary that sparsifies the signal is learned from the space of continuous Gaussian diffusion signals. The learned dictionary is then adaptively applied to different voxels using a weighted LASSO framework for robust signal reconstruction. Compared with the start-of-the-art CR-DL and DR-DL methods proposed by Merlet et al. and Bilgic et al., respectively, our work offers the following advantages. First, the learned dictionary is proved to be optimal for Gaussian diffusion signals. Second, to our knowledge, this is the first work to learn a voxel-adaptive dictionary. The importance of the adaptive dictionary in EAP reconstruction will be demonstrated theoretically and empirically. Third, optimization in DL-SPFI is only performed in a small subspace resided by the SPF coefficients, as opposed to the q-space approach utilized by Merlet et al. We experimentally evaluated DL-SPFI with respect to L1-norm regularized SPFI (L1-SPFI), which uses the original SPF basis, and the DR-DL method proposed by Bilgic et al. The experiment results on synthetic and real data indicate that the learned dictionary produces

  14. An Online Dictionary Learning-Based Compressive Data Gathering Algorithm in Wireless Sensor Networks

    PubMed Central

    Wang, Donghao; Wan, Jiangwen; Chen, Junying; Zhang, Qiang

    2016-01-01

    To adapt to sense signals of enormous diversities and dynamics, and to decrease the reconstruction errors caused by ambient noise, a novel online dictionary learning method-based compressive data gathering (ODL-CDG) algorithm is proposed. The proposed dictionary is learned from a two-stage iterative procedure, alternately changing between a sparse coding step and a dictionary update step. The self-coherence of the learned dictionary is introduced as a penalty term during the dictionary update procedure. The dictionary is also constrained with sparse structure. It’s theoretically demonstrated that the sensing matrix satisfies the restricted isometry property (RIP) with high probability. In addition, the lower bound of necessary number of measurements for compressive sensing (CS) reconstruction is given. Simulation results show that the proposed ODL-CDG algorithm can enhance the recovery accuracy in the presence of noise, and reduce the energy consumption in comparison with other dictionary based data gathering methods. PMID:27669250

  15. Fast dictionary learning for noise attenuation of multidimensional seismic data

    NASA Astrophysics Data System (ADS)

    Chen, Yangkang

    2017-01-01

    The K-SVD algorithm has been successfully utilized for adaptively learning the sparse dictionary in 2D seismic denoising. Because of the high computational cost of many SVDs in the K-SVD algorithm, it is not applicable in practical situations, especially in 3D or 5D problems. In this paper, I extend the dictionary learning based denoising approach from 2D to 3D. To address the computational efficiency problem in K-SVD, I propose a fast dictionary learning approach based on the sequential generalized K-means (SGK) algorithm for denoising multidimensional seismic data. The SGK algorithm updates each dictionary atom by taking an arithmetic average of several training signals instead of calculating a SVD as used in K-SVD algorithm. I summarize the sparse dictionary learning algorithm using K-SVD, and introduce SGK algorithm together with its detailed mathematical implications. 3D synthetic, 2D and 3D field data examples are used to demonstrate the performance of both K-SVD and SGK algorithms. It has been shown that SGK algorithm can significantly increase the computational efficiency while only slightly degrading the denoising performance.

  16. Learn Sparse Dictionaries for Edit Propagation.

    PubMed

    Xiaowu Chen; Jianwei Li; Dongqing Zou; Qinping Zhao

    2016-04-01

    With the increasing availability of high-resolution images, videos, and 3D models, the demand for scalable large data processing techniques increases. We introduce a method of sparse dictionary learning for edit propagation of large input data. Previous approaches for edit propagation typically employ a global optimization over the whole set of pixels (or vertexes), incurring a prohibitively high memory and time-consumption for large input data. Rather than propagating an edit pixel by pixel, we follow the principle of sparse representation to obtain a representative and compact dictionary and perform edit propagation on the dictionary instead. The sparse dictionary provides an intrinsic basis for input data, and the coding coefficients capture the linear relationship between all pixels and the dictionary atoms. The learned dictionary is then optimized by a novel scheme, which maximizes the Kullback-Leibler divergence between each atom pair to remove redundant atoms. To enable local edit propagation for images or videos with similar appearance, a dictionary learning strategy is proposed by considering range constraint to better account for the global distribution of pixels in their feature space. We show several applications of the sparsity-based edit propagation, including video recoloring, theme editing, and seamless cloning, operating on both color and texture features. Our approach can also be applied to computer graphics tasks, such as 3D surface deformation. We demonstrate that with an atom-to-pixel ratio in the order of 0.01% signifying a significant reduction on memory consumption, our method still maintains a high degree of visual fidelity.

  17. DOLPHIn—Dictionary Learning for Phase Retrieval

    NASA Astrophysics Data System (ADS)

    Tillmann, Andreas M.; Eldar, Yonina C.; Mairal, Julien

    2016-12-01

    We propose a new algorithm to learn a dictionary for reconstructing and sparsely encoding signals from measurements without phase. Specifically, we consider the task of estimating a two-dimensional image from squared-magnitude measurements of a complex-valued linear transformation of the original image. Several recent phase retrieval algorithms exploit underlying sparsity of the unknown signal in order to improve recovery performance. In this work, we consider such a sparse signal prior in the context of phase retrieval, when the sparsifying dictionary is not known in advance. Our algorithm jointly reconstructs the unknown signal - possibly corrupted by noise - and learns a dictionary such that each patch of the estimated image can be sparsely represented. Numerical experiments demonstrate that our approach can obtain significantly better reconstructions for phase retrieval problems with noise than methods that cannot exploit such "hidden" sparsity. Moreover, on the theoretical side, we provide a convergence result for our method.

  18. Learned dictionaries for sparse image representation: properties and results

    NASA Astrophysics Data System (ADS)

    Skretting, Karl; Engan, Kjersti

    2011-09-01

    Sparse representation of images using learned dictionaries have been shown to work well for applications like image denoising, impainting, image compression, etc. In this paper dictionary properties are reviewed from a theoretical approach, and experimental results for learned dictionaries are presented. The main dictionary properties are the upper and lower frame (dictionary) bounds, and (mutual) coherence properties based on the angle between dictionary atoms. Both l0 sparsity and l1 sparsity are considered by using a matching pursuit method, order recursive matching Pursuit (ORMP), and a basis pursuit method, i.e. LARS or Lasso. For dictionary learning the following methods are considered: Iterative least squares (ILS-DLA or MOD), recursive least squares (RLS-DLA), K-SVD and online dictionary learning (ODL). Finally, it is shown how these properties relate to an image compression example.

  19. Online multi-modal robust non-negative dictionary learning for visual tracking.

    PubMed

    Zhang, Xiang; Guan, Naiyang; Tao, Dacheng; Qiu, Xiaogang; Luo, Zhigang

    2015-01-01

    Dictionary learning is a method of acquiring a collection of atoms for subsequent signal representation. Due to its excellent representation ability, dictionary learning has been widely applied in multimedia and computer vision. However, conventional dictionary learning algorithms fail to deal with multi-modal datasets. In this paper, we propose an online multi-modal robust non-negative dictionary learning (OMRNDL) algorithm to overcome this deficiency. Notably, OMRNDL casts visual tracking as a dictionary learning problem under the particle filter framework and captures the intrinsic knowledge about the target from multiple visual modalities, e.g., pixel intensity and texture information. To this end, OMRNDL adaptively learns an individual dictionary, i.e., template, for each modality from available frames, and then represents new particles over all the learned dictionaries by minimizing the fitting loss of data based on M-estimation. The resultant representation coefficient can be viewed as the common semantic representation of particles across multiple modalities, and can be utilized to track the target. OMRNDL incrementally learns the dictionary and the coefficient of each particle by using multiplicative update rules to respectively guarantee their non-negativity constraints. Experimental results on a popular challenging video benchmark validate the effectiveness of OMRNDL for visual tracking in both quantity and quality.

  20. Online Multi-Modal Robust Non-Negative Dictionary Learning for Visual Tracking

    PubMed Central

    Zhang, Xiang; Guan, Naiyang; Tao, Dacheng; Qiu, Xiaogang; Luo, Zhigang

    2015-01-01

    Dictionary learning is a method of acquiring a collection of atoms for subsequent signal representation. Due to its excellent representation ability, dictionary learning has been widely applied in multimedia and computer vision. However, conventional dictionary learning algorithms fail to deal with multi-modal datasets. In this paper, we propose an online multi-modal robust non-negative dictionary learning (OMRNDL) algorithm to overcome this deficiency. Notably, OMRNDL casts visual tracking as a dictionary learning problem under the particle filter framework and captures the intrinsic knowledge about the target from multiple visual modalities, e.g., pixel intensity and texture information. To this end, OMRNDL adaptively learns an individual dictionary, i.e., template, for each modality from available frames, and then represents new particles over all the learned dictionaries by minimizing the fitting loss of data based on M-estimation. The resultant representation coefficient can be viewed as the common semantic representation of particles across multiple modalities, and can be utilized to track the target. OMRNDL incrementally learns the dictionary and the coefficient of each particle by using multiplicative update rules to respectively guarantee their non-negativity constraints. Experimental results on a popular challenging video benchmark validate the effectiveness of OMRNDL for visual tracking in both quantity and quality. PMID:25961715

  1. Nonlocal hierarchical dictionary learning using wavelets for image denoising.

    PubMed

    Yan, Ruomei; Shao, Ling; Liu, Yan

    2013-12-01

    Exploiting the sparsity within representation models for images is critical for image denoising. The best currently available denoising methods take advantage of the sparsity from image self-similarity, pre-learned, and fixed representations. Most of these methods, however, still have difficulties in tackling high noise levels or noise models other than Gaussian. In this paper, the multiresolution structure and sparsity of wavelets are employed by nonlocal dictionary learning in each decomposition level of the wavelets. Experimental results show that our proposed method outperforms two state-of-the-art image denoising algorithms on higher noise levels. Furthermore, our approach is more adaptive to the less extensively researched uniform noise.

  2. An augmented Lagrangian multi-scale dictionary learning algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Qiegen; Luo, Jianhua; Wang, Shanshan; Xiao, Moyan; Ye, Meng

    2011-12-01

    Learning overcomplete dictionaries for sparse signal representation has become a hot topic fascinated by many researchers in the recent years, while most of the existing approaches have a serious problem that they always lead to local minima. In this article, we present a novel augmented Lagrangian multi-scale dictionary learning algorithm (ALM-DL), which is achieved by first recasting the constrained dictionary learning problem into an AL scheme, and then updating the dictionary after each inner iteration of the scheme during which majorization-minimization technique is employed for solving the inner subproblem. Refining the dictionary from low scale to high makes the proposed method less dependent on the initial dictionary hence avoiding local optima. Numerical tests for synthetic data and denoising applications on real images demonstrate the superior performance of the proposed approach.

  3. Weighted Discriminative Dictionary Learning based on Low-rank Representation

    NASA Astrophysics Data System (ADS)

    Chang, Heyou; Zheng, Hao

    2017-01-01

    Low-rank representation has been widely used in the field of pattern classification, especially when both training and testing images are corrupted with large noise. Dictionary plays an important role in low-rank representation. With respect to the semantic dictionary, the optimal representation matrix should be block-diagonal. However, traditional low-rank representation based dictionary learning methods cannot effectively exploit the discriminative information between data and dictionary. To address this problem, this paper proposed weighted discriminative dictionary learning based on low-rank representation, where a weighted representation regularization term is constructed. The regularization associates label information of both training samples and dictionary atoms, and encourages to generate a discriminative representation with class-wise block-diagonal structure, which can further improve the classification performance where both training and testing images are corrupted with large noise. Experimental results demonstrate advantages of the proposed method over the state-of-the-art methods.

  4. Tensor-based Dictionary Learning for Spectral CT Reconstruction

    PubMed Central

    Zhang, Yanbo; Wang, Ge

    2016-01-01

    Spectral computed tomography (CT) produces an energy-discriminative attenuation map of an object, extending a conventional image volume with a spectral dimension. In spectral CT, an image can be sparsely represented in each of multiple energy channels, and are highly correlated among energy channels. According to this characteristics, we propose a tensor-based dictionary learning method for spectral CT reconstruction. In our method, tensor patches are extracted from an image tensor, which is reconstructed using the filtered backprojection (FBP), to form a training dataset. With the Candecomp/Parafac decomposition, a tensor-based dictionary is trained, in which each atom is a rank-one tensor. Then, the trained dictionary is used to sparsely represent image tensor patches during an iterative reconstruction process, and the alternating minimization scheme is adapted for optimization. The effectiveness of our proposed method is validated with both numerically simulated and real preclinical mouse datasets. The results demonstrate that the proposed tensor-based method generally produces superior image quality, and leads to more accurate material decomposition than the currently popular popular methods. PMID:27541628

  5. Dictionary Learning for Data Recovery in Positron Emission Tomography

    PubMed Central

    Valiollahzadeh, SeyyedMajid; Clark, John W.; Mawlawi, Osama

    2015-01-01

    Compressed sensing (CS) aims to recover images from fewer measurements than that governed by the Nyquist sampling theorem. Most CS methods use analytical predefined sparsifying domains such as Total variation (TV), wavelets, curvelets, and finite transforms to perform this task. In this study, we evaluated the use of dictionary learning (DL) as a sparsifying domain to reconstruct PET images from partially sampled data, and compared the results to the partially and fully sampled image (baseline). A CS model based on learning an adaptive dictionary over image patches was developed to recover missing observations in PET data acquisition. The recovery was done iteratively in two steps: a dictionary learning step and an image reconstruction step. Two experiments were performed to evaluate the proposed CS recovery algorithm: an IEC phantom study and five patient studies. In each case, 11% of the detectors of a GE PET/CT system were removed and the acquired sinogram data were recovered using the proposed DL algorithm. The recovered images (DL) as well as the partially sampled images (with detector gaps) for both experiments were then compared to the baseline. Comparisons were done by calculating RMSE, contrast recovery and SNR in ROIs drawn in the background, and spheres of the phantom as well as patient lesions. For the phantom experiment, the RMSE for the DL recovered images were 5.8% when compared with the baseline images while it was 17.5% for the partially sampled images. In the patients’ studies, RMSE for the DL recovered images were 3.8%, while it was 11.3% for the partially sampled images. Our proposed CS with DL is a good approach to recover partially sampled PET data. This approach has implications towards reducing scanner cost while maintaining accurate PET image quantification. PMID:26161630

  6. Dictionary learning for data recovery in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Valiollahzadeh, SeyyedMajid; Clark, John W., Jr.; Mawlawi, Osama

    2015-08-01

    Compressed sensing (CS) aims to recover images from fewer measurements than that governed by the Nyquist sampling theorem. Most CS methods use analytical predefined sparsifying domains such as total variation, wavelets, curvelets, and finite transforms to perform this task. In this study, we evaluated the use of dictionary learning (DL) as a sparsifying domain to reconstruct PET images from partially sampled data, and compared the results to the partially and fully sampled image (baseline). A CS model based on learning an adaptive dictionary over image patches was developed to recover missing observations in PET data acquisition. The recovery was done iteratively in two steps: a dictionary learning step and an image reconstruction step. Two experiments were performed to evaluate the proposed CS recovery algorithm: an IEC phantom study and five patient studies. In each case, 11% of the detectors of a GE PET/CT system were removed and the acquired sinogram data were recovered using the proposed DL algorithm. The recovered images (DL) as well as the partially sampled images (with detector gaps) for both experiments were then compared to the baseline. Comparisons were done by calculating RMSE, contrast recovery and SNR in ROIs drawn in the background, and spheres of the phantom as well as patient lesions. For the phantom experiment, the RMSE for the DL recovered images were 5.8% when compared with the baseline images while it was 17.5% for the partially sampled images. In the patients’ studies, RMSE for the DL recovered images were 3.8%, while it was 11.3% for the partially sampled images. Our proposed CS with DL is a good approach to recover partially sampled PET data. This approach has implications toward reducing scanner cost while maintaining accurate PET image quantification.

  7. A Dictionary Learning Method with Total Generalized Variation for MRI Reconstruction

    PubMed Central

    Lu, Hongyang; Wei, Jingbo; Wang, Yuhao; Deng, Xiaohua

    2016-01-01

    Reconstructing images from their noisy and incomplete measurements is always a challenge especially for medical MR image with important details and features. This work proposes a novel dictionary learning model that integrates two sparse regularization methods: the total generalized variation (TGV) approach and adaptive dictionary learning (DL). In the proposed method, the TGV selectively regularizes different image regions at different levels to avoid oil painting artifacts largely. At the same time, the dictionary learning adaptively represents the image features sparsely and effectively recovers details of images. The proposed model is solved by variable splitting technique and the alternating direction method of multiplier. Extensive simulation experimental results demonstrate that the proposed method consistently recovers MR images efficiently and outperforms the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values. PMID:27110235

  8. Image fusion via nonlocal sparse K-SVD dictionary learning.

    PubMed

    Li, Ying; Li, Fangyi; Bai, Bendu; Shen, Qiang

    2016-03-01

    Image fusion aims to merge two or more images captured via various sensors of the same scene to construct a more informative image by integrating their details. Generally, such integration is achieved through the manipulation of the representations of the images concerned. Sparse representation plays an important role in the effective description of images, offering a great potential in a variety of image processing tasks, including image fusion. Supported by sparse representation, in this paper, an approach for image fusion by the use of a novel dictionary learning scheme is proposed. The nonlocal self-similarity property of the images is exploited, not only at the stage of learning the underlying description dictionary but during the process of image fusion. In particular, the property of nonlocal self-similarity is combined with the traditional sparse dictionary. This results in an improved learned dictionary, hereafter referred to as the nonlocal sparse K-SVD dictionary (where K-SVD stands for the K times singular value decomposition that is commonly used in the literature), and abbreviated to NL_SK_SVD. The performance of the NL_SK_SVD dictionary is applied for image fusion using simultaneous orthogonal matching pursuit. The proposed approach is evaluated with different types of images, and compared with a number of alternative image fusion techniques. The resultant superior fused images using the present approach demonstrates the efficacy of the NL_SK_SVD dictionary in sparse image representation.

  9. Histopathological Image Classification using Discriminative Feature-oriented Dictionary Learning

    PubMed Central

    Vu, Tiep Huu; Mousavi, Hojjat Seyed; Monga, Vishal; Rao, Ganesh; Rao, UK Arvind

    2016-01-01

    In histopathological image analysis, feature extraction for classification is a challenging task due to the diversity of histology features suitable for each problem as well as presence of rich geometrical structures. In this paper, we propose an automatic feature discovery framework via learning class-specific dictionaries and present a low-complexity method for classification and disease grading in histopathology. Essentially, our Discriminative Feature-oriented Dictionary Learning (DFDL) method learns class-specific dictionaries such that under a sparsity constraint, the learned dictionaries allow representing a new image sample parsimoniously via the dictionary corresponding to the class identity of the sample. At the same time, the dictionary is designed to be poorly capable of representing samples from other classes. Experiments on three challenging real-world image databases: 1) histopathological images of intraductal breast lesions, 2) mammalian kidney, lung and spleen images provided by the Animal Diagnostics Lab (ADL) at Pennsylvania State University, and 3) brain tumor images from The Cancer Genome Atlas (TCGA) database, reveal the merits of our proposal over state-of-the-art alternatives. Moreover, we demonstrate that DFDL exhibits a more graceful decay in classification accuracy against the number of training images which is highly desirable in practice where generous training is often not available. PMID:26513781

  10. Histopathological Image Classification Using Discriminative Feature-Oriented Dictionary Learning.

    PubMed

    Vu, Tiep Huu; Mousavi, Hojjat Seyed; Monga, Vishal; Rao, Ganesh; Rao, U K Arvind

    2016-03-01

    In histopathological image analysis, feature extraction for classification is a challenging task due to the diversity of histology features suitable for each problem as well as presence of rich geometrical structures. In this paper, we propose an automatic feature discovery framework via learning class-specific dictionaries and present a low-complexity method for classification and disease grading in histopathology. Essentially, our Discriminative Feature-oriented Dictionary Learning (DFDL) method learns class-specific dictionaries such that under a sparsity constraint, the learned dictionaries allow representing a new image sample parsimoniously via the dictionary corresponding to the class identity of the sample. At the same time, the dictionary is designed to be poorly capable of representing samples from other classes. Experiments on three challenging real-world image databases: 1) histopathological images of intraductal breast lesions, 2) mammalian kidney, lung and spleen images provided by the Animal Diagnostics Lab (ADL) at Pennsylvania State University, and 3) brain tumor images from The Cancer Genome Atlas (TCGA) database, reveal the merits of our proposal over state-of-the-art alternatives. Moreover, we demonstrate that DFDL exhibits a more graceful decay in classification accuracy against the number of training images which is highly desirable in practice where generous training is often not available.

  11. Dictionary learning-based CT detection of pulmonary nodules

    NASA Astrophysics Data System (ADS)

    Wu, Panpan; Xia, Kewen; Zhang, Yanbo; Qian, Xiaohua; Wang, Ge; Yu, Hengyong

    2016-10-01

    Segmentation of lung features is one of the most important steps for computer-aided detection (CAD) of pulmonary nodules with computed tomography (CT). However, irregular shapes, complicated anatomical background and poor pulmonary nodule contrast make CAD a very challenging problem. Here, we propose a novel scheme for feature extraction and classification of pulmonary nodules through dictionary learning from training CT images, which does not require accurately segmented pulmonary nodules. Specifically, two classification-oriented dictionaries and one background dictionary are learnt to solve a two-category problem. In terms of the classification-oriented dictionaries, we calculate sparse coefficient matrices to extract intrinsic features for pulmonary nodule classification. The support vector machine (SVM) classifier is then designed to optimize the performance. Our proposed methodology is evaluated with the lung image database consortium and image database resource initiative (LIDC-IDRI) database, and the results demonstrate that the proposed strategy is promising.

  12. Using Different Types of Dictionaries for Improving EFL Reading Comprehension and Vocabulary Learning

    ERIC Educational Resources Information Center

    Alharbi, Majed A.

    2016-01-01

    This study investigated the effects of monolingual book dictionaries, popup dictionaries, and type-in dictionaries on improving reading comprehension and vocabulary learning in an EFL program. An experimental design involving four groups and a post-test was chosen for the experiment: (1) pop-up dictionary (experimental group 1); (2) type-in…

  13. Sparsity-constrained PET image reconstruction with learned dictionaries

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Yang, Bao; Wang, Yanhua; Ying, Leslie

    2016-09-01

    PET imaging plays an important role in scientific and clinical measurement of biochemical and physiological processes. Model-based PET image reconstruction such as the iterative expectation maximization algorithm seeking the maximum likelihood solution leads to increased noise. The maximum a posteriori (MAP) estimate removes divergence at higher iterations. However, a conventional smoothing prior or a total-variation (TV) prior in a MAP reconstruction algorithm causes over smoothing or blocky artifacts in the reconstructed images. We propose to use dictionary learning (DL) based sparse signal representation in the formation of the prior for MAP PET image reconstruction. The dictionary to sparsify the PET images in the reconstruction process is learned from various training images including the corresponding MR structural image and a self-created hollow sphere. Using simulated and patient brain PET data with corresponding MR images, we study the performance of the DL-MAP algorithm and compare it quantitatively with a conventional MAP algorithm, a TV-MAP algorithm, and a patch-based algorithm. The DL-MAP algorithm achieves improved bias and contrast (or regional mean values) at comparable noise to what the other MAP algorithms acquire. The dictionary learned from the hollow sphere leads to similar results as the dictionary learned from the corresponding MR image. Achieving robust performance in various noise-level simulation and patient studies, the DL-MAP algorithm with a general dictionary demonstrates its potential in quantitative PET imaging.

  14. Sparsity-constrained PET image reconstruction with learned dictionaries.

    PubMed

    Tang, Jing; Yang, Bao; Wang, Yanhua; Ying, Leslie

    2016-09-07

    PET imaging plays an important role in scientific and clinical measurement of biochemical and physiological processes. Model-based PET image reconstruction such as the iterative expectation maximization algorithm seeking the maximum likelihood solution leads to increased noise. The maximum a posteriori (MAP) estimate removes divergence at higher iterations. However, a conventional smoothing prior or a total-variation (TV) prior in a MAP reconstruction algorithm causes over smoothing or blocky artifacts in the reconstructed images. We propose to use dictionary learning (DL) based sparse signal representation in the formation of the prior for MAP PET image reconstruction. The dictionary to sparsify the PET images in the reconstruction process is learned from various training images including the corresponding MR structural image and a self-created hollow sphere. Using simulated and patient brain PET data with corresponding MR images, we study the performance of the DL-MAP algorithm and compare it quantitatively with a conventional MAP algorithm, a TV-MAP algorithm, and a patch-based algorithm. The DL-MAP algorithm achieves improved bias and contrast (or regional mean values) at comparable noise to what the other MAP algorithms acquire. The dictionary learned from the hollow sphere leads to similar results as the dictionary learned from the corresponding MR image. Achieving robust performance in various noise-level simulation and patient studies, the DL-MAP algorithm with a general dictionary demonstrates its potential in quantitative PET imaging.

  15. Denoising of gravitational wave signals via dictionary learning algorithms

    NASA Astrophysics Data System (ADS)

    Torres-Forné, Alejandro; Marquina, Antonio; Font, José A.; Ibáñez, José M.

    2016-12-01

    Gravitational wave astronomy has become a reality after the historical detections accomplished during the first observing run of the two advanced LIGO detectors. In the following years, the number of detections is expected to increase significantly with the full commissioning of the advanced LIGO, advanced Virgo and KAGRA detectors. The development of sophisticated data analysis techniques to improve the opportunities of detection for low signal-to-noise-ratio events is, hence, a most crucial effort. In this paper, we present one such technique, dictionary-learning algorithms, which have been extensively developed in the last few years and successfully applied mostly in the context of image processing. However, to the best of our knowledge, such algorithms have not yet been employed to denoise gravitational wave signals. By building dictionaries from numerical relativity templates of both binary black holes mergers and bursts of rotational core collapse, we show how machine-learning algorithms based on dictionaries can also be successfully applied for gravitational wave denoising. We use a subset of signals from both catalogs, embedded in nonwhite Gaussian noise, to assess our techniques with a large sample of tests and to find the best model parameters. The application of our method to the actual signal GW150914 shows promising results. Dictionary-learning algorithms could be a complementary addition to the gravitational wave data analysis toolkit. They may be used to extract signals from noise and to infer physical parameters if the data are in good enough agreement with the morphology of the dictionary atoms.

  16. Geometric multi-resolution analysis for dictionary learning

    NASA Astrophysics Data System (ADS)

    Maggioni, Mauro; Minsker, Stanislav; Strawn, Nate

    2015-09-01

    We present an efficient algorithm and theory for Geometric Multi-Resolution Analysis (GMRA), a procedure for dictionary learning. Sparse dictionary learning provides the necessary complexity reduction for the critical applications of compression, regression, and classification in high-dimensional data analysis. As such, it is a critical technique in data science and it is important to have techniques that admit both efficient implementation and strong theory for large classes of theoretical models. By construction, GMRA is computationally efficient and in this paper we describe how the GMRA correctly approximates a large class of plausible models (namely, the noisy manifolds).

  17. Multimodal visual dictionary learning via heterogeneous latent semantic sparse coding

    NASA Astrophysics Data System (ADS)

    Li, Chenxiao; Ding, Guiguang; Zhou, Jile; Guo, Yuchen; Liu, Qiang

    2014-11-01

    Visual dictionary learning as a crucial task of image representation has gained increasing attention. Specifically, sparse coding is widely used due to its intrinsic advantage. In this paper, we propose a novel heterogeneous latent semantic sparse coding model. The central idea is to bridge heterogeneous modalities by capturing their common sparse latent semantic structure so that the learned visual dictionary is able to describe both the visual and textual properties of training data. Experiments on both image categorization and retrieval tasks demonstrate that our model shows superior performance over several recent methods such as K-means and Sparse Coding.

  18. Adaptive signal processing of on-orbit radio frequency lightning recordings using overcomplete chirplet dictionaries

    NASA Astrophysics Data System (ADS)

    Moody, D. I.; Smith, D. A.; Light, T. E.; Suszcynsky, D. M.; Heavner, M.

    2013-12-01

    Ongoing research at Los Alamos National Laboratory studies the Earth's radio frequency (RF) transient background utilizing satellite-based RF observations of terrestrial lightning. Such impulsive signals are dispersed as they travel through the ionosphere and appear as nonlinear chirps at a receiver on-orbit. Signals of interest are typically observed in the presence of additive noise and structured clutter, including gated and continuous-wave (CW) sources. Detection and classification of such non-stationary signals against a complex, non-stationary background can present challenges for standard physics-based approaches. The FORTE satellite provided a rich satellite lightning database that has been previously used for some event classification. We now develop and implement new event classification capability on the FORTE database using state-of-the-art adaptive signal processing combined with compressive sensing and machine learning techniques. The focus of our work is improved feature extraction using representations in overcomplete analytical dictionaries. We choose a dictionary based on Gabor chirplets, which is designed to represent both pulses (chirping or non-chirping) and CW signals in very few representative elements from the dictionary. One feature extraction approach is based on obtaining sparse representations of our data using a matching pursuit search of the dictionary. A second approach is based on using a frame operator on the dictionary to obtain a dense representation of our data. We explore robustness of extracted features to changes in background clutter and noise levels. Both feature extraction algorithms will be used in conjunction with statistical classifiers to explore classification performance of major lightning types. Performance will be evaluated both qualitatively, as well as quantitatively using a small validated test set. We present preliminary results of our work and discuss future areas of development.

  19. Generating a Spanish Affective Dictionary with Supervised Learning Techniques

    ERIC Educational Resources Information Center

    Bermudez-Gonzalez, Daniel; Miranda-Jiménez, Sabino; García-Moreno, Raúl-Ulises; Calderón-Nepamuceno, Dora

    2016-01-01

    Nowadays, machine learning techniques are being used in several Natural Language Processing (NLP) tasks such as Opinion Mining (OM). OM is used to analyse and determine the affective orientation of texts. Usually, OM approaches use affective dictionaries in order to conduct sentiment analysis. These lexicons are labeled manually with affective…

  20. Learning Words from Context and Dictionaries: An Experimental Comparison.

    ERIC Educational Resources Information Center

    Fischer, Ute

    1994-01-01

    Investigated the independent and interactive effects of contextual and definitional information on vocabulary learning. German students of English received either a text with unfamiliar English words or their monolingual English dictionary entries. A third group received both. Information about word context is crucial to understanding meaning. (44…

  1. Dictionary Pair Learning on Grassmann Manifolds for Image Denoising.

    PubMed

    Zeng, Xianhua; Bian, Wei; Liu, Wei; Shen, Jialie; Tao, Dacheng

    2015-11-01

    Image denoising is a fundamental problem in computer vision and image processing that holds considerable practical importance for real-world applications. The traditional patch-based and sparse coding-driven image denoising methods convert 2D image patches into 1D vectors for further processing. Thus, these methods inevitably break down the inherent 2D geometric structure of natural images. To overcome this limitation pertaining to the previous image denoising methods, we propose a 2D image denoising model, namely, the dictionary pair learning (DPL) model, and we design a corresponding algorithm called the DPL on the Grassmann-manifold (DPLG) algorithm. The DPLG algorithm first learns an initial dictionary pair (i.e., the left and right dictionaries) by employing a subspace partition technique on the Grassmann manifold, wherein the refined dictionary pair is obtained through a sub-dictionary pair merging. The DPLG obtains a sparse representation by encoding each image patch only with the selected sub-dictionary pair. The non-zero elements of the sparse representation are further smoothed by the graph Laplacian operator to remove the noise. Consequently, the DPLG algorithm not only preserves the inherent 2D geometric structure of natural images but also performs manifold smoothing in the 2D sparse coding space. We demonstrate that the DPLG algorithm also improves the structural SIMilarity values of the perceptual visual quality for denoised images using the experimental evaluations on the benchmark images and Berkeley segmentation data sets. Moreover, the DPLG also produces the competitive peak signal-to-noise ratio values from popular image denoising algorithms.

  2. Deformable segmentation of 3D MR prostate images via distributed discriminative dictionary and ensemble learning

    SciTech Connect

    Guo, Yanrong; Shao, Yeqin; Gao, Yaozong; Price, True; Oto, Aytekin; Shen, Dinggang

    2014-07-15

    patches of the prostate surface and trained to adaptively capture the appearance in different prostate zones, thus achieving better local tissue differentiation. For each local region, multiple classifiers are trained based on the randomly selected samples and finally assembled by a specific fusion method. In addition to this nonparametric appearance model, a prostate shape model is learned from the shape statistics using a novel approach, sparse shape composition, which can model nonGaussian distributions of shape variation and regularize the 3D mesh deformation by constraining it within the observed shape subspace. Results: The proposed method has been evaluated on two datasets consisting of T2-weighted MR prostate images. For the first (internal) dataset, the classification effectiveness of the authors' improved dictionary learning has been validated by comparing it with three other variants of traditional dictionary learning methods. The experimental results show that the authors' method yields a Dice Ratio of 89.1% compared to the manual segmentation, which is more accurate than the three state-of-the-art MR prostate segmentation methods under comparison. For the second dataset, the MICCAI 2012 challenge dataset, the authors' proposed method yields a Dice Ratio of 87.4%, which also achieves better segmentation accuracy than other methods under comparison. Conclusions: A new magnetic resonance image prostate segmentation method is proposed based on the combination of deformable model and dictionary learning methods, which achieves more accurate segmentation performance on prostate T2 MR images.

  3. Detection and diagnosis of bearing faults using shift-invariant dictionary learning and hidden Markov model

    NASA Astrophysics Data System (ADS)

    Zhou, Haitao; Chen, Jin; Dong, Guangming; Wang, Ran

    2016-05-01

    Many existing signal processing methods usually select a predefined basis function in advance. This basis functions selection relies on a priori knowledge about the target signal, which is always infeasible in engineering applications. Dictionary learning method provides an ambitious direction to learn basis atoms from data itself with the objective of finding the underlying structure embedded in signal. As a special case of dictionary learning methods, shift-invariant dictionary learning (SIDL) reconstructs an input signal using basis atoms in all possible time shifts. The property of shift-invariance is very suitable to extract periodic impulses, which are typical symptom of mechanical fault signal. After learning basis atoms, a signal can be decomposed into a collection of latent components, each is reconstructed by one basis atom and its corresponding time-shifts. In this paper, SIDL method is introduced as an adaptive feature extraction technique. Then an effective approach based on SIDL and hidden Markov model (HMM) is addressed for machinery fault diagnosis. The SIDL-based feature extraction is applied to analyze both simulated and experiment signal with specific notch size. This experiment shows that SIDL can successfully extract double impulses in bearing signal. The second experiment presents an artificial fault experiment with different bearing fault type. Feature extraction based on SIDL method is performed on each signal, and then HMM is used to identify its fault type. This experiment results show that the proposed SIDL-HMM has a good performance in bearing fault diagnosis.

  4. Low-dose X-ray CT reconstruction via dictionary learning.

    PubMed

    Xu, Qiong; Yu, Hengyong; Mou, Xuanqin; Zhang, Lei; Hsieh, Jiang; Wang, Ge

    2012-09-01

    Although diagnostic medical imaging provides enormous benefits in the early detection and accuracy diagnosis of various diseases, there are growing concerns on the potential side effect of radiation induced genetic, cancerous and other diseases. How to reduce radiation dose while maintaining the diagnostic performance is a major challenge in the computed tomography (CT) field. Inspired by the compressive sensing theory, the sparse constraint in terms of total variation (TV) minimization has already led to promising results for low-dose CT reconstruction. Compared to the discrete gradient transform used in the TV method, dictionary learning is proven to be an effective way for sparse representation. On the other hand, it is important to consider the statistical property of projection data in the low-dose CT case. Recently, we have developed a dictionary learning based approach for low-dose X-ray CT. In this paper, we present this method in detail and evaluate it in experiments. In our method, the sparse constraint in terms of a redundant dictionary is incorporated into an objective function in a statistical iterative reconstruction framework. The dictionary can be either predetermined before an image reconstruction task or adaptively defined during the reconstruction process. An alternating minimization scheme is developed to minimize the objective function. Our approach is evaluated with low-dose X-ray projections collected in animal and human CT studies, and the improvement associated with dictionary learning is quantified relative to filtered backprojection and TV-based reconstructions. The results show that the proposed approach might produce better images with lower noise and more detailed structural features in our selected cases. However, there is no proof that this is true for all kinds of structures.

  5. Tensor-based Dictionary Learning for Dynamic Tomographic Reconstruction

    PubMed Central

    Tan, Shengqi; Zhang, Yanbo; Wang, Ge; Mou, Xuanqin; Cao, Guohua; Wu, Zhifang; Yu, Hengyong

    2015-01-01

    In dynamic computed tomography (CT) reconstruction, the data acquisition speed limits the spatio-temporal resolution. Recently, compressed sensing theory has been instrumental in improving CT reconstruction from far few-view projections. In this paper, we present an adaptive method to train a tensor-based spatio-temporal dictionary for sparse representation of an image sequence during the reconstruction process. The correlations among atoms and across phases are considered to capture the characteristics of an object. The reconstruction problem is solved by the alternating direction method of multipliers. To recover fine or sharp structures such as edges, the nonlocal total variation is incorporated into the algorithmic framework. Preclinical examples including a sheep lung perfusion study and a dynamic mouse cardiac imaging demonstrate that the proposed approach outperforms the vectorized dictionary-based CT reconstruction in the case of few-view reconstruction. PMID:25779991

  6. Tensor-based dictionary learning for dynamic tomographic reconstruction

    NASA Astrophysics Data System (ADS)

    Tan, Shengqi; Zhang, Yanbo; Wang, Ge; Mou, Xuanqin; Cao, Guohua; Wu, Zhifang; Yu, Hengyong

    2015-04-01

    In dynamic computed tomography (CT) reconstruction, the data acquisition speed limits the spatio-temporal resolution. Recently, compressed sensing theory has been instrumental in improving CT reconstruction from far few-view projections. In this paper, we present an adaptive method to train a tensor-based spatio-temporal dictionary for sparse representation of an image sequence during the reconstruction process. The correlations among atoms and across phases are considered to capture the characteristics of an object. The reconstruction problem is solved by the alternating direction method of multipliers. To recover fine or sharp structures such as edges, the nonlocal total variation is incorporated into the algorithmic framework. Preclinical examples including a sheep lung perfusion study and a dynamic mouse cardiac imaging demonstrate that the proposed approach outperforms the vectorized dictionary-based CT reconstruction in the case of few-view reconstruction.

  7. Cerebellar Functional Parcellation Using Sparse Dictionary Learning Clustering

    PubMed Central

    Wang, Changqing; Kipping, Judy; Bao, Chenglong; Ji, Hui; Qiu, Anqi

    2016-01-01

    The human cerebellum has recently been discovered to contribute to cognition and emotion beyond the planning and execution of movement, suggesting its functional heterogeneity. We aimed to identify the functional parcellation of the cerebellum using information from resting-state functional magnetic resonance imaging (rs-fMRI). For this, we introduced a new data-driven decomposition-based functional parcellation algorithm, called Sparse Dictionary Learning Clustering (SDLC). SDLC integrates dictionary learning, sparse representation of rs-fMRI, and k-means clustering into one optimization problem. The dictionary is comprised of an over-complete set of time course signals, with which a sparse representation of rs-fMRI signals can be constructed. Cerebellar functional regions were then identified using k-means clustering based on the sparse representation of rs-fMRI signals. We solved SDLC using a multi-block hybrid proximal alternating method that guarantees strong convergence. We evaluated the reliability of SDLC and benchmarked its classification accuracy against other clustering techniques using simulated data. We then demonstrated that SDLC can identify biologically reasonable functional regions of the cerebellum as estimated by their cerebello-cortical functional connectivity. We further provided new insights into the cerebello-cortical functional organization in children. PMID:27199650

  8. Sinogram denoising via simultaneous sparse representation in learned dictionaries.

    PubMed

    Karimi, Davood; Ward, Rabab K

    2016-05-07

    Reducing the radiation dose in computed tomography (CT) is highly desirable but it leads to excessive noise in the projection measurements. This can significantly reduce the diagnostic value of the reconstructed images. Removing the noise in the projection measurements is, therefore, essential for reconstructing high-quality images, especially in low-dose CT. In recent years, two new classes of patch-based denoising algorithms proved superior to other methods in various denoising applications. The first class is based on sparse representation of image patches in a learned dictionary. The second class is based on the non-local means method. Here, the image is searched for similar patches and the patches are processed together to find their denoised estimates. In this paper, we propose a novel denoising algorithm for cone-beam CT projections. The proposed method has similarities to both these algorithmic classes but is more effective and much faster. In order to exploit both the correlation between neighboring pixels within a projection and the correlation between pixels in neighboring projections, the proposed algorithm stacks noisy cone-beam projections together to form a 3D image and extracts small overlapping 3D blocks from this 3D image for processing. We propose a fast algorithm for clustering all extracted blocks. The central assumption in the proposed algorithm is that all blocks in a cluster have a joint-sparse representation in a well-designed dictionary. We describe algorithms for learning such a dictionary and for denoising a set of projections using this dictionary. We apply the proposed algorithm on simulated and real data and compare it with three other algorithms. Our results show that the proposed algorithm outperforms some of the best denoising algorithms, while also being much faster.

  9. Sinogram denoising via simultaneous sparse representation in learned dictionaries

    NASA Astrophysics Data System (ADS)

    Karimi, Davood; Ward, Rabab K.

    2016-05-01

    Reducing the radiation dose in computed tomography (CT) is highly desirable but it leads to excessive noise in the projection measurements. This can significantly reduce the diagnostic value of the reconstructed images. Removing the noise in the projection measurements is, therefore, essential for reconstructing high-quality images, especially in low-dose CT. In recent years, two new classes of patch-based denoising algorithms proved superior to other methods in various denoising applications. The first class is based on sparse representation of image patches in a learned dictionary. The second class is based on the non-local means method. Here, the image is searched for similar patches and the patches are processed together to find their denoised estimates. In this paper, we propose a novel denoising algorithm for cone-beam CT projections. The proposed method has similarities to both these algorithmic classes but is more effective and much faster. In order to exploit both the correlation between neighboring pixels within a projection and the correlation between pixels in neighboring projections, the proposed algorithm stacks noisy cone-beam projections together to form a 3D image and extracts small overlapping 3D blocks from this 3D image for processing. We propose a fast algorithm for clustering all extracted blocks. The central assumption in the proposed algorithm is that all blocks in a cluster have a joint-sparse representation in a well-designed dictionary. We describe algorithms for learning such a dictionary and for denoising a set of projections using this dictionary. We apply the proposed algorithm on simulated and real data and compare it with three other algorithms. Our results show that the proposed algorithm outperforms some of the best denoising algorithms, while also being much faster.

  10. Dictionary learning and sparse recovery for electrodermal activity analysis

    NASA Astrophysics Data System (ADS)

    Kelsey, Malia; Dallal, Ahmed; Eldeeb, Safaa; Akcakaya, Murat; Kleckner, Ian; Gerard, Christophe; Quigley, Karen S.; Goodwin, Matthew S.

    2016-05-01

    Measures of electrodermal activity (EDA) have advanced research in a wide variety of areas including psychophysiology; however, the majority of this research is typically undertaken in laboratory settings. To extend the ecological validity of laboratory assessments, researchers are taking advantage of advances in wireless biosensors to gather EDA data in ambulatory settings, such as in school classrooms. While measuring EDA in naturalistic contexts may enhance ecological validity, it also introduces analytical challenges that current techniques cannot address. One limitation is the limited efficiency and automation of analysis techniques. Many groups either analyze their data by hand, reviewing each individual record, or use computationally inefficient software that limits timely analysis of large data sets. To address this limitation, we developed a method to accurately and automatically identify SCRs using curve fitting methods. Curve fitting has been shown to improve the accuracy of SCR amplitude and location estimations, but have not yet been used to reduce computational complexity. In this paper, sparse recovery and dictionary learning methods are combined to improve computational efficiency of analysis and decrease run time, while maintaining a high degree of accuracy in detecting SCRs. Here, a dictionary is first created using curve fitting methods for a standard SCR shape. Then, orthogonal matching pursuit (OMP) is used to detect SCRs within a dataset using the dictionary to complete sparse recovery. Evaluation of our method, including a comparison to for speed and accuracy with existing software, showed an accuracy of 80% and a reduced run time.

  11. Sparse Modeling with Universal Priors and Learned Incoherent Dictionaries(PREPRINT)

    DTIC Science & Technology

    2009-09-09

    SPARSE MODELING WITH UNIVERSAL PRIORS AND LEARNED INCOHERENT DICTIONARIES By Ignacio Ramı́rez Federico Lecumberry and Guillermo Sapiro IMA Preprint...Priors and Learned Incoherent Dictionaries Ignacio Ramı́rez University of Minnesota ramir048@umn.edu, Federico Lecumberry Universidad de la República...Self-taught learning: transfer learning from unlabeled data. In ICML, pages 759–766, 2007. [26] I. Ramirez, F. Lecumberry , , and G. Sapiro. Universal

  12. Land cover classification in multispectral imagery using clustering of sparse approximations over learned feature dictionaries

    DOE PAGES

    Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; ...

    2014-12-09

    We present results from an ongoing effort to extend neuromimetic machine vision algorithms to multispectral data using adaptive signal processing combined with compressive sensing and machine learning techniques. Our goal is to develop a robust classification methodology that will allow for automated discretization of the landscape into distinct units based on attributes such as vegetation, surface hydrological properties, and topographic/geomorphic characteristics. We use a Hebbian learning rule to build spectral-textural dictionaries that are tailored for classification. We learn our dictionaries from millions of overlapping multispectral image patches and then use a pursuit search to generate classification features. Land cover labelsmore » are automatically generated using unsupervised clustering of sparse approximations (CoSA). We demonstrate our method on multispectral WorldView-2 data from a coastal plain ecosystem in Barrow, Alaska. We explore learning from both raw multispectral imagery and normalized band difference indices. We explore a quantitative metric to evaluate the spectral properties of the clusters in order to potentially aid in assigning land cover categories to the cluster labels. In this study, our results suggest CoSA is a promising approach to unsupervised land cover classification in high-resolution satellite imagery.« less

  13. Land cover classification in multispectral imagery using clustering of sparse approximations over learned feature dictionaries

    SciTech Connect

    Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; Altmann, Garrett L.

    2014-12-09

    We present results from an ongoing effort to extend neuromimetic machine vision algorithms to multispectral data using adaptive signal processing combined with compressive sensing and machine learning techniques. Our goal is to develop a robust classification methodology that will allow for automated discretization of the landscape into distinct units based on attributes such as vegetation, surface hydrological properties, and topographic/geomorphic characteristics. We use a Hebbian learning rule to build spectral-textural dictionaries that are tailored for classification. We learn our dictionaries from millions of overlapping multispectral image patches and then use a pursuit search to generate classification features. Land cover labels are automatically generated using unsupervised clustering of sparse approximations (CoSA). We demonstrate our method on multispectral WorldView-2 data from a coastal plain ecosystem in Barrow, Alaska. We explore learning from both raw multispectral imagery and normalized band difference indices. We explore a quantitative metric to evaluate the spectral properties of the clusters in order to potentially aid in assigning land cover categories to the cluster labels. In this study, our results suggest CoSA is a promising approach to unsupervised land cover classification in high-resolution satellite imagery.

  14. Land cover classification in multispectral satellite imagery using sparse approximations on learned dictionaries

    NASA Astrophysics Data System (ADS)

    Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; Altmann, Garrett L.

    2014-05-01

    Techniques for automated feature extraction, including neuroscience-inspired machine vision, are of great interest for landscape characterization and change detection in support of global climate change science and modeling. We present results from an ongoing effort to extend machine vision methodologies to the environmental sciences, using state-of-theart adaptive signal processing, combined with compressive sensing and machine learning techniques. We use a modified Hebbian learning rule to build spectral-textural dictionaries that are tailored for classification. We learn our dictionaries from millions of overlapping multispectral image patches and then use a pursuit search to generate classification features. Land cover labels are automatically generated using CoSA: unsupervised Clustering of Sparse Approximations. We demonstrate our method on multispectral WorldView-2 data from a coastal plain ecosystem in Barrow, Alaska (USA). Our goal is to develop a robust classification methodology that will allow for automated discretization of the landscape into distinct units based on attributes such as vegetation, surface hydrological properties (e.g., soil moisture and inundation), and topographic/geomorphic characteristics. In this paper, we explore learning from both raw multispectral imagery, as well as normalized band difference indexes. We explore a quantitative metric to evaluate the spectral properties of the clusters, in order to potentially aid in assigning land cover categories to the cluster labels.

  15. Event oriented dictionary learning for complex event detection.

    PubMed

    Yan, Yan; Yang, Yi; Meng, Deyu; Liu, Gaowen; Tong, Wei; Hauptmann, Alexander G; Sebe, Nicu

    2015-06-01

    Complex event detection is a retrieval task with the goal of finding videos of a particular event in a large-scale unconstrained Internet video archive, given example videos and text descriptions. Nowadays, different multimodal fusion schemes of low-level and high-level features are extensively investigated and evaluated for the complex event detection task. However, how to effectively select the high-level semantic meaningful concepts from a large pool to assist complex event detection is rarely studied in the literature. In this paper, we propose a novel strategy to automatically select semantic meaningful concepts for the event detection task based on both the events-kit text descriptions and the concepts high-level feature descriptions. Moreover, we introduce a novel event oriented dictionary representation based on the selected semantic concepts. Toward this goal, we leverage training images (frames) of selected concepts from the semantic indexing dataset with a pool of 346 concepts, into a novel supervised multitask lp -norm dictionary learning framework. Extensive experimental results on TRECVID multimedia event detection dataset demonstrate the efficacy of our proposed method.

  16. The Role of Electronic Pocket Dictionaries as an English Learning Tool among Chinese Students

    ERIC Educational Resources Information Center

    Jian, Hua-Li; Sandnes, Frode Eika; Law, Kris M. Y.; Huang, Yo-Ping; Huang, Yueh-Min

    2009-01-01

    This study addressed the role of electronic pocket dictionaries as a language learning tool among university students in Hong Kong and Taiwan. The target groups included engineering and humanities students at both undergraduate and graduate level. Speed of reference was found to be the main motivator for using an electronic pocket dictionary.…

  17. A dictionary learning approach for Poisson image deblurring.

    PubMed

    Ma, Liyan; Moisan, Lionel; Yu, Jian; Zeng, Tieyong

    2013-07-01

    The restoration of images corrupted by blur and Poisson noise is a key issue in medical and biological image processing. While most existing methods are based on variational models, generally derived from a maximum a posteriori (MAP) formulation, recently sparse representations of images have shown to be efficient approaches for image recovery. Following this idea, we propose in this paper a model containing three terms: a patch-based sparse representation prior over a learned dictionary, the pixel-based total variation regularization term and a data-fidelity term capturing the statistics of Poisson noise. The resulting optimization problem can be solved by an alternating minimization technique combined with variable splitting. Extensive experimental results suggest that in terms of visual quality, peak signal-to-noise ratio value and the method noise, the proposed algorithm outperforms state-of-the-art methods.

  18. Label consistent K-SVD: learning a discriminative dictionary for recognition.

    PubMed

    Jiang, Zhuolin; Lin, Zhe; Davis, Larry S

    2013-11-01

    A label consistent K-SVD (LC-KSVD) algorithm to learn a discriminative dictionary for sparse coding is presented. In addition to using class labels of training data, we also associate label information with each dictionary item (columns of the dictionary matrix) to enforce discriminability in sparse codes during the dictionary learning process. More specifically, we introduce a new label consistency constraint called "discriminative sparse-code error" and combine it with the reconstruction error and the classification error to form a unified objective function. The optimal solution is efficiently obtained using the K-SVD algorithm. Our algorithm learns a single overcomplete dictionary and an optimal linear classifier jointly. The incremental dictionary learning algorithm is presented for the situation of limited memory resources. It yields dictionaries so that feature points with the same class labels have similar sparse codes. Experimental results demonstrate that our algorithm outperforms many recently proposed sparse-coding techniques for face, action, scene, and object category recognition under the same learning conditions.

  19. Sparse Representation-Based Image Quality Index With Adaptive Sub-Dictionaries.

    PubMed

    Li, Leida; Cai, Hao; Zhang, Yabin; Lin, Weisi; Kot, Alex C; Sun, Xingming

    2016-08-01

    Distortions cause structural changes in digital images, leading to degraded visual quality. Dictionary-based sparse representation has been widely studied recently due to its ability to extract inherent image structures. Meantime, it can extract image features with slightly higher level semantics. Intuitively, sparse representation can be used for image quality assessment, because visible distortions can cause significant changes to the sparse features. In this paper, a new sparse representation-based image quality assessment model is proposed based on the construction of adaptive sub-dictionaries. An overcomplete dictionary trained from natural images is employed to capture the structure changes between the reference and distorted images by sparse feature extraction via adaptive sub-dictionary selection. Based on the observation that image sparse features are invariant to weak degradations and the perceived image quality is generally influenced by diverse issues, three auxiliary quality features are added, including gradient, color, and luminance information. The proposed method is not sensitive to training images, so a universal dictionary can be adopted for quality evaluation. Extensive experiments on five public image quality databases demonstrate that the proposed method produces the state-of-the-art results, and it delivers consistently well performances when tested in different image quality databases.

  20. Multi-level discriminative dictionary learning with application to large scale image classification.

    PubMed

    Shen, Li; Sun, Gang; Huang, Qingming; Wang, Shuhui; Lin, Zhouchen; Wu, Enhua

    2015-10-01

    The sparse coding technique has shown flexibility and capability in image representation and analysis. It is a powerful tool in many visual applications. Some recent work has shown that incorporating the properties of task (such as discrimination for classification task) into dictionary learning is effective for improving the accuracy. However, the traditional supervised dictionary learning methods suffer from high computation complexity when dealing with large number of categories, making them less satisfactory in large scale applications. In this paper, we propose a novel multi-level discriminative dictionary learning method and apply it to large scale image classification. Our method takes advantage of hierarchical category correlation to encode multi-level discriminative information. Each internal node of the category hierarchy is associated with a discriminative dictionary and a classification model. The dictionaries at different layers are learnt to capture the information of different scales. Moreover, each node at lower layers also inherits the dictionary of its parent, so that the categories at lower layers can be described with multi-scale information. The learning of dictionaries and associated classification models is jointly conducted by minimizing an overall tree loss. The experimental results on challenging data sets demonstrate that our approach achieves excellent accuracy and competitive computation cost compared with other sparse coding methods for large scale image classification.

  1. Separation of seismic blended data by sparse inversion over dictionary learning

    NASA Astrophysics Data System (ADS)

    Zhou, Yanhui; Chen, Wenchao; Gao, Jinghuai

    2014-07-01

    Recent development of blended acquisition calls for the new procedure to process blended seismic measurements. Presently, deblending and reconstructing unblended data followed by conventional processing is the most practical processing workflow. We study seismic deblending by advanced sparse inversion with a learned dictionary in this paper. To make our method more effective, hybrid acquisition and time-dithering sequential shooting are introduced so that clean single-shot records can be used to train the dictionary to favor the sparser representation of data to be recovered. Deblending and dictionary learning with l1-norm based sparsity are combined to construct the corresponding problem with respect to unknown recovery, dictionary, and coefficient sets. A two-step optimization approach is introduced. In the step of dictionary learning, the clean single-shot data are selected as trained data to learn the dictionary. For deblending, we fix the dictionary and employ an alternating scheme to update the recovery and coefficients separately. Synthetic and real field data were used to verify the performance of our method. The outcome can be a significant reference in designing high-efficient and low-cost blended acquisition.

  2. Sparse Representation with Spatio-Temporal Online Dictionary Learning for Efficient Video Coding.

    PubMed

    Dai, Wenrui; Shen, Yangmei; Tang, Xin; Zou, Junni; Xiong, Hongkai; Chen, Chang Wen

    2016-07-27

    Classical dictionary learning methods for video coding suer from high computational complexity and interfered coding eciency by disregarding its underlying distribution. This paper proposes a spatio-temporal online dictionary learning (STOL) algorithm to speed up the convergence rate of dictionary learning with a guarantee of approximation error. The proposed algorithm incorporates stochastic gradient descents to form a dictionary of pairs of 3-D low-frequency and highfrequency spatio-temporal volumes. In each iteration of the learning process, it randomly selects one sample volume and updates the atoms of dictionary by minimizing the expected cost, rather than optimizes empirical cost over the complete training data like batch learning methods, e.g. K-SVD. Since the selected volumes are supposed to be i.i.d. samples from the underlying distribution, decomposition coecients attained from the trained dictionary are desirable for sparse representation. Theoretically, it is proved that the proposed STOL could achieve better approximation for sparse representation than K-SVD and maintain both structured sparsity and hierarchical sparsity. It is shown to outperform batch gradient descent methods (K-SVD) in the sense of convergence speed and computational complexity, and its upper bound for prediction error is asymptotically equal to the training error. With lower computational complexity, extensive experiments validate that the STOL based coding scheme achieves performance improvements than H.264/AVC or HEVC as well as existing super-resolution based methods in ratedistortion performance and visual quality.

  3. Binukid Dictionary.

    ERIC Educational Resources Information Center

    Otanes, Fe T., Ed.; Wrigglesworth, Hazel

    1992-01-01

    The dictionary of Binukid, a language spoken in the Bukidnon province of the Philippines, is intended as a tool for students of Binukid and for native Binukid-speakers interested in learning English. A single dialect was chosen for this work. The dictionary is introduced by notes on Binukid grammar, including basic information about phonology and…

  4. Deformable segmentation via sparse representation and dictionary learning.

    PubMed

    Zhang, Shaoting; Zhan, Yiqiang; Metaxas, Dimitris N

    2012-10-01

    "Shape" and "appearance", the two pillars of a deformable model, complement each other in object segmentation. In many medical imaging applications, while the low-level appearance information is weak or mis-leading, shape priors play a more important role to guide a correct segmentation, thanks to the strong shape characteristics of biological structures. Recently a novel shape prior modeling method has been proposed based on sparse learning theory. Instead of learning a generative shape model, shape priors are incorporated on-the-fly through the sparse shape composition (SSC). SSC is robust to non-Gaussian errors and still preserves individual shape characteristics even when such characteristics is not statistically significant. Although it seems straightforward to incorporate SSC into a deformable segmentation framework as shape priors, the large-scale sparse optimization of SSC has low runtime efficiency, which cannot satisfy clinical requirements. In this paper, we design two strategies to decrease the computational complexity of SSC, making a robust, accurate and efficient deformable segmentation system. (1) When the shape repository contains a large number of instances, which is often the case in 2D problems, K-SVD is used to learn a more compact but still informative shape dictionary. (2) If the derived shape instance has a large number of vertices, which often appears in 3D problems, an affinity propagation method is used to partition the surface into small sub-regions, on which the sparse shape composition is performed locally. Both strategies dramatically decrease the scale of the sparse optimization problem and hence speed up the algorithm. Our method is applied on a diverse set of biomedical image analysis problems. Compared to the original SSC, these two newly-proposed modules not only significant reduce the computational complexity, but also improve the overall accuracy.

  5. Dictionary learning based statistical interior reconstruction without a prior knowledge

    NASA Astrophysics Data System (ADS)

    Shi, Yongyi; Mou, Xuanqin

    2016-10-01

    Despite the significantly practical utilities of interior tomography, it still suffers from severe degradation of direct current (DC) shift artifact. Existing literature suggest to introducing prior information of object support (OS) constraint or the zeroth order image moment, i.e., the DC value into interior reconstruction to suppress the shift artifact, while the prior information is not always available in practice. Aimed at alleviating the artifacts without prior knowledge, in this paper, we reported an approach on the estimation of the object support which could be employed to estimate the zeroth order image moment, and hence facilitate the DC shift artifacts removal in interior reconstruction. Firstly, by assuming most of the reconstructed object consists of soft tissues that are equivalent to water, we reconstructed a virtual OS that is symmetrical about the interior region of interest (ROI) for the DC estimation. Hence the DC value can be estimated from the virtual reconstruction. Secondly, a statistical iterative reconstruction incorporated with the sparse representation in terms of learned dictionary and the constraint in terms of image DC value was adopted to solve the interior tomography. Experimental results demonstrate that the relative errors of the estimated zeroth order image moment are 4.7% and 7.6%, corresponding to the simulated data of a human thorax and the real data of a sheep lung, respectively. Reconstructed images with the constraint of the estimated DC value exhibit greatly superior image quality to that without DC value constraint.

  6. An empirical comparison of K-SVD and GMRA for dictionary learning

    NASA Astrophysics Data System (ADS)

    Vijayan, Vipin; Sakla, Wesam

    2015-03-01

    The topic of constructing data-dependent dictionaries, referred to as dictionary learning, has received considerable interest in the past decade. In this work, we compare the ability of two dictionary learning algorithms, K-SVD and geometric multi-resolution analysis (GMRA), to perform image reconstruction using a fixed number of coefficients. K-SVD is an algorithm originating from the compressive sensing community and relies on optimization techniques. GMRA is a multi-scale technique that is based on manifold approximation of highdimensional point clouds of data. The empirical results of this work using a synthetic dataset of images of vehicles with diversity in viewpoint and lighting show that the K-SVD algorithm exhibits better generalization reconstruction performance with respect to test images containing lighting diversity that were not present in the construction of the dictionary, while GMRA exhibits superior reconstruction on the training data.

  7. 2.5D dictionary learning based computed tomography reconstruction

    NASA Astrophysics Data System (ADS)

    Luo, Jiajia; Eri, Haneda; Can, Ali; Ramani, Sathish; Fu, Lin; De Man, Bruno

    2016-05-01

    A computationally efficient 2.5D dictionary learning (DL) algorithm is proposed and implemented in the model- based iterative reconstruction (MBIR) framework for low-dose CT reconstruction. MBIR is based on the minimization of a cost function containing data-fitting and regularization terms to control the trade-off between data-fidelity and image noise. Due to the strong denoising performance of DL, it has previously been considered as a regularizer in MBIR, and both 2D and 3D DL implementations are possible. Compared to the 2D case, 3D DL keeps more spatial information and generates images with better quality although it requires more computation. We propose a novel 2.5D DL scheme, which leverages the computational advantage of 2D-DL, while attempting to maintain reconstruction quality similar to 3D-DL. We demonstrate the effectiveness of this new 2.5D DL scheme for MBIR in low-dose CT. By applying the 2D DL method in three different orthogonal planes and calculating the sparse coefficients accordingly, much of the 3D spatial information can be preserved without incurring the computational penalty of the 3D DL method. For performance evaluation, we use baggage phantoms with different number of projection views. In order to quantitatively compare the performance of different algorithms, we use PSNR, SSIM and region based standard deviation to measure the noise level, and use the edge response to calculate the resolution. Experimental results with full view datasets show that the different DL based algorithms have similar performance and 2.5D DL has the best resolution. Results with sparse view datasets show that 2.5D DL outperforms both 2D and 3D DL in terms of noise reduction. We also compare the computational costs, and 2.5D DL shows strong advantage over 3D DL in both full-view and sparse-view cases.

  8. Change detection in Arctic satellite imagery using clustering of sparse approximations (CoSA) over learned feature dictionaries

    NASA Astrophysics Data System (ADS)

    Moody, Daniela I.; Wilson, Cathy J.; Rowland, Joel C.; Altmann, Garrett L.

    2015-06-01

    Advanced pattern recognition and computer vision algorithms are of great interest for landscape characterization, change detection, and change monitoring in satellite imagery, in support of global climate change science and modeling. We present results from an ongoing effort to extend neuroscience-inspired models for feature extraction to the environmental sciences, and we demonstrate our work using Worldview-2 multispectral satellite imagery. We use a Hebbian learning rule to derive multispectral, multiresolution dictionaries directly from regional satellite normalized band difference index data. These feature dictionaries are used to build sparse scene representations, from which we automatically generate land cover labels via our CoSA algorithm: Clustering of Sparse Approximations. These data adaptive feature dictionaries use joint spectral and spatial textural characteristics to help separate geologic, vegetative, and hydrologic features. Land cover labels are estimated in example Worldview-2 satellite images of Barrow, Alaska, taken at two different times, and are used to detect and discuss seasonal surface changes. Our results suggest that an approach that learns from both spectral and spatial features is promising for practical pattern recognition problems in high resolution satellite imagery.

  9. Group-sparse representation with dictionary learning for medical image denoising and fusion.

    PubMed

    Li, Shutao; Yin, Haitao; Fang, Leyuan

    2012-12-01

    Recently, sparse representation has attracted a lot of interest in various areas. However, the standard sparse representation does not consider the intrinsic structure, i.e., the nonzero elements occur in clusters, called group sparsity. Furthermore, there is no dictionary learning method for group sparse representation considering the geometrical structure of space spanned by atoms. In this paper, we propose a novel dictionary learning method, called Dictionary Learning with Group Sparsity and Graph Regularization (DL-GSGR). First, the geometrical structure of atoms is modeled as the graph regularization. Then, combining group sparsity and graph regularization, the DL-GSGR is presented, which is solved by alternating the group sparse coding and dictionary updating. In this way, the group coherence of learned dictionary can be enforced small enough such that any signal can be group sparse coded effectively. Finally, group sparse representation with DL-GSGR is applied to 3-D medical image denoising and image fusion. Specifically, in 3-D medical image denoising, a 3-D processing mechanism (using the similarity among nearby slices) and temporal regularization (to perverse the correlations across nearby slices) are exploited. The experimental results on 3-D image denoising and image fusion demonstrate the superiority of our proposed denoising and fusion approaches.

  10. The Children's Literature Dictionary: Definitions, Resources, and Learning Activities.

    ERIC Educational Resources Information Center

    Latrobe, Kathy H.; Brodie, Carolyn S.; White, Maureen

    This dictionary of terms from children's literature provides definitions of 325 concepts and principles that will help librarians and teachers give meaning to literary works being introduced in the classroom. The book's alphabetical organization of terms facilitates access to information when the reader is considering a specific term. All of the…

  11. Vocabulary Learning from Dictionary Reference in Collaborative EFL Translational Writing

    ERIC Educational Resources Information Center

    Bruton, Anthony

    2007-01-01

    This study was conducted in the FL English class of a typical Spanish secondary school. The students translated a short L1 Spanish text into FL English orally as a class, with accompanying dictionary glosses, before writing it down individually. This collaborative translation was supported by the teacher, and any lexical items that were not known…

  12. Nonparametric Bayesian Dictionary Learning for Analysis of Noisy and Incomplete Images

    PubMed Central

    Zhou, Mingyuan; Chen, Haojun; Paisley, John; Ren, Lu; Li, Lingbo; Xing, Zhengming; Dunson, David; Sapiro, Guillermo; Carin, Lawrence

    2013-01-01

    Nonparametric Bayesian methods are considered for recovery of imagery based upon compressive, incomplete, and/or noisy measurements. A truncated beta-Bernoulli process is employed to infer an appropriate dictionary for the data under test and also for image recovery. In the context of compressive sensing, significant improvements in image recovery are manifested using learned dictionaries, relative to using standard orthonormal image expansions. The compressive-measurement projections are also optimized for the learned dictionary. Additionally, we consider simpler (incomplete) measurements, defined by measuring a subset of image pixels, uniformly selected at random. Spatial interrelationships within imagery are exploited through use of the Dirichlet and probit stick-breaking processes. Several example results are presented, with comparisons to other methods in the literature. PMID:21693421

  13. Dictionary learning on the manifold of square root densities and application to reconstruction of diffusion propagator fields.

    PubMed

    Sun, Jiaqi; Xie, Yuchen; Ye, Wenxing; Ho, Jeffrey; Entezari, Alireza; Blackband, Stephen J; Vemuri, Baba C

    2013-01-01

    In this paper, we present a novel dictionary learning framework for data lying on the manifold of square root densities and apply it to the reconstruction of diffusion propagator (DP) fields given a multi-shell diffusion MRI data set. Unlike most of the existing dictionary learning algorithms which rely on the assumption that the data points are vectors in some Euclidean space, our dictionary learning algorithm is designed to incorporate the intrinsic geometric structure of manifolds and performs better than traditional dictionary learning approaches when applied to data lying on the manifold of square root densities. Non-negativity as well as smoothness across the whole field of the reconstructed DPs is guaranteed in our approach. We demonstrate the advantage of our approach by comparing it with an existing dictionary based reconstruction method on synthetic and real multi-shell MRI data.

  14. Dictionary learning method for joint sparse representation-based image fusion

    NASA Astrophysics Data System (ADS)

    Zhang, Qiheng; Fu, Yuli; Li, Haifeng; Zou, Jian

    2013-05-01

    Recently, sparse representation (SR) and joint sparse representation (JSR) have attracted a lot of interest in image fusion. The SR models signals by sparse linear combinations of prototype signal atoms that make a dictionary. The JSR indicates that different signals from the various sensors of the same scene form an ensemble. These signals have a common sparse component and each individual signal owns an innovation sparse component. The JSR offers lower computational complexity compared with SR. First, for JSR-based image fusion, we give a new fusion rule. Then, motivated by the method of optimal directions (MOD), for JSR, we propose a novel dictionary learning method (MODJSR) whose dictionary updating procedure is derived by employing the JSR structure one time with singular value decomposition (SVD). MODJSR has lower complexity than the K-SVD algorithm which is often used in previous JSR-based fusion algorithms. To capture the image details more efficiently, we proposed the generalized JSR in which the signals ensemble depends on two dictionaries. MODJSR is extended to MODGJSR in this case. MODJSR/MODGJSR can simultaneously carry out dictionary learning, denoising, and fusion of noisy source images. Some experiments are given to demonstrate the validity of the MODJSR/MODGJSR for image fusion.

  15. Image denoising via sparse and redundant representations over learned dictionaries.

    PubMed

    Elad, Michael; Aharon, Michal

    2006-12-01

    We address the image denoising problem, where zero-mean white and homogeneous Gaussian additive noise is to be removed from a given image. The approach taken is based on sparse and redundant representations over trained dictionaries. Using the K-SVD algorithm, we obtain a dictionary that describes the image content effectively. Two training options are considered: using the corrupted image itself, or training on a corpus of high-quality image database. Since the K-SVD is limited in handling small image patches, we extend its deployment to arbitrary image sizes by defining a global image prior that forces sparsity over patches in every location in the image. We show how such Bayesian treatment leads to a simple and effective denoising algorithm. This leads to a state-of-the-art denoising performance, equivalent and sometimes surpassing recently published leading alternative denoising methods.

  16. Learning to sense sparse signals: simultaneous sensing matrix and sparsifying dictionary optimization.

    PubMed

    Duarte-Carvajalino, Julio Martin; Sapiro, Guillermo

    2009-07-01

    Sparse signal representation, analysis, and sensing have received a lot of attention in recent years from the signal processing, optimization, and learning communities. On one hand, learning overcomplete dictionaries that facilitate a sparse representation of the data as a liner combination of a few atoms from such dictionary leads to state-of-the-art results in image and video restoration and classification. On the other hand, the framework of compressed sensing (CS) has shown that sparse signals can be recovered from far less samples than those required by the classical Shannon-Nyquist Theorem. The samples used in CS correspond to linear projections obtained by a sensing projection matrix. It has been shown that, for example, a nonadaptive random sampling matrix satisfies the fundamental theoretical requirements of CS, enjoying the additional benefit of universality. On the other hand, a projection sensing matrix that is optimally designed for a certain class of signals can further improve the reconstruction accuracy or further reduce the necessary number of samples. In this paper, we introduce a framework for the joint design and optimization, from a set of training images, of the nonparametric dictionary and the sensing matrix. We show that this joint optimization outperforms both the use of random sensing matrices and those matrices that are optimized independently of the learning of the dictionary. Particular cases of the proposed framework include the optimization of the sensing matrix for a given dictionary as well as the optimization of the dictionary for a predefined sensing environment. The presentation of the framework and its efficient numerical optimization is complemented with numerous examples on classical image datasets.

  17. Comparing the Effect of Using Monolingual versus Bilingual Dictionary on Iranian Intermediate EFL Learners' Vocabulary Learning

    ERIC Educational Resources Information Center

    Ahangari, Saeideh; Dogolsara, Shokoufeh Abbasi

    2015-01-01

    This study aimed to investigate the effect of using two types of dictionaries (monolingual and bilingual) on Iranian intermediate EFL learners' vocabulary learning. An OPT (Oxford placement test, 2001) was administered among 90 students 60 of whom were selected as the participants of this study. They were sophomore students studying English as a…

  18. Hyperspectral Imagery Super-Resolution by Compressive Sensing Inspired Dictionary Learning and Spatial-Spectral Regularization

    PubMed Central

    Huang, Wei; Xiao, Liang; Liu, Hongyi; Wei, Zhihui

    2015-01-01

    Due to the instrumental and imaging optics limitations, it is difficult to acquire high spatial resolution hyperspectral imagery (HSI). Super-resolution (SR) imagery aims at inferring high quality images of a given scene from degraded versions of the same scene. This paper proposes a novel hyperspectral imagery super-resolution (HSI-SR) method via dictionary learning and spatial-spectral regularization. The main contributions of this paper are twofold. First, inspired by the compressive sensing (CS) framework, for learning the high resolution dictionary, we encourage stronger sparsity on image patches and promote smaller coherence between the learned dictionary and sensing matrix. Thus, a sparsity and incoherence restricted dictionary learning method is proposed to achieve higher efficiency sparse representation. Second, a variational regularization model combing a spatial sparsity regularization term and a new local spectral similarity preserving term is proposed to integrate the spectral and spatial-contextual information of the HSI. Experimental results show that the proposed method can effectively recover spatial information and better preserve spectral information. The high spatial resolution HSI reconstructed by the proposed method outperforms reconstructed results by other well-known methods in terms of both objective measurements and visual evaluation. PMID:25608212

  19. Classification of satellite-based radio frequency transient recordings using sparse approximations over learned dictionaries

    NASA Astrophysics Data System (ADS)

    Moody, Daniela I.; Smith, David A.

    2014-01-01

    Ongoing research at Los Alamos National Laboratory studies the Earth's radio frequency (RF) background utilizing satellite-based RF observations of terrestrial lightning. Such impulsive events occur in the presence of additive noise and structured clutter and appear as broadband nonlinear chirps at a receiver on-orbit due to ionospheric dispersion. The Fast On-orbit Recording of Transient Events (FORTE) satellite provided a rich RF lightning database. Application of modern pattern recognition techniques to this database may further lightning research and potentially improve event discrimination capabilities for future satellite payloads. We extend two established dictionary learning algorithms, K-SVD and Hebbian, for use in classification of satellite RF data. Both algorithms allow us to learn features without relying on analytical constraints or additional knowledge about the expected signal characteristics. We use a pursuit search over the learned dictionaries to generate sparse classification features and discuss performance in terms of event classification using a nearest subspace classifier. We show a use of the two dictionary types in a mixed implementation to showcase algorithm distinctions in extracting discriminative information. We use principal component analysis to analyze and compare the learned dictionary spaces to the real data space, and we discuss some aspects of computational complexity and implementation.

  20. English Digital Dictionaries as Valuable Blended Learning Tools for Palestinian College Students

    ERIC Educational Resources Information Center

    Dwaik, Raghad A. A.

    2015-01-01

    Digital technology has become an indispensable aspect of foreign language learning around the globe especially in the case of college students who are often required to finish extensive reading assignments within a limited time period. Such pressure calls for the use of efficient tools such as digital dictionaries to help them achieve their…

  1. A Latin Functionalist Dictionary as a Self-Learning Language Device: Previous Experiences to Digitalization

    ERIC Educational Resources Information Center

    Márquez, Manuel; Chaves, Beatriz

    2016-01-01

    The application of a methodology based on S.C. Dik's Functionalist Grammar linguistic principles, which is addressed to the teaching of Latin to secondary students, has resulted in a quantitative improvement in students' acquisition process of knowledge. To do so, we have used a self-learning tool, an ad hoc dictionary, of which the use in…

  2. Segmentation of MR images via discriminative dictionary learning and sparse coding: application to hippocampus labeling.

    PubMed

    Tong, Tong; Wolz, Robin; Coupé, Pierrick; Hajnal, Joseph V; Rueckert, Daniel

    2013-08-01

    We propose a novel method for the automatic segmentation of brain MRI images by using discriminative dictionary learning and sparse coding techniques. In the proposed method, dictionaries and classifiers are learned simultaneously from a set of brain atlases, which can then be used for the reconstruction and segmentation of an unseen target image. The proposed segmentation strategy is based on image reconstruction, which is in contrast to most existing atlas-based labeling approaches that rely on comparing image similarities between atlases and target images. In addition, we propose a Fixed Discriminative Dictionary Learning for Segmentation (F-DDLS) strategy, which can learn dictionaries offline and perform segmentations online, enabling a significant speed-up in the segmentation stage. The proposed method has been evaluated for the hippocampus segmentation of 80 healthy ICBM subjects and 202 ADNI images. The robustness of the proposed method, especially of our F-DDLS strategy, was validated by training and testing on different subject groups in the ADNI database. The influence of different parameters was studied and the performance of the proposed method was also compared with that of the nonlocal patch-based approach. The proposed method achieved a median Dice coefficient of 0.879 on 202 ADNI images and 0.890 on 80 ICBM subjects, which is competitive compared with state-of-the-art methods.

  3. Recent Development of Dual-Dictionary Learning Approach in Medical Image Analysis and Reconstruction

    PubMed Central

    Wang, Bigong; Li, Liang

    2015-01-01

    As an implementation of compressive sensing (CS), dual-dictionary learning (DDL) method provides an ideal access to restore signals of two related dictionaries and sparse representation. It has been proven that this method performs well in medical image reconstruction with highly undersampled data, especially for multimodality imaging like CT-MRI hybrid reconstruction. Because of its outstanding strength, short signal acquisition time, and low radiation dose, DDL has allured a broad interest in both academic and industrial fields. Here in this review article, we summarize DDL's development history, conclude the latest advance, and also discuss its role in the future directions and potential applications in medical imaging. Meanwhile, this paper points out that DDL is still in the initial stage, and it is necessary to make further studies to improve this method, especially in dictionary training. PMID:26089956

  4. Prospective acceleration of diffusion tensor imaging with compressed sensing using adaptive dictionaries

    PubMed Central

    McClymont, Darryl; Teh, Irvin; Whittington, Hannah J.; Grau, Vicente

    2015-01-01

    Purpose Diffusion MRI requires acquisition of multiple diffusion‐weighted images, resulting in long scan times. Here, we investigate combining compressed sensing and a fast imaging sequence to dramatically reduce acquisition times in cardiac diffusion MRI. Methods Fully sampled and prospectively undersampled diffusion tensor imaging data were acquired in five rat hearts at acceleration factors of between two and six using a fast spin echo (FSE) sequence. Images were reconstructed using a compressed sensing framework, enforcing sparsity by means of decomposition by adaptive dictionaries. A tensor was fit to the reconstructed images and fiber tractography was performed. Results Acceleration factors of up to six were achieved, with a modest increase in root mean square error of mean apparent diffusion coefficient (ADC), fractional anisotropy (FA), and helix angle. At an acceleration factor of six, mean values of ADC and FA were within 2.5% and 5% of the ground truth, respectively. Marginal differences were observed in the fiber tracts. Conclusion We developed a new k‐space sampling strategy for acquiring prospectively undersampled diffusion‐weighted data, and validated a novel compressed sensing reconstruction algorithm based on adaptive dictionaries. The k‐space undersampling and FSE acquisition each reduced acquisition times by up to 6× and 8×, respectively, as compared to fully sampled spin echo imaging. Magn Reson Med 76:248–258, 2016. © 2015 Wiley Periodicals, Inc. PMID:26302363

  5. Sparse dictionary learning for resting-state fMRI analysis

    NASA Astrophysics Data System (ADS)

    Lee, Kangjoo; Han, Paul Kyu; Ye, Jong Chul

    2011-09-01

    Recently, there has been increased interest in the usage of neuroimaging techniques to investigate what happens in the brain at rest. Functional imaging studies have revealed that the default-mode network activity is disrupted in Alzheimer's disease (AD). However, there is no consensus, as yet, on the choice of analysis method for the application of resting-state analysis for disease classification. This paper proposes a novel compressed sensing based resting-state fMRI analysis tool called Sparse-SPM. As the brain's functional systems has shown to have features of complex networks according to graph theoretical analysis, we apply a graph model to represent a sparse combination of information flows in complex network perspectives. In particular, a new concept of spatially adaptive design matrix has been proposed by implementing sparse dictionary learning based on sparsity. The proposed approach shows better performance compared to other conventional methods, such as independent component analysis (ICA) and seed-based approach, in classifying the AD patients from normal using resting-state analysis.

  6. Modality-Invariant Image Classification Based on Modality Uniqueness and Dictionary Learning.

    PubMed

    Kim, Seungryong; Cai, Rui; Park, Kihong; Kim, Sunok; Sohn, Kwanghoon

    2016-12-02

    We present a unified framework for image classification of image sets taken under varying modality conditions. Our method is motivated by a key observation that the image feature distribution is simultaneously influenced by the semantic-class and the modality category label, which limits the performance of conventional methods for that task. With this insight, we introduce modality uniqueness as a discriminative weight that divides each modality cluster from all other clusters. By leveraging the modality uniqueness, our framework is formulated as unsupervised modality clustering and classifier learning based on modality-invariant similarity kernel. Specifically, in the assignment step, each training image is first assigned to the most similar cluster according to its modality. In the update step, based on the current cluster hypothesis, the modality uniqueness and the sparse dictionary are updated. These two steps are formulated in an iterative manner. Based on the final clusters, a modalityinvariant marginalized kernel is then computed, where the similarities between the reconstructed features of each modality are aggregated across all clusters. Our framework enables the reliable inference of semantic-class category for an image, even across large photometric variations. Experimental results show that our method outperforms conventional methods on various benchmarks, such as landmark identification under severely varying weather conditions, domain-adapting image classification, and RGB and near-infrared (NIR) image classification.

  7. Image denoising via group Sparse representation over learned dictionary

    NASA Astrophysics Data System (ADS)

    Cheng, Pan; Deng, Chengzhi; Wang, Shengqian; Zhang, Chunfeng

    2013-10-01

    Images are one of vital ways to get information for us. However, in the practical application, images are often subject to a variety of noise, so that solving the problem of image denoising becomes particularly important. The K-SVD algorithm can improve the denoising effect by sparse coding atoms instead of the traditional method of sparse coding dictionary. In order to further improve the effect of denoising, we propose to extended the K-SVD algorithm via group sparse representation. The key point of this method is dividing the sparse coefficients into groups, so that adjusts the correlation among the elements by controlling the size of the groups. This new approach can improve the local constraints between adjacent atoms, thereby it is very important to increase the correlation between the atoms. The experimental results show that our method has a better effect on image recovery, which is efficient to prevent the block effect and can get smoother images.

  8. Group-based single image super-resolution with online dictionary learning

    NASA Astrophysics Data System (ADS)

    Lu, Xuan; Wang, Dingwen; Shi, Wenxuan; Deng, Dexiang

    2016-12-01

    Recently, sparse representation has been successfully used in single image super-resolution reconstruction. Unlike the traditional single image super-resolution methods such as image interpolation, the super-resolution with sparse representation reconstructs image with one or several constant dictionaries learned from external databases. However, the contents can vary significantly across different patches in a single image, and the fixed dictionaries cannot suit for every patch. This paper presents a novel approach for single image super-resolution based on sparse representation, which uses group as the basic unit, and trains dictionary with external database and the input low-resolution image itself for each group to ensure that the dictionary is suitable for the patches in the group. Simultaneous sparse coding algorithm is used to accelerate the processing and improve the result. Extensive experiments on natural images show that our method achieves better results than some state-of-the-art algorithms in terms of both objective and human visual evaluations.

  9. Accelerating the reconstruction of magnetic resonance imaging by three-dimensional dual-dictionary learning using CUDA.

    PubMed

    Jiansen Li; Jianqi Sun; Ying Song; Yanran Xu; Jun Zhao

    2014-01-01

    An effective way to improve the data acquisition speed of magnetic resonance imaging (MRI) is using under-sampled k-space data, and dictionary learning method can be used to maintain the reconstruction quality. Three-dimensional dictionary trains the atoms in dictionary in the form of blocks, which can utilize the spatial correlation among slices. Dual-dictionary learning method includes a low-resolution dictionary and a high-resolution dictionary, for sparse coding and image updating respectively. However, the amount of data is huge for three-dimensional reconstruction, especially when the number of slices is large. Thus, the procedure is time-consuming. In this paper, we first utilize the NVIDIA Corporation's compute unified device architecture (CUDA) programming model to design the parallel algorithms on graphics processing unit (GPU) to accelerate the reconstruction procedure. The main optimizations operate in the dictionary learning algorithm and the image updating part, such as the orthogonal matching pursuit (OMP) algorithm and the k-singular value decomposition (K-SVD) algorithm. Then we develop another version of CUDA code with algorithmic optimization. Experimental results show that more than 324 times of speedup is achieved compared with the CPU-only codes when the number of MRI slices is 24.

  10. Projection domain denoising method based on dictionary learning for low-dose CT image reconstruction.

    PubMed

    Zhang, Haiyan; Zhang, Liyi; Sun, Yunshan; Zhang, Jingyu

    2015-01-01

    Reducing X-ray tube current is one of the widely used methods for decreasing the radiation dose. Unfortunately, the signal-to-noise ratio (SNR) of the projection data degrades simultaneously. To improve the quality of reconstructed images, a dictionary learning based penalized weighted least-squares (PWLS) approach is proposed for sinogram denoising. The weighted least-squares considers the statistical characteristic of noise and the penalty models the sparsity of sinogram based on dictionary learning. Then reconstruct CT image using filtered back projection (FBP) algorithm from the denoised sinogram. The proposed method is particularly suitable for the projection data with low SNR. Experimental results show that the proposed method can get high-quality CT images when the signal to noise ratio of projection data declines sharply.

  11. Learning to Sense Sparse Signals: Simultaneous Sensing Matrix and Sparsifying Dictionary Optimization

    DTIC Science & Technology

    2008-05-01

    dictionaries, state-of-the-art results in image denoising , inpainting, and demosaicing, have been obtained in the past [12]. This learning framework is also...14) At this point it is very tempting to obtain the SVD decomposition of and eliminate the largest component of the error matrix (see...to atom and ,T the rows of , where the zeros have been removed. Let T be the singular value decomposition ( SVD ) of R. Then, (16

  12. Contour tracking in echocardiographic sequences via sparse representation and dictionary learning.

    PubMed

    Huang, Xiaojie; Dione, Donald P; Compas, Colin B; Papademetris, Xenophon; Lin, Ben A; Bregasi, Alda; Sinusas, Albert J; Staib, Lawrence H; Duncan, James S

    2014-02-01

    This paper presents a dynamical appearance model based on sparse representation and dictionary learning for tracking both endocardial and epicardial contours of the left ventricle in echocardiographic sequences. Instead of learning offline spatiotemporal priors from databases, we exploit the inherent spatiotemporal coherence of individual data to constraint cardiac contour estimation. The contour tracker is initialized with a manual tracing of the first frame. It employs multiscale sparse representation of local image appearance and learns online multiscale appearance dictionaries in a boosting framework as the image sequence is segmented frame-by-frame sequentially. The weights of multiscale appearance dictionaries are optimized automatically. Our region-based level set segmentation integrates a spectrum of complementary multilevel information including intensity, multiscale local appearance, and dynamical shape prediction. The approach is validated on twenty-six 4D canine echocardiographic images acquired from both healthy and post-infarct canines. The segmentation results agree well with expert manual tracings. The ejection fraction estimates also show good agreement with manual results. Advantages of our approach are demonstrated by comparisons with a conventional pure intensity model, a registration-based contour tracker, and a state-of-the-art database-dependent offline dynamical shape model. We also demonstrate the feasibility of clinical application by applying the method to four 4D human data sets.

  13. Vessel segmentation and microaneurysm detection using discriminative dictionary learning and sparse representation.

    PubMed

    Javidi, Malihe; Pourreza, Hamid-Reza; Harati, Ahad

    2017-02-01

    Diabetic retinopathy (DR) is a major cause of visual impairment, and the analysis of retinal image can assist patients to take action earlier when it is more likely to be effective. The accurate segmentation of blood vessels in the retinal image can diagnose DR directly. In this paper, a novel scheme for blood vessel segmentation based on discriminative dictionary learning (DDL) and sparse representation has been proposed. The proposed system yields a strong representation which contains the semantic concept of the image. To extract blood vessel, two separate dictionaries, for vessel and non-vessel, capable of providing reconstructive and discriminative information of the retinal image are learned. In the test step, an unseen retinal image is divided into overlapping patches and classified to vessel and non-vessel patches. Then, a voting scheme is applied to generate the binary vessel map. The proposed vessel segmentation method can achieve the accuracy of 95% and a sensitivity of 75% in the same range of specificity 97% on two public datasets. The results show that the proposed method can achieve comparable results to existing methods and decrease false positive vessels in abnormal retinal images with pathological regions. Microaneurysm (MA) is the earliest sign of DR that appears as a small red dot on the surface of the retina. Despite several attempts to develop automated MA detection systems, it is still a challenging problem. In this paper, a method for MA detection, which is similar to our vessel segmentation approach, is proposed. In our method, a candidate detection algorithm based on the Morlet wavelet is applied to identify all possible MA candidates. In the next step, two discriminative dictionaries with the ability to distinguish MA from non-MA object are learned. These dictionaries are then used to classify the detected candidate objects. The evaluations indicate that the proposed MA detection method achieves higher average sensitivity about 2

  14. Compressive sensing of electrocardiogram signals by promoting sparsity on the second-order difference and by using dictionary learning.

    PubMed

    Pant, Jeevan K; Krishnan, Sridhar

    2014-04-01

    A new algorithm for the reconstruction of electrocardiogram (ECG) signals and a dictionary learning algorithm for the enhancement of its reconstruction performance for a class of signals are proposed. The signal reconstruction algorithm is based on minimizing the lp pseudo-norm of the second-order difference, called as the lp(2d) pseudo-norm, of the signal. The optimization involved is carried out using a sequential conjugate-gradient algorithm. The dictionary learning algorithm uses an iterative procedure wherein a signal reconstruction and a dictionary update steps are repeated until a convergence criterion is satisfied. The signal reconstruction step is implemented by using the proposed signal reconstruction algorithm and the dictionary update step is implemented by using the linear least-squares method. Extensive simulation results demonstrate that the proposed algorithm yields improved reconstruction performance for temporally correlated ECG signals relative to the state-of-the-art lp(1d)-regularized least-squares and Bayesian learning based algorithms. Also for a known class of signals, the reconstruction performance of the proposed algorithm can be improved by applying it in conjunction with a dictionary obtained using the proposed dictionary learning algorithm.

  15. Segmentation of Thalamus from MR images via Task-Driven Dictionary Learning

    PubMed Central

    Liu, Luoluo; Glaister, Jeffrey; Sun, Xiaoxia; Carass, Aaron; Tran, Trac D.; Prince, Jerry L.

    2016-01-01

    Automatic thalamus segmentation is useful to track changes in thalamic volume over time. In this work, we introduce a task-driven dictionary learning framework to find the optimal dictionary given a set of eleven features obtained from T1-weighted MRI and diffusion tensor imaging. In this dictionary learning framework, a linear classifier is designed concurrently to classify voxels as belonging to the thalamus or non-thalamus class. Morphological post-processing is applied to produce the final thalamus segmentation. Due to the uneven size of the training data samples for the non-thalamus and thalamus classes, a non-uniform sampling scheme is proposed to train the classifier to better discriminate between the two classes around the boundary of the thalamus. Experiments are conducted on data collected from 22 subjects with manually delineated ground truth. The experimental results are promising in terms of improvements in the Dice coefficient of the thalamus segmentation over state-of-the-art atlas-based thalamus segmentation algorithms. PMID:27601772

  16. Automated Variability Selection in Time-domain Imaging Surveys Using Sparse Representations with Learned Dictionaries

    NASA Astrophysics Data System (ADS)

    Wozniak, Przemyslaw R.; Moody, D. I.; Ji, Z.; Brumby, S. P.; Brink, H.; Richards, J.; Bloom, J. S.

    2013-01-01

    Exponential growth in data streams and discovery power delivered by modern time-domain imaging surveys creates a pressing need for variability extraction algorithms that are both fully automated and highly reliable. The current state of the art methods based on image differencing are limited by the fact that for every real variable source the algorithm returns a large number of bogus "detections" caused by atmospheric effects and instrumental signatures coupled with imperfect image processing. Here we present a new approach to this problem inspired by recent advances in computer vision and train the machine directly on pixel data. The training data set comes from the Palomar Transient Factory survey and consists of small images centered around transient candidates with known real/bogus classification. This set of 441-dimensional vectors (21x21 pixel images) is then transformed to a linear representation using the so called dictionary, an overcomplete basis constructed separately for each class. The learning algorithm captures the fact that the intrinsic dimensionality of the input images is typically much lower than the size of the dictionary, and therefore the data vectors are well approximated with a small number of dictionary elements. This sparse representation can be used to construct informative features for any suitable machine learning classifier. In our preliminary analysis automatically extracted features approach the performance of features constructed by humans using subject domain knowledge.

  17. Segmentation of thalamus from MR images via task-driven dictionary learning

    NASA Astrophysics Data System (ADS)

    Liu, Luoluo; Glaister, Jeffrey; Sun, Xiaoxia; Carass, Aaron; Tran, Trac D.; Prince, Jerry L.

    2016-03-01

    Automatic thalamus segmentation is useful to track changes in thalamic volume over time. In this work, we introduce a task-driven dictionary learning framework to find the optimal dictionary given a set of eleven features obtained from T1-weighted MRI and diffusion tensor imaging. In this dictionary learning framework, a linear classifier is designed concurrently to classify voxels as belonging to the thalamus or non-thalamus class. Morphological post-processing is applied to produce the final thalamus segmentation. Due to the uneven size of the training data samples for the non-thalamus and thalamus classes, a non-uniform sampling scheme is pro- posed to train the classifier to better discriminate between the two classes around the boundary of the thalamus. Experiments are conducted on data collected from 22 subjects with manually delineated ground truth. The experimental results are promising in terms of improvements in the Dice coefficient of the thalamus segmentation overstate-of-the-art atlas-based thalamus segmentation algorithms.

  18. Noisy image magnification with total variation regularization and order-changed dictionary learning

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Chang, Zhiguo; Fan, Jiulun; Zhao, Xiaoqiang; Wu, Xiaomin; Wang, Yanzi

    2015-12-01

    Noisy low resolution (LR) images are always obtained in real applications, but many existing image magnification algorithms can not get good result from a noisy LR image. We propose a two-step image magnification algorithm to solve this problem. The proposed algorithm takes the advantages of both regularization-based method and learning-based method. The first step is based on total variation (TV) regularization and the second step is based on sparse representation. In the first step, we add a constraint on the TV regularization model to magnify the LR image and at the same time to suppress the noise in it. In the second step, we propose an order-changed dictionary training algorithm to train the dictionaries which is dominated by texture details. Experimental results demonstrate that the proposed algorithm performs better than many other algorithms when the noise is not serious. The proposed algorithm can also provide better visual quality on natural LR images.

  19. Learning Low-Rank Class-Specific Dictionary and Sparse Intra-Class Variant Dictionary for Face Recognition

    PubMed Central

    Tang, Xin; Feng, Guo-can; Li, Xiao-xin; Cai, Jia-xin

    2015-01-01

    Face recognition is challenging especially when the images from different persons are similar to each other due to variations in illumination, expression, and occlusion. If we have sufficient training images of each person which can span the facial variations of that person under testing conditions, sparse representation based classification (SRC) achieves very promising results. However, in many applications, face recognition often encounters the small sample size problem arising from the small number of available training images for each person. In this paper, we present a novel face recognition framework by utilizing low-rank and sparse error matrix decomposition, and sparse coding techniques (LRSE+SC). Firstly, the low-rank matrix recovery technique is applied to decompose the face images per class into a low-rank matrix and a sparse error matrix. The low-rank matrix of each individual is a class-specific dictionary and it captures the discriminative feature of this individual. The sparse error matrix represents the intra-class variations, such as illumination, expression changes. Secondly, we combine the low-rank part (representative basis) of each person into a supervised dictionary and integrate all the sparse error matrix of each individual into a within-individual variant dictionary which can be applied to represent the possible variations between the testing and training images. Then these two dictionaries are used to code the query image. The within-individual variant dictionary can be shared by all the subjects and only contribute to explain the lighting conditions, expressions, and occlusions of the query image rather than discrimination. At last, a reconstruction-based scheme is adopted for face recognition. Since the within-individual dictionary is introduced, LRSE+SC can handle the problem of the corrupted training data and the situation that not all subjects have enough samples for training. Experimental results show that our method achieves the

  20. Application of Unsupervised Clustering using Sparse Representations on Learned Dictionaries to develop Land Cover Classifications in Arctic Landscapes

    NASA Astrophysics Data System (ADS)

    Rowland, J. C.; Moody, D. I.; Brumby, S.; Gangodagamage, C.

    2012-12-01

    Techniques for automated feature extraction, including neuroscience-inspired machine vision, are of great interest for landscape characterization and change detection in support of global climate change science and modeling. Successful application of novel unsupervised feature extraction and clustering algorithms for use in Land Cover Classification requires the ability to determine what landscape attributes are represented by automated clustering. A closely related challenge is learning how to precondition the input data streams to the unsupervised classification algorithms in order to obtain clusters that represent Land Cover category of relevance to landsurface change and modeling applications. We present results from an ongoing effort to apply novel clustering methodologies developed primarily for neuroscience machine vision applications to the environmental sciences. We use a Hebbian learning rule to build spectral-textural dictionaries that are adapted to the data. We learn our dictionaries from millions of overlapping image patches and then use a pursuit search to generate sparse classification features. These sparse representations of pixel patches are used to perform unsupervised k-means clustering. In our application, we use 8-band multispectral Worldview-2 data from three arctic study areas: Barrow, Alaska; the Selawik River, Alaska; and a watershed near the Mackenzie River delta in northwest Canada. Our goal is to develop a robust classification methodology that will allow for the automated discretization of the landscape into distinct units based on attributes such as vegetation, surface hydrological properties (e.g. soil moisture and inundation), and topographic/geomorphic characteristics. The challenge of developing a meaningful land cover classification includes both learning how optimize the clustering algorithm and successfully interpreting the results. In applying the unsupervised clustering, we have the flexibility of selecting both the window

  1. Seismic detection method for small-scale discontinuities based on dictionary learning and sparse representation

    NASA Astrophysics Data System (ADS)

    Yu, Caixia; Zhao, Jingtao; Wang, Yanfei

    2017-02-01

    Studying small-scale geologic discontinuities, such as faults, cavities and fractures, plays a vital role in analyzing the inner conditions of reservoirs, as these geologic structures and elements can provide storage spaces and migration pathways for petroleum. However, these geologic discontinuities have weak energy and are easily contaminated with noises, and therefore effectively extracting them from seismic data becomes a challenging problem. In this paper, a method for detecting small-scale discontinuities using dictionary learning and sparse representation is proposed that can dig up high-resolution information by sparse coding. A K-SVD (K-means clustering via Singular Value Decomposition) sparse representation model that contains two stage of iteration procedure: sparse coding and dictionary updating, is suggested for mathematically expressing these seismic small-scale discontinuities. Generally, the orthogonal matching pursuit (OMP) algorithm is employed for sparse coding. However, the method can only update one dictionary atom at one time. In order to improve calculation efficiency, a regularized version of OMP algorithm is presented for simultaneously updating a number of atoms at one time. Two numerical experiments demonstrate the validity of the developed method for clarifying and enhancing small-scale discontinuities. The field example of carbonate reservoirs further demonstrates its effectiveness in revealing masked tiny faults and small-scale cavities.

  2. Adaptive manifold learning.

    PubMed

    Zhang, Zhenyue; Wang, Jing; Zha, Hongyuan

    2012-02-01

    Manifold learning algorithms seek to find a low-dimensional parameterization of high-dimensional data. They heavily rely on the notion of what can be considered as local, how accurately the manifold can be approximated locally, and, last but not least, how the local structures can be patched together to produce the global parameterization. In this paper, we develop algorithms that address two key issues in manifold learning: 1) the adaptive selection of the local neighborhood sizes when imposing a connectivity structure on the given set of high-dimensional data points and 2) the adaptive bias reduction in the local low-dimensional embedding by accounting for the variations in the curvature of the manifold as well as its interplay with the sampling density of the data set. We demonstrate the effectiveness of our methods for improving the performance of manifold learning algorithms using both synthetic and real-world data sets.

  3. Multiscale Sparse Image Representation with Learned Dictionaries (PREPRINT)

    DTIC Science & Technology

    2007-01-01

    age processing, e.g., image denoising [5]. In [1] the K- SVD is proposed for learning a single-scale dic- tionary for sparse representation of image...performance we obtain. 2. THE SINGLE-SCALE K- SVD DENOISING ALGORITHM In this section, we briefly review the main ideas of the K- SVD frame- work for sparse...weighted average: x̂ = “ λI + X ij R T ijRij ”−1“ λy + X ij R T ijD̂α̂ij ” . (4) Fig. 1. The single-scale K- SVD -based image denoising algorithm. Fig

  4. Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Yin, Xindao; Shi, Luyao; Shu, Huazhong; Luo, Limin; Coatrieux, Jean-Louis; Toumoulin, Christine

    2013-08-01

    In abdomen computed tomography (CT), repeated radiation exposures are often inevitable for cancer patients who receive surgery or radiotherapy guided by CT images. Low-dose scans should thus be considered in order to avoid the harm of accumulative x-ray radiation. This work is aimed at improving abdomen tumor CT images from low-dose scans by using a fast dictionary learning (DL) based processing. Stemming from sparse representation theory, the proposed patch-based DL approach allows effective suppression of both mottled noise and streak artifacts. The experiments carried out on clinical data show that the proposed method brings encouraging improvements in abdomen low-dose CT images with tumors.

  5. Subject-Specific Sparse Dictionary Learning for Atlas-Based Brain MRI Segmentation.

    PubMed

    Roy, Snehashis; He, Qing; Sweeney, Elizabeth; Carass, Aaron; Reich, Daniel S; Prince, Jerry L; Pham, Dzung L

    2015-09-01

    Quantitative measurements from segmentations of human brain magnetic resonance (MR) images provide important biomarkers for normal aging and disease progression. In this paper, we propose a patch-based tissue classification method from MR images that uses a sparse dictionary learning approach and atlas priors. Training data for the method consists of an atlas MR image, prior information maps depicting where different tissues are expected to be located, and a hard segmentation. Unlike most atlas-based classification methods that require deformable registration of the atlas priors to the subject, only affine registration is required between the subject and training atlas. A subject-specific patch dictionary is created by learning relevant patches from the atlas. Then the subject patches are modeled as sparse combinations of learned atlas patches leading to tissue memberships at each voxel. The combination of prior information in an example-based framework enables us to distinguish tissues having similar intensities but different spatial locations. We demonstrate the efficacy of the approach on the application of whole-brain tissue segmentation in subjects with healthy anatomy and normal pressure hydrocephalus, as well as lesion segmentation in multiple sclerosis patients. For each application, quantitative comparisons are made against publicly available state-of-the art approaches.

  6. SU-E-I-41: Dictionary Learning Based Quantitative Reconstruction for Low-Dose Dual-Energy CT (DECT)

    SciTech Connect

    Xu, Q; Xing, L; Xiong, G; Elmore, K; Min, J

    2015-06-15

    Purpose: DECT collects two sets of projection data under higher and lower energies. With appropriates composition methods on linear attenuation coefficients, quantitative information about the object, such as density, can be obtained. In reality, one of the important problems in DECT is the radiation dose due to doubled scans. This work is aimed at establishing a dictionary learning based reconstruction framework for DECT for improved image quality while reducing the imaging dose. Methods: In our method, two dictionaries were learned respectively from the high-energy and lowenergy image datasets of similar objects under normal dose in advance. The linear attenuation coefficient was decomposed into two basis components with material based composition method. An iterative reconstruction framework was employed. Two basis components were alternately updated with DECT datasets and dictionary learning based sparse constraints. After one updating step under the dataset fidelity constraints, both high-energy and low-energy images can be obtained from the two basis components. Sparse constraints based on the learned dictionaries were applied to the high- and low-energy images to update the two basis components. The iterative calculation continues until a pre-set number of iteration was reached. Results: We evaluated the proposed dictionary learning method with dual energy images collected using a DECT scanner. We re-projected the projection data with added Poisson noise to reflect the low-dose situation. The results obtained by the proposed method were compared with that obtained using FBP based method and TV based method. It was found that the proposed approach yield better results than other methods with higher resolution and less noise. Conclusion: The use of dictionary learned from DECT images under normal dose is valuable and leads to improved results with much lower imaging dose.

  7. Heterogeneous iris image hallucination using sparse representation on a learned heterogeneous patch dictionary

    NASA Astrophysics Data System (ADS)

    Li, Yung-Hui; Zheng, Bo-Ren; Ji, Dai-Yan; Tien, Chung-Hao; Liu, Po-Tsun

    2014-09-01

    Cross sensor iris matching may seriously degrade the recognition performance because of the sensor mis-match problem of iris images between the enrollment and test stage. In this paper, we propose two novel patch-based heterogeneous dictionary learning method to attack this problem. The first method applies the latest sparse representation theory while the second method tries to learn the correspondence relationship through PCA in heterogeneous patch space. Both methods learn the basic atoms in iris textures across different image sensors and build connections between them. After such connections are built, at test stage, it is possible to hallucinate (synthesize) iris images across different sensors. By matching training images with hallucinated images, the recognition rate can be successfully enhanced. The experimental results showed the satisfied results both visually and in terms of recognition rate. Experimenting with an iris database consisting of 3015 images, we show that the EER is decreased 39.4% relatively by the proposed method.

  8. Undercomplete learned dictionaries for land cover classification in multispectral imagery of Arctic landscapes using CoSA: clustering of sparse approximations

    NASA Astrophysics Data System (ADS)

    Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; Gangodagamage, Chandana

    2013-05-01

    Techniques for automated feature extraction, including neuroscience-inspired machine vision, are of great interest for landscape characterization and change detection in support of global climate change science and modeling. We present results from an ongoing effort to extend machine vision methodologies to the environmental sciences, using state-of-theart adaptive signal processing, combined with compressive sensing and machine learning techniques. We use a Hebbian learning rule to build undercomplete spectral-textural dictionaries that are adapted to the data. We learn our dictionaries from millions of overlapping multispectral image patches and then use a pursuit search to generate classification features. Land cover labels are automatically generated using our CoSA algorithm: unsupervised Clustering of Sparse Approximations. We demonstrate our method using multispectral Worldview-2 data from three Arctic study areas: Barrow, Alaska; the Selawik River, Alaska; and a watershed near the Mackenzie River delta in northwest Canada. Our goal is to develop a robust classification methodology that will allow for the automated discretization of the landscape into distinct units based on attributes such as vegetation, surface hydrological properties, and geomorphic characteristics. To interpret and assign land cover categories to the clusters we both evaluate the spectral properties of the clusters and compare the clusters to both field- and remote sensing-derived classifications of landscape attributes. Our work suggests that neuroscience-based models are a promising approach to practical pattern recognition problems in remote sensing.

  9. English-Dari Dictionary.

    ERIC Educational Resources Information Center

    Peace Corps, Washington, DC.

    This 7,000-word dictionary is designed for English speakers learning Dari. The dictionary consists of two parts, the first a reference to find words easily translatable from one language to the other, the second a list of idioms and short phrases commonly used in everyday conversation, yet not readily translatable. Many of these entries have no…

  10. Coupled Dictionary Learning for the Detail-Enhanced Synthesis of 3-D Facial Expressions.

    PubMed

    Liang, Haoran; Liang, Ronghua; Song, Mingli; He, Xiaofei

    2016-04-01

    The desire to reconstruct 3-D face models with expressions from 2-D face images fosters increasing interest in addressing the problem of face modeling. This task is important and challenging in the field of computer animation. Facial contours and wrinkles are essential to generate a face with a certain expression; however, these details are generally ignored or are not seriously considered in previous studies on face model reconstruction. Thus, we employ coupled radius basis function networks to derive an intermediate 3-D face model from a single 2-D face image. To optimize the 3-D face model further through landmarks, a coupled dictionary that is related to 3-D face models and their corresponding 3-D landmarks is learned from the given training set through local coordinate coding. Another coupled dictionary is then constructed to bridge the 2-D and 3-D landmarks for the transfer of vertices on the face model. As a result, the final 3-D face can be generated with the appropriate expression. In the testing phase, the 2-D input faces are converted into 3-D models that display different expressions. Experimental results indicate that the proposed approach to facial expression synthesis can obtain model details more effectively than previous methods can.

  11. Dictionaries Defined.

    ERIC Educational Resources Information Center

    Kister, Ken

    1992-01-01

    Describes the growing number of dictionaries available to reference librarians, discusses factors that have led to the need for more dictionaries, and provides buying guidelines to help in selection decisions. Electronic versions of various dictionaries are described, and a sidebar examines the "American Heritage Dictionary" revisions.…

  12. RoLo: A Dictionary Interface that Minimizes Extraneous Cognitive Load of Lookup and Supports Incidental and Incremental Learning of Vocabulary

    ERIC Educational Resources Information Center

    Dang, Thanh-Dung; Chen, Gwo-Dong; Dang, Giao; Li, Liang-Yi; Nurkhamid

    2013-01-01

    Dictionary use can improve reading comprehension and incidental vocabulary learning. Nevertheless, great extraneous cognitive load imposed by the search process may reduce or even prevent the improvement. With the help of technology, dictionary users can now instantly access the meaning list of a searched word using a mouse click. However, they…

  13. From heuristic optimization to dictionary learning: a review and comprehensive comparison of image denoising algorithms.

    PubMed

    Shao, Ling; Yan, Ruomei; Li, Xuelong; Liu, Yan

    2014-07-01

    Image denoising is a well explored topic in the field of image processing. In the past several decades, the progress made in image denoising has benefited from the improved modeling of natural images. In this paper, we introduce a new taxonomy based on image representations for a better understanding of state-of-the-art image denoising techniques. Within each category, several representative algorithms are selected for evaluation and comparison. The experimental results are discussed and analyzed to determine the overall advantages and disadvantages of each category. In general, the nonlocal methods within each category produce better denoising results than local ones. In addition, methods based on overcomplete representations using learned dictionaries perform better than others. The comprehensive study in this paper would serve as a good reference and stimulate new research ideas in image denoising.

  14. Image super-resolution reconstruction via RBM-based joint dictionary learning and sparse representation

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaohui; Liu, Anran; Lei, Qian

    2015-12-01

    In this paper, we propose a method for single image super-resolution(SR). Given the training set produced from large amount of high-low resolution image patches, an over-complete joint dictionary is firstly learned from a pair of high-low resolution image feature space based on Restricted Boltzmann Machines (RBM). Then for each low resolution image patch densely extracted from an up-scaled low resolution input image , its high resolution image patch can be reconstructed based on sparse representation. Finally, the reconstructed image patches are overlapped to form a large image, and a high resolution image can be achieved by means of iterated residual image compensation. Experimental results verify the effectiveness of the proposed method.

  15. TU-F-BRF-06: 3D Pancreas MRI Segmentation Using Dictionary Learning and Manifold Clustering

    SciTech Connect

    Gou, S; Rapacchi, S; Hu, P; Sheng, K

    2014-06-15

    Purpose: The recent advent of MRI guided radiotherapy machines has lent an exciting platform for soft tissue target localization during treatment. However, tools to efficiently utilize MRI images for such purpose have not been developed. Specifically, to efficiently quantify the organ motion, we develop an automated segmentation method using dictionary learning and manifold clustering (DLMC). Methods: Fast 3D HASTE and VIBE MR images of 2 healthy volunteers and 3 patients were acquired. A bounding box was defined to include pancreas and surrounding normal organs including the liver, duodenum and stomach. The first slice of the MRI was used for dictionary learning based on mean-shift clustering and K-SVD sparse representation. Subsequent images were iteratively reconstructed until the error is less than a preset threshold. The preliminarily segmentation was subject to the constraints of manifold clustering. The segmentation results were compared with the mean shift merging (MSM), level set (LS) and manual segmentation methods. Results: DLMC resulted in consistently higher accuracy and robustness than comparing methods. Using manual contours as the ground truth, the mean Dices indices for all subjects are 0.54, 0.56 and 0.67 for MSM, LS and DLMC, respectively based on the HASTE image. The mean Dices indices are 0.70, 0.77 and 0.79 for the three methods based on VIBE images. DLMC is clearly more robust on the patients with the diseased pancreas while LS and MSM tend to over-segment the pancreas. DLMC also achieved higher sensitivity (0.80) and specificity (0.99) combining both imaging techniques. LS achieved equivalent sensitivity on VIBE images but was more computationally inefficient. Conclusion: We showed that pancreas and surrounding normal organs can be reliably segmented based on fast MRI using DLMC. This method will facilitate both planning volume definition and imaging guidance during treatment.

  16. Task-Driven Dictionary Learning for Hyperspectral Image Classification with Structured Sparsity Constraints

    DTIC Science & Technology

    2015-02-03

    be achieved if the designed dictionary satisfies the above properties . Unfortunately, in practice, the HSI dictionary usually does not have the above... properties due to the small number of bluehighly correlated labelled training samples [6]. Due to these undesired properties of the HSI dictionary...those used in classical SRC. However, a desired and accurate solution is not guaranteed [32] because the cost function can be minimized by decreasing the

  17. Performance analysis of model based iterative reconstruction with dictionary learning in transportation security CT

    NASA Astrophysics Data System (ADS)

    Haneda, Eri; Luo, Jiajia; Can, Ali; Ramani, Sathish; Fu, Lin; De Man, Bruno

    2016-05-01

    In this study, we implement and compare model based iterative reconstruction (MBIR) with dictionary learning (DL) over MBIR with pairwise pixel-difference regularization, in the context of transportation security. DL is a technique of sparse signal representation using an over complete dictionary which has provided promising results in image processing applications including denoising,1 as well as medical CT reconstruction.2 It has been previously reported that DL produces promising results in terms of noise reduction and preservation of structural details, especially for low dose and few-view CT acquisitions.2 A distinguishing feature of transportation security CT is that scanned baggage may contain items with a wide range of material densities. While medical CT typically scans soft tissues, blood with and without contrast agents, and bones, luggage typically contains more high density materials (i.e. metals and glass), which can produce severe distortions such as metal streaking artifacts. Important factors of security CT are the emphasis on image quality such as resolution, contrast, noise level, and CT number accuracy for target detection. While MBIR has shown exemplary performance in the trade-off of noise reduction and resolution preservation, we demonstrate that DL may further improve this trade-off. In this study, we used the KSVD-based DL3 combined with the MBIR cost-minimization framework and compared results to Filtered Back Projection (FBP) and MBIR with pairwise pixel-difference regularization. We performed a parameter analysis to show the image quality impact of each parameter. We also investigated few-view CT acquisitions where DL can show an additional advantage relative to pairwise pixel difference regularization.

  18. Skin Dictionary

    MedlinePlus

    ... your skin, hair, and nails Skin dictionary Camp Discovery Good Skin Knowledge lesson plans and activities Video library Find a ... your skin, hair, and nails Skin dictionary Camp Discovery Good Skin Knowledge lesson plans and activities Video library Find a ...

  19. Learning the Language of Difference: The Dictionary in the High School.

    ERIC Educational Resources Information Center

    Willinsky, John

    1987-01-01

    Reports on dictionaries' power to misrepresent gender. Examines the definitions of three terms (clitoris, penis, and vagina) in eight leading high school dictionaries. Concludes that the absence of certain female gender-related terms represents another instance of institutionalized silence about the experience of women. (MM)

  20. Adaptive Learning and Risk Taking

    ERIC Educational Resources Information Center

    Denrell, Jerker

    2007-01-01

    Humans and animals learn from experience by reducing the probability of sampling alternatives with poor past outcomes. Using simulations, J. G. March (1996) illustrated how such adaptive sampling could lead to risk-averse as well as risk-seeking behavior. In this article, the author develops a formal theory of how adaptive sampling influences risk…

  1. Automatic apical view classification of echocardiograms using a discriminative learning dictionary.

    PubMed

    Khamis, Hanan; Zurakhov, Grigoriy; Azar, Vered; Raz, Adi; Friedman, Zvi; Adam, Dan

    2017-02-01

    As part of striving towards fully automatic cardiac functional assessment of echocardiograms, automatic classification of their standard views is essential as a pre-processing stage. The similarity among three of the routinely acquired longitudinal scans: apical two-chamber (A2C), apical four-chamber (A4C) and apical long-axis (ALX), and the noise commonly inherent to these scans - make the classification a challenge. Here we introduce a multi-stage classification algorithm that employs spatio-temporal feature extraction (Cuboid Detector) and supervised dictionary learning (LC-KSVD) approaches to uniquely enhance the automatic recognition and classification accuracy of echocardiograms. The algorithm incorporates both discrimination and labelling information to allow a discriminative and sparse representation of each view. The advantage of the spatio-temporal feature extraction as compared to spatial processing is then validated. A set of 309 clinical clips (103 for each view), were labeled by 2 experts. A subset of 70 clips of each class was used as a training set and the rest as a test set. The recognition accuracies achieved were: 97%, 91% and 97% of A2C, A4C and ALX respectively, with average recognition rate of 95%. Thus, automatic classification of echocardiogram views seems promising, despite the inter-view similarity between the classes and intra-view variability among clips belonging to the same class.

  2. Non-stationary noise estimation using dictionary learning and Gaussian mixture models

    NASA Astrophysics Data System (ADS)

    Hughes, James M.; Rockmore, Daniel N.; Wang, Yang

    2014-02-01

    Stationarity of the noise distribution is a common assumption in image processing. This assumption greatly simplifies denoising estimators and other model parameters and consequently assuming stationarity is often a matter of convenience rather than an accurate model of noise characteristics. The problematic nature of this assumption is exacerbated in real-world contexts, where noise is often highly non-stationary and can possess time- and space-varying characteristics. Regardless of model complexity, estimating the parameters of noise dis- tributions in digital images is a difficult task, and estimates are often based on heuristic assumptions. Recently, sparse Bayesian dictionary learning methods were shown to produce accurate estimates of the level of additive white Gaussian noise in images with minimal assumptions. We show that a similar model is capable of accu- rately modeling certain kinds of non-stationary noise processes, allowing for space-varying noise in images to be estimated, detected, and removed. We apply this modeling concept to several types of non-stationary noise and demonstrate the model's effectiveness on real-world problems, including denoising and segmentation of images according to noise characteristics, which has applications in image forensics.

  3. Noise reduction by sparse representation in learned dictionaries for application to blind tip reconstruction problem

    NASA Astrophysics Data System (ADS)

    Jóźwiak, Grzegorz

    2017-03-01

    Scanning probe microscopy (SPM) is a well known tool used for the investigation of phenomena in objects in the nanometer size range. However, quantitative results are limited by the size and the shape of the nanoprobe used in experiments. Blind tip reconstruction (BTR) is a very popular method used to reconstruct the upper boundary on the shape of the probe. This method is known to be very sensitive to all kinds of interference in the atomic force microscopy (AFM) image. Due to mathematical morphology calculus, the interference makes the BTR results biased rather than randomly disrupted. For this reason, the careful choice of methods used for image enhancement and denoising, as well as the shape of a calibration sample are very important. In the paper, the results of thorough investigations on the shape of a calibration standard are shown. A novel shape is proposed and a tool for the simulation of AFM images of this calibration standard was designed. It was shown that careful choice of the initial tip allows us to use images of hole structures to blindly reconstruct the shape of a probe. The simulator was used to test the impact of modern filtration algorithms on the BTR process. These techniques are based on sparse approximation with function dictionaries learned on the basis of an image itself. Various learning algorithms and parameters were tested to determine the optimal combination for sparse representation. It was observed that the strong reduction of noise does not guarantee strong reduction in reconstruction errors. It seems that further improvements will be possible by the combination of BTR and a noise reduction procedure.

  4. Response monitoring using quantitative ultrasound methods and supervised dictionary learning in locally advanced breast cancer

    NASA Astrophysics Data System (ADS)

    Gangeh, Mehrdad J.; Fung, Brandon; Tadayyon, Hadi; Tran, William T.; Czarnota, Gregory J.

    2016-03-01

    A non-invasive computer-aided-theragnosis (CAT) system was developed for the early assessment of responses to neoadjuvant chemotherapy in patients with locally advanced breast cancer. The CAT system was based on quantitative ultrasound spectroscopy methods comprising several modules including feature extraction, a metric to measure the dissimilarity between "pre-" and "mid-treatment" scans, and a supervised learning algorithm for the classification of patients to responders/non-responders. One major requirement for the successful design of a high-performance CAT system is to accurately measure the changes in parametric maps before treatment onset and during the course of treatment. To this end, a unified framework based on Hilbert-Schmidt independence criterion (HSIC) was used for the design of feature extraction from parametric maps and the dissimilarity measure between the "pre-" and "mid-treatment" scans. For the feature extraction, HSIC was used to design a supervised dictionary learning (SDL) method by maximizing the dependency between the scans taken from "pre-" and "mid-treatment" with "dummy labels" given to the scans. For the dissimilarity measure, an HSIC-based metric was employed to effectively measure the changes in parametric maps as an indication of treatment effectiveness. The HSIC-based feature extraction and dissimilarity measure used a kernel function to nonlinearly transform input vectors into a higher dimensional feature space and computed the population means in the new space, where enhanced group separability was ideally obtained. The results of the classification using the developed CAT system indicated an improvement of performance compared to a CAT system with basic features using histogram of intensity.

  5. Extreme learning machine and adaptive sparse representation for image classification.

    PubMed

    Cao, Jiuwen; Zhang, Kai; Luo, Minxia; Yin, Chun; Lai, Xiaoping

    2016-09-01

    Recent research has shown the speed advantage of extreme learning machine (ELM) and the accuracy advantage of sparse representation classification (SRC) in the area of image classification. Those two methods, however, have their respective drawbacks, e.g., in general, ELM is known to be less robust to noise while SRC is known to be time-consuming. Consequently, ELM and SRC complement each other in computational complexity and classification accuracy. In order to unify such mutual complementarity and thus further enhance the classification performance, we propose an efficient hybrid classifier to exploit the advantages of ELM and SRC in this paper. More precisely, the proposed classifier consists of two stages: first, an ELM network is trained by supervised learning. Second, a discriminative criterion about the reliability of the obtained ELM output is adopted to decide whether the query image can be correctly classified or not. If the output is reliable, the classification will be performed by ELM; otherwise the query image will be fed to SRC. Meanwhile, in the stage of SRC, a sub-dictionary that is adaptive to the query image instead of the entire dictionary is extracted via the ELM output. The computational burden of SRC thus can be reduced. Extensive experiments on handwritten digit classification, landmark recognition and face recognition demonstrate that the proposed hybrid classifier outperforms ELM and SRC in classification accuracy with outstanding computational efficiency.

  6. Dual-Dictionary Learning-Based Iterative Image Reconstruction for Spectral Computed Tomography Application

    PubMed Central

    Zhao, Bo; Ding, Huanjun; Lu, Yang; Wang, Ge; Zhao, Jun; Molloi, Sabee

    2015-01-01

    In this study, we investigated the effectiveness of a novel Iterative Reconstruction (IR) method coupled with Dual-Dictionary Learning (DDL) for image reconstruction in a dedicated breast Computed Tomography (CT) system based on a Cadmium-Zinc-Telluride (CZT) photon-counting detector and compared it to the Filtered-Back-Projection (FBP) method with the ultimate goal of reducing the number of projections necessary for reconstruction without sacrificing image quality. Postmortem breast samples were scanned in a fan-beam CT system and were reconstructed from 100–600 projections with both IR and FBP methods. The Contrast-to-Noise Ratio (CNR) between the glandular and adipose tissues of the postmortem breast samples was calculated to compare the quality of images reconstructed from IR and FBP. The spatial resolution of the two reconstruction techniques was evaluated using Aluminum (Al) wires with diameters of 643, 813, 1020, 1290 and 1630 µm in a plastic epoxy resin phantom with diameter of 13 cm. Both the spatial resolution and the CNR were improved with IR compared to FBP for the images reconstructed from the same number of projections. In comparison with FBP reconstruction, the CNR was improved from 3.4 to 7.5 by using the IR method with 6-fold fewer projections while maintaining the same spatial resolution. The study demonstrated that the IR method coupled with DDL could significantly reduce the required number of projections for a CT reconstruction compared to FBP method while achieving a much better CNR and maintaining the same spatial resolution. From this, the radiation dose and scanning time can potentially be reduced by a factor of approximately 6 by using this IR method for image reconstruction in a CZT-based breast CT system. PMID:23192234

  7. Haida Dictionary.

    ERIC Educational Resources Information Center

    Lawrence, Erma, Comp.

    This Haida-English dictionary introduces the Alaskan Haida alphabet and gives Haida words with English translation and the English equivalent pronunciation. The first half of the dictionary is an introduction to the sound system and grammar of Haida. Short discussions of the following topics are included: vowels; consonants; semivowels; rounded…

  8. Interoperability in Personalized Adaptive Learning

    ERIC Educational Resources Information Center

    Aroyo, Lora; Dolog, Peter; Houben, Geert-Jan; Kravcik, Milos; Naeve, Ambjorn; Nilsson, Mikael; Wild, Fridolin

    2006-01-01

    Personalized adaptive learning requires semantic-based and context-aware systems to manage the Web knowledge efficiently as well as to achieve semantic interoperability between heterogeneous information resources and services. The technological and conceptual differences can be bridged either by means of standards or via approaches based on the…

  9. Improving abdomen tumor low-dose CT images using dictionary learning based patch processing and unsharp filtering.

    PubMed

    Chen, Yang; Yu, Fei; Luo, Limin; Toumoulin, Christine

    2013-01-01

    Reducing patient radiation dose, while maintaining a high-quality image, is a major challenge in Computed Tomography (CT). The purpose of this work is to improve abdomen tumor low-dose CT (LDCT) image quality by using a two-step strategy: a first patch-wise non linear processing is first applied to suppress the noise and artifacts, that is based on a sparsity prior in term of a learned dictionary, then an unsharp filtering aiming to enhance the contrast of tissues and compensate the contrast loss caused by the DL processing. Preliminary results show that the proposed method is effective in suppressing mottled noise as well as improving tumor detectability.

  10. Adaptively Ubiquitous Learning in Campus Math Path

    ERIC Educational Resources Information Center

    Shih, Shu-Chuan; Kuo, Bor-Chen; Liu, Yu-Lung

    2012-01-01

    The purposes of this study are to develop and evaluate the instructional model and learning system which integrate ubiquitous learning, computerized adaptive diagnostic testing system and campus math path learning. The researcher first creates a ubiquitous learning environment which is called "adaptive U-learning math path system". This…

  11. Online Dictionaries and the Teaching/Learning of English in the Expanding Circle

    ERIC Educational Resources Information Center

    Fuertes-Olivera, Pedro A.; Cabello de Alba, Beatriz Perez

    2012-01-01

    This article follows current research on English for Specific Business Purposes, which focuses on the analysis of contextualized business genres and on identifying the strategies that can be associated with effective business communication (Nickerson, 2005). It explores whether free internet dictionaries can be used for promoting effective…

  12. Vocabulary Learning from Dictionary Referencing and Language Feedback in EFL Translational Writing

    ERIC Educational Resources Information Center

    Bruton, Anthony

    2007-01-01

    A significant, but rarely posed, question in EFL writing is what new language the writers assimilate from the process. In this study, a group of intermediate EFL students in a state secondary school in Spain completed an L1(Spanish)-to-FL(English) written translation task on their own, with bilingual dictionary/glossary support. Three days later,…

  13. The Multimedia Dictionary of American Sign Language: Learning Lessons About Language, Technology, and Business.

    ERIC Educational Resources Information Center

    Wilcox, Sherman

    2003-01-01

    Reports on the the Multimedia Dictionary of American Sign language, which was was conceived in he late 1980s as a melding of the pioneering work in American Sign language lexicography that had been carried out decades earlier and the newly emerging computer technologies that were integrating use of graphical user-interface designs, rapidly…

  14. The Influence of Electronic Dictionaries on Vocabulary Knowledge Extension

    ERIC Educational Resources Information Center

    Rezaei, Mojtaba; Davoudi, Mohammad

    2016-01-01

    Vocabulary learning needs special strategies in language learning process. The use of dictionaries is a great help in vocabulary learning and nowadays the emergence of electronic dictionaries has added a new and valuable resource for vocabulary learning. The present study aims to explore the influence of Electronic Dictionaries (ED) Vs. Paper…

  15. Adaptable, Personalised E-Learning Incorporating Learning Styles

    ERIC Educational Resources Information Center

    Peter, Sophie E.; Bacon, Elizabeth; Dastbaz, Mohammad

    2010-01-01

    Purpose: The purpose of this paper is to discuss how learning styles and theories are currently used within personalised adaptable e-learning adaptive systems. This paper then aims to describe the e-learning platform iLearn and how this platform is designed to incorporate learning styles as part of the personalisation offered by the system.…

  16. Sparsity-aware tight frame learning with adaptive subspace recognition for multiple fault diagnosis

    NASA Astrophysics Data System (ADS)

    Zhang, Han; Chen, Xuefeng; Du, Zhaohui; Yang, Boyuan

    2017-09-01

    It is a challenging problem to design excellent dictionaries to sparsely represent diverse fault information and simultaneously discriminate different fault sources. Therefore, this paper describes and analyzes a novel multiple feature recognition framework which incorporates the tight frame learning technique with an adaptive subspace recognition strategy. The proposed framework consists of four stages. Firstly, by introducing the tight frame constraint into the popular dictionary learning model, the proposed tight frame learning model could be formulated as a nonconvex optimization problem which can be solved by alternatively implementing hard thresholding operation and singular value decomposition. Secondly, the noises are effectively eliminated through transform sparse coding techniques. Thirdly, the denoised signal is decoupled into discriminative feature subspaces by each tight frame filter. Finally, in guidance of elaborately designed fault related sensitive indexes, latent fault feature subspaces can be adaptively recognized and multiple faults are diagnosed simultaneously. Extensive numerical experiments are sequently implemented to investigate the sparsifying capability of the learned tight frame as well as its comprehensive denoising performance. Most importantly, the feasibility and superiority of the proposed framework is verified through performing multiple fault diagnosis of motor bearings. Compared with the state-of-the-art fault detection techniques, some important advantages have been observed: firstly, the proposed framework incorporates the physical prior with the data-driven strategy and naturally multiple fault feature with similar oscillation morphology can be adaptively decoupled. Secondly, the tight frame dictionary directly learned from the noisy observation can significantly promote the sparsity of fault features compared to analytical tight frames. Thirdly, a satisfactory complete signal space description property is guaranteed and thus

  17. Enhancement of snow cover change detection with sparse representation and dictionary learning

    NASA Astrophysics Data System (ADS)

    Varade, D.; Dikshit, O.

    2014-11-01

    Sparse representation and decoding is often used for denoising images and compression of images with respect to inherent features. In this paper, we adopt a methodology incorporating sparse representation of a snow cover change map using the K-SVD trained dictionary and sparse decoding to enhance the change map. The pixels often falsely characterized as "changes" are eliminated using this approach. The preliminary change map was generated using differenced NDSI or S3 maps in case of Resourcesat-2 and Landsat 8 OLI imagery respectively. These maps are extracted into patches for compressed sensing using Discrete Cosine Transform (DCT) to generate an initial dictionary which is trained by the K-SVD approach. The trained dictionary is used for sparse coding of the change map using the Orthogonal Matching Pursuit (OMP) algorithm. The reconstructed change map incorporates a greater degree of smoothing and represents the features (snow cover changes) with better accuracy. The enhanced change map is segmented using kmeans to discriminate between the changed and non-changed pixels. The segmented enhanced change map is compared, firstly with the difference of Support Vector Machine (SVM) classified NDSI maps and secondly with a reference data generated as a mask by visual interpretation of the two input images. The methodology is evaluated using multi-spectral datasets from Resourcesat-2 and Landsat-8. The k-hat statistic is computed to determine the accuracy of the proposed approach.

  18. Students' Understanding of Dictionary Entries: A Study with Respect to Four Learners' Dictionaries.

    ERIC Educational Resources Information Center

    Jana, Abhra; Amritavalli, Vijaya; Amritavalli, R.

    2003-01-01

    Investigates the effects of definitional information in the form of dictionary entries, on second language learners' vocabulary learning in an instructed setting. Indian students (Native Hindi speakers) of English received monolingual English dictionary entries of five previously unknown words from four different learner's dictionaries. Results…

  19. Dynamic versus Static Dictionary with and without Printed Focal Words in e-Book Reading as Facilitator for Word Learning

    ERIC Educational Resources Information Center

    Korat, Ofra; Levin, Iris; Ben-Shabt, Anat; Shneor, Dafna; Bokovza, Limor

    2014-01-01

    We investigated the extent to which a dictionary embedded in an e-book with static or dynamic visuals with and without printed focal words affects word learning. A pretest-posttest design was used to measure gains of expressive words' meaning and their spelling. The participants included 250 Hebrew-speaking second graders from…

  20. Multiscale Region-Level VHR Image Change Detection via Sparse Change Descriptor and Robust Discriminative Dictionary Learning

    PubMed Central

    Xu, Yuan; Ding, Kun; Huo, Chunlei; Zhong, Zisha; Li, Haichang; Pan, Chunhong

    2015-01-01

    Very high resolution (VHR) image change detection is challenging due to the low discriminative ability of change feature and the difficulty of change decision in utilizing the multilevel contextual information. Most change feature extraction techniques put emphasis on the change degree description (i.e., in what degree the changes have happened), while they ignore the change pattern description (i.e., how the changes changed), which is of equal importance in characterizing the change signatures. Moreover, the simultaneous consideration of the classification robust to the registration noise and the multiscale region-consistent fusion is often neglected in change decision. To overcome such drawbacks, in this paper, a novel VHR image change detection method is proposed based on sparse change descriptor and robust discriminative dictionary learning. Sparse change descriptor combines the change degree component and the change pattern component, which are encoded by the sparse representation error and the morphological profile feature, respectively. Robust change decision is conducted by multiscale region-consistent fusion, which is implemented by the superpixel-level cosparse representation with robust discriminative dictionary and the conditional random field model. Experimental results confirm the effectiveness of the proposed change detection technique. PMID:25918748

  1. Adaptive Units of Learning and Educational Videogames

    ERIC Educational Resources Information Center

    Moreno-Ger, Pablo; Thomas, Pilar Sancho; Martinez-Ortiz, Ivan; Sierra, Jose Luis; Fernandez-Manjon, Baltasar

    2007-01-01

    In this paper, we propose three different ways of using IMS Learning Design to support online adaptive learning modules that include educational videogames. The first approach relies on IMS LD to support adaptation procedures where the educational games are considered as Learning Objects. These games can be included instead of traditional content…

  2. Mythomanics: A Painless Dictionary and Vocabulary Skills Builder.

    ERIC Educational Resources Information Center

    Thomson, Lynn M.

    1989-01-01

    Describes a dictionary game, adapted from the game "Balderdash," which builds skills in vocabulary and dictionary use, creative writing, and impromptu speaking, and simultaneously develops the ability to evaluate definitions critically. (MM)

  3. WordSpy: identifying transcription factor binding motifs by building a dictionary and learning a grammar

    PubMed Central

    Wang, Guandong; Yu, Taotao; Zhang, Weixiong

    2005-01-01

    Transcription factor (TF) binding sites or motifs (TFBMs) are functional cis-regulatory DNA sequences that play an essential role in gene transcriptional regulation. Although many experimental and computational methods have been developed, finding TFBMs remains a challenging problem. We propose and develop a novel dictionary based motif finding algorithm, which we call WordSpy. One significant feature of WordSpy is the combination of a word counting method and a statistical model which consists of a dictionary of motifs and a grammar specifying their usage. The algorithm is suitable for genome-wide motif finding; it is capable of discovering hundreds of motifs from a large set of promoters in a single run. We further enhance WordSpy by applying gene expression information to separate true TFBMs from spurious ones, and by incorporating negative sequences to identify discriminative motifs. In addition, we also use randomly selected promoters from the genome to evaluate the significance of the discovered motifs. The output from WordSpy consists of an ordered list of putative motifs and a set of regulatory sequences with motif binding sites highlighted. The web server of WordSpy is available at . PMID:15980501

  4. Lushootseed Dictionary

    ERIC Educational Resources Information Center

    Bates, Dawn; Hess, Thom; Hilbert, Vi

    The dictionary of Lushootseed, the Puget Salish Indian language spoken in the area of Seattle, Washington, begins with an introduction to the language's name, dialects, geographic distribution, research methodology and native informants, texts used as sources, and pronunciation and transcription. It also gives an overview of the way entries are…

  5. Adaptive Learning Systems: Beyond Teaching Machines

    ERIC Educational Resources Information Center

    Kara, Nuri; Sevim, Nese

    2013-01-01

    Since 1950s, teaching machines have changed a lot. Today, we have different ideas about how people learn, what instructor should do to help students during their learning process. We have adaptive learning technologies that can create much more student oriented learning environments. The purpose of this article is to present these changes and its…

  6. Integrating Learning Styles into Adaptive E-Learning System

    ERIC Educational Resources Information Center

    Truong, Huong May

    2015-01-01

    This paper provides an overview and update on my PhD research project which focuses on integrating learning styles into adaptive e-learning system. The project, firstly, aims to develop a system to classify students' learning styles through their online learning behaviour. This will be followed by a study on the complex relationship between…

  7. WE-G-18A-04: 3D Dictionary Learning Based Statistical Iterative Reconstruction for Low-Dose Cone Beam CT Imaging

    SciTech Connect

    Bai, T; Yan, H; Shi, F; Jia, X; Jiang, Steve B.; Lou, Y; Xu, Q; Mou, X

    2014-06-15

    Purpose: To develop a 3D dictionary learning based statistical reconstruction algorithm on graphic processing units (GPU), to improve the quality of low-dose cone beam CT (CBCT) imaging with high efficiency. Methods: A 3D dictionary containing 256 small volumes (atoms) of 3x3x3 voxels was trained from a high quality volume image. During reconstruction, we utilized a Cholesky decomposition based orthogonal matching pursuit algorithm to find a sparse representation on this dictionary basis of each patch in the reconstructed image, in order to regularize the image quality. To accelerate the time-consuming sparse coding in the 3D case, we implemented our algorithm in a parallel fashion by taking advantage of the tremendous computational power of GPU. Evaluations are performed based on a head-neck patient case. FDK reconstruction with full dataset of 364 projections is used as the reference. We compared the proposed 3D dictionary learning based method with a tight frame (TF) based one using a subset data of 121 projections. The image qualities under different resolutions in z-direction, with or without statistical weighting are also studied. Results: Compared to the TF-based CBCT reconstruction, our experiments indicated that 3D dictionary learning based CBCT reconstruction is able to recover finer structures, to remove more streaking artifacts, and is less susceptible to blocky artifacts. It is also observed that statistical reconstruction approach is sensitive to inconsistency between the forward and backward projection operations in parallel computing. Using high a spatial resolution along z direction helps improving the algorithm robustness. Conclusion: 3D dictionary learning based CBCT reconstruction algorithm is able to sense the structural information while suppressing noise, and hence to achieve high quality reconstruction. The GPU realization of the whole algorithm offers a significant efficiency enhancement, making this algorithm more feasible for potential

  8. A weighted dictionary learning model for denoising images corrupted by mixed noise.

    PubMed

    Liu, Jun; Tai, Xue-Cheng; Huang, Haiyang; Huan, Zhongdan

    2013-03-01

    This paper proposes a general weighted l(2)-l(0) norms energy minimization model to remove mixed noise such as Gaussian-Gaussian mixture, impulse noise, and Gaussian-impulse noise from the images. The approach is built upon maximum likelihood estimation framework and sparse representations over a trained dictionary. Rather than optimizing the likelihood functional derived from a mixture distribution, we present a new weighting data fidelity function, which has the same minimizer as the original likelihood functional but is much easier to optimize. The weighting function in the model can be determined by the algorithm itself, and it plays a role of noise detection in terms of the different estimated noise parameters. By incorporating the sparse regularization of small image patches, the proposed method can efficiently remove a variety of mixed or single noise while preserving the image textures well. In addition, a modified K-SVD algorithm is designed to address the weighted rank-one approximation. The experimental results demonstrate its better performance compared with some existing methods.

  9. Linguistic and Cultural Strategies in ELT Dictionaries

    ERIC Educational Resources Information Center

    Corrius, Montse; Pujol, Didac

    2010-01-01

    There are three main types of ELT dictionaries: monolingual, bilingual, and bilingualized. Each type of dictionary, while having its own advantages, also hinders the learning of English as a foreign language and culture in so far as it is written from a homogenizing (linguistic- and culture-centric) perspective. This paper presents a new type of…

  10. Fully automated macular pathology detection in retina optical coherence tomography images using sparse coding and dictionary learning

    NASA Astrophysics Data System (ADS)

    Sun, Yankui; Li, Shan; Sun, Zhongyang

    2017-01-01

    We propose a framework for automated detection of dry age-related macular degeneration (AMD) and diabetic macular edema (DME) from retina optical coherence tomography (OCT) images, based on sparse coding and dictionary learning. The study aims to improve the classification performance of state-of-the-art methods. First, our method presents a general approach to automatically align and crop retina regions; then it obtains global representations of images by using sparse coding and a spatial pyramid; finally, a multiclass linear support vector machine classifier is employed for classification. We apply two datasets for validating our algorithm: Duke spectral domain OCT (SD-OCT) dataset, consisting of volumetric scans acquired from 45 subjects-15 normal subjects, 15 AMD patients, and 15 DME patients; and clinical SD-OCT dataset, consisting of 678 OCT retina scans acquired from clinics in Beijing-168, 297, and 213 OCT images for AMD, DME, and normal retinas, respectively. For the former dataset, our classifier correctly identifies 100%, 100%, and 93.33% of the volumes with DME, AMD, and normal subjects, respectively, and thus performs much better than the conventional method; for the latter dataset, our classifier leads to a correct classification rate of 99.67%, 99.67%, and 100.00% for DME, AMD, and normal images, respectively.

  11. Automatic approach to solve the morphological galaxy classification problem using the sparse representation technique and dictionary learning

    NASA Astrophysics Data System (ADS)

    Diaz-Hernandez, R.; Ortiz-Esquivel, A.; Peregrina-Barreto, H.; Altamirano-Robles, L.; Gonzalez-Bernal, J.

    2016-06-01

    The observation of celestial objects in the sky is a practice that helps astronomers to understand the way in which the Universe is structured. However, due to the large number of observed objects with modern telescopes, the analysis of these by hand is a difficult task. An important part in galaxy research is the morphological structure classification based on the Hubble sequence. In this research, we present an approach to solve the morphological galaxy classification problem in an automatic way by using the Sparse Representation technique and dictionary learning with K-SVD. For the tests in this work, we use a database of galaxies extracted from the Principal Galaxy Catalog (PGC) and the APM Equatorial Catalogue of Galaxies obtaining a total of 2403 useful galaxies. In order to represent each galaxy frame, we propose to calculate a set of 20 features such as Hu's invariant moments, galaxy nucleus eccentricity, gabor galaxy ratio and some other features commonly used in galaxy classification. A stage of feature relevance analysis was performed using Relief-f in order to determine which are the best parameters for the classification tests using 2, 3, 4, 5, 6 and 7 galaxy classes making signal vectors of different length values with the most important features. For the classification task, we use a 20-random cross-validation technique to evaluate classification accuracy with all signal sets achieving a score of 82.27 % for 2 galaxy classes and up to 44.27 % for 7 galaxy classes.

  12. A Model of Regularization Parameter Determination in Low-Dose X-Ray CT Reconstruction Based on Dictionary Learning.

    PubMed

    Zhang, Cheng; Zhang, Tao; Zheng, Jian; Li, Ming; Lu, Yanfei; You, Jiali; Guan, Yihui

    2015-01-01

    In recent years, X-ray computed tomography (CT) is becoming widely used to reveal patient's anatomical information. However, the side effect of radiation, relating to genetic or cancerous diseases, has caused great public concern. The problem is how to minimize radiation dose significantly while maintaining image quality. As a practical application of compressed sensing theory, one category of methods takes total variation (TV) minimization as the sparse constraint, which makes it possible and effective to get a reconstruction image of high quality in the undersampling situation. On the other hand, a preliminary attempt of low-dose CT reconstruction based on dictionary learning seems to be another effective choice. But some critical parameters, such as the regularization parameter, cannot be determined by detecting datasets. In this paper, we propose a reweighted objective function that contributes to a numerical calculation model of the regularization parameter. A number of experiments demonstrate that this strategy performs well with better reconstruction images and saving of a large amount of time.

  13. Dictionary of Microscopy

    NASA Astrophysics Data System (ADS)

    Heath, Julian

    2005-10-01

    The past decade has seen huge advances in the application of microscopy in all areas of science. This welcome development in microscopy has been paralleled by an expansion of the vocabulary of technical terms used in microscopy: terms have been coined for new instruments and techniques and, as microscopes reach even higher resolution, the use of terms that relate to the optical and physical principles underpinning microscopy is now commonplace. The Dictionary of Microscopy was compiled to meet this challenge and provides concise definitions of over 2,500 terms used in the fields of light microscopy, electron microscopy, scanning probe microscopy, x-ray microscopy and related techniques. Written by Dr Julian P. Heath, Editor of Microscopy and Analysis, the dictionary is intended to provide easy navigation through the microscopy terminology and to be a first point of reference for definitions of new and established terms. The Dictionary of Microscopy is an essential, accessible resource for: students who are new to the field and are learning about microscopes equipment purchasers who want an explanation of the terms used in manufacturers' literature scientists who are considering using a new microscopical technique experienced microscopists as an aide mémoire or quick source of reference librarians, the press and marketing personnel who require definitions for technical reports.

  14. A Dictionary Learning Approach with Overlap for the Low Dose Computed Tomography Reconstruction and Its Vectorial Application to Differential Phase Tomography

    PubMed Central

    Mirone, Alessandro; Brun, Emmanuel; Coan, Paola

    2014-01-01

    X-ray based Phase-Contrast Imaging (PCI) techniques have been demonstrated to enhance the visualization of soft tissues in comparison to conventional imaging methods. Nevertheless the delivered dose as reported in the literature of biomedical PCI applications often equals or exceeds the limits prescribed in clinical diagnostics. The optimization of new computed tomography strategies which include the development and implementation of advanced image reconstruction procedures is thus a key aspect. In this scenario, we implemented a dictionary learning method with a new form of convex functional. This functional contains in addition to the usual sparsity inducing and fidelity terms, a new term which forces similarity between overlapping patches in the superimposed regions. The functional depends on two free regularization parameters: a coefficient multiplying the sparsity-inducing norm of the patch basis functions coefficients, and a coefficient multiplying the norm of the differences between patches in the overlapping regions. The solution is found by applying the iterative proximal gradient descent method with FISTA acceleration. The gradient is computed by calculating projection of the solution and its error backprojection at each iterative step. We study the quality of the solution, as a function of the regularization parameters and noise, on synthetic data for which the solution is a-priori known. We apply the method on experimental data in the case of Differential Phase Tomography. For this case we use an original approach which consists in using vectorial patches, each patch having two components: one per each gradient component. The resulting algorithm, implemented in the European Synchrotron Radiation Facility tomography reconstruction code PyHST, has proven to be efficient and well-adapted to strongly reduce the required dose and the number of projections in medical tomography. PMID:25531987

  15. Teacher Adaptation to Personalized Learning Spaces

    ERIC Educational Resources Information Center

    Deed, Craig; Lesko, Thomas M.; Lovejoy, Valerie

    2014-01-01

    Personalized learning spaces are emerging in schools as a critical reaction to "industrial-era" school models. As the form and function of schools and pedagogy change, this places pressure on teachers to adapt their conventional practice. This paper addresses the question of how teachers can adapt their classroom practice to create…

  16. Adaptive Educational Software by Applying Reinforcement Learning

    ERIC Educational Resources Information Center

    Bennane, Abdellah

    2013-01-01

    The introduction of the intelligence in teaching software is the object of this paper. In software elaboration process, one uses some learning techniques in order to adapt the teaching software to characteristics of student. Generally, one uses the artificial intelligence techniques like reinforcement learning, Bayesian network in order to adapt…

  17. Different Futures of Adaptive Collaborative Learning Support

    ERIC Educational Resources Information Center

    Rummel, Nikol; Walker, Erin; Aleven, Vincent

    2016-01-01

    In this position paper we contrast a Dystopian view of the future of adaptive collaborative learning support (ACLS) with a Utopian scenario that--due to better-designed technology, grounded in research--avoids the pitfalls of the Dystopian version and paints a positive picture of the practice of computer-supported collaborative learning 25 years…

  18. Animal social learning: associations and adaptations

    PubMed Central

    Reader, Simon M.

    2016-01-01

    Social learning, learning from others, is a powerful process known to impact the success and survival of humans and non-human animals alike. Yet we understand little about the neurocognitive and other processes that underpin social learning. Social learning has often been assumed to involve specialized, derived cognitive processes that evolve and develop independently from other processes. However, this assumption is increasingly questioned, and evidence from a variety of organisms demonstrates that current, recent, and early life experience all predict the reliance on social information and thus can potentially explain variation in social learning as a result of experiential effects rather than evolved differences. General associative learning processes, rather than adaptive specializations, may underpin much social learning, as well as social learning strategies. Uncovering these distinctions is important to a variety of fields, for example by widening current views of the possible breadth and adaptive flexibility of social learning. Nonetheless, just like adaptationist evolutionary explanations, associationist explanations for social learning cannot be assumed, and empirical work is required to uncover the mechanisms involved and their impact on the efficacy of social learning. This work is being done, but more is needed. Current evidence suggests that much social learning may be based on ‘ordinary’ processes but with extraordinary consequences. PMID:27635227

  19. Animal social learning: associations and adaptations.

    PubMed

    Reader, Simon M

    2016-01-01

    Social learning, learning from others, is a powerful process known to impact the success and survival of humans and non-human animals alike. Yet we understand little about the neurocognitive and other processes that underpin social learning. Social learning has often been assumed to involve specialized, derived cognitive processes that evolve and develop independently from other processes. However, this assumption is increasingly questioned, and evidence from a variety of organisms demonstrates that current, recent, and early life experience all predict the reliance on social information and thus can potentially explain variation in social learning as a result of experiential effects rather than evolved differences. General associative learning processes, rather than adaptive specializations, may underpin much social learning, as well as social learning strategies. Uncovering these distinctions is important to a variety of fields, for example by widening current views of the possible breadth and adaptive flexibility of social learning. Nonetheless, just like adaptationist evolutionary explanations, associationist explanations for social learning cannot be assumed, and empirical work is required to uncover the mechanisms involved and their impact on the efficacy of social learning. This work is being done, but more is needed. Current evidence suggests that much social learning may be based on 'ordinary' processes but with extraordinary consequences.

  20. ALISA: adaptive learning image and signal analysis

    NASA Astrophysics Data System (ADS)

    Bock, Peter

    1999-01-01

    ALISA (Adaptive Learning Image and Signal Analysis) is an adaptive statistical learning engine that may be used to detect and classify the surfaces and boundaries of objects in images. The engine has been designed, implemented, and tested at both the George Washington University and the Research Institute for Applied Knowledge Processing in Ulm, Germany over the last nine years with major funding from Robert Bosch GmbH and Lockheed-Martin Corporation. The design of ALISA was inspired by the multi-path cortical- column architecture and adaptive functions of the mammalian visual cortex.

  1. Simultaneous sensorimotor adaptation and sequence learning.

    PubMed

    Overduin, Simon A; Richardson, Andrew G; Bizzi, Emilio; Press, Daniel Z

    2008-01-01

    Sensorimotor adaptation and sequence learning have often been treated as distinct forms of motor learning. But frequently the motor system must acquire both types of experience simultaneously. Here, we investigated the interaction of these two forms of motor learning by having subjects adapt to predictable forces imposed by a robotic manipulandum while simultaneously reaching to an implicit sequence of targets. We show that adaptation to novel dynamics and learning of a sequence of movements can occur simultaneously and without significant interference or facilitation. When both conditions were presented simultaneously to subjects, their trajectory error and reaction time decreased to the same extent as those of subjects who experienced the force field or sequence independently.

  2. Adaptations to a Learning Resource

    ERIC Educational Resources Information Center

    Libbrecht, Paul

    2015-01-01

    Learning resources have been created to represent digital units of exchangeable materials that teachers and learners can pull from in order to support the learning processes. They resource themselves. Leveraging the web, one can often find these resources. But what characteristics do they need in order to be easily exchangeable? Although several…

  3. Flexible Ubiquitous Learning Management System Adapted to Learning Context

    NASA Astrophysics Data System (ADS)

    Jeong, Ji-Seong; Kim, Mihye; Park, Chan; Yoo, Jae-Soo; Yoo, Kwan-Hee

    This paper proposes a u-learning management system (ULMS) appropriate to the ubiquitous learning environment, with emphasis on the significance of context awareness and adaptation in learning. The proposed system supports the basic functions of an e-learning management system and incorporates a number of tools and additional features to provide a more customized learning service. The proposed system automatically corresponds to various forms of user terminal without modifying the existing system. The functions, formats, and course learning activities of the system are dynamically and adaptively constructed at runtime according to user terminals, course types, pedagogical goals as well as student characteristics and learning context. A prototype for university use has been implemented to demonstrate and evaluate the proposed approach. We regard the proposed ULMS as an ideal u-learning system because it can not only lead students into continuous and mobile 'anytime, anywhere' learning using any kind of terminal, but can also foster enhanced self-directed learning through the establishment of an adaptive learning environment.

  4. Image fusion using sparse overcomplete feature dictionaries

    DOEpatents

    Brumby, Steven P.; Bettencourt, Luis; Kenyon, Garrett T.; Chartrand, Rick; Wohlberg, Brendt

    2015-10-06

    Approaches for deciding what individuals in a population of visual system "neurons" are looking for using sparse overcomplete feature dictionaries are provided. A sparse overcomplete feature dictionary may be learned for an image dataset and a local sparse representation of the image dataset may be built using the learned feature dictionary. A local maximum pooling operation may be applied on the local sparse representation to produce a translation-tolerant representation of the image dataset. An object may then be classified and/or clustered within the translation-tolerant representation of the image dataset using a supervised classification algorithm and/or an unsupervised clustering algorithm.

  5. Exploring Adaptability through Learning Layers and Learning Loops

    ERIC Educational Resources Information Center

    Lof, Annette

    2010-01-01

    Adaptability in social-ecological systems results from individual and collective action, and multi-level interactions. It can be understood in a dual sense as a system's ability to adapt to disturbance and change, and to navigate system transformation. Inherent in this conception, as found in resilience thinking, are the concepts of learning and…

  6. An adaptive learning control system for aircraft

    NASA Technical Reports Server (NTRS)

    Mekel, R.; Nachmias, S.

    1976-01-01

    A learning control system is developed which blends the gain scheduling and adaptive control into a single learning system that has the advantages of both. An important feature of the developed learning control system is its capability to adjust the gain schedule in a prescribed manner to account for changing aircraft operating characteristics. Furthermore, if tests performed by the criteria of the learning system preclude any possible change in the gain schedule, then the overall system becomes an ordinary gain scheduling system. Examples are discussed.

  7. Brain aerobic glycolysis and motor adaptation learning

    PubMed Central

    Shannon, Benjamin J.; Vaishnavi, Sanjeev Neil; Vlassenko, Andrei G.; Shimony, Joshua S.; Rutlin, Jerrel; Raichle, Marcus E.

    2016-01-01

    Ten percent to 15% of glucose used by the brain is metabolized nonoxidatively despite adequate tissue oxygenation, a process termed aerobic glycolysis (AG). Because of the known role of glycolysis in biosynthesis, we tested whether learning-induced synaptic plasticity would lead to regionally appropriate, learning-dependent changes in AG. Functional MRI (fMRI) before, during, and after performance of a visual–motor adaptation task demonstrated that left Brodmann area 44 (BA44) played a key role in adaptation, with learning-related changes to activity during the task and altered resting-state, functional connectivity after the task. PET scans before and after task performance indicated a sustained increase in AG in left BA 44 accompanied by decreased oxygen consumption. Intersubject variability in behavioral adaptation rate correlated strongly with changes in AG in this region, as well as functional connectivity, which is consistent with a role for AG in synaptic plasticity. PMID:27217563

  8. Adapting Active Learning in Ethiopia

    ERIC Educational Resources Information Center

    Casale, Carolyn Frances

    2010-01-01

    Ethiopia is a developing country that has invested extensively in expanding its educational opportunities. In this expansion, there has been a drastic restructuring of its system of preparing teachers and teacher educators. Often, improving teacher quality is dependent on professional development that diversifies pedagogy (active learning). This…

  9. Kids' Medical Dictionary

    MedlinePlus

    ... Dictionary of Medical Words En Español What Other Kids Are Reading Taking Care of Your Ears Taking ... de los dientes Video: Getting an X-ray Kids' Medical Dictionary Symptoms, inhaler, tonsillectomy - what do all ...

  10. Adaptable Learning Assistant for Item Bank Management

    ERIC Educational Resources Information Center

    Nuntiyagul, Atorn; Naruedomkul, Kanlaya; Cercone, Nick; Wongsawang, Damras

    2008-01-01

    We present PKIP, an adaptable learning assistant tool for managing question items in item banks. PKIP is not only able to automatically assist educational users to categorize the question items into predefined categories by their contents but also to correctly retrieve the items by specifying the category and/or the difficulty level. PKIP adapts…

  11. Making Mistakes: Emotional Adaptation and Classroom Learning

    ERIC Educational Resources Information Center

    McCaslin, Mary; Vriesema, Christine C.; Burggraf, Susan

    2016-01-01

    Background: We studied how students in Grades 4-6 participate in and emotionally adapt to the give-and-take of learning in classrooms, particularly when making mistakes. Our approach is consistent with researchers who (a) include cognitive appraisals in the study of emotional experiences, (b) consider how personal concerns might mediate…

  12. Adapting Cooperative Learning in Tertiary ELT

    ERIC Educational Resources Information Center

    Ning, Huiping

    2011-01-01

    An updated guideline for tertiary ELT in China has shifted the emphasis to the development of learners' ability to communicate in English. Using group work and getting learners actively involved in the actual use of English are highlighted more than before. This article focuses on adapting cooperative learning methods for ELT with tertiary…

  13. An Electronic Dictionary and Translation System for Murrinh-Patha

    ERIC Educational Resources Information Center

    Seiss, Melanie; Nordlinger, Rachel

    2012-01-01

    This paper presents an electronic dictionary and translation system for the Australian language Murrinh-Patha. Its complex verbal structure makes learning Murrinh-Patha very difficult. Design learning materials or a dictionary which is easy to understand and to use also presents a challenge. This paper discusses some of the difficulties posed by…

  14. Improving Adaptive Learning Technology through the Use of Response Times

    ERIC Educational Resources Information Center

    Mettler, Everett; Massey, Christine M.; Kellman, Philip J.

    2011-01-01

    Adaptive learning techniques have typically scheduled practice using learners' accuracy and item presentation history. We describe an adaptive learning system (Adaptive Response Time Based Sequencing--ARTS) that uses both accuracy and response time (RT) as direct inputs into sequencing. Response times are used to assess learning strength and…

  15. Volumetric image classification using homogeneous decomposition and dictionary learning: A study using retinal optical coherence tomography for detecting age-related macular degeneration.

    PubMed

    Albarrak, Abdulrahman; Coenen, Frans; Zheng, Yalin

    2017-01-01

    Three-dimensional (3D) (volumetric) diagnostic imaging techniques are indispensable with respect to the diagnosis and management of many medical conditions. However there is a lack of automated diagnosis techniques to facilitate such 3D image analysis (although some support tools do exist). This paper proposes a novel framework for volumetric medical image classification founded on homogeneous decomposition and dictionary learning. In the proposed framework each image (volume) is recursively decomposed until homogeneous regions are arrived at. Each region is represented using a Histogram of Oriented Gradients (HOG) which is transformed into a set of feature vectors. The Gaussian Mixture Model (GMM) is then used to generate a "dictionary" and the Improved Fisher Kernel (IFK) approach is used to encode feature vectors so as to generate a single feature vector for each volume, which can then be fed into a classifier generator. The principal advantage offered by the framework is that it does not require the detection (segmentation) of specific objects within the input data. The nature of the framework is fully described. A wide range of experiments was conducted with which to analyse the operation of the proposed framework and these are also reported fully in the paper. Although the proposed approach is generally applicable to 3D volumetric images, the focus for the work is 3D retinal Optical Coherence Tomography (OCT) images in the context of the diagnosis of Age-related Macular Degeneration (AMD). The results indicate that excellent diagnostic predictions can be produced using the proposed framework.

  16. Adaptive functional systems: learning with chaos.

    PubMed

    Komarov, M A; Osipov, G V; Burtsev, M S

    2010-12-01

    We propose a new model of adaptive behavior that combines a winnerless competition principle and chaos to learn new functional systems. The model consists of a complex network of nonlinear dynamical elements producing sequences of goal-directed actions. Each element describes dynamics and activity of the functional system which is supposed to be a distributed set of interacting physiological elements such as nerve or muscle that cooperates to obtain certain goal at the level of the whole organism. During "normal" behavior, the dynamics of the system follows heteroclinic channels, but in the novel situation chaotic search is activated and a new channel leading to the target state is gradually created simulating the process of learning. The model was tested in single and multigoal environments and had demonstrated a good potential for generation of new adaptations.

  17. Concept Based Approach for Adaptive Personalized Course Learning System

    ERIC Educational Resources Information Center

    Salahli, Mehmet Ali; Özdemir, Muzaffer; Yasar, Cumali

    2013-01-01

    One of the most important factors for improving the personalization aspects of learning systems is to enable adaptive properties to them. The aim of the adaptive personalized learning system is to offer the most appropriate learning path and learning materials to learners by taking into account their profiles. In this paper, a new approach to…

  18. MEAT: An Authoring Tool for Generating Adaptable Learning Resources

    ERIC Educational Resources Information Center

    Kuo, Yen-Hung; Huang, Yueh-Min

    2009-01-01

    Mobile learning (m-learning) is a new trend in the e-learning field. The learning services in m-learning environments are supported by fundamental functions, especially the content and assessment services, which need an authoring tool to rapidly generate adaptable learning resources. To fulfill the imperious demand, this study proposes an…

  19. Social influences on adaptive criterion learning.

    PubMed

    Cassidy, Brittany S; Dubé, Chad; Gutchess, Angela H

    2015-07-01

    People adaptively shift decision criteria when given biased feedback encouraging specific types of errors. Given that work on this topic has been conducted in nonsocial contexts, we extended the literature by examining adaptive criterion learning in both social and nonsocial contexts. Specifically, we compared potential differences in criterion shifting given performance feedback from social sources varying in reliability and from a nonsocial source. Participants became lax when given false positive feedback for false alarms, and became conservative when given false positive feedback for misses, replicating prior work. In terms of a social influence on adaptive criterion learning, people became more lax in response style over time if feedback was provided by a nonsocial source or by a social source meant to be perceived as unreliable and low-achieving. In contrast, people adopted a more conservative response style over time if performance feedback came from a high-achieving and reliable source. Awareness that a reliable and high-achieving person had not provided their feedback reduced the tendency to become more conservative, relative to those unaware of the source manipulation. Because teaching and learning often occur in a social context, these findings may have important implications for many scenarios in which people fine-tune their behaviors, given cues from others.

  20. Yet Another Adaptive Learning Management System Based on Felder and Silverman's Learning Styles and Mashup

    ERIC Educational Resources Information Center

    Chang, Yi-Hsing; Chen, Yen-Yi; Chen, Nian-Shing; Lu, You-Te; Fang, Rong-Jyue

    2016-01-01

    This study designs and implements an adaptive learning management system based on Felder and Silverman's Learning Style Model and the Mashup technology. In this system, Felder and Silverman's Learning Style model is used to assess students' learning styles, in order to provide adaptive learning to leverage learners' learning preferences.…

  1. Bilingual Dictionary of Mathematical Terms: English--Chinese.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Bilingual Education.

    The bilingual dictionary has been adapted from a dictionary originally developed by Teresa Kow and Euphine Cheung in New York to assist Chinese students in their understanding of mathematics vocabulary and concepts in English. A total of 204 terms and definitions are provided in English with Chinese translations directly below the entries. Each…

  2. Search by Fuzzy Inference in a Children's Dictionary

    ERIC Educational Resources Information Center

    St-Jacques, Claude; Barriere, Caroline

    2005-01-01

    This research aims at promoting the usage of an online children's dictionary within a context of reading comprehension and vocabulary acquisition. Inspired by document retrieval approaches developed in the area of information retrieval (IR) research, we adapt a particular IR strategy, based on fuzzy logic, to a search in the electronic dictionary.…

  3. The New Oxford Picture Dictionary, English/Navajo Edition.

    ERIC Educational Resources Information Center

    Parnwell, E. C.

    This picture dictionary illustrates over 2,400 words. The dictionary is organized thematically, beginning with topics most useful for the survival needs of students in an English speaking country. However, teachers may adapt the order to reflect the needs of their students. Verbs are included on separate pages, but within topic areas in which they…

  4. The SMAP Dictionary Management System

    NASA Technical Reports Server (NTRS)

    Smith, Kevin A.; Swan, Christoper A.

    2014-01-01

    The Soil Moisture Active Passive (SMAP) Dictionary Management System is a web-based tool to develop and store a mission dictionary. A mission dictionary defines the interface between a ground system and a spacecraft. In recent years, mission dictionaries have grown in size and scope, making it difficult for engineers across multiple disciplines to coordinate the dictionary development effort. The Dictionary Management Systemaddresses these issues by placing all dictionary information in one place, taking advantage of the efficiencies inherent in co-locating what were once disparate dictionary development efforts.

  5. AH-Questionnaire: An Adaptive Hierarchical Questionnaire for Learning Styles

    ERIC Educational Resources Information Center

    Ortigosa, Alvaro; Paredes, Pedro; Rodriguez, Pilar

    2010-01-01

    One of the main concerns when providing learning style adaptation in Adaptive Educational Hypermedia Systems is the number of questions the students have to answer. Most of the times, adaptive material available will discriminate among a few categories for each learning style dimension. Consequently, it is only needed to take into account the…

  6. Adaptable Learning Pathway Generation with Ant Colony Optimization

    ERIC Educational Resources Information Center

    Wong, Lung-Hsiang; Looi, Chee-Kit

    2009-01-01

    One of the new major directions in research on web-based educational systems is the notion of adaptability: the educational system adapts itself to the learning profile, preferences and ability of the student. In this paper, we look into the issues of providing adaptability with respect to learning pathways. We explore the state of the art with…

  7. Development of Adaptive Kanji Learning System for Mobile Phone

    ERIC Educational Resources Information Center

    Li, Mengmeng; Ogata, Hiroaki; Hou, Bin; Hashimoto, Satoshi; Liu, Yuqin; Uosaki, Noriko; Yano, Yoneo

    2010-01-01

    This paper describes an adaptive learning system based on mobile phone email to support the study of Japanese Kanji. In this study, the main emphasis is on using the adaptive learning to resolve one common problem of the mobile-based email or SMS language learning systems. To achieve this goal, the authors main efforts focus on three aspects:…

  8. How Language Supports Adaptive Teaching through a Responsive Learning Culture

    ERIC Educational Resources Information Center

    Johnston, Peter; Dozier, Cheryl; Smit, Julie

    2016-01-01

    For students to learn optimally, teachers must design classrooms that are responsive to the full range of student development. The teacher must be adaptive, but so must each student and the learning culture itself. In other words, adaptive teaching means constructing a responsive learning culture that accommodates and even capitalizes on diversity…

  9. Ahtna Athabaskan Dictionary.

    ERIC Educational Resources Information Center

    Kari, James, Ed.

    This dictionary of Ahtna, a dialect of the Athabaskan language family, is the first to integrate all morphemes into a single alphabetically arranged section of main entries, with verbs arranged according to a theory of Ahtna (and Athabascan) verb theme categories. An introductory section details dictionary format conventions used, presents a brief…

  10. The Creation of Learner-Centred Dictionaries for Endangered Languages: A Rotuman Example

    ERIC Educational Resources Information Center

    Vamarasi, M.

    2014-01-01

    This article examines the creation of dictionaries for endangered languages (ELs). Though each dictionary is uniquely prepared for its users, all dictionaries should be based on sound principles of vocabulary learning, including the importance of lexical chunks, as emphasised by Michael Lewis in his "Lexical Approach." Many of the…

  11. Which Dictionary? A Review of the Leading Learners' Dictionaries.

    ERIC Educational Resources Information Center

    Nesi, Hilary

    Three major dictionaries designed for learners of English as a second language are reviewed, their elements and approaches compared and evaluated, their usefulness for different learners discussed, and recommendations for future dictionary improvement made. The dictionaries in question are the "Oxford Advanced Learner's Dictionary," the…

  12. Adaptive and accelerated tracking-learning-detection

    NASA Astrophysics Data System (ADS)

    Guo, Pengyu; Li, Xin; Ding, Shaowen; Tian, Zunhua; Zhang, Xiaohu

    2013-08-01

    An improved online long-term visual tracking algorithm, named adaptive and accelerated TLD (AA-TLD) based on Tracking-Learning-Detection (TLD) which is a novel tracking framework has been introduced in this paper. The improvement focuses on two aspects, one is adaption, which makes the algorithm not dependent on the pre-defined scanning grids by online generating scale space, and the other is efficiency, which uses not only algorithm-level acceleration like scale prediction that employs auto-regression and moving average (ARMA) model to learn the object motion to lessen the detector's searching range and the fixed number of positive and negative samples that ensures a constant retrieving time, but also CPU and GPU parallel technology to achieve hardware acceleration. In addition, in order to obtain a better effect, some TLD's details are redesigned, which uses a weight including both normalized correlation coefficient and scale size to integrate results, and adjusts distance metric thresholds online. A contrastive experiment on success rate, center location error and execution time, is carried out to show a performance and efficiency upgrade over state-of-the-art TLD with partial TLD datasets and Shenzhou IX return capsule image sequences. The algorithm can be used in the field of video surveillance to meet the need of real-time video tracking.

  13. Savings in locomotor adaptation explained by changes in learning parameters following initial adaptation.

    PubMed

    Mawase, Firas; Shmuelof, Lior; Bar-Haim, Simona; Karniel, Amir

    2014-04-01

    Faster relearning of an external perturbation, savings, offers a behavioral linkage between motor learning and memory. To explain savings effects in reaching adaptation experiments, recent models suggested the existence of multiple learning components, each shows different learning and forgetting properties that may change following initial learning. Nevertheless, the existence of these components in rhythmic movements with other effectors, such as during locomotor adaptation, has not yet been studied. Here, we study savings in locomotor adaptation in two experiments; in the first, subjects adapted to speed perturbations during walking on a split-belt treadmill, briefly adapted to a counter-perturbation and then readapted. In a second experiment, subjects readapted after a prolonged period of washout of initial adaptation. In both experiments we find clear evidence for increased learning rates (savings) during readaptation. We show that the basic error-based multiple timescales linear state space model is not sufficient to explain savings during locomotor adaptation. Instead, we show that locomotor adaptation leads to changes in learning parameters, so that learning rates are faster during readaptation. Interestingly, we find an intersubject correlation between the slow learning component in initial adaptation and the fast learning component in the readaptation phase, suggesting an underlying mechanism for savings. Together, these findings suggest that savings in locomotion and in reaching may share common computational and neuronal mechanisms; both are driven by the slow learning component and are likely to depend on cortical plasticity.

  14. Adaptive and perceptual learning technologies in medical education and training.

    PubMed

    Kellman, Philip J

    2013-10-01

    Recent advances in the learning sciences offer remarkable potential to improve medical education and maximize the benefits of emerging medical technologies. This article describes 2 major innovation areas in the learning sciences that apply to simulation and other aspects of medical learning: Perceptual learning (PL) and adaptive learning technologies. PL technology offers, for the first time, systematic, computer-based methods for teaching pattern recognition, structural intuition, transfer, and fluency. Synergistic with PL are new adaptive learning technologies that optimize learning for each individual, embed objective assessment, and implement mastery criteria. The author describes the Adaptive Response-Time-based Sequencing (ARTS) system, which uses each learner's accuracy and speed in interactive learning to guide spacing, sequencing, and mastery. In recent efforts, these new technologies have been applied in medical learning contexts, including adaptive learning modules for initial medical diagnosis and perceptual/adaptive learning modules (PALMs) in dermatology, histology, and radiology. Results of all these efforts indicate the remarkable potential of perceptual and adaptive learning technologies, individually and in combination, to improve learning in a variety of medical domains.

  15. The ABCs of Data Dictionaries

    ERIC Educational Resources Information Center

    Gould, Tate; Nicholas, Amy; Blandford, William; Ruggiero, Tony; Peters, Mary; Thayer, Sara

    2014-01-01

    This overview of the basic components of a data dictionary is designed to educate and inform IDEA Part C and Part B 619 state staff about the purpose and benefits of having up-to-date data dictionaries for their data systems. This report discusses the following topics: (1) What Is a Data Dictionary?; (2) Why Is a Data Dictionary Needed and How Can…

  16. M-Learning: Implications in Learning Domain Specificities, Adaptive Learning, Feedback, Augmented Reality, and the Future of Online Learning

    ERIC Educational Resources Information Center

    Squires, David R.

    2014-01-01

    The aim of this paper is to examine the potential and effectiveness of m-learning in the field of Education and Learning domains. The purpose of this research is to illustrate how mobile technology can and is affecting novel change in instruction, from m-learning and the link to adaptive learning, to the uninitiated learner and capacities of…

  17. Saccade adaptation as a model of learning in voluntary movements.

    PubMed

    Iwamoto, Yoshiki; Kaku, Yuki

    2010-07-01

    Motor learning ensures the accuracy of our daily movements. However, we know relatively little about its mechanisms, particularly for voluntary movements. Saccadic eye movements serve to bring the image of a visual target precisely onto the fovea. Their accuracy is maintained not by on-line sensory feedback but by a learning mechanism, called saccade adaptation. Recent studies on saccade adaptation have provided valuable additions to our knowledge of motor learning. This review summarizes what we know about the characteristics and neural mechanisms of saccade adaptation, emphasizing recent findings and new ideas. Long-term adaptation, distinct from its short-term counterpart, seems to be present in the saccadic system. Accumulating evidence indicates the involvement of the oculomotor cerebellar vermis as a learning site. The superior colliculus is now suggested not only to generate saccade commands but also to issue driving signals for motor learning. These and other significant contributions have advanced our understanding of saccade adaptation and motor learning in general.

  18. Perceptual learning reconfigures the effects of visual adaptation.

    PubMed

    McGovern, David P; Roach, Neil W; Webb, Ben S

    2012-09-26

    Our sensory experiences over a range of different timescales shape our perception of the environment. Two particularly striking short-term forms of plasticity with manifestly different time courses and perceptual consequences are those caused by visual adaptation and perceptual learning. Although conventionally treated as distinct forms of experience-dependent plasticity, their neural mechanisms and perceptual consequences have become increasingly blurred, raising the possibility that they might interact. To optimize our chances of finding a functionally meaningful interaction between learning and adaptation, we examined in humans the perceptual consequences of learning a fine discrimination task while adapting the neurons that carry most information for performing this task. Learning improved discriminative accuracy to a level that ultimately surpassed that in an unadapted state. This remarkable improvement came at a price: adapting directions that before learning had little effect elevated discrimination thresholds afterward. The improvements in discriminative accuracy grew quickly and surpassed unadapted levels within the first few training sessions, whereas the deterioration in discriminative accuracy had a different time course. This learned reconfiguration of adapted discriminative accuracy occurred without a concomitant change to the characteristic perceptual biases induced by adaptation, suggesting that the system was still in an adapted state. Our results point to a functionally meaningful push-pull interaction between learning and adaptation in which a gain in sensitivity in one adapted state is balanced by a loss of sensitivity in other adapted states.

  19. Adaptive graph construction for Isomap manifold learning

    NASA Astrophysics Data System (ADS)

    Tran, Loc; Zheng, Zezhong; Zhou, Guoqing; Li, Jiang

    2015-03-01

    Isomap is a classical manifold learning approach that preserves geodesic distance of nonlinear data sets. One of the main drawbacks of this method is that it is susceptible to leaking, where a shortcut appears between normally separated portions of a manifold. We propose an adaptive graph construction approach that is based upon the sparsity property of the l1 norm. The l1 enhanced graph construction method replaces k-nearest neighbors in the classical approach. The proposed algorithm is first tested on the data sets from the UCI data base repository which showed that the proposed approach performs better than the classical approach. Next, the proposed approach is applied to two image data sets and achieved improved performances over standard Isomap.

  20. Teacher-Led Design of an Adaptive Learning Environment

    ERIC Educational Resources Information Center

    Mavroudi, Anna; Hadzilacos, Thanasis; Kalles, Dimitris; Gregoriades, Andreas

    2016-01-01

    This paper discusses a requirements engineering process that exemplifies teacher-led design in the case of an envisioned system for adaptive learning. Such a design poses various challenges and still remains an open research issue in the field of adaptive learning. Starting from a scenario-based elicitation method, the whole process was highly…

  1. The environmental dictionary

    SciTech Connect

    King, J.J.

    1989-01-01

    The Environmental Dictionary was designed for individuals researching environmental regulations in the Code of Federal Regulations, Title 40, Protection of the Environment (40 CFR). This book defines the highly technical and sometimes confusing terminology used throughout 40 CFR. Definitions are from two sources: (1) Code of Federal Regulations, Title 40, Protection of the Environment, Revised as of July 1, 1987, and (2) The Federal Register (updates pertaining to 40 CFR) for the period covering 1 July 1987 through 30 June 1989. The Dictionary contains numerous cross-referencing and finding aids. Beyond its use in interpreting Title 40 regulations, the Dictionary may be of value to individuals that are in need of a dictionary that covers the myriad of technical terms used in the environmental sciences including the biological, chemical, legal, and planning aspects.

  2. Topological structure of dictionary graphs

    NASA Astrophysics Data System (ADS)

    Fukś, Henryk; Krzemiński, Mark

    2009-09-01

    We investigate the topological structure of the subgraphs of dictionary graphs constructed from WordNet and Moby thesaurus data. In the process of learning a foreign language, the learner knows only a subset of all words of the language, corresponding to a subgraph of a dictionary graph. When this subgraph grows with time, its topological properties change. We introduce the notion of the pseudocore and argue that the growth of the vocabulary roughly follows decreasing pseudocore numbers—that is, one first learns words with a high pseudocore number followed by smaller pseudocores. We also propose an alternative strategy for vocabulary growth, involving decreasing core numbers as opposed to pseudocore numbers. We find that as the core or pseudocore grows in size, the clustering coefficient first decreases, then reaches a minimum and starts increasing again. The minimum occurs when the vocabulary reaches a size between 103 and 104. A simple model exhibiting similar behavior is proposed. The model is based on a generalized geometric random graph. Possible implications for language learning are discussed.

  3. Elsevier's maritime dictionary

    SciTech Connect

    Bakr, M.

    1987-01-01

    This is a dictionary for terms relating to maritime activities, and provides the terminology in three international languages. It also provides maritime terminology in Arabic. The dictionary covers the most recent terms used in satellite navigation and telecommunication. Its other topics include: acoustics, insurance, containers, cargo, bulk chemicals, carriage of dangerous goods, chemistry, radiocommunication, economics, electricity, environment, finance, fire protection, fishing vessels, hydrography, legal matters, meteorology, navigation, optics, pollution, radars, satellites, shipbuilding, stability, mechanics, and life-saving appliances.

  4. Adaptive Device Context Based Mobile Learning Systems

    ERIC Educational Resources Information Center

    Pu, Haitao; Lin, Jinjiao; Song, Yanwei; Liu, Fasheng

    2011-01-01

    Mobile learning is e-learning delivered through mobile computing devices, which represents the next stage of computer-aided, multi-media based learning. Therefore, mobile learning is transforming the way of traditional education. However, as most current e-learning systems and their contents are not suitable for mobile devices, an approach for…

  5. The Influence of Learning Behaviour on Team Adaptability

    ERIC Educational Resources Information Center

    Murray, Peter A.; Millett, Bruce

    2011-01-01

    Multiple contexts shape team activities and how they learn, and group learning is a dynamic construct that reflects a repertoire of potential behaviour. The purpose of this developmental paper is to examine how better learning behaviours in semi-autonomous teams improves the level of team adaptability and performance. The discussion suggests that…

  6. An Adaptive E-Learning System Based on Students' Learning Styles: An Empirical Study

    ERIC Educational Resources Information Center

    Drissi, Samia; Amirat, Abdelkrim

    2016-01-01

    Personalized e-learning implementation is recognized as one of the most interesting research areas in the distance web-based education. Since the learning style of each learner is different one must fit e-learning with the different needs of learners. This paper presents an approach to integrate learning styles into adaptive e-learning hypermedia.…

  7. A Framework for Adaptive E-Learning Based on Distributed Re-Usable Learning Activities.

    ERIC Educational Resources Information Center

    Brusilovsky, Peter; Nijhavan, Hemanta

    This paper suggests that a way to the new generation of powerful E-learning systems starts on the crossroads of two emerging fields: courseware re-use and adaptive educational systems. The paper presents the KnowledgeTree, a framework for adaptive E-learning based on distributed re-usable learning activities currently under development. The goal…

  8. A Competency-Based Guided-Learning Algorithm Applied on Adaptively Guiding E-Learning

    ERIC Educational Resources Information Center

    Hsu, Wei-Chih; Li, Cheng-Hsiu

    2015-01-01

    This paper presents a new algorithm called competency-based guided-learning algorithm (CBGLA), which can be applied on adaptively guiding e-learning. Computational process analysis and mathematical derivation of competency-based learning (CBL) were used to develop the CBGLA. The proposed algorithm could generate an effective adaptively guiding…

  9. Diminished Neural Adaptation during Implicit Learning in Autism

    PubMed Central

    Schipul, Sarah E.; Just, Marcel Adam

    2015-01-01

    Neuroimaging studies have shown evidence of disrupted neural adaptation during learning in individuals with autism spectrum disorder (ASD) in several types of tasks, potentially stemming from frontal-posterior cortical underconnectivity (Schipul et al., 2012). The aim of the current study was to examine neural adaptations in an implicit learning task that entails participation of frontal and posterior regions. Sixteen high-functioning adults with ASD and sixteen neurotypical control participants were trained on and performed an implicit dot pattern prototype learning task in a functional magnetic resonance imaging (fMRI) session. During the preliminary exposure to the type of implicit prototype learning task later to be used in the scanner, the ASD participants took longer than the neurotypical group to learn the task, demonstrating altered implicit learning in ASD. After equating task structure learning, the two groups’ brain activation differed during their learning of a new prototype in the subsequent scanning session. The main findings indicated that neural adaptations in a distributed task network were reduced in the ASD group, relative to the neurotypical group, and were related to ASD symptom severity. Functional connectivity was reduced and did not change as much during learning for the ASD group, and was related to ASD symptom severity. These findings suggest that individuals with ASD show altered neural adaptations during learning, as seen in both activation and functional connectivity measures. This finding suggests why many real-world implicit learning situations may pose special challenges for ASD. PMID:26484826

  10. Diminished neural adaptation during implicit learning in autism.

    PubMed

    Schipul, Sarah E; Just, Marcel Adam

    2016-01-15

    Neuroimaging studies have shown evidence of disrupted neural adaptation during learning in individuals with autism spectrum disorder (ASD) in several types of tasks, potentially stemming from frontal-posterior cortical underconnectivity (Schipul et al., 2012). The aim of the current study was to examine neural adaptations in an implicit learning task that entails participation of frontal and posterior regions. Sixteen high-functioning adults with ASD and sixteen neurotypical control participants were trained on and performed an implicit dot pattern prototype learning task in a functional magnetic resonance imaging (fMRI) session. During the preliminary exposure to the type of implicit prototype learning task later to be used in the scanner, the ASD participants took longer than the neurotypical group to learn the task, demonstrating altered implicit learning in ASD. After equating task structure learning, the two groups' brain activation differed during their learning of a new prototype in the subsequent scanning session. The main findings indicated that neural adaptations in a distributed task network were reduced in the ASD group, relative to the neurotypical group, and were related to ASD symptom severity. Functional connectivity was reduced and did not change as much during learning for the ASD group, and was related to ASD symptom severity. These findings suggest that individuals with ASD show altered neural adaptations during learning, as seen in both activation and functional connectivity measures. This finding suggests why many real-world implicit learning situations may pose special challenges for ASD.

  11. A Model of Adaptive Language Learning

    ERIC Educational Resources Information Center

    Woodrow, Lindy J.

    2006-01-01

    This study applies theorizing from educational psychology and language learning to hypothesize a model of language learning that takes into account affect, motivation, and language learning strategies. The study employed a questionnaire to assess variables of motivation, self-efficacy, anxiety, and language learning strategies. The sample…

  12. Oxford dictionary of Physics

    NASA Astrophysics Data System (ADS)

    Isaacs, Alan

    The dictionary is derived from the Concise Science Dictionary, first published by Oxford University Press in 1984 (third edition, 1996). It consists of all the entries relating to physics in that dictionary, together with some of those entries relating to astronomy that are required for an understanding of astrophysics and many entries that relate to physical chemistry. It also contains a selection of the words used in mathematics that are relevant to physics, as well as the key words in metal science, computing, and electronics. For this third edition a number of words from quantum field physics and statistical mechanics have been added. Cosmology and particle physics have been updated and a number of general entries have been expanded.

  13. Mr. Stockdale's Dictionary of Collocations.

    ERIC Educational Resources Information Center

    Stockdale, Joseph Gagen, III

    This dictionary of collocations was compiled by an English-as-a-Second-Language (ESL) teacher in Saudi Arabia who teaches adult, native speakers of Arabic. The dictionary is practical in teaching English because it helps to focus on everyday events and situations. The dictionary works as follows: the teacher looks up a word, such as…

  14. Incidental Vocabulary Learning and Recall by Intermediate Foreign Language Students: The Influence of Marginal Glosses, Dictionary Use, and Summary Writing

    ERIC Educational Resources Information Center

    Ghabanchi, Zargham; Ayoubi, Elham Sadat

    2012-01-01

    This study is an attempt to compare the effect of four reading conditions on incidental vocabulary learning and recall of intermediate EFL learners. A sample population of 120 Iranian intermediate students read two short passages in one of four reading conditions: 1) L1 Marginal Glosses (MG1--provision of L1 translations of unknown words), 2) L2…

  15. A Learning Style Perspective to Investigate the Necessity of Developing Adaptive Learning Systems

    ERIC Educational Resources Information Center

    Hwang, Gwo-Jen; Sung, Han-Yu; Hung, Chun-Ming; Huang, Iwen

    2013-01-01

    Learning styles are considered to be one of the factors that need to be taken into account in developing adaptive learning systems. However, few studies have been conducted to investigate if students have the ability to choose the best-fit e-learning systems or content presentation styles for themselves in terms of learning style perspective. In…

  16. An Intelligent E-Learning System Based on Learner Profiling and Learning Resources Adaptation

    ERIC Educational Resources Information Center

    Tzouveli, Paraskevi; Mylonas, Phivos; Kollias, Stefanos

    2008-01-01

    Taking advantage of the continuously improving, web-based learning systems plays an important role for self-learning, especially in the case of working people. Nevertheless, learning systems do not generally adapt to learners' profiles. Learners have to spend a lot of time before reaching the learning goal that is compatible with their knowledge…

  17. Learning Experiences Reuse Based on an Ontology Modeling to Improve Adaptation in E-Learning Systems

    ERIC Educational Resources Information Center

    Hadj M'tir, Riadh; Rumpler, Béatrice; Jeribi, Lobna; Ben Ghezala, Henda

    2014-01-01

    Current trends in e-Learning focus mainly on personalizing and adapting the learning environment and learning process. Although their increasingly number, theses researches often ignore the concepts of capitalization and reuse of learner experiences which can be exploited later by other learners. Thus, the major challenge of distance learning is…

  18. Enhancing Student Motivation and Learning within Adaptive Tutors

    ERIC Educational Resources Information Center

    Ostrow, Korinn S.

    2015-01-01

    My research is rooted in improving K-12 educational practice using motivational facets made possible through adaptive tutoring systems. In an attempt to isolate best practices within the science of learning, I conduct randomized controlled trials within ASSISTments, an online adaptive tutoring system that provides assistance and assessment to…

  19. Implementation of an Adaptive Learning System Using a Bayesian Network

    ERIC Educational Resources Information Center

    Yasuda, Keiji; Kawashima, Hiroyuki; Hata, Yoko; Kimura, Hiroaki

    2015-01-01

    An adaptive learning system is proposed that incorporates a Bayesian network to efficiently gauge learners' understanding at the course-unit level. Also, learners receive content that is adapted to their measured level of understanding. The system works on an iPad via the Edmodo platform. A field experiment using the system in an elementary school…

  20. Integrating Adaptive Games in Student-Centered Virtual Learning Environments

    ERIC Educational Resources Information Center

    del Blanco, Angel; Torrente, Javier; Moreno-Ger, Pablo; Fernandez-Manjon, Baltasar

    2010-01-01

    The increasing adoption of e-Learning technology is facing new challenges, such as how to produce student-centered systems that can be adapted to each student's needs. In this context, educational video games are proposed as an ideal medium to facilitate adaptation and tracking of students' performance for assessment purposes, but integrating the…

  1. Adaptive strategies for cumulative cultural learning.

    PubMed

    Ehn, Micael; Laland, Kevin

    2012-05-21

    The demographic and ecological success of our species is frequently attributed to our capacity for cumulative culture. However, it is not yet known how humans combine social and asocial learning to generate effective strategies for learning in a cumulative cultural context. Here we explore how cumulative culture influences the relative merits of various pure and conditional learning strategies, including pure asocial and social learning, critical social learning, conditional social learning and individual refiner strategies. We replicate the Rogers' paradox in the cumulative setting. However, our analysis suggests that strategies that resolved Rogers' paradox in a non-cumulative setting may not necessarily evolve in a cumulative setting, thus different strategies will optimize cumulative and non-cumulative cultural learning.

  2. Reinforcement Learning for the Adaptive Control of Perception and Action

    DTIC Science & Technology

    1992-02-01

    This dissertation applies reinforcement learning to the adaptive control of active sensory-motor systems. Active sensory-motor systems, in addition...distinct states in the external world. This phenomenon, called perceptual aliasing, is shown to destabilize existing reinforcement learning algorithms

  3. Adaptive E-Learning Environments: Research Dimensions and Technological Approaches

    ERIC Educational Resources Information Center

    Di Bitonto, Pierpaolo; Roselli, Teresa; Rossano, Veronica; Sinatra, Maria

    2013-01-01

    One of the most closely investigated topics in e-learning research has always been the effectiveness of adaptive learning environments. The technological evolutions that have dramatically changed the educational world in the last six decades have allowed ever more advanced and smarter solutions to be proposed. The focus of this paper is to depict…

  4. RASCAL: A Rudimentary Adaptive System for Computer-Aided Learning.

    ERIC Educational Resources Information Center

    Stewart, John Christopher

    Both the background of computer-assisted instruction (CAI) systems in general and the requirements of a computer-aided learning system which would be a reasonable assistant to a teacher are discussed. RASCAL (Rudimentary Adaptive System for Computer-Aided Learning) is a first attempt at defining a CAI system which would individualize the learning…

  5. Instructional Design and Adaptation Issues in Distance Learning Via Satellite.

    ERIC Educational Resources Information Center

    Thach, Liz

    1995-01-01

    Discusses a qualitative research study conducted in a distance-learning environment using satellite delivery. Describes changes in instructional design and adaptation issues which faculty and professionals involved in satellite-delivery learning situations used to be successful. (Author/AEF)

  6. Adaptive versus Learner Control in a Multiple Intelligence Learning Environment

    ERIC Educational Resources Information Center

    Kelly, Declan

    2008-01-01

    Within the field of technology enhanced learning, adaptive educational systems offer an advanced form of learning environment that attempts to meet the needs of different students. Such systems capture and represent, for each student, various characteristics such as knowledge and traits in an individual learner model. Subsequently, using the…

  7. Learning to adapt: Dynamics of readaptation to geometrical distortions.

    PubMed

    Yehezkel, Oren; Sagi, Dov; Sterkin, Anna; Belkin, Michael; Polat, Uri

    2010-07-21

    The visual system can adapt to optical blur, whereby the adapted image is perceived as sharp. Here we show that adaptation reduces blur-induced biases in shape perception, with repeated adaptations (perceptual learning), leading to unbiased perception upon re-exposure to blur. Observers wore a cylindrical lens of +1.00 D on one eye, thus simulating monocular astigmatism. The other eye was either masked with a translucent blurred lens (monocular) or unmasked (dichoptic). Adaptation was tested in several repeated sessions with a proximity-grouping task, using horizontally or vertically arranged dot-arrays, without feedback, before, after, and throughout the adaptation period. A robust bias in global-orientation judgment was observed with the lens, in accordance with the blur axes. After the observer wore the lens for 2 h, there was no significant change in the bias, but after 4 h, the monocular condition, but not the dichoptic, resulted in reduced bias. The adaptation effect of the monocular 4-h adaptation was preserved, and even improved, when the lens was re-applied the next day, indicating learning. After-effects were observed under all experimental conditions except for the 4-h monocular condition, where learning took place. We suggest that, with long experience, adaptation is transferred to a long-term memory that can be instantly engaged when blur is re-applied, or disengaged when blur is removed, thus leaving no after-effects. The comparison between the monocular and dichoptic conditions indicates a binocular cortical site of plasticity.

  8. A novel structured dictionary for fast processing of 3D medical images, with application to computed tomography restoration and denoising

    NASA Astrophysics Data System (ADS)

    Karimi, Davood; Ward, Rabab K.

    2016-03-01

    Sparse representation of signals in learned overcomplete dictionaries has proven to be a powerful tool with applications in denoising, restoration, compression, reconstruction, and more. Recent research has shown that learned overcomplete dictionaries can lead to better results than analytical dictionaries such as wavelets in almost all image processing applications. However, a major disadvantage of these dictionaries is that their learning and usage is very computationally intensive. In particular, finding the sparse representation of a signal in these dictionaries requires solving an optimization problem that leads to very long computational times, especially in 3D image processing. Moreover, the sparse representation found by greedy algorithms is usually sub-optimal. In this paper, we propose a novel two-level dictionary structure that improves the performance and the speed of standard greedy sparse coding methods. The first (i.e., the top) level in our dictionary is a fixed orthonormal basis, whereas the second level includes the atoms that are learned from the training data. We explain how such a dictionary can be learned from the training data and how the sparse representation of a new signal in this dictionary can be computed. As an application, we use the proposed dictionary structure for removing the noise and artifacts in 3D computed tomography (CT) images. Our experiments with real CT images show that the proposed method achieves results that are comparable with standard dictionary-based methods while substantially reducing the computational time.

  9. Dictionary of Bibliometrics.

    ERIC Educational Resources Information Center

    Diodato, Virgil

    This dictionary explains 225 terms used in bibliometrics, and it provides nontechnical definitions of bibliometric concepts and suggests sources where more information can be found about the defined term. Special features include sample references, cross references, variants (synonyms), and an index of names. The introduction relates the terms of…

  10. Dictionary of Cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Dictionary of Cotton has over 2,000 terms and definitions that were compiled by 33 researchers. It reflects the ongoing commitment of the International Cotton Advisory Committee, through its Technical Information Section, to the spread of knowledge about cotton to all those who have an interest ...

  11. Holikachuk Noun Dictionary (Preliminary).

    ERIC Educational Resources Information Center

    Kari, James, Comp.; And Others

    This dictionary contains lists of nouns in the Holikachuk Athabaskan language as spoken by about twenty people, most of whom live in the village of Grayling, Alaska. The Holikachuk alphabet and sound system are presented. The nouns with English equivalents are listed according to the following categories: animals, fish, insects, birds, plants,…

  12. English-Cinyanja Dictionary.

    ERIC Educational Resources Information Center

    Zambesi Mission, Mitsidi (Malawi).

    This English-Chinyanja (Cinyanja) dictionary was prepared and published by the Zambesi Mission for use in Africa. Compilers of this volume were aided by Africans of Southern Angoniland and a Yao tribesman from the Blantyre district knowledgeable in Chinyanja. Spelling rules used are those of the United Translation Board, which has adopted…

  13. Dictionary of Black Culture.

    ERIC Educational Resources Information Center

    Baskin, Wade; Runes, Richard N.

    This dictionary is an encyclopedic survey of the cultural background and development of the black American, covering the basic issues, events, contributions and biographies germane to the subject. The author-compiler is Chairman of Classical Languages Department at Southeastern State College, Durant, Oklahoma. Richard Runes is practicing law as a…

  14. Teachers' Adaptive Instruction Supporting Students' Literacy Learning

    ERIC Educational Resources Information Center

    Vaughn, Margaret; Parsons, Seth A.; Gallagher, Melissa A.; Branen, Jeneille

    2016-01-01

    Adaptive teaching is an instructional approach where differences among learners are clearly recognized. For the last decade, our research team has studied literacy teachers' instructional adaptations in numerous classrooms in different regions of the United States. In this article, we share conclusions and insights from this longitudinal research.…

  15. Content-Adaptive Sketch Portrait Generation by Decompositional Representation Learning.

    PubMed

    Zhang, Dongyu; Lin, Liang; Chen, Tianshui; Wu, Xian; Tan, Wenwei; Izquierdo, Ebroul

    2017-01-01

    Sketch portrait generation benefits a wide range of applications such as digital entertainment and law enforcement. Although plenty of efforts have been dedicated to this task, several issues still remain unsolved for generating vivid and detail-preserving personal sketch portraits. For example, quite a few artifacts may exist in synthesizing hairpins and glasses, and textural details may be lost in the regions of hair or mustache. Moreover, the generalization ability of current systems is somewhat limited since they usually require elaborately collecting a dictionary of examples or carefully tuning features/components. In this paper, we present a novel representation learning framework that generates an end-to-end photo-sketch mapping through structure and texture decomposition. In the training stage, we first decompose the input face photo into different components according to their representational contents (i.e., structural and textural parts) by using a pre-trained convolutional neural network (CNN). Then, we utilize a branched fully CNN for learning structural and textural representations, respectively. In addition, we design a sorted matching mean square error metric to measure texture patterns in the loss function. In the stage of sketch rendering, our approach automatically generates structural and textural representations for the input photo and produces the final result via a probabilistic fusion scheme. Extensive experiments on several challenging benchmarks suggest that our approach outperforms example-based synthesis algorithms in terms of both perceptual and objective metrics. In addition, the proposed method also has better generalization ability across data set without additional training.

  16. On Development of an Adaptive Tutoring System for Calculus Learning

    NASA Astrophysics Data System (ADS)

    Yokota, Hisashi

    2010-06-01

    One-on-one tutoring is known to be an effective model for learning calculus. Therefore, implementing one-on-one tutoring system into calculus learning software is a natural thing to do. The purpose of this article is to describe how to diagnose a students' knowledge structure about calculus without asking many questions and to show how an adaptive tutoring system is implemented into our calculus learning software JCALC.

  17. Topology dictionary for 3D video understanding.

    PubMed

    Tung, Tony; Matsuyama, Takashi

    2012-08-01

    This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted patterns or training sequences. The model relies on 1) topology description and classification using Reeb graphs, and 2) a Markov motion graph to represent topology change states. We show that the use of Reeb graphs as the high-level topology descriptor is relevant. It allows the dictionary to automatically model complex sequences, whereas other strategies would require prior knowledge on the shape and topology of the captured subjects. Our approach serves to encode 3D video sequences, and can be applied for content-based description and summarization of 3D video sequences. Furthermore, topology class labeling during a learning process enables the system to perform content-based event recognition. Experiments were carried out on various 3D videos. We showcase an application for 3D video progressive summarization using the topology dictionary.

  18. Motor sequence learning and motor adaptation in primary cervical dystonia.

    PubMed

    Katschnig-Winter, Petra; Schwingenschuh, Petra; Davare, Marco; Sadnicka, Anna; Schmidt, Reinhold; Rothwell, John C; Bhatia, Kailash P; Edwards, Mark J

    2014-06-01

    Motor sequence learning and motor adaptation rely on overlapping circuits predominantly involving the basal ganglia and cerebellum. Given the importance of these brain regions to the pathophysiology of primary dystonia, and the previous finding of abnormal motor sequence learning in DYT1 gene carriers, we explored motor sequence learning and motor adaptation in patients with primary cervical dystonia. We recruited 12 patients with cervical dystonia and 11 healthy controls matched for age. Subjects used a joystick to move a cursor from a central starting point to radial targets as fast and accurately as possible. Using this device, we recorded baseline motor performance, motor sequence learning and a visuomotor adaptation task. Patients with cervical dystonia had a significantly higher peak velocity than controls. Baseline performance with random target presentation was otherwise normal. Patients and controls had similar levels of motor sequence learning and motor adaptation. Our patients had significantly higher peak velocity compared to controls, with similar movement times, implying a different performance strategy. The preservation of motor sequence learning in cervical dystonia patients contrasts with the previously observed deficit seen in patients with DYT1 gene mutations, supporting the hypothesis of differing pathophysiology in different forms of primary dystonia. Normal motor adaptation is an interesting finding. With our paradigm we did not find evidence that the previously documented cerebellar abnormalities in cervical dystonia have a behavioral correlate, and thus could be compensatory or reflect "contamination" rather than being directly pathological.

  19. Using assistive technology adaptations to include students with learning disabilities in cooperative learning activities.

    PubMed

    Bryant, D P; Bryant, B R

    1998-01-01

    Cooperative learning (CL) is a common instructional arrangement that is used by classroom teachers to foster academic achievement and social acceptance of students with and without learning disabilities. Cooperative learning is appealing to classroom teachers because it can provide an opportunity for more instruction and feedback by peers than can be provided by teachers to individual students who require extra assistance. Recent studies suggest that students with LD may need adaptations during cooperative learning activities. The use of assistive technology adaptations may be necessary to help some students with LD compensate for their specific learning difficulties so that they can engage more readily in cooperative learning activities. A process for integrating technology adaptations into cooperative learning activities is discussed in terms of three components: selecting adaptations, monitoring the use of the adaptations during cooperative learning activities, and evaluating the adaptations' effectiveness. The article concludes with comments regarding barriers to and support systems for technology integration, technology and effective instructional practices, and the need to consider technology adaptations for students who have learning disabilities.

  20. Temporal Learning Analytics for Adaptive Assessment

    ERIC Educational Resources Information Center

    Papamitsiou, Zacharoula; Economides, Anastasios A.

    2014-01-01

    Accurate and early predictions of student performance could significantly affect interventions during teaching and assessment, which gradually could lead to improved learning outcomes. In our research, we seek to identify and formalize temporal parameters as predictors of performance ("temporal learning analytics" or TLA) and examine…

  1. A model for culturally adapting a learning system.

    PubMed

    Del Rosario, M L

    1975-12-01

    The Cross-Cultural Adaption Model (XCAM) is designed to help identify cultural values contained in the text, narration, or visual components of a learning instrument and enables the adapter to evaluate his adapted model so that he can modify or revise it, and allows him to assess the modified version by actually measuring the amount of cultural conflict still present in it. Such a model would permit world-wide adaption of learning materials in population regulation. A random sample of the target group is selected. The adapter develops a measurin g instrument, the cross-cultural adaption scale (XCA), a number of statements about the cultural affinity of the object evaluated. The pretest portion of the sample tests the clarity and understandability of the rating scale to be used for evaluating the instructional materials; the pilot group analyzes the original version of the instructional mater ials, determines the criteria for change, and analyzes the adapted version in terms of these criteria; the control group is administered the original version of the learning materials; and the experimental group is administered the adapted version. Finally, the responses obtained from the XRA rating scale and discussions of both the experimental and control groups are studied and group differences are ev aluated according to cultural conflicts met with each version. With this data, the preferred combination of elements is constructed.

  2. Separation of Undersampled Composite Signals Using the Dantzig Selector with Overcomplete Dictionaries

    DTIC Science & Technology

    2014-06-02

    THE DANTZIG SELECTOR WITH OVERCOMPLETE DICTIONARIES 5a. CONTRACT NUMBER IN-HOUSE 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62788F 6. AUTHOR(S...In this paper, we propose using the Dantzig selector model incorporating an overcomplete dictionary to separate a noisy undersampled collection of...Sensing, Overcomplete Dictionary , Handwritten Digits, Linear Regression, Supervised Machine Learning 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  3. Achieving Adaptability through Inquiry Based Learning

    DTIC Science & Technology

    2010-06-01

    knowledge. IBL is based on a different conception of learning, one traceable back to John Dewey (1910) and Jean Piaget (1972; von Glasersfeld, 1995) and...Dewey, 1910; Duffy 2009; Piaget , 1972; Schank, Fano, Bell, and Jona, 1993). If the learners are focused on figuring out what the instructor wants...errors or the inability to fully make sense of a situation provides the basis for learning ( Piaget , 1973; Schank, et al, 1993). Thus the errors

  4. Teacher Adaptation to Open Learning Spaces

    ERIC Educational Resources Information Center

    Alterator, Scott; Deed, Craig

    2013-01-01

    The "open classroom" emerged as a reaction against the industrial-era enclosed and authoritarian classroom. Although contemporary school architecture continues to incorporate and express ideas of openness, more research is needed about how teachers adapt to new and different built contexts. Our purpose is to identify teacher reaction to…

  5. Learning to Adapt to Asymmetric Threats

    DTIC Science & Technology

    2005-08-01

    14. Gresham, Frank M., and Stephen N. Elliot , “The Relationship Between Adaptive Behavior and Social Skills: Issues in Definition and Assessment...Foundation of US Hegemony,” International Security, Vol. 28, No. 1 Summer 2003, pp 5–46. Quinn , Robert E., “Building the Bridge as you Walk on it

  6. An adaptive learning control system for aircraft

    NASA Technical Reports Server (NTRS)

    Mekel, R.; Nachmias, S.

    1978-01-01

    A learning control system and its utilization as a flight control system for F-8 Digital Fly-By-Wire (DFBW) research aircraft is studied. The system has the ability to adjust a gain schedule to account for changing plant characteristics and to improve its performance and the plant's performance in the course of its own operation. Three subsystems are detailed: (1) the information acquisition subsystem which identifies the plant's parameters at a given operating condition; (2) the learning algorithm subsystem which relates the identified parameters to predetermined analytical expressions describing the behavior of the parameters over a range of operating conditions; and (3) the memory and control process subsystem which consists of the collection of updated coefficients (memory) and the derived control laws. Simulation experiments indicate that the learning control system is effective in compensating for parameter variations caused by changes in flight conditions.

  7. Human hyolaryngeal movements show adaptive motor learning during swallowing.

    PubMed

    Humbert, Ianessa A; Christopherson, Heather; Lokhande, Akshay; German, Rebecca; Gonzalez-Fernandez, Marlis; Celnik, Pablo

    2013-06-01

    The hyoid bone and larynx elevate to protect the airway during swallowing. However, it is unknown whether hyolaryngeal movements during swallowing can adjust and adapt to predict the presence of a persistent perturbation in a feed-forward manner (adaptive motor learning). We investigated adaptive motor learning in nine healthy adults. Electrical stimulation was administered to the anterior neck to reduce hyolaryngeal elevation, requiring more strength to swallow during the perturbation period of this study. We assessed peak hyoid bone and laryngeal movements using videofluoroscopy across thirty-five 5-ml water swallows. Evidence of adaptive motor learning of hyolaryngeal movements was found when (1) participants showed systematic gradual increases in elevation against the force of electrical stimulation and (2) hyolaryngeal elevation overshot the baseline (preperturbation) range of motion, showing behavioral aftereffects, when the perturbation was unexpectedly removed. Hyolaryngeal kinematics demonstrates adaptive, error-reducing movements in the presence of changing and unexpected demands. This is significant because individuals with dysphagia often aspirate due to disordered hyolaryngeal movements. Thus, if rapid motor learning is accessible during swallowing in healthy adults, patients may be taught to predict the presence of perturbations and reduce errors in swallowing before they occur.

  8. Professional Learning to Nurture Adaptive Teachers

    ERIC Educational Resources Information Center

    Lee, Kar-Tin

    2013-01-01

    This paper presents the findings of a study conducted in China to identify the potential benefits of incorporating robotics as an educational tool for 100 primary and 320 secondary school teachers of general technology. The Professional Learning Program was conducted from 2010-2013 in China. The major focus of the program was on the development…

  9. Soft systems thinking and social learning for adaptive management.

    PubMed

    Cundill, G; Cumming, G S; Biggs, D; Fabricius, C

    2012-02-01

    The success of adaptive management in conservation has been questioned and the objective-based management paradigm on which it is based has been heavily criticized. Soft systems thinking and social-learning theory expose errors in the assumption that complex systems can be dispassionately managed by objective observers and highlight the fact that conservation is a social process in which objectives are contested and learning is context dependent. We used these insights to rethink adaptive management in a way that focuses on the social processes involved in management and decision making. Our approach to adaptive management is based on the following assumptions: action toward a common goal is an emergent property of complex social relationships; the introduction of new knowledge, alternative values, and new ways of understanding the world can become a stimulating force for learning, creativity, and change; learning is contextual and is fundamentally about practice; and defining the goal to be addressed is continuous and in principle never ends. We believe five key activities are crucial to defining the goal that is to be addressed in an adaptive-management context and to determining the objectives that are desirable and feasible to the participants: situate the problem in its social and ecological context; raise awareness about alternative views of a problem and encourage enquiry and deconstruction of frames of reference; undertake collaborative actions; and reflect on learning.

  10. Auditory-perceptual learning improves speech motor adaptation in children.

    PubMed

    Shiller, Douglas M; Rochon, Marie-Lyne

    2014-08-01

    Auditory feedback plays an important role in children's speech development by providing the child with information about speech outcomes that is used to learn and fine-tune speech motor plans. The use of auditory feedback in speech motor learning has been extensively studied in adults by examining oral motor responses to manipulations of auditory feedback during speech production. Children are also capable of adapting speech motor patterns to perceived changes in auditory feedback; however, it is not known whether their capacity for motor learning is limited by immature auditory-perceptual abilities. Here, the link between speech perceptual ability and the capacity for motor learning was explored in two groups of 5- to 7-year-old children who underwent a period of auditory perceptual training followed by tests of speech motor adaptation to altered auditory feedback. One group received perceptual training on a speech acoustic property relevant to the motor task while a control group received perceptual training on an irrelevant speech contrast. Learned perceptual improvements led to an enhancement in speech motor adaptation (proportional to the perceptual change) only for the experimental group. The results indicate that children's ability to perceive relevant speech acoustic properties has a direct influence on their capacity for sensory-based speech motor adaptation.

  11. Modelling Adaptive Learning Behaviours for Consensus Formation in Human Societies

    NASA Astrophysics Data System (ADS)

    Yu, Chao; Tan, Guozhen; Lv, Hongtao; Wang, Zhen; Meng, Jun; Hao, Jianye; Ren, Fenghui

    2016-06-01

    Learning is an important capability of humans and plays a vital role in human society for forming beliefs and opinions. In this paper, we investigate how learning affects the dynamics of opinion formation in social networks. A novel learning model is proposed, in which agents can dynamically adapt their learning behaviours in order to facilitate the formation of consensus among them, and thus establish a consistent social norm in the whole population more efficiently. In the model, agents adapt their opinions through trail-and-error interactions with others. By exploiting historical interaction experience, a guiding opinion, which is considered to be the most successful opinion in the neighbourhood, can be generated based on the principle of evolutionary game theory. Then, depending on the consistency between its own opinion and the guiding opinion, a focal agent can realize whether its opinion complies with the social norm (i.e., the majority opinion that has been adopted) in the population, and adapt its behaviours accordingly. The highlight of the model lies in that it captures the essential features of people’s adaptive learning behaviours during the evolution and formation of opinions. Experimental results show that the proposed model can facilitate the formation of consensus among agents, and some critical factors such as size of opinion space and network topology can have significant influences on opinion dynamics.

  12. Modelling Adaptive Learning Behaviours for Consensus Formation in Human Societies

    PubMed Central

    Yu, Chao; Tan, Guozhen; Lv, Hongtao; Wang, Zhen; Meng, Jun; Hao, Jianye; Ren, Fenghui

    2016-01-01

    Learning is an important capability of humans and plays a vital role in human society for forming beliefs and opinions. In this paper, we investigate how learning affects the dynamics of opinion formation in social networks. A novel learning model is proposed, in which agents can dynamically adapt their learning behaviours in order to facilitate the formation of consensus among them, and thus establish a consistent social norm in the whole population more efficiently. In the model, agents adapt their opinions through trail-and-error interactions with others. By exploiting historical interaction experience, a guiding opinion, which is considered to be the most successful opinion in the neighbourhood, can be generated based on the principle of evolutionary game theory. Then, depending on the consistency between its own opinion and the guiding opinion, a focal agent can realize whether its opinion complies with the social norm (i.e., the majority opinion that has been adopted) in the population, and adapt its behaviours accordingly. The highlight of the model lies in that it captures the essential features of people’s adaptive learning behaviours during the evolution and formation of opinions. Experimental results show that the proposed model can facilitate the formation of consensus among agents, and some critical factors such as size of opinion space and network topology can have significant influences on opinion dynamics. PMID:27282089

  13. Motor learning cannot explain stuttering adaptation.

    PubMed

    Venkatagiri, Horabail S; Nataraja, Nuggehalli P; Deepthi, M

    2013-08-01

    When persons who stutter (PWS) read a text repeatedly, there is a progressive reduction in stutter frequency over the course of three to five readings. Recently, this phenomenon has been attributed by some researchers to motor learning-the acquisition of relatively permanent motor skills that facilitate fluency through practice in producing words. The current study tested this explanation. 23 PWS read prose passages five times in succession. The number of 'new' and 'old' stutters during repeated readings (words stuttered in the current reading but spoken fluently in the previous reading and words stuttered also in the previous reading) were analyzed. If motor learning facilitated fluency during repeated readings in PWS, words read fluently in a reading should not be stuttered in a later reading in significant numbers. Contrary to this prediction, there was no statistical difference in the number of new words stuttered across five readings. A plausible alternative explanation, which requires further study to verify, is offered.

  14. Review of EFL Learners' Habits in the Use of Pedagogical Dictionaries

    ERIC Educational Resources Information Center

    El-Sayed, Al-Nauman Al-Amin Ali; Siddiek, Ahmed Gumaa

    2013-01-01

    A dictionary is an important device for both: EFL teachers and EFL learners. It is highly needed to conduct effective teaching and learning. Many investigations were carried out to study the foreign language learners' habits in the use of their dictionaries in reading, writing, testing and translating. This paper is shedding light on this issue;…

  15. Adaptive Neural Network Nonparametric Identifier With Normalized Learning Laws.

    PubMed

    Chairez, Isaac

    2016-04-05

    This paper addresses the design of a normalized convergent learning law for neural networks (NNs) with continuous dynamics. The NN is used here to obtain a nonparametric model for uncertain systems described by a set of ordinary differential equations. The source of uncertainties is the presence of some external perturbations and poor knowledge of the nonlinear function describing the system dynamics. A new adaptive algorithm based on normalized algorithms was used to adjust the weights of the NN. The adaptive algorithm was derived by means of a nonstandard logarithmic Lyapunov function (LLF). Two identifiers were designed using two variations of LLFs leading to a normalized learning law for the first identifier and a variable gain normalized learning law. In the case of the second identifier, the inclusion of normalized learning laws yields to reduce the size of the convergence region obtained as solution of the practical stability analysis. On the other hand, the velocity of convergence for the learning laws depends on the norm of errors in inverse form. This fact avoids the peaking transient behavior in the time evolution of weights that accelerates the convergence of identification error. A numerical example demonstrates the improvements achieved by the algorithm introduced in this paper compared with classical schemes with no-normalized continuous learning methods. A comparison of the identification performance achieved by the no-normalized identifier and the ones developed in this paper shows the benefits of the learning law proposed in this paper.

  16. Overseas Students' Intercultural Adaptation as Intercultural Learning: A Transformative Framework

    ERIC Educational Resources Information Center

    Gill, Scherto

    2007-01-01

    In the context of increasing recruitment of overseas students by British higher education (HE) institutions, there has been a growing need to understand the process of students' intercultural adaptation and the approaches that can be adopted by British academic institutions in order to facilitate and support these students' learning experience in…

  17. Adaptive Knowledge Management of Project-Based Learning

    ERIC Educational Resources Information Center

    Tilchin, Oleg; Kittany, Mohamed

    2016-01-01

    The goal of an approach to Adaptive Knowledge Management (AKM) of project-based learning (PBL) is to intensify subject study through guiding, inducing, and facilitating development knowledge, accountability skills, and collaborative skills of students. Knowledge development is attained by knowledge acquisition, knowledge sharing, and knowledge…

  18. Mispronunciation Detection for Language Learning and Speech Recognition Adaptation

    ERIC Educational Resources Information Center

    Ge, Zhenhao

    2013-01-01

    The areas of "mispronunciation detection" (or "accent detection" more specifically) within the speech recognition community are receiving increased attention now. Two application areas, namely language learning and speech recognition adaptation, are largely driving this research interest and are the focal points of this work.…

  19. ELCAT: An E-Learning Content Adaptation Toolkit

    ERIC Educational Resources Information Center

    Clements, Iain; Xu, Zhijie

    2005-01-01

    Purpose: The purpose of this paper is to present an e-learning content adaptation toolkit--ELCAT--that helps to achieve the objectives of the KTP project No. 3509. Design/methodology/approach: The chosen methodology is absolutely practical. The tool was put into motion and results were observed as university and the collaborating company members…

  20. Educational Software and Adaptive Technology for Students with Learning Disabilities.

    ERIC Educational Resources Information Center

    Payne, Mario D.; Sachs, Rose

    Technological solutions have enabled postsecondary students with learning disabilities to compete equally with nondisabled peers in the educational environment. Such solutions have included a variety of educational software, word processing applications, and adaptive technology. Educational software has many benefits over more traditional…

  1. Managing Adaptive Challenges: Learning with Principals in Bermuda and Florida

    ERIC Educational Resources Information Center

    Drago-Severson, Eleanor; Maslin-Ostrowski, Patricia; Hoffman, Alexander M.; Barbaro, Justin

    2014-01-01

    We interviewed eight principals from Bermuda and Florida about how they identify and manage their most pressing challenges. Their challenges are composed of both adaptive and technical work, requiring leaders to learn to diagnose and manage them. Challenges focused on change and were traced to accountability contexts, yet accountability was not…

  2. Adaptive Learning in Psychology: Wayfinding in the Digital Age

    ERIC Educational Resources Information Center

    Dziuban, Charles D.; Moskal, Patsy D.; Cassisi, Jeffrey; Fawcett, Alexis

    2016-01-01

    This paper presents the results of a pilot study investigating the use of the Realizeit adaptive learning platform to deliver a fully online General Psychology course across two semesters. Through mutual cooperation, UCF and vendor (CCKF) researchers examined students' affective, behavioral, and cognitive reactions to the system. Student survey…

  3. Amygdala-prefrontal interactions in (mal)adaptive learning.

    PubMed

    Likhtik, Ekaterina; Paz, Rony

    2015-03-01

    The study of neurobiological mechanisms underlying anxiety disorders has been shaped by learning models that frame anxiety as maladaptive learning. Pavlovian conditioning and extinction are particularly influential in defining learning stages that can account for symptoms of anxiety disorders. Recently, dynamic and task related communication between the basolateral complex of the amygdala (BLA) and the medial prefrontal cortex (mPFC) has emerged as a crucial aspect of successful evaluation of threat and safety. Ongoing patterns of neural signaling within the mPFC-BLA circuit during encoding, expression and extinction of adaptive learning are reviewed. The mechanisms whereby deficient mPFC-BLA interactions can lead to generalized fear and anxiety are discussed in learned and innate anxiety. Findings with cross-species validity are emphasized.

  4. Amygdala-prefrontal interactions in (mal)adaptive learning

    PubMed Central

    Likhtik, Ekaterina; Paz, Rony

    2015-01-01

    The study of neurobiological mechanisms underlying anxiety disorders has been shaped by learning models that frame anxiety as maladaptive learning. Pavlovian conditioning and extinction are particularly influential in defining learning stages that can account for symptoms of anxiety disorders. Recently, dynamic and task related communication between the basolateral complex of the amygdala (BLA) and the medial prefrontal cortex (mPFC) has emerged as a crucial aspect of successful evaluation of threat and safety. Ongoing patterns of neural signaling within the mPFCBLA circuit during encoding, expression and extinction of adaptive learning are reviewed. The mechanisms whereby deficient mPFC-BLA interactions can lead to generalized fear are discussed in learned and innate anxiety. Findings with crossspecies validity are emphasized. PMID:25583269

  5. Dictionary of Caribbean English Usage.

    ERIC Educational Resources Information Center

    Allsopp, Richard, Ed.

    This dictionary is designed to provide an inventory of English usage in the Caribbean environment and lifestyle as known and spoken in each territory but not recorded in the standard British and American desk dictionaries. It cross-references different names for the same item throughout the anglophone Caribbean, identifies different items called…

  6. Yup'ik Eskimo Dictionary.

    ERIC Educational Resources Information Center

    Jacobson, Steven A., Ed.

    This dictionary covers the Central Yup'ik Eskimo language spoken in southwestern Alaska. An introductory section provides notes on Yup'ik phonology and orthography, outlines the volume's format, discusses several special issues in translation and phonology, and describes a number of dialects. The main section of the dictionary lists base words,…

  7. Approach for Using Learner Satisfaction to Evaluate the Learning Adaptation Policy

    ERIC Educational Resources Information Center

    Jeghal, Adil; Oughdir, Lahcen; Tairi, Hamid; Radouane, Abdelhay

    2016-01-01

    The learning adaptation is a very important phase in a learning situation in human learning environments. This paper presents the authors' approach used to evaluate the effectiveness of learning adaptive systems. This approach is based on the analysis of learner satisfaction notices collected by a questionnaire on a learning situation; to analyze…

  8. Adaptive feature extraction using sparse coding for machinery fault diagnosis

    NASA Astrophysics Data System (ADS)

    Liu, Haining; Liu, Chengliang; Huang, Yixiang

    2011-02-01

    In the signal processing domain, there has been growing interest in sparse coding with a learned dictionary instead of a predefined one, which is advocated as an effective mathematical description for the underlying principle of mammalian sensory systems in processing information. In this paper, sparse coding is introduced as a feature extraction technique for machinery fault diagnosis and an adaptive feature extraction scheme is proposed based on it. The two core problems of sparse coding, i.e., dictionary learning and coefficients solving, are discussed in detail. A natural extension of sparse coding, shift-invariant sparse coding, is also introduced. Then, the vibration signals of rolling element bearings are taken as the target signals to verify the proposed scheme, and shift-invariant sparse coding is used for vibration analysis. With the purpose of diagnosing the different fault conditions of bearings, features are extracted following the proposed scheme: basis functions are separately learned from each class of vibration signals trying to capture the defective impulses; a redundant dictionary is built by merging all the learned basis functions; based on the redundant dictionary, the diagnostic information is made explicit in the solved sparse representations of vibration signals; sparse features are formulated in terms of activations of atoms. The multiclass linear discriminant analysis (LDA) classifier is used to test the discriminability of the extracted sparse features and the adaptability of the learned atoms. The experiments show that sparse coding is an effective feature extraction technique for machinery fault diagnosis.

  9. Effects of dopaminergic therapy on locomotor adaptation and adaptive learning in persons with Parkinson's disease.

    PubMed

    Roemmich, Ryan T; Hack, Nawaz; Akbar, Umer; Hass, Chris J

    2014-07-15

    Persons with Parkinson's disease (PD) are characterized by multifactorial gait deficits, though the factors which influence the abilities of persons with PD to adapt and store new gait patterns are unclear. The purpose of this study was to investigate the effects of dopaminergic therapy on the abilities of persons with PD to adapt and store gait parameters during split-belt treadmill (SBT) walking. Ten participants with idiopathic PD who were being treated with stable doses of orally-administered dopaminergic therapy participated. All participants performed two randomized testing sessions on separate days: once while optimally-medicated (ON meds) and once after 12-h withdrawal from dopaminergic medication (OFF meds). During each session, locomotor adaptation was investigated as the participants walked on a SBT for 10 min while the belts moved at a 2:1 speed ratio. We assessed locomotor adaptive learning by quantifying: (1) aftereffects during de-adaptation (once the belts returned to tied speeds immediately following SBT walking) and (2) savings during re-adaptation (as the participants repeated the same SBT walking task after washout of aftereffects following the initial SBT task). The withholding of dopaminergic medication diminished step length aftereffects significantly during de-adaptation. However, both locomotor adaptation and savings were unaffected by levodopa. These findings suggest that dopaminergic pathways influence aftereffect storage but do not influence locomotor adaptation or savings within a single session of SBT walking. It appears important that persons with PD should be optimally-medicated if walking on the SBT as gait rehabilitation.

  10. Attention modulates adaptive motor learning in the 'broken escalator' paradigm.

    PubMed

    Patel, Mitesh; Kaski, Diego; Bronstein, Adolfo M

    2014-07-01

    The physical stumble caused by stepping onto a stationary (broken) escalator represents a locomotor aftereffect (LAE) that attests to a process of adaptive motor learning. Whether such learning is primarily explicit (requiring attention resources) or implicit (independent of attention) is unknown. To address this question, we diverted attention in the adaptation (MOVING) and aftereffect (AFTER) phases of the LAE by loading these phases with a secondary cognitive task (sequential naming of a vegetable, fruit and a colour). Thirty-six healthy adults were randomly assigned to 3 equally sized groups. They performed 5 trials stepping onto a stationary sled (BEFORE), 5 with the sled moving (MOVING) and 5 with the sled stationary again (AFTER). A 'Dual-Task-MOVING (DTM)' group performed the dual-task in the MOVING phase and the 'Dual-Task-AFTEREFFECT (DTAE)' group in the AFTER phase. The 'control' group performed no dual task. We recorded trunk displacement, gait velocity and gastrocnemius muscle EMG of the left (leading) leg. The DTM, but not the DTAE group, had larger trunk displacement during the MOVING phase, and a smaller trunk displacement aftereffect compared with controls. Gait velocity was unaffected by the secondary cognitive task in either group. Thus, adaptive locomotor learning involves explicit learning, whereas the expression of the aftereffect is automatic (implicit). During rehabilitation, patients should be actively encouraged to maintain maximal attention when learning new or challenging locomotor tasks.

  11. Adaptive learning by extremal dynamics and negative feedback

    SciTech Connect

    Bak, Per; Chialvo, Dante R.

    2001-03-01

    We describe a mechanism for biological learning and adaptation based on two simple principles: (i) Neuronal activity propagates only through the network's strongest synaptic connections (extremal dynamics), and (ii) the strengths of active synapses are reduced if mistakes are made, otherwise no changes occur (negative feedback). The balancing of those two tendencies typically shapes a synaptic landscape with configurations which are barely stable, and therefore highly flexible. This allows for swift adaptation to new situations. Recollection of past successes is achieved by punishing synapses which have once participated in activity associated with successful outputs much less than neurons that have never been successful. Despite its simplicity, the model can readily learn to solve complicated nonlinear tasks, even in the presence of noise. In particular, the learning time for the benchmark parity problem scales algebraically with the problem size N, with an exponent k{approx}1.4.

  12. Distributed adaptive simulation through standards-based integration of simulators and adaptive learning systems.

    PubMed

    Bergeron, Bryan; Cline, Andrew; Shipley, Jaime

    2012-01-01

    We have developed a distributed, standards-based architecture that enables simulation and simulator designers to leverage adaptive learning systems. Our approach, which incorporates an electronic competency record, open source LMS, and open source microcontroller hardware, is a low-cost, pragmatic option to integrating simulators with traditional courseware.

  13. Peers as Resources for Learning: A Situated Learning Approach to Adapted Physical Activity in Rehabilitation

    ERIC Educational Resources Information Center

    Standal, Oyvind F.; Jespersen, Ejgil

    2008-01-01

    The purpose of this study was to investigate the learning that takes place when people with disabilities interact in a rehabilitation context. Data were generated through in-depth interviews and close observations in a 2 one-half week-long rehabilitation program, where the participants learned both wheelchair skills and adapted physical…

  14. Adaptive Web-Assisted Learning System for Students with Specific Learning Disabilities: A Needs Analysis Study

    ERIC Educational Resources Information Center

    Polat, Elif; Adiguzel, Tufan; Akgun, Ozcan Erkan

    2012-01-01

    Because there is, currently, no education system for primary school students in grades 1-3 who have specific learning disabilities in Turkey and because such students do not receive sufficient support from face-to-face counseling, a needs analysis was conducted in order to prepare an adaptive, web-assisted learning system according to variables…

  15. Selecting Learning Tasks: Effects of Adaptation and Shared Control on Learning Efficiency and Task Involvement

    ERIC Educational Resources Information Center

    Corbalan, Gemma; Kester, Liesbeth; van Merrienboer, Jeroen J. G.

    2008-01-01

    Complex skill acquisition by performing authentic learning tasks is constrained by limited working memory capacity [Baddeley, A. D. (1992). Working memory. "Science, 255", 556-559]. To prevent cognitive overload, task difficulty and support of each newly selected learning task can be adapted to the learner's competence level and perceived task…

  16. SU-E-J-212: Identifying Bones From MRI: A Dictionary Learnign and Sparse Regression Approach

    SciTech Connect

    Ruan, D; Yang, Y; Cao, M; Hu, P; Low, D

    2014-06-01

    Purpose: To develop an efficient and robust scheme to identify bony anatomy based on MRI-only simulation images. Methods: MRI offers important soft tissue contrast and functional information, yet its lack of correlation to electron-density has placed it as an auxiliary modality to CT in radiotherapy simulation and adaptation. An effective scheme to identify bony anatomy is an important first step towards MR-only simulation/treatment paradigm and would satisfy most practical purposes. We utilize a UTE acquisition sequence to achieve visibility of the bone. By contrast to manual + bulk or registration-to identify bones, we propose a novel learning-based approach for improved robustness to MR artefacts and environmental changes. Specifically, local information is encoded with MR image patch, and the corresponding label is extracted (during training) from simulation CT aligned to the UTE. Within each class (bone vs. nonbone), an overcomplete dictionary is learned so that typical patches within the proper class can be represented as a sparse combination of the dictionary entries. For testing, an acquired UTE-MRI is divided to patches using a sliding scheme, where each patch is sparsely regressed against both bone and nonbone dictionaries, and subsequently claimed to be associated with the class with the smaller residual. Results: The proposed method has been applied to the pilot site of brain imaging and it has showed general good performance, with dice similarity coefficient of greater than 0.9 in a crossvalidation study using 4 datasets. Importantly, it is robust towards consistent foreign objects (e.g., headset) and the artefacts relates to Gibbs and field heterogeneity. Conclusion: A learning perspective has been developed for inferring bone structures based on UTE MRI. The imaging setting is subject to minimal motion effects and the post-processing is efficient. The improved efficiency and robustness enables a first translation to MR-only routine. The scheme

  17. Building Adaptive Game-Based Learning Resources: The Integration of IMS Learning Design and

    ERIC Educational Resources Information Center

    Burgos, Daniel; Moreno-Ger, Pablo; Sierra, Jose Luis; Fernandez-Manjon, Baltasar; Specht, Marcus; Koper, Rob

    2008-01-01

    IMS Learning Design (IMS-LD) is a specification to create units of learning (UoLs), which express a certain pedagogical model or strategy (e.g., adaptive learning with games). However, the authoring process of a UoL remains difficult because of the lack of high-level authoring tools for IMS-LD, even more so when the focus is on specific topics,…

  18. Learning to speciate: The biased learning of mate preferences promotes adaptive radiation

    PubMed Central

    Gilman, R. Tucker; Kozak, Genevieve M.

    2015-01-01

    Bursts of rapid repeated speciation called adaptive radiations have generated much of Earth's biodiversity and fascinated biologists since Darwin, but we still do not know why some lineages radiate and others do not. Understanding what causes assortative mating to evolve rapidly and repeatedly in the same lineage is key to understanding adaptive radiation. Many species that have undergone adaptive radiations exhibit mate preference learning, where individuals acquire mate preferences by observing the phenotypes of other members of their populations. Mate preference learning can be biased if individuals also learn phenotypes to avoid in mates, and shift their preferences away from these avoided phenotypes. We used individual‐based computational simulations to study whether biased and unbiased mate preference learning promotes ecological speciation and adaptive radiation. We found that ecological speciation can be rapid and repeated when mate preferences are biased, but is inhibited when mate preferences are learned without bias. Our results suggest that biased mate preference learning may play an important role in generating animal biodiversity through adaptive radiation. PMID:26459795

  19. Learning to speciate: The biased learning of mate preferences promotes adaptive radiation.

    PubMed

    Gilman, R Tucker; Kozak, Genevieve M

    2015-11-01

    Bursts of rapid repeated speciation called adaptive radiations have generated much of Earth's biodiversity and fascinated biologists since Darwin, but we still do not know why some lineages radiate and others do not. Understanding what causes assortative mating to evolve rapidly and repeatedly in the same lineage is key to understanding adaptive radiation. Many species that have undergone adaptive radiations exhibit mate preference learning, where individuals acquire mate preferences by observing the phenotypes of other members of their populations. Mate preference learning can be biased if individuals also learn phenotypes to avoid in mates, and shift their preferences away from these avoided phenotypes. We used individual-based computational simulations to study whether biased and unbiased mate preference learning promotes ecological speciation and adaptive radiation. We found that ecological speciation can be rapid and repeated when mate preferences are biased, but is inhibited when mate preferences are learned without bias. Our results suggest that biased mate preference learning may play an important role in generating animal biodiversity through adaptive radiation.

  20. Applying perceptual and adaptive learning techniques for teaching introductory histopathology

    PubMed Central

    Krasne, Sally; Hillman, Joseph D.; Kellman, Philip J.; Drake, Thomas A.

    2013-01-01

    Background: Medical students are expected to master the ability to interpret histopathologic images, a difficult and time-consuming process. A major problem is the issue of transferring information learned from one example of a particular pathology to a new example. Recent advances in cognitive science have identified new approaches to address this problem. Methods: We adapted a new approach for enhancing pattern recognition of basic pathologic processes in skin histopathology images that utilizes perceptual learning techniques, allowing learners to see relevant structure in novel cases along with adaptive learning algorithms that space and sequence different categories (e.g. diagnoses) that appear during a learning session based on each learner's accuracy and response time (RT). We developed a perceptual and adaptive learning module (PALM) that utilized 261 unique images of cell injury, inflammation, neoplasia, or normal histology at low and high magnification. Accuracy and RT were tracked and integrated into a “Score” that reflected students rapid recognition of the pathologies and pre- and post-tests were given to assess the effectiveness. Results: Accuracy, RT and Scores significantly improved from the pre- to post-test with Scores showing much greater improvement than accuracy alone. Delayed post-tests with previously unseen cases, given after 6-7 weeks, showed a decline in accuracy relative to the post-test for 1st-year students, but not significantly so for 2nd-year students. However, the delayed post-test scores maintained a significant and large improvement relative to those of the pre-test for both 1st and 2nd year students suggesting good retention of pattern recognition. Student evaluations were very favorable. Conclusion: A web-based learning module based on the principles of cognitive science showed an evidence for improved recognition of histopathology patterns by medical students. PMID:24524000

  1. Adaptive Distance Metric Learning for Diffusion Tensor Image Segmentation

    PubMed Central

    Kong, Youyong; Wang, Defeng; Shi, Lin; Hui, Steve C. N.; Chu, Winnie C. W.

    2014-01-01

    High quality segmentation of diffusion tensor images (DTI) is of key interest in biomedical research and clinical application. In previous studies, most efforts have been made to construct predefined metrics for different DTI segmentation tasks. These methods require adequate prior knowledge and tuning parameters. To overcome these disadvantages, we proposed to automatically learn an adaptive distance metric by a graph based semi-supervised learning model for DTI segmentation. An original discriminative distance vector was first formulated by combining both geometry and orientation distances derived from diffusion tensors. The kernel metric over the original distance and labels of all voxels were then simultaneously optimized in a graph based semi-supervised learning approach. Finally, the optimization task was efficiently solved with an iterative gradient descent method to achieve the optimal solution. With our approach, an adaptive distance metric could be available for each specific segmentation task. Experiments on synthetic and real brain DTI datasets were performed to demonstrate the effectiveness and robustness of the proposed distance metric learning approach. The performance of our approach was compared with three classical metrics in the graph based semi-supervised learning framework. PMID:24651858

  2. Learning multiple visuomotor transformations: adaptation and context-dependent recall.

    PubMed

    Mistry, Sima; Contreras-Vidal, Jose L

    2004-10-01

    Recent motor control theories suggest that the brain uses internal models to plan and control accurate movements. An internal model is thought to represent how the biomechanics of the arm interacting with the outside world would respond to a motor command; therefore it can be seen as a predictive model of the reafference that helps the system plan ahead. Moreover, adaptation studies show that humans can learn multiple internal models. It is not clear, however, whether and how contextual cues are used to switch among competing internal models, which are required to compensate for altered environments. To investigate this question, we asked healthy participants to perform center-out pointing movements under normal and distorted visual feedback (0 degrees , 30 degrees counterclockwise, and 60 degrees clockwise rotation of hand-screen cursor relationships) conditions. The results suggest that humans can learn multiple environments simultaneously and can use contextual cues to facilitate adaptation and to recall the appropriate internal model of the visuomotor transformation.

  3. Hazardous materials dictionary

    SciTech Connect

    Coleman, R.J.

    1987-01-01

    Parallel growth of the chemical industry of emergency response capabilities in the public and private sectors has created a new need for improved communications. A new vocabulary of important terms is emerging in each of the industries that transport, store and handle hazardous materials. This dictionary, representing a compilation of words and phrases from many relevant sources, will help document and standardize the nomenclature of hazardous materials. The authors have screened the technical discourse of the chemical, transportation, petroleum and medical fields, both governmental and private, to determine the most current expressions and their uses. The lexicographic goal has been to identify key terms, ambiguous and multiple meaning words, acronyms, symbols and even slang referring to hazardous materials reactions, storing and handling procedures.

  4. A Context-Adaptive Teacher Training Model in a Ubiquitous Learning Environment

    ERIC Educational Resources Information Center

    Chen, Min; Chiang, Feng Kuang; Jiang, Ya Na; Yu, Sheng Quan

    2017-01-01

    In view of the discrepancies in teacher training and teaching practice, this paper put forward a context-adaptive teacher training model in a ubiquitous learning (u-learning) environment. The innovative model provides teachers of different subjects with adaptive and personalized learning content in a u-learning environment, implements intra- and…

  5. Designing a Semantic Bliki System to Support Different Types of Knowledge and Adaptive Learning

    ERIC Educational Resources Information Center

    Huang, Shiu-Li; Yang, Chia-Wei

    2009-01-01

    Though blogs and wikis have been used to support knowledge management and e-learning, existing blogs and wikis cannot support different types of knowledge and adaptive learning. A case in point, types of knowledge vary greatly in category and viewpoints. Additionally, adaptive learning is crucial to improving one's learning performance. This study…

  6. Adaptation Criteria for the Personalised Delivery of Learning Materials: A Multi-Stage Empirical Investigation

    ERIC Educational Resources Information Center

    Thalmann, Stefan

    2014-01-01

    Personalised e-Learning represents a major step-change from the one-size-fits-all approach of traditional learning platforms to a more customised and interactive provision of learning materials. Adaptive learning can support the learning process by tailoring learning materials to individual needs. However, this requires the initial preparation of…

  7. English for Everyday Activities: A Picture Process Dictionary.

    ERIC Educational Resources Information Center

    Zwier, Lawrence J.

    These books are designed to help English-as-a-Second-Language (ESL) students learn the skills they need to communicate the step-by-step aspects of daily activities. Unlike most picture dictionaries, this is a verb-based multi-skills program that uses a student text with a clear and colorful pictorial detail as a starting point and focuses on the…

  8. NCI Dictionary of Genetics Terms

    Cancer.gov

    A dictionary of more than 150 genetics-related terms written for healthcare professionals, developed to support the comprehensive, evidence-based, peer-reviewed PDQ cancer genetics information summaries.

  9. Medical Dictionary: MedlinePlus

    MedlinePlus

    ... of this page: https://medlineplus.gov/mplusdictionary.html Medical Dictionary To use the sharing features on this ... Search term GO GO Visit the tutorial, Understanding Medical Words You may also be interested in these ...

  10. An adaptive online learning framework for practical breast cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Chu, Tianshu; Wang, Jie; Chen, Jiayu

    2016-03-01

    This paper presents an adaptive online learning (OL) framework for supporting clinical breast cancer (BC) diagnosis. Unlike traditional data mining, which trains a particular model from a fixed set of medical data, our framework offers robust OL models that can be updated adaptively according to new data sequences and newly discovered features. As a result, our framework can naturally learn to perform BC diagnosis using experts' opinions on sequential patient cases with cumulative clinical measurements. The framework integrates both supervised learning (SL) models for BC risk assessment and reinforcement learning (RL) models for decision-making of clinical measurements. In other words, online SL and RL interact with one another, and under a doctor's supervision, push the patient's diagnosis further. Furthermore, our framework can quickly update relevant model parameters based on current diagnosis information during the training process. Additionally, it can build flexible fitted models by integrating different model structures and plugging in the corresponding parameters during the prediction (or decision-making) process. Even when the feature space is extended, it can initialize the corresponding parameters and extend the existing model structure without loss of the cumulative knowledge. We evaluate the OL framework on real datasets from BCSC and WBC, and demonstrate that our SL models achieve accurate BC risk assessment from sequential data and incremental features. We also verify that the well-trained RL models provide promising measurement suggestions.

  11. Distributed reinforcement learning for adaptive and robust network intrusion response

    NASA Astrophysics Data System (ADS)

    Malialis, Kleanthis; Devlin, Sam; Kudenko, Daniel

    2015-07-01

    Distributed denial of service (DDoS) attacks constitute a rapidly evolving threat in the current Internet. Multiagent Router Throttling is a novel approach to defend against DDoS attacks where multiple reinforcement learning agents are installed on a set of routers and learn to rate-limit or throttle traffic towards a victim server. The focus of this paper is on online learning and scalability. We propose an approach that incorporates task decomposition, team rewards and a form of reward shaping called difference rewards. One of the novel characteristics of the proposed system is that it provides a decentralised coordinated response to the DDoS problem, thus being resilient to DDoS attacks themselves. The proposed system learns remarkably fast, thus being suitable for online learning. Furthermore, its scalability is successfully demonstrated in experiments involving 1000 learning agents. We compare our approach against a baseline and a popular state-of-the-art throttling technique from the network security literature and show that the proposed approach is more effective, adaptive to sophisticated attack rate dynamics and robust to agent failures.

  12. Psychosocial and Adaptive Deficits Associated With Learning Disability Subtypes.

    PubMed

    Backenson, Erica M; Holland, Sara C; Kubas, Hanna A; Fitzer, Kim R; Wilcox, Gabrielle; Carmichael, Jessica A; Fraccaro, Rebecca L; Smith, Amanda D; Macoun, Sarah J; Harrison, Gina L; Hale, James B

    2015-01-01

    Children with specific learning disabilities (SLD) have deficits in the basic psychological processes that interfere with learning and academic achievement, and for some SLD subtypes, these deficits can also lead to emotional and/or behavior problems. This study examined psychosocial functioning in 123 students, aged 6 to 11, who underwent comprehensive evaluations for learning and/or behavior problems in two Pacific Northwest school districts. Using concordance-discordance model (C-DM) processing strengths and weaknesses SLD identification criteria, results revealed working memory SLD (n = 20), processing speed SLD (n = 30), executive SLD (n = 32), and no disability groups (n = 41). Of the SLD subtypes, repeated measures MANOVA results revealed the processing speed SLD subtype exhibited the greatest psychosocial and adaptive impairment according to teacher behavior ratings. Findings suggest processing speed deficits may be behind the cognitive and psychosocial disturbances found in what has been termed "nonverbal" SLD. Limitations, implications, and future research needs are addressed.

  13. Performance & Emotion--A Study on Adaptive E-Learning Based on Visual/Verbal Learning Styles

    ERIC Educational Resources Information Center

    Beckmann, Jennifer; Bertel, Sven; Zander, Steffi

    2015-01-01

    Adaptive e-Learning systems are able to adjust to a user's learning needs, usually by user modeling or tracking progress. Such learner-adaptive behavior has rapidly become a hot topic for e-Learning, furthered in part by the recent rapid increase in the use of MOOCs (Massive Open Online Courses). A lack of general, individual, and situational data…

  14. Development of an Adaptive Learning System with Multiple Perspectives based on Students' Learning Styles and Cognitive Styles

    ERIC Educational Resources Information Center

    Yang, Tzu-Chi; Hwang, Gwo-Jen; Yang, Stephen Jen-Hwa

    2013-01-01

    In this study, an adaptive learning system is developed by taking multiple dimensions of personalized features into account. A personalized presentation module is proposed for developing adaptive learning systems based on the field dependent/independent cognitive style model and the eight dimensions of Felder-Silverman's learning style. An…

  15. Solar adaptive optics: specificities, lessons learned, and open alternatives

    NASA Astrophysics Data System (ADS)

    Montilla, I.; Marino, J.; Asensio Ramos, A.; Collados, M.; Montoya, L.; Tallon, M.

    2016-07-01

    the Strehl and the Point Spread Function used in night time adaptive optics but not really suitable to the solar systems, and new control strategies more complex than the ones used in nowadays solar Multi Conjugate Adaptive Optics systems. In this paper we summarize the lessons learned with past and current solar adaptive optics systems and focus on the discussion on the new alternatives to solve present open issues limiting their performance.

  16. An adaptive learning control system for large flexible structures

    NASA Technical Reports Server (NTRS)

    Thau, F. E.

    1985-01-01

    The objective of the research has been to study the design of adaptive/learning control systems for the control of large flexible structures. In the first activity an adaptive/learning control methodology for flexible space structures was investigated. The approach was based on using a modal model of the flexible structure dynamics and an output-error identification scheme to identify modal parameters. In the second activity, a least-squares identification scheme was proposed for estimating both modal parameters and modal-to-actuator and modal-to-sensor shape functions. The technique was applied to experimental data obtained from the NASA Langley beam experiment. In the third activity, a separable nonlinear least-squares approach was developed for estimating the number of excited modes, shape functions, modal parameters, and modal amplitude and velocity time functions for a flexible structure. In the final research activity, a dual-adaptive control strategy was developed for regulating the modal dynamics and identifying modal parameters of a flexible structure. A min-max approach was used for finding an input to provide modal parameter identification while not exceeding reasonable bounds on modal displacement.

  17. Efficient retrieval of landscape Hessian: Forced optimal covariance adaptive learning

    NASA Astrophysics Data System (ADS)

    Shir, Ofer M.; Roslund, Jonathan; Whitley, Darrell; Rabitz, Herschel

    2014-06-01

    Knowledge of the Hessian matrix at the landscape optimum of a controlled physical observable offers valuable information about the system robustness to control noise. The Hessian can also assist in physical landscape characterization, which is of particular interest in quantum system control experiments. The recently developed landscape theoretical analysis motivated the compilation of an automated method to learn the Hessian matrix about the global optimum without derivative measurements from noisy data. The current study introduces the forced optimal covariance adaptive learning (FOCAL) technique for this purpose. FOCAL relies on the covariance matrix adaptation evolution strategy (CMA-ES) that exploits covariance information amongst the control variables by means of principal component analysis. The FOCAL technique is designed to operate with experimental optimization, generally involving continuous high-dimensional search landscapes (≳30) with large Hessian condition numbers (≳104). This paper introduces the theoretical foundations of the inverse relationship between the covariance learned by the evolution strategy and the actual Hessian matrix of the landscape. FOCAL is presented and demonstrated to retrieve the Hessian matrix with high fidelity on both model landscapes and quantum control experiments, which are observed to possess nonseparable, nonquadratic search landscapes. The recovered Hessian forms were corroborated by physical knowledge of the systems. The implications of FOCAL extend beyond the investigated studies to potentially cover other physically motivated multivariate landscapes.

  18. Efficient retrieval of landscape Hessian: forced optimal covariance adaptive learning.

    PubMed

    Shir, Ofer M; Roslund, Jonathan; Whitley, Darrell; Rabitz, Herschel

    2014-06-01

    Knowledge of the Hessian matrix at the landscape optimum of a controlled physical observable offers valuable information about the system robustness to control noise. The Hessian can also assist in physical landscape characterization, which is of particular interest in quantum system control experiments. The recently developed landscape theoretical analysis motivated the compilation of an automated method to learn the Hessian matrix about the global optimum without derivative measurements from noisy data. The current study introduces the forced optimal covariance adaptive learning (FOCAL) technique for this purpose. FOCAL relies on the covariance matrix adaptation evolution strategy (CMA-ES) that exploits covariance information amongst the control variables by means of principal component analysis. The FOCAL technique is designed to operate with experimental optimization, generally involving continuous high-dimensional search landscapes (≳30) with large Hessian condition numbers (≳10^{4}). This paper introduces the theoretical foundations of the inverse relationship between the covariance learned by the evolution strategy and the actual Hessian matrix of the landscape. FOCAL is presented and demonstrated to retrieve the Hessian matrix with high fidelity on both model landscapes and quantum control experiments, which are observed to possess nonseparable, nonquadratic search landscapes. The recovered Hessian forms were corroborated by physical knowledge of the systems. The implications of FOCAL extend beyond the investigated studies to potentially cover other physically motivated multivariate landscapes.

  19. Dynamic Learner Profiling and Automatic Learner Classification for Adaptive E-Learning Environment

    ERIC Educational Resources Information Center

    Premlatha, K. R.; Dharani, B.; Geetha, T. V.

    2016-01-01

    E-learning allows learners individually to learn "anywhere, anytime" and offers immediate access to specific information. However, learners have different behaviors, learning styles, attitudes, and aptitudes, which affect their learning process, and therefore learning environments need to adapt according to these differences, so as to…

  20. Algebraic and adaptive learning in neural control systems

    NASA Astrophysics Data System (ADS)

    Ferrari, Silvia

    A systematic approach is developed for designing adaptive and reconfigurable nonlinear control systems that are applicable to plants modeled by ordinary differential equations. The nonlinear controller comprising a network of neural networks is taught using a two-phase learning procedure realized through novel techniques for initialization, on-line training, and adaptive critic design. A critical observation is that the gradients of the functions defined by the neural networks must equal corresponding linear gain matrices at chosen operating points. On-line training is based on a dual heuristic adaptive critic architecture that improves control for large, coupled motions by accounting for actual plant dynamics and nonlinear effects. An action network computes the optimal control law; a critic network predicts the derivative of the cost-to-go with respect to the state. Both networks are algebraically initialized based on prior knowledge of satisfactory pointwise linear controllers and continue to adapt on line during full-scale simulations of the plant. On-line training takes place sequentially over discrete periods of time and involves several numerical procedures. A backpropagating algorithm called Resilient Backpropagation is modified and successfully implemented to meet these objectives, without excessive computational expense. This adaptive controller is as conservative as the linear designs and as effective as a global nonlinear controller. The method is successfully implemented for the full-envelope control of a six-degree-of-freedom aircraft simulation. The results show that the on-line adaptation brings about improved performance with respect to the initialization phase during aircraft maneuvers that involve large-angle and coupled dynamics, and parameter variations.

  1. Embedded sparse representation of fMRI data via group-wise dictionary optimization

    NASA Astrophysics Data System (ADS)

    Zhu, Dajiang; Lin, Binbin; Faskowitz, Joshua; Ye, Jieping; Thompson, Paul M.

    2016-03-01

    Sparse learning enables dimension reduction and efficient modeling of high dimensional signals and images, but it may need to be tailored to best suit specific applications and datasets. Here we used sparse learning to efficiently represent functional magnetic resonance imaging (fMRI) data from the human brain. We propose a novel embedded sparse representation (ESR), to identify the most consistent dictionary atoms across different brain datasets via an iterative group-wise dictionary optimization procedure. In this framework, we introduced additional criteria to make the learned dictionary atoms more consistent across different subjects. We successfully identified four common dictionary atoms that follow the external task stimuli with very high accuracy. After projecting the corresponding coefficient vectors back into the 3-D brain volume space, the spatial patterns are also consistent with traditional fMRI analysis results. Our framework reveals common features of brain activation in a population, as a new, efficient fMRI analysis method.

  2. Towards Motivation-Based Adaptation of Difficulty in E-Learning Programs

    ERIC Educational Resources Information Center

    Endler, Anke; Rey, Gunter Daniel; Butz, Martin V.

    2012-01-01

    The objective of this study was to investigate if an e-learning environment may use measurements of the user's current motivation to adapt the level of task difficulty for more effective learning. In the reported study, motivation-based adaptation was applied randomly to collect a wide range of data for different adaptations in a variety of…

  3. Adaptive sampling for learning gaussian processes using mobile sensor networks.

    PubMed

    Xu, Yunfei; Choi, Jongeun

    2011-01-01

    This paper presents a novel class of self-organizing sensing agents that adaptively learn an anisotropic, spatio-temporal gaussian process using noisy measurements and move in order to improve the quality of the estimated covariance function. This approach is based on a class of anisotropic covariance functions of gaussian processes introduced to model a broad range of spatio-temporal physical phenomena. The covariance function is assumed to be unknown a priori. Hence, it is estimated by the maximum a posteriori probability (MAP) estimator. The prediction of the field of interest is then obtained based on the MAP estimate of the covariance function. An optimal sampling strategy is proposed to minimize the information-theoretic cost function of the Fisher Information Matrix. Simulation results demonstrate the effectiveness and the adaptability of the proposed scheme.

  4. Improving Voluntary Environmental Management Programs: Facilitating Learning and Adaptation

    NASA Astrophysics Data System (ADS)

    Genskow, Kenneth D.; Wood, Danielle M.

    2011-05-01

    Environmental planners and managers face unique challenges understanding and documenting the effectiveness of programs that rely on voluntary actions by private landowners. Programs, such as those aimed at reducing nonpoint source pollution or improving habitat, intend to reach those goals by persuading landowners to adopt behaviors and management practices consistent with environmental restoration and protection. Our purpose with this paper is to identify barriers for improving voluntary environmental management programs and ways to overcome them. We first draw upon insights regarding data, learning, and adaptation from the adaptive management and performance management literatures, describing three key issues: overcoming information constraints, structural limitations, and organizational culture. Although these lessons are applicable to a variety of voluntary environmental management programs, we then present the issues in the context of on-going research for nonpoint source water quality pollution. We end the discussion by highlighting important elements for advancing voluntary program efforts.

  5. Adaptive Sampling for Learning Gaussian Processes Using Mobile Sensor Networks

    PubMed Central

    Xu, Yunfei; Choi, Jongeun

    2011-01-01

    This paper presents a novel class of self-organizing sensing agents that adaptively learn an anisotropic, spatio-temporal Gaussian process using noisy measurements and move in order to improve the quality of the estimated covariance function. This approach is based on a class of anisotropic covariance functions of Gaussian processes introduced to model a broad range of spatio-temporal physical phenomena. The covariance function is assumed to be unknown a priori. Hence, it is estimated by the maximum a posteriori probability (MAP) estimator. The prediction of the field of interest is then obtained based on the MAP estimate of the covariance function. An optimal sampling strategy is proposed to minimize the information-theoretic cost function of the Fisher Information Matrix. Simulation results demonstrate the effectiveness and the adaptability of the proposed scheme. PMID:22163785

  6. The Study and Design of Adaptive Learning System Based on Fuzzy Set Theory

    NASA Astrophysics Data System (ADS)

    Jia, Bing; Zhong, Shaochun; Zheng, Tianyang; Liu, Zhiyong

    Adaptive learning is an effective way to improve the learning outcomes, that is, the selection of learning content and presentation should be adapted to each learner's learning context, learning levels and learning ability. Adaptive Learning System (ALS) can provide effective support for adaptive learning. This paper proposes a new ALS based on fuzzy set theory. It can effectively estimate the learner's knowledge level by test according to learner's target. Then take the factors of learner's cognitive ability and preference into consideration to achieve self-organization and push plan of knowledge. This paper focuses on the design and implementation of domain model and user model in ALS. Experiments confirmed that the system providing adaptive content can effectively help learners to memory the content and improve their comprehension.

  7. The Emotions of Socialization-Related Learning: Understanding Workplace Adaptation as a Learning Process.

    ERIC Educational Resources Information Center

    Reio, Thomas G., Jr.

    The influence of selected discrete emotions on socialization-related learning and perception of workplace adaptation was examined in an exploratory study. Data were collected from 233 service workers in 4 small and medium-sized companies in metropolitan Washington, D.C. The sample members' average age was 32.5 years, and the sample's racial makeup…

  8. Adaptive and learning control of large space structures

    NASA Technical Reports Server (NTRS)

    Montgomery, R. C.; Thau, F. J.

    1980-01-01

    The paper describes the adaptive learning system for space operations which assumes that structural testing can be conducted during deployment and assembly. Simulation results using the solar electric propulsion array and a novel remote sensor are presented; they involve faster scan television coverage of the motions of the array from four cameras on the corners of the Space Shuttle payload bay. The description of the simulation, the filtering algorithm for processing the TV data, the parameter extraction algorithm, and the simulation results are presented.

  9. The Influence of Student Characteristics on the Use of Adaptive E-Learning Material

    ERIC Educational Resources Information Center

    van Seters, J. R.; Ossevoort, M. A.; Tramper, J.; Goedhart, M. J.

    2012-01-01

    Adaptive e-learning materials can help teachers to educate heterogeneous student groups. This study provides empirical data about the way academic students differ in their learning when using adaptive e-learning materials. Ninety-four students participated in the study. We determined characteristics in a heterogeneous student group by collecting…

  10. Adaptive information retrieval: machine learning in associate networks

    SciTech Connect

    Belew, R.K.

    1986-01-01

    One interesting issue in artificial intelligence (Al) currently is the relative merits of, and relationship between, the symbolic and connectionist approaches to intelligent systems building. The performance of more-traditional symbolic systems has been striking, but getting these systems to learn truly new symbols has proven difficult. Recently, some researchers have begun to explore a distinctly different type of representation, similar in some respects to the nerve nets of several decades past. In these massively parallel, connectionist models, symbols arise implicitly, through the interactions of many simple and subsymbolic elements. The work described here was done in two phases. The first phase concentrated on mapping the information retrieval (IR) task into a connectionist network; it is shown that IR is very amendable to this representation. The second, more central phase of the research has shown that this network can also adapt. AIR translates the browsing behaviors of its users into a feedback signal used by a Hebbian-like local learning rule to change the weights on some links. Experience with a series of alternative learning rules are reported, and the results of experiments using human subjects to evaluate the results of AIR's learning are presented.

  11. Blind Domain Adaptation With Augmented Extreme Learning Machine Features.

    PubMed

    Uzair, Muhammad; Mian, Ajmal

    2016-02-11

    In practical applications, the test data often have different distribution from the training data leading to suboptimal visual classification performance. Domain adaptation (DA) addresses this problem by designing classifiers that are robust to mismatched distributions. Existing DA algorithms use the unlabeled test data from target domain during training time in addition to the source domain data. However, target domain data may not always be available for training. We propose a blind DA algorithm that does not require target domain samples for training. For this purpose, we learn a global nonlinear extreme learning machine (ELM) model from the source domain data in an unsupervised fashion. The global ELM model is then used to initialize and learn class specific ELM models from the source domain data. During testing, the target domain features are augmented with the reconstructed features from the global ELM model. The resulting enriched features are then classified using the class specific ELM models based on minimum reconstruction error. Extensive experiments on 16 standard datasets show that despite blind learning, our method outperforms six existing state-of-the-art methods in cross domain visual recognition.

  12. LeadMine: a grammar and dictionary driven approach to entity recognition

    PubMed Central

    2015-01-01

    Background Chemical entity recognition has traditionally been performed by machine learning approaches. Here we describe an approach using grammars and dictionaries. This approach has the advantage that the entities found can be directly related to a given grammar or dictionary, which allows the type of an entity to be known and, if an entity is misannotated, indicates which resource should be corrected. As recognition is driven by what is expected, if spelling errors occur, they can be corrected. Correcting such errors is highly useful when attempting to lookup an entity in a database or, in the case of chemical names, converting them to structures. Results Our system uses a mixture of expertly curated grammars and dictionaries, as well as dictionaries automatically derived from public resources. We show that the heuristics developed to filter our dictionary of trivial chemical names (from PubChem) yields a better performing dictionary than the previously published Jochem dictionary. Our final system performs post-processing steps to modify the boundaries of entities and to detect abbreviations. These steps are shown to significantly improve performance (2.6% and 4.0% F1-score respectively). Our complete system, with incremental post-BioCreative workshop improvements, achieves 89.9% precision and 85.4% recall (87.6% F1-score) on the CHEMDNER test set. Conclusions Grammar and dictionary approaches can produce results at least as good as the current state of the art in machine learning approaches. While machine learning approaches are commonly thought of as "black box" systems, our approach directly links the output entities to the input dictionaries and grammars. Our approach also allows correction of errors in detected entities, which can assist with entity resolution. PMID:25810776

  13. Mandarin Chinese Dictionary: English-Chinese.

    ERIC Educational Resources Information Center

    Wang, Fred Fangyu

    This dictionary is a companion volume to the "Mandarin Chinese Dictionary (Chinese-English)" published in 1967 by Seton Hall University. The purpose of the dictionary is to help English-speaking students produce Chinese sentences in certain cultural situations by looking up the English expressions. Natural, spoken Chinese expressions within the…

  14. Chinese-English Nuclear and Physics Dictionary.

    ERIC Educational Resources Information Center

    Air Force Systems Command, Wright-Patterson AFB, OH. Foreign Technology Div.

    The Nuclear and Physics Dictionary is one of a series of Chinese-English technical dictionaries prepared by the Foreign Technology Division, United States Air Force Systems Command. The purpose of this dictionary is to provide rapid reference tools for translators, abstractors, and research analysts concerned with scientific and technical…

  15. Dictionnaire de Fulfulde (Fulfulde Dictionary). Trainee's Book.

    ERIC Educational Resources Information Center

    Bautista, Andreliz; And Others

    This dictionary of Fulani (Fulfulde) is designed for Peace Corps volunteers serving in Niger, and reflects daily communication needs in that context. A brief introduction to pronouns and verb endings precedes the dictionary text. The dictionary is presented in two sections. The first lists English words alphabetically and their translations in…

  16. Employment of Adaptive Learning Techniques for the Discrimination of Acoustic Emissions.

    DTIC Science & Technology

    1983-11-01

    8D-1Ai38 142 EMPLOYMENT OP ADAPTIVE LEARNING TECHNIQUES FOR THE I DISCRIMINATION OF ACOU..(U) GENERAL ELECTRIC CORPORATE U Ch, RESEARCH AND...OFSTNDRD-96- 1.5%. 111 11 :%____ 111. %I1~.~ 11 1 - 111 -- k. -Jr -. P. -L -. b. EMPLOYMENT OF ADAPTIVE LEARNING TECHNIQUESEli FOR THE DISCRIMINATION OF...8217Include Security Claaaaficatiano Employment of Adaptive * Learning Techniques for the Discrimination Of Acoustic Emissions (Unclassified) 12.’ PE SNAU.R S

  17. Dictionary of environmental protection technology

    SciTech Connect

    Seidel, E.

    1987-01-01

    This dictionary comprises about 14,000 entries in each of the four languages covering the following fields: Air, Water, Water quality, Sewage treatment, Coastal engineering, Pollution of the sea, Flora and fauna, Ecosystems, Waste, Working environment, living conditions, environmental conditions, environmental monitoring. The dictionary deals above all with the technological aspects of environmental protection, i.e., techniques, methods, equipment, machinery, plants and plant systems. Terms regarding the scientific, socioeconomic and politico-cultural aspects have also been included, though in less detail.

  18. Learning Adaptive Forecasting Models from Irregularly Sampled Multivariate Clinical Data.

    PubMed

    Liu, Zitao; Hauskrecht, Milos

    2016-02-01

    Building accurate predictive models of clinical multivariate time series is crucial for understanding of the patient condition, the dynamics of a disease, and clinical decision making. A challenging aspect of this process is that the model should be flexible and adaptive to reflect well patient-specific temporal behaviors and this also in the case when the available patient-specific data are sparse and short span. To address this problem we propose and develop an adaptive two-stage forecasting approach for modeling multivariate, irregularly sampled clinical time series of varying lengths. The proposed model (1) learns the population trend from a collection of time series for past patients; (2) captures individual-specific short-term multivariate variability; and (3) adapts by automatically adjusting its predictions based on new observations. The proposed forecasting model is evaluated on a real-world clinical time series dataset. The results demonstrate the benefits of our approach on the prediction tasks for multivariate, irregularly sampled clinical time series, and show that it can outperform both the population based and patient-specific time series prediction models in terms of prediction accuracy.

  19. Learning Adaptive Forecasting Models from Irregularly Sampled Multivariate Clinical Data

    PubMed Central

    Liu, Zitao; Hauskrecht, Milos

    2016-01-01

    Building accurate predictive models of clinical multivariate time series is crucial for understanding of the patient condition, the dynamics of a disease, and clinical decision making. A challenging aspect of this process is that the model should be flexible and adaptive to reflect well patient-specific temporal behaviors and this also in the case when the available patient-specific data are sparse and short span. To address this problem we propose and develop an adaptive two-stage forecasting approach for modeling multivariate, irregularly sampled clinical time series of varying lengths. The proposed model (1) learns the population trend from a collection of time series for past patients; (2) captures individual-specific short-term multivariate variability; and (3) adapts by automatically adjusting its predictions based on new observations. The proposed forecasting model is evaluated on a real-world clinical time series dataset. The results demonstrate the benefits of our approach on the prediction tasks for multivariate, irregularly sampled clinical time series, and show that it can outperform both the population based and patient-specific time series prediction models in terms of prediction accuracy. PMID:27525189

  20. Active learning: effects of core training design elements on self-regulatory processes, learning, and adaptability.

    PubMed

    Bell, Bradford S; Kozlowski, Steve W J

    2008-03-01

    This article describes a comprehensive examination of the cognitive, motivational, and emotional processes underlying active learning approaches; their effects on learning and transfer; and the core training design elements (exploration, training frame, emotion control) and individual differences (cognitive ability, trait goal orientation, trait anxiety) that shape these processes. Participants (N = 350) were trained to operate a complex, computer-based simulation. Exploratory learning and error-encouragement framing had a positive effect on adaptive transfer performance and interacted with cognitive ability and dispositional goal orientation to influence trainees' metacognition and state goal orientation. Trainees who received the emotion-control strategy had lower levels of state anxiety. Implications for development of an integrated theory of active learning, learner-centered design, and research extensions are discussed.

  1. Adaptive Resonance Theory: how a brain learns to consciously attend, learn, and recognize a changing world.

    PubMed

    Grossberg, Stephen

    2013-01-01

    Adaptive Resonance Theory, or ART, is a cognitive and neural theory of how the brain autonomously learns to categorize, recognize, and predict objects and events in a changing world. This article reviews classical and recent developments of ART, and provides a synthesis of concepts, principles, mechanisms, architectures, and the interdisciplinary data bases that they have helped to explain and predict. The review illustrates that ART is currently the most highly developed cognitive and neural theory available, with the broadest explanatory and predictive range. Central to ART's predictive power is its ability to carry out fast, incremental, and stable unsupervised and supervised learning in response to a changing world. ART specifies mechanistic links between processes of consciousness, learning, expectation, attention, resonance, and synchrony during both unsupervised and supervised learning. ART provides functional and mechanistic explanations of such diverse topics as laminar cortical circuitry; invariant object and scenic gist learning and recognition; prototype, surface, and boundary attention; gamma and beta oscillations; learning of entorhinal grid cells and hippocampal place cells; computation of homologous spatial and temporal mechanisms in the entorhinal-hippocampal system; vigilance breakdowns during autism and medial temporal amnesia; cognitive-emotional interactions that focus attention on valued objects in an adaptively timed way; item-order-rank working memories and learned list chunks for the planning and control of sequences of linguistic, spatial, and motor information; conscious speech percepts that are influenced by future context; auditory streaming in noise during source segregation; and speaker normalization. Brain regions that are functionally described include visual and auditory neocortex; specific and nonspecific thalamic nuclei; inferotemporal, parietal, prefrontal, entorhinal, hippocampal, parahippocampal, perirhinal, and motor cortices

  2. Modeling and Simulation of An Adaptive Neuro-Fuzzy Inference System (ANFIS) for Mobile Learning

    ERIC Educational Resources Information Center

    Al-Hmouz, A.; Shen, Jun; Al-Hmouz, R.; Yan, Jun

    2012-01-01

    With recent advances in mobile learning (m-learning), it is becoming possible for learning activities to occur everywhere. The learner model presented in our earlier work was partitioned into smaller elements in the form of learner profiles, which collectively represent the entire learning process. This paper presents an Adaptive Neuro-Fuzzy…

  3. Visual discrimination and adaptation using non-linear unsupervised learning

    NASA Astrophysics Data System (ADS)

    Jiménez, Sandra; Laparra, Valero; Malo, Jesus

    2013-03-01

    Understanding human vision not only involves empirical descriptions of how it works, but also organization principles that explain why it does so. Identifying the guiding principles of visual phenomena requires learning algorithms to optimize specific goals. Moreover, these algorithms have to be flexible enough to account for the non-linear and adaptive behavior of the system. For instance, linear redundancy reduction transforms certainly explain a wide range of visual phenomena. However, the generality of this organization principle is still in question:10 it is not only that and additional constraints such as energy cost may be relevant as well, but also, statistical independence may not be the better solution to make optimal inferences in squared error terms. Moreover, linear methods cannot account for the non-uniform discrimination in different regions of the image and color space: linear learning methods necessarily disregard the non-linear nature of the system. Therefore, in order to account for the non-linear behavior, principled approaches commonly apply the trick of using (already non-linear) parametric expressions taken from empirical models. Therefore these approaches are not actually explaining the non-linear behavior, but just fitting it to image statistics. In summary, a proper explanation of the behavior of the system requires flexible unsupervised learning algorithms that (1) are tunable to different, perceptually meaningful, goals; and (2) make no assumption on the non-linearity. Over the last years we have worked on these kind of learning algorithms based on non-linear ICA,18 Gaussianization, 19 and principal curves. In this work we stress the fact that these methods can be tuned to optimize different design strategies, namely statistical independence, error minimization under quantization, and error minimization under truncation. Then, we show (1) how to apply these techniques to explain a number of visual phenomena, and (2) suggest the

  4. Breast image feature learning with adaptive deconvolutional networks

    NASA Astrophysics Data System (ADS)

    Jamieson, Andrew R.; Drukker, Karen; Giger, Maryellen L.

    2012-03-01

    Feature extraction is a critical component of medical image analysis. Many computer-aided diagnosis approaches employ hand-designed, heuristic lesion extracted features. An alternative approach is to learn features directly from images. In this preliminary study, we explored the use of Adaptive Deconvolutional Networks (ADN) for learning high-level features in diagnostic breast mass lesion images with potential application to computer-aided diagnosis (CADx) and content-based image retrieval (CBIR). ADNs (Zeiler, et. al., 2011), are recently-proposed unsupervised, generative hierarchical models that decompose images via convolution sparse coding and max pooling. We trained the ADNs to learn multiple layers of representation for two breast image data sets on two different modalities (739 full field digital mammography (FFDM) and 2393 ultrasound images). Feature map calculations were accelerated by use of GPUs. Following Zeiler et. al., we applied the Spatial Pyramid Matching (SPM) kernel (Lazebnik, et. al., 2006) on the inferred feature maps and combined this with a linear support vector machine (SVM) classifier for the task of binary classification between cancer and non-cancer breast mass lesions. Non-linear, local structure preserving dimension reduction, Elastic Embedding (Carreira-Perpiñán, 2010), was then used to visualize the SPM kernel output in 2D and qualitatively inspect image relationships learned. Performance was found to be competitive with current CADx schemes that use human-designed features, e.g., achieving a 0.632+ bootstrap AUC (by case) of 0.83 [0.78, 0.89] for an ultrasound image set (1125 cases).

  5. Learner's Mongol-English Dictionary.

    ERIC Educational Resources Information Center

    Hurlbat, B.; And Others

    This dictionary is designed for use by Peace Corps workers in Mongolia, and reflects daily communication needs in that context. An introductory notation gives the alphabetical order of the Cyrillic alphabet, and subsequent sections list words and stems in Mongol, noting the part of speech, and giving simple (one to several words) English…

  6. Marketing and Communications Media Dictionary.

    ERIC Educational Resources Information Center

    Vigrolio, Tom; Zahler, Jack

    The authors have compiled a dictionary of terms used in marketing, advertising, public relations, and radio/television, photography/filmmaking, and graphics. Included in the volume are articles of a general and historical interest regarding the various media covered in the definitions. A list of trade publications is appended. (JY)

  7. Dictionary of Language and Linguistics.

    ERIC Educational Resources Information Center

    Hartmann, R. R. K.; Stork, F. C.

    With linguistic studies, both theoretical and applied, gaining widespread recognition, new and confusing terms are often introduced. This dictionary, therefore, explains the many new terms and relates the new approaches and concepts to the already familiar traditional grammatical terminology. The most important criterion for selecting entries was…

  8. Dictionary of Radio and Television.

    ERIC Educational Resources Information Center

    Pannett, W. E.

    This dictionary presents definitions of both the well-established terms and many new ones that have come into use with the advances that have taken place in the fields of radio and television. In many cases extended definitions are given in order to describe briefly elementary principles and circuits, while newer and more complex devices and…

  9. Pikchul Nioki Chulda (Picture Dictionary).

    ERIC Educational Resources Information Center

    Dixon, Joan; And Others

    Developed for students in kindergarten through second grade, this alphabet book is one in a series of picture dictionaries in the Pima language developed to instill pride in Pima students by presenting their language in print and to increase their vocabularies in both Pima and English. Introductory sections provide a brief history of the project…

  10. Learning about stress: neural, endocrine and behavioral adaptations.

    PubMed

    McCarty, Richard

    2016-09-01

    In this review, nonassociative learning is advanced as an organizing principle to draw together findings from both sympathetic-adrenal medullary and hypothalamic-pituitary-adrenocortical (HPA) axis responses to chronic intermittent exposure to a variety of stressors. Studies of habituation, facilitation and sensitization of stress effector systems are reviewed and linked to an animal's prior experience with a given stressor, the intensity of the stressor and the appraisal by the animal of its ability to mobilize physiological systems to adapt to the stressor. Brain pathways that regulate physiological and behavioral responses to stress are discussed, especially in light of their regulation of nonassociative processes in chronic intermittent stress. These findings may have special relevance to various psychiatric diseases, including depression and post-traumatic stress disorder (PTSD).

  11. A dictionary of Astronomy for the French Sign Language (LSF)

    NASA Astrophysics Data System (ADS)

    Proust, Dominique; Abbou, Daniel; Chab, Nasro

    2011-06-01

    Since a few years, the french deaf communauty have access to astronomy at Paris-Meudon observatory through a specific teaching adapted from the French Sign Language (Langue des Signes Françcaise, LSF) including direct observations with the observatory telescopes. From this experience, an encyclopedic dictionary of astronomy The Hands in the Stars is now available, containing more than 200 astronomical concepts. Many of them did not existed in Sign Language and can be now fully expressed and explained.

  12. Learner Characteristic Based Learning Effort Curve Mode: The Core Mechanism on Developing Personalized Adaptive E-Learning Platform

    ERIC Educational Resources Information Center

    Hsu, Pi-Shan

    2012-01-01

    This study aims to develop the core mechanism for realizing the development of personalized adaptive e-learning platform, which is based on the previous learning effort curve research and takes into account the learner characteristics of learning style and self-efficacy. 125 university students from Taiwan are classified into 16 groups according…

  13. Examining the Relationship between Learning Organization Characteristics and Change Adaptation, Innovation, and Organizational Performance

    ERIC Educational Resources Information Center

    Kontoghiorghes, Constantine; Awbre, Susan M.; Feurig, Pamela L.

    2005-01-01

    The main purpose of this exploratory study was to examine the relationship between certain learning organization characteristics and change adaptation, innovation, and bottom-line organizational performance. The following learning organization characteristics were found to be the strongest predictors of rapid change adaptation, quick product or…

  14. An Adaptive Approach to Managing Knowledge Development in a Project-Based Learning Environment

    ERIC Educational Resources Information Center

    Tilchin, Oleg; Kittany, Mohamed

    2016-01-01

    In this paper we propose an adaptive approach to managing the development of students' knowledge in the comprehensive project-based learning (PBL) environment. Subject study is realized by two-stage PBL. It shapes adaptive knowledge management (KM) process and promotes the correct balance between personalized and collaborative learning. The…

  15. The Future of Adaptive Learning: Does the Crowd Hold the Key?

    ERIC Educational Resources Information Center

    Heffernan, Neil T.; Ostrow, Korinn S.; Kelly, Kim; Selent, Douglas; Van Inwegen, Eric G.; Xiong, Xiaolu; Williams, Joseph Jay

    2016-01-01

    Due to substantial scientific and practical progress, learning technologies can effectively adapt to the characteristics and needs of students. This article considers how learning technologies can adapt over time by crowdsourcing contributions from teachers and students--explanations, feedback, and other pedagogical interactions. Considering the…

  16. A Context-Aware Self-Adaptive Fractal Based Generalized Pedagogical Agent Framework for Mobile Learning

    ERIC Educational Resources Information Center

    Boulehouache, Soufiane; Maamri, Ramdane; Sahnoun, Zaidi

    2015-01-01

    The Pedagogical Agents (PAs) for Mobile Learning (m-learning) must be able not only to adapt the teaching to the learner knowledge level and profile but also to ensure the pedagogical efficiency within unpredictable changing runtime contexts. Therefore, to deal with this issue, this paper proposes a Context-aware Self-Adaptive Fractal Component…

  17. Exploring the Effects of Intercultural Learning on Cross-Cultural Adaptation in a Study Abroad Context

    ERIC Educational Resources Information Center

    Tsai, Yau

    2011-01-01

    This study targets Asian students studying abroad and explores the effects of intercultural learning on their cross-cultural adaptation by drawing upon a questionnaire survey. On the one hand, the results of this study find that under the influence of intercultural learning, students respond differently in their cross-cultural adaptation and no…

  18. Recasting Transfer as a Socio-Personal Process of Adaptable Learning

    ERIC Educational Resources Information Center

    Billett, Stephen

    2013-01-01

    Transfer is usually cast as an educational, rather than learning, problem. Yet, seeking to adapt what individuals know from one circumstance to another is a process more helpfully associated with learning, than a hybrid one called transfer. Adaptability comprises individuals construing what they experience, then aligning and reconciling with what…

  19. Swarm Intelligence: New Techniques for Adaptive Systems to Provide Learning Support

    ERIC Educational Resources Information Center

    Wong, Lung-Hsiang; Looi, Chee-Kit

    2012-01-01

    The notion of a system adapting itself to provide support for learning has always been an important issue of research for technology-enabled learning. One approach to provide adaptivity is to use social navigation approaches and techniques which involve analysing data of what was previously selected by a cluster of users or what worked for…

  20. Effectiveness of Adaptive Assessment versus Learner Control in a Multimedia Learning System

    ERIC Educational Resources Information Center

    Chen, Ching-Huei; Chang, Shu-Wei

    2015-01-01

    The purpose of this study was to explore the effectiveness of adaptive assessment versus learner control in a multimedia learning system designed to help secondary students learn science. Unlike other systems, this paper presents a workflow of adaptive assessment following instructional materials that better align with learners' cognitive…

  1. Applications of Adaptive Learning Controller to Synthetic Aperture Radar.

    DTIC Science & Technology

    1985-02-01

    FIGURE 37. Location of Two Sub- Phase Histories to be Utilized in Estimating Misfocus Coefficients A and C . . . A8 FIGURES 38.-94. ALC Learning Curves ...FIGURES (Concl uded) FIGURE 23. ALC Learning Curve .... .................. ... 45 .- " FIGURE 24. ALC Learning Curve ......... ................. 47 FIGURE...25. ALC Learning Curve .... .................. ... 48 FIGURE 26. ALC Learning Curve ....... .... ... .... 50 FIGURE 27. ALC Learning Curve

  2. Getting Ready for Mobile Learning--Adaptation Perspective

    ERIC Educational Resources Information Center

    Goh, Tiong; Kinshuk

    2006-01-01

    Emerging from e-learning, mobile learning is going to be a significant next wave of learning environments. This is an evolving research area and many issues regarding mobile learning have not yet been exhaustively covered. This article focuses on implementing m-learning modules using a simple case study. Most existing typical e-learning systems…

  3. Which Desk Dictionary Is Best for Foreign Students of English?

    ERIC Educational Resources Information Center

    Yorkey, Richard

    1969-01-01

    "The American College Dictionary, "Funk and Wagnalls Standard College Dictionary," Webster's New World Dictionary of the American Language," The Random House Dictionary of the English Language," and Webster's Seventh New Collegiate Dictionary" are analyzed and ranked as to their usefulness for the foreign learner of English. (FWB)

  4. OPUS One: An Intelligent Adaptive Learning Environment Using Artificial Intelligence Support

    NASA Astrophysics Data System (ADS)

    Pedrazzoli, Attilio

    2010-06-01

    AI based Tutoring and Learning Path Adaptation are well known concepts in e-Learning scenarios today and increasingly applied in modern learning environments. In order to gain more flexibility and to enhance existing e-learning platforms, the OPUS One LMS Extension package will enable a generic Intelligent Tutored Adaptive Learning Environment, based on a holistic Multidimensional Instructional Design Model (PENTHA ID Model), allowing AI based tutoring and adaptation functionality to existing Web-based e-learning systems. Relying on "real time" adapted profiles, it allows content- / course authors to apply a dynamic course design, supporting tutored, collaborative sessions and activities, as suggested by modern pedagogy. The concept presented combines a personalized level of surveillance, learning activity- and learning path adaptation suggestions to ensure the students learning motivation and learning success. The OPUS One concept allows to implement an advanced tutoring approach combining "expert based" e-tutoring with the more "personal" human tutoring function. It supplies the "Human Tutor" with precise, extended course activity data and "adaptation" suggestions based on predefined subject matter rules. The concept architecture is modular allowing a personalized platform configuration.

  5. Second Graders Learn Animal Adaptations through Form and Function Analogy Object Boxes

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Baldwin, Samantha; Schell, Robert

    2008-01-01

    This study examined the use of form and function analogy object boxes to teach second graders (n = 21) animal adaptations. The study used a pretest-posttest design to examine animal adaptation content learned through focused analogy activities as compared with reading and Internet searches for information about adaptations of animals followed by…

  6. Dictionary Approaches to Image Compression and Reconstruction

    NASA Technical Reports Server (NTRS)

    Ziyad, Nigel A.; Gilmore, Erwin T.; Chouikha, Mohamed F.

    1998-01-01

    This paper proposes using a collection of parameterized waveforms, known as a dictionary, for the purpose of medical image compression. These waveforms, denoted as phi(sub gamma), are discrete time signals, where gamma represents the dictionary index. A dictionary with a collection of these waveforms is typically complete or overcomplete. Given such a dictionary, the goal is to obtain a representation image based on the dictionary. We examine the effectiveness of applying Basis Pursuit (BP), Best Orthogonal Basis (BOB), Matching Pursuits (MP), and the Method of Frames (MOF) methods for the compression of digitized radiological images with a wavelet-packet dictionary. The performance of these algorithms is studied for medical images with and without additive noise.

  7. Dictionary Approaches to Image Compression and Reconstruction

    NASA Technical Reports Server (NTRS)

    Ziyad, Nigel A.; Gilmore, Erwin T.; Chouikha, Mohamed F.

    1998-01-01

    This paper proposes using a collection of parameterized waveforms, known as a dictionary, for the purpose of medical image compression. These waveforms, denoted as lambda, are discrete time signals, where y represents the dictionary index. A dictionary with a collection of these waveforms Is typically complete or over complete. Given such a dictionary, the goal is to obtain a representation Image based on the dictionary. We examine the effectiveness of applying Basis Pursuit (BP), Best Orthogonal Basis (BOB), Matching Pursuits (MP), and the Method of Frames (MOF) methods for the compression of digitized radiological images with a wavelet-packet dictionary. The performance of these algorithms is studied for medical images with and without additive noise.

  8. Context-Adaptive Learning Designs by Using Semantic Web Services

    ERIC Educational Resources Information Center

    Dietze, Stefan; Gugliotta, Alessio; Domingue, John

    2007-01-01

    IMS Learning Design (IMS-LD) is a promising technology aimed at supporting learning processes. IMS-LD packages contain the learning process metadata as well as the learning resources. However, the allocation of resources--whether data or services--within the learning design is done manually at design-time on the basis of the subjective appraisals…

  9. Learning to Be a Community: Schools Need Adaptable Models to Create Successful Programs

    ERIC Educational Resources Information Center

    Ermeling, Bradley A.; Gallimore, Ronald

    2013-01-01

    Making schools learning places for teachers as well as students is a timeless and appealing vision. The growing number of professional learning communities is a hopeful sign that profound change is on the way. This is the challenge learning communities face: Schools and districts need implementation models flexible enough to adapt to local…

  10. Contributions to Adaptive Educational Hypermedia Systems via On-Line Learning Style Estimation

    ERIC Educational Resources Information Center

    Botsios, Sotiris; Georgiou, Demetrius; Safouris, Nikolaos

    2008-01-01

    In order to establish an online diagnostic system for Learning Style Estimation that contributes to the adaptation of learning objects, we propose an easily applicable expert system founded on Bayesian Networks. The proposed system makes use of Learning Style theories and associated diagnostic techniques, simultaneously avoiding certain error…

  11. The Effects of Reflective Activities on Skill Adaptation in a Work-Related Instrumental Learning Setting

    ERIC Educational Resources Information Center

    Roessger, Kevin M.

    2014-01-01

    In work-related instrumental learning contexts, the role of reflective activities is unclear. Kolb's experiential learning theory and Mezirow's transformative learning theory predict skill adaptation as an outcome. This prediction was tested by manipulating reflective activities and assessing participants' response and error rates during novel…

  12. A Framework for Adaptive Learning Design in a Web-Conferencing Environment

    ERIC Educational Resources Information Center

    Bower, Matt

    2016-01-01

    Many recent technologies provide the ability to dynamically adjust the interface depending on the emerging cognitive and collaborative needs of the learning episode. This means that educators can adaptively re-design the learning environment during the lesson, rather than purely relying on preemptive learning design thinking. Based on a…

  13. Self-Regulation Strategies and Technologies for Adaptive Learning Management Systems for Web-based Instruction

    ERIC Educational Resources Information Center

    Heo, Heeok; Joung, Sunyoung

    2004-01-01

    The current study identifies the potential problems of current web-based instruction and learning management systems in terms of its lack of flexibility and customization required for individual learners? different goals, backgrounds, knowledge levels, and learning capabilities. Advanced adaptive learning management system technologies are able to…

  14. Constructive, Self-Regulated, Situated, and Collaborative Learning: An Approach for the Acquisition of Adaptive Competence

    ERIC Educational Resources Information Center

    de Corte, Erik

    2012-01-01

    In today's learning society, education must focus on fostering adaptive competence (AC) defined as the ability to apply knowledge and skills flexibly in different contexts. In this article, four major types of learning are discussed--constructive, self-regulated, situated, and collaborative--in relation to what students must learn in order to…

  15. MATE: Machine Learning for Adaptive Calibration Template Detection

    PubMed Central

    Donné, Simon; De Vylder, Jonas; Goossens, Bart; Philips, Wilfried

    2016-01-01

    The problem of camera calibration is two-fold. On the one hand, the parameters are estimated from known correspondences between the captured image and the real world. On the other, these correspondences themselves—typically in the form of chessboard corners—need to be found. Many distinct approaches for this feature template extraction are available, often of large computational and/or implementational complexity. We exploit the generalized nature of deep learning networks to detect checkerboard corners: our proposed method is a convolutional neural network (CNN) trained on a large set of example chessboard images, which generalizes several existing solutions. The network is trained explicitly against noisy inputs, as well as inputs with large degrees of lens distortion. The trained network that we evaluate is as accurate as existing techniques while offering improved execution time and increased adaptability to specific situations with little effort. The proposed method is not only robust against the types of degradation present in the training set (lens distortions, and large amounts of sensor noise), but also to perspective deformations, e.g., resulting from multi-camera set-ups. PMID:27827920

  16. MATE: Machine Learning for Adaptive Calibration Template Detection.

    PubMed

    Donné, Simon; De Vylder, Jonas; Goossens, Bart; Philips, Wilfried

    2016-11-04

    The problem of camera calibration is two-fold. On the one hand, the parameters are estimated from known correspondences between the captured image and the real world. On the other, these correspondences themselves-typically in the form of chessboard corners-need to be found. Many distinct approaches for this feature template extraction are available, often of large computational and/or implementational complexity. We exploit the generalized nature of deep learning networks to detect checkerboard corners: our proposed method is a convolutional neural network (CNN) trained on a large set of example chessboard images, which generalizes several existing solutions. The network is trained explicitly against noisy inputs, as well as inputs with large degrees of lens distortion. The trained network that we evaluate is as accurate as existing techniques while offering improved execution time and increased adaptability to specific situations with little effort. The proposed method is not only robust against the types of degradation present in the training set (lens distortions, and large amounts of sensor noise), but also to perspective deformations, e.g., resulting from multi-camera set-ups.

  17. Evolutionary perspectives on learning: conceptual and methodological issues in the study of adaptive specializations.

    PubMed

    Krause, Mark A

    2015-07-01

    Inquiry into evolutionary adaptations has flourished since the modern synthesis of evolutionary biology. Comparative methods, genetic techniques, and various experimental and modeling approaches are used to test adaptive hypotheses. In psychology, the concept of adaptation is broadly applied and is central to comparative psychology and cognition. The concept of an adaptive specialization of learning is a proposed account for exceptions to general learning processes, as seen in studies of Pavlovian conditioning of taste aversions, sexual responses, and fear. The evidence generally consists of selective associations forming between biologically relevant conditioned and unconditioned stimuli, with conditioned responses differing in magnitude, persistence, or other measures relative to non-biologically relevant stimuli. Selective associations for biologically relevant stimuli may suggest adaptive specializations of learning, but do not necessarily confirm adaptive hypotheses as conceived of in evolutionary biology. Exceptions to general learning processes do not necessarily default to an adaptive specialization explanation, even if experimental results "make biological sense". This paper examines the degree to which hypotheses of adaptive specializations of learning in sexual and fear response systems have been tested using methodologies developed in evolutionary biology (e.g., comparative methods, quantitative and molecular genetics, survival experiments). A broader aim is to offer perspectives from evolutionary biology for testing adaptive hypotheses in psychological science.

  18. Adaptation of Conceptions of Learning Science Questionnaire into Turkish and Science Teacher Candidates' Conceptions of Learning Science

    ERIC Educational Resources Information Center

    Bahçivan, Eralp; Kapucu, Serkan

    2014-01-01

    The purposes of this study were to (1) adapt an instrument "The Conceptions of Learning Science (COLS) questionnaire" into Turkish, and (2) to determine Turkish science teacher candidates' COLS. Adapting the instrument four steps were followed. Firstly, COLS questionnaire was translated into Turkish. Secondly, COLS questionnaire was…

  19. The semantics of Chemical Markup Language (CML): dictionaries and conventions.

    PubMed

    Murray-Rust, Peter; Townsend, Joe A; Adams, Sam E; Phadungsukanan, Weerapong; Thomas, Jens

    2011-10-14

    The semantic architecture of CML consists of conventions, dictionaries and units. The conventions conform to a top-level specification and each convention can constrain compliant documents through machine-processing (validation). Dictionaries conform to a dictionary specification which also imposes machine validation on the dictionaries. Each dictionary can also be used to validate data in a CML document, and provide human-readable descriptions. An additional set of conventions and dictionaries are used to support scientific units. All conventions, dictionaries and dictionary elements are identifiable and addressable through unique URIs.

  20. Evaluating the Impact of Adaptation to Learning Styles in a Web-Based Educational System

    NASA Astrophysics Data System (ADS)

    Popescu, Elvira

    Measuring the effect of providing educational experiences individualized to the learning style of the students is an open research issue. This paper aims at presenting a case study of a dedicated adaptive educational system called WELSA. First, the adaptation logic, methods and techniques employed in WELSA are briefly presented. Next, the validity and effectiveness of the system are assessed by means of an empirical evaluation approach, involving two experiments with 64 undergraduate students. The results obtained (in terms of learner behavior, performance, efficiency and satisfaction) are analyzed and discussed. The overall results of the experimental study indicate a positive effect of adaptation to learning styles on the learning process.

  1. Physically distributed learning: adapting and reinterpreting physical environments in the development of fraction concepts.

    PubMed

    Martin, Taylor; Schwartz, Daniel L

    2005-07-08

    Five studies examined how interacting with the physical environment can support the development of fraction concepts. Nine- and 10-year-old children worked on fraction problems they could not complete mentally. Experiments 1 and 2 showed that manipulating physical pieces facilitated children's ability to develop an interpretation of fractions. Experiment 3 demonstrated that when children understood a content area well, they used their interpretations to repurpose many environments to support problem solving, whereas when they needed to learn, they were prone to the structure of the environment. Experiments 4 and 5 examined transfer after children had learned by manipulating physical pieces. Children who learned by adapting relatively unstructured environments transferred to new materials better than children who learned with "well-structured" environments that did not require equivalent adaptation. Together, the findings reveal that during physically distributed learning, the opportunity to adapt an environment permits the development of new interpretations that can advance learning.

  2. Cases on Technological Adaptability and Transnational Learning: Issues and Challenges

    ERIC Educational Resources Information Center

    Mukerji, Siran, Ed.; Tripathi, Purnendu, Ed.

    2010-01-01

    Technology holds the key for bridging the gap between access to quality education and the need for enhanced learning experiences. This book contains case studies on divergent themes of personalized learning environments, inclusive learning for social change, innovative learning and assessment techniques, technology and international partnership…

  3. Masters of Adaptation: Learning in Late Life Adjustments

    ERIC Educational Resources Information Center

    Roberson, Jr., Donald N.

    2005-01-01

    The purpose of this research is to understand the relationship between human development in older adults and personal learning. Personal or self-directed learning (SDL) refers to a style of learning where the individual directs, controls, and evaluates what is learned. It may occur with formal classes, but most often takes place in non-formal…

  4. Design Framework for an Adaptive MOOC Enhanced by Blended Learning: Supplementary Training and Personalized Learning for Teacher Professional Development

    ERIC Educational Resources Information Center

    Gynther, Karsten

    2016-01-01

    The research project has developed a design framework for an adaptive MOOC that complements the MOOC format with blended learning. The design framework consists of a design model and a series of learning design principles which can be used to design in-service courses for teacher professional development. The framework has been evaluated by…

  5. Adapting the Speed of Reproduction of Audio Content and Using Text Reinforcement for Maximizing the Learning Outcome though Mobile Phones

    ERIC Educational Resources Information Center

    Munoz-Organero, M.; Munoz-Merino, P. J.; Kloos, Carlos Delgado

    2011-01-01

    The use of technology in learning environments should be targeted at improving the learning outcome of the process. Several technology enhanced techniques can be used for maximizing the learning gain of particular students when having access to learning resources. One of them is content adaptation. Adapting content is especially important when…

  6. Multi-Agent Reinforcement Learning and Adaptive Neural Networks.

    DTIC Science & Technology

    2007-11-02

    learning method. The objective was to study the utility of reinforcement learning as an approach to complex decentralized control problems. The major...accomplishment was a detailed study of multi-agent reinforcement learning applied to a large-scale decentralized stochastic control problem. This study...included a very successful demonstration that a multi-agent reinforcement learning system using neural networks could learn high-performance

  7. SLED: Semantic Label Embedding Dictionary Representation for Multilabel Image Annotation.

    PubMed

    Cao, Xiaochun; Zhang, Hua; Guo, Xiaojie; Liu, Si; Meng, Dan

    2015-09-01

    Most existing methods on weakly supervised image annotation rely on jointly unsupervised feature representation, the components of which are not directly correlated with specific labels. In practical cases, however, there is a big gap between the training and the testing data, say the label combination of the testing data is not always consistent with that of the training. To bridge the gap, this paper presents a semantic label embedding dictionary representation that not only achieves the discriminative feature representation for each label in the image, but also mines the semantic relevance between co-occurrence labels for context information. More specifically, to enhance the discriminative representation of labels, the training data is first divided into a set of overlapped groups by graph shift based on the exclusive label graph. Afterward, given a group of exclusive labels, we try to learn multiple label-specific dictionaries to explicitly decorrelate the feature representation of each label. A joint optimization approach is proposed according to the Fisher discrimination criterion for seeking its solution. Then, to discover the context information hidden in the co-occurrence labels, we explore the semantic relationship between visual words in dictionaries and labels in a multitask learning way with respect to the reconstruction coefficients of the training data. In the annotation stage, with the discriminative dictionaries and exclusive label groups as well as a group sparsity constraint, the reconstruction coefficients of a test image can be easily obtained. Finally, we introduce a label propagation scheme to compute the score of each label for the test image based on its reconstruction coefficients. Experimental results on three challenging data sets demonstrate that our proposed method leads to significant performance gains over existing methods.

  8. Impact of learning adaptability and time management disposition on study engagement among Chinese baccalaureate nursing students.

    PubMed

    Liu, Jing-Ying; Liu, Yan-Hui; Yang, Ji-Peng

    2014-01-01

    The aim of this study was to explore the relationships among study engagement, learning adaptability, and time management disposition in a sample of Chinese baccalaureate nursing students. A convenient sample of 467 baccalaureate nursing students was surveyed in two universities in Tianjin, China. Students completed a questionnaire that included their demographic information, Chinese Utrecht Work Engagement Scale-Student Questionnaire, Learning Adaptability Scale, and Adolescence Time Management Disposition Scale. One-way analysis of variance tests were used to assess the relationship between certain characteristics of baccalaureate nursing students. Pearson correlation was performed to test the correlation among study engagement, learning adaptability, and time management disposition. Hierarchical linear regression analyses were performed to explore the mediating role of time management disposition. The results revealed that study engagement (F = 7.20, P < .01) and learning adaptability (F = 4.41, P < .01) differed across grade groups. Learning adaptability (r = 0.382, P < .01) and time management disposition (r = 0.741, P < .01) were positively related with study engagement. Time management disposition had a partially mediating effect on the relationship between study engagement and learning adaptability. The findings implicate that educators should not only promote interventions to increase engagement of baccalaureate nursing students but also focus on development, investment in adaptability, and time management.

  9. Adaptation paths to novel motor tasks are shaped by prior structure learning.

    PubMed

    Kobak, Dmitry; Mehring, Carsten

    2012-07-18

    After extensive practice with motor tasks sharing structural similarities (e.g., different dancing movements, or different sword techniques), new tasks of the same type can be learned faster. According to the recent "structure learning" hypothesis (Braun et al., 2009a), such rapid generalization of related motor skills relies on learning the dynamic and kinematic relationships shared by this set of skills. As a consequence, motor adaptation becomes constrained, effectively leading to a dimensionality reduction of the learning problem; at the same time, adaptation to tasks lying outside the structure becomes biased toward the structure. We tested these predictions by investigating how previously learned structures influence subsequent motor adaptation. Human subjects were making reaching movements in 3D virtual reality, experiencing perturbations either in the vertical or in the horizontal plane. Perturbations were either visuomotor rotations of varying angle or velocity-dependent forces of varying strength. We found that, after extensive training with both kinematic or dynamic perturbations, adaptation to unpracticed, diagonal, perturbations happened along the previously learned structure (vertical or horizontal), and resulting adaptation trajectories were curved. This effect is robust, can be observed on the single-subject level, and occurs during adaptation both within and across trials. Additionally, we demonstrate that structure learning changes involuntary visuomotor reflexes and therefore is not exclusively a high-level cognitive phenomenon.

  10. Variant Spellings in Modern American Dictionaries.

    ERIC Educational Resources Information Center

    Emery, Donald W.

    A record of how present-day desk dictionaries are recognizing the existence of variant or secondary spellings for many common English words, this reference list can be used by teachers of English and authors of spelling lists. Originally published in 1958, this revised edition uses two dictionaries not in existence then and the revised editions of…

  11. The Cambridge Dictionary of Space Technology

    NASA Astrophysics Data System (ADS)

    Williamson, Mark

    2010-04-01

    Preface and user's guide; Acknowledgements; The dictionary; Classified list of dictionary entries: 1. Spacecraft technology; 2. Communications technology; 3. Propulsion technology; 4. Launch vehicle technology; 5. Space Shuttle; 6. Manned spaceflight; 7. Unmanned spacecraft; 8. Materials; 9. Propellants; 10. Orbits; 11. Physics and astronomy; 12. Space centres and organisations; 13. Miscellaneous.

  12. Getting the Most out of the Dictionary

    ERIC Educational Resources Information Center

    Marckwardt, Albert H.

    2012-01-01

    The usefulness of the dictionary as a reliable source of information for word meanings, spelling, and pronunciation is widely recognized. But even in these obvious matters, the information that the dictionary has to offer is not always accurately interpreted. With respect to pronunciation there seem to be two general pitfalls: (1) the…

  13. Review of "A Dictionary of Global Huayu"

    ERIC Educational Resources Information Center

    Li, Rui

    2016-01-01

    As the first Huayu dictionary published by the Commercial Press, "A Dictionary of Global Huayu" (Chinese Language) did a pioneer work in many aspects. It did expand the influence of Chinese and provided Chinese speaker abroad a valuable reference book for study and communication. Nevertheless, there are still some demerits. First of all,…

  14. Chinese-English Aviation and Space Dictionary.

    ERIC Educational Resources Information Center

    Air Force Systems Command, Wright-Patterson AFB, OH. Foreign Technology Div.

    The Aviation and Space Dictionary is the second of a series of Chinese-English technical dictionaries under preparation by the Foreign Technology Division, United States Air Force Systems Command. The purpose of the series is to provide rapid reference tools for translators, abstracters, and research analysts concerned with scientific and…

  15. Dictionaries of African Sign Languages: An Overview

    ERIC Educational Resources Information Center

    Schmaling, Constanze H.

    2012-01-01

    This article gives an overview of dictionaries of African sign languages that have been published to date most of which have not been widely distributed. After an introduction into the field of sign language lexicography and a discussion of some of the obstacles that authors of sign language dictionaries face in general, I will show problems…

  16. Adaptive properties of differential learning rates for positive and negative outcomes.

    PubMed

    Cazé, Romain D; van der Meer, Matthijs A A

    2013-12-01

    The concept of the reward prediction error-the difference between reward obtained and reward predicted-continues to be a focal point for much theoretical and experimental work in psychology, cognitive science, and neuroscience. Models that rely on reward prediction errors typically assume a single learning rate for positive and negative prediction errors. However, behavioral data indicate that better-than-expected and worse-than-expected outcomes often do not have symmetric impacts on learning and decision-making. Furthermore, distinct circuits within cortico-striatal loops appear to support learning from positive and negative prediction errors, respectively. Such differential learning rates would be expected to lead to biased reward predictions and therefore suboptimal choice performance. Contrary to this intuition, we show that on static "bandit" choice tasks, differential learning rates can be adaptive. This occurs because asymmetric learning enables a better separation of learned reward probabilities. We show analytically how the optimal learning rate asymmetry depends on the reward distribution and implement a biologically plausible algorithm that adapts the balance of positive and negative learning rates from experience. These results suggest specific adaptive advantages for separate, differential learning rates in simple reinforcement learning settings and provide a novel, normative perspective on the interpretation of associated neural data.

  17. Stimulating the cerebellum affects visuomotor adaptation but not intermanual transfer of learning

    PubMed Central

    Block, Hannah; Celnik, Pablo

    2013-01-01

    When systematic movement errors occur, the brain responds with a systematic change in motor behavior. This type of adaptive motor learning can transfer intermanually; adaptation of movements of the right hand in response to training with a perturbed visual signal (visuomotor adaptation) may carry over to the left hand. While visuomotor adaptation has been studied extensively, it is unclear whether the cerebellum, a structure involved in adaptation, is important for intermanual transfer as well. We addressed this question with three experiments in which subjects reached with their right hands as a 30° visuomotor rotation was introduced. Subjects received anodal or sham transcranial direct current stimulation (tDCS) on the trained (Experiment 1) or untrained (Experiment 2) hemisphere of the cerebellum, or, for comparison, motor cortex (M1). After the training period, subjects reached with their left hand, without visual feedback, to assess intermanual transfer of learning aftereffects. Stimulation of the right cerebellum caused faster adaptation, but none of the stimulation sites affected transfer. To ascertain whether cerebellar stimulation would increase transfer if subjects learned faster as well as a larger amount, in Experiment 3 anodal and sham cerebellar groups experienced a shortened training block such that the anodal group learned more than sham. Despite the difference in adaptation magnitude, transfer was similar across these groups, although smaller than in Experiment 1. Our results suggest that intermanual transfer of visuomotor learning does not depend on cerebellar activity, and that the number of movements performed at plateau is an important predictor of transfer. PMID:23625383

  18. Perceptual Learning of Time-Compressed Speech: More than Rapid Adaptation

    PubMed Central

    Banai, Karen; Lavner, Yizhar

    2012-01-01

    Background Time-compressed speech, a form of rapidly presented speech, is harder to comprehend than natural speech, especially for non-native speakers. Although it is possible to adapt to time-compressed speech after a brief exposure, it is not known whether additional perceptual learning occurs with further practice. Here, we ask whether multiday training on time-compressed speech yields more learning than that observed during the initial adaptation phase and whether the pattern of generalization following successful learning is different than that observed with initial adaptation only. Methodology/Principal Findings Two groups of non-native Hebrew speakers were tested on five different conditions of time-compressed speech identification in two assessments conducted 10–14 days apart. Between those assessments, one group of listeners received five practice sessions on one of the time-compressed conditions. Between the two assessments, trained listeners improved significantly more than untrained listeners on the trained condition. Furthermore, the trained group generalized its learning to two untrained conditions in which different talkers presented the trained speech materials. In addition, when the performance of the non-native speakers was compared to that of a group of naïve native Hebrew speakers, performance of the trained group was equivalent to that of the native speakers on all conditions on which learning occurred, whereas performance of the untrained non-native listeners was substantially poorer. Conclusions/Significance Multiday training on time-compressed speech results in significantly more perceptual learning than brief adaptation. Compared to previous studies of adaptation, the training induced learning is more stimulus specific. Taken together, the perceptual learning of time-compressed speech appears to progress from an initial, rapid adaptation phase to a subsequent prolonged and more stimulus specific phase. These findings are consistent with

  19. Learning to push and learning to move: the adaptive control of contact forces

    PubMed Central

    Casadio, Maura; Pressman, Assaf; Mussa-Ivaldi, Ferdinando A.

    2015-01-01

    To be successful at manipulating objects one needs to apply simultaneously well controlled movements and contact forces. We present a computational theory of how the brain may successfully generate a vast spectrum of interactive behaviors by combining two independent processes. One process is competent to control movements in free space and the other is competent to control contact forces against rigid constraints. Free space and rigid constraints are singularities at the boundaries of a continuum of mechanical impedance. Within this continuum, forces and motions occur in “compatible pairs” connected by the equations of Newtonian dynamics. The force applied to an object determines its motion. Conversely, inverse dynamics determine a unique force trajectory from a movement trajectory. In this perspective, we describe motor learning as a process leading to the discovery of compatible force/motion pairs. The learned compatible pairs constitute a local representation of the environment's mechanics. Experiments on force field adaptation have already provided us with evidence that the brain is able to predict and compensate the forces encountered when one is attempting to generate a motion. Here, we tested the theory in the dual case, i.e., when one attempts at applying a desired contact force against a simulated rigid surface. If the surface becomes unexpectedly compliant, the contact point moves as a function of the applied force and this causes the applied force to deviate from its desired value. We found that, through repeated attempts at generating the desired contact force, subjects discovered the unique compatible hand motion. When, after learning, the rigid contact was unexpectedly restored, subjects displayed after effects of learning, consistent with the concurrent operation of a motion control system and a force control system. Together, theory and experiment support a new and broader view of modularity in the coordinated control of forces and motions

  20. Learning to push and learning to move: the adaptive control of contact forces.

    PubMed

    Casadio, Maura; Pressman, Assaf; Mussa-Ivaldi, Ferdinando A

    2015-01-01

    To be successful at manipulating objects one needs to apply simultaneously well controlled movements and contact forces. We present a computational theory of how the brain may successfully generate a vast spectrum of interactive behaviors by combining two independent processes. One process is competent to control movements in free space and the other is competent to control contact forces against rigid constraints. Free space and rigid constraints are singularities at the boundaries of a continuum of mechanical impedance. Within this continuum, forces and motions occur in "compatible pairs" connected by the equations of Newtonian dynamics. The force applied to an object determines its motion. Conversely, inverse dynamics determine a unique force trajectory from a movement trajectory. In this perspective, we describe motor learning as a process leading to the discovery of compatible force/motion pairs. The learned compatible pairs constitute a local representation of the environment's mechanics. Experiments on force field adaptation have already provided us with evidence that the brain is able to predict and compensate the forces encountered when one is attempting to generate a motion. Here, we tested the theory in the dual case, i.e., when one attempts at applying a desired contact force against a simulated rigid surface. If the surface becomes unexpectedly compliant, the contact point moves as a function of the applied force and this causes the applied force to deviate from its desired value. We found that, through repeated attempts at generating the desired contact force, subjects discovered the unique compatible hand motion. When, after learning, the rigid contact was unexpectedly restored, subjects displayed after effects of learning, consistent with the concurrent operation of a motion control system and a force control system. Together, theory and experiment support a new and broader view of modularity in the coordinated control of forces and motions.

  1. Computerized Dynamic Adaptive Tests with Immediately Individualized Feedback for Primary School Mathematics Learning

    ERIC Educational Resources Information Center

    Wu, Huey-Min; Kuo, Bor-Chen; Wang, Su-Chen

    2017-01-01

    In this study, a computerized dynamic assessment test with both immediately individualized feedback and adaptively property was applied to Mathematics learning in primary school. For evaluating the effectiveness of the computerized dynamic adaptive test, the performances of three types of remedial instructions were compared by a pre-test/post-test…

  2. ActiveTutor: Towards More Adaptive Features in an E-Learning Framework

    ERIC Educational Resources Information Center

    Fournier, Jean-Pierre; Sansonnet, Jean-Paul

    2008-01-01

    Purpose: This paper aims to sketch the emerging notion of auto-adaptive software when applied to e-learning software. Design/methodology/approach: The study and the implementation of the auto-adaptive architecture are based on the operational framework "ActiveTutor" that is used for teaching the topic of computer science programming in first-grade…

  3. Designing an Adaptive Web-Based Learning System Based on Students' Cognitive Styles Identified Online

    ERIC Educational Resources Information Center

    Lo, Jia-Jiunn; Chan, Ya-Chen; Yeh, Shiou-Wen

    2012-01-01

    This study developed an adaptive web-based learning system focusing on students' cognitive styles. The system is composed of a student model and an adaptation model. It collected students' browsing behaviors to update the student model for unobtrusively identifying student cognitive styles through a multi-layer feed-forward neural network (MLFF).…

  4. Higher-Order Thinking Development through Adaptive Problem-Based Learning

    ERIC Educational Resources Information Center

    Raiyn, Jamal; Tilchin, Oleg

    2015-01-01

    In this paper we propose an approach to organizing Adaptive Problem-Based Learning (PBL) leading to the development of Higher-Order Thinking (HOT) skills and collaborative skills in students. Adaptability of PBL is expressed by changes in fixed instructor assessments caused by the dynamics of developing HOT skills needed for problem solving,…

  5. Examining the Impact of Adaptively Faded Worked Examples on Student Learning Outcomes

    ERIC Educational Resources Information Center

    Flores, Raymond; Inan, Fethi

    2014-01-01

    The purpose of this study was to explore effective ways to design guided practices within a web-based mathematics problem solving tutorial. Specifically, this study examined student learning outcome differences between two support designs (e.g. adaptively faded and fixed). In the adaptively faded design, students were presented with problems in…

  6. An Open IMS-Based User Modelling Approach for Developing Adaptive Learning Management Systems

    ERIC Educational Resources Information Center

    Boticario, Jesus G.; Santos, Olga C.

    2007-01-01

    Adaptive LMS have not yet reached the eLearning marketplace due to methodological, technological and management open issues. At aDeNu group, we have been working on two key challenges for the last five years in related research projects. Firstly, develop the general framework and a running architecture to support the adaptive life cycle (i.e.,…

  7. Learning Motivation and Adaptive Video Caption Filtering for EFL Learners Using Handheld Devices

    ERIC Educational Resources Information Center

    Hsu, Ching-Kun

    2015-01-01

    The aim of this study was to provide adaptive assistance to improve the listening comprehension of eleventh grade students. This study developed a video-based language learning system for handheld devices, using three levels of caption filtering adapted to student needs. Elementary level captioning excluded 220 English sight words (see Section 1…

  8. A User-Centric Adaptive Learning System for E-Learning 2.0

    ERIC Educational Resources Information Center

    Huang, Shiu-Li; Shiu, Jung-Hung

    2012-01-01

    The success of Web 2.0 inspires e-learning to evolve into e-learning 2.0, which exploits collective intelligence to achieve user-centric learning. However, searching for suitable learning paths and content for achieving a learning goal is time consuming and troublesome on e-learning 2.0 platforms. Therefore, introducing formal learning in these…

  9. Adaptive Semantic and Social Web-based learning and assessment environment for the STEM

    NASA Astrophysics Data System (ADS)

    Babaie, Hassan; Atchison, Chris; Sunderraman, Rajshekhar

    2014-05-01

    We are building a cloud- and Semantic Web-based personalized, adaptive learning environment for the STEM fields that integrates and leverages Social Web technologies to allow instructors and authors of learning material to collaborate in semi-automatic development and update of their common domain and task ontologies and building their learning resources. The semi-automatic ontology learning and development minimize issues related to the design and maintenance of domain ontologies by knowledge engineers who do not have any knowledge of the domain. The social web component of the personal adaptive system will allow individual and group learners to interact with each other and discuss their own learning experience and understanding of course material, and resolve issues related to their class assignments. The adaptive system will be capable of representing key knowledge concepts in different ways and difficulty levels based on learners' differences, and lead to different understanding of the same STEM content by different learners. It will adapt specific pedagogical strategies to individual learners based on their characteristics, cognition, and preferences, allow authors to assemble remotely accessed learning material into courses, and provide facilities for instructors to assess (in real time) the perception of students of course material, monitor their progress in the learning process, and generate timely feedback based on their understanding or misconceptions. The system applies a set of ontologies that structure the learning process, with multiple user friendly Web interfaces. These include the learning ontology (models learning objects, educational resources, and learning goal); context ontology (supports adaptive strategy by detecting student situation), domain ontology (structures concepts and context), learner ontology (models student profile, preferences, and behavior), task ontologies, technological ontology (defines devices and places that surround the

  10. Denoising infrared maritime imagery using tailored dictionaries via modified K-SVD algorithm.

    PubMed

    Smith, L N; Olson, C C; Judd, K P; Nichols, J M

    2012-06-10

    Recent work has shown that tailored overcomplete dictionaries can provide a better image model than standard basis functions for a variety of image processing tasks. Here we propose a modified K-SVD dictionary learning algorithm designed to maintain the advantages of the original approach but with a focus on improved convergence. We then use the learned model to denoise infrared maritime imagery and compare the performance to the original K-SVD algorithm, several overcomplete "fixed" dictionaries, and a standard wavelet denoising algorithm. Results indicate the superiority of overcomplete representations and show that our tailored approach provides similar peak signal-to-noise ratios as the traditional K-SVD at roughly half the computational cost.

  11. Educational Multimedia Profiling Recommendations for Device-Aware Adaptive Mobile Learning

    ERIC Educational Resources Information Center

    Moldovan, Arghir-Nicolae; Ghergulescu, Ioana; Muntean, Cristina Hava

    2014-01-01

    Mobile learning is seeing a fast adoption with the increasing availability and affordability of mobile devices such as smartphones and tablets. As the creation and consumption of educational multimedia content on mobile devices is also increasing fast, educators and mobile learning providers are faced with the challenge to adapt multimedia type…

  12. Fast but fleeting: adaptive motor learning processes associated with aging and cognitive decline.

    PubMed

    Trewartha, Kevin M; Garcia, Angeles; Wolpert, Daniel M; Flanagan, J Randall

    2014-10-01

    Motor learning has been shown to depend on multiple interacting learning processes. For example, learning to adapt when moving grasped objects with novel dynamics involves a fast process that adapts and decays quickly-and that has been linked to explicit memory-and a slower process that adapts and decays more gradually. Each process is characterized by a learning rate that controls how strongly motor memory is updated based on experienced errors and a retention factor determining the movement-to-movement decay in motor memory. Here we examined whether fast and slow motor learning processes involved in learning novel dynamics differ between younger and older adults. In addition, we investigated how age-related decline in explicit memory performance influences learning and retention parameters. Although the groups adapted equally well, they did so with markedly different underlying processes. Whereas the groups had similar fast processes, they had different slow processes. Specifically, the older adults exhibited decreased retention in their slow process compared with younger adults. Within the older group, who exhibited considerable variation in explicit memory performance, we found that poor explicit memory was associated with reduced retention in the fast process, as well as the slow process. These findings suggest that explicit memory resources are a determining factor in impairments in the both the fast and slow processes for motor learning but that aging effects on the slow process are independent of explicit memory declines.

  13. Academic Accountability and University Adaptation: The Architecture of an Academic Learning Organization.

    ERIC Educational Resources Information Center

    Dill, David D.

    1999-01-01

    Discussses various adaptations in organizational structure and governance of academic learning institutions, using case studies of universities that are attempting to improve the quality of teaching and the learning process. Identifies five characteristics typical of such organizations: (1) a culture of evidence; (2) improved coordination of…

  14. An Online Adaptive Learning Environment for Critical-Thinking-Infused English Literacy Instruction

    ERIC Educational Resources Information Center

    Yang, Ya-Ting Carolyn; Gamble, Jeffrey Hugh; Hung, Yu-Wan; Lin, Tzu-Yun

    2014-01-01

    Critical thinking (CT) and English literacy are two essential 21st century competencies that are a priority for teaching and learning in an increasingly digital learning environment. Taking advantage of innovations in educational technology, this study empirically investigates the effectiveness of CT-infused adaptive English literacy instruction…

  15. Towards Increased Relevance: Context-Adapted Models of the Learning Organization

    ERIC Educational Resources Information Center

    Örtenblad, Anders

    2015-01-01

    Purpose: The purposes of this paper are to take a closer look at the relevance of the idea of the learning organization for organizations in different generalized organizational contexts; to open up for the existence of multiple, context-adapted models of the learning organization; and to suggest a number of such models.…

  16. Adaptive Human Scaffolding Facilitates Adolescents' Self-Regulated Learning with Hypermedia

    ERIC Educational Resources Information Center

    Azevedo, Roger; Cromley, Jennifer G.; Winters, Fielding I.; Moos, Daniel C.; Greene, Jeffrey A.

    2005-01-01

    This study examines the effectiveness of three scaffolding conditions on adolescents' learning about the circulatory system with a hypermedia learning environment. One hundred and eleven adolescents (n = 111) were randomly assigned to one of three scaffolding conditions (adaptive scaffolding (AS), fixed scaffolding (FS), or no scaffolding (NS))…

  17. Ontology-Based Multimedia Authoring Tool for Adaptive E-Learning

    ERIC Educational Resources Information Center

    Deng, Lawrence Y.; Keh, Huan-Chao; Liu, Yi-Jen

    2010-01-01

    More video streaming technologies supporting distance learning systems are becoming popular among distributed network environments. In this paper, the authors develop a multimedia authoring tool for adaptive e-learning by using characterization of extended media streaming technologies. The distributed approach is based on an ontology-based model.…

  18. The Effect of Adaptive Confidence Strategies in Computer-Assisted Instruction on Learning and Learner Confidence

    ERIC Educational Resources Information Center

    Warren, Richard Daniel

    2012-01-01

    The purpose of this research was to investigate the effects of including adaptive confidence strategies in instructionally sound computer-assisted instruction (CAI) on learning and learner confidence. Seventy-one general educational development (GED) learners recruited from various GED learning centers at community colleges in the southeast United…

  19. Adaptation of the Students' Motivation towards Science Learning (SMTSL) Questionnaire in the Greek Language

    ERIC Educational Resources Information Center

    Dermitzaki, Irini; Stavroussi, Panayiota; Vavougios, Denis; Kotsis, Konstantinos T.

    2013-01-01

    The present study aimed at adapting in the Greek language the Students' Motivation Towards Science Learning (SMTSL) questionnaire developed by Tuan, Chin, and Shieh ("INT J SCI EDUC" 27(6): 639-654, 2005a) into a different cultural context, a different age group, that is, in university students and with a focus on physics learning. Three…

  20. Partner Knowledge Awareness in Knowledge Communication: Learning by Adapting to the Partner

    ERIC Educational Resources Information Center

    Dehler Zufferey, Jessica; Bodemer, Daniel; Buder, Jurgen; Hesse, Friedrich W.

    2011-01-01

    Awareness of the knowledge of learning partners is not always sufficiently available in collaborative learning scenarios. To compensate, the authors propose to provide collaborators with partner knowledge awareness by means of a visualization tool. Partner knowledge awareness can be used to adapt messages toward the partner. This study…

  1. Rule-based mechanisms of learning for intelligent adaptive flight control

    NASA Technical Reports Server (NTRS)

    Handelman, David A.; Stengel, Robert F.

    1990-01-01

    How certain aspects of human learning can be used to characterize learning in intelligent adaptive control systems is investigated. Reflexive and declarative memory and learning are described. It is shown that model-based systems-theoretic adaptive control methods exhibit attributes of reflexive learning, whereas the problem-solving capabilities of knowledge-based systems of artificial intelligence are naturally suited for implementing declarative learning. Issues related to learning in knowledge-based control systems are addressed, with particular attention given to rule-based systems. A mechanism for real-time rule-based knowledge acquisition is suggested, and utilization of this mechanism within the context of failure diagnosis for fault-tolerant flight control is demonstrated.

  2. International Students' Culture Learning and Cultural Adaptation in China

    ERIC Educational Resources Information Center

    An, Ran; Chiang, Shiao-Yun

    2015-01-01

    This article examines international students' cultural adaptation at a major national university in China. A survey was designed to measure international students' adaptation to the Chinese sociocultural and educational environments in terms of five dimensions: (1) cultural empathy, (2) open-mindedness, (3) emotional stability, (4) social…

  3. Adaptive User Model for Web-Based Learning Environment.

    ERIC Educational Resources Information Center

    Garofalakis, John; Sirmakessis, Spiros; Sakkopoulos, Evangelos; Tsakalidis, Athanasios

    This paper describes the design of an adaptive user model and its implementation in an advanced Web-based Virtual University environment that encompasses combined and synchronized adaptation between educational material and well-known communication facilities. The Virtual University environment has been implemented to support a postgraduate…

  4. Management Strategies for Complex Adaptive Systems: Sensemaking, Learning, and Improvisation

    ERIC Educational Resources Information Center

    McDaniel, Reuben R., Jr.

    2007-01-01

    Misspecification of the nature of organizations may be a major reason for difficulty in achieving performance improvement. Organizations are often viewed as machine-like, but complexity science suggests that organizations should be viewed as complex adaptive systems. I identify the characteristics of complex adaptive systems and give examples of…

  5. Improving Lethal Action: Learning and Adapting in U.S. Counterterrorism Operations

    DTIC Science & Technology

    2014-09-01

    learned process to ensure that it is learning and adapting its counterterrorism operations for maximum success. Yet, at least publically, this...appears to not be the case. The lack of such a process is compounded by the fact that both the conduct and oversight of these operations are divided among...analytic framework and lessons-learned process that the U.S. government could—and should—use to continually and comprehensively improve the

  6. Specialized hybrid learners resolve Rogers' paradox about the adaptive value of social learning.

    PubMed

    Kharratzadeh, Milad; Montrey, Marcel; Metz, Alex; Shultz, Thomas R

    2017-02-07

    Culture is considered an evolutionary adaptation that enhances reproductive fitness. A common explanation is that social learning, the learning mechanism underlying cultural transmission, enhances mean fitness by avoiding the costs of individual learning. This explanation was famously contradicted by Rogers (1988), who used a simple mathematical model to show that cheap social learning can invade a population without raising its mean fitness. He concluded that some crucial factor remained unaccounted for, which would reverse this surprising result. Here we extend this model to include a more complex environment and limited resources, where individuals cannot reliably learn everything about the environment on their own. Under such conditions, cheap social learning evolves and enhances mean fitness, via hybrid learners capable of specializing their individual learning. We then show that while spatial or social constraints hinder the evolution of hybrid learners, a novel social learning strategy, complementary copying, can mitigate these effects.

  7. A neural learning classifier system with self-adaptive constructivism for mobile robot control.

    PubMed

    Hurst, Jacob; Bull, Larry

    2006-01-01

    For artificial entities to achieve true autonomy and display complex lifelike behavior, they will need to exploit appropriate adaptable learning algorithms. In this context adaptability implies flexibility guided by the environment at any given time and an open-ended ability to learn appropriate behaviors. This article examines the use of constructivism-inspired mechanisms within a neural learning classifier system architecture that exploits parameter self-adaptation as an approach to realize such behavior. The system uses a rule structure in which each rule is represented by an artificial neural network. It is shown that appropriate internal rule complexity emerges during learning at a rate controlled by the learner and that the structure indicates underlying features of the task. Results are presented in simulated mazes before moving to a mobile robot platform.

  8. Microstimulation of the midbrain tegmentum creates learning signals for saccade adaptation.

    PubMed

    Kojima, Yoshiko; Yoshida, Kaoru; Iwamoto, Yoshiki

    2007-04-04

    Error signals are vital to motor learning. However, we know little about pathways that transmit error signals for learning in voluntary movements. Here we show that microstimulation of the midbrain tegmentum can induce learning in saccadic eye movements in monkeys. Weak electrical stimuli delivered approximately 200 ms after saccades in one horizontal direction produced gradual and marked changes in saccade gain. The spatial and temporal characteristics of the produced changes were similar to those of adaptation induced by real visual error. When stimulation was applied after saccades in two different directions, endpoints of these saccades gradually shifted in the same direction in two dimensions. We conclude that microstimulation created powerful learning signals that dictate the direction of adaptive shift in movement endpoints. Our findings suggest that the error signals for saccade adaptation are conveyed in a pathway that courses through the midbrain tegmentum.

  9. Adapting Web-based Instruction to Residents’ Knowledge Improves Learning Efficiency

    PubMed Central

    Beckman, Thomas J.; Thomas, Kris G.; Thompson, Warren G.

    2008-01-01

    Summary BACKGROUND Increased clinical demands and decreased available time accentuate the need for efficient learning in postgraduate medical training. Adapting Web-based learning (WBL) to learners’ prior knowledge may improve efficiency. OBJECTIVE We hypothesized that time spent learning would be shorter and test scores not adversely affected for residents who used a WBL intervention that adapted to prior knowledge. DESIGN Randomized, crossover trial. SETTING Academic internal medicine residency program continuity clinic. PARTICIPANTS 122 internal medicine residents. INTERVENTIONS Four WBL modules on ambulatory medicine were developed in standard and adaptive formats. The adaptive format allowed learners who correctly answered case-based questions to skip the corresponding content. MEASUREMENTS and Main Results The measurements were knowledge posttest, time spent on modules, and format preference. One hundred twenty-two residents completed at least 1 module, and 111 completed all 4. Knowledge scores were similar between the adaptive format (mean ± standard error of the mean, 76.2 ± 0.9) and standard (77.2 ± 0.9, 95% confidence interval [CI] for difference −3.0 to 1.0, P = .34). However, time spent was lower for the adaptive format (29.3 minutes [CI 26.0 to 33.0] per module) than for the standard (35.6 [31.6 to 40.3]), an 18% decrease in time (CI 9 to 26%, P = .0003). Seventy-two of 96 respondents (75%) preferred the adaptive format. CONCLUSIONS Adapting WBL to learners’ prior knowledge can reduce learning time without adversely affecting knowledge scores, suggesting greater learning efficiency. In an era where reduced duty hours and growing clinical demands on trainees and faculty limit the time available for learning, such efficiencies will be increasingly important. For clinical trial registration, see http://www.clinicaltrials.gov NCT00466453 (http://www.clinicaltrials.gov/ct/show/NCT00466453?order=1). PMID:18612729

  10. On the total variation dictionary model.

    PubMed

    Zeng, Tieyong; Ng, Michael K

    2010-03-01

    The goal of this paper is to provide a theoretical study of a total variation (TV) dictionary model. Based on the properties of convex analysis and bounded variation functions, the existence of solutions of the TV dictionary model is proved. We then show that the dual form of the model can be given by the minimization of the sum of the l(1) -norm of the dual solution and the Bregman distance between the curvature of the primal solution and the subdifferential of TV norm of the dual solution. This theoretical result suggests that the dictionary must represent sparsely the curvatures of solution image in order to obtain a better denoising performance.

  11. Do learning rates adapt to the distribution of rewards?

    PubMed

    Gershman, Samuel J

    2015-10-01

    Studies of reinforcement learning have shown that humans learn differently in response to positive and negative reward prediction errors, a phenomenon that can be captured computationally by positing asymmetric learning rates. This asymmetry, motivated by neurobiological and cognitive considerations, has been invoked to explain learning differences across the lifespan as well as a range of psychiatric disorders. Recent theoretical work, motivated by normative considerations, has hypothesized that the learning rate asymmetry should be modulated by the distribution of rewards across the available options. In particular, the learning rate for negative prediction errors should be higher than the learning rate for positive prediction errors when the average reward rate is high, and this relationship should reverse when the reward rate is low. We tested this hypothesis in a series of experiments. Contrary to the theoretical predictions, we found that the asymmetry was largely insensitive to the average reward rate; instead, the dominant pattern was a higher learning rate for negative than for positive prediction errors, possibly reflecting risk aversion.

  12. Adapting Cognitive Walkthrough to Support Game Based Learning Design

    ERIC Educational Resources Information Center

    Farrell, David; Moffat, David C.

    2014-01-01

    For any given Game Based Learning (GBL) project to be successful, the player must learn something. Designers may base their work on pedagogical research, but actual game design is still largely driven by intuition. People are famously poor at unsupported methodical thinking and relying so much on instinct is an obvious weak point in GBL design…

  13. Complex Mobile Learning That Adapts to Learners' Cognitive Load

    ERIC Educational Resources Information Center

    Deegan, Robin

    2015-01-01

    Mobile learning is cognitively demanding and frequently the ubiquitous nature of mobile computing means that mobile devices are used in cognitively demanding environments. This paper examines the use of mobile devices from a Learning, Usability and Cognitive Load Theory perspective. It suggests scenarios where these fields interact and presents an…

  14. Psychosocial and Adaptive Deficits Associated with Learning Disability Subtypes

    ERIC Educational Resources Information Center

    Backenson, Erica M.; Holland, Sara C.; Kubas, Hanna A.; Fitzer, Kim R.; Wilcox, Gabrielle; Carmichael, Jessica A.; Fraccaro, Rebecca L.; Smith, Amanda D.; Macoun, Sarah J.; Harrison, Gina L.; Hale, James B.

    2015-01-01

    Children with specific learning disabilities (SLD) have deficits in the basic psychological processes that interfere with learning and academic achievement, and for some SLD subtypes, these deficits can also lead to emotional and/or behavior problems. This study examined psychosocial functioning in 123 students, aged 6 to 11, who underwent…

  15. Adaptative Peer to Peer Data Sharing for Technology Enhanced Learning

    NASA Astrophysics Data System (ADS)

    Angelaccio, Michele; Buttarazzi, Berta

    Starting from the hypothesis that P2P Data Sharing in a direct teaching scenario (e.g.: a classroom lesson) may lead to relevant benefits, this paper explores the features of EduSHARE a Collaborative Learning System useful for Enhanced Learning Process.

  16. Learning Beyond the Buzzwords: Developing the Adaptable, Competent CSS Soldier

    DTIC Science & Technology

    2007-11-02

    current and past knowledge. Jean Piaget , one of the major influencers of Constructivist theory, proposed that learning occurs through an interaction...schema. Learning results from a balanced tension between these two processes. 25 Piaget believed that intelligence is shaped by experience, and

  17. Potentiating mGluR5 function with a positive allosteric modulator enhances adaptive learning.

    PubMed

    Xu, Jian; Zhu, Yongling; Kraniotis, Stephen; He, Qionger; Marshall, John J; Nomura, Toshihiro; Stauffer, Shaun R; Lindsley, Craig W; Conn, P Jeffrey; Contractor, Anis

    2013-07-18

    Metabotropic glutamate receptor 5 (mGluR5) plays important roles in modulating neural activity and plasticity and has been associated with several neuropathological disorders. Previous work has shown that genetic ablation or pharmacological inhibition of mGluR5 disrupts fear extinction and spatial reversal learning, suggesting that mGluR5 signaling is required for different forms of adaptive learning. Here, we tested whether ADX47273, a selective positive allosteric modulator (PAM) of mGluR5, can enhance adaptive learning in mice. We found that systemic administration of the ADX47273 enhanced reversal learning in the Morris Water Maze, an adaptive task. In addition, we found that ADX47273 had no effect on single-session and multi-session extinction, but administration of ADX47273 after a single retrieval trial enhanced subsequent fear extinction learning. Together these results demonstrate a role for mGluR5 signaling in adaptive learning, and suggest that mGluR5 PAMs represent a viable strategy for treatment of maladaptive learning and for improving behavioral flexibility.

  18. Seeing is believing: effects of visual contextual cues on learning and transfer of locomotor adaptation.

    PubMed

    Torres-Oviedo, Gelsy; Bastian, Amy J

    2010-12-15

    Devices such as robots or treadmills are often used to drive motor learning because they can create novel physical environments. However, the learning (i.e., adaptation) acquired on these devices only partially generalizes to natural movements. What determines the specificity of motor learning, and can this be reliably made more general? Here we investigated the effect of visual cues on the specificity of split-belt walking adaptation. We systematically removed vision to eliminate the visual-proprioceptive mismatch that is a salient cue specific to treadmills: vision indicates that we are not moving while leg proprioception indicates that we are. We evaluated the adaptation of temporal and spatial features of gait (i.e., timing and location of foot landing), their transfer to walking over ground, and washout of adaptation when subjects returned to the treadmill. Removing vision during both training (i.e., on the treadmill) and testing (i.e., over ground) strongly improved the transfer of treadmill adaptation to natural walking. Removing vision only during training increased transfer of temporal adaptation, whereas removing vision only during testing increased the transfer of spatial adaptation. This dissociation reveals differences in adaptive mechanisms for temporal and spatial features of walking. Finally training without vision increased the amount that was learned and was linked to the variability in the behavior during adaptation. In conclusion, contextual cues can be manipulated to modulate the magnitude, transfer, and washout of device-induced learning in humans. These results bring us closer to our ultimate goal of developing rehabilitation strategies that improve movements beyond the clinical setting.

  19. Lessons Learned from the Everglades Collaborative Adaptive Management Program

    EPA Science Inventory

    Recent technical papers explore whether adaptive management (AM) is useful for environmental management and restoration efforts and discuss the many challenges to overcome for successful implementation, especially for large-scale restoration programs (McLain and Lee 1996; Levine ...

  20. A dissociation between consolidated perceptual learning and sensory adaptation in vision

    PubMed Central

    Censor, Nitzan; Harris, Hila; Sagi, Dov

    2016-01-01

    Perceptual learning refers to improvement in perception thresholds with practice, however, extended training sessions show reduced performance during training, interfering with learning. These effects were taken to indicate a tight link between sensory adaptation and learning. Here we show a dissociation between adaptation and consolidated learning. Participants trained with a texture discrimination task, in which visual processing time is limited by a temporal target-to-mask window defined as the Stimulus-Onset-Asynchrony (SOA). An initial training phase, previously shown to produce efficient learning, was followed by training structures with varying numbers of SOAs. Largest interference with learning was found in structures containing the largest SOA density, when SOA was gradually decreased. When SOAs were largely kept unchanged, learning was effective. All training structures yielded the same within-session performance reduction, as expected from sensory adaptation. The results point to a dissociation between within-day effects, which depend on the number of trials per se regardless of their temporal structure, and consolidation effects observed on the following day, which were mediated by the temporal structure of practice. These results add a new dimension to consolidation in perceptual learning, suggesting that the degree of its effectiveness depends on variations in temporal properties of the visual stimuli. PMID:27982045

  1. Robust Visual Knowledge Transfer via Extreme Learning Machine Based Domain Adaptation.

    PubMed

    Zhang, Lei; Zhang, David

    2016-08-10

    We address the problem of visual knowledge adaptation by leveraging labeled patterns from source domain and a very limited number of labeled instances in target domain to learn a robust classifier for visual categorization. This paper proposes a new extreme learning machine based cross-domain network learning framework, that is called Extreme Learning Machine (ELM) based Domain Adaptation (EDA). It allows us to learn a category transformation and an ELM classifier with random projection by minimizing the -norm of the network output weights and the learning error simultaneously. The unlabeled target data, as useful knowledge, is also integrated as a fidelity term to guarantee the stability during cross domain learning. It minimizes the matching error between the learned classifier and a base classifier, such that many existing classifiers can be readily incorporated as base classifiers. The network output weights cannot only be analytically determined, but also transferrable. Additionally, a manifold regularization with Laplacian graph is incorporated, such that it is beneficial to semi-supervised learning. Extensively, we also propose a model of multiple views, referred as MvEDA. Experiments on benchmark visual datasets for video event recognition and object recognition, demonstrate that our EDA methods outperform existing cross-domain learning methods.

  2. Flexible explicit but rigid implicit learning in a visuomotor adaptation task.

    PubMed

    Bond, Krista M; Taylor, Jordan A

    2015-06-01

    There is mounting evidence for the idea that performance in a visuomotor rotation task can be supported by both implicit and explicit forms of learning. The implicit component of learning has been well characterized in previous experiments and is thought to arise from the adaptation of an internal model driven by sensorimotor prediction errors. However, the role of explicit learning is less clear, and previous investigations aimed at characterizing the explicit component have relied on indirect measures such as dual-task manipulations, posttests, and descriptive computational models. To address this problem, we developed a new method for directly assaying explicit learning by having participants verbally report their intended aiming direction on each trial. While our previous research employing this method has demonstrated the possibility of measuring explicit learning over the course of training, it was only tested over a limited scope of manipulations common to visuomotor rotation tasks. In the present study, we sought to better characterize explicit and implicit learning over a wider range of task conditions. We tested how explicit and implicit learning change as a function of the specific visual landmarks used to probe explicit learning, the number of training targets, and the size of the rotation. We found that explicit learning was remarkably flexible, responding appropriately to task demands. In contrast, implicit learning was strikingly rigid, with each task condition producing a similar degree of implicit learning. These results suggest that explicit learning is a fundamental component of motor learning and has been overlooked or conflated in previous visuomotor tasks.

  3. A DICTIONARY OF SYRIAN ARABIC (DIALECT OF DAMASCUS), ENGLISH-ARABIC. ARABIC SERIES, NUMBER FIVE.

    ERIC Educational Resources Information Center

    ANI, MOUKHTAR; STOWASSER, KARL

    THIS DICTIONARY IS BASED ON THE DIALECT OF DAMASCUS, AS SPOKEN BY EDUCATED MUSLIMS. DAMASCUS OCCUPIES A CENTRAL POSITION IN MORE THAN THE OBVIOUS GEOGRAPHICAL SENSE. THE CITY IS A MAJOR ADMINISTRATIVE CENTER OF THE AREA AND, HISTORICALLY, AN IMPORTANT SEAT OF ISLAMIC CULTURE AND LEARNING. A NUMBER OF POLITICAL, SOCIOLOGICAL, AND GEOGRAPHICAL…

  4. The library without walls: images, medical dictionaries, atlases, medical encyclopedias free on web.

    PubMed

    Giglia, E

    2008-09-01

    The aim of this article was to present the ''reference room'' of the Internet, a real library without walls. The reader will find medical encyclopedias, dictionaries, atlases, e-books, images, and will also learn something useful about the use and reuse of images in a text and in a web site, according to the copyright law.

  5. On the nature of cultural transmission networks: evidence from Fijian villages for adaptive learning biases.

    PubMed

    Henrich, Joseph; Broesch, James

    2011-04-12

    Unlike other animals, humans are heavily dependent on cumulative bodies of culturally learned information. Selective processes operating on this socially learned information can produce complex, functionally integrated, behavioural repertoires-cultural adaptations. To understand such non-genetic adaptations, evolutionary theorists propose that (i) natural selection has favoured the emergence of psychological biases for learning from those individuals most likely to possess adaptive information, and (ii) when these psychological learning biases operate in populations, over generations, they can generate cultural adaptations. Many laboratory experiments now provide evidence for these psychological biases. Here, we bridge from the laboratory to the field by examining if and how these biases emerge in a small-scale society. Data from three cultural domains-fishing, growing yams and using medicinal plants-show that Fijian villagers (ages 10 and up) are biased to learn from others perceived as more successful/knowledgeable, both within and across domains (prestige effects). We also find biases for sex and age, as well as proximity effects. These selective and centralized oblique transmission networks set up the conditions for adaptive cultural evolution.

  6. On the nature of cultural transmission networks: evidence from Fijian villages for adaptive learning biases

    PubMed Central

    Henrich, Joseph; Broesch, James

    2011-01-01

    Unlike other animals, humans are heavily dependent on cumulative bodies of culturally learned information. Selective processes operating on this socially learned information can produce complex, functionally integrated, behavioural repertoires—cultural adaptations. To understand such non-genetic adaptations, evolutionary theorists propose that (i) natural selection has favoured the emergence of psychological biases for learning from those individuals most likely to possess adaptive information, and (ii) when these psychological learning biases operate in populations, over generations, they can generate cultural adaptations. Many laboratory experiments now provide evidence for these psychological biases. Here, we bridge from the laboratory to the field by examining if and how these biases emerge in a small-scale society. Data from three cultural domains—fishing, growing yams and using medicinal plants—show that Fijian villagers (ages 10 and up) are biased to learn from others perceived as more successful/knowledgeable, both within and across domains (prestige effects). We also find biases for sex and age, as well as proximity effects. These selective and centralized oblique transmission networks set up the conditions for adaptive cultural evolution. PMID:21357236

  7. TUNS user guide supplement: Data dictionary

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Provided is a data dictionary for the Technology Utilization Network System (TUNS) providing for each element name the long name, data type, data size, descriptive name and description, data of PRI clause, legal values, and location used.

  8. Dictionnaires et encyclopedies (Dictionaries and Encyclopedias).

    ERIC Educational Resources Information Center

    Ferran, Pierre

    1988-01-01

    Eight French dictionaries and encyclopedic reference books are reviewed, focusing on their formats, characteristics, and intended uses. They include references for language, geopolitics and economics, economic history, signs and symbols, and an almanac. (MSE)

  9. Cerebellar contributions to reach adaptation and learning sensory consequences of action.

    PubMed

    Izawa, Jun; Criscimagna-Hemminger, Sarah E; Shadmehr, Reza

    2012-03-21

    When we use a novel tool, the motor commands may not produce the expected outcome. In healthy individuals, with practice the brain learns to alter the motor commands. This change depends critically on the cerebellum as damage to this structure impairs adaptation. However, it is unclear precisely what the cerebellum contributes to the process of adaptation in human motor learning. Is the cerebellum crucial for learning to associate motor commands with novel sensory consequences, called forward model, or is the cerebellum important for learning to associate sensory goals with novel motor commands, called inverse model? Here, we compared performance of cerebellar patients and healthy controls in a reaching task with a gradual perturbation schedule. This schedule allowed both groups to adapt their motor commands. Following training, we measured two kinds of behavior: in one case, people were presented with reach targets near the direction in which they had trained. The resulting generalization patterns of patients and controls were similar, suggesting comparable inverse models. In the second case, participants reached without a target and reported the location of their hand. In controls, the pattern of change in reported hand location was consistent with simulation results of a forward model that had learned to associate motor commands with new sensory consequences. In patients, this change was significantly smaller. Therefore, in our sample of patients, we observed that while adaptation of motor commands can take place despite cerebellar damage, cerebellar integrity appears critical for learning to predict visual sensory consequences of motor commands.

  10. Iterative learning-based decentralized adaptive tracker for large-scale systems: a digital redesign approach.

    PubMed

    Tsai, Jason Sheng-Hong; Du, Yan-Yi; Huang, Pei-Hsiang; Guo, Shu-Mei; Shieh, Leang-San; Chen, Yuhua

    2011-07-01

    In this paper, a digital redesign methodology of the iterative learning-based decentralized adaptive tracker is proposed to improve the dynamic performance of sampled-data linear large-scale control systems consisting of N interconnected multi-input multi-output subsystems, so that the system output will follow any trajectory which may not be presented by the analytic reference model initially. To overcome the interference of each sub-system and simplify the controller design, the proposed model reference decentralized adaptive control scheme constructs a decoupled well-designed reference model first. Then, according to the well-designed model, this paper develops a digital decentralized adaptive tracker based on the optimal analog control and prediction-based digital redesign technique for the sampled-data large-scale coupling system. In order to enhance the tracking performance of the digital tracker at specified sampling instants, we apply the iterative learning control (ILC) to train the control input via continual learning. As a result, the proposed iterative learning-based decentralized adaptive tracker not only has robust closed-loop decoupled property but also possesses good tracking performance at both transient and steady state. Besides, evolutionary programming is applied to search for a good learning gain to speed up the learning process of ILC.

  11. [Chemistry dictionary of Pierre-Joseph Macquer].

    PubMed

    Viel, Claude

    2004-01-01

    In 1976, Pierre-Joseph Macquer publishes the first edition of his Chemistry dictionary, the first concerning this science. A second edition with many additions has been printed in 1778, bearing in mind the new concepts borned with the chemistry evolution. All chemists are unanimous to salute this monumental and precious work. These different aspects are presented in this Note, near the examination of the exemplary of this dictionary annotated by Jean Hermann, alsatian doctor and naturalist contemporary of Macquer.

  12. Application of Composite Dictionary Multi-Atom Matching in Gear Fault Diagnosis

    PubMed Central

    Cui, Lingli; Kang, Chenhui; Wang, Huaqing; Chen, Peng

    2011-01-01

    The sparse decomposition based on matching pursuit is an adaptive sparse expression method for signals. This paper proposes an idea concerning a composite dictionary multi-atom matching decomposition and reconstruction algorithm, and the introduction of threshold de-noising in the reconstruction algorithm. Based on the structural characteristics of gear fault signals, a composite dictionary combining the impulse time-frequency dictionary and the Fourier dictionary was constituted, and a genetic algorithm was applied to search for the best matching atom. The analysis results of gear fault simulation signals indicated the effectiveness of the hard threshold, and the impulse or harmonic characteristic components could be separately extracted. Meanwhile, the robustness of the composite dictionary multi-atom matching algorithm at different noise levels was investigated. Aiming at the effects of data lengths on the calculation efficiency of the algorithm, an improved segmented decomposition and reconstruction algorithm was proposed, and the calculation efficiency of the decomposition algorithm was significantly enhanced. In addition it is shown that the multi-atom matching algorithm was superior to the single-atom matching algorithm in both calculation efficiency and algorithm robustness. Finally, the above algorithm was applied to gear fault engineering signals, and achieved good results. PMID:22163938

  13. Application of composite dictionary multi-atom matching in gear fault diagnosis.

    PubMed

    Cui, Lingli; Kang, Chenhui; Wang, Huaqing; Chen, Peng

    2011-01-01

    The sparse decomposition based on matching pursuit is an adaptive sparse expression method for signals. This paper proposes an idea concerning a composite dictionary multi-atom matching decomposition and reconstruction algorithm, and the introduction of threshold de-noising in the reconstruction algorithm. Based on the structural characteristics of gear fault signals, a composite dictionary combining the impulse time-frequency dictionary and the Fourier dictionary was constituted, and a genetic algorithm was applied to search for the best matching atom. The analysis results of gear fault simulation signals indicated the effectiveness of the hard threshold, and the impulse or harmonic characteristic components could be separately extracted. Meanwhile, the robustness of the composite dictionary multi-atom matching algorithm at different noise levels was investigated. Aiming at the effects of data lengths on the calculation efficiency of the algorithm, an improved segmented decomposition and reconstruction algorithm was proposed, and the calculation efficiency of the decomposition algorithm was significantly enhanced. In addition it is shown that the multi-atom matching algorithm was superior to the single-atom matching algorithm in both calculation efficiency and algorithm robustness. Finally, the above algorithm was applied to gear fault engineering signals, and achieved good results.

  14. Delayed feedback during sensorimotor learning selectively disrupts adaptation but not strategy use

    PubMed Central

    Brudner, Samuel N.; Kethidi, Nikhit; Graeupner, Damaris; Ivry, Richard B.

    2016-01-01

    In sensorimotor adaptation tasks, feedback delays can cause significant reductions in the rate of learning. This constraint is puzzling given that many skilled behaviors have inherently long delays (e.g., hitting a golf ball). One difference in these task domains is that adaptation is primarily driven by error-based feedback, whereas skilled performance may also rely to a large extent on outcome-based feedback. This difference suggests that error- and outcome-based feedback may engage different learning processes, and these processes may be associated with different temporal constraints. We tested this hypothesis in a visuomotor adaptation task. Error feedback was indicated by the terminal position of a cursor, while outcome feedback was indicated by points. In separate groups of participants, the two feedback signals were presented immediately at the end of the movement, after a delay, or with just the error feedback delayed. Participants learned to counter the rotation in a similar manner regardless of feedback delay. However, the aftereffect, an indicator of implicit motor adaptation, was attenuated with delayed error feedback, consistent with the hypothesis that a different learning process supports performance under delay. We tested this by employing a task that dissociates the contribution of explicit strategies and implicit adaptation. We find that explicit aiming strategies contribute to the majority of the learning curve, regardless of delay; however, implicit learning, measured over the course of learning and by aftereffects, was significantly attenuated with delayed error-based feedback. These experiments offer new insight into the temporal constraints associated with different motor learning processes. PMID:26792878

  15. Delayed feedback during sensorimotor learning selectively disrupts adaptation but not strategy use.

    PubMed

    Brudner, Samuel N; Kethidi, Nikhit; Graeupner, Damaris; Ivry, Richard B; Taylor, Jordan A

    2016-03-01

    In sensorimotor adaptation tasks, feedback delays can cause significant reductions in the rate of learning. This constraint is puzzling given that many skilled behaviors have inherently long delays (e.g., hitting a golf ball). One difference in these task domains is that adaptation is primarily driven by error-based feedback, whereas skilled performance may also rely to a large extent on outcome-based feedback. This difference suggests that error- and outcome-based feedback may engage different learning processes, and these processes may be associated with different temporal constraints. We tested this hypothesis in a visuomotor adaptation task. Error feedback was indicated by the terminal position of a cursor, while outcome feedback was indicated by points. In separate groups of participants, the two feedback signals were presented immediately at the end of the movement, after a delay, or with just the error feedback delayed. Participants learned to counter the rotation in a similar manner regardless of feedback delay. However, the aftereffect, an indicator of implicit motor adaptation, was attenuated with delayed error feedback, consistent with the hypothesis that a different learning process supports performance under delay. We tested this by employing a task that dissociates the contribution of explicit strategies and implicit adaptation. We find that explicit aiming strategies contribute to the majority of the learning curve, regardless of delay; however, implicit learning, measured over the course of learning and by aftereffects, was significantly attenuated with delayed error-based feedback. These experiments offer new insight into the temporal constraints associated with different motor learning processes.

  16. Online Dictionary Learning for Sparse Coding

    DTIC Science & Technology

    2009-04-01

    cessing tasks such as denoising (Elad & Aharon, 2006) as well as higher-level tasks such as classification (Raina et al., 2007; Mairal et al., 2008a...Bruckstein, A. M. (2006). The K- SVD : An algorithm for designing of overcomplete dic- tionaries for sparse representations. IEEE Trans. SP...Tibshirani, R. (2004). Least angle regression. Ann. Statist. Elad, M., & Aharon, M. (2006). Image denoising via sparse and redundant representations

  17. Collaborative Learning with Multi-Touch Technology: Developing Adaptive Expertise

    ERIC Educational Resources Information Center

    Mercier, Emma M.; Higgins, Steven E.

    2013-01-01

    Developing fluency and flexibility in mathematics is a key goal of upper primary schooling, however, while fluency can be developed with practice, designing activities that support the development of flexibility is more difficult. Drawing on concepts of adaptive expertise, we developed a task for a multi-touch classroom, NumberNet, that aimed to…

  18. Children's Ability to Learn Evolutionary Explanations for Biological Adaptation

    ERIC Educational Resources Information Center

    Shtulman, Andrew; Neal, Cara; Lindquist, Gabrielle

    2016-01-01

    Research Findings: Evolution by natural selection is often relegated to the high school curriculum on the assumption that younger students cannot grasp its complexity. We sought to test that assumption by teaching children ages 4-12 (n = 96) a selection-based explanation for biological adaptation and comparing their success to that of adults…

  19. A Structure-Adaptive Hybrid RBF-BP Classifier with an Optimized Learning Strategy.

    PubMed

    Wen, Hui; Xie, Weixin; Pei, Jihong

    2016-01-01

    This paper presents a structure-adaptive hybrid RBF-BP (SAHRBF-BP) classifier with an optimized learning strategy. SAHRBF-BP is composed of a structure-adaptive RBF network and a BP network of cascade, where the number of RBF hidden nodes is adjusted adaptively according to the distribution of sample space, the adaptive RBF network is used for nonlinear kernel mapping and the BP network is used for nonlinear classification. The optimized learning strategy is as follows: firstly, a potential function is introduced into training sample space to adaptively determine the number of initial RBF hidden nodes and node parameters, and a form of heterogeneous samples repulsive force is designed to further optimize each generated RBF hidden node parameters, the optimized structure-adaptive RBF network is used for adaptively nonlinear mapping the sample space; then, according to the number of adaptively generated RBF hidden nodes, the number of subsequent BP input nodes can be determined, and the overall SAHRBF-BP classifier is built up; finally, different training sample sets are used to train the BP network parameters in SAHRBF-BP. Compared with other algorithms applied to different data sets, experiments show the superiority of SAHRBF-BP. Especially on most low dimensional and large number of data sets, the classification performance of SAHRBF-BP outperforms other training SLFNs algorithms.

  20. A Structure-Adaptive Hybrid RBF-BP Classifier with an Optimized Learning Strategy

    PubMed Central

    Wen, Hui; Xie, Weixin; Pei, Jihong

    2016-01-01

    This paper presents a structure-adaptive hybrid RBF-BP (SAHRBF-BP) classifier with an optimized learning strategy. SAHRBF-BP is composed of a structure-adaptive RBF network and a BP network of cascade, where the number of RBF hidden nodes is adjusted adaptively according to the distribution of sample space, the adaptive RBF network is used for nonlinear kernel mapping and the BP network is used for nonlinear classification. The optimized learning strategy is as follows: firstly, a potential function is introduced into training sample space to adaptively determine the number of initial RBF hidden nodes and node parameters, and a form of heterogeneous samples repulsive force is designed to further optimize each generated RBF hidden node parameters, the optimized structure-adaptive RBF network is used for adaptively nonlinear mapping the sample space; then, according to the number of adaptively generated RBF hidden nodes, the number of subsequent BP input nodes can be determined, and the overall SAHRBF-BP classifier is built up; finally, different training sample sets are used to train the BP network parameters in SAHRBF-BP. Compared with other algorithms applied to different data sets, experiments show the superiority of SAHRBF-BP. Especially on most low dimensional and large number of data sets, the classification performance of SAHRBF-BP outperforms other training SLFNs algorithms. PMID:27792737

  1. Adaptive memory: animacy effects persist in paired-associate learning.

    PubMed

    VanArsdall, Joshua E; Nairne, James S; Pandeirada, Josefa N S; Cogdill, Mindi

    2015-01-01

    Recent evidence suggests that animate stimuli are remembered better than matched inanimate stimuli. Two experiments tested whether this animacy effect persists in paired-associate learning of foreign words. Experiment 1 randomly paired Swahili words with matched animate and inanimate English words. Participants were told simply to learn the English "translations" for a later test. Replicating earlier findings using free recall, a strong animacy advantage was found in this cued-recall task. Concerned that the effect might be due to enhanced accessibility of the individual responses (e.g., animates represent a more accessible category), Experiment 2 selected animate and inanimate English words from two more constrained categories (four-legged animals and furniture). Once again, an advantage was found for pairs using animate targets. These results argue against organisational accounts of the animacy effect and potentially have implications for foreign language vocabulary learning.

  2. An application of adaptive learning to malfunction recovery

    NASA Technical Reports Server (NTRS)

    Cruz, R. E.

    1986-01-01

    A self-organizing controller is developed for a simplified two-dimensional aircraft model. The Controller learns how to pilot the aircraft through a navigational mission without exceeding pre-established position and velocity limits. The controller pilots the aircraft by activating one of eight directional actuators at all times. By continually monitoring the aircraft's position and velocity with respect to the mission, the controller progressively modifies its decision rules to improve the aircraft's performance. When the controller has learned how to pilot the aircraft, two actuators fail permanently. Despite this malfunction, the controller regains proficiency at its original task. The experimental results reported show the controller's capabilities for self-organizing control, learning, and malfunction recovery.

  3. Learning and adaptation in the management of waterfowl harvests

    USGS Publications Warehouse

    Johnson, Fred A.

    2011-01-01

    A formal framework for the adaptive management of waterfowl harvests was adopted by the U.S. Fish and Wildlife Service in 1995. The process admits competing models of waterfowl population dynamics and harvest impacts, and relies on model averaging to compute optimal strategies for regulating harvest. Model weights, reflecting the relative ability of the alternative models to predict changes in population size, are used in the model averaging and are updated each year based on a comparison of model predictions and observations of population size. Since its inception the adaptive harvest program has focused principally on mallards (Anas platyrhynchos), which constitute a large portion of the U.S. waterfowl harvest. Four competing models, derived from a combination of two survival and two reproductive hypotheses, were originally assigned equal weights. In the last year of available information (2007), model weights favored the weakly density-dependent reproductive hypothesis over the strongly density-dependent one, and the additive mortality hypothesis over the compensatory one. The change in model weights led to a more conservative harvesting policy than what was in effect in the early years of the program. Adaptive harvest management has been successful in many ways, but nonetheless has exposed the difficulties in defining management objectives, in predicting and regulating harvests, and in coping with the tradeoffs inherent in managing multiple waterfowl stocks exposed to a common harvest. The key challenge now facing managers is whether adaptive harvest management as an institution can be sufficiently adaptive, and whether the knowledge and experience gained from the process can be reflected in higher-level policy decisions.

  4. Racing to learn: statistical inference and learning in a single spiking neuron with adaptive kernels

    PubMed Central

    Afshar, Saeed; George, Libin; Tapson, Jonathan; van Schaik, André; Hamilton, Tara J.

    2014-01-01

    This paper describes the Synapto-dendritic Kernel Adapting Neuron (SKAN), a simple spiking neuron model that performs statistical inference and unsupervised learning of spatiotemporal spike patterns. SKAN is the first proposed neuron model to investigate the effects of dynamic synapto-dendritic kernels and demonstrate their computational power even at the single neuron scale. The rule-set defining the neuron is simple: there are no complex mathematical operations such as normalization, exponentiation or even multiplication. The functionalities of SKAN emerge from the real-time interaction of simple additive and binary processes. Like a biological neuron, SKAN is robust to signal and parameter noise, and can utilize both in its operations. At the network scale neurons are locked in a race with each other with the fastest neuron to spike effectively “hiding” its learnt pattern from its neighbors. The robustness to noise, high speed, and simple building blocks not only make SKAN an interesting neuron model in computational neuroscience, but also make it ideal for implementation in digital and analog neuromorphic systems which is demonstrated through an implementation in a Field Programmable Gate Array (FPGA). Matlab, Python, and Verilog implementations of SKAN are available at: http://www.uws.edu.au/bioelectronics_neuroscience/bens/reproducible_research. PMID:25505378

  5. Racing to learn: statistical inference and learning in a single spiking neuron with adaptive kernels.

    PubMed

    Afshar, Saeed; George, Libin; Tapson, Jonathan; van Schaik, André; Hamilton, Tara J

    2014-01-01

    This paper describes the Synapto-dendritic Kernel Adapting Neuron (SKAN), a simple spiking neuron model that performs statistical inference and unsupervised learning of spatiotemporal spike patterns. SKAN is the first proposed neuron model to investigate the effects of dynamic synapto-dendritic kernels and demonstrate their computational power even at the single neuron scale. The rule-set defining the neuron is simple: there are no complex mathematical operations such as normalization, exponentiation or even multiplication. The functionalities of SKAN emerge from the real-time interaction of simple additive and binary processes. Like a biological neuron, SKAN is robust to signal and parameter noise, and can utilize both in its operations. At the network scale neurons are locked in a race with each other with the fastest neuron to spike effectively "hiding" its learnt pattern from its neighbors. The robustness to noise, high speed, and simple building blocks not only make SKAN an interesting neuron model in computational neuroscience, but also make it ideal for implementation in digital and analog neuromorphic systems which is demonstrated through an implementation in a Field Programmable Gate Array (FPGA). Matlab, Python, and Verilog implementations of SKAN are available at: http://www.uws.edu.au/bioelectronics_neuroscience/bens/reproducible_research.

  6. Adaptation Provisioning with Respect to Learning Styles in a Web-Based Educational System: An Experimental Study

    ERIC Educational Resources Information Center

    Popescu, E.

    2010-01-01

    Personalized instruction is seen as a desideratum of today's e-learning systems. The focus of this paper is on those platforms that use learning styles as personalization criterion called learning style-based adaptive educational systems. The paper presents an innovative approach based on an integrative set of learning preferences that alleviates…

  7. Saccade adaptation abnormalities implicate dysfunction of cerebellar-dependent learning mechanisms in Autism Spectrum Disorders (ASD).

    PubMed

    Mosconi, Matthew W; Luna, Beatriz; Kay-Stacey, Margaret; Nowinski, Caralynn V; Rubin, Leah H; Scudder, Charles; Minshew, Nancy; Sweeney, John A

    2013-01-01

    The cerebellar vermis (lobules VI-VII) has been implicated in both postmortem and neuroimaging studies of autism spectrum disorders (ASD). This region maintains the consistent accuracy of saccadic eye movements and plays an especially important role in correcting systematic errors in saccade amplitudes such as those induced by adaptation paradigms. Saccade adaptation paradigms have not yet been used to study ASD. Fifty-six individuals with ASD and 53 age-matched healthy controls performed an intrasaccadic target displacement task known to elicit saccadic adaptation reflected in an amplitude reduction. The rate of amplitude reduction and the variability of saccade amplitude across 180 adaptation trials were examined. Individuals with ASD adapted slower than healthy controls, and demonstrated more variability of their saccade amplitudes across trials prior to, during and after adaptation. Thirty percent of individuals with ASD did not significantly adapt, whereas only 6% of healthy controls failed to adapt. Adaptation rate and amplitude variability impairments were related to performance on a traditional neuropsychological test of manual motor control. The profile of impaired adaptation and reduced consistency of saccade accuracy indicates reduced neural plasticity within learning circuits of the oculomotor vermis that impedes the fine-tuning of motor behavior in ASD. These data provide functional evidence of abnormality in the cerebellar vermis that converges with previous reports of cellular and gross anatomic dysmorphology of this brain region in ASD.

  8. Dictionary-driven protein annotation.

    PubMed

    Rigoutsos, Isidore; Huynh, Tien; Floratos, Aris; Parida, Laxmi; Platt, Daniel

    2002-09-01

    Computational methods seeking to automatically determine the properties (functional, structural, physicochemical, etc.) of a protein directly from the sequence have long been the focus of numerous research groups. With the advent of advanced sequencing methods and systems, the number of amino acid sequences that are being deposited in the public databases has been increasing steadily. This has in turn generated a renewed demand for automated approaches that can annotate individual sequences and complete genomes quickly, exhaustively and objectively. In this paper, we present one such approach that is centered around and exploits the Bio-Dictionary, a collection of amino acid patterns that completely covers the natural sequence space and can capture functional and structural signals that have been reused during evolution, within and across protein families. Our annotation approach also makes use of a weighted, position-specific scoring scheme that is unaffected by the over-representation of well-conserved proteins and protein fragments in the databases used. For a given query sequence, the method permits one to determine, in a single pass, the following: local and global similarities between the query and any protein already present in a public database; the likeness of the query to all available archaeal/ bacterial/eukaryotic/viral sequences in the database as a function of amino acid position within the query; the character of secondary structure of the query as a function of amino acid position within the query; the cytoplasmic, transmembrane or extracellular behavior of the query; the nature and position of binding domains, active sites, post-translationally modified sites, signal peptides, etc. In terms of performance, the proposed method is exhaustive, objective and allows for the rapid annotation of individual sequences and full genomes. Annotation examples are presented and discussed in Results, including individual queries and complete genomes that were

  9. Becoming a Coach in Developmental Adaptive Sailing: A Lifelong Learning Perspective

    PubMed Central

    Duarte, Tiago; Culver, Diane M.

    2014-01-01

    Life-story methodology and innovative methods were used to explore the process of becoming a developmental adaptive sailing coach. Jarvis's (2009) lifelong learning theory framed the thematic analysis. The findings revealed that the coach, Jenny, was exposed from a young age to collaborative environments. Social interactions with others such as mentors, colleagues, and athletes made major contributions to her coaching knowledge. As Jenny was exposed to a mixture of challenges and learning situations, she advanced from recreational para-swimming instructor to developmental adaptive sailing coach. The conclusions inform future research in disability sport coaching, coach education, and applied sport psychology. PMID:25210408

  10. Particle Swarm Social Model for Group Social Learning in Adaptive Environment

    SciTech Connect

    Cui, Xiaohui; Potok, Thomas E; Treadwell, Jim N; Patton, Robert M; Pullum, Laura L

    2008-01-01

    This report presents a study of integrating particle swarm algorithm, social knowledge adaptation and multi-agent approaches for modeling the social learning of self-organized groups and their collective searching behavior in an adaptive environment. The objective of this research is to apply the particle swarm metaphor as a model of social learning for a dynamic environment. The research provides a platform for understanding and insights into knowledge discovery and strategic search in human self-organized social groups, such as insurgents or online communities.

  11. Modeling the behavioral substrates of associate learning and memory - Adaptive neural models

    NASA Technical Reports Server (NTRS)

    Lee, Chuen-Chien

    1991-01-01

    Three adaptive single-neuron models based on neural analogies of behavior modification episodes are proposed, which attempt to bridge the gap between psychology and neurophysiology. The proposed models capture the predictive nature of Pavlovian conditioning, which is essential to the theory of adaptive/learning systems. The models learn to anticipate the occurrence of a conditioned response before the presence of a reinforcing stimulus when training is complete. Furthermore, each model can find the most nonredundant and earliest predictor of reinforcement. The behavior of the models accounts for several aspects of basic animal learning phenomena in Pavlovian conditioning beyond previous related models. Computer simulations show how well the models fit empirical data from various animal learning paradigms.

  12. Daytime sleep has no effect on the time course of motor sequence and visuomotor adaptation learning.

    PubMed

    Backhaus, Winifried; Braaß, Hanna; Renné, Thomas; Krüger, Christian; Gerloff, Christian; Hummel, Friedhelm C

    2016-05-01

    Sleep has previously been claimed to be essential for the continued learning processes of declarative information as well as procedural learning. This study was conducted to examine the importance of sleep, especially the effects of midday naps, on motor sequence and visuomotor adaptation learning. Thirty-five (27 females) healthy, young adults aged between 18 and 30years of age participated in the current study. Addressing potential differences in explicit sequence and motor adaptation learning participants were asked to learn both, a nine-element explicit sequence and a motor adaptation task, in a crossover fashion on two consecutive days. Both tasks were performed with their non-dominant left hand. Prior to learning, each participant was randomized to one of three interventions; (1) power nap: 10-20min sleep, (2) long nap: 50-80min sleep or (3) a 45-min wake-condition. Performance of the motor learning task took place prior to and after a midday rest period, as well as after a night of sleep. Both sleep conditions were dominated by Stage N2 sleep with embedded sleep spindles, which have been described to be associated with enhancement of motor performance. Significant performance changes were observed in both tasks across all interventions (sleep and wake) confirming that learning took place. In the present setup, the magnitude of motor learning was not sleep-dependent in young adults - no differences between the intervention groups (short nap, long nap, no nap) could be found. The effect of the following night of sleep was not influenced by the previous midday rest or sleep period. This finding may be related to the selectiveness of the human brain enhancing especially memory being thought of as important in the future. Previous findings on motor learning enhancing effects of sleep, especially of daytime sleep, are challenged.

  13. A Mutually Adaptive Learning Paradigm (MALP) for Hmong Students

    ERIC Educational Resources Information Center

    Marshall, Helaine W.

    1998-01-01

    Numerous studies (Goldstein, 1985; Rumbaut and Ima, 1988; Walker, 1989; Trueba, Jacobs, and Kirton, 1990 and Walker-Moffat, 1995) have found that the Hmong have extreme difficulties adjusting to the American educational system as compared with other language minority groups. Underlying this difficulty is a fundamental conflict between learning in…

  14. Multimodal and Adaptive Learning Management: An Iterative Design

    ERIC Educational Resources Information Center

    Squires, David R.; Orey, Michael A.

    2015-01-01

    The purpose of this study is to measure the outcome of a comprehensive learning management system implemented at a Spinal Cord Injury (SCI) hospital in the Southeast United States. Specifically this SCI hospital has been experiencing an evident volume of patients returning seeking more information about the nature of their injuries. Recognizing…

  15. Primary Motor Cortex Involvement in Initial Learning during Visuomotor Adaptation

    ERIC Educational Resources Information Center

    Riek, Stephan; Hinder, Mark R.; Carson, Richard G.

    2012-01-01

    Human motor behaviour is continually modified on the basis of errors between desired and actual movement outcomes. It is emerging that the role played by the primary motor cortex (M1) in this process is contingent upon a variety of factors, including the nature of the task being performed, and the stage of learning. Here we used repetitive TMS to…

  16. Adaptive Animation of Human Motion for E-Learning Applications

    ERIC Educational Resources Information Center

    Li, Frederick W. B.; Lau, Rynson W. H.; Komura, Taku; Wang, Meng; Siu, Becky

    2007-01-01

    Human motion animation has been one of the major research topics in the field of computer graphics for decades. Techniques developed in this area help present human motions in various applications. This is crucial for enhancing the realism as well as promoting the user interest in the applications. To carry this merit to e-learning applications,…

  17. OAEditor--A Framework for Editing Adaptive Learning Objects

    ERIC Educational Resources Information Center

    Pereira, Joao Carlos Rodrigues; Cabral, Lucidio dos Anjos Formiga; Oiveira, Ronei dos Santos; Bezerra, Lucimar Leandro; de Melo, Nisston Moraes Tavares

    2012-01-01

    Distance Learning supported by the WEB is a reality which is growing fast and, like any technological or empirical innovation, it reveals positive and negative aspects. An important aspect is in relation to the monitoring of the activities done by the students since an accurate online assessment of the knowledge acquired is an open and, therefore,…

  18. Intelligent Adaptable e-Assessment for Inclusive e-Learning

    ERIC Educational Resources Information Center

    Nacheva-Skopalik, Lilyana; Green, Steve

    2016-01-01

    Access to education is one of the main human rights. Everyone should have access to education and be capable of benefiting from it. However there are a number who are excluded, not because of a lack of ability but simply because they have a disability or specific need which current education systems do not address. A learning system in which…

  19. Surprise and opportunity for learning in Grand Canyon: the Glen Canyon Dam Adaptive Management Program

    USGS Publications Warehouse

    Melis, Theodore S.; Walters, Carl; Korman, Josh

    2015-01-01

    With a focus on resources of the Colorado River ecosystem below Glen Canyon Dam, the Glen Canyon Dam Adaptive Management Program has included a variety of experimental policy tests, ranging from manipulation of water releases from the dam to removal of non-native fish within Grand Canyon National Park. None of these field-scale experiments has yet produced unambiguous results in terms of management prescriptions. But there has been adaptive learning, mostly from unanticipated or surprising resource responses relative to predictions from ecosystem modeling. Surprise learning opportunities may often be viewed with dismay by some stakeholders who might not be clear about the purpose of science and modeling in adaptive management. However, the experimental results from the Glen Canyon Dam program actually represent scientific successes in terms of revealing new opportunities for developing better river management policies. A new long-term experimental management planning process for Glen Canyon Dam operations, started in 2011 by the U.S. Department of the Interior, provides an opportunity to refocus management objectives, identify and evaluate key uncertainties about the influence of dam releases, and refine monitoring for learning over the next several decades. Adaptive learning since 1995 is critical input to this long-term planning effort. Embracing uncertainty and surprise outcomes revealed by monitoring and ecosystem modeling will likely continue the advancement of resource objectives below the dam, and may also promote efficient learning in other complex programs.

  20. LearnSmart, Adaptive Teaching, and Student Learning Effectiveness: An Empirical Investigation

    ERIC Educational Resources Information Center

    Sun, Qin; Abdourazakou, Yann; Norman, Thomas J.

    2017-01-01

    Facing the growing number of digital natives entering the classroom, business professors look for innovative ways to enhance the student learning experience. The authors focus on the online interactive learning tool LearnSmart (McGraw-Hill, New York, NY), and examine its impact on student learning effectiveness by testing the direct and indirect…

  1. Adaptation, Learning, and the Art of War: A Cybernetic Perspective

    DTIC Science & Technology

    2014-05-14

    M Asaro, “From Mechanisms of Adaptation to Intelligence Amplifiers: The Philosophy of W. Ross Ashby,” Mechanical Mind in History (2008): 156... Greek word kybernetes, or “steersman,” cybernetics describes goal directedness or how systems move towards and maintain their goals, while countering...without resorting to the rigid tactics and formations of the ancient phalanx or the Prussian “corpse” obedience.179 Additionally, the organization of

  2. An adaptive online learning approach for Support Vector Regression: Online-SVR-FID

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Zio, Enrico

    2016-08-01

    Support Vector Regression (SVR) is a popular supervised data-driven approach for building empirical models from available data. Like all data-driven methods, under non-stationary environmental and operational conditions it needs to be provided with adaptive learning capabilities, which might become computationally burdensome with large datasets cumulating dynamically. In this paper, a cost-efficient online adaptive learning approach is proposed for SVR by combining Feature Vector Selection (FVS) and Incremental and Decremental Learning. The proposed approach adaptively modifies the model only when different pattern drifts are detected according to proposed criteria. Two tolerance parameters are introduced in the approach to control the computational complexity, reduce the influence of the intrinsic noise in the data and avoid the overfitting problem of SVR. Comparisons of the prediction results is made with other online learning approaches e.g. NORMA, SOGA, KRLS, Incremental Learning, on several artificial datasets and a real case study concerning time series prediction based on data recorded on a component of a nuclear power generation system. The performance indicators MSE and MARE computed on the test dataset demonstrate the efficiency of the proposed online learning method.

  3. Dictionary-enhanced imaging cytometry

    PubMed Central

    Orth, Antony; Schaak, Diane; Schonbrun, Ethan

    2017-01-01

    State-of-the-art high-throughput microscopes are now capable of recording image data at a phenomenal rate, imaging entire microscope slides in minutes. In this paper we investigate how a large image set can be used to perform automated cell classification and denoising. To this end, we acquire an image library consisting of over one quarter-million white blood cell (WBC) nuclei together with CD15/CD16 protein expression for each cell. We show that the WBC nucleus images alone can be used to replicate CD expression-based gating, even in the presence of significant imaging noise. We also demonstrate that accurate estimates of white blood cell images can be recovered from extremely noisy images by comparing with a reference dictionary. This has implications for dose-limited imaging when samples belong to a highly restricted class such as a well-studied cell type. Furthermore, large image libraries may endow microscopes with capabilities beyond their hardware specifications in terms of sensitivity and resolution. We call for researchers to crowd source large image libraries of common cell lines to explore this possibility. PMID:28225061

  4. Dictionary-enhanced imaging cytometry

    NASA Astrophysics Data System (ADS)

    Orth, Antony; Schaak, Diane; Schonbrun, Ethan

    2017-02-01

    State-of-the-art high-throughput microscopes are now capable of recording image data at a phenomenal rate, imaging entire microscope slides in minutes. In this paper we investigate how a large image set can be used to perform automated cell classification and denoising. To this end, we acquire an image library consisting of over one quarter-million white blood cell (WBC) nuclei together with CD15/CD16 protein expression for each cell. We show that the WBC nucleus images alone can be used to replicate CD expression-based gating, even in the presence of significant imaging noise. We also demonstrate that accurate estimates of white blood cell images can be recovered from extremely noisy images by comparing with a reference dictionary. This has implications for dose-limited imaging when samples belong to a highly restricted class such as a well-studied cell type. Furthermore, large image libraries may endow microscopes with capabilities beyond their hardware specifications in terms of sensitivity and resolution. We call for researchers to crowd source large image libraries of common cell lines to explore this possibility.

  5. Learning doubly sparse transforms for images.

    PubMed

    Ravishankar, Saiprasad; Bresler, Yoram

    2013-12-01

    The sparsity of images in a transform domain or dictionary has been exploited in many applications in image processing. For example, analytical sparsifying transforms, such as wavelets and discrete cosine transform (DCT), have been extensively used in compression standards. Recently, synthesis sparsifying dictionaries that are directly adapted to the data have become popular especially in applications such as image denoising. Following up on our recent research, where we introduced the idea of learning square sparsifying transforms, we propose here novel problem formulations for learning doubly sparse transforms for signals or image patches. These transforms are a product of a fixed, fast analytic transform such as the DCT, and an adaptive matrix constrained to be sparse. Such transforms can be learnt, stored, and implemented efficiently. We show the superior promise of our learnt transforms as compared with analytical sparsifying transforms such as the DCT for image representation. We also show promising performance in image denoising that compares favorably with approaches involving learnt synthesis dictionaries such as the K-SVD algorithm. The proposed approach is also much faster than K-SVD denoising.

  6. Learning and Adaptive Hybrid Systems for Nonlinear Control

    DTIC Science & Technology

    1991-05-01

    34 Invention Report, S81-64, File 1, Office of Technology Liscensirig, Stanford University, 1982. [Ros62J Rosenblatt, F., Principles of Neurodynamics ...Explorations in the Microstructure of Cognition , vol. 1, Rumelhart, D., and J. McClelland, ed., MIT Press, Carbnbdge, MA, 1986. [RI-1W86] Rumnelhart, D., 0...Microstructure of Cognition , vol. 1, Rumelhart, D., and J. McClelland, ed., MIT Pres, Cambridge, MA, 1986. [Sain67] Samuel, A., "Some Studies in Machine Learning

  7. A Complex Adaptive Perspective on Learning within Innovation Projects

    ERIC Educational Resources Information Center

    Harkema, Saskia

    2003-01-01

    Innovation is the lifeblood of companies, while simultaneously being one of the most difficult and elusive processes to manage. Failure rates are high--varying between six out of ten to nine out of ten--while the need to innovate is high. Departing from a real-life case of a company, Sara Lee/Douwe Egberts, that has set learning within and from…

  8. Learning from adaptive neural dynamic surface control of strict-feedback systems.

    PubMed

    Wang, Min; Wang, Cong

    2015-06-01

    Learning plays an essential role in autonomous control systems. However, how to achieve learning in the nonstationary environment for nonlinear systems is a challenging problem. In this paper, we present learning method for a class of n th-order strict-feedback systems by adaptive dynamic surface control (DSC) technology, which achieves the human-like ability of learning by doing and doing with learned knowledge. To achieve the learning, this paper first proposes stable adaptive DSC with auxiliary first-order filters, which ensures the boundedness of all the signals in the closed-loop system and the convergence of tracking errors in a finite time. With the help of DSC, the derivative of the filter output variable is used as the neural network (NN) input instead of traditional intermediate variables. As a result, the proposed adaptive DSC method reduces greatly the dimension of NN inputs, especially for high-order systems. After the stable DSC design, we decompose the stable closed-loop system into a series of linear time-varying perturbed subsystems. Using a recursive design, the recurrent property of NN input variables is easily verified since the complexity is overcome using DSC. Subsequently, the partial persistent excitation condition of the radial basis function NN is satisfied. By combining a state transformation, accurate approximations of the closed-loop system dynamics are recursively achieved in a local region along recurrent orbits. Then, the learning control method using the learned knowledge is proposed to achieve the closed-loop stability and the improved control performance. Simulation studies are performed to demonstrate the proposed scheme can not only reuse the learned knowledge to achieve the better control performance with the faster tracking convergence rate and the smaller tracking error but also greatly alleviate the computational burden because of reducing the number and complexity of NN input variables.

  9. Auto-adaptive robot-aided therapy using machine learning techniques.

    PubMed

    Badesa, Francisco J; Morales, Ricardo; Garcia-Aracil, Nicolas; Sabater, J M; Casals, Alicia; Zollo, Loredana

    2014-09-01

    This paper presents an application of a classification method to adaptively and dynamically modify the therapy and real-time displays of a virtual reality system in accordance with the specific state of each patient using his/her physiological reactions. First, a theoretical background about several machine learning techniques for classification is presented. Then, nine machine learning techniques are compared in order to select the best candidate in terms of accuracy. Finally, first experimental results are presented to show that the therapy can be modulated in function of the patient state using machine learning classification techniques.

  10. DDLm: a new dictionary definition language.

    PubMed

    Spadaccini, Nick; Hall, Sydney R

    2012-08-27

    A previous paper [Spadaccini and Hall J. Chem. Inf. Model. doi:10.1021/ci300074v] details extensions to the STAR File [Hall J. Chem. Inf. Comput. Sci. 1991, 31, 326-333] syntax that will improve the exchange and archiving of electronic data. This paper describes a dictionary definition language (DDLm) for defining STAR File data items in a domain dictionary. A dictionary that defines the ontology and vocabulary of a discipline is built with DDLm, which is itself implemented in STAR, and is extensible and machine parsable. The DDLm is semantically rich and highly specific; provides strong data typing, data enumerations, and ranges; enables relationship keys between data items; and uses imbedded methods written in dREL [Spadaccini et al. J. Chem. Inf. Model. doi:10.1021/ci300076w] for data validation and evaluation and for refining data definitions. It promotes the modular definition of the discipline ontology and reuse through the ability to import definitions from other local and remote dictionaries, thus encouraging the sharing of data dictionaries within and across domains.

  11. Environmental Adaptation, Phenotypic Plasticity, and Associative Learning in Insects: The Desert Locust as a Case Study.

    PubMed

    Simões, Patrício M V; Ott, Swidbert R; Niven, Jeremy E

    2016-11-01

    The ability to learn and store information should be adapted to the environment in which animals operate to confer a selective advantage. Yet the relationship between learning, memory, and the environment is poorly understood, and further complicated by phenotypic plasticity caused by the very environment in which learning and memory need to operate. Many insect species show polyphenism, an extreme form of phenotypic plasticity, allowing them to occupy distinct environments by producing two or more alternative phenotypes. Yet how the learning and memories capabilities of these alternative phenotypes are adapted to their specific environments remains unknown for most polyphenic insect species. The desert locust can exist as one of two extreme phenotypes or phases, solitarious and gregarious. Recent studies of associative food-odor learning in this locust have shown that aversive but not appetitive learning differs between phases. Furthermore, switching from the solitarious to the gregarious phase (gregarization) prevents locusts acquiring new learned aversions, enabling them to convert an aversive memory formed in the solitarious phase to an appetitive one in the gregarious phase. This conversion provides a neuroecological mechanism that matches key changes in the behavioral environments of the two phases. These findings emphasize the importance of understanding the neural mechanisms that generate ecologically relevant behaviors and the interactions between different forms of behavioral plasticity.

  12. Sleep benefits consolidation of visuo-motor adaptation learning in older adults.

    PubMed

    Mantua, Janna; Baran, Bengi; Spencer, Rebecca M C

    2016-02-01

    Sleep is beneficial for performance across a range of memory tasks in young adults, but whether memories are similarly consolidated in older adults is less clear. Performance benefits have been observed following sleep in older adults for declarative learning tasks, but this benefit may be reduced for non-declarative, motor skill learning tasks. To date, studies of sleep-dependent consolidation of motor learning in older adults are limited to motor sequence tasks. To examine whether reduced sleep-dependent consolidation in older adults is generalizable to other forms of motor skill learning, we examined performance changes over intervals of sleep and wake in young (n = 62) and older adults (n = 61) using a mirror-tracing task, which assesses visuo-motor adaptation learning. Participants learned the task either in the morning or in evening, and performance was assessed following a 12-h interval containing overnight sleep or daytime wake. Contrary to our prediction, both young adults and older adults exhibited sleep-dependent gains in visuo-motor adaptation. There was a correlation between performance improvement over sleep and percent of the night in non-REM stage 2 sleep. These results indicate that motor skill consolidation remains intact with increasing age although this relationship may be limited to specific forms of motor skill learning.

  13. Negotiating Service Learning through Community Engagement: Adaptive Leadership, Knowledge, Dialogue and Power

    ERIC Educational Resources Information Center

    Preece, Julia

    2016-01-01

    This article builds on two recent publications (Preece 2013; 2013a) concerning the application of asset-based community development and adaptive leadership theories when negotiating university service learning placements with community organisations in one South African province. The first publication introduced the concept of 'adaptive…

  14. Teaching-Learning Patterns of Expert and Novice Adapted Physical Educators

    ERIC Educational Resources Information Center

    Everhart, Brett; Everhart, Kim; McHugh, Heather; Newman, Chelsea Dimon; Hershey, Kacie; Lorenzi, David

    2013-01-01

    This study was intended to provide a description of teaching and learning patterns seen in the lessons taught by experts and novices in Adapted Physical Education. Two experts who had won previous state teaching awards and served in leadership positions in state associations were filmed and their lessons were analyzed first to develop a systematic…

  15. Adaptations for Culturally and Linguistically Diverse Families of English Language Learning Students with Autisim Spectrum Disorders

    ERIC Educational Resources Information Center

    Mitchell, Deborah J.

    2012-01-01

    The purpose of this qualitative, grounded theory study was to describe adaptations for culturally and linguistically diverse families of English language learning students with autism spectrum disorders. Each family's parent was interviewed three separate times to gather information to understand the needs and experiences regarding their…

  16. Strategies for Adapting WebQuests for Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Skylar, Ashley A.; Higgins, Kyle; Boone, Randall

    2007-01-01

    WebQuests are gaining popularity as teachers explore using the Internet for guided learning activities. A WebQuest involves students working on a task that is broken down into clearly defined steps. Students often work in groups to actively conduct the research. This article suggests a variety of methods for adapting WebQuests for students with…

  17. Using Weblog in Learning English and Encouraging Adaptation among International Students in Perlis

    ERIC Educational Resources Information Center

    Suryani, Ina; Hizwari, Shafiq; Islam, Md. Aminul; Desa, Hazry

    2012-01-01

    This study looks at the correlation of the English learning which is by using weblog and the adaptation for international students at Universiti Malaysia Perlis. The study was conducted on the first batch of International students. There were 37 students from three countries with the majority from China followed by Indonesia and Sudan. The…

  18. Adaptation to Altitude as a Vehicle for Experiential Learning of Physiology by University Undergraduates

    ERIC Educational Resources Information Center

    Weigle, David S.; Buben, Amelia; Burke, Caitlin C.; Carroll, Nels D.; Cook, Brett M.; Davis, Benjamin S.; Dubowitz, Gerald; Fisher, Rian E.; Freeman, Timothy C.; Gibbons, Stephen M.; Hansen, Hale A.; Heys, Kimberly A.; Hopkins, Brittany; Jordan, Brittany L.; McElwain, Katherine L.; Powell, Frank L.; Reinhart, Katherine E.; Robbins, Charles D.; Summers, Cameron C.; Walker, Jennifer D.; Weber, Steven S.; Weinheimer, Caroline J.

    2007-01-01

    In this article, an experiential learning activity is described in which 19 university undergraduates made experimental observations on each other to explore physiological adaptations to high altitude. Following 2 wk of didactic sessions and baseline data collection at sea level, the group ascended to a research station at 12,500-ft elevation.…

  19. Adaptation for a Changing Environment: Developing Learning and Teaching with Information and Communication Technologies

    ERIC Educational Resources Information Center

    Kirkwood, Adrian; Price, Linda

    2006-01-01

    This article examines the relationship between the use of information and communication technologies (ICT) and learning and teaching, particularly in distance education contexts. We argue that environmental changes (societal, educational, and technological) make it necessary to adapt systems and practices that are no longer appropriate. The need…

  20. Group-Work in the Design of Complex Adaptive Learning Strategies

    ERIC Educational Resources Information Center

    Mavroudi, Anna; Hadzilacos, Thanasis

    2013-01-01

    This paper presents a case study where twelve graduate students undertook the demanding role of the adaptive e-course developer and worked collaboratively on an authentic and complex design task in the context of open and distance tertiary education. The students had to work in groups in order to conceptualise and design a learning scenario for…

  1. Investigating Purposeful Science Curriculum Adaptation as a Strategy to Improve Teaching and Learning

    ERIC Educational Resources Information Center

    Debarger, Angela Haydel; Penuel, William R.; Moorthy, Savitha; Beauvineau, Yves; Kennedy, Cathleen A.; Boscardin, Christy Kim

    2017-01-01

    In this paper, we investigate the potential and conditions for using curriculum adaptation to support reform of science teaching and learning. With each wave of reform in science education, curriculum has played a central role and the contemporary wave focused on implementation of the principles and vision of the "Framework for K-12 Science…

  2. On the Impact of Adaptive Test Question Selection for Learning Efficiency

    ERIC Educational Resources Information Center

    Barla, Michal; Bielikova, Maria; Ezzeddinne, Anna Bou; Kramar, Tomas; Simko, Marian; Vozar, Oto

    2010-01-01

    In this paper we present a method for adaptive selection of test questions according to the individual needs of students within a web-based educational system. It functions as a combination of three particular methods. The first method is based on the course structure and focuses on the selection of the most appropriate topic for learning. The…

  3. Adaptive and Intelligent Systems for Collaborative Learning Support: A Review of the Field

    ERIC Educational Resources Information Center

    Magnisalis, I.; Demetriadis, S.; Karakostas, A.

    2011-01-01

    This study critically reviews the recently published scientific literature on the design and impact of adaptive and intelligent systems for collaborative learning support (AICLS) systems. The focus is threefold: 1) analyze critical design issues of AICLS systems and organize them under a unifying classification scheme, 2) present research evidence…

  4. Does Adaptive Scaffolding Facilitate Students' Ability to Regulate their Learning with Hypermedia?

    ERIC Educational Resources Information Center

    Azevedo, Roger; Cromley, Jennifer G.; Seibert, Diane

    2004-01-01

    Is adaptive scaffolding effective in facilitating students' ability to regulate their learning of complex science topics with hypermedia? We examined the role of different scaffolding instructional interventions in facilitating students' shift to more sophisticated mental models as indicated by both performance and process data. Undergraduate…

  5. Psychological and Pedagogical Support for Students' Adaptation to Learning Activity in High Science School

    ERIC Educational Resources Information Center

    Zeleeva, Vera P.; Bykova, Svetlana S.; Varbanova, Silvia

    2016-01-01

    The relevance of the study is due to the importance of psychological and pedagogical support for students in university that would prevent difficulties in learning activities and increase adaptive capacity through the development of relevant personal traits. Therefore, this article is aimed at solving the problem of arranging psychological and…

  6. Use of Adaptive Study Material in Education in E-Learning Environment

    ERIC Educational Resources Information Center

    Kostolányová, Katerina; Šarmanová, Jana

    2014-01-01

    Personalised education is a topical matter today and the impact of ICT on education has been covered extensively. The adaptation of education to various types of student is an issue of a vast number of papers presented at diverse conferences. The topic incorporates the fields of information technologies and eLearning, but in no small part also the…

  7. A Hybrid Approach for Supporting Adaptivity in E-Learning Environments

    ERIC Educational Resources Information Center

    Al-Omari, Mohammad; Carter, Jenny; Chiclana, Francisco

    2016-01-01

    Purpose: The purpose of this paper is to identify a framework to support adaptivity in e-learning environments. The framework reflects a novel hybrid approach incorporating the concept of the event-condition-action (ECA) model and intelligent agents. Moreover, a system prototype is developed reflecting the hybrid approach to supporting adaptivity…

  8. Adapting and Evaluating a Tree of Life Group for Women with Learning Disabilities

    ERIC Educational Resources Information Center

    Randle-Phillips, Cathy; Farquhar, Sarah; Thomas, Sally

    2016-01-01

    Background: This study describes how a specific narrative therapy approach called 'the tree of life' was adapted to run a group for women with learning disabilities. The group consisted of four participants and ran for five consecutive weeks. Materials and Methods: Participants each constructed a tree to represent their lives and presented their…

  9. Bridging Scientific Reasoning and Conceptual Change through Adaptive Web-Based Learning

    ERIC Educational Resources Information Center

    She, Hsiao-Ching; Liao, Ya-Wen

    2010-01-01

    This study reports an adaptive digital learning project, Scientific Concept Construction and Reconstruction (SCCR), and examines its effects on 108 8th grade students' scientific reasoning and conceptual change through mixed methods. A one-group pre-, post-, and retention quasi-experimental design was used in the study. All students received tests…

  10. Project Adapt: A Developmental Approach to Psycho-Motor Transfer. A Guide to Movement and Learning.

    ERIC Educational Resources Information Center

    Steele, Wah-Leeta

    Described is Project ADAPT (A Developmental Approach to Psychomotor Transfer), a validated program used with 808 primary grade children, some with learning difficulties, over a 3-year period to enhance academic readiness and self esteem through psychomotor training. An introductory project summary explains program objectives, the needs assessment…

  11. Japanese English Education and Learning: A History of Adapting Foreign Cultures

    ERIC Educational Resources Information Center

    Shimizu, Minoru

    2010-01-01

    This essay is a history that relates the Japanese tradition of accepting and adapting aspects of foreign culture, especially as it applies to the learning of foreign languages. In particular, the essay describes the history of English education in Japan by investigating its developments after the Meiji era. The author addresses the issues from the…

  12. Lessons Learned in Designing and Implementing a Computer-Adaptive Test for English

    ERIC Educational Resources Information Center

    Burston, Jack; Neophytou, Maro

    2014-01-01

    This paper describes the lessons learned in designing and implementing a computer-adaptive test (CAT) for English. The early identification of students with weak L2 English proficiency is of critical importance in university settings that have compulsory English language course graduation requirements. The most efficient means of diagnosing the L2…

  13. An adaptive deep learning approach for PPG-based identification.

    PubMed

    Jindal, V; Birjandtalab, J; Pouyan, M Baran; Nourani, M

    2016-08-01

    Wearable biosensors have become increasingly popular in healthcare due to their capabilities for low cost and long term biosignal monitoring. This paper presents a novel two-stage technique to offer biometric identification using these biosensors through Deep Belief Networks and Restricted Boltzman Machines. Our identification approach improves robustness in current monitoring procedures within clinical, e-health and fitness environments using Photoplethysmography (PPG) signals through deep learning classification models. The approach is tested on TROIKA dataset using 10-fold cross validation and achieved an accuracy of 96.1%.

  14. Learning from adaptive neural network output feedback control of a unicycle-type mobile robot.

    PubMed

    Zeng, Wei; Wang, Qinghui; Liu, Fenglin; Wang, Ying

    2016-03-01

    This paper studies learning from adaptive neural network (NN) output feedback control of nonholonomic unicycle-type mobile robots. The major difficulties are caused by the unknown robot system dynamics and the unmeasurable states. To overcome these difficulties, a new adaptive control scheme is proposed including designing a new adaptive NN output feedback controller and two high-gain observers. It is shown that the stability of the closed-loop robot system and the convergence of tracking errors are guaranteed. The unknown robot system dynamics can be approximated by radial basis function NNs. When repeating same or similar control tasks, the learned knowledge can be recalled and reused to achieve guaranteed stability and better control performance, thereby avoiding the tremendous repeated training process of NNs.

  15. Design and optimisation of a (FA)Q-learning-based HTTP adaptive streaming client

    NASA Astrophysics Data System (ADS)

    Claeys, Maxim; Latré, Steven; Famaey, Jeroen; Wu, Tingyao; Van Leekwijck, Werner; De Turck, Filip

    2014-01-01

    In recent years, HTTP (Hypertext Transfer Protocol) adaptive streaming (HAS) has become the de facto standard for adaptive video streaming services. A HAS video consists of multiple segments, encoded at multiple quality levels. State-of-the-art HAS clients employ deterministic heuristics to dynamically adapt the requested quality level based on the perceived network conditions. Current HAS client heuristics are, however, hardwired to fit specific network configurations, making them less flexible to fit a vast range of settings. In this article, a (frequency adjusted) Q-learning HAS client is proposed. In contrast to existing heuristics, the proposed HAS client dynamically learns the optimal behaviour corresponding to the current network environment in order to optimise the quality of experience. Furthermore, the client has been optimised both in terms of global performance and convergence speed. Thorough evaluations show that the proposed client can outperform deterministic algorithms by 11-18% in terms of mean opinion score in a wide range of network configurations.

  16. Ontology-Based Adaptive Dynamic e-Learning Map Planning Method for Conceptual Knowledge Learning

    ERIC Educational Resources Information Center

    Chen, Tsung-Yi; Chu, Hui-Chuan; Chen, Yuh-Min; Su, Kuan-Chun

    2016-01-01

    E-learning improves the shareability and reusability of knowledge, and surpasses the constraints of time and space to achieve remote asynchronous learning. Since the depth of learning content often varies, it is thus often difficult to adjust materials based on the individual levels of learners. Therefore, this study develops an ontology-based…

  17. Strategies for adding adaptive learning mechanisms to rule-based diagnostic expert systems

    NASA Technical Reports Server (NTRS)

    Stclair, D. C.; Sabharwal, C. L.; Bond, W. E.; Hacke, Keith

    1988-01-01

    Rule-based diagnostic expert systems can be used to perform many of the diagnostic chores necessary in today's complex space systems. These expert systems typically take a set of symptoms as input and produce diagnostic advice as output. The primary objective of such expert systems is to provide accurate and comprehensive advice which can be used to help return the space system in question to nominal operation. The development and maintenance of diagnostic expert systems is time and labor intensive since the services of both knowledge engineer(s) and domain expert(s) are required. The use of adaptive learning mechanisms to increment evaluate and refine rules promises to reduce both time and labor costs associated with such systems. This paper describes the basic adaptive learning mechanisms of strengthening, weakening, generalization, discrimination, and discovery. Next basic strategies are discussed for adding these learning mechanisms to rule-based diagnostic expert systems. These strategies support the incremental evaluation and refinement of rules in the knowledge base by comparing the set of advice given by the expert system (A) with the correct diagnosis (C). Techniques are described for selecting those rules in the in the knowledge base which should participate in adaptive learning. The strategies presented may be used with a wide variety of learning algorithms. Further, these strategies are applicable to a large number of rule-based diagnostic expert systems. They may be used to provide either immediate or deferred updating of the knowledge base.

  18. Cooperative Learning Groups and the Evolution of Human Adaptability : (Another Reason) Why Hermits Are Rare in Tonga and Elsewhere.

    PubMed

    Bell, Adrian Viliami; Hernandez, Daniel

    2017-03-01

    Understanding the prevalence of adaptive culture in part requires understanding the dynamics of learning. Here we explore the adaptive value of social learning in groups and how formal social groups function as effective mediums of information exchange. We discuss the education literature on Cooperative Learning Groups (CLGs), which outlines the potential of group learning for enhancing learning outcomes. Four qualities appear essential for CLGs to enhance learning: (1) extended conversations, (2) regular interactions, (3) gathering of experts, and (4) incentives for sharing knowledge. We analyze these four qualities within the context of a small-scale agricultural society using data we collected in 2010 and 2012. Through an analysis of surveys, interviews, and observations in the Tongan islands, we describe the role CLGs likely plays in facilitating individuals' learning of adaptive information. Our analysis of group affiliation, membership, and topics of conversation suggest that the first three CLG qualities reflect conditions for adaptive learning in groups. We utilize ethnographic anecdotes to suggest the fourth quality is also conducive to adaptive group learning. Using an evolutionary model, we further explore the scope for CLGs outside the Tongan socioecological context. Model analysis shows that environmental volatility and migration rates among human groups mediate the scope for CLGs. We call for wider attention to how group structure facilitates learning in informal settings, which may be key to assessing the contribution of groups to the evolution of complex, adaptive culture.

  19. Neuromorphic adaptive plastic scalable electronics: analog learning systems.

    PubMed

    Srinivasa, Narayan; Cruz-Albrecht, Jose

    2012-01-01

    Decades of research to build programmable intelligent machines have demonstrated limited utility in complex, real-world environments. Comparing their performance with biological systems, these machines are less efficient by a factor of 1 million1 billion in complex, real-world environments. The Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE) program is a multifaceted Defense Advanced Research Projects Agency (DARPA) project that seeks to break the programmable machine paradigm and define a new path for creating useful, intelligent machines. Since real-world systems exhibit infinite combinatorial complexity, electronic neuromorphic machine technology would be preferable in a host of applications, but useful and practical implementations still do not exist. HRL Laboratories LLC has embarked on addressing these challenges, and, in this article, we provide an overview of our project and progress made thus far.

  20. Reinforcement learning for adaptive threshold control of restorative brain-computer interfaces: a Bayesian simulation

    PubMed Central

    Bauer, Robert; Gharabaghi, Alireza

    2015-01-01

    Restorative brain-computer interfaces (BCI) are increasingly used to provide feedback of neuronal states in a bid to normalize pathological brain activity and achieve behavioral gains. However, patients and healthy subjects alike often show a large variability, or even inability, of brain self-regulation for BCI control, known as BCI illiteracy. Although current co-adaptive algorithms are powerful for assistive BCIs, their inherent class switching clashes with the operant conditioning goal of restorative BCIs. Moreover, due to the treatment rationale, the classifier of restorative BCIs usually has a constrained feature space, thus limiting the possibility of classifier adaptation. In this context, we applied a Bayesian model of neurofeedback and reinforcement learning for different threshold selection strategies to study the impact of threshold adaptation of a linear classifier on optimizing restorative BCIs. For each feedback iteration, we first determined the thresholds that result in minimal action entropy and maximal instructional efficiency. We then used the resulting vector for the simulation of continuous threshold adaptation. We could thus show that threshold adaptation can improve reinforcement learning, particularly in cases of BCI illiteracy. Finally, on the basis of information-theory, we provided an explanation for the achieved benefits of adaptive threshold setting. PMID:25729347