Diagnostic analysis of vibration signals using adaptive digital filtering techniques
NASA Technical Reports Server (NTRS)
Jewell, R. E.; Jones, J. H.; Paul, J. E.
1983-01-01
Signal enhancement techniques are described using recently developed digital adaptive filtering equipment. Adaptive filtering concepts are not new; however, as a result of recent advances in microprocessor-based electronics, hardware has been developed that has stable characteristics and of a size exceeding 1000th order. Selected data processing examples are presented illustrating spectral line enhancement, adaptive noise cancellation, and transfer function estimation in the presence of corrupting noise.
Adaptive noise cancellation based on beehive pattern evolutionary digital filter
NASA Astrophysics Data System (ADS)
Zhou, Xiaojun; Shao, Yimin
2014-01-01
Evolutionary digital filtering (EDF) exhibits the advantage of avoiding the local optimum problem by using cloning and mating searching rules in an adaptive noise cancellation system. However, convergence performance is restricted by the large population of individuals and the low level of information communication among them. The special beehive structure enables the individuals on neighbour beehive nodes to communicate with each other and thus enhance the information spread and random search ability of the algorithm. By introducing the beehive pattern evolutionary rules into the original EDF, this paper proposes an improved beehive pattern evolutionary digital filter (BP-EDF) to overcome the defects of the original EDF. In the proposed algorithm, a new evolutionary rule which combines competing cloning, complete cloning and assistance mating methods is constructed to enable the individuals distributed on the beehive to communicate with their neighbours. Simulation results are used to demonstrate the improved performance of the proposed algorithm in terms of convergence speed to the global optimum compared with the original methods. Experimental results also verify the effectiveness of the proposed algorithm in extracting feature signals that are contaminated by significant amounts of noise during the fault diagnosis task.
Stent enhancement in digital x-ray fluoroscopy using an adaptive feature enhancement filter
NASA Astrophysics Data System (ADS)
Jiang, Yuhao; Zachary, Josey
2016-03-01
Fluoroscopic images belong to the classes of low contrast and high noise. Simply lowering radiation dose will render the images unreadable. Feature enhancement filters can reduce patient dose by acquiring images at low dose settings and then digitally restoring them to the original quality. In this study, a stent contrast enhancement filter is developed to selectively improve the contrast of stent contour without dramatically boosting the image noise including quantum noise and clinical background noise. Gabor directional filter banks are implemented to detect the edges and orientations of the stent. A high orientation resolution of 9° is used. To optimize the use of the information obtained from Gabor filters, a computerized Monte Carlo simulation followed by ROC study is used to find the best nonlinear operator. The next stage of filtering process is to extract symmetrical parts in the stent. The global and local symmetry measures are used. The information gathered from previous two filter stages are used to generate a stent contour map. The contour map is then scaled and added back to the original image to get a contrast enhanced stent image. We also apply a spatio-temporal channelized Hotelling observer model and other numerical measures to characterize the response of the filters and contour map to optimize the selections of parameters for image quality. The results are compared to those filtered by an adaptive unsharp masking filter previously developed. It is shown that stent enhancement filter can effectively improve the stent detection and differentiation in the interventional fluoroscopy.
Adaptive box filters for removal of random noise from digital images
Eliason, E.M.; McEwen, A.S.
1990-01-01
We have developed adaptive box-filtering algorithms to (1) remove random bit errors (pixel values with no relation to the image scene) and (2) smooth noisy data (pixels related to the image scene but with an additive or multiplicative component of noise). For both procedures, we use the standard deviation (??) of those pixels within a local box surrounding each pixel, hence they are adaptive filters. This technique effectively reduces speckle in radar images without eliminating fine details. -from Authors
Adaptive box filters for removal of random noise from digital images
NASA Technical Reports Server (NTRS)
Eliason, Eric M.; Mcewen, Alfred S.
1990-01-01
Adaptive box-filtering algorithms to remove random bit errors and to smooth noisy data have been developed. For both procedures, the standard deviation of those pixels within a local box surrounding each pixel is used. A series of two or three filters with decreasing box sizes can be run to clean up extremely noisy images and to remove bit errors near sharp edges. The second filter, for noise smoothing, is similar to the 'sigma filter' of Lee (1983). The technique effectively reduces speckle in radar images without eliminating fine details.
A model for radar images and its application to adaptive digital filtering of multiplicative noise.
Frost, V S; Stiles, J A; Shanmugan, K S; Holtzman, J C
1982-02-01
Standard image processing techniques which are used to enhance noncoherent optically produced images are not applicable to radar images due to the coherent nature of the radar imaging process. A model for the radar imaging process is derived in this paper and a method for smoothing noisy radar images is also presented. The imaging model shows that the radar image is corrupted by multiplicative noise. The model leads to the functional form of an optimum (minimum MSE) filter for smoothing radar images. By using locally estimated parameter values the filter is made adaptive so that it provides minimum MSE estimates inside homogeneous areas of an image while preserving the edge structure. It is shown that the filter can be easily implemented in the spatial domain and is computationally efficient. The performance of the adaptive filter is compared (qualitatively and quantitatively) with several standard filters using real and simulated radar images.
NASA Technical Reports Server (NTRS)
Nagle, H. T., Jr.
1972-01-01
A three part survey is made of the state-of-the-art in digital filtering. Part one presents background material including sampled data transformations and the discrete Fourier transform. Part two, digital filter theory, gives an in-depth coverage of filter categories, transfer function synthesis, quantization and other nonlinear errors, filter structures and computer aided design. Part three presents hardware mechanization techniques. Implementations by general purpose, mini-, and special-purpose computers are presented.
Stent enhancement using a locally adaptive unsharp masking filter in digital x-ray fluoroscopy
NASA Astrophysics Data System (ADS)
Jiang, Yuhao; Ekanayake, Eranda
2014-03-01
Low exposure X-ray fluoroscopy is used to guide some complicate interventional procedures. Due to the inherent high levels of noise, improving the visibility of some interventional devices such as stent will greatly benefit those interventional procedures. Stent, which is made up of tiny steel wires, is also suffered from contrast dilutions of large flat panel detector pixels. A novel adaptive unsharp masking filter has been developed to improve stent contrast in real-time applications. In unsharp masking processing, the background is estimated and subtracted from the original input image to create a foreground image containing objects of interest. A background estimator is therefore critical in the unsharp masking processing. In this specific study, orientation filter kernels are used as the background estimator. To make the process simple and fast, the kernels average along a line of pixels. A high orientation resolution of 18° is used. A nonlinear operator is then used to combine the information from the images generated from convolving the original background and noise only images with orientation filters. A computerized Monte Carlo simulation followed by ROC study is used to identify the best nonlinear operator. We then apply the unsharp masking filter to the images with stents present. It is shown that the locally adaptive unsharp making filter is an effective filter for improving stent visibility in the interventional fluoroscopy. We also apply a spatio-temporal channelized human observer model to quantitatively optimize and evaluate the filter.
Rocket noise filtering system using digital filters
NASA Technical Reports Server (NTRS)
Mauritzen, David
1990-01-01
A set of digital filters is designed to filter rocket noise to various bandwidths. The filters are designed to have constant group delay and are implemented in software on a general purpose computer. The Parks-McClellan algorithm is used. Preliminary tests are performed to verify the design and implementation. An analog filter which was previously employed is also simulated.
Knapp, R.W.; Anderson, N.L.
1994-01-01
Data may be overprinted by a steady-state cyclical noise (hum). Steady-state indicates that the noise is invariant with time; its attributes, frequency, amplitude, and phase, do not change with time. Hum recorded on seismic data usually is powerline noise and associated higher harmonics; leakage from full-waveform rectified cathodic protection devices that contain the odd higher harmonics of powerline frequencies; or vibrational noise from mechanical devices. The fundamental frequency of powerline hum may be removed during data acquisition with the use of notch filters. Unfortunately, notch filters do not discriminate signal and noise, attenuating both. They also distort adjacent frequencies by phase shifting. Finally, they attenuate only the fundamental mode of the powerline noise; higher harmonics and frequencies other than that of powerlines are not removed. Digital notch filters, applied during processing, have many of the same problems as analog filters applied in the field. The method described here removes hum of a particular frequency. Hum attributes are measured by discrete Fourier analysis, and the hum is canceled from the data by subtraction. Errors are slight and the result of the presence of (random) noise in the window or asynchrony of the hum and data sampling. Error is minimized by increasing window size or by resampling to a finer interval. Errors affect the degree of hum attenuation, not the signal. The residual is steady-state hum of the same frequency. ?? 1994.
Digital filter synthesis computer program
NASA Technical Reports Server (NTRS)
Moyer, R. A.; Munoz, R. M.
1968-01-01
Digital filter synthesis computer program expresses any continuous function of a complex variable in approximate form as a computational algorithm or difference equation. Once the difference equation has been developed, digital filtering can be performed by the program on any input data list.
NASA Technical Reports Server (NTRS)
Breazeale, G. J.; Jones, L. E.
1971-01-01
Discussion of digital adaptive sampling, which is consistently better than fixed sampling in noise-free cases. Adaptive sampling is shown to be feasible and, it is considered, should be studied further. It should be noted that adaptive sampling is a class of variable rate sampling in which the variability depends on system signals. Digital rather than analog laws should be studied, because cases can arise in which the analog signals are not even available. An extremely important problem is implementation.
Digital filtering: background and tutorial for psychophysiologists.
Cook, E W; Miller, G A
1992-05-01
Digital filtering offers more to psychophysiologists than is commonly appreciated. An introduction is offered here to foster the explicit design and use of digital filters. Because of considerable confusion in the literature about terminology important to both analog and digital filtering, basic concepts are reviewed and clarified. Because some time series concepts are fundamental to digital filtering, these are also presented. Examples of filters commonly used in psychophysiology are given, and procedures are presented for the design and use of one type of digital filter. Properties of some types of digital filters are described, and the relative advantages of simple analog and digital filters are discussed.
Advanced simulation of digital filters
NASA Astrophysics Data System (ADS)
Doyle, G. S.
1980-09-01
An Advanced Simulation of Digital Filters has been implemented on the IBM 360/67 computer utilizing Tektronix hardware and software. The program package is appropriate for use by persons beginning their study of digital signal processing or for filter analysis. The ASDF programs provide the user with an interactive method by which filter pole and zero locations can be manipulated. Graphical output on both the Tektronix graphics screen and the Versatec plotter are provided to observe the effects of pole-zero movement.
Nanophotonic filters for digital imaging
NASA Astrophysics Data System (ADS)
Walls, Kirsty
There has been an increasing demand for low cost, portable CMOS image sensors because of increased integration, and new applications in the automotive, mobile communication and medical industries, amongst others. Colour reproduction remains imperfect in conventional digital image sensors, due to the limitations of the dye-based filters. Further improvement is required if the full potential of digital imaging is to be realised. In alternative systems, where accurate colour reproduction is a priority, existing equipment is too bulky for anything but specialist use. In this work both these issues are addressed by exploiting nanophotonic techniques to create enhanced trichromatic filters, and multispectral filters, all of which can be fabricated on-chip, i.e. integrated into a conventional digital image sensor, to create compact, low cost, mass produceable imaging systems with accurate colour reproduction. The trichromatic filters are based on plasmonic structures. They exploit the excitation of surface plasmon resonances in arrays of subwavelength holes in metal films to filter light. The currently-known analytical expressions are inadequate for optimising all relevant parameters of a plasmonic structure. In order to obtain arbitrary filter characteristics, an automated design procedure was developed that integrated a genetic algorithm and 3D finite-difference time-domain tool. The optimisation procedure's efficacy is demonstrated by designing a set of plasmonic filters that replicate the CIE (1931) colour matching functions, which themselves mimic the human eye's daytime colour response.
Microprogrammed digital filters for strapdown guidance application.
NASA Technical Reports Server (NTRS)
Kapadia, K.; Dunn, W. R.
1973-01-01
Discussion of an approach for implementing digital filters using microprogrammed control logic with read only memory (ROM) for strapdown guidance applications, and description of a second-order multiplexed system using multiprogrammed control instruction. The microprogramming technique for control using ROM is shown to enhance higher order digital filter realization. The high speed of digital circuits reduces propagation time and facilitates multiplexing. Programmed ROM's can be altered easily for different algorithms.
Frequency domain FIR and IIR adaptive filters
NASA Technical Reports Server (NTRS)
Lynn, D. W.
1990-01-01
A discussion of the LMS adaptive filter relating to its convergence characteristics and the problems associated with disparate eigenvalues is presented. This is used to introduce the concept of proportional convergence. An approach is used to analyze the convergence characteristics of block frequency-domain adaptive filters. This leads to a development showing how the frequency-domain FIR adaptive filter is easily modified to provide proportional convergence. These ideas are extended to a block frequency-domain IIR adaptive filter and the idea of proportional convergence is applied. Experimental results illustrating proportional convergence in both FIR and IIR frequency-domain block adaptive filters is presented.
Precise adaptive photonic rf filters realized with adaptive Bragg gratings
NASA Astrophysics Data System (ADS)
Wickham, Michael G.; Upton, Eric L.
2000-09-01
The demand for higher data capacity and reduced levels of interference in the communications arena are driving dtat links toward high carrier frequencies and wider modulation bandwidths. Circuitry for performing intermediate frequency processing over these more demanding ranges is needed to provide complex signal processing. We have demonstrated photonics technologies utilizing Bragg Grating Signal Processing (BGSP), which can be used to perform a variety of RF filter functions. The desirable benefits of multiple-tap adaptive finite impulse response (FIR) filters, infinite impulse response (IIR) filters, and equalizers are well known; however, they are usually the province of digital signal processing and demand preprocessor sample rates that require high system power consumption. BGSPs provide these functions with discrete optical taps and digital controls while only requiring bandwidths easily provided by conventional RF circuitry. This is because the actual signal processing of the large information bandwidths is performed in the optical regime, while control functions are performed at RF frequencies compatible with integrated circuit technologies. To realize the performance benefits of photonic processing, the Bragg grating reflectors must be stabilized against environmental without unduly taxing the RF control circuitry. We have implemented a orthogonally coded tap modulation technique which stabilizes the transfer function of the signal processor and enables significant adaptive IF signal processing to be obtained with very low size, weight, and power. Our demonstration of a photonic proof-of-concept architecture is a reconfigurable, multiple-tap FIR filter that is dynamically controlled to implement low-pass, high-pass, band-pass, band-stop, and tunable filters operating over bandwidths of 3 Ghz.
FORTRAN IV Digital Filter Design Programs. Digital Systems Education Project.
ERIC Educational Resources Information Center
Reuss, E.; And Others
The goals of the Digital Systems Education Project (DISE) include the development and distribution of educational/instructional materials in the digital systems area. Toward that end, this document contains three reports: (1) A FORTRAN IV Design Program for Low-Pass Butterworth and Chebychev Digital Filters; (2) A FORTRAN IV Design Program for…
Split quaternion nonlinear adaptive filtering.
Ujang, Bukhari Che; Took, Clive Cheong; Mandic, Danilo P
2010-04-01
A split quaternion learning algorithm for the training of nonlinear finite impulse response adaptive filters for the processing of three- and four-dimensional signals is proposed. The derivation takes into account the non-commutativity of the quaternion product, an aspect neglected in the derivation of the existing learning algorithms. It is shown that the additional information taken into account by a rigorous treatment of quaternion algebra provides improved performance on hypercomplex processes. A rigorous analysis of the convergence of the proposed algorithms is also provided. Simulations on both benchmark and real-world signals support the approach.
Digital filter design for radar image formation
NASA Technical Reports Server (NTRS)
Adams, John W.; Nelson, Jeffrey E.; Banh, N. D.; Moncada, John J.; Bayma, Robert W.
1989-01-01
Novel weighted-least-squares approaches to the design of digital filters for SAR applications are presented. The filters belong to three different categories according to their combinations of minimax passband, least-squares stopband, minimax stopband, and maximally-flat passband. For real-time applications, it is important to design the sets of digital filter coefficient tables in an offline environment; the appropriate precomputed filter is then selected for each SAR signal-processing function, as a function of both mode and mapping geometry during real-time processing.
Speckle reduction in optical coherence tomography images using digital filtering
Ozcan, Aydogan; Bilenca, Alberto; Desjardins, Adrien E.; Bouma, Brett E.; Tearney, Guillermo J.
2009-01-01
Speckle noise is a ubiquitous artifact that limits the interpretation of optical coherence tomography images. Here we apply various speckle-reduction digital filters to optical coherence tomography images and compare their performance. Our results indicate that shift-invariant, nonorthogonal wavelet-transform-based filters together with enhanced Lee and adaptive Wiener filters can significantly reduce speckle and increase the signal-to-noise ratio, while preserving strong edges. The speckle reduction capabilities of these filters are also compared with speckle reduction from incoherent angular compounding. Our results suggest that by using these digital filters, the number of individual angles required to attain a certain level of speckle reduction can be decreased. PMID:17728812
Szabo, T.; Pierpaoli, E.; Pipino, A.; Dong, F.; Gunn, J. E-mail: pierpaol@usc.edu
2011-07-20
We present a new cluster catalog extracted from the Sloan Digital Sky Survey Data Release 6 (SDSS DR6) using an adaptive matched filter (AMF) cluster finder. We identify 69,173 galaxy clusters in the redshift range 0.045 {<=} z < 0.78 in 8420 deg{sup 2} of the sky. We provide angular position, redshift, richness, core, and virial radii estimates for these clusters, as well as an error analysis for each of these quantities. We also provide a catalog of more than 205,000 galaxies representing the three brightest galaxies in the r band which are possible brightest cluster galaxy (BCG) candidates. We show basic properties of the BCG candidates and study how their luminosity scales in redshift and cluster richness. We compare our catalog with the maxBCG and GMBCG catalogs, as well as with that of Wen et al. We match between 30% and 50% of clusters between catalogs over all overlapping redshift ranges. We find that the percentage of matches increases with the richness for all catalogs. We cross match the AMF catalog with available X-ray data in the same area of the sky and find 539 matches, 119 of which with temperature measurements. We present scaling relations between optical and X-ray properties and cluster center comparison. We find that both {Lambda}{sub 200} and R{sub 200} correlate well with both L{sub X} and T{sub X} , with no significant difference in trend if we restrict the matches to flux-limited X-ray samples.
On the design of recursive digital filters
NASA Technical Reports Server (NTRS)
Shenoi, K.; Narasimha, M. J.; Peterson, A. M.
1976-01-01
A change of variables is described which transforms the problem of designing a recursive digital filter to that of approximation by a ratio of polynomials on a finite interval. Some analytic techniques for the design of low-pass filters are presented, illustrating the use of the transformation. Also considered are methods for the design of phase equalizers.
Optimum color filters for CCD digital cameras.
Engelhardt, K; Seitz, P
1993-06-01
A procedure for the definition of optimum spectral transmission curves for any solid-state (especially silicon-based CCD) color camera is presented. The design of the target curves is based on computer simulation of the camera system and on the use of test colors with known spectral reflectances. Color errors are measured in a uniform color space (CIELUV) and by application of the Commission Internationale de l'Eclairage color difference formula. Dielectric filter stacks were designed by simulated thermal annealing, and a stripe filter pattern was fabricated with transmission properties close to the specifications. Optimization of the color transformation minimizes the residual average color error and an average color error of ~1 just noticeable difference should be feasible. This means that color differences on a side-to-side comparison of original and reproduced color are practically imperceptible. In addition, electrical cross talk within the solid-state imager can be compensated by adapting the color matrixing coefficients. The theoretical findings of this work were employed for the design and fabrication of a high-resolution digital CCD color camera with high calorimetric accuracy. PMID:20829908
Wiener filter for filtered back projection in digital breast tomosynthesis
NASA Astrophysics Data System (ADS)
Wang, Xinying; Mainprize, James G.; Wu, Gang; Yaffe, Martin J.
2012-03-01
Conventional filtered back projection (FBP) reconstruction for digital breast tomosynthesis (DBT) can suffer from a low signal to noise ratio. Because of the strong amplification by the reconstruction filters (ramp, apodization and slice thickness), noise at high spatial frequencies can be greatly increased. Image enhancement by Wiener filtering is investigated as a possible method to improve image quality. A neighborhood wavelet coefficient window technique is used to estimate the noise content of projection images and a Wiener filter is applied to the projection images. The neighborhood wavelet coefficient window is a non-linear technique, which may cause the Wiener filters estimated before and after the application of the reconstruction filters to be different. Image quality of a FBP reconstruction with and without Wiener filtering is investigated using a Fourier-based observer detectability metric ( d' ) for evaluation. Simulations of tomosynthesis are performed in both homogeneous and anatomic textured backgrounds containing lowcontrast masses or small microcalcifications. Initial results suggest that improvements in detectability can be achieved when the Wiener filter is applied, especially when the Wiener filter is estimated for the reconstruction filtered projections.
Adaptive Mallow's optimization for weighted median filters
NASA Astrophysics Data System (ADS)
Rachuri, Raghu; Rao, Sathyanarayana S.
2002-05-01
This work extends the idea of spectral optimization for the design of Weighted Median filters and employ adaptive filtering that updates the coefficients of the FIR filter from which the weights of the median filters are derived. Mallows' theory of non-linear smoothers [1] has proven to be of great theoretical significance providing simple design guidelines for non-linear smoothers. It allows us to find a set of positive weights for a WM filter whose sample selection probabilities (SSP's) are as close as possible to a SSP set predetermined by Mallow's. Sample selection probabilities have been used as a basis for designing stack smoothers as they give a measure of the filter's detail preserving ability and give non-negative filter weights. We will extend this idea to design weighted median filters admitting negative weights. The new method first finds the linear FIR filter coefficients adaptively, which are then used to determine the weights of the median filter. WM filters can be designed to have band-pass, high-pass as well as low-pass frequency characteristics. Unlike the linear filters, however, the weighted median filters are robust in the presence of impulsive noise, as shown by the simulation results.
Switched Band-Pass Filters for Adaptive Transceivers
NASA Technical Reports Server (NTRS)
Wang, Ray
2007-01-01
Switched band-pass filters are key components of proposed adaptive, software- defined radio transceivers that would be parts of envisioned digital-data-communication networks that would enable real-time acquisition and monitoring of data from geographically distributed sensors. Examples of sensors to be connected to such networks include security cameras, radio-frequency identification units, and geolocation units based on the Global Positioning System. Through suitable software configuration and without changing hardware, these transceivers could be made to operate according to any of a number of complex wireless-communication standards that could be characterized by diverse modulation schemes, bandwidths, and data-handling protocols. The adaptive transceivers would include field-programmable gate arrays (FPGAs) and digital signal-processing hardware. In the receiving path of a transceiver, the incoming signal would be amplified by a low-noise amplifier (LNA). The output spectrum of the LNA would be processed by a band-pass filter operating in the frequency range between 900 MHz and 2.4 GHz. Then a down-converter would translate the signal to a lower frequency range to facilitate analog-to-digital conversion, which would be followed by baseband processing by one or more FPGAs. In the transmitting path, a digital stream would first be converted to an analog signal, which would then be up-converted to a selected frequency band before being applied to a transmitting power amplifier. The aforementioned band-pass filter in the receiving path would be a combination of resonant inductor-and-capacitor filters and switched band-pass filters. The overall combination would implement a switch function designed mathematically to exhibit desired frequency responses and to switch the signal in each frequency band to an analog-to-digital converter appropriate for that band to produce a digital intermediate-frequency signal for digital signal processing.
A New Method to Cancel RFI---The Adaptive Filter
NASA Astrophysics Data System (ADS)
Bradley, R.; Barnbaum, C.
1996-12-01
An increasing amount of precious radio frequency spectrum in the VHF, UHF, and microwave bands is being utilized each year to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Some radio spectral lines of astronomical interest occur outside the protected radio astronomy bands and are unobservable due to heavy interference. Conventional approaches to deal with RFI include legislation, notch filters, RF shielding, and post-processing techniques. Although these techniques are somewhat successful, each suffers from insufficient interference cancellation. One concept of interference excision that has not been used before in radio astronomy is adaptive interference cancellation. The concept of adaptive interference canceling was first introduced in the mid-1970s as a way to reduce unwanted noise in low frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartment of automobiles. Only recently have high-speed digital filter chips made adaptive filtering possible in a bandwidth as large a few megahertz, finally opening the door to astronomical uses. The system consists of two receivers: the main beam of the radio telescope receives the desired signal corrupted by RFI coming in the sidelobes, and the reference antenna receives only the RFI. The reference antenna is processed using a digital adaptive filter and then subtracted from the signal in the main beam, thus producing the system output. The weights of the digital filter are adjusted by way of an algorithm that minimizes, in a least-squares sense, the power output of the system. Through an adaptive-iterative process, the interference canceler will lock onto the RFI and the filter will adjust itself to minimize the effect of the RFI at the system output. We are building a prototype 100 MHz receiver and will measure the cancellation
Adaptable Iterative and Recursive Kalman Filter Schemes
NASA Technical Reports Server (NTRS)
Zanetti, Renato
2014-01-01
Nonlinear filters are often very computationally expensive and usually not suitable for real-time applications. Real-time navigation algorithms are typically based on linear estimators, such as the extended Kalman filter (EKF) and, to a much lesser extent, the unscented Kalman filter. The Iterated Kalman filter (IKF) and the Recursive Update Filter (RUF) are two algorithms that reduce the consequences of the linearization assumption of the EKF by performing N updates for each new measurement, where N is the number of recursions, a tuning parameter. This paper introduces an adaptable RUF algorithm to calculate N on the go, a similar technique can be used for the IKF as well.
Adaptive filtering in biological signal processing.
Iyer, V K; Ploysongsang, Y; Ramamoorthy, P A
1990-01-01
The high dependence of conventional optimal filtering methods on the a priori knowledge of the signal and noise statistics render them ineffective in dealing with signals whose statistics cannot be predetermined accurately. Adaptive filtering methods offer a better alternative, since the a priori knowledge of statistics is less critical, real time processing is possible, and the computations are less expensive for this approach. Adaptive filtering methods compute the filter coefficients "on-line", converging to the optimal values in the least-mean square (LMS) error sense. Adaptive filtering is therefore apt for dealing with the "unknown" statistics situation and has been applied extensively in areas like communication, speech, radar, sonar, seismology, and biological signal processing and analysis for channel equalization, interference and echo canceling, line enhancement, signal detection, system identification, spectral analysis, beamforming, modeling, control, etc. In this review article adaptive filtering in the context of biological signals is reviewed. An intuitive approach to the underlying theory of adaptive filters and its applicability are presented. Applications of the principles in biological signal processing are discussed in a manner that brings out the key ideas involved. Current and potential future directions in adaptive biological signal processing are also discussed.
Neural nets for adaptive filtering and adaptive pattern recognition
Widrow, B.; Winter, R.
1988-03-01
The fields of adaptive signal processing and adaptive neural networks have been developing independently but have that adaptive linear combiner (ALC) in common. With its inputs connected to a tapped delay line, the ALC becomes a key component of an adaptive filter. With its output connected to a quantizer, the ALC becomes an adaptive threshold element of adaptive neuron. Adaptive threshold elements, on the other hand, are the building blocks of neural networks. Today neural nets are the focus of widespread research interest. Areas of investigation include pattern recognition and trainable logic. Neural network systems have not yet had the commercial impact of adaptive filtering. The commonality of the ALC to adaptive signal processing and adaptive neural networks suggests the two fields have much to share with each other. This article describes practical applications of the ALC in signal processing and pattern recognition.
Enhancement of Electrolaryngeal Speech by Adaptive Filtering.
ERIC Educational Resources Information Center
Espy-Wilson, Carol Y.; Chari, Venkatesh R.; MacAuslan, Joel M.; Huang, Caroline B.; Walsh, Michael J.
1998-01-01
A study tested the quality and intelligibility, as judged by several listeners, of four users' electrolaryngeal speech, with and without filtering to compensate for perceptually objectionable acoustic characteristics. Results indicated that an adaptive filtering technique produced a noticeable improvement in the quality of the Transcutaneous…
Integrated-Circuit Active Digital Filter
NASA Technical Reports Server (NTRS)
Nathan, R.
1986-01-01
Pipeline architecture with parallel multipliers and adders speeds calculation of weighted sums. Picture-element values and partial sums flow through delay-adder modules. After each cycle or time unit of calculation, each value in filter moves one position right. Digital integrated-circuit chips with pipeline architecture rapidly move 35 X 35 two-dimensional convolutions. Need for such circuits in image enhancement, data filtering, correlation, pattern extraction, and synthetic-aperture-radar image processing: all require repeated calculations of weighted sums of values from images or two-dimensional arrays of data.
A realization of the RAM digital filter. [Random Access Memory
NASA Technical Reports Server (NTRS)
Zohar, S.
1976-01-01
The digital filtering algorithm of W. D. Little, which employs a large RAM to obtain high speed, is implemented in a simple hardware configuration. The nonrecursive version of this filter is compared to the counting digital filter and found to be competitive for low-order filters up to order 7 (8 coefficients).
Digital filter design approach for SQUID gradiometers
Bruno, A.C.; Ribeiro, P.C.
1988-04-15
A review of the traditional method for designing gradiometers is made. A nonrecursive digital filter model for the gradiometer is presented, giving a new set of parameters for the gradiometer identification. Some designs are analyzed using the proposed set. As an example, a true differentiator is designed to be used as the SQUID input coil. It is shown that the differentiator has the same noise rejection as the conventional gradiometer but provides more signal sensitivity.
Adaptive Embedded Digital System for Plasma Diagnostics
NASA Astrophysics Data System (ADS)
González, Angel; Rodríguez, Othoniel; Mangual, Osvaldo; Ponce, Eduardo; Vélez, Xavier
2014-05-01
An Adaptive Embedded Digital System to perform plasma diagnostics using electrostatic probes was developed at the Plasma Engineering Laboratory at Polytechnic University of Puerto Rico. The system will replace the existing instrumentation at the Laboratory, using reconfigurable hardware to minimize the equipment and software needed to perform diagnostics. The adaptability of the design resides on the possibility of replacing the computational algorithm on the fly, allowing to use the same hardware for different probes. The system was prototyped using Very High Speed Integrated Circuits Hardware Description Language (VHDL) into an Field Programmable Gate Array (FPGA) board. The design of the Embedded Digital System includes a Zero Phase Digital Filter, a Derivative Unit, and a Computational Unit designed using the VHDL-2008 Support Library. The prototype is able to compute the Plasma Electron Temperature and Density from a Single Langmuir probe. The system was tested using real data previously acquired from a single Langmuir probe. The plasma parameters obtained from the embedded system were compared with results computed using matlab yielding excellent matching. The new embedded system operates on 4096 samples versus 500 on the previous system, and completes its computations in 26 milliseconds compared with about 15 seconds on the previous system.
Matched filter based iterative adaptive approach
NASA Astrophysics Data System (ADS)
Nepal, Ramesh; Zhang, Yan Rockee; Li, Zhengzheng; Blake, William
2016-05-01
Matched Filter sidelobes from diversified LPI waveform design and sensor resolution are two important considerations in radars and active sensors in general. Matched Filter sidelobes can potentially mask weaker targets, and low sensor resolution not only causes a high margin of error but also limits sensing in target-rich environment/ sector. The improvement in those factors, in part, concern with the transmitted waveform and consequently pulse compression techniques. An adaptive pulse compression algorithm is hence desired that can mitigate the aforementioned limitations. A new Matched Filter based Iterative Adaptive Approach, MF-IAA, as an extension to traditional Iterative Adaptive Approach, IAA, has been developed. MF-IAA takes its input as the Matched Filter output. The motivation here is to facilitate implementation of Iterative Adaptive Approach without disrupting the processing chain of traditional Matched Filter. Similar to IAA, MF-IAA is a user parameter free, iterative, weighted least square based spectral identification algorithm. This work focuses on the implementation of MF-IAA. The feasibility of MF-IAA is studied using a realistic airborne radar simulator as well as actual measured airborne radar data. The performance of MF-IAA is measured with different test waveforms, and different Signal-to-Noise (SNR) levels. In addition, Range-Doppler super-resolution using MF-IAA is investigated. Sidelobe reduction as well as super-resolution enhancement is validated. The robustness of MF-IAA with respect to different LPI waveforms and SNR levels is also demonstrated.
[Research in filter functionality settings of digital electrocardiograph].
Zhou, Juan; Liu, Guangrong; Wang, Weidong; Cao, Desen; Zhou, Junrong
2010-10-01
Filter pass-band settings have impact not only on ECG output amplitude, but also on output signal wave-form of some types of digital electrocardiograph. Lower cut-off frequency is decided by Wander filter setting for some types of digital electrocardiograph, and higher cut-off frequency is decided by muscle filter when muscle filter functionality is "on". We research into various filter settings' impact on the output of digital electrocardiograph and have discussions on the malfunctions found in digital electrocardiograph measurement.
Fast digital noise filter capable of locating spectral peaks and shoulders
NASA Technical Reports Server (NTRS)
Edwards, T. R.; Knight, R. D.
1972-01-01
Experimental data frequently have a poor signal-to-noise ratio which one would like to enhance before analysis. With the data in digital form, this may be accomplished by means of a digital filter. A fast digital filter based upon the principle of least squares and using the techniques of convoluting integers is described. In addition to smoothing, this filter also is capable of accurately and simultaneously locating spectral peaks and shoulders. This technique has been adapted into a computer subroutine, and results of several test cases are shown, including mass spectral data and data from a proportional counter for the High Energy Astronomy Observatory.
Digital filtering of plume emission spectra
NASA Technical Reports Server (NTRS)
Madzsar, George C.
1990-01-01
Fourier transformation and digital filtering techniques were used to separate the superpositioned spectral phenomena observed in the exhaust plumes of liquid propellant rocket engines. Space shuttle main engine (SSME) spectral data were used to show that extraction of spectral lines in the spatial frequency domain does not introduce error, and extraction of the background continuum introduces only minimal error. Error introduced during band extraction could not be quantified due to poor spectrometer resolution. Based on the atomic and molecular species found in the SSME plume, it was determined that spectrometer resolution must be 0.03 nm for SSME plume spectral monitoring.
Spectral analysis and filtering techniques in digital spatial data processing
Pan, Jeng-Jong
1989-01-01
A filter toolbox has been developed at the EROS Data Center, US Geological Survey, for retrieving or removing specified frequency information from two-dimensional digital spatial data. This filter toolbox provides capabilities to compute the power spectrum of a given data and to design various filters in the frequency domain. Three types of filters are available in the toolbox: point filter, line filter, and area filter. Both the point and line filters employ Gaussian-type notch filters, and the area filter includes the capabilities to perform high-pass, band-pass, low-pass, and wedge filtering techniques. These filters are applied for analyzing satellite multispectral scanner data, airborne visible and infrared imaging spectrometer (AVIRIS) data, gravity data, and the digital elevation models (DEM) data. -from Author
VSP wave separation by adaptive masking filters
NASA Astrophysics Data System (ADS)
Rao, Ying; Wang, Yanghua
2016-06-01
In vertical seismic profiling (VSP) data processing, the first step might be to separate the down-going wavefield from the up-going wavefield. When using a masking filter for VSP wave separation, there are difficulties associated with two termination ends of the up-going waves. A critical challenge is how the masking filter can restore the energy tails, the edge effect associated with these terminations uniquely exist in VSP data. An effective strategy is to implement masking filters in both τ-p and f-k domain sequentially. Meanwhile it uses a median filter, producing a clean but smooth version of the down-going wavefield, used as a reference data set for designing the masking filter. The masking filter is implemented adaptively and iteratively, gradually restoring the energy tails cut-out by any surgical mute. While the τ-p and the f-k domain masking filters target different depth ranges of VSP, this combination strategy can accurately perform in wave separation from field VSP data.
Adaptive wavelet Wiener filtering of ECG signals.
Smital, Lukáš; Vítek, Martin; Kozumplík, Jiří; Provazník, Ivo
2013-02-01
In this study, we focused on the reduction of broadband myopotentials (EMG) in ECG signals using the wavelet Wiener filtering with noise-free signal estimation. We used the dyadic stationary wavelet transform (SWT) in the Wiener filter as well as in estimating the noise-free signal. Our goal was to find a suitable filter bank and to choose other parameters of the Wiener filter with respect to the signal-to-noise ratio (SNR) obtained. Testing was performed on artificially noised signals from the standard CSE database sampled at 500 Hz. When creating an artificial interference, we started from the generated white Gaussian noise, whose power spectrum was modified according to a model of the power spectrum of an EMG signal. To improve the filtering performance, we used adaptive setting parameters of filtering according to the level of interference in the input signal. We were able to increase the average SNR of the whole test database by about 10.6 dB. The proposed algorithm provides better results than the classic wavelet Wiener filter.
Adaptive wavelet Wiener filtering of ECG signals.
Smital, Lukáš; Vítek, Martin; Kozumplík, Jiří; Provazník, Ivo
2013-02-01
In this study, we focused on the reduction of broadband myopotentials (EMG) in ECG signals using the wavelet Wiener filtering with noise-free signal estimation. We used the dyadic stationary wavelet transform (SWT) in the Wiener filter as well as in estimating the noise-free signal. Our goal was to find a suitable filter bank and to choose other parameters of the Wiener filter with respect to the signal-to-noise ratio (SNR) obtained. Testing was performed on artificially noised signals from the standard CSE database sampled at 500 Hz. When creating an artificial interference, we started from the generated white Gaussian noise, whose power spectrum was modified according to a model of the power spectrum of an EMG signal. To improve the filtering performance, we used adaptive setting parameters of filtering according to the level of interference in the input signal. We were able to increase the average SNR of the whole test database by about 10.6 dB. The proposed algorithm provides better results than the classic wavelet Wiener filter. PMID:23192472
Implementation of digital filters for minimum quantization errors
NASA Technical Reports Server (NTRS)
Phillips, C. L.; Vallely, D. P.
1974-01-01
In this paper a technique is developed for choosing programing forms and bit configurations for digital filters that minimize the quantization errors. The technique applies to digital filters operating in fixed-point arithmetic in either open-loop or closed-loop systems, and is implemented by a digital computer program that is based on a digital simulation of the system. As an output the program gives the programing form required for minimum quantization errors, the total bit configuration required in the filter, and the location of the binary decimal point at each quantizer within the filter.
Kalman filter based control for Adaptive Optics
NASA Astrophysics Data System (ADS)
Petit, Cyril; Quiros-Pacheco, Fernando; Conan, Jean-Marc; Kulcsár, Caroline; Raynaud, Henri-François; Fusco, Thierry
2004-12-01
Classical Adaptive Optics suffer from a limitation of the corrected Field Of View. This drawback has lead to the development of MultiConjugated Adaptive Optics. While the first MCAO experimental set-ups are presently under construction, little attention has been paid to the control loop. This is however a key element in the optimization process especially for MCAO systems. Different approaches have been proposed in recent articles for astronomical applications : simple integrator, Optimized Modal Gain Integrator and Kalman filtering. We study here Kalman filtering which seems a very promising solution. Following the work of Brice Leroux, we focus on a frequential characterization of kalman filters, computing a transfer matrix. The result brings much information about their behaviour and allows comparisons with classical controllers. It also appears that straightforward improvements of the system models can lead to static aberrations and vibrations filtering. Simulation results are proposed and analysed thanks to our frequential characterization. Related problems such as model errors, aliasing effect reduction or experimental implementation and testing of Kalman filter control loop on a simplified MCAO experimental set-up could be then discussed.
Adaptive Filtering Using Recurrent Neural Networks
NASA Technical Reports Server (NTRS)
Parlos, Alexander G.; Menon, Sunil K.; Atiya, Amir F.
2005-01-01
A method for adaptive (or, optionally, nonadaptive) filtering has been developed for estimating the states of complex process systems (e.g., chemical plants, factories, or manufacturing processes at some level of abstraction) from time series of measurements of system inputs and outputs. The method is based partly on the fundamental principles of the Kalman filter and partly on the use of recurrent neural networks. The standard Kalman filter involves an assumption of linearity of the mathematical model used to describe a process system. The extended Kalman filter accommodates a nonlinear process model but still requires linearization about the state estimate. Both the standard and extended Kalman filters involve the often unrealistic assumption that process and measurement noise are zero-mean, Gaussian, and white. In contrast, the present method does not involve any assumptions of linearity of process models or of the nature of process noise; on the contrary, few (if any) assumptions are made about process models, noise models, or the parameters of such models. In this regard, the method can be characterized as one of nonlinear, nonparametric filtering. The method exploits the unique ability of neural networks to approximate nonlinear functions. In a given case, the process model is limited mainly by limitations of the approximation ability of the neural networks chosen for that case. Moreover, despite the lack of assumptions regarding process noise, the method yields minimum- variance filters. In that they do not require statistical models of noise, the neural- network-based state filters of this method are comparable to conventional nonlinear least-squares estimators.
Parallel digital modem using multirate digital filter banks
NASA Technical Reports Server (NTRS)
Sadr, Ramin; Vaidyanathan, P. P.; Raphaeli, Dan; Hinedi, Sami
1994-01-01
A new class of architectures for an all-digital modem is presented in this report. This architecture, referred to as the parallel receiver (PRX), is based on employing multirate digital filter banks (DFB's) to demodulate, track, and detect the received symbol stream. The resulting architecture is derived, and specifications are outlined for designing the DFB for the PRX. The key feature of this approach is a lower processing rate then either the Nyquist rate or the symbol rate, without any degradation in the symbol error rate. Due to the freedom in choosing the processing rate, the designer is able to arbitrarily select and use digital components, independent of the speed of the integrated circuit technology. PRX architecture is particularly suited for high data rate applications, and due to the modular structure of the parallel signal path, expansion to even higher data rates is accommodated with each. Applications of the PRX would include gigabit satellite channels, multiple spacecraft, optical links, interactive cable-TV, telemedicine, code division multiple access (CDMA) communications, and others.
Development of a digital adaptive optimal linear regulator flight controller
NASA Technical Reports Server (NTRS)
Berry, P.; Kaufman, H.
1975-01-01
Digital adaptive controllers have been proposed as a means for retaining uniform handling qualities over the flight envelope of a high-performance aircraft. Towards such an implementation, an explicit adaptive controller, which makes direct use of online parameter identification, has been developed and applied to the linearized lateral equations of motion for a typical fighter aircraft. The system is composed of an online weighted least-squares parameter identifier, a Kalman state filter, and a model following control law designed using optimal linear regulator theory. Simulation experiments with realistic measurement noise indicate that the proposed adaptive system has the potential for onboard implementation.
Low Power Systolic Array Based Digital Filter for DSP Applications
Karthick, S.; Valarmathy, S.; Prabhu, E.
2015-01-01
Main concepts in DSP include filtering, averaging, modulating, and correlating the signals in digital form to estimate characteristic parameter of a signal into a desirable form. This paper presents a brief concept of low power datapath impact for Digital Signal Processing (DSP) based biomedical application. Systolic array based digital filter used in signal processing of electrocardiogram analysis is presented with datapath architectural innovations in low power consumption perspective. Implementation was done with ASIC design methodology using TSMC 65 nm technological library node. The proposed systolic array filter has reduced leakage power up to 8.5% than the existing filter architectures. PMID:25922854
Low Power Systolic Array Based Digital Filter for DSP Applications.
Karthick, S; Valarmathy, S; Prabhu, E
2015-01-01
Main concepts in DSP include filtering, averaging, modulating, and correlating the signals in digital form to estimate characteristic parameter of a signal into a desirable form. This paper presents a brief concept of low power datapath impact for Digital Signal Processing (DSP) based biomedical application. Systolic array based digital filter used in signal processing of electrocardiogram analysis is presented with datapath architectural innovations in low power consumption perspective. Implementation was done with ASIC design methodology using TSMC 65 nm technological library node. The proposed systolic array filter has reduced leakage power up to 8.5% than the existing filter architectures.
Quaternion-valued nonlinear adaptive filtering.
Ujang, Bukhari Che; Took, Clive Cheong; Mandic, Danilo P
2011-08-01
A class of nonlinear quaternion-valued adaptive filtering algorithms is proposed based on locally analytic nonlinear activation functions. To circumvent the stringent standard analyticity conditions which are prohibitive to the development of nonlinear adaptive quaternion-valued estimation models, we use the fact that stochastic gradient learning algorithms require only local analyticity at the operating point in the estimation space. It is shown that the quaternion-valued exponential function is locally analytic, and, since local analyticity extends to polynomials, products, and ratios, we show that a class of transcendental nonlinear functions can serve as activation functions in nonlinear and neural adaptive models. This provides a unifying framework for the derivation of gradient-based learning algorithms in the quaternion domain, and the derived algorithms are shown to have the same generic form as their real- and complex-valued counterparts. To make such models second-order optimal for the generality of quaternion signals (both circular and noncircular), we use recent developments in augmented quaternion statistics to introduce widely linear versions of the proposed nonlinear adaptive quaternion valued filters. This allows full exploitation of second-order information in the data, contained both in the covariance and pseudocovariances to cater rigorously for second-order noncircularity (improperness), and the corresponding power mismatch in the signal components. Simulations over a range of circular and noncircular synthetic processes and a real world 3-D noncircular wind signal support the approach. PMID:21712159
Quaternion-valued nonlinear adaptive filtering.
Ujang, Bukhari Che; Took, Clive Cheong; Mandic, Danilo P
2011-08-01
A class of nonlinear quaternion-valued adaptive filtering algorithms is proposed based on locally analytic nonlinear activation functions. To circumvent the stringent standard analyticity conditions which are prohibitive to the development of nonlinear adaptive quaternion-valued estimation models, we use the fact that stochastic gradient learning algorithms require only local analyticity at the operating point in the estimation space. It is shown that the quaternion-valued exponential function is locally analytic, and, since local analyticity extends to polynomials, products, and ratios, we show that a class of transcendental nonlinear functions can serve as activation functions in nonlinear and neural adaptive models. This provides a unifying framework for the derivation of gradient-based learning algorithms in the quaternion domain, and the derived algorithms are shown to have the same generic form as their real- and complex-valued counterparts. To make such models second-order optimal for the generality of quaternion signals (both circular and noncircular), we use recent developments in augmented quaternion statistics to introduce widely linear versions of the proposed nonlinear adaptive quaternion valued filters. This allows full exploitation of second-order information in the data, contained both in the covariance and pseudocovariances to cater rigorously for second-order noncircularity (improperness), and the corresponding power mismatch in the signal components. Simulations over a range of circular and noncircular synthetic processes and a real world 3-D noncircular wind signal support the approach.
Research in digital adaptive flight controllers
NASA Technical Reports Server (NTRS)
Kaufman, H.
1976-01-01
A design study of adaptive control logic suitable for implementation in modern airborne digital flight computers was conducted. Both explicit controllers which directly utilize parameter identification and implicit controllers which do not require identification were considered. Extensive analytical and simulation efforts resulted in the recommendation of two explicit digital adaptive flight controllers. Interface weighted least squares estimation procedures with control logic were developed using either optimal regulator theory or with control logic based upon single stage performance indices.
Statistical properties of filtered pseudo-random digital sequences
NASA Technical Reports Server (NTRS)
Weathers, G. D.
1972-01-01
A tutorial presentation of pseudo-random digital sequences, their generation and properties is given. The results of a study of filtered pseudo-random sequences, and their statistical properties are reported. The generator, to be used in a telemetry communications system test unit, must generate its pseudo-random signals by filtering a long digital sequence. Desired signal properties include: (1) approximately Gaussian amplitude probability density function; and (2) signal spectral envelope approximately that of the filter being used in the generator. Filtered maximum-length sequences have been used for this, and similar applications in the past. The results were good for low-pass filtered sequences when the ratio of digital clock frequency to filter cutoff frequency was between fifteen and twenty. However, for higher values of this ratio, a definite skewing of the amplitude density function was observed.
Microcomputer program for the design of digital filters.
Johnson, A T
1985-12-01
The program presented here is intended to be a design device and learning tool for digital filters. Digital filters designed with the program can be implemented by incorporation within the data analysis programs of the user. The program is written in BASIC for use with the IBM-PC, is intended to be user-friendly, and includes a great deal of filter assistance not found in other programs. An example of program use shows how one filter can be used to remove noise from respiratory waveform data.
NASA Technical Reports Server (NTRS)
Kim, Heechul
1997-01-01
NASA Lewis Research Center's Space Communications Division has been investigating high-speed digital filters that can operate at a higher speed than those in current use for a digital modulator and demodulator (modem). Using the Canonical Signed Digits (CSD) number representation for filter coefficients is a very effective way to increase the filter's speed while reducing complexity in the digital filter hardware design. This approach is a good alternative to using an expensive parallel-processing design technique or custom, application-specific integrated circuits. Such integrated circuits may not be suitable for applications that require filter speeds faster than what application-specific integrated circuits digital signal processors can offer for a dedicated channel. When a communication channel is a dedicated, multiplication process--a costly, time-consuming process--it can be greatly simplified by a replacement of the filter coefficients with CSD numbers. A computer code written with the MATLAB software package runs the program and generates CSD-represented filter coefficients that are based on minimizing minimum mean square errors. Also, the Alta Group of Cadence's Signal Processing Workstation is used to simulate and analyze the CSD filter responses. The impulse response of the root-raised cosine filter that is used as a base model is defined. From this filter, a set of coefficients is sampled and stored in a file. For the all coefficients, the optimal CSD number for each coefficient is searched on the basis of the minimum-mean-square-errors criterion. Because the distribution of CSD numbers is not uniform, quantization errors tend to be bigger for coefficients greater than 1/2. To offset errors that occur in a region of coefficients between 1/2 to 1 and to better represent fractions with CSD numbers, an extra nonzero digit is allowed for any coefficients exceeding 1/2. This will greatly improve frequency response as well as intersymbol interference at the
Development and applications of an interactive digital filter design program.
Woo, H W; Kim, Y M; Tompkins, W J
1985-10-01
We have implemented an interactive digital filter design program in the HP 1000 computer at the Department of Electrical Engineering of the University of Washington. This program allows users to design different types of filters interactively with both amplitude and phase responses displayed on graphic devices. The performance of each designed filter can be evaluated conveniently before the best one is chosen and implemented for any particular application. This program can design recursive filters, e.g. Butterworth, Chebyshev and elliptic, or nonrecursive filters with one out of six different windows, i.e. rectangular, triangular, Hann, Hamming, Blackman and Kaiser. The main outputs from this program are coefficients of a transfer function of an analog filter, a digital filter, or both. Therefore, the design of both analog and digital filters is facilitated by using this program. The program is very simple to use and does not require background in analog or digital filter principles in order to run it. The program is written in standard FORTRAN and is about 30 kbytes in size excluding the graphics display routines. Since it uses standard FORTRAN, it can be easily transported to minicomputer and microcomputer systems that have a FORTRAN compiler and minimal graphics capabilities. This program is available for distribution to interested institutions and laboratories.
A study of digital holographic filter generation
NASA Technical Reports Server (NTRS)
Calhoun, M.; Ingels, F.
1976-01-01
Problems associated with digital computer generation of holograms are discussed along with a criteria for producing optimum digital holograms. This criteria revolves around amplitude resolution and spatial frequency limitations induced by the computer and plotter process.
Burst noise reduction of image by decimation and adaptive weighted median filter
NASA Astrophysics Data System (ADS)
Nakayama, Fumitaka; Meguro, Mitsuhiko; Hamada, Nozomu
2000-12-01
The removal of noise in image is one of the important issues, and useful as a preprocessing for edge detection, motion estimation and so on. Recently, many studies on the nonlinear digital filter for impulsive noise reduction have been reported. The median filter, the representative of the nonlinear filters, is very effective for removing impulsive noise and preserving sharp edge. In some cases, burst (i.e., successive) impulsive noise is added to image, and this type of noise is difficult to remove by using the median filter. In this paper, we propose an Adaptive Weighted Median (AWM) filter with Decimation (AWM-D filter) for burst noise reduction. This method can also be applied to recover large destructive regions, such as blotch and scratch. The proposed filter is an extension of the Decimated Median (DM) filter, which is useful for reducing successive impulsive noise. The DM filter can split long impulsive noise sequences into short ones, and remove burst noise in spite of the short filter window. Nevertheless, the DM filter also has two disadvantages. One is that the signals without added noise is unnecessary filtered. The other is that the position information in the window is not considered in the weight determinative process, as common in the median type filter. To improve detail-preserving property of the DM filter, we use the noise detection procedure and the AWM-D filter, which can be tuned by Least Mean Absolute (LMA) algorithm. The AWM-D filter preserves details more precisely than the median-type filter, because the AWM-D filter has the weights that can control the filter output. Through some simulations, the higher performance of the proposed filter is shown compared with the simple median, the WM filter, and the DM filter.
Digital high-pass filter deconvolution by means of an infinite impulse response filter
NASA Astrophysics Data System (ADS)
Födisch, P.; Wohsmann, J.; Lange, B.; Schönherr, J.; Enghardt, W.; Kaever, P.
2016-09-01
In the application of semiconductor detectors, the charge-sensitive amplifier is widely used in front-end electronics. The output signal is shaped by a typical exponential decay. Depending on the feedback network, this type of front-end electronics suffers from the ballistic deficit problem, or an increased rate of pulse pile-ups. Moreover, spectroscopy applications require a correction of the pulse-height, while a shortened pulse-width is desirable for high-throughput applications. For both objectives, digital deconvolution of the exponential decay is convenient. With a general method and the signals of our custom charge-sensitive amplifier for cadmium zinc telluride detectors, we show how the transfer function of an amplifier is adapted to an infinite impulse response (IIR) filter. This paper investigates different design methods for an IIR filter in the discrete-time domain and verifies the obtained filter coefficients with respect to the equivalent continuous-time frequency response. Finally, the exponential decay is shaped to a step-like output signal that is exploited by a forward-looking pulse processing.
Adaptive filters for detection of gravitational waves from coalescing binaries
Eleuteri, Antonio; Milano, Leopoldo; De Rosa, Rosario; Garufi, Fabio; Acernese, Fausto; Barone, Fabrizio; Giordano, Lara; Pardi, Silvio
2006-06-15
In this work we propose use of infinite impulse response adaptive line enhancer (IIR ALE) filters for detection of gravitational waves from coalescing binaries. We extend our previous work and define an adaptive matched filter structure. Filter performance is analyzed in terms of the tracking capability and determination of filter parameters. Furthermore, following the Neyman-Pearson strategy, receiver operating characteristics are derived, with closedform expressions for detection threshold, false alarm, and detection probability. Extensive tests demonstrate the effectiveness of adaptive filters both in terms of small computational cost and robustness.
Adaptive multidirectional frequency domain filter for noise removal in wrapped phase patterns.
Liu, Guixiong; Chen, Dongxue; Peng, Yanhua; Zeng, Qilin
2016-08-01
In order to avoid the detrimental effects of excessive noise in the phase fringe patterns of a laser digital interferometer over the accuracy of phase unwrapping and the successful detection of mechanical fatigue defects, an effective method of adaptive multidirectional frequency domain filtering is introduced based on the characteristics of the energy spectrum of localized wrapped phase patterns. Not only can this method automatically set the cutoff frequency, but it can also effectively filter out noise while preserving the image edge information. Compared with the sine and cosine transform filtering and the multidirectional frequency domain filtering, the experimental results demonstrate that the image filtered by our method has the fewest number of residues and is the closest to the noise-free image, compared to the two aforementioned methods, demonstrating the effectiveness of this adaptive multidirectional frequency domain filter. PMID:27505376
Impulse radar imaging for dispersive concrete using inverse adaptive filtering techniques
Arellano, J.; Hernandez, J.M.; Brase, J.
1993-05-01
This publication addresses applications of a delayed inverse model adaptive filter for modeled data obtained from short-pulse radar reflectometry. To determine the integrity of concrete, a digital adaptive filter was used, which allows compensation of dispersion and clutter generated by the concrete. A standard set of weights produced by an adaptive filter are used on modeled data to obtain the inverse-impulse response of the concrete. The data for this report include: Multiple target, nondispersive data; single-target, variable-size dispersive data; single-target, variable-depth dispersive data; and single-target, variable transmitted-pulse-width dispersive data. Results of this simulation indicate that data generated by the weights of the adaptive filter, coupled with a two-dimensional, synthetic-aperture focusing technique, successfully generate two-dimensional images of targets within the concrete from modeled data.
Adapting Digital Libraries to Continual Evolution
NASA Technical Reports Server (NTRS)
Barkstrom, Bruce R.; Finch, Melinda; Ferebee, Michelle; Mackey, Calvin
2002-01-01
In this paper, we describe five investment streams (data storage infrastructure, knowledge management, data production control, data transport and security, and personnel skill mix) that need to be balanced against short-term operating demands in order to maximize the probability of long-term viability of a digital library. Because of the rapid pace of information technology change, a digital library cannot be a static institution. Rather, it has to become a flexible organization adapted to continuous evolution of its infrastructure.
Low Power Adder Based Digital Filter for QRS Detector
Murali, L.; Chitra, D.; Manigandan, T.
2014-01-01
Most of the Biomedical applications use dedicated processors for the implementation of complex signal processing. Among them, sensor network is also a type, which has the constraint of low power consumption. Since the processing elements are the most copiously used operations in the signal processors, the power consumption of this has the major impact on the system level application. In this paper, we introduce low power concept of transistor stacking to reduce leakage power; and new architectures based on stacking to implement the full adder and its significance at the digital filter level for QRS detector are implemented. The proposed concept has lesser leakage power at the adder as well as filter level with trade-off in other quality metrics of the design. This enabled the design to be dealt with as the low-power corner and can be made adaptable to any level of hierarchical abstractions as per the requirement of the application. The proposed architectures are designed, modeled at RTL level using the Verilog-HDL, and synthesized in Synopsys Design Compiler by mapping the design to 65 nm technology library standard cells. PMID:24895649
Low power adder based digital filter for QRS detector.
Murali, L; Chitra, D; Manigandan, T
2014-01-01
Most of the Biomedical applications use dedicated processors for the implementation of complex signal processing. Among them, sensor network is also a type, which has the constraint of low power consumption. Since the processing elements are the most copiously used operations in the signal processors, the power consumption of this has the major impact on the system level application. In this paper, we introduce low power concept of transistor stacking to reduce leakage power; and new architectures based on stacking to implement the full adder and its significance at the digital filter level for QRS detector are implemented. The proposed concept has lesser leakage power at the adder as well as filter level with trade-off in other quality metrics of the design. This enabled the design to be dealt with as the low-power corner and can be made adaptable to any level of hierarchical abstractions as per the requirement of the application. The proposed architectures are designed, modeled at RTL level using the Verilog-HDL, and synthesized in Synopsys Design Compiler by mapping the design to 65 nm technology library standard cells.
Adaptive filtering image preprocessing for smart FPA technology
NASA Astrophysics Data System (ADS)
Brooks, Geoffrey W.
1995-05-01
This paper discusses two applications of adaptive filters for image processing on parallel architectures. The first, based on the results of previously accomplished work, summarizes the analyses of various adaptive filters implemented for pixel-level image prediction. FIR filters, fixed and adaptive IIR filters, and various variable step size algorithms were compared with a focus on algorithm complexity against the ability to predict future pixel values. A gaussian smoothing operation with varying spatial and temporal constants were also applied for comparisons of random noise reductions. The second application is a suggestion to use memory-adaptive IIR filters for detecting and tracking motion within an image. Objects within an image are made of edges, or segments, with varying degrees of motion. An application has been previously published that describes FIR filters connecting pixels and using correlations to determine motion and direction. This implementation seems limited to detecting motion coinciding with FIR filter operation rate and the associated harmonics. Upgrading the FIR structures with adaptive IIR structures can eliminate these limitations. These and any other pixel-level adaptive filtering application require data memory for filter parameters and some basic computational capability. Tradeoffs have to be made between chip real estate and these desired features. System tradeoffs will also have to be made as to where it makes the most sense to do which level of processing. Although smart pixels may not be ready to implement adaptive filters, applications such as these should give the smart pixel designer some long range goals.
FIR digital filter-based ZCDPLL for carrier recovery
NASA Astrophysics Data System (ADS)
Nasir, Qassim
2016-04-01
The objective of this work is to analyse the performance of the newly proposed two-tap FIR digital filter-based first-order zero-crossing digital phase-locked loop (ZCDPLL) in the absence or presence of additive white Gaussian noise (AWGN). The introduction of the two-tap FIR digital filter widens the lock range of a ZCDPLL and improves the loop's operation in the presence of AWGN. The FIR digital filter tap coefficients affect the loop convergence behaviour and appropriate selection of those gains should be taken into consideration. The new proposed loop has wider locking range and faster acquisition time and reduces the phase error variations in the presence of noise.
Fourier and Walsh digital filtering algorithms for distance protection
Altuve F., H.J.; Diaz V., I.; Vazquez M., E.
1996-02-01
Filtering requirements for distance relays are very critical, because they must estimate precisely and quickly the electrical distance to the fault, even with highly distorted input signals. A number of digital filtering algorithms for distance relays have been proposed and some of them are in use in practical relays; however, power system evolution increases the corruption level of signals and imposes the necessity of continuing the research efforts in this area. In the present paper a comparative evaluation of different digital filtering algorithms for distance protection is performed. An evaluation method is proposed, which gives a comprehensive information about filter transient behavior on a wide frequency range of noise. The discussion is focused in well-known algorithms based on Fourier and Walsh transforms, and includes a recently proposed combined sine-cosine filter.
Fourier and Walsh digital filtering algorithms for distance protection
Altuve F., H.J.; Diaz V., I.; Vazquez M., E.
1995-12-31
Filtering requirements for distance relays are very critical, because they must estimate precisely and quickly the electrical distance to the fault, even with highly distorted input signals. A number of digital filtering algorithms for distance relays have been proposed and some of them are in use in practical relays; however, power system evolution increases the corruption level of signals and imposes the necessity of continuing the research efforts in this area. In the present paper a comparative evaluation of different digital filtering algorithms for distance protection is performed. An evaluation method is proposed, which gives a comprehensive information about filter transient behavior on a wide frequency range of noise. The discussion is focused in well-known algorithms based on Fourier and Walsh transforms, and includes a recently proposed combined sine-cosine filter.
Autonomous Navigation System Using a Fuzzy Adaptive Nonlinear H∞ Filter
Outamazirt, Fariz; Li, Fu; Yan, Lin; Nemra, Abdelkrim
2014-01-01
Although nonlinear H∞ (NH∞) filters offer good performance without requiring assumptions concerning the characteristics of process and/or measurement noises, they still require additional tuning parameters that remain fixed and that need to be determined through trial and error. To address issues associated with NH∞ filters, a new SINS/GPS sensor fusion scheme known as the Fuzzy Adaptive Nonlinear H∞ (FANH∞) filter is proposed for the Unmanned Aerial Vehicle (UAV) localization problem. Based on a real-time Fuzzy Inference System (FIS), the FANH∞ filter continually adjusts the higher order of the Taylor development thorough adaptive bounds (δi) and adaptive disturbance attenuation (γ), which significantly increases the UAV localization performance. The results obtained using the FANH∞ navigation filter are compared to the NH∞ navigation filter results and are validated using a 3D UAV flight scenario. The comparison proves the efficiency and robustness of the UAV localization process using the FANH∞ filter. PMID:25244587
Autonomous navigation system using a fuzzy adaptive nonlinear H∞ filter.
Outamazirt, Fariz; Li, Fu; Yan, Lin; Nemra, Abdelkrim
2014-09-19
Although nonlinear H∞ (NH∞) filters offer good performance without requiring assumptions concerning the characteristics of process and/or measurement noises, they still require additional tuning parameters that remain fixed and that need to be determined through trial and error. To address issues associated with NH∞ filters, a new SINS/GPS sensor fusion scheme known as the Fuzzy Adaptive Nonlinear H∞ (FANH∞) filter is proposed for the Unmanned Aerial Vehicle (UAV) localization problem. Based on a real-time Fuzzy Inference System (FIS), the FANH∞ filter continually adjusts the higher order of the Taylor development thorough adaptive bounds and adaptive disturbance attenuation , which significantly increases the UAV localization performance. The results obtained using the FANH∞ navigation filter are compared to the NH∞ navigation filter results and are validated using a 3D UAV flight scenario. The comparison proves the efficiency and robustness of the UAV localization process using the FANH∞ filter.
Autonomous navigation system using a fuzzy adaptive nonlinear H∞ filter.
Outamazirt, Fariz; Li, Fu; Yan, Lin; Nemra, Abdelkrim
2014-01-01
Although nonlinear H∞ (NH∞) filters offer good performance without requiring assumptions concerning the characteristics of process and/or measurement noises, they still require additional tuning parameters that remain fixed and that need to be determined through trial and error. To address issues associated with NH∞ filters, a new SINS/GPS sensor fusion scheme known as the Fuzzy Adaptive Nonlinear H∞ (FANH∞) filter is proposed for the Unmanned Aerial Vehicle (UAV) localization problem. Based on a real-time Fuzzy Inference System (FIS), the FANH∞ filter continually adjusts the higher order of the Taylor development thorough adaptive bounds and adaptive disturbance attenuation , which significantly increases the UAV localization performance. The results obtained using the FANH∞ navigation filter are compared to the NH∞ navigation filter results and are validated using a 3D UAV flight scenario. The comparison proves the efficiency and robustness of the UAV localization process using the FANH∞ filter. PMID:25244587
Real-time 3D adaptive filtering for portable imaging systems
NASA Astrophysics Data System (ADS)
Bockenbach, Olivier; Ali, Murtaza; Wainwright, Ian; Nadeski, Mark
2015-03-01
Portable imaging devices have proven valuable for emergency medical services both in the field and hospital environments and are becoming more prevalent in clinical settings where the use of larger imaging machines is impractical. 3D adaptive filtering is one of the most advanced techniques aimed at noise reduction and feature enhancement, but is computationally very demanding and hence often not able to run with sufficient performance on a portable platform. In recent years, advanced multicore DSPs have been introduced that attain high processing performance while maintaining low levels of power dissipation. These processors enable the implementation of complex algorithms like 3D adaptive filtering, improving the image quality of portable medical imaging devices. In this study, the performance of a 3D adaptive filtering algorithm on a digital signal processor (DSP) is investigated. The performance is assessed by filtering a volume of size 512x256x128 voxels sampled at a pace of 10 MVoxels/sec.
Decentralized digital adaptive control of robot motion
NASA Technical Reports Server (NTRS)
Tarokh, M.
1990-01-01
A decentralized model reference adaptive scheme is developed for digital control of robot manipulators. The adaptation laws are derived using hyperstability theory, which guarantees asymptotic trajectory tracking despite gross robot parameter variations. The control scheme has a decentralized structure in the sense that each local controller receives only its joint angle measurement to produce its joint torque. The independent joint controllers have simple structures and can be programmed using a very simple and computationally fast algorithm. As a result, the scheme is suitable for real-time motion control.
A digital matched filter for reverse time chaos
NASA Astrophysics Data System (ADS)
Bailey, J. Phillip; Beal, Aubrey N.; Dean, Robert N.; Hamilton, Michael C.
2016-07-01
The use of reverse time chaos allows the realization of hardware chaotic systems that can operate at speeds equivalent to existing state of the art while requiring significantly less complex circuitry. Matched filter decoding is possible for the reverse time system since it exhibits a closed form solution formed partially by a linear basis pulse. Coefficients have been calculated and are used to realize the matched filter digitally as a finite impulse response filter. Numerical simulations confirm that this correctly implements a matched filter that can be used for detection of the chaotic signal. In addition, the direct form of the filter has been implemented in hardware description language and demonstrates performance in agreement with numerical results.
Least squares approximation of two-dimensional FIR digital filters
NASA Astrophysics Data System (ADS)
Alliney, S.; Sgallari, F.
1980-02-01
In this paper, a new method for the synthesis of two-dimensional FIR digital filters is presented. The method is based on a least-squares approximation of the ideal frequency response; an orthogonality property of certain functions, related to the frequency sampling design, improves the computational efficiency.
Finite word length effects on digital filter implementation.
NASA Technical Reports Server (NTRS)
Bowman, J. D.; Clark, F. H.
1972-01-01
This paper is a discussion of two known techniques to analyze finite word length effects on digital filters. These techniques are extended to several additional programming forms and the results verified experimentally. A correlation of the analytical weighting functions for the two methods is made through the Mason Gain Formula.
Digital filtering for data compression in telemetry systems
NASA Astrophysics Data System (ADS)
Bell, R. M.
There are many obstacles to using data compression in a telemetry system. Non-linear quantization is often too lossy, and the data is too highly structured to make variable-length entropy codes practical. This paper describes a lossless telemetry data compression system that was built using digital FIR filters. The method of compression takes advantage of the fact that the optimal Nyquist sampling rate is rarely achievable due to two factors: (1) Sensor/transducers are not bandlimited to the frequencies of interest; and (2) Accurate, high-order analog filters are not available to perform effective band limiting and prevent aliasing. Real-time digital filtering can enhance the performance of a typical sampling system so that it approaches Nyquist sampling rates, effectively compressing the amount of data and reducing transmission bandwidth. The system that was built reduced the sampling rate of 14 high-frequency vibration channels by a factor of two, and reduced the bandwidth of the-data link from 1.8 Mbps to 1.28 Mbps. The entire circuit uses seven function-specific, digital-filter DSP's operating in parallel (two 128-tap FIR filters can be implemented on each Motorola DSP56200), one EPROM and a Programmable Logic Device as the controller.
Digital filtering for data compression in telemetry systems
Bell, R.M.
1994-08-01
There are many obstacles to using data compression in a telemetry system. Non-linear quantization is often too lossy, and the data is too highly structured to make variable-length entropy codes practical. This paper describes a lossless telemetry data compression system that was built using digital FIR filters. The method of compression takes advantage of the fact that the optimal Nyquist sampling rate is rarely achievable due to two factors: (1) Sensor/transducers are not bandlimited to the frequencies of interest, and (2) Accurate, high-order analog filters are not available to perform effective band limiting and prevent aliasing. Real-time digital filtering can enhance the performance of a typical sampling system so that it approaches Nyquist sampling rates, effectively compressing the amount of data and reducing transmission bandwidth. The system that was built reduced the sampling rate of 14 high-frequency vibration channels by a factor of two, and reduced the bandwidth of the-data link from 1.8 Mbps to 1.28 Mbps. The entire circuit uses seven function-specific, digital-filter DSP`s operating in parallel (two 128-tap FIR filters can be implemented on each Motorola DSP56200), one EPROM and a Programmable Logic Device as the controller.
Filter. Remix. Make.: Cultivating Adaptability through Multimodality
ERIC Educational Resources Information Center
Dusenberry, Lisa; Hutter, Liz; Robinson, Joy
2015-01-01
This article establishes traits of adaptable communicators in the 21st century, explains why adaptability should be a goal of technical communication educators, and shows how multimodal pedagogy supports adaptability. Three examples of scalable, multimodal assignments (infographics, research interviews, and software demonstrations) that evidence…
Likelihood Methods for Adaptive Filtering and Smoothing. Technical Report #455.
ERIC Educational Resources Information Center
Butler, Ronald W.
The dynamic linear model or Kalman filtering model provides a useful methodology for predicting the past, present, and future states of a dynamic system, such as an object in motion or an economic or social indicator that is changing systematically with time. Recursive likelihood methods for adaptive Kalman filtering and smoothing are developed.…
Adaptive median filtering for preprocessing of time series measurements
NASA Technical Reports Server (NTRS)
Paunonen, Matti
1993-01-01
A median (L1-norm) filtering program using polynomials was developed. This program was used in automatic recycling data screening. Additionally, a special adaptive program to work with asymmetric distributions was developed. Examples of adaptive median filtering of satellite laser range observations and TV satellite time measurements are given. The program proved to be versatile and time saving in data screening of time series measurements.
Adaptive Control of Flexible Structures Using Residual Mode Filters
NASA Technical Reports Server (NTRS)
Balas, Mark J.; Frost, Susan
2010-01-01
Flexible structures containing a large number of modes can benefit from adaptive control techniques which are well suited to applications that have unknown modeling parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend our adaptive control theory to accommodate troublesome modal subsystems of a plant that might inhibit the adaptive controller. In some cases the plant does not satisfy the requirements of Almost Strict Positive Realness. Instead, there maybe be a modal subsystem that inhibits this property. This section will present new results for our adaptive control theory. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for the troublesome modal subsystem, or the Q modes. Here we present the theory for adaptive controllers modified by RMFs, with attention to the issue of disturbances propagating through the Q modes. We apply the theoretical results to a flexible structure example to illustrate the behavior with and without the residual mode filter. We have proposed a modified adaptive controller with a residual mode filter. The RMF is used to accommodate troublesome modes in the system that might otherwise inhibit the adaptive controller, in particular the ASPR condition. This new theory accounts for leakage of the disturbance term into the Q modes. A simple three-mode example shows that the RMF can restore stability to an otherwise unstable adaptively controlled system. This is done without modifying the adaptive controller design.
A hybrid method for optimization of the adaptive Goldstein filter
NASA Astrophysics Data System (ADS)
Jiang, Mi; Ding, Xiaoli; Tian, Xin; Malhotra, Rakesh; Kong, Weixue
2014-12-01
The Goldstein filter is a well-known filter for interferometric filtering in the frequency domain. The main parameter of this filter, alpha, is set as a power of the filtering function. Depending on it, considered areas are strongly or weakly filtered. Several variants have been developed to adaptively determine alpha using different indicators such as the coherence, and phase standard deviation. The common objective of these methods is to prevent areas with low noise from being over filtered while simultaneously allowing stronger filtering over areas with high noise. However, the estimators of these indicators are biased in the real world and the optimal model to accurately determine the functional relationship between the indicators and alpha is also not clear. As a result, the filter always under- or over-filters and is rarely correct. The study presented in this paper aims to achieve accurate alpha estimation by correcting the biased estimator using homogeneous pixel selection and bootstrapping algorithms, and by developing an optimal nonlinear model to determine alpha. In addition, an iteration is also merged into the filtering procedure to suppress the high noise over incoherent areas. The experimental results from synthetic and real data show that the new filter works well under a variety of conditions and offers better and more reliable performance when compared to existing approaches.
Estimated spectrum adaptive postfilter and the iterative prepost filtering algirighms
NASA Technical Reports Server (NTRS)
Linares, Irving (Inventor)
2004-01-01
The invention presents The Estimated Spectrum Adaptive Postfilter (ESAP) and the Iterative Prepost Filter (IPF) algorithms. These algorithms model a number of image-adaptive post-filtering and pre-post filtering methods. They are designed to minimize Discrete Cosine Transform (DCT) blocking distortion caused when images are highly compressed with the Joint Photographic Expert Group (JPEG) standard. The ESAP and the IPF techniques of the present invention minimize the mean square error (MSE) to improve the objective and subjective quality of low-bit-rate JPEG gray-scale images while simultaneously enhancing perceptual visual quality with respect to baseline JPEG images.
A Nonlinear Adaptive Filter for Gyro Thermal Bias Error Cancellation
NASA Technical Reports Server (NTRS)
Galante, Joseph M.; Sanner, Robert M.
2012-01-01
Deterministic errors in angular rate gyros, such as thermal biases, can have a significant impact on spacecraft attitude knowledge. In particular, thermal biases are often the dominant error source in MEMS gyros after calibration. Filters, such as J\\,fEKFs, are commonly used to mitigate the impact of gyro errors and gyro noise on spacecraft closed loop pointing accuracy, but often have difficulty in rapidly changing thermal environments and can be computationally expensive. In this report an existing nonlinear adaptive filter is used as the basis for a new nonlinear adaptive filter designed to estimate and cancel thermal bias effects. A description of the filter is presented along with an implementation suitable for discrete-time applications. A simulation analysis demonstrates the performance of the filter in the presence of noisy measurements and provides a comparison with existing techniques.
Optimized digital filtering techniques for radiation detection with HPGe detectors
NASA Astrophysics Data System (ADS)
Salathe, Marco; Kihm, Thomas
2016-02-01
This paper describes state-of-the-art digital filtering techniques that are part of GEANA, an automatic data analysis software used for the GERDA experiment. The discussed filters include a novel, nonlinear correction method for ballistic deficits, which is combined with one of three shaping filters: a pseudo-Gaussian, a modified trapezoidal, or a modified cusp filter. The performance of the filters is demonstrated with a 762 g Broad Energy Germanium (BEGe) detector, produced by Canberra, that measures γ-ray lines from radioactive sources in an energy range between 59.5 and 2614.5 keV. At 1332.5 keV, together with the ballistic deficit correction method, all filters produce a comparable energy resolution of ~1.61 keV FWHM. This value is superior to those measured by the manufacturer and those found in publications with detectors of a similar design and mass. At 59.5 keV, the modified cusp filter without a ballistic deficit correction produced the best result, with an energy resolution of 0.46 keV. It is observed that the loss in resolution by using a constant shaping time over the entire energy range is small when using the ballistic deficit correction method.
Optimal Recursive Digital Filters for Active Bending Stabilization
NASA Technical Reports Server (NTRS)
Orr, Jeb S.
2013-01-01
In the design of flight control systems for large flexible boosters, it is common practice to utilize active feedback control of the first lateral structural bending mode so as to suppress transients and reduce gust loading. Typically, active stabilization or phase stabilization is achieved by carefully shaping the loop transfer function in the frequency domain via the use of compensating filters combined with the frequency response characteristics of the nozzle/actuator system. In this paper we present a new approach for parameterizing and determining optimal low-order recursive linear digital filters so as to satisfy phase shaping constraints for bending and sloshing dynamics while simultaneously maximizing attenuation in other frequency bands of interest, e.g. near higher frequency parasitic structural modes. By parameterizing the filter directly in the z-plane with certain restrictions, the search space of candidate filter designs that satisfy the constraints is restricted to stable, minimum phase recursive low-pass filters with well-conditioned coefficients. Combined with optimal output feedback blending from multiple rate gyros, the present approach enables rapid and robust parametrization of autopilot bending filters to attain flight control performance objectives. Numerical results are presented that illustrate the application of the present technique to the development of rate gyro filters for an exploration-class multi-engined space launch vehicle.
Analysis on Influence Factors of Adaptive Filter Acting on ANC
NASA Astrophysics Data System (ADS)
Zhang, Xiuqun; Zou, Liang; Ni, Guangkui; Wang, Xiaojun; Han, Tao; Zhao, Quanfu
The noise problem has become more and more serious in recent years. The adaptive filter theory which is applied in ANC [1] (active noise control) has also attracted more and more attention. In this article, the basic principle and algorithm of adaptive theory are both researched. And then the influence factor that affects its covergence rate and noise reduction is also simulated.
Noise Shaping Filter Compensating PWM Distortion for Fully Digital Amplifier
NASA Astrophysics Data System (ADS)
Yoneya, Akihiko
The full-digital audio amplifiers have several merits such as a high power enabling a small size of the amplifier and digital implementation of the signal processing which allows desired precision of the processing except for the final stage switching amplifiers. Unfortunately, the pulse width modulation (PWM) causes signal distortions because of the non-linearity of the modulation from the viewpoint of the transient response. This paper proposes a compensation method of the PWM distortion with feedback approach. In the noise-shaping filter of the delta-sigma modulator to calculate the pulse codes for the PWM, the distortion caused by the PWM is evaluated and fed it back to compensate the distortion. Eventually the filter is implemented as a state-variable filter with non-linear feedback from the quantizer. The calculation of the filter elements is also described. By using proposed filters, PWM signals with small distortions and small floor noise can be obtained to realize high-fidelity audio amplifiers.
On detection of median filtering in digital images
NASA Astrophysics Data System (ADS)
Kirchner, Matthias; Fridrich, Jessica
2010-01-01
In digital image forensics, it is generally accepted that intentional manipulations of the image content are most critical and hence numerous forensic methods focus on the detection of such 'malicious' post-processing. However, it is also beneficial to know as much as possible about the general processing history of an image, including content-preserving operations, since they can affect the reliability of forensic methods in various ways. In this paper, we present a simple yet effective technique to detect median filtering in digital images-a widely used denoising and smoothing operator. As a great variety of forensic methods relies on some kind of a linearity assumption, a detection of non-linear median filtering is of particular interest. The effectiveness of our method is backed with experimental evidence on a large image database.
Improvement of Digital Filter for the FNAL Booster Transverse Dampers
Zolkin, Timofey; Eddy, N.; Lebedev, V.
2013-09-26
Fermilab Booster has two transverse dampers which independently suppress beam instabilities in the horizontal and vertical planes. A suppression of the common mode signal is achieved by digital notch filter which is based on subtracting beam positions for two consecutive turns. Such system operates well if the orbit position changes sufficiently slow. Unfortunately it is not the case for FNAL Booster where the entire accelerating cycle consists of about 20000 turns, and successful transition crossing requires the orbit drifts up to about 10 μm/turn, resulting in excessive power, power amplifier saturation and loss of stability. To suppress this effect we suggest an improvement of the digital filter which can take into account fast orbit changes by using bunch positions of a few previous turns. To take into account the orbit change up toN-th order polynomial in time the system requires (N + 3) turns of “prehistory”. In the case of sufficiently small gain the damping rate and the optimal digital filter coefficients are obtained analytically. Numerical simulations verify analytical theory for the small gain and predict a system performance with gain increase.
Adaptive Control Using Residual Mode Filters Applied to Wind Turbines
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Balas, Mark J.
2011-01-01
Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a model reference direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will augment the adaptive controller using a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. We apply these theoretical results to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine that has minimum phase zeros.
The influence of software filtering in digital mammography image quality
NASA Astrophysics Data System (ADS)
Michail, C.; Spyropoulou, V.; Kalyvas, N.; Valais, I.; Dimitropoulos, N.; Fountos, G.; Kandarakis, I.; Panayiotakis, G.
2009-05-01
Breast cancer is one of the most frequently diagnosed cancers among women. Several techniques have been developed to help in the early detection of breast cancer such as conventional and digital x-ray mammography, positron and single-photon emission mammography, etc. A key advantage in digital mammography is that images can be manipulated as simple computer image files. Thus non-dedicated commercially available image manipulation software can be employed to process and store the images. The image processing tools of the Photoshop (CS 2) software usually incorporate digital filters which may be used to reduce image noise, enhance contrast and increase spatial resolution. However, improving an image quality parameter may result in degradation of another. The aim of this work was to investigate the influence of three sharpening filters, named hereafter sharpen, sharpen more and sharpen edges on image resolution and noise. Image resolution was assessed by means of the Modulation Transfer Function (MTF).In conclusion it was found that the correct use of commercial non-dedicated software on digital mammograms may improve some aspects of image quality.
Sidelobe reduction via adaptive FIR filtering in SAR imagery.
Degraaf, S R
1994-01-01
The paper describes a class of adaptive weighting functions that greatly reduce sidelobes, interference, and noise in Fourier transform data. By restricting the class of adaptive weighting functions, the adaptively weighted Fourier transform data can be represented as the convolution of the unweighted Fourier transform with a data adaptive FIR filter where one selects the FIR filter coefficients to maximize signal-to-interference ratio. This adaptive sidelobe reduction (ASR) procedure is analogous to Capon's (1969) minimum variance method (MVM) of adaptive spectral estimation. Unlike MVM, which provides a statistical estimate of the real-valued power spectral density, thereby estimating noise level and improving resolution, ASR provides a single-realization complex-valued estimate of the Fourier transform that suppresses sidelobes and noise. Further, the computational complexity of ASR is dramatically lower than that of MVM, which is critical for large multidimensional problems such as synthetic aperture radar (SAR) image formation. ASR performance characteristics can be varied through the choice of filter order, l(1)- or l(2)-norm filter vector constraints and a separable or nonseparable multidimensional implementation. The author compares simulated point scattering SAR imagery produced by the ASR, MVM, and MUSIC algorithms and illustrates ASR performance on three sets of collected SAR imagery.
Chen, Ming-Hung
2015-01-01
This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters. PMID:26451391
Chen, Ming-Hung
2015-01-01
This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters.
Chen, Ming-Hung
2015-01-01
This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters. PMID:26451391
Adaptive filtering for ECG rejection from surface EMG recordings.
Marque, C; Bisch, C; Dantas, R; Elayoubi, S; Brosse, V; Pérot, C
2005-06-01
Surface electromyograms (EMG) of back muscles are often corrupted by electrocardiogram (ECG) signals. This noise in the EMG signals does not allow to appreciate correctly the spectral content of the EMG signals and to follow its evolution during, for example, a fatigue process. Several methods have been proposed to reject the ECG noise from EMG recordings, but seldom taking into account the eventual changes in ECG characteristics during the experiment. In this paper we propose an adaptive filtering algorithm specifically developed for the rejection of the electrocardiogram corrupting surface electromyograms (SEMG). The first step of the study was to choose the ECG electrode position in order to record the ECG with a shape similar to that found in the noised SEMGs. Then, the efficiency of different algorithms were tested on 28 erector spinae SEMG recordings. The best algorithm belongs to the fast recursive least square family (FRLS). More precisely, the best results were obtained with the simplified formulation of a FRLS algorithm. As an application of the adaptive filtering, the paper compares the evolutions of spectral parameters of noised or denoised (after adaptive filtering) surface EMGs recorded on erector spinae muscles during a trunk extension. The fatigue test was analyzed on 16 EMG recordings. After adaptive filtering, mean initial values of energy and of mean power frequency (MPF) were significantly lower and higher respectively. The differences corresponded to the removal of the ECG components. Furthermore, classical fatigue criteria (increase in energy and decrease in MPF values over time during the fatigue test) were better observed on the denoised EMGs. The mean values of the slopes of the energy-time and MPF-time linear relationships differed significantly when established before and after adaptive filtering. These results account for the efficacy of the adaptive filtering method proposed here to denoise electrophysiological signals.
Adaptive texture filtering for defect inspection in ultrasound images
NASA Astrophysics Data System (ADS)
Zmola, Carl; Segal, Andrew C.; Lovewell, Brian; Nash, Charles
1993-05-01
The use of ultrasonic imaging to analyze defects and characterize materials is critical in the development of non-destructive testing and non-destructive evaluation (NDT/NDE) tools for manufacturing. To develop better quality control and reliability in the manufacturing environment advanced image processing techniques are useful. For example, through the use of texture filtering on ultrasound images, we have been able to filter characteristic textures from highly-textured C-scan images of materials. The materials have highly regular characteristic textures which are of the same resolution and dynamic range as other important features within the image. By applying texture filters and adaptively modifying their filter response, we have examined a family of filters for removing these textures.
Robust Wiener filtering for Adaptive Optics
Poyneer, L A
2004-06-17
In many applications of optical systems, the observed field in the pupil plane has a non-uniform phase component. This deviation of the phase of the field from uniform is called a phase aberration. In imaging systems this aberration will degrade the quality of the images. In the case of a large astronomical telescope, random fluctuations in the atmosphere lead to significant distortion. These time-varying distortions can be corrected using an Adaptive Optics (AO) system, which is a real-time control system composed of optical, mechanical and computational parts. Adaptive optics is also applicable to problems in vision science, laser propagation and communication. For a high-level overview, consult this web site. For an in-depth treatment of the astronomical case, consult these books.
An information theoretic approach of designing sparse kernel adaptive filters.
Liu, Weifeng; Park, Il; Principe, José C
2009-12-01
This paper discusses an information theoretic approach of designing sparse kernel adaptive filters. To determine useful data to be learned and remove redundant ones, a subjective information measure called surprise is introduced. Surprise captures the amount of information a datum contains which is transferable to a learning system. Based on this concept, we propose a systematic sparsification scheme, which can drastically reduce the time and space complexity without harming the performance of kernel adaptive filters. Nonlinear regression, short term chaotic time-series prediction, and long term time-series forecasting examples are presented. PMID:19923047
An information theoretic approach of designing sparse kernel adaptive filters.
Liu, Weifeng; Park, Il; Principe, José C
2009-12-01
This paper discusses an information theoretic approach of designing sparse kernel adaptive filters. To determine useful data to be learned and remove redundant ones, a subjective information measure called surprise is introduced. Surprise captures the amount of information a datum contains which is transferable to a learning system. Based on this concept, we propose a systematic sparsification scheme, which can drastically reduce the time and space complexity without harming the performance of kernel adaptive filters. Nonlinear regression, short term chaotic time-series prediction, and long term time-series forecasting examples are presented.
NASA Astrophysics Data System (ADS)
Chan, Heang-Ping; Doi, Kunio; Metz, Charles E.
1984-06-01
We studied the effect of image processing with Metz filters and matched filters on the detection of simulated low-contrast square objects superimposed on radiographic mottle. The signal-to-noise ratios (SNRs) of original and processed images were calculated based on the perceived statistical decision theory model by taking into account the internal noise of a human observer's eye-brain system. Threshold contrasts for objects of various sizes were predicted by assuming a threshold SNR of 3.8 which was determined previously for a 50% correct detection in 18 alternative forced-choice experiments. The relative performance of various image processing techniques was also evaluated experimentally with a contrast-detail diagram method. The simulated images were generated by a high-quality digital image processing and simulation system. The digitized images were Fourier-trans-formed, filtered, inversely Fourier-transformed, and/or contrast-enhanced to produce the processed images. The contrast-detail curves of the original or processed images were obtained by averaging the results of four image samples and twelve observers. Both the theoretical prediction and the C-D experiment demonstrated an improvement in detectabilities of the simple test objects over those of the original images. However, the observers seemed to under-read the filtered images in the sense that the improvement in obser-ver performance was slightly less than the prediction. This is probably caused by the changes in appearance of the object and the noise texture in the filtered images. The usefulness and limitations of the Metz filters and matched filters in comparison with other image processing techniques are discussed.
Adaptive thresholding of digital subtraction angiography images
NASA Astrophysics Data System (ADS)
Sang, Nong; Li, Heng; Peng, Weixue; Zhang, Tianxu
2005-10-01
In clinical practice, digital subtraction angiography (DSA) is a powerful technique for the visualization of blood vessels in the human body. Blood vessel segmentation is a main problem for 3D vascular reconstruction. In this paper, we propose a new adaptive thresholding method for the segmentation of DSA images. Each pixel of the DSA images is declared to be a vessel/background point with regard to a threshold and a few local characteristic limits depending on some information contained in the pixel neighborhood window. The size of the neighborhood window is set according to a priori knowledge of the diameter of vessels to make sure that each window contains the background definitely. Some experiments on cerebral DSA images are given, which show that our proposed method yields better results than global thresholding methods and some other local thresholding methods do.
Challis, R E; Kitney, R I
1983-04-01
The first two papers in this series reviewed the basic concepts which apply to digital filter theory and presented design techniques based on the z plane pole-zero plot. In this paper these methods are used to develop digital versions of Butterworth and Chebychev filters. The basic theory of both filter types is reviewed and the bilinear transformation is used to derive the z-transforms of the filters from their s-plane continuous time descriptions. Recurrence relationships which may be used to implement filters of various orders are developed. The impulse and frequency responses of the elements are illustrated and examples are given of their application to ECG data.
Streak image denoising and segmentation using adaptive Gaussian guided filter.
Jiang, Zhuocheng; Guo, Baoping
2014-09-10
In streak tube imaging lidar (STIL), streak images are obtained using a CCD camera. However, noise in the captured streak images can greatly affect the quality of reconstructed 3D contrast and range images. The greatest challenge for streak image denoising is reducing the noise while preserving details. In this paper, we propose an adaptive Gaussian guided filter (AGGF) for noise removal and detail enhancement of streak images. The proposed algorithm is based on a guided filter (GF) and part of an adaptive bilateral filter (ABF). In the AGGF, the details are enhanced by optimizing the offset parameter. AGGF-denoised streak images are significantly sharper than those denoised by the GF. Moreover, the AGGF is a fast linear time algorithm achieved by recursively implementing a Gaussian filter kernel. Experimentally, AGGF demonstrates its capacity to preserve edges and thin structures and outperforms the existing bilateral filter and domain transform filter in terms of both visual quality and peak signal-to-noise ratio performance.
Streak image denoising and segmentation using adaptive Gaussian guided filter.
Jiang, Zhuocheng; Guo, Baoping
2014-09-10
In streak tube imaging lidar (STIL), streak images are obtained using a CCD camera. However, noise in the captured streak images can greatly affect the quality of reconstructed 3D contrast and range images. The greatest challenge for streak image denoising is reducing the noise while preserving details. In this paper, we propose an adaptive Gaussian guided filter (AGGF) for noise removal and detail enhancement of streak images. The proposed algorithm is based on a guided filter (GF) and part of an adaptive bilateral filter (ABF). In the AGGF, the details are enhanced by optimizing the offset parameter. AGGF-denoised streak images are significantly sharper than those denoised by the GF. Moreover, the AGGF is a fast linear time algorithm achieved by recursively implementing a Gaussian filter kernel. Experimentally, AGGF demonstrates its capacity to preserve edges and thin structures and outperforms the existing bilateral filter and domain transform filter in terms of both visual quality and peak signal-to-noise ratio performance. PMID:25321679
Hardware implementation of a discrete-time analog adaptive filter
Donohoe, G.W.
1981-01-01
This paper describes a hardware implementation of a discrete-time adaptive filter using a bucket-brigade device (BBD) tapped analog delay line, analog voltage multipliers and operational amplifier integrators and summing circuits. Some design considerations for this class of circuits are discussed.
Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems.
Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing
2016-01-01
This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches. PMID:27472336
Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems
Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing
2016-01-01
This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches. PMID:27472336
Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems.
Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing
2016-07-26
This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches.
Extended adaptive filtering for wide-angle SAR image formation
NASA Astrophysics Data System (ADS)
Wang, Yanwei; Roberts, William; Li, Jian
2005-05-01
For two-dimensional (2-D) spectral analysis, the adaptive filtering based technologies, such as CAPON and APES (Amplitude and Phase EStimation), are developed under the implicit assumption that the data sets are rectangular. However, in real SAR applications, especially for the wide-angle cases, the collected data sets are always non-rectangular. This raises the problem of how to extend the original adaptive filtering based algorithms for such kind of scenarios. In this paper, we propose an extended adaptive filtering (EAF) approach, which includes Extended APES (E-APES) and Extended CAPON (E-CAPON), for arbitrarily shaped 2-D data. The EAF algorithms adopt a missing-data approach where the unavailable data samples close to the collected data set are assumed missing. Using a group of filter-banks with varying sizes, these algorithms are non-iterative and do not require the estimation of the unavailable samples. The improved imaging results of the proposed algorithms are demonstrated by applying them to two different SAR data sets.
NASA Astrophysics Data System (ADS)
Chen, Yangkang
2016-07-01
The seislet transform has been demonstrated to have a better compression performance for seismic data compared with other well-known sparsity promoting transforms, thus it can be used to remove random noise by simply applying a thresholding operator in the seislet domain. Since the seislet transform compresses the seismic data along the local structures, the seislet thresholding can be viewed as a simple structural filtering approach. Because of the dependence on a precise local slope estimation, the seislet transform usually suffers from low compression ratio and high reconstruction error for seismic profiles that have dip conflicts. In order to remove the limitation of seislet thresholding in dealing with conflicting-dip data, I propose a dip-separated filtering strategy. In this method, I first use an adaptive empirical mode decomposition based dip filter to separate the seismic data into several dip bands (5 or 6). Next, I apply seislet thresholding to each separated dip component to remove random noise. Then I combine all the denoised components to form the final denoised data. Compared with other dip filters, the empirical mode decomposition based dip filter is data-adaptive. One only needs to specify the number of dip components to be separated. Both complicated synthetic and field data examples show superior performance of my proposed approach than the traditional alternatives. The dip-separated structural filtering is not limited to seislet thresholding, and can also be extended to all those methods that require slope information.
Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca
2011-11-15
Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold
Digital watermarking for secure and adaptive teleconferencing
NASA Astrophysics Data System (ADS)
Vorbrueggen, Jan C.; Thorwirth, Niels
2002-04-01
The EC-sponsored project ANDROID aims to develop a management system for secure active networks. Active network means allowing the network's customers to execute code (Java-based so-called proxylets) on parts of the network infrastructure. Secure means that the network operator nonetheless retains full control over the network and its resources, and that proxylets use ANDROID-developed facilities to provide secure applications. Management is based on policies and allows autonomous, distributed decisions and actions to be taken. Proxylets interface with the system via policies; among actions they can take is controlling execution of other proxylets or redirection of network traffic. Secure teleconferencing is used as the application to demonstrate the approach's advantages. A way to control a teleconference's data streams is to use digital watermarking of the video, audio and/or shared-whiteboard streams, providing an imperceptible and inseparable side channel that delivers information from originating or intermediate stations to downstream stations. Depending on the information carried by the watermark, these stations can take many different actions. Examples are forwarding decisions based on security classifications (possibly time-varying) at security boundaries, set-up and tear-down of virtual private networks, intelligent and adaptive transcoding, recorder or playback control (e.g., speaking off the record), copyright protection, and sender authentication.
Digital Image Watermarking via Adaptive Logo Texturization.
Andalibi, Mehran; Chandler, Damon M
2015-12-01
Grayscale logo watermarking is a quite well-developed area of digital image watermarking which seeks to embed into the host image another smaller logo image. The key advantage of such an approach is the ability to visually analyze the extracted logo for rapid visual authentication and other visual tasks. However, logos pose new challenges for invisible watermarking applications which need to keep the watermark imperceptible within the host image while simultaneously maintaining robustness to attacks. This paper presents an algorithm for invisible grayscale logo watermarking that operates via adaptive texturization of the logo. The central idea of our approach is to recast the watermarking task into a texture similarity task. We first separate the host image into sufficiently textured and poorly textured regions. Next, for textured regions, we transform the logo into a visually similar texture via the Arnold transform and one lossless rotation; whereas for poorly textured regions, we use only a lossless rotation. The iteration for the Arnold transform and the angle of lossless rotation are determined by a model of visual texture similarity. Finally, for each region, we embed the transformed logo into that region via a standard wavelet-based embedding scheme. We employ a multistep extraction stage, in which an affine parameter estimation is first performed to compensate for possible geometrical transformations. Testing with multiple logos on a database of host images and under a variety of attacks demonstrates that the proposed algorithm yields better overall performance than competing methods.
Adaptive gain and filtering circuit for a sound reproduction system
NASA Technical Reports Server (NTRS)
Engebretson, A. Maynard (Inventor); O'Connell, Michael P. (Inventor)
1998-01-01
Adaptive compressive gain and level dependent spectral shaping circuitry for a hearing aid include a microphone to produce an input signal and a plurality of channels connected to a common circuit output. Each channel has a preset frequency response. Each channel includes a filter with a preset frequency response to receive the input signal and to produce a filtered signal, a channel amplifier to amplify the filtered signal to produce a channel output signal, a threshold register to establish a channel threshold level, and a gain circuit. The gain circuit increases the gain of the channel amplifier when the channel output signal falls below the channel threshold level and decreases the gain of the channel amplifier when the channel output signal rises above the channel threshold level. A transducer produces sound in response to the signal passed by the common circuit output.
Kalman filtering to suppress spurious signals in Adaptive Optics control
Poyneer, L; Veran, J P
2010-03-29
In many scenarios, an Adaptive Optics (AO) control system operates in the presence of temporally non-white noise. We use a Kalman filter with a state space formulation that allows suppression of this colored noise, hence improving residual error over the case where the noise is assumed to be white. We demonstrate the effectiveness of this new filter in the case of the estimated Gemini Planet Imager tip-tilt environment, where there are both common-path and non-common path vibrations. We discuss how this same framework can also be used to suppress spatial aliasing during predictive wavefront control assuming frozen flow in a low-order AO system without a spatially filtered wavefront sensor, and present experimental measurements from Altair that clearly reveal these aliased components.
Adaptive control of large space structures using recursive lattice filters
NASA Technical Reports Server (NTRS)
Sundararajan, N.; Goglia, G. L.
1985-01-01
The use of recursive lattice filters for identification and adaptive control of large space structures is studied. Lattice filters were used to identify the structural dynamics model of the flexible structures. This identification model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures is control engaged. This type of validation scheme prevents instability when the overall loop is closed. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods. The method uses the Linear Quadratic Guassian/Loop Transfer Recovery (LQG/LTR) approach to ensure stability against unmodeled higher frequency modes and achieves the desired performance.
Adaptive control of large space structures using recursive lattice filters
NASA Technical Reports Server (NTRS)
Goglia, G. L.
1985-01-01
The use of recursive lattice filters for identification and adaptive control of large space structures was studied. Lattice filters are used widely in the areas of speech and signal processing. Herein, they are used to identify the structural dynamics model of the flexible structures. This identified model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures control is engaged. This type of validation scheme prevents instability when the overall loop is closed. The results obtained from simulation were compared to those obtained from experiments. In this regard, the flexible beam and grid apparatus at the Aerospace Control Research Lab (ACRL) of NASA Langley Research Center were used as the principal candidates for carrying out the above tasks. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods.
Infinite impulse response modal filtering in visible adaptive optics
NASA Astrophysics Data System (ADS)
Agapito, G.; Arcidiacono, C.; Quirós-Pacheco, F.; Puglisi, A.; Esposito, S.
2012-07-01
Diffraction limited resolution adaptive optics (AO) correction in visible wavelengths requires a high performance control. In this paper we investigate infinite impulse response filters that optimize the wavefront correction: we tested these algorithms through full numerical simulations of a single-conjugate AO system comprising an adaptive secondary mirror with 1127 actuators and a pyramid wavefront sensor (WFS). The actual practicability of the algorithms depends on both robustness and knowledge of the real system: errors in the system model may even worsen the performance. In particular we checked the robustness of the algorithms in different conditions, proving that the proposed method can reject both disturbance and calibration errors.
Adaptive bilateral filter for sharpness enhancement and noise removal.
Zhang, Buyue; Allebach, Jan P
2008-05-01
In this paper, we present the adaptive bilateral filter (ABF) for sharpness enhancement and noise removal. The ABF sharpens an image by increasing the slope of the edges without producing overshoot or undershoot. It is an approach to sharpness enhancement that is fundamentally different from the unsharp mask (USM). This new approach to slope restoration also differs significantly from previous slope restoration algorithms in that the ABF does not involve detection of edges or their orientation, or extraction of edge profiles. In the ABF, the edge slope is enhanced by transforming the histogram via a range filter with adaptive offset and width. The ABF is able to smooth the noise, while enhancing edges and textures in the image. The parameters of the ABF are optimized with a training procedure. ABF restored images are significantly sharper than those restored by the bilateral filter. Compared with an USM based sharpening method-the optimal unsharp mask (OUM), ABF restored edges are as sharp as those rendered by the OUM, but without the halo artifacts that appear in the OUM restored image. In terms of noise removal, ABF also outperforms the bilateral filter and the OUM. We demonstrate that ABF works well for both natural images and text images. PMID:18390373
Model Adaptation for Prognostics in a Particle Filtering Framework
NASA Technical Reports Server (NTRS)
Saha, Bhaskar; Goebel, Kai Frank
2011-01-01
One of the key motivating factors for using particle filters for prognostics is the ability to include model parameters as part of the state vector to be estimated. This performs model adaptation in conjunction with state tracking, and thus, produces a tuned model that can used for long term predictions. This feature of particle filters works in most part due to the fact that they are not subject to the "curse of dimensionality", i.e. the exponential growth of computational complexity with state dimension. However, in practice, this property holds for "well-designed" particle filters only as dimensionality increases. This paper explores the notion of wellness of design in the context of predicting remaining useful life for individual discharge cycles of Li-ion batteries. Prognostic metrics are used to analyze the tradeoff between different model designs and prediction performance. Results demonstrate how sensitivity analysis may be used to arrive at a well-designed prognostic model that can take advantage of the model adaptation properties of a particle filter.
Combination of Adaptive Feedback Cancellation and Binaural Adaptive Filtering in Hearing Aids
NASA Astrophysics Data System (ADS)
Lombard, Anthony; Reindl, Klaus; Kellermann, Walter
2009-12-01
We study a system combining adaptive feedback cancellation and adaptive filtering connecting inputs from both ears for signal enhancement in hearing aids. For the first time, such a binaural system is analyzed in terms of system stability, convergence of the algorithms, and possible interaction effects. As major outcomes of this study, a new stability condition adapted to the considered binaural scenario is presented, some already existing and commonly used feedback cancellation performance measures for the unilateral case are adapted to the binaural case, and possible interaction effects between the algorithms are identified. For illustration purposes, a blind source separation algorithm has been chosen as an example for adaptive binaural spatial filtering. Experimental results for binaural hearing aids confirm the theoretical findings and the validity of the new measures.
Speckle reduction in ultrasound images using nonisotropic adaptive filtering.
Eom, Kie B
2011-10-01
In this article, a speckle reduction approach for ultrasound imaging that preserves important features such as edges, corners and point targets is presented. Speckle reduction is an important problem in coherent imaging, such as ultrasound imaging or synthetic aperture radar, and many speckle reduction algorithms have been developed. Speckle is a non-additive and non-white process and the reduction of speckle without blurring sharp features is known to be difficult. The new speckle reduction algorithm presented in this article utilizes a nonhomogeneous filter that adapts to the proximity and direction of the nearest important features. To remove speckle without blurring important features, the location and direction of edges in the image are estimated. Then for each pixel in the image, the distance and angle to the nearest edge are efficiently computed by a two-pass algorithm and stored in distance and angle maps. Finally for each pixel, an adaptive directional filter aligned to the nearest edge is applied. The shape and orientation of the adaptive filter are determined from the distance and angle maps. The new speckle reduction algorithm is tested with both synthesized and real ultrasound images. The performance of the new algorithm is also compared with those of other speckle reduction approaches and it is shown that the new algorithm performs favorably in reducing speckle without blurring important features.
Adaptation and the temporal delay filter of fly motion detectors.
Harris, R A; O'Carroll, D C; Laughlin, S B
1999-08-01
Recent accounts attribute motion adaptation to a shortening of the delay filter in elementary motion detectors (EMDs). Using computer modelling and recordings from HS neurons in the drone-fly Eristalis tenax, we present evidence that challenges this theory. (i) Previous evidence for a change in the delay filter comes from 'image step' (or 'velocity impulse') experiments. We note a large discrepancy between the temporal frequency tuning predicted from these experiments and the observed tuning of motion sensitive cells. (ii) The results of image step experiments are highly sensitive to the experimental method used. (iii) An apparent motion stimulus reveals a much shorter EMD delay than suggested by previous 'image step' experiments. This short delay agrees with the observed temporal frequency sensitivity of the unadapted cell. (iv) A key prediction of a shortening delay filter is that the temporal frequency optimum of the cell should show a large shift to higher temporal frequencies after motion adaptation. We show little change in the temporal or spatial frequency (and hence velocity) optima following adaptation.
High-resolution digital resampling using vector rational filters
NASA Astrophysics Data System (ADS)
Khriji, Lazhar; Alaya Cheikh, Faouzi; Gabbouj, Moncef
1999-05-01
Rational filters are extended to multichannel signal processing and applied to image interpolation. Two commonly used decimation schemes are considered: a rectangular grid and a quincunx grid. For each decimation lattice, we propose a number of adaptive resampling algorithms based on the vector rational filter (VRF). These algorithms exhibit desirable properties such as edge and detail preservation and accurate chromaticity estimation. In these approaches, color image pixels are considered as three-component vectors in the color space. Therefore, the inherent correlation that exists between the different color components is not ignored. This leads to better image quality compared to that obtained by componentwise or marginal processing. Extensive simulations show that multichannel image processing with the proposed algorithms (VRFL) and (VRFd) based on lp-norm and directional processing, respectively; significantly outperform linear and some nonlinear techniques, e.g., vector FIR median hybrid filters. Some images interpolated using VRFL and VRFd are presented for qualitative comparison. These images are free from blockiness and jaggedness, confirming the quantitative results.
Frequency-shift low-pass filtering and least mean square adaptive filtering for ultrasound imaging
NASA Astrophysics Data System (ADS)
Wang, Shanshan; Li, Chunyu; Ding, Mingyue; Yuchi, Ming
2016-04-01
Ultrasound image quality enhancement is a problem of considerable interest in medical imaging modality and an ongoing challenge to date. This paper investigates a method based on frequency-shift low-pass filtering (FSLF) and least mean square adaptive filtering (LMSAF) for ultrasound image quality enhancement. FSLF is used for processing the ultrasound signal in the frequency domain, while LMSAPF in the time domain. Firstly, FSLF shifts the center frequency of the focused signal to zero. Then the real and imaginary part of the complex data are filtered respectively by finite impulse response (FIR) low-pass filter. Thus the information around the center frequency are retained while the undesired ones, especially background noises are filtered. Secondly, LMSAF multiplies the signals with an automatically adjusted weight vector to further eliminate the noises and artifacts. Through the combination of the two filters, the ultrasound image is expected to have less noises and artifacts and higher resolution, and contrast. The proposed method was verified with the RF data of the CIRS phantom 055A captured by SonixTouch DAQ system. Experimental results show that the background noises and artifacts can be efficiently restrained, the wire object has a higher resolution and the contrast ratio (CR) can be enhanced for about 12dB to 15dB at different image depth comparing to delay-and-sum (DAS).
Synthesis of color filter array pattern in digital images
NASA Astrophysics Data System (ADS)
Kirchner, Matthias; Böhme, Rainer
2009-02-01
We propose a method to synthetically create or restore typical color filter array (CFA) pattern in digital images. This can be useful, inter alia, to conceal traces of manipulation from forensic techniques that analyze the CFA structure of images. For continuous signals, our solution maintains optimal image quality, using a quadratic cost function; and it can be computed efficiently. Our general approach allows to derive even more efficient approximate solutions that achieve linear complexity in the number of pixels. The effectiveness of the CFA synthesis as tamper-hiding technique and its superior image quality is backed with experimental evidence on large image sets and against state-of-the-art forensic techniques. This exposition is confined to the most relevant 'Bayer'-grid, but the method can be generalized to other layouts as well.
NASA Astrophysics Data System (ADS)
Alaeddine, Hamzé Haidar; Bazzi, Oussama; Alaeddine, Ali Haidar; Mohanna, Yasser; Burel, Gilles
This paper is about a new efficient method for the implementation of a Block Proportionate Normalized Least Mean Square (BPNLMS++) adaptive filter using the Fermat Number Transform (FNT) and its inverse (IFNT). These transforms present advantages compared to Fast Fourier Transform (FFT) and the inverse (IFFT). An efficient state space method for implementing the FNT over rectangular windows is used in the cases where there is a large overlap between the consecutive input signals. This is called Generalized Sliding Fermat Number Transform (GSFNT) and is useful for reducing the computational complexity of finite ring convolvers and correlators. In this contribution, we propose, as a first objective, an efficient state algorithm with the purpose of reducing the complexity of IFNT. This algorithm, called Inverse Generalized Sliding Fermat Number Transform (IGSFNT), uses the technique of Generalized Sliding associated to matricial calculation in the Galois Field. The second objective is to realize an implementation of the BPNLMS++ adaptive filter using GSFNT and IGSFNT, which can significantly reduce the computation complexity of the filter implantation on digital signal processors.
Adaptive distributed Kalman filtering with wind estimation for astronomical adaptive optics.
Massioni, Paolo; Gilles, Luc; Ellerbroek, Brent
2015-12-01
In the framework of adaptive optics (AO) for astronomy, it is a common assumption to consider the atmospheric turbulent layers as "frozen flows" sliding according to the wind velocity profile. For this reason, having knowledge of such a velocity profile is beneficial in terms of AO control system performance. In this paper we show that it is possible to exploit the phase estimate from a Kalman filter running on an AO system in order to estimate wind velocity. This allows the update of the Kalman filter itself with such knowledge, making it adaptive. We have implemented such an adaptive controller based on the distributed version of the Kalman filter, for a realistic simulation of a multi-conjugate AO system with laser guide stars on a 30 m telescope. Simulation results show that this approach is effective and promising and the additional computational cost with respect to the distributed filter is negligible. Comparisons with a previously published slope detection and ranging wind profiler are made and the impact of turbulence profile quantization is assessed. One of the main findings of the paper is that all flavors of the adaptive distributed Kalman filter are impacted more significantly by turbulence profile quantization than the static minimum mean square estimator which does not incorporate wind profile information.
A New Adaptive Framework for Collaborative Filtering Prediction.
Almosallam, Ibrahim A; Shang, Yi
2008-06-01
Collaborative filtering is one of the most successful techniques for recommendation systems and has been used in many commercial services provided by major companies including Amazon, TiVo and Netflix. In this paper we focus on memory-based collaborative filtering (CF). Existing CF techniques work well on dense data but poorly on sparse data. To address this weakness, we propose to use z-scores instead of explicit ratings and introduce a mechanism that adaptively combines global statistics with item-based values based on data density level. We present a new adaptive framework that encapsulates various CF algorithms and the relationships among them. An adaptive CF predictor is developed that can self adapt from user-based to item-based to hybrid methods based on the amount of available ratings. Our experimental results show that the new predictor consistently obtained more accurate predictions than existing CF methods, with the most significant improvement on sparse data sets. When applied to the Netflix Challenge data set, our method performed better than existing CF and singular value decomposition (SVD) methods and achieved 4.67% improvement over Netflix's system.
A New Adaptive Framework for Collaborative Filtering Prediction
Almosallam, Ibrahim A.; Shang, Yi
2010-01-01
Collaborative filtering is one of the most successful techniques for recommendation systems and has been used in many commercial services provided by major companies including Amazon, TiVo and Netflix. In this paper we focus on memory-based collaborative filtering (CF). Existing CF techniques work well on dense data but poorly on sparse data. To address this weakness, we propose to use z-scores instead of explicit ratings and introduce a mechanism that adaptively combines global statistics with item-based values based on data density level. We present a new adaptive framework that encapsulates various CF algorithms and the relationships among them. An adaptive CF predictor is developed that can self adapt from user-based to item-based to hybrid methods based on the amount of available ratings. Our experimental results show that the new predictor consistently obtained more accurate predictions than existing CF methods, with the most significant improvement on sparse data sets. When applied to the Netflix Challenge data set, our method performed better than existing CF and singular value decomposition (SVD) methods and achieved 4.67% improvement over Netflix’s system. PMID:21572924
Adaptive filters and internal models: multilevel description of cerebellar function.
Porrill, John; Dean, Paul; Anderson, Sean R
2013-11-01
Cerebellar function is increasingly discussed in terms of engineering schemes for motor control and signal processing that involve internal models. To address the relation between the cerebellum and internal models, we adopt the chip metaphor that has been used to represent the combination of a homogeneous cerebellar cortical microcircuit with individual microzones having unique external connections. This metaphor indicates that identifying the function of a particular cerebellar chip requires knowledge of both the general microcircuit algorithm and the chip's individual connections. Here we use a popular candidate algorithm as embodied in the adaptive filter, which learns to decorrelate its inputs from a reference ('teaching', 'error') signal. This algorithm is computationally powerful enough to be used in a very wide variety of engineering applications. However, the crucial issue is whether the external connectivity required by such applications can be implemented biologically. We argue that some applications appear to be in principle biologically implausible: these include the Smith predictor and Kalman filter (for state estimation), and the feedback-error-learning scheme for adaptive inverse control. However, even for plausible schemes, such as forward models for noise cancellation and novelty-detection, and the recurrent architecture for adaptive inverse control, there is unlikely to be a simple mapping between microzone function and internal model structure. This initial analysis suggests that cerebellar involvement in particular behaviours is therefore unlikely to have a neat classification into categories such as 'forward model'. It is more likely that cerebellar microzones learn a task-specific adaptive-filter operation which combines a number of signal-processing roles.
NASA Astrophysics Data System (ADS)
Meng, Yang; Gao, Shesheng; Zhong, Yongmin; Hu, Gaoge; Subic, Aleksandar
2016-03-01
The use of the direct filtering approach for INS/GNSS integrated navigation introduces nonlinearity into the system state equation. As the unscented Kalman filter (UKF) is a promising method for nonlinear problems, an obvious solution is to incorporate the UKF concept in the direct filtering approach to address the nonlinearity involved in INS/GNSS integrated navigation. However, the performance of the standard UKF is dependent on the accurate statistical characterizations of system noise. If the noise distributions of inertial instruments and GNSS receivers are not appropriately described, the standard UKF will produce deteriorated or even divergent navigation solutions. This paper presents an adaptive UKF with noise statistic estimator to overcome the limitation of the standard UKF. According to the covariance matching technique, the innovation and residual sequences are used to determine the covariance matrices of the process and measurement noises. The proposed algorithm can estimate and adjust the system noise statistics online, and thus enhance the adaptive capability of the standard UKF. Simulation and experimental results demonstrate that the performance of the proposed algorithm is significantly superior to that of the standard UKF and adaptive-robust UKF under the condition without accurate knowledge on system noise, leading to improved navigation precision.
Adaptive filtering of Echelle spectra of distant Quasars
NASA Technical Reports Server (NTRS)
Priebe, A.; Liebscher, D.-E.; Lorenz, H.; Richter, G.-M.
1992-01-01
The study of the Ly alpha - forest of distant (approximately greater than 3) Quasars is an important tool in obtaining a more detailed picture of the distribution of matter along the line of sight and thus of the general distribution of matter in the Universe and is therefore of important cosmological significance. Obviously, this is one of the tasks where spectral resolution plays an important role. The spectra used were obtained with the EFOSC at the ESO 3.6m telescope. Applying for the data reduction the standard Echelle procedure, as it is implemented for instance in the MIDAS-package, one uses stationary filters (e.g. median) for noise and cosmic particle event reduction in the 2-dimensional Echelle image. These filters are useful if the spatial spectrum of the noise reaches essentially higher frequencies then the highest resolution features in the image. Otherwise the resolution in the data will be degraded and the spectral lines smoothed. However, in the Echelle spectra the highest resolution is already in the range of one or a few pixels and therefore stationary filtering means always a loss of resolution. An Echelle reduction procedure on the basis of a space variable filter described which recognizes the local resolution in the presence of noise and adapts to it is developed. It was shown that this technique leads to an improvement in resolution by a factor of 2 with respect to standard procedures.
Adaptive SVD-Based Digital Image Watermarking
NASA Astrophysics Data System (ADS)
Shirvanian, Maliheh; Torkamani Azar, Farah
Digital data utilization along with the increase popularity of the Internet has facilitated information sharing and distribution. However, such applications have also raised concern about copyright issues and unauthorized modification and distribution of digital data. Digital watermarking techniques which are proposed to solve these problems hide some information in digital media and extract it whenever needed to indicate the data owner. In this paper a new method of image watermarking based on singular value decomposition (SVD) of images is proposed which considers human visual system prior to embedding watermark by segmenting the original image into several blocks of different sizes, with more density in the edges of the image. In this way the original image quality is preserved in the watermarked image. Additional advantages of the proposed technique are large capacity of watermark embedding and robustness of the method against different types of image manipulation techniques.
NASA Astrophysics Data System (ADS)
Varjonen, Mari; Strömmer, Pekka
2008-03-01
This paper presents the optimized image quality and average glandular dose in digital mammography, and provides recommendations concerning anode-filter combinations in digital mammography, which is based on amorphous selenium (a-Se) detector technology. The full field digital mammography (FFDM) system based on a-Se technology, which is also a platform of tomosynthesis prototype, was used in this study. X-ray tube anode-filter combinations, which we studied, were tungsten (W) - rhodium (Rh) and tungsten (W) - silver (Ag). Anatomically adaptable fully automatic exposure control (AAEC) was used. The average glandular doses (AGD) were calculated using a specific program developed by Planmed, which automates the method described by Dance et al. Image quality was evaluated in two different ways: a subjective image quality evaluation, and contrast and noise analysis. By using W-Rh and W-Ag anode-filter combinations can be achieved a significantly lower average glandular dose compared with molybdenum (Mo) - molybdenum (Mo) or Mo-Rh. The average glandular dose reduction was achieved from 25 % to 60 %. In the future, the evaluation will concentrate to study more filter combinations and the effect of higher kV (>35 kV) values, which seems be useful while optimizing the dose in digital mammography.
An Adaptive Multipath Mitigation Filter for GNSS Applications
NASA Astrophysics Data System (ADS)
Chang, Chung-Liang; Juang, Jyh-Ching
2008-12-01
Global navigation satellite system (GNSS) is designed to serve both civilian and military applications. However, the GNSS performance suffers from several errors, such as ionosphere delay, troposphere delay, ephemeris error, and receiver noise and multipath. Among these errors, the multipath is one of the most unpredictable error sources in high-accuracy navigation. This paper applies a modified adaptive filter to reduce code and carrier multipath errors in GPS. The filter employs a tap-delay line with an Adaline network to estimate the direction and the delayed-signal parameters. Then, the multipath effect is mitigated by subtracting the estimated multipath effects from the processed correlation function. The hardware complexity of the method is also compared with other existing methods. Simulation results show that the proposed method using field data has a significant reduction in multipath error especially in short-delay multipath scenarios.
Fast Source Camera Identification Using Content Adaptive Guided Image Filter.
Zeng, Hui; Kang, Xiangui
2016-03-01
Source camera identification (SCI) is an important topic in image forensics. One of the most effective fingerprints for linking an image to its source camera is the sensor pattern noise, which is estimated as the difference between the content and its denoised version. It is widely believed that the performance of the sensor-based SCI heavily relies on the denoising filter used. This study proposes a novel sensor-based SCI method using content adaptive guided image filter (CAGIF). Thanks to the low complexity nature of the CAGIF, the proposed method is much faster than the state-of-the-art methods, which is a big advantage considering the potential real-time application of SCI. Despite the advantage of speed, experimental results also show that the proposed method can achieve comparable or better performance than the state-of-the-art methods in terms of accuracy. PMID:27404627
Statistical-uncertainty-based adaptive filtering of lidar signals
Fuehrer, P. L.; Friehe, C. A.; Hristov, T. S.; Cooper, D. I.; Eichinger, W. E.
2000-02-10
An adaptive filter signal processing technique is developed to overcome the problem of Raman lidar water-vapor mixing ratio (the ratio of the water-vapor density to the dry-air density) with a highly variable statistical uncertainty that increases with decreasing photomultiplier-tube signal strength and masks the true desired water-vapor structure. The technique, applied to horizontal scans, assumes only statistical horizontal homogeneity. The result is a variable spatial resolution water-vapor signal with a constant variance out to a range limit set by a specified signal-to-noise ratio. The technique was applied to Raman water-vapor lidar data obtained at a coastal pier site together with in situ instruments located 320 m from the lidar. The micrometerological humidity data were used to calibrate the ratio of the lidar gains of the H{sub 2}O and the N{sub 2} photomultiplier tubes and set the water-vapor mixing ratio variance for the adaptive filter. For the coastal experiment the effective limit of the lidar range was found to be approximately 200 m for a maximum noise-to-signal variance ratio of 0.1 with the implemented data-reduction procedure. The technique can be adapted to off-horizontal scans with a small reduction in the constraints and is also applicable to other remote-sensing devices that exhibit the same inherent range-dependent signal-to-noise ratio problem. (c) 2000 Optical Society of America.
Statistical-uncertainty-based adaptive filtering of lidar signals.
Fuehrer, P L; Friehe, C A; Hristov, T S; Cooper, D I; Eichinger, W E
2000-02-10
An adaptive filter signal processing technique is developed to overcome the problem of Raman lidar water-vapor mixing ratio (the ratio of the water-vapor density to the dry-air density) with a highly variable statistical uncertainty that increases with decreasing photomultiplier-tube signal strength and masks the true desired water-vapor structure. The technique, applied to horizontal scans, assumes only statistical horizontal homogeneity. The result is a variable spatial resolution water-vapor signal with a constant variance out to a range limit set by a specified signal-to-noise ratio. The technique was applied to Raman water-vapor lidar data obtained at a coastal pier site together with in situ instruments located 320 m from the lidar. The micrometeorological humidity data were used to calibrate the ratio of the lidar gains of the H(2)O and the N(2) photomultiplier tubes and set the water-vapor mixing ratio variance for the adaptive filter. For the coastal experiment the effective limit of the lidar range was found to be approximately 200 m for a maximum noise-to-signal variance ratio of 0.1 with the implemented data-reduction procedure. The technique can be adapted to off-horizontal scans with a small reduction in the constraints and is also applicable to other remote-sensing devices that exhibit the same inherent range-dependent signal-to-noise ratio problem.
Attitude determination using an adaptive multiple model filtering Scheme
NASA Astrophysics Data System (ADS)
Lam, Quang; Ray, Surendra N.
1995-05-01
Attitude determination has been considered as a permanent topic of active research and perhaps remaining as a forever-lasting interest for spacecraft system designers. Its role is to provide a reference for controls such as pointing the directional antennas or solar panels, stabilizing the spacecraft or maneuvering the spacecraft to a new orbit. Least Square Estimation (LSE) technique was utilized to provide attitude determination for the Nimbus 6 and G. Despite its poor performance (estimation accuracy consideration), LSE was considered as an effective and practical approach to meet the urgent need and requirement back in the 70's. One reason for this poor performance associated with the LSE scheme is the lack of dynamic filtering or 'compensation'. In other words, the scheme is based totally on the measurements and no attempts were made to model the dynamic equations of motion of the spacecraft. We propose an adaptive filtering approach which employs a bank of Kalman filters to perform robust attitude estimation. The proposed approach, whose architecture is depicted, is essentially based on the latest proof on the interactive multiple model design framework to handle the unknown of the system noise characteristics or statistics. The concept fundamentally employs a bank of Kalman filter or submodel, instead of using fixed values for the system noise statistics for each submodel (per operating condition) as the traditional multiple model approach does, we use an on-line dynamic system noise identifier to 'identify' the system noise level (statistics) and update the filter noise statistics using 'live' information from the sensor model. The advanced noise identifier, whose architecture is also shown, is implemented using an advanced system identifier. To insure the robust performance for the proposed advanced system identifier, it is also further reinforced by a learning system which is implemented (in the outer loop) using neural networks to identify other unknown
Improving the response of accelerometers for automotive applications by using LMS adaptive filters.
Hernandez, Wilmar; de Vicente, Jesús; Sergiyenko, Oleg; Fernández, Eduardo
2010-01-01
In this paper, the least-mean-squares (LMS) algorithm was used to eliminate noise corrupting the important information coming from a piezoresisitive accelerometer for automotive applications. This kind of accelerometer is designed to be easily mounted in hard to reach places on vehicles under test, and they usually feature ranges from 50 to 2,000 g (where is the gravitational acceleration, 9.81 m/s(2)) and frequency responses to 3,000 Hz or higher, with DC response, durable cables, reliable performance and relatively low cost. However, here we show that the response of the sensor under test had a lot of noise and we carried out the signal processing stage by using both conventional and optimal adaptive filtering. Usually, designers have to build their specific analog and digital signal processing circuits, and this fact increases considerably the cost of the entire sensor system and the results are not always satisfactory, because the relevant signal is sometimes buried in a broad-band noise background where the unwanted information and the relevant signal sometimes share a very similar frequency band. Thus, in order to deal with this problem, here we used the LMS adaptive filtering algorithm and compare it with others based on the kind of filters that are typically used for automotive applications. The experimental results are satisfactory. PMID:22315542
Improving the response of accelerometers for automotive applications by using LMS adaptive filters.
Hernandez, Wilmar; de Vicente, Jesús; Sergiyenko, Oleg; Fernández, Eduardo
2010-01-01
In this paper, the least-mean-squares (LMS) algorithm was used to eliminate noise corrupting the important information coming from a piezoresisitive accelerometer for automotive applications. This kind of accelerometer is designed to be easily mounted in hard to reach places on vehicles under test, and they usually feature ranges from 50 to 2,000 g (where is the gravitational acceleration, 9.81 m/s(2)) and frequency responses to 3,000 Hz or higher, with DC response, durable cables, reliable performance and relatively low cost. However, here we show that the response of the sensor under test had a lot of noise and we carried out the signal processing stage by using both conventional and optimal adaptive filtering. Usually, designers have to build their specific analog and digital signal processing circuits, and this fact increases considerably the cost of the entire sensor system and the results are not always satisfactory, because the relevant signal is sometimes buried in a broad-band noise background where the unwanted information and the relevant signal sometimes share a very similar frequency band. Thus, in order to deal with this problem, here we used the LMS adaptive filtering algorithm and compare it with others based on the kind of filters that are typically used for automotive applications. The experimental results are satisfactory.
High performance 3D adaptive filtering for DSP based portable medical imaging systems
NASA Astrophysics Data System (ADS)
Bockenbach, Olivier; Ali, Murtaza; Wainwright, Ian; Nadeski, Mark
2015-03-01
Portable medical imaging devices have proven valuable for emergency medical services both in the field and hospital environments and are becoming more prevalent in clinical settings where the use of larger imaging machines is impractical. Despite their constraints on power, size and cost, portable imaging devices must still deliver high quality images. 3D adaptive filtering is one of the most advanced techniques aimed at noise reduction and feature enhancement, but is computationally very demanding and hence often cannot be run with sufficient performance on a portable platform. In recent years, advanced multicore digital signal processors (DSP) have been developed that attain high processing performance while maintaining low levels of power dissipation. These processors enable the implementation of complex algorithms on a portable platform. In this study, the performance of a 3D adaptive filtering algorithm on a DSP is investigated. The performance is assessed by filtering a volume of size 512x256x128 voxels sampled at a pace of 10 MVoxels/sec with an Ultrasound 3D probe. Relative performance and power is addressed between a reference PC (Quad Core CPU) and a TMS320C6678 DSP from Texas Instruments.
Automated detection scheme of architectural distortion in mammograms using adaptive Gabor filter
NASA Astrophysics Data System (ADS)
Yoshikawa, Ruriha; Teramoto, Atsushi; Matsubara, Tomoko; Fujita, Hiroshi
2013-03-01
Breast cancer is a serious health concern for all women. Computer-aided detection for mammography has been used for detecting mass and micro-calcification. However, there are challenges regarding the automated detection of the architectural distortion about the sensitivity. In this study, we propose a novel automated method for detecting architectural distortion. Our method consists of the analysis of the mammary gland structure, detection of the distorted region, and reduction of false positive results. We developed the adaptive Gabor filter for analyzing the mammary gland structure that decides filter parameters depending on the thickness of the gland structure. As for post-processing, healthy mammary glands that run from the nipple to the chest wall are eliminated by angle analysis. Moreover, background mammary glands are removed based on the intensity output image obtained from adaptive Gabor filter. The distorted region of the mammary gland is then detected as an initial candidate using a concentration index followed by binarization and labeling. False positives in the initial candidate are eliminated using 23 types of characteristic features and a support vector machine. In the experiments, we compared the automated detection results with interpretations by a radiologist using 50 cases (200 images) from the Digital Database of Screening Mammography (DDSM). As a result, true positive rate was 82.72%, and the number of false positive per image was 1.39. There results indicate that the proposed method may be useful for detecting architectural distortion in mammograms.
Multimodal Medical Image Fusion by Adaptive Manifold Filter.
Geng, Peng; Liu, Shuaiqi; Zhuang, Shanna
2015-01-01
Medical image fusion plays an important role in diagnosis and treatment of diseases such as image-guided radiotherapy and surgery. The modified local contrast information is proposed to fuse multimodal medical images. Firstly, the adaptive manifold filter is introduced into filtering source images as the low-frequency part in the modified local contrast. Secondly, the modified spatial frequency of the source images is adopted as the high-frequency part in the modified local contrast. Finally, the pixel with larger modified local contrast is selected into the fused image. The presented scheme outperforms the guided filter method in spatial domain, the dual-tree complex wavelet transform-based method, nonsubsampled contourlet transform-based method, and four classic fusion methods in terms of visual quality. Furthermore, the mutual information values by the presented method are averagely 55%, 41%, and 62% higher than the three methods and those values of edge based similarity measure by the presented method are averagely 13%, 33%, and 14% higher than the three methods for the six pairs of source images. PMID:26664494
An adaptive filtered back-projection for photoacoustic image reconstruction
Huang, He; Bustamante, Gilbert; Peterson, Ralph; Ye, Jing Yong
2015-05-15
Purpose: The purpose of this study is to develop an improved filtered-back-projection (FBP) algorithm for photoacoustic tomography (PAT), which allows image reconstruction with higher quality compared to images reconstructed through traditional algorithms. Methods: A rigorous expression of a weighting function has been derived directly from a photoacoustic wave equation and used as a ramp filter in Fourier domain. The authors’ new algorithm utilizes this weighting function to precisely calculate each photoacoustic signal’s contribution and then reconstructs the image based on the retarded potential generated from the photoacoustic sources. In addition, an adaptive criterion has been derived for selecting the cutoff frequency of a low pass filter. Two computational phantoms were created to test the algorithm. The first phantom contained five spheres with each sphere having different absorbances. The phantom was used to test the capability for correctly representing both the geometry and the relative absorbed energy in a planar measurement system. The authors also used another phantom containing absorbers of different sizes with overlapping geometry to evaluate the performance of the new method for complicated geometry. In addition, random noise background was added to the simulated data, which were obtained by using an arc-shaped array of 50 evenly distributed transducers that spanned 160° over a circle with a radius of 65 mm. A normalized factor between the neighbored transducers was applied for correcting measurement signals in PAT simulations. The authors assumed that the scanned object was mounted on a holder that rotated over the full 360° and the scans were set to a sampling rate of 20.48 MHz. Results: The authors have obtained reconstructed images of the computerized phantoms by utilizing the new FBP algorithm. From the reconstructed image of the first phantom, one can see that this new approach allows not only obtaining a sharp image but also showing
An adaptive filtered back-projection for photoacoustic image reconstruction
Huang, He; Bustamante, Gilbert; Peterson, Ralph; Ye, Jing Yong
2015-01-01
Purpose: The purpose of this study is to develop an improved filtered-back-projection (FBP) algorithm for photoacoustic tomography (PAT), which allows image reconstruction with higher quality compared to images reconstructed through traditional algorithms. Methods: A rigorous expression of a weighting function has been derived directly from a photoacoustic wave equation and used as a ramp filter in Fourier domain. The authors’ new algorithm utilizes this weighting function to precisely calculate each photoacoustic signal’s contribution and then reconstructs the image based on the retarded potential generated from the photoacoustic sources. In addition, an adaptive criterion has been derived for selecting the cutoff frequency of a low pass filter. Two computational phantoms were created to test the algorithm. The first phantom contained five spheres with each sphere having different absorbances. The phantom was used to test the capability for correctly representing both the geometry and the relative absorbed energy in a planar measurement system. The authors also used another phantom containing absorbers of different sizes with overlapping geometry to evaluate the performance of the new method for complicated geometry. In addition, random noise background was added to the simulated data, which were obtained by using an arc-shaped array of 50 evenly distributed transducers that spanned 160° over a circle with a radius of 65 mm. A normalized factor between the neighbored transducers was applied for correcting measurement signals in PAT simulations. The authors assumed that the scanned object was mounted on a holder that rotated over the full 360° and the scans were set to a sampling rate of 20.48 MHz. Results: The authors have obtained reconstructed images of the computerized phantoms by utilizing the new FBP algorithm. From the reconstructed image of the first phantom, one can see that this new approach allows not only obtaining a sharp image but also showing
Digital DC-Reconstruction of AC-Coupled Electrophysiological Signals with a Single Inverting Filter
Schmid, Ramun; Leber, Remo; Schmid, Hans-Jakob; Generali, Gianluca
2016-01-01
Since the introduction of digital electrocardiographs, high-pass filters have been necessary for successful analog-to-digital conversion with a reasonable amplitude resolution. On the other hand, such high-pass filters may distort the diagnostically significant ST-segment of the ECG, which can result in a misleading diagnosis. We present an inverting filter that successfully undoes the effects of a 0.05 Hz single pole high-pass filter. The inverting filter has been tested on more than 1600 clinical ECGs with one-minute durations and produces a negligible mean RMS-error of 3.1*10−8 LSB. Alternative, less strong inverting filters have also been tested, as have different applications of the filters with respect to rounding of the signals after filtering. A design scheme for the alternative inverting filters has been suggested, based on the maximum strength of the filter. With the use of the suggested filters, it is possible to recover the original DC-coupled ECGs from AC-coupled ECGs, at least when a 0.05 Hz first order digital single pole high-pass filter is used for the AC-coupling. PMID:26938769
Digital DC-Reconstruction of AC-Coupled Electrophysiological Signals with a Single Inverting Filter.
Abächerli, Roger; Isaksen, Jonas; Schmid, Ramun; Leber, Remo; Schmid, Hans-Jakob; Generali, Gianluca
2016-01-01
Since the introduction of digital electrocardiographs, high-pass filters have been necessary for successful analog-to-digital conversion with a reasonable amplitude resolution. On the other hand, such high-pass filters may distort the diagnostically significant ST-segment of the ECG, which can result in a misleading diagnosis. We present an inverting filter that successfully undoes the effects of a 0.05 Hz single pole high-pass filter. The inverting filter has been tested on more than 1600 clinical ECGs with one-minute durations and produces a negligible mean RMS-error of 3.1*10(-8) LSB. Alternative, less strong inverting filters have also been tested, as have different applications of the filters with respect to rounding of the signals after filtering. A design scheme for the alternative inverting filters has been suggested, based on the maximum strength of the filter. With the use of the suggested filters, it is possible to recover the original DC-coupled ECGs from AC-coupled ECGs, at least when a 0.05 Hz first order digital single pole high-pass filter is used for the AC-coupling. PMID:26938769
Digital DC-Reconstruction of AC-Coupled Electrophysiological Signals with a Single Inverting Filter.
Abächerli, Roger; Isaksen, Jonas; Schmid, Ramun; Leber, Remo; Schmid, Hans-Jakob; Generali, Gianluca
2016-01-01
Since the introduction of digital electrocardiographs, high-pass filters have been necessary for successful analog-to-digital conversion with a reasonable amplitude resolution. On the other hand, such high-pass filters may distort the diagnostically significant ST-segment of the ECG, which can result in a misleading diagnosis. We present an inverting filter that successfully undoes the effects of a 0.05 Hz single pole high-pass filter. The inverting filter has been tested on more than 1600 clinical ECGs with one-minute durations and produces a negligible mean RMS-error of 3.1*10(-8) LSB. Alternative, less strong inverting filters have also been tested, as have different applications of the filters with respect to rounding of the signals after filtering. A design scheme for the alternative inverting filters has been suggested, based on the maximum strength of the filter. With the use of the suggested filters, it is possible to recover the original DC-coupled ECGs from AC-coupled ECGs, at least when a 0.05 Hz first order digital single pole high-pass filter is used for the AC-coupling.
A wavelet packet adaptive filtering algorithm for enhancing manatee vocalizations.
Gur, M Berke; Niezrecki, Christopher
2011-04-01
Approximately a quarter of all West Indian manatee (Trichechus manatus latirostris) mortalities are attributed to collisions with watercraft. A boater warning system based on the passive acoustic detection of manatee vocalizations is one possible solution to reduce manatee-watercraft collisions. The success of such a warning system depends on effective enhancement of the vocalization signals in the presence of high levels of background noise, in particular, noise emitted from watercraft. Recent research has indicated that wavelet domain pre-processing of the noisy vocalizations is capable of significantly improving the detection ranges of passive acoustic vocalization detectors. In this paper, an adaptive denoising procedure, implemented on the wavelet packet transform coefficients obtained from the noisy vocalization signals, is investigated. The proposed denoising algorithm is shown to improve the manatee detection ranges by a factor ranging from two (minimum) to sixteen (maximum) compared to high-pass filtering alone, when evaluated using real manatee vocalization and background noise signals of varying signal-to-noise ratios (SNR). Furthermore, the proposed method is also shown to outperform a previously suggested feedback adaptive line enhancer (FALE) filter on average 3.4 dB in terms of noise suppression and 0.6 dB in terms of waveform preservation.
A wavelet packet adaptive filtering algorithm for enhancing manatee vocalizations.
Gur, M Berke; Niezrecki, Christopher
2011-04-01
Approximately a quarter of all West Indian manatee (Trichechus manatus latirostris) mortalities are attributed to collisions with watercraft. A boater warning system based on the passive acoustic detection of manatee vocalizations is one possible solution to reduce manatee-watercraft collisions. The success of such a warning system depends on effective enhancement of the vocalization signals in the presence of high levels of background noise, in particular, noise emitted from watercraft. Recent research has indicated that wavelet domain pre-processing of the noisy vocalizations is capable of significantly improving the detection ranges of passive acoustic vocalization detectors. In this paper, an adaptive denoising procedure, implemented on the wavelet packet transform coefficients obtained from the noisy vocalization signals, is investigated. The proposed denoising algorithm is shown to improve the manatee detection ranges by a factor ranging from two (minimum) to sixteen (maximum) compared to high-pass filtering alone, when evaluated using real manatee vocalization and background noise signals of varying signal-to-noise ratios (SNR). Furthermore, the proposed method is also shown to outperform a previously suggested feedback adaptive line enhancer (FALE) filter on average 3.4 dB in terms of noise suppression and 0.6 dB in terms of waveform preservation. PMID:21476661
A high-speed digitally programmable CCD transversal filter
NASA Astrophysics Data System (ADS)
Chiang, A. M.; Burke, B. E.
1983-12-01
A 32-stage programmable transversal filter is described which has 6-bit digitally programmable tap weights and has been operated at a 25 MHz clock rate. The device has a linear dynamic range of more than 60 dB and occupies a chip area of 24 sq mm. To obtain high-speed operation, the pipe organ architecture which allows use of a simple floating diffusion output circuit was adopted. The tap weight values are set by a 6-bit multiplying D/A converter (MDAC) at each delay line input. The MDAC is a multiple CCD input structure with binary-weighted input gate areas and logic-controlled gates to multiply each charge packet by 0 or 1. The conversion speed of this structure is as high as that of a CCD input structure, but careful control of threshold voltage variations is required to achieve high accuracy. Experiments are described which show that threshold offsets can be reduced to about 2 mV rms for a fill-and-spill input, indicating that MDACs of this type, with 8-bit accuracy, are feasible.
Longmire, M S; Milton, A F; Takken, E H
1982-11-01
Several 1-D signal processing techniques have been evaluated by simulation with a digital computer using high-spatial-resolution (0.15 mrad) noise data gathered from back-lit clouds and uniform sky with a scanning data collection system operating in the 4.0-4.8-microm spectral band. Two ordinary bandpass filters and a least-mean-square (LMS) spatial filter were evaluated in combination with a fixed or adaptive threshold algorithm. The combination of a 1-D LMS filter and a 1-D adaptive threshold sensor was shown to reject extreme cloud clutter effectively and to provide nearly equal signal detection in a clear and cluttered sky, at least in systems whose NEI (noise equivalent irradiance) exceeds 1.5 x 10(-13) W/cm(2) and whose spatial resolution is better than 0.15 x 0.36 mrad. A summary gives highlights of the work, key numerical results, and conclusions.
Controller-structure interaction compensation using adaptive residual mode filters
NASA Technical Reports Server (NTRS)
Davidson, Roger A.; Balas, Mark J.
1990-01-01
It is not feasible to construct controllers for large space structures or large scale systems (LSS's) which are of the same order as the structures. The complexity of the dynamics of these systems is such that full knowledge of its behavior cannot by processed by today's controller design methods. The controller for system performance of such a system is therefore based on a much smaller reduced-order model (ROM). Unfortunately, the interaction between the LSS and the ROM-based controller can produce instabilities in the closed-loop system due to the unmodeled dynamics of the LSS. Residual mode filters (RMF's) allow the systematic removal of these instabilities in a matter which does not require a redesign of the controller. In addition RMF's have a strong theoretical basis. As simple first- or second-order filters, the RMF CSI compensation technique is at once modular, simple and highly effective. RMF compensation requires knowledge of the dynamics of the system modes which resulted in the previous closed-loop instabilities (the residual modes), but this information is sometimes known imperfectly. An adaptive, self-tuning RMF design, which compensates for uncertainty in the frequency of the residual mode, has been simulated using continuous-time and discrete-time models of a flexible robot manipulator. Work has also been completed on the discrete-time experimental implementation on the Martin Marietta flexible robot manipulator experiment. This paper will present the results of that work on adaptive, self-tuning RMF's, and will clearly show the advantage of this adaptive compensation technique for controller-structure interaction (CSI) instabilities in actively-controlled LSS's.
Design and responses of Butterworth and critically damped digital filters.
Robertson, D Gordon E; Dowling, James J
2003-12-01
For many years the Butterworth lowpass filter has been used to smooth many kinds of biomechanical data, despite the fact that it is underdamped and therefore overshoots and/or undershoots data during rapid transitions. A comparison of the conventional Butterworth filter with a critically damped filter shows that the critically damped filter not only removes the undershooting and overshooting, but has a superior rise time during rapid transitions. While analog filters always create phase distortion, both the critically damped and Butterworth filters can be modified to become zero-lag filters when the data are processed in both the forward and reverse directions. In such cases little improvement is realized by applying multiple passes. The Butterworth filter has superior 'roll-off' (attenuation of noise above the cutoff frequency) than the critically damped filter, but by increasing the number of passes of the critically damped filter the same 'roll-off' can be achieved. In summary, the critically damped filter was shown to have superior performance in the time domain than the Butterworth filter, but for data that need to be double differentiated (e.g. displacement data) the Butterworth filter may still be the better choice.
NASA Technical Reports Server (NTRS)
Peterson, A.; Narasimha, M.; Narayan, S.
1980-01-01
The system design of a wideband (8 MHz) million-channel digital spectrum analyzer for use with a SETI receiver is presented. The analyzer makes use of a digital bandpass filter bank for transforming the wideband input signal into a specified number (120) of uniform narrowband output channels by the use of a Fourier transform digital processor combined with a prototype digital weighting network (finite impulse response filter). The output is then processed separately by 120 microprocessor-based discrete Fourier transform computers, each producing 8190 output channels of approximately 8 Hz bandwidth by the use of an 8190-point prime factor algorithm.
Shih, Cheng-Ting; Lin, Hsin-Hon; Chuang, Keh-Shih; Wu, Jay; Chang, Shu-Jun
2014-08-15
Purpose: Several positron emission tomography (PET) scanners with special detector block arrangements have been developed in recent years to improve the resolution of PET images. However, the discontinuous detector blocks cause gaps in the sinogram. This study proposes an adaptive discrete cosine transform-based (aDCT) filter for gap-inpainting. Methods: The gap-corrupted sinogram was morphologically closed and subsequently converted to the DCT domain. A certain number of the largest coefficients in the DCT spectrum were identified to determine the low-frequency preservation region. The weighting factors for the remaining coefficients were determined by an exponential weighting function. The aDCT filter was constructed and applied to two digital phantoms and a simulated phantom introduced with various levels of noise. Results: For the Shepp-Logan head phantom, the aDCT filter filled the gaps effectively. For the Jaszczak phantom, no secondary artifacts were induced after aDCT filtering. The percent mean square error and mean structure similarity of the aDCT filter were superior to those of the DCT2 filter at all noise levels. For the simulated striatal dopamine innervation study, the aDCT filter recovered the shape of the striatum and restored the striatum to reference activity ratios to the ideal value. Conclusions: The proposed aDCT filter can recover the missing gap data in the sinogram and improve the image quality and quantitative accuracy of PET images.
Simple method for adaptive filtering of motion artifacts in E-textile wearable ECG sensors.
Alkhidir, Tamador; Sluzek, Andrzej; Yapici, Murat Kaya
2015-08-01
In this paper, we have developed a simple method for adaptive out-filtering of the motion artifact from the electrocardiogram (ECG) obtained by using conductive textile electrodes. The textile electrodes were placed on the left and the right wrist to measure ECG through lead-1 configuration. The motion artifact was induced by simple hand movements. The reference signal for adaptive filtering was obtained by placing additional electrodes at one hand to capture the motion of the hand. The adaptive filtering was compared to independent component analysis (ICA) algorithm. The signal-to-noise ratio (SNR) for the adaptive filtering approach was higher than independent component analysis in most cases.
Hybrid vs Adaptive Ensemble Kalman Filtering for Storm Surge Forecasting
NASA Astrophysics Data System (ADS)
Altaf, M. U.; Raboudi, N.; Gharamti, M. E.; Dawson, C.; McCabe, M. F.; Hoteit, I.
2014-12-01
Recent storm surge events due to Hurricanes in the Gulf of Mexico have motivated the efforts to accurately forecast water levels. Toward this goal, a parallel architecture has been implemented based on a high resolution storm surge model, ADCIRC. However the accuracy of the model notably depends on the quality and the recentness of the input data (mainly winds and bathymetry), model parameters (e.g. wind and bottom drag coefficients), and the resolution of the model grid. Given all these uncertainties in the system, the challenge is to build an efficient prediction system capable of providing accurate forecasts enough ahead of time for the authorities to evacuate the areas at risk. We have developed an ensemble-based data assimilation system to frequently assimilate available data into the ADCIRC model in order to improve the accuracy of the model. In this contribution we study and analyze the performances of different ensemble Kalman filter methodologies for efficient short-range storm surge forecasting, the aim being to produce the most accurate forecasts at the lowest possible computing time. Using Hurricane Ike meteorological data to force the ADCIRC model over a domain including the Gulf of Mexico coastline, we implement and compare the forecasts of the standard EnKF, the hybrid EnKF and an adaptive EnKF. The last two schemes have been introduced as efficient tools for enhancing the behavior of the EnKF when implemented with small ensembles by exploiting information from a static background covariance matrix. Covariance inflation and localization are implemented in all these filters. Our results suggest that both the hybrid and the adaptive approach provide significantly better forecasts than those resulting from the standard EnKF, even when implemented with much smaller ensembles.
Adaptive data filtering of inertial sensors with variable bandwidth.
Alam, Mushfiqul; Rohac, Jan
2015-02-02
MEMS (micro-electro-mechanical system)-based inertial sensors, i.e., accelerometers and angular rate sensors, are commonly used as a cost-effective solution for the purposes of navigation in a broad spectrum of terrestrial and aerospace applications. These tri-axial inertial sensors form an inertial measurement unit (IMU), which is a core unit of navigation systems. Even if MEMS sensors have an advantage in their size, cost, weight and power consumption, they suffer from bias instability, noisy output and insufficient resolution. Furthermore, the sensor's behavior can be significantly affected by strong vibration when it operates in harsh environments. All of these constitute conditions require treatment through data processing. As long as the navigation solution is primarily based on using only inertial data, this paper proposes a novel concept in adaptive data pre-processing by using a variable bandwidth filtering. This approach utilizes sinusoidal estimation to continuously adapt the filtering bandwidth of the accelerometer's data in order to reduce the effects of vibration and sensor noise before attitude estimation is processed. Low frequency vibration generally limits the conditions under which the accelerometers can be used to aid the attitude estimation process, which is primarily based on angular rate data and, thus, decreases its accuracy. In contrast, the proposed pre-processing technique enables using accelerometers as an aiding source by effective data smoothing, even when they are affected by low frequency vibration. Verification of the proposed concept is performed on simulation and real-flight data obtained on an ultra-light aircraft. The results of both types of experiments confirm the suitability of the concept for inertial data pre-processing.
Digital adaptive optics line-scanning confocal imaging system.
Liu, Changgeng; Kim, Myung K
2015-01-01
A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack–Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea.
Digital adaptive optics line-scanning confocal imaging system
Liu, Changgeng; Kim, Myung K.
2015-01-01
Abstract. A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack–Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea. PMID:26140334
Digital adaptive optics line-scanning confocal imaging system.
Liu, Changgeng; Kim, Myung K
2015-01-01
A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack–Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea. PMID:26140334
Digital adaptive optics line-scanning confocal imaging system
NASA Astrophysics Data System (ADS)
Liu, Changgeng; Kim, Myung K.
2015-11-01
A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack-Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea.
Holographic fluorescence microscopy with incoherent digital holographic adaptive optics.
Jang, Changwon; Kim, Jonghyun; Clark, David C; Lee, Seungjae; Lee, Byoungho; Kim, Myung K
2015-01-01
Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex—i.e., amplitude plus phase—hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.
Adapting to the Digital Age: A Narrative Approach
ERIC Educational Resources Information Center
Cousins, Sarah; Bissar, Dounia
2012-01-01
The article adopts a narrative inquiry approach to foreground informal learning and exposes a collection of stories from tutors about how they adapted comfortably to the digital age.We were concerned that despite substantial evidence that bringing about changes in pedagogic practices can be difficult, there is a gap in convincing approaches to…
Holographic fluorescence microscopy with incoherent digital holographic adaptive optics.
Jang, Changwon; Kim, Jonghyun; Clark, David C; Lee, Seungjae; Lee, Byoungho; Kim, Myung K
2015-01-01
Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex—i.e., amplitude plus phase—hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media. PMID:26146767
Holographic fluorescence microscopy with incoherent digital holographic adaptive optics
NASA Astrophysics Data System (ADS)
Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Seungjae; Lee, Byoungho; Kim, Myung K.
2015-11-01
Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex-i.e., amplitude plus phase-hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.
Modeling of Rate-Dependent Hysteresis Using a GPO-Based Adaptive Filter.
Zhang, Zhen; Ma, Yaopeng
2016-02-06
A novel generalized play operator-based (GPO-based) nonlinear adaptive filter is proposed to model rate-dependent hysteresis nonlinearity for smart actuators. In the proposed filter, the input signal vector consists of the output of a tapped delay line. GPOs with various thresholds are used to construct a nonlinear network and connected with the input signals. The output signal of the filter is composed of a linear combination of signals from the output of GPOs. The least-mean-square (LMS) algorithm is used to adjust the weights of the nonlinear filter. The modeling results of four adaptive filter methods are compared: GPO-based adaptive filter, Volterra filter, backlash filter and linear adaptive filter. Moreover, a phenomenological operator-based model, the rate-dependent generalized Prandtl-Ishlinskii (RDGPI) model, is compared to the proposed adaptive filter. The various rate-dependent modeling methods are applied to model the rate-dependent hysteresis of a giant magnetostrictive actuator (GMA). It is shown from the modeling results that the GPO-based adaptive filter can describe the rate-dependent hysteresis nonlinear of the GMA more accurately and effectively.
Modeling of Rate-Dependent Hysteresis Using a GPO-Based Adaptive Filter.
Zhang, Zhen; Ma, Yaopeng
2016-01-01
A novel generalized play operator-based (GPO-based) nonlinear adaptive filter is proposed to model rate-dependent hysteresis nonlinearity for smart actuators. In the proposed filter, the input signal vector consists of the output of a tapped delay line. GPOs with various thresholds are used to construct a nonlinear network and connected with the input signals. The output signal of the filter is composed of a linear combination of signals from the output of GPOs. The least-mean-square (LMS) algorithm is used to adjust the weights of the nonlinear filter. The modeling results of four adaptive filter methods are compared: GPO-based adaptive filter, Volterra filter, backlash filter and linear adaptive filter. Moreover, a phenomenological operator-based model, the rate-dependent generalized Prandtl-Ishlinskii (RDGPI) model, is compared to the proposed adaptive filter. The various rate-dependent modeling methods are applied to model the rate-dependent hysteresis of a giant magnetostrictive actuator (GMA). It is shown from the modeling results that the GPO-based adaptive filter can describe the rate-dependent hysteresis nonlinear of the GMA more accurately and effectively. PMID:26861349
Adaptive Noise Suppression Using Digital Signal Processing
NASA Technical Reports Server (NTRS)
Kozel, David; Nelson, Richard
1996-01-01
A signal to noise ratio dependent adaptive spectral subtraction algorithm is developed to eliminate noise from noise corrupted speech signals. The algorithm determines the signal to noise ratio and adjusts the spectral subtraction proportion appropriately. After spectra subtraction low amplitude signals are squelched. A single microphone is used to obtain both eh noise corrupted speech and the average noise estimate. This is done by determining if the frame of data being sampled is a voiced or unvoiced frame. During unvoice frames an estimate of the noise is obtained. A running average of the noise is used to approximate the expected value of the noise. Applications include the emergency egress vehicle and the crawler transporter.
High-resolution image digitizing through 12x3-bit RGB-filtered CCD camera
NASA Astrophysics Data System (ADS)
Cheng, Andrew Y. S.; Pau, Michael C. Y.
1996-09-01
A high resolution computer-controlled CCD image capturing system is developed by using a 12 bits 1024 by 1024 pixels CCD camera and motorized RGB filters to grasp an image with color depth up to 36 bits. The filters distinguish the major components of color and collect them separately while the CCD camera maintains the spatial resolution and detector filling factor. The color separation can be done optically rather than electronically. The operation is simply by placing the capturing objects like color photos, slides and even x-ray transparencies under the camera system, the necessary parameters such as integration time, mixing level and light intensity are automatically adjusted by an on-line expert system. This greatly reduces the restrictions of the capturing species. This unique approach can save considerable time for adjusting the quality of image, give much more flexibility of manipulating captured object even if it is a 3D object with minimal setup fixers. In addition, cross sectional dimension of a 3D capturing object can be analyzed by adapting a fiber optic ring light source. It is particularly useful in non-contact metrology of a 3D structure. The digitized information can be stored in an easily transferable format. Users can also perform a special LUT mapping automatically or manually. Applications of the system include medical images archiving, printing quality control, 3D machine vision, and etc.
Automated Fourier space region-recognition filtering for off-axis digital holographic microscopy.
He, Xuefei; Nguyen, Chuong Vinh; Pratap, Mrinalini; Zheng, Yujie; Wang, Yi; Nisbet, David R; Williams, Richard J; Rug, Melanie; Maier, Alexander G; Lee, Woei Ming
2016-08-01
Automated label-free quantitative imaging of biological samples can greatly benefit high throughput diseases diagnosis. Digital holographic microscopy (DHM) is a powerful quantitative label-free imaging tool that retrieves structural details of cellular samples non-invasively. In off-axis DHM, a proper spatial filtering window in Fourier space is crucial to the quality of reconstructed phase image. Here we describe a region-recognition approach that combines shape recognition with an iterative thresholding method to extracts the optimal shape of frequency components. The region recognition technique offers fully automated adaptive filtering that can operate with a variety of samples and imaging conditions. When imaging through optically scattering biological hydrogel matrix, the technique surpasses previous histogram thresholding techniques without requiring any manual intervention. Finally, we automate the extraction of the statistical difference of optical height between malaria parasite infected and uninfected red blood cells. The method described here paves way to greater autonomy in automated DHM imaging for imaging live cell in thick cell cultures. PMID:27570702
Automated Fourier space region-recognition filtering for off-axis digital holographic microscopy
He, Xuefei; Nguyen, Chuong Vinh; Pratap, Mrinalini; Zheng, Yujie; Wang, Yi; Nisbet, David R.; Williams, Richard J.; Rug, Melanie; Maier, Alexander G.; Lee, Woei Ming
2016-01-01
Automated label-free quantitative imaging of biological samples can greatly benefit high throughput diseases diagnosis. Digital holographic microscopy (DHM) is a powerful quantitative label-free imaging tool that retrieves structural details of cellular samples non-invasively. In off-axis DHM, a proper spatial filtering window in Fourier space is crucial to the quality of reconstructed phase image. Here we describe a region-recognition approach that combines shape recognition with an iterative thresholding method to extracts the optimal shape of frequency components. The region recognition technique offers fully automated adaptive filtering that can operate with a variety of samples and imaging conditions. When imaging through optically scattering biological hydrogel matrix, the technique surpasses previous histogram thresholding techniques without requiring any manual intervention. Finally, we automate the extraction of the statistical difference of optical height between malaria parasite infected and uninfected red blood cells. The method described here paves way to greater autonomy in automated DHM imaging for imaging live cell in thick cell cultures. PMID:27570702
Color filter array demosaicing: an adaptive progressive interpolation based on the edge type
NASA Astrophysics Data System (ADS)
Dong, Qiqi; Liu, Zhaohui
2015-10-01
Color filter array (CFA) is one of the key points for single-sensor digital cameras to produce color images. Bayer CFA is the most commonly used pattern. In this array structure, the sampling frequency of green is two times of red or blue, which is consistent with the sensitivity of human eyes to colors. However, each sensor pixel only samples one of three primary color values. To render a full-color image, an interpolation process, commonly referred to CFA demosaicing, is required to estimate the other two missing color values at each pixel. In this paper, we explore an adaptive progressive interpolation based on the edge type algorithm. The proposed demosaicing method consists of two successive steps: an interpolation step that estimates missing color values according to various edges and a post-processing step by iterative interpolation.
Efficient design of two-dimensional recursive digital filters. Final report
Twogood, R.E.; Mitra, S.K.
1980-01-01
This report outlines the research progress during the period August 1978 to July 1979. This work can be divided into seven basic project areas. Project 1 deals with a comparative study of 2-D recursive and nonrecursive digital filters. The second project addresses a new design technique for 2-D half-plane recursive filters, and Projects 3 thru 5 deal with implementation issues. The sixth project presents our recent study of the applicability of array processors to 2-D digital signal processing. The final project involves our investigation into techniques for incorporating symmetry constraints on 2-D recursive filters in order to yield more efficient implementations.
On the design of wave digital filters with low sensitivity properties.
NASA Technical Reports Server (NTRS)
Renner, K.; Gupta, S. C.
1973-01-01
The wave digital filter patterned after doubly terminated maximum available power (MAP) networks by means of the Richard's transformation has been shown to have low-coefficient-sensitivity properties. This paper examines the exact nature of the relationship between the wave-digital-filter structure and the MAP networks and how the sensitivity property arises, which permits implementation of the digital structure with a lower coefficient word length than that possible with the conventional structures. The proper design procedure is specified and the nature of the unique complementary outputs is discussed. Finally, an example is considered which illustrates the design, the conversion techniques, and the low sensitivity properties.
The design of digital-adaptive controllers for VTOL aircraft
NASA Technical Reports Server (NTRS)
Stengel, R. F.; Broussard, J. R.; Berry, P. W.
1976-01-01
Design procedures for VTOL automatic control systems have been developed and are presented. Using linear-optimal estimation and control techniques as a starting point, digital-adaptive control laws have been designed for the VALT Research Aircraft, a tandem-rotor helicopter which is equipped for fully automatic flight in terminal area operations. These control laws are designed to interface with velocity-command and attitude-command guidance logic, which could be used in short-haul VTOL operations. Developments reported here include new algorithms for designing non-zero-set-point digital regulators, design procedures for rate-limited systems, and algorithms for dynamic control trim setting.
Implementation of Adaptive Digital Controllers on Programmable Logic Devices
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Monenegro, Justino (Technical Monitor)
2002-01-01
Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used proportional-integral-derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM-based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a DSP (Digital Signal Processor) or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSP) devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. An alternative is required for compact implementation of such functionality to withstand the harsh environment
Holographic fluorescence microscopy with incoherent digital holographic adaptive optics
NASA Astrophysics Data System (ADS)
Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Byoungho; Kim, Myung K.
2015-03-01
Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: wavefront sensor, wavefront corrector and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, e.g., lenslet arrays for sensing or multi-acuator deformable mirrors for correcting. We have previously introduced an alternate approach to adaptive optics based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile is possible not only with the conventional coherent type of digital holography, but also with a new type of digital holography using incoherent light: self-interference incoherent digital holography (SIDH). The SIDH generates complex - i.e. amplitude plus phase - hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using a guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. The adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.
NASA Astrophysics Data System (ADS)
Xu, Dexiang
This dissertation presents a novel method of designing finite word length Finite Impulse Response (FIR) digital filters using a Real Parameter Parallel Genetic Algorithm (RPPGA). This algorithm is derived from basic Genetic Algorithms which are inspired by natural genetics principles. Both experimental results and theoretical studies in this work reveal that the RPPGA is a suitable method for determining the optimal or near optimal discrete coefficients of finite word length FIR digital filters. Performance of RPPGA is evaluated by comparing specifications of filters designed by other methods with filters designed by RPPGA. The parallel and spatial structures of the algorithm result in faster and more robust optimization than basic genetic algorithms. A filter designed by RPPGA is implemented in hardware to attenuate high frequency noise in a data acquisition system for collecting seismic signals. These studies may lead to more applications of the Real Parameter Parallel Genetic Algorithms in Electrical Engineering.
Design of efficient circularly symmetric two-dimensional variable digital FIR filters.
Bindima, Thayyil; Elias, Elizabeth
2016-05-01
Circularly symmetric two-dimensional (2D) finite impulse response (FIR) filters find extensive use in image and medical applications, especially for isotropic filtering. Moreover, the design and implementation of 2D digital filters with variable fractional delay and variable magnitude responses without redesigning the filter has become a crucial topic of interest due to its significance in low-cost applications. Recently the design using fixed word length coefficients has gained importance due to the replacement of multipliers by shifters and adders, which reduces the hardware complexity. Among the various approaches to 2D design, transforming a one-dimensional (1D) filter to 2D by transformation, is reported to be an efficient technique. In this paper, 1D variable digital filters (VDFs) with tunable cut-off frequencies are designed using Farrow structure based interpolation approach, and the sub-filter coefficients in the Farrow structure are made multiplier-less using canonic signed digit (CSD) representation. The resulting performance degradation in the filters is overcome by using artificial bee colony (ABC) optimization. Finally, the optimized 1D VDFs are mapped to 2D using generalized McClellan transformation resulting in low complexity, circularly symmetric 2D VDFs with real-time tunability.
Design of efficient circularly symmetric two-dimensional variable digital FIR filters
Bindima, Thayyil; Elias, Elizabeth
2016-01-01
Circularly symmetric two-dimensional (2D) finite impulse response (FIR) filters find extensive use in image and medical applications, especially for isotropic filtering. Moreover, the design and implementation of 2D digital filters with variable fractional delay and variable magnitude responses without redesigning the filter has become a crucial topic of interest due to its significance in low-cost applications. Recently the design using fixed word length coefficients has gained importance due to the replacement of multipliers by shifters and adders, which reduces the hardware complexity. Among the various approaches to 2D design, transforming a one-dimensional (1D) filter to 2D by transformation, is reported to be an efficient technique. In this paper, 1D variable digital filters (VDFs) with tunable cut-off frequencies are designed using Farrow structure based interpolation approach, and the sub-filter coefficients in the Farrow structure are made multiplier-less using canonic signed digit (CSD) representation. The resulting performance degradation in the filters is overcome by using artificial bee colony (ABC) optimization. Finally, the optimized 1D VDFs are mapped to 2D using generalized McClellan transformation resulting in low complexity, circularly symmetric 2D VDFs with real-time tunability. PMID:27222739
Design of efficient circularly symmetric two-dimensional variable digital FIR filters.
Bindima, Thayyil; Elias, Elizabeth
2016-05-01
Circularly symmetric two-dimensional (2D) finite impulse response (FIR) filters find extensive use in image and medical applications, especially for isotropic filtering. Moreover, the design and implementation of 2D digital filters with variable fractional delay and variable magnitude responses without redesigning the filter has become a crucial topic of interest due to its significance in low-cost applications. Recently the design using fixed word length coefficients has gained importance due to the replacement of multipliers by shifters and adders, which reduces the hardware complexity. Among the various approaches to 2D design, transforming a one-dimensional (1D) filter to 2D by transformation, is reported to be an efficient technique. In this paper, 1D variable digital filters (VDFs) with tunable cut-off frequencies are designed using Farrow structure based interpolation approach, and the sub-filter coefficients in the Farrow structure are made multiplier-less using canonic signed digit (CSD) representation. The resulting performance degradation in the filters is overcome by using artificial bee colony (ABC) optimization. Finally, the optimized 1D VDFs are mapped to 2D using generalized McClellan transformation resulting in low complexity, circularly symmetric 2D VDFs with real-time tunability. PMID:27222739
Manosueb, Anchalee; Koseeyaporn, Jeerasuda; Wardkein, Paramote
2014-01-01
This paper presents a technique for finding the optimal initial weight for adaptive filter by using difference equation. The obtained analytical response of the system identifies the appropriate weights for the system and shows that the MSE depends on the initial weight. The proposed technique is applied to eliminate the known frequency power line interference (PLI) signal in the electrocardiogram (ECG) signal. The PLI signal is considered as a combination of cosine and sine signals. The adaptive filter, therefore, attempts to adjust the amplitude of cosine and sine signals to synthesize a reference signal very similar to the contaminated PLI signal. To compare the potential of the proposed technique to other techniques, the system is simulated by using the Matlab program and the TMS320C6713 digital board. The simulation results demonstrate that the proposed technique enables the system to eliminate the PLI signal with the fastest time and gains the superior results of the recovered ECG signal.
NASA Astrophysics Data System (ADS)
Zhang, Yan; Tang, Baoping; Liu, Ziran; Chen, Rengxiang
2016-02-01
Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses
The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation.
Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck
2016-01-01
This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix 'R' and the system noise V-C matrix 'Q'. Then, the global filter uses R to calculate the information allocation factor 'β' for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively. PMID:27438835
The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation
Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck
2016-01-01
This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix ‘R’ and the system noise V-C matrix ‘Q’. Then, the global filter uses R to calculate the information allocation factor ‘β’ for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively. PMID:27438835
The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation.
Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck
2016-07-16
This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix 'R' and the system noise V-C matrix 'Q'. Then, the global filter uses R to calculate the information allocation factor 'β' for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively.
Digital adaptive controllers for VTOL vehicles. Volume 1: Concept evaluation
NASA Technical Reports Server (NTRS)
Hartmann, G. L.; Stein, G.; Pratt, S. G.
1979-01-01
A digital self-adaptive flight control system was developed for flight test in the VTOL approach and landing technology (VALT) research aircraft (a modified CH-47 helicopter). The control laws accept commands from an automatic on-board guidance system. The primary objective of the control laws is to provide good command-following with a minimum cross-axis response. Three attitudes and vertical velocity are separately commanded. Adaptation of the control laws is based on information from rate and attitude gyros and a vertical velocity measurement. The final design resulted from a comparison of two different adaptive concepts--one based on explicit parameter estimates from a real-time maximum-likelihood estimation algorithm, the other based on an implicit model reference adaptive system. The two designs were compared on the basis of performance and complexity.
An online novel adaptive filter for denoising time series measurements.
Willis, Andrew J
2006-04-01
A nonstationary form of the Wiener filter based on a principal components analysis is described for filtering time series data possibly derived from noisy instrumentation. The theory of the filter is developed, implementation details are presented and two examples are given. The filter operates online, approximating the maximum a posteriori optimal Bayes reconstruction of a signal with arbitrarily distributed and non stationary statistics. PMID:16649562
An Adaptive Fourier Filter for Relaxing Time Stepping Constraints for Explicit Solvers
Gelb, Anne; Archibald, Richard K
2015-01-01
Filtering is necessary to stabilize piecewise smooth solutions. The resulting diffusion stabilizes the method, but may fail to resolve the solution near discontinuities. Moreover, high order filtering still requires cost prohibitive time stepping. This paper introduces an adaptive filter that controls spurious modes of the solution, but is not unnecessarily diffusive. Consequently we are able to stabilize the solution with larger time steps, but also take advantage of the accuracy of a high order filter.
Adaptive spatial filtering for daytime satellite quantum key distribution
NASA Astrophysics Data System (ADS)
Gruneisen, Mark T.; Sickmiller, Brett A.; Flanagan, Michael B.; Black, James P.; Stoltenberg, Kurt E.; Duchane, Alexander W.
2014-11-01
The rate of secure key generation (SKG) in quantum key distribution (QKD) is adversely affected by optical noise and loss in the quantum channel. In a free-space atmospheric channel, the scattering of sunlight into the channel can lead to quantum bit error ratios (QBERs) sufficiently large to preclude SKG. Furthermore, atmospheric turbulence limits the degree to which spatial filtering can reduce sky noise without introducing signal losses. A system simulation quantifies the potential benefit of tracking and higher-order adaptive optics (AO) technologies to SKG rates in a daytime satellite engagement scenario. The simulations are performed assuming propagation from a low-Earth orbit (LEO) satellite to a terrestrial receiver that includes an AO system comprised of a Shack-Hartmann wave-front sensor (SHWFS) and a continuous-face-sheet deformable mirror (DM). The effects of atmospheric turbulence, tracking, and higher-order AO on the photon capture efficiency are simulated using statistical representations of turbulence and a time-domain waveoptics hardware emulator. Secure key generation rates are then calculated for the decoy state QKD protocol as a function of the receiver field of view (FOV) for various pointing angles. The results show that at FOVs smaller than previously considered, AO technologies can enhance SKG rates in daylight and even enable SKG where it would otherwise be prohibited as a consequence of either background optical noise or signal loss due to turbulence effects.
Digital adaptive flight control design using single stage model following indices
NASA Technical Reports Server (NTRS)
Alag, G.; Kaufman, H.
1974-01-01
Simple mechanical linkages are often unable to cope with many control problems associated with high-performance aircraft. This has led to the development of digital fly-by-wire control systems and in particular digital adaptive controllers that can be efficiently adjusted during system operation. To this effect, a control law has been derived based upon the minimization of a single-stage weighted combination of control energy and the squared error between the states of a linear plant and model. This control logic is interfaced with an on-line weighted least-squares estimator and a Kalman state filter. The utility of the resultant control system is illustrated by its application to the linearized dynamics of a typical fighter aircraft.
Optimal design of 2D digital filters based on neural networks
NASA Astrophysics Data System (ADS)
Wang, Xiao-hua; He, Yi-gang; Zheng, Zhe-zhao; Zhang, Xu-hong
2005-02-01
Two-dimensional (2-D) digital filters are widely useful in image processing and other 2-D digital signal processing fields,but designing 2-D filters is much more difficult than designing one-dimensional (1-D) ones.In this paper, a new design approach for designing linear-phase 2-D digital filters is described,which is based on a new neural networks algorithm (NNA).By using the symmetry of the given 2-D magnitude specification,a compact express for the magnitude response of a linear-phase 2-D finite impulse response (FIR) filter is derived.Consequently,the optimal problem of designing linear-phase 2-D FIR digital filters is turned to approximate the desired 2-D magnitude response by using the compact express.To solve the problem,a new NNA is presented based on minimizing the mean-squared error,and the convergence theorem is presented and proved to ensure the designed 2-D filter stable.Three design examples are also given to illustrate the effectiveness of the NNA-based design approach.
Non-adaptive robust filters for speckle noise reduction
NASA Astrophysics Data System (ADS)
Frery, Alejandro C.; Santanna, Sidnei J. S.
1993-06-01
After briefly reviewing some classical filters for speckle removal, five filters with characteristics of robustness, suitable for speckle noise reduction, are derived and implemented. These filters are the ones based on the trimmed maximum likelihood and moments estimators, the ones based on the median, on the inter-quartile range, and on the median absolute deviation. Assuming that observations within a synthetic aperture radar image are outcomes of independent Rayleigh random variables, these filters exhibit a good performance from both the signal-to-noise reduction and from the edge preserving criteria. The problem of filtering in an image is posed as an estimation problem.
Implementation of Adaptive Digital Controllers on Programmable Logic Devices
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Montenegro, Justino (Technical Monitor)
2002-01-01
Much has been made of the capabilities of Field Programmable Gate Arrays (FPGA's) in the hardware implementation of fast digital signal processing functions. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used Proportional-Integral-Derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a Digital Signal Processor (DSP) device or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using DSP devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, Pulse Width Modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacemap. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive-control algorithm
Adaptive RSOV filter using the FELMS algorithm for nonlinear active noise control systems
NASA Astrophysics Data System (ADS)
Zhao, Haiquan; Zeng, Xiangping; He, Zhengyou; Li, Tianrui
2013-01-01
This paper presents a recursive second-order Volterra (RSOV) filter to solve the problems of signal saturation and other nonlinear distortions that occur in nonlinear active noise control systems (NANC) used for actual applications. Since this nonlinear filter based on an infinite impulse response (IIR) filter structure can model higher than second-order and third-order nonlinearities for systems where the nonlinearities are harmonically related, the RSOV filter is more effective in NANC systems with either a linear secondary path (LSP) or a nonlinear secondary path (NSP). Simulation results clearly show that the RSOV adaptive filter using the multichannel structure filtered-error least mean square (FELMS) algorithm can further greatly reduce the computational burdens and is more suitable to eliminate nonlinear distortions in NANC systems than a SOV filter, a bilinear filter and a third-order Volterra (TOV) filter.
Infrared Target Acquisition Using An Adaptive Difference-Of-Boxes Filter
NASA Astrophysics Data System (ADS)
Guissin, Rami
1990-01-01
A variety of spatial filters have been previously proposed as detection filters for automated target acquisition. One class of filters, namely the matched filter, is designed for maximimum signal to noise response at true target locations. The filter design is a function of target dimensions and intensity distributions, and of the corresponding background spectrum. The filter sensitivity to target dimensions may be overcome by adapting the filter's dimensions to the incoming image signal, or by the economical use of (at least) two filters, designed separately for small and large targets. The robustness of the Difference-of-Boxes (DOB) filter is established for a class of targets having smooth, 2nd order intensity distributions, in the presence of both white noise and cluttered backgrounds.
NASA Technical Reports Server (NTRS)
Baer-Riedhart, Jennifer L.; Landy, Robert J.
1987-01-01
The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.
NASA Technical Reports Server (NTRS)
Benardini, James N.; Koukol, Robert C.; Schubert, Wayne W.; Morales, Fabian; Klatte, Marlin F.
2012-01-01
A report describes an adaptation of a filter assembly to enable it to be used to filter out microorganisms from a propulsion system. The filter assembly has previously been used for particulates greater than 2 micrometers. Projects that utilize large volumes of nonmetallic materials of planetary protection concern pose a challenge to their bioburden budget, as a conservative specification value of 30 spores per cubic centimeter is typically used. Helium was collected utilizing an adapted filtration approach employing an existing Millipore filter assembly apparatus used by the propulsion team for particulate analysis. The filter holder on the assembly has a 47-mm diameter, and typically a 1.2-5 micrometer pore-size filter is used for particulate analysis making it compatible with commercially available sterilization filters (0.22 micrometers) that are necessary for biological sampling. This adaptation to an existing technology provides a proof-of-concept and a demonstration of successful use in a ground equipment system. This adaptation has demonstrated that the Millipore filter assembly can be utilized to filter out microorganisms from a propulsion system, whereas in previous uses the filter assembly was utilized for particulates greater than 2 micrometers.
NASA Astrophysics Data System (ADS)
Rodríguez-Caballero, E.; Afana, A.; Chamizo, S.; Solé-Benet, A.; Canton, Y.
2016-07-01
Terrestrial laser scanning (TLS), widely known as light detection and ranging (LiDAR) technology, is increasingly used to provide highly detailed digital terrain models (DTM) with millimetric precision and accuracy. In order to generate a DTM, TLS data has to be filtered from undesired spurious objects, such as vegetation, artificial structures, etc., Early filtering techniques, successfully applied to airborne laser scanning (ALS), fail when applied to TLS data, as they heavily smooth the terrain surface and do not retain their real morphology. In this article, we present a new methodology for filtering TLS data based on the geometric and radiometric properties of the scanned surfaces. This methodology was built on previous morphological filters that select the minimum point height within a sliding window as the real surface. However, contrary to those methods, which use a fixed window size, the new methodology operates under different spatial scales represented by different window sizes, and can be adapted to different types and sizes of plants. This methodology has been applied to two study areas of differing vegetation type and density. The accuracy of the final DTMs was improved by ∼30% under dense canopy plants and over ∼40% on the open spaces between plants, where other methodologies drastically underestimated the real surface heights. This resulted in more accurate representation of the soil surface and microtopography than up-to-date techniques, eventually having strong implications in hydrological and geomorphological studies.
Kim, Dong Sik; Lee, Sanggyun
2013-06-15
Purpose: Grid artifacts are caused when using the antiscatter grid in obtaining digital x-ray images. In this paper, research on grid artifact reduction techniques is conducted especially for the direct detectors, which are based on amorphous selenium. Methods: In order to analyze and reduce the grid artifacts, the authors consider a multiplicative grid image model and propose a homomorphic filtering technique. For minimal damage due to filters, which are used to suppress the grid artifacts, rotated grids with respect to the sampling direction are employed, and min-max optimization problems for searching optimal grid frequencies and angles for given sampling frequencies are established. The authors then propose algorithms for the grid artifact reduction based on the band-stop filters as well as low-pass filters. Results: The proposed algorithms are experimentally tested for digital x-ray images, which are obtained from direct detectors with the rotated grids, and are compared with other algorithms. It is shown that the proposed algorithms can successfully reduce the grid artifacts for direct detectors. Conclusions: By employing the homomorphic filtering technique, the authors can considerably suppress the strong grid artifacts with relatively narrow-bandwidth filters compared to the normal filtering case. Using rotated grids also significantly reduces the ringing artifact. Furthermore, for specific grid frequencies and angles, the authors can use simple homomorphic low-pass filters in the spatial domain, and thus alleviate the grid artifacts with very low implementation complexity.
Analysis of dynamic deformation processes with adaptive KALMAN-filtering
NASA Astrophysics Data System (ADS)
Eichhorn, Andreas
2007-05-01
In this paper the approach of a full system analysis is shown quantifying a dynamic structural ("white-box"-) model for the calculation of thermal deformations of bar-shaped machine elements. The task was motivated from mechanical engineering searching new methods for the precise prediction and computational compensation of thermal influences in the heating and cooling phases of machine tools (i.e. robot arms, etc.). The quantification of thermal deformations under variable dynamic loads requires the modelling of the non-stationary spatial temperature distribution inside the object. Based upon FOURIERS law of heat flow the high-grade non-linear temperature gradient is represented by a system of partial differential equations within the framework of a dynamic Finite Element topology. It is shown that adaptive KALMAN-filtering is suitable to quantify relevant disturbance influences and to identify thermal parameters (i.e. thermal diffusivity) with a deviation of only 0,2%. As result an identified (and verified) parametric model for the realistic prediction respectively simulation of dynamic temperature processes is presented. Classifying the thermal bend as the main deformation quantity of bar-shaped machine tools, the temperature model is extended to a temperature deformation model. In lab tests thermal load steps are applied to an aluminum column. Independent control measurements show that the identified model can be used to predict the columns bend with a mean deviation (
NASA Astrophysics Data System (ADS)
Ferragina, V.; Frassone, A.; Ghittori, N.; Malcovati, P.; Vigna, A.
2005-06-01
The behavioral analysis and the design in a 0.13 μm CMOS technology of a digital interpolator filter for wireless applications are presented. The proposed block is designed to be embedded in the baseband part of a reconfigurable transmitter (WLAN 802.11a, UMTS) to operate as a sampling frequency boost between the digital signal processor (DSP) and the digital-to-analog converter (DAC). In recent trends the DAC of such transmitters usually operates at high conversion frequencies (to allow a relaxed implementation of the following analog reconstruction filter), while the DSP output flows at low frequencies (typically Nyquist rate). Thus a block able to increase the digital data rate, like the one proposed, is needed before the DAC. For example, in the WLAN case, an interpolation factor of 4 has been used, allowing the digital data frequency to raise from 20 MHz to 80 MHz. Using a time-domain model of the TX chain, a behavioral analysis has been performed to determine the impact of the filter performance on the quality of the signal at the antenna. This study has led to the evaluation of the z-domain filter transfer function, together with the specifications concerning a finite precision implementation. A VHDL description has allowed an automatic synthesis of the circuit in a 0.13 μm CMOS technology (with a supply voltage of 1.2 V). Post-synthesis simulations have confirmed the effectiveness of the proposed study.
Optimized FIR filters for digital pulse compression of biphase codes with low sidelobes
NASA Astrophysics Data System (ADS)
Sanal, M.; Kuloor, R.; Sagayaraj, M. J.
In miniaturized radars where power, real estate, speed and low cost are tight constraints and Doppler tolerance is not a major concern biphase codes are popular and FIR filter is used for digital pulse compression (DPC) implementation to achieve required range resolution. Disadvantage of low peak to sidelobe ratio (PSR) of biphase codes can be overcome by linear programming for either single stage mismatched filter or two stage approach i.e. matched filter followed by sidelobe suppression filter (SSF) filter. Linear programming (LP) calls for longer filter lengths to obtain desirable PSR. Longer the filter length greater will be the number of multipliers, hence more will be the requirement of logic resources used in the FPGAs and many time becomes design challenge for system on chip (SoC) requirement. This requirement of multipliers can be brought down by clustering the tap weights of the filter by kmeans clustering algorithm at the cost of few dB deterioration in PSR. The cluster centroid as tap weight reduces logic used in FPGA for FIR filters to a great extent by reducing number of weight multipliers. Since k-means clustering is an iterative algorithm, centroid for weights cluster is different in different iterations and causes different clusters. This causes difference in clustering of weights and sometimes even it may happen that lesser number of multiplier and lesser length of filter provide better PSR.
2015-01-01
A digital filter derived from linear discriminant analysis (LDA) is developed for recovering impulse responses in photon counting from a high speed photodetector (rise time of ∼1 ns) and applied to remove ringing distortions from impedance mismatch in multiphoton fluorescence microscopy. Training of the digital filter was achieved by defining temporally coincident and noncoincident transients and identifying the projection within filter-space that best separated the two classes. Once trained, data analysis by digital filtering can be performed quickly. Assessment of the reliability of the approach was performed through comparisons of simulated voltage transients, in which the ground truth results were known a priori. The LDA filter was also found to recover deconvolved impulses for single photon counting from highly distorted ringing waveforms from an impedance mismatched photomultiplier tube. The LDA filter was successful in removing these ringing distortions from two-photon excited fluorescence micrographs and through data simulations was found to extend the dynamic range of photon counting by approximately 3 orders of magnitude through minimization of detector paralysis. PMID:24559143
Zhu, Wu; Fang, Jian-an; Tang, Yang; Zhang, Wenbing; Du, Wei
2012-01-01
Design of a digital infinite-impulse-response (IIR) filter is the process of synthesizing and implementing a recursive filter network so that a set of prescribed excitations results a set of desired responses. However, the error surface of IIR filters is usually non-linear and multi-modal. In order to find the global minimum indeed, an improved differential evolution (DE) is proposed for digital IIR filter design in this paper. The suggested algorithm is a kind of DE variants with a controllable probabilistic (CPDE) population size. It considers the convergence speed and the computational cost simultaneously by nonperiodic partial increasing or declining individuals according to fitness diversities. In addition, we discuss as well some important aspects for IIR filter design, such as the cost function value, the influence of (noise) perturbations, the convergence rate and successful percentage, the parameter measurement, etc. As to the simulation result, it shows that the presented algorithm is viable and comparable. Compared with six existing State-of-the-Art algorithms-based digital IIR filter design methods obtained by numerical experiments, CPDE is relatively more promising and competitive. PMID:22808191
Adaptive filter for mine detection and classification in side-scan sonar imagery
NASA Astrophysics Data System (ADS)
Aridgides, Tom; Antoni, Diana; Fernandez, Manuel F.; Dobeck, Gerald J.
1995-06-01
A need exists to develop robust automatic techniques for discriminating between minelike target and clutter returns in sonar imagery. To address this need, an adaptive clutter suppression linear FIR filtering technique has been developed and applied to side scan sonar imagery data. The adaptive filtering procedure consists of four stages. First, a normalized average target signature (shape) within the filter window is computed using training set data. Second, the background clutter covariance matrix is computed by scanning the filter window over the data. Third, following substitutions of the average target signature and covariance expressions into a set of normal equations, an adaptive filter is computed which simultaneously suppresses the background clutter while preserving the peak of the average target signature. Finally, the data is filtered using the 2D adaptive range-crossrange filter. The overall mine detection processing string includes automatic gain control, data decimation, adaptive clutter filtering (ACF), 2D normalization, thresholding, exceedance clustering, limiting the number of exceedances and secondary thresholding processing blocks. The utility of the ACF processing string was demonstrated with three side scan sonar datasets. The ACF algorithm provided average probability of detection and false alarm rate performance similar to that obtained when utilizing an expert sonar operator.
Wang, Xin; Wu, Linhui; Yi, Xi; Zhang, Yanqi; Zhang, Limin; Zhao, Huijuan; Gao, Feng
2015-01-01
Due to both the physiological and morphological differences in the vascularization between healthy and diseased tissues, pharmacokinetic diffuse fluorescence tomography (DFT) can provide contrast-enhanced and comprehensive information for tumor diagnosis and staging. In this regime, the extended Kalman filtering (EKF) based method shows numerous advantages including accurate modeling, online estimation of multiparameters, and universal applicability to any optical fluorophore. Nevertheless the performance of the conventional EKF highly hinges on the exact and inaccessible prior knowledge about the initial values. To address the above issues, an adaptive-EKF scheme is proposed based on a two-compartmental model for the enhancement, which utilizes a variable forgetting-factor to compensate the inaccuracy of the initial states and emphasize the effect of the current data. It is demonstrated using two-dimensional simulative investigations on a circular domain that the proposed adaptive-EKF can obtain preferable estimation of the pharmacokinetic-rates to the conventional-EKF and the enhanced-EKF in terms of quantitativeness, noise robustness, and initialization independence. Further three-dimensional numerical experiments on a digital mouse model validate the efficacy of the method as applied in realistic biological systems. PMID:26089975
Dong, Feng; Pierpaoli, Elena; Gunn, James E.; Wechsler, Risa H.
2007-10-29
We present a modified adaptive matched filter algorithm designed to identify clusters of galaxies in wide-field imaging surveys such as the Sloan Digital Sky Survey. The cluster-finding technique is fully adaptive to imaging surveys with spectroscopic coverage, multicolor photometric redshifts, no redshift information at all, and any combination of these within one survey. It works with high efficiency in multi-band imaging surveys where photometric redshifts can be estimated with well-understood error distributions. Tests of the algorithm on realistic mock SDSS catalogs suggest that the detected sample is {approx} 85% complete and over 90% pure for clusters with masses above 1.0 x 10{sup 14}h{sup -1} M and redshifts up to z = 0.45. The errors of estimated cluster redshifts from maximum likelihood method are shown to be small (typically less that 0.01) over the whole redshift range with photometric redshift errors typical of those found in the Sloan survey. Inside the spherical radius corresponding to a galaxy overdensity of {Delta} = 200, we find the derived cluster richness {Lambda}{sub 200} a roughly linear indicator of its virial mass M{sub 200}, which well recovers the relation between total luminosity and cluster mass of the input simulation.
Integration, heterochrony, and adaptation in pedal digits of syndactylous marsupials
2008-01-01
Background Marsupial syndactyly is a curious morphology of the foot found in all species of diprotodontian and peramelemorph marsupials. It is traditionally defined as a condition in which digits II and III of the foot are bound by skin and are reduced. Past treatments of marsupial syndactyly have not considered the implications of this unique morphology for broader issues of digit development and evolution, and the ongoing debate regarding its phylogenetic meaning lacks a broad empirical basis. This study undertakes the first interdisciplinary characterisation of syndactyly, using variance/covariance matrix comparisons of morphometric measurements, locomotor indices, ossification sequences, and re-assessment of the largely anecdotal data on the phylogenetic distribution of tarsal/metatarsal articulations and "incipient syndactyly". Results Syndactylous digits have virtually identical variance/covariance matrices and display heterochronic ossification timing with respect to digits IV/V. However, this does not impact on overall locomotor adaptation patterns in the syndactylous foot as determined by analysis of locomotor predictor ratios. Reports of incipient syndactyly in some marsupial clades could not be confirmed; contrary to previous claims, syndactyly does not appear to impact on tarsal bone arrangement. Conclusion The results suggest that marsupial syndactyly originates from a constraint that is rooted in early digit ontogeny and results in evolution of the syndactylous digits as a highly integrated unit. Although convergent evolution appears likely, syndactyly in Diprotodontia and Peramelemorpha may occur through homologous developmental processes. We argue that the term "syndactyly" is a misnomer because the marsupial condition only superficially resembles its name-giving human soft-tissue syndactyly. PMID:18501017
Airy-Kaup-Kupershmidt filters applied to digital image processing
NASA Astrophysics Data System (ADS)
Hoyos Yepes, Laura Cristina
2015-09-01
The Kaup-Kupershmidt operator is applied to the two-dimensional solution of the Airy-diffusion equation and the resulting filter is applied via convolution to image processing. The full procedure is implemented using Maple code with the package ImageTools. Some experiments were performed using a wide category of images including biomedical images generated by magnetic resonance, computarized axial tomography, positron emission tomography, infrared and photon diffusion. The Airy-Kaup-Kupershmidt filter can be used as a powerful edge detector and as powerful enhancement tool in image processing. It is expected that the Airy-Kaup-Kupershmidt could be incorporated in standard programs for image processing such as ImageJ.
An image adaptive, wavelet-based watermarking of digital images
NASA Astrophysics Data System (ADS)
Agreste, Santa; Andaloro, Guido; Prestipino, Daniela; Puccio, Luigia
2007-12-01
In digital management, multimedia content and data can easily be used in an illegal way--being copied, modified and distributed again. Copyright protection, intellectual and material rights protection for authors, owners, buyers, distributors and the authenticity of content are crucial factors in solving an urgent and real problem. In such scenario digital watermark techniques are emerging as a valid solution. In this paper, we describe an algorithm--called WM2.0--for an invisible watermark: private, strong, wavelet-based and developed for digital images protection and authenticity. Using discrete wavelet transform (DWT) is motivated by good time-frequency features and well-matching with human visual system directives. These two combined elements are important in building an invisible and robust watermark. WM2.0 works on a dual scheme: watermark embedding and watermark detection. The watermark is embedded into high frequency DWT components of a specific sub-image and it is calculated in correlation with the image features and statistic properties. Watermark detection applies a re-synchronization between the original and watermarked image. The correlation between the watermarked DWT coefficients and the watermark signal is calculated according to the Neyman-Pearson statistic criterion. Experimentation on a large set of different images has shown to be resistant against geometric, filtering and StirMark attacks with a low rate of false alarm.
NASA Astrophysics Data System (ADS)
Polak, Josef; Jerabek, Jan; Langhammer, Lukas; Sotner, Roman; Dvorak, Jan; Panek, David
2016-07-01
This paper presents the simulations results in comparison with the measured results of the practical realization of the multifunctional second order frequency filter with a Digitally Adjustable Current Amplifier (DACA) and two Dual-Output Controllable Current Conveyors (CCCII +/-). This filter is designed for use in current mode. The filter was designed of the single input multiple outputs (SIMO) type, therefore it has only one input and three outputs with individual filtering functions. DACA element used in a newly proposed circuit is present in form of an integrated chip and the current conveyors are implemented using the Universal Current Conveyor (UCC) chip with designation UCC-N1B. Proposed frequency filter enables independent control of the pole frequency using parameters of two current conveyors and also independent control of the quality factor by change of a current gain of DACA.
Adaptive optics in digital micromirror based confocal microscopy
NASA Astrophysics Data System (ADS)
Pozzi, P.; Wilding, D.; Soloviev, O.; Vdovin, G.; Verhaegen, M.
2016-03-01
This proceeding reports early results in the development of a new technique for adaptive optics in confocal microscopy. The term adaptive optics refers to the branch of optics in which an active element in the optical system is used to correct inhomogeneities in the media through which light propagates. In its most classical form, mostly used in astronomical imaging, adaptive optics is achieved through a closed loop in which the actuators of a deformable mirror are driven by a wavefront sensor. This approach is severely limited in fluorescence microscopy, as the use of a wavefront sensor requires the presence of a bright, point like source in the field of view, a condition rarely satisfied in microscopy samples. Previously reported approaches to adaptive optics in fluorescence microscopy are therefore limited to the inclusion of fluorescent microspheres in the sample, to use as bright stars for wavefront sensors, or time consuming sensorless optimization procedures, requiring several seconds of optimization before the acquisition of a single image. We propose an alternative approach to the problem, implementing sensorless adaptive optics in a Programmable array microscope. A programmable array microscope is a microscope based on a digital micromirror device, in which the single elements of the micromirror act both as point sources and pinholes.
Carving and adaptive drainage enforcement of grid digital elevation models
NASA Astrophysics Data System (ADS)
Soille, Pierre; Vogt, Jürgen; Colombo, Roberto
2003-12-01
An effective and widely used method for removing spurious pits in digital elevation models consists of filling them until they overflow. However, this method sometimes creates large flat regions which in turn pose a problem for the determination of accurate flow directions. In this study, we propose to suppress each pit by creating a descending path from it to the nearest point having a lower elevation value. This is achieved by carving, i.e., lowering, the terrain elevations along the detected path. Carving paths are identified through a flooding simulation starting from the river outlets. The proposed approach allows for adaptive drainage enforcement whereby river networks coming from other data sources are imposed to the digital elevation model only in places where the automatic river network extraction deviates substantially from the known networks. An improvement to methods for routing flow over flat regions is also introduced. Detailed results are presented over test areas of the Danube basin.
An Efficient Adaptive Weighted Switching Median Filter for Removing High Density Impulse Noise
NASA Astrophysics Data System (ADS)
Nair, Madhu S.; Ameera Mol, P. M.
2014-09-01
Restoration of images corrupted by impulse noise is a very active research area in image processing. In this paper, an Efficient Adaptive Weighted Switching Median filter for restoration of images that are corrupted by high density impulse noise is proposed. The filtering is performed as a two phase process—a detection phase followed by a filtering phase. In the proposed method, noise detection is done by HEIND algorithm proposed by Duan et al. The filtering algorithm is then applied to the pixels which are detected as noisy by the detection algorithm. All uncorrupted pixels in the image are left unchanged. The filtering window size is chosen adaptively depending on the local noise distribution around each corrupted pixels. Noisy pixels are replaced by a weighted median value of uncorrupted pixels in the filtering window. The weight value assigned to each uncorrupted pixels depends on its closeness to the central pixel.
Microwave Photonic Filters for Interference Cancellation and Adaptive Beamforming
NASA Astrophysics Data System (ADS)
Chang, John
Wireless communication has experienced an explosion of growth, especially in the past half- decade, due to the ubiquity of wireless devices, such as tablets, WiFi-enabled devices, and especially smartphones. Proliferation of smartphones with powerful processors and graphic chips have given an increasing amount of people the ability to access anything from anywhere. Unfortunately, this ease of access has greatly increased mobile wireless bandwidth and have begun to stress carrier networks and spectra. Wireless interference cancellation will play a big role alongside the popularity of wire- less communication. In this thesis, we will investigate optical signal processing methods for wireless interference cancellation methods. Optics provide the perfect backdrop for interference cancellation. Mobile wireless data is already aggregated and transported through fiber backhaul networks in practice. By sandwiching the signal processing stage between the receiver and the fiber backhaul, processing can easily be done locally in one location. Further, optics offers the advantages of being instantaneously broadband and size, weight, and power (SWAP). We are primarily concerned with two methods for interference cancellation, based on microwave photonic filters, in this thesis. The first application is for a co-channel situation, in which a transmitter and receiver are co-located and transmitting at the same frequency. A novel analog optical technique extended for multipath interference cancellation of broadband signals is proposed and experimentally demonstrated in this thesis. The proposed architecture was able to achieve a maximum of 40 dB of cancellation over 200 MHz and 50 dB of cancellation over 10 MHz. The broadband nature of the cancellation, along with its depth, demonstrates both the precision of the optical components and the validity of the architecture. Next, we are interested in a scenario with dynamically changing interference, which requires an adaptive photonic
Adaptive Filtering for Large Space Structures: A Closed-Form Solution
NASA Technical Reports Server (NTRS)
Rauch, H. E.; Schaechter, D. B.
1985-01-01
In a previous paper Schaechter proposes using an extended Kalman filter to estimate adaptively the (slowly varying) frequencies and damping ratios of a large space structure. The time varying gains for estimating the frequencies and damping ratios can be determined in closed form so it is not necessary to integrate the matrix Riccati equations. After certain approximations, the time varying adaptive gain can be written as the product of a constant matrix times a matrix derived from the components of the estimated state vector. This is an important savings of computer resources and allows the adaptive filter to be implemented with approximately the same effort as the nonadaptive filter. The success of this new approach for adaptive filtering was demonstrated using synthetic data from a two mode system.
Digital speech enhancement based on DTOMP and adaptive quantile
NASA Astrophysics Data System (ADS)
Wang, Anna; Zhou, Xiaoxing; Xue, Changliang; Sun, Xiyan; Sun, Hongying
2013-03-01
Compressed Sensing (CS) that can effectively extract the information contained in the signal is a new sampling theory based on signal sparseness. This paper applies CS theory in digital speech signal enhancement processing, proposes an adaptive quantile method for the noise power estimation and combines the improved double-threshold orthogonal matching pursuit algorithm for speech reconstruction, then achieves speech enhancement processing. Compared with the simulation results of the spectral subtraction and the subspace algorithm, the experiment results verify the feasibility and effectiveness of the algorithm proposed in this paper applied to speech enhancement processing.
Hernandez, Wilmar; de Vicente, Jesús; Sergiyenko, Oleg Y; Fernández, Eduardo
2010-01-01
In this paper, the fast least-mean-squares (LMS) algorithm was used to both eliminate noise corrupting the important information coming from a piezoresisitive accelerometer for automotive applications, and improve the convergence rate of the filtering process based on the conventional LMS algorithm. The response of the accelerometer under test was corrupted by process and measurement noise, and the signal processing stage was carried out by using both conventional filtering, which was already shown in a previous paper, and optimal adaptive filtering. The adaptive filtering process relied on the LMS adaptive filtering family, which has shown to have very good convergence and robustness properties, and here a comparative analysis between the results of the application of the conventional LMS algorithm and the fast LMS algorithm to solve a real-life filtering problem was carried out. In short, in this paper the piezoresistive accelerometer was tested for a multi-frequency acceleration excitation. Due to the kind of test conducted in this paper, the use of conventional filtering was discarded and the choice of one adaptive filter over the other was based on the signal-to-noise ratio improvement and the convergence rate. PMID:22315579
Adaptive Kalman-Bucy filter for differential absorption lidar time series data.
Warren, R E
1987-11-15
An extension of the Kalman-Bucy algorithm for on-line estimation of multimaterial path-integrated concentration from multiwavelength differential absorption lidar time series data is presented in which the system model covariance is adaptively estimated from the input data. Performance of the filter is compared with that of a nonadaptive Kalman-Bucy filter using synthetic and actual lidar data.
Hernandez, Wilmar; de Vicente, Jesús; Sergiyenko, Oleg Y.; Fernández, Eduardo
2010-01-01
In this paper, the fast least-mean-squares (LMS) algorithm was used to both eliminate noise corrupting the important information coming from a piezoresisitive accelerometer for automotive applications, and improve the convergence rate of the filtering process based on the conventional LMS algorithm. The response of the accelerometer under test was corrupted by process and measurement noise, and the signal processing stage was carried out by using both conventional filtering, which was already shown in a previous paper, and optimal adaptive filtering. The adaptive filtering process relied on the LMS adaptive filtering family, which has shown to have very good convergence and robustness properties, and here a comparative analysis between the results of the application of the conventional LMS algorithm and the fast LMS algorithm to solve a real-life filtering problem was carried out. In short, in this paper the piezoresistive accelerometer was tested for a multi-frequency acceleration excitation. Due to the kind of test conducted in this paper, the use of conventional filtering was discarded and the choice of one adaptive filter over the other was based on the signal-to-noise ratio improvement and the convergence rate. PMID:22315579
Adaptive alpha-trimmed mean filters under deviations from assumed noise model.
Oten, Remzi; de Figueiredo, Rui J P
2004-05-01
Alpha-trimmed mean filters are widely used for the restoration of signals and images corrupted by additive non-Gaussian noise. They are especially preferred if the underlying noise deviates from Gaussian with the impulsive noise components. The key design issue of these filters is to select its only parameter, alpha, optimally for a given noise type. In image restoration, adaptive filters utilize the flexibility of selecting alpha according to some local noise statistics. In the present paper, we first review the existing adaptive alpha-trimmed mean filter schemes. We then analyze the performance of these filters when the underlying noise distribution deviates from the Gaussian and does not satisfy the assumptions such as symmetry. Specifically, the clipping effect and the mixed noise cases are analyzed. We also present a new adaptive alpha-trimmed filter implementation that detects the nonsymmetry points locally and applies alpha-trimmed mean filter that trims out the outlier pixels such as edges or impulsive noise according to this local decision. Comparisons of the speed and filtering performances under deviations from symmetry and Gaussian assumptions show that the proposed filter is a very good alternative to the existing schemes. PMID:15376595
Object tracking with adaptive HOG detector and adaptive Rao-Blackwellised particle filter
NASA Astrophysics Data System (ADS)
Rosa, Stefano; Paleari, Marco; Ariano, Paolo; Bona, Basilio
2012-01-01
Scenarios for a manned mission to the Moon or Mars call for astronaut teams to be accompanied by semiautonomous robots. A prerequisite for human-robot interaction is the capability of successfully tracking humans and objects in the environment. In this paper we present a system for real-time visual object tracking in 2D images for mobile robotic systems. The proposed algorithm is able to specialize to individual objects and to adapt to substantial changes in illumination and object appearance during tracking. The algorithm is composed by two main blocks: a detector based on Histogram of Oriented Gradient (HOG) descriptors and linear Support Vector Machines (SVM), and a tracker which is implemented by an adaptive Rao-Blackwellised particle filter (RBPF). The SVM is re-trained online on new samples taken from previous predicted positions. We use the effective sample size to decide when the classifier needs to be re-trained. Position hypotheses for the tracked object are the result of a clustering procedure applied on the set of particles. The algorithm has been tested on challenging video sequences presenting strong changes in object appearance, illumination, and occlusion. Experimental tests show that the presented method is able to achieve near real-time performances with a precision of about 7 pixels on standard video sequences of dimensions 320 × 240.
MobiDiC: Context Adaptive Digital Signage with Coupons
NASA Astrophysics Data System (ADS)
Müller, Jörg; Krüger, Antonio
In this paper we present a field study of a digital signage system that measures audience response with coupons in order to enable context adaptivity. In the concept for context adaptivity, the signs sense their environment; decide which content to show, and then sense the audience reaction to the content shown. From this audience measurement, the strategies which content to show in which situation are refined. As one instantiation of audience measurement, we propose a novel simple couponing system, where customers can photograph the coupons at the signs. Thus, it can be measured whether customers really went to the shop. To investigate the feasibility of this approach, we implemented a prototype of 20 signs in the city center of Münster, Germany. During one year of deployment, we investigated usage of the system through interviews with shop owners and customers. Our experiences show that customer attention towards the signs is a major hurdle to overcome.
Adaptive digital beamforming for a CDMA mobile communications payload
NASA Technical Reports Server (NTRS)
Munoz-Garcia, Samuel G.; Ruiz, Javier Benedicto
1993-01-01
In recent years, Spread-Spectrum Code Division Multiple Access (CDMA) has become a very popular access scheme for mobile communications due to a variety of reasons: excellent performance in multipath environments, high scope for frequency reuse, graceful degradation near saturation, etc. In this way, a CDMA system can support simultaneous digital communication among a large community of relatively uncoordinated users sharing a given frequency band. Nevertheless, there are also important problems associated with the use of CDMA. First, in a conventional CDMA scheme, the signature sequences of asynchronous users are not orthogonal and, as the number of active users increases, the self-noise generated by the mutual interference between users considerably degrades the performance, particularly in the return link. Furthermore, when there is a large disparity in received powers - due to differences in slant range or atmospheric attenuation - the non-zero cross-correlation between the signals gives rise to the so-called near-far problem. This leads to an inefficient utilization of the satellite resources and, consequently, to a drastic reduction in capacity. Several techniques were proposed to overcome this problem, such as Synchronized CDMA - in which the signature sequences of the different users are quasi-orthogonal - and power control. At the expense of increased network complexity and user coordination, these techniques enable the system capacity to be restored by equitably sharing the satellite resources among the users. An alternative solution is presented based upon the use of time-reference adaptive digital beamforming on board the satellite. This technique enables a high number of independently steered beams to be generated from a single phased array antenna, which automatically track the desired user signal and null the unwanted interference source. In order to use a time-reference adaptive antenna in a communications system, the main challenge is to obtain a
Low-Cutoff, High-Pass Digital Filtering of Neural Signals
NASA Technical Reports Server (NTRS)
Mojarradi,Mohammad; Johnson, Travis; Ortiz, Monico; Cunningham, Thomas; Andersen, Richard
2004-01-01
The figure depicts the major functional blocks of a system, now undergoing development, for conditioning neural signals acquired by electrodes implanted in a brain. The overall functions to be performed by this system can be summarized as preamplification, multiplexing, digitization, and high-pass filtering. Other systems under development for recording neural signals typically contain resistor-capacitor analog low-pass filters characterized by cutoff frequencies in the vicinity of 100 Hz. In the application for which this system is being developed, there is a requirement for a cutoff frequency of 5 Hz. Because the resistors needed to obtain such a low cutoff frequency would be impractically large, it was decided to perform low-pass filtering by use of digital rather than analog circuitry. In addition, it was decided to timemultiplex the digitized signals from the multiple input channels into a single stream of data in a single output channel. The signal in each input channel is first processed by a preamplifier having a voltage gain of approximately 50. Embedded in each preamplifier is a low-pass anti-aliasing filter having a cutoff frequency of approximately 10 kHz. The anti-aliasing filters make it possible to couple the outputs of the preamplifiers to the input ports of a multiplexer. The output of the multiplexer is a single stream of time-multiplexed samples of analog signals. This stream is processed by a main differential amplifier, the output of which is sent to an analog-to-digital converter (ADC). The output of the ADC is sent to a digital signal processor (DSP).
Digital breast tomosynthesis reconstruction with an adaptive voxel grid
NASA Astrophysics Data System (ADS)
Claus, Bernhard; Chan, Heang-Ping
2014-03-01
In digital breast tomosynthesis (DBT) volume datasets are typically reconstructed with an anisotropic voxel size, where the in-plane voxel size usually reflects the detector pixel size (e.g., 0.1 mm), and the slice separation is generally between 0.5-1.0 mm. Increasing the tomographic angle is expected to give better 3D image quality; however, the slice spacing in the reconstruction should be reduced, otherwise one may risk losing fine-scale image detail (e.g., small microcalcifications). An alternative strategy consists of reconstructing on an adaptive voxel grid, where the voxel height at each location is adapted based on the backprojected data at this location, with the goal to improve image quality for microcalcifications. In this paper we present an approach for generating such an adaptive voxel grid. This approach is based on an initial reconstruction step that is performed at a finer slice-spacing combined with a selection of an "optimal" height for each voxel. This initial step is followed by a (potentially iterative) reconstruction acting now on the adaptive grid only.
Adaptive filter for reconstruction of stereo audio signals
NASA Astrophysics Data System (ADS)
Cisowski, Krzysztof
2004-05-01
The paper presents a new approach to reconstruction of impulsively disturbed stereo audio signals. The problems of restoration of large blocks of missing samples are outlined. Present methods of removing of covariance defect are discussed. Model of stereophonic signal is defined and Kalman filter appropriate for this model is introduced. Modifications of the filter directing to the new method of reconstruction of block of missing samples are discussed. Projection based algorithm allows to recover samples of left (or right) stereo channel using additional information included in undistorted samples from the other channel.
Improved particle size estimation in digital holography via sign matched filtering.
Lu, Jiang; Shaw, Raymond A; Yang, Weidong
2012-06-01
A matched filter method is provided for obtaining improved particle size estimates from digital in-line holograms. This improvement is relative to conventional reconstruction and pixel counting methods for particle size estimation, which is greatly limited by the CCD camera pixel size. The proposed method is based on iterative application of a sign matched filter in the Fourier domain, with sign meaning the matched filter takes values of ±1 depending on the sign of the angular spectrum of the particle aperture function. Using simulated data the method is demonstrated to work for particle diameters several times the pixel size. Holograms of piezoelectrically generated water droplets taken in the laboratory show greatly improved particle size measurements. The method is robust to additive noise and can be applied to real holograms over a wide range of matched-filter particle sizes.
On the properties of artificial neural network filters for bone-suppressed digital radiography
NASA Astrophysics Data System (ADS)
Park, Eunpyeong; Park, Junbeom; Kim, Daecheon; Youn, Hanbean; Jeon, Hosang; Kim, Jin Sung; Kang, Dong-Joong; Kim, Ho Kyung
2016-04-01
Dual-energy imaging can enhance lesion conspicuity. However, the conventional (fast kilovoltage switching) dual-shot dual-energy imaging is vulnerable to patient motion. The single-shot method requires a special design of detector system. Alternatively, single-shot bone-suppressed imaging is possible using post-image processing combined with a filter obtained from training an artificial neural network. In this study, the authors investigate the general properties of artificial neural network filters for bone-suppressed digital radiography. The filter properties are characterized in terms of various parameters such as the size of input vector, the number of hidden units, the learning rate, and so on. The preliminary result shows that the bone-suppressed image obtained from the filter, which is designed with 5,000 teaching images from a single radiograph, results in about 95% similarity with a commercial bone-enhanced image.
Low-Complexity Lossless Compression of Hyperspectral Imagery via Adaptive Filtering
NASA Technical Reports Server (NTRS)
Klimesh, M.
2005-01-01
A low-complexity, adaptive predictive technique for lossless compression of hyperspectral data is presented. The technique relies on the sign algorithm from the repertoire of adaptive filtering. The compression effectiveness obtained with the technique is competitive with that of the best of previously described techniques with similar complexity.
Learning Motivation and Adaptive Video Caption Filtering for EFL Learners Using Handheld Devices
ERIC Educational Resources Information Center
Hsu, Ching-Kun
2015-01-01
The aim of this study was to provide adaptive assistance to improve the listening comprehension of eleventh grade students. This study developed a video-based language learning system for handheld devices, using three levels of caption filtering adapted to student needs. Elementary level captioning excluded 220 English sight words (see Section 1…
Study on GPS attitude determination system aided INS using adaptive Kalman filter
NASA Astrophysics Data System (ADS)
Bian, Hongwei; Jin, Zhihua; Tian, Weifeng
2005-10-01
A marine INS/GPS (inertial navigation system/global positioning system) adaptive navigation system is presented in this paper. The GPS with two antennae providing vessel attitude is selected as the auxiliary system to fuse with INS. The Kalman filter is the most frequently used algorithm in the integrated navigation system, which is capable of estimating INS errors online based on the measured errors between INS and GPS. The conventional Kalman filter (CKF) assumes that the statistics of the noise of each sensor are given. As long as the noise distributions do not change, the Kalman filter will give the optimal estimation. However, the GPS receiver will be disturbed easily and thus temporally changing measurement noise will join into the outputs of GPS, which will lead to performance degradation of the Kalman filter. Many researchers introduce a fuzzy logic control method into innovation-based adaptive estimation Kalman filtering (IAE-AKF) algorithm, and accordingly propose various adaptive Kalman filters. However, how to design the fuzzy logic controller is a very complicated problem, which is still without a convincing solution. A novel IAE-AKF is proposed herein, which is based on the maximum likelihood criterion for the proper computation of the filter innovation covariance and hence of the filter gain. The approach is direct and simple without having to establish fuzzy inference rules. After having deduced the proposed IAE-AKF algorithm theoretically in detail, the approach is tested in the developed INS/GPS integrated marine navigation system. Real field test results show that the adaptive Kalman filter outperforms the CKF with higher accuracy and robustness. It is demonstrated that this proposed approach is a valid solution for the unknown changing measurement noise existing in the Kalman filter.
An Adaptive Kalman Filter Using a Simple Residual Tuning Method
NASA Technical Reports Server (NTRS)
Harman, Richard R.
1999-01-01
One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. A. H. Jazwinski developed a specialized version of this technique for estimation of process noise. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.
An Adaptive Kalman Filter using a Simple Residual Tuning Method
NASA Technical Reports Server (NTRS)
Harman, Richard R.
1999-01-01
One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.
Detection of signals by the digital integrate-and-dump filter with offset sampling
NASA Technical Reports Server (NTRS)
Sadr, R.; Hurd, W. J.
1987-01-01
The Integrate and Dump Filter (IDF) is used as a matched filter for the detection of signals in additive white Gaussian noise. The performance of the digital integrate and dump filter is evaluated. The case considered is when symbol times are known and the sampling clock is free running at a constant rate, i.e., the sampling clock is not phase locked to the symbol clock. Degradations in the output signal to noise ratio of the digital implementation due to sampling rate, sampling offset, and finite bandwidth, resulting from the anti-aliasing low pass prefilter, are computed and compared with those of the analog counterpart. It is shown that the digital IDF performs within 0.6 dB of the ideal analog IDF whenever the prefilter bandwidth exceeds four times the symbol rate and when sampling is performed at the Nyquist rate. The loss can be reduced to 0.3 dB by doubling the sampling rate, where 0.2 dB loss results from finite bandwidth and 0.1 dB results from the digital IDF.
NASA Astrophysics Data System (ADS)
Peña, M.
2016-10-01
Achieving acceptable signal-to-noise ratio (SNR) can be difficult when working in sparsely populated waters and/or when species have low scattering such as fluid filled animals. The increasing use of higher frequencies and the study of deeper depths in fisheries acoustics, as well as the use of commercial vessels, is raising the need to employ good denoising algorithms. The use of a lower Sv threshold to remove noise or unwanted targets is not suitable in many cases and increases the relative background noise component in the echogram, demanding more effectiveness from denoising algorithms. The Adaptive Wiener Filter (AWF) denoising algorithm is presented in this study. The technique is based on the AWF commonly used in digital photography and video enhancement. The algorithm firstly increments the quality of the data with a variance-dependent smoothing, before estimating the noise level as the envelope of the Sv minima. The AWF denoising algorithm outperforms existing algorithms in the presence of gaussian, speckle and salt & pepper noise, although impulse noise needs to be previously removed. Cleaned echograms present homogenous echotraces with outlined edges.
Current Tracking Control of Voltage Source PWM Inverters Using Adaptive Digital Signal Processing
NASA Astrophysics Data System (ADS)
Fukuda, Shoji; Furukawa, Yuya
An active filter (AF) is required to have a high control capability of tracking a time-varying current reference. However, a steady-state current error always exists if a conventional proportional and integral (PI) regulator is used because the current reference varies in time. This paper proposes the application of adaptive digital signal processing (ADSP) to the current control of voltage source PWM inverters. ADSP does not require any additional hardware. It can automatically minimize the mean square-error. Since the processing time available by a computer is limited, ADSP cannot eliminate higher order harmonics but can eliminate lower order harmonics such as 5th to 17th. Experimental results demonstrate that ADSP is useful for improving the reference tracking performance of voltage source inverters.
New Approach for IIR Adaptive Lattice Filter Structure Using Simultaneous Perturbation Algorithm
NASA Astrophysics Data System (ADS)
Martinez, Jorge Ivan Medina; Nakano, Kazushi; Higuchi, Kohji
Adaptive infinite impulse response (IIR), or recursive, filters are less attractive mainly because of the stability and the difficulties associated with their adaptive algorithms. Therefore, in this paper the adaptive IIR lattice filters are studied in order to devise algorithms that preserve the stability of the corresponding direct-form schemes. We analyze the local properties of stationary points, a transformation achieving this goal is suggested, which gives algorithms that can be efficiently implemented. Application to the Steiglitz-McBride (SM) and Simple Hyperstable Adaptive Recursive Filter (SHARF) algorithms is presented. Also a modified version of Simultaneous Perturbation Stochastic Approximation (SPSA) is presented in order to get the coefficients in a lattice form more efficiently and with a lower computational cost and complexity. The results are compared with previous lattice versions of these algorithms. These previous lattice versions may fail to preserve the stability of stationary points.
NASA Technical Reports Server (NTRS)
Houts, R. C.; Burlage, D. W.
1972-01-01
A time domain technique is developed to design finite-duration impulse response digital filters using linear programming. Two related applications of this technique in data transmission systems are considered. The first is the design of pulse shaping digital filters to generate or detect signaling waveforms transmitted over bandlimited channels that are assumed to have ideal low pass or bandpass characteristics. The second is the design of digital filters to be used as preset equalizers in cascade with channels that have known impulse response characteristics. Example designs are presented which illustrate that excellent waveforms can be generated with frequency-sampling filters and the ease with which digital transversal filters can be designed for preset equalization.
Digital hydrograph filtering in small size rainfall-dominated terrigenous watershed
NASA Astrophysics Data System (ADS)
Longobardi, Antonia; Villani, Paolo; Guida, Domenico; Cuomo, Albina
2016-04-01
The study aim is an analysis of the ability of digital hydrograph filtering tools for the characterization of the baseflow source contributing to total streamflow for a forested, terrigenous hard rock rainfall-dominated small catchment. Daily streamflow and electrical conductivity (EC) data for an experimental catchment, the T. Ciciriello catchment, a 3km2 watershed located in Southern Italy, have been collected to the purpose since 2012. The application of a mass balance filter (MBF using electrical conductivity as tracer data) has pointed out a seasonal characterization of the baseflow pattern, contributing to total streamflow by 90% during the low flow period and up to 40% during the high flow period. The Lyne and Hollick one parameter and the two parameter Eckhardt digital filters have been furthermore processed, both in an uncalibrated and calibrated application. During the low flow period, the one parameter filter appears particularly suited for ungauged cases, as the uncalibrated and calibrated application are almost identical, with relative prediction errors, compared to MBF, smaller than 5%. The uncalibrated two parameters filter generates instead large relative error of about 35%. To improve the baseflow description in particular during the low flow period and to correct large (28%) underestimation of the minimum baseflow value, a seasonal calibration for the BFImax parameter was needed. During the high flow period, the one and the two parameters filters are respectively associated to an overestimation (20%) and underestimation (10%). For this period of the year, the monitoring campaign strongly indicates a large range of variability for the EC values, probably caused by dilution and mixing processes from different water sources and flow paths. As the variability is intrinsically embedded within the MBF method, it is not at all accounted for by the digital filters, which are only able to distinguish between two different component and then between two
Noise impact of single-event upsets on an FPGA-based digital filter
Morgan, Keith S; Caffrey, Michael P; Graham, Paul S; Pratt, Brian H; Wirthlin, Michael J
2009-01-01
Field-programmable gate arrays are well-suited to DSP and digital communications applications. SRAM-based FPGAs, however, are susceptible to radiation-induced single-event upsets (SEUs) when deployed in space environments. These effects are often handled with the area and power-intensive TMR mitigation technique. This paper evaluates the effects of SEUs in the FPGA configuration memory as noise in a digital filter, showing that many SEUs in a digital communications system cause effects that could be considered noise rather than circuit failure. Since DSP and digital communications applications are designed to withstand certain types of noise, SEU mitigation techniques that are less costly than TMR may be applicable. This could result in large savings in area and power when implementing a reliable system. Our experiments show that, of the SEUs that affected the digital filter with a 20 dB SNR input signal, less than 14% caused an SNR loss of more than 1 dB at the output.
Prototype adaptive bow-tie filter based on spatial exposure time modulation
NASA Astrophysics Data System (ADS)
Badal, Andreu
2016-03-01
In recent years, there has been an increased interest in the development of dynamic bow-tie filters that are able to provide patient-specific x-ray beam shaping. We introduce the first physical prototype of a new adaptive bow-tie filter design based on the concept of "spatial exposure time modulation." While most existing bow-tie filters operate by attenuating the radiation beam differently in different locations using partially attenuating objects, the presented filter shapes the radiation field using two movable completely radio-opaque collimators. The aperture and speed of the collimators is modulated in synchrony with the x-ray exposure to selectively block the radiation emitted to different parts of the object. This mode of operation does not allow the reproduction of every possible attenuation profile, but it can reproduce the profile of any object with an attenuation profile monotonically decreasing from the center to the periphery, such as an object with an elliptical cross section. Therefore, the new adaptive filter provides the same advantages as the currently existing static bow-tie filters, which are typically designed to work for a pre-determined cylindrical object at a fixed distance from the source, and provides the additional capability to adapt its performance at image acquisition time to better compensate for the actual diameter and location of the imaged object. A detailed description of the prototype filter, the implemented control methods, and a preliminary experimental validation of its performance are presented.
An adaptive filter bank for motor imagery based Brain Computer Interface.
Thomas, Kavitha P; Guan, Cuntai; Tong, Lau Chiew; Prasad, Vinod A
2008-01-01
Brain Computer Interface (BCI) provides an alternative communication and control method for people with severe motor disabilities. Motor imagery patterns are widely used in Electroencephalogram (EEG) based BCIs. These motor imagery activities are associated with variation in alpha and beta band power of EEG signals called Event Related Desynchronization/synchronization (ERD/ERS). The dominant frequency bands are subject-specific and therefore performance of motor imagery based BCIs are sensitive to both temporal filtering and spatial filtering. As the optimum filter is strongly subject-dependent, we propose a method that selects the subject-specific discriminative frequency components using time-frequency plots of Fisher ratio of two-class motor imagery patterns. We also propose a low complexity adaptive Finite Impulse Response (FIR) filter bank system based on coefficient decimation technique which can realize the subject-specific bandpass filters adaptively depending on the information of Fisher ratio map. Features are extracted only from the selected frequency components. The proposed adaptive filter bank based system offers average classification accuracy of about 90%, which is slightly better than the existing fixed filter bank system. PMID:19162856
Independent motion detection with a rival penalized adaptive particle filter
NASA Astrophysics Data System (ADS)
Becker, Stefan; Hübner, Wolfgang; Arens, Michael
2014-10-01
Aggregation of pixel based motion detection into regions of interest, which include views of single moving objects in a scene is an essential pre-processing step in many vision systems. Motion events of this type provide significant information about the object type or build the basis for action recognition. Further, motion is an essential saliency measure, which is able to effectively support high level image analysis. When applied to static cameras, background subtraction methods achieve good results. On the other hand, motion aggregation on freely moving cameras is still a widely unsolved problem. The image flow, measured on a freely moving camera is the result from two major motion types. First the ego-motion of the camera and second object motion, that is independent from the camera motion. When capturing a scene with a camera these two motion types are adverse blended together. In this paper, we propose an approach to detect multiple moving objects from a mobile monocular camera system in an outdoor environment. The overall processing pipeline consists of a fast ego-motion compensation algorithm in the preprocessing stage. Real-time performance is achieved by using a sparse optical flow algorithm as an initial processing stage and a densely applied probabilistic filter in the post-processing stage. Thereby, we follow the idea proposed by Jung and Sukhatme. Normalized intensity differences originating from a sequence of ego-motion compensated difference images represent the probability of moving objects. Noise and registration artefacts are filtered out, using a Bayesian formulation. The resulting a posteriori distribution is located on image regions, showing strong amplitudes in the difference image which are in accordance with the motion prediction. In order to effectively estimate the a posteriori distribution, a particle filter is used. In addition to the fast ego-motion compensation, the main contribution of this paper is the design of the probabilistic
Fourier transform digital holographic adaptive optics imaging system
Liu, Changgeng; Yu, Xiao; Kim, Myung K.
2013-01-01
A Fourier transform digital holographic adaptive optics imaging system and its basic principles are proposed. The CCD is put at the exact Fourier transform plane of the pupil of the eye lens. The spherical curvature introduced by the optics except the eye lens itself is eliminated. The CCD is also at image plane of the target. The point-spread function of the system is directly recorded, making it easier to determine the correct guide-star hologram. Also, the light signal will be stronger at the CCD, especially for phase-aberration sensing. Numerical propagation is avoided. The sensor aperture has nothing to do with the resolution and the possibility of using low coherence or incoherent illumination is opened. The system becomes more efficient and flexible. Although it is intended for ophthalmic use, it also shows potential application in microscopy. The robustness and feasibility of this compact system are demonstrated by simulations and experiments using scattering objects. PMID:23262541
Adaptive filters for suppressing irregular hostile jamming in direct sequence spread-spectrum system
NASA Astrophysics Data System (ADS)
Lee, Jung Hoon; Lee, Choong Woong
A stable and high-performance adaptive filter for suppressing irregular hostile jamming in direct-sequence (DS) spread-spectrum systems is designed. A gradient-search fast converging algorithm (GFC) is suggested. For the case of a sudden parameter jump or incoming of an interference, the transient behaviors of the receiver using a GFC adaptive filter are investigated and compared with those of the receiver using a least-mean-square (LMS) or a lattice adaptive filter. The results are shown in the response graphs of the simulated receiver during the short period when the characteristic of a jammer is suddenly changed. Steady-state performances of those receivers are also evaluated in the sense of the excess mean-square error over that of an optimum receiver for suppressing stationary interferences.
Two dimensional recursive digital filters for near real time image processing
NASA Technical Reports Server (NTRS)
Olson, D.; Sherrod, E.
1980-01-01
A program was designed toward the demonstration of the feasibility of using two dimensional recursive digital filters for subjective image processing applications that require rapid turn around. The concept of the use of a dedicated minicomputer for the processor for this application was demonstrated. The minicomputer used was the HP1000 series E with a RTE 2 disc operating system and 32K words of memory. A Grinnel 256 x 512 x 8 bit display system was used to display the images. Sample images were provided by NASA Goddard on a 800 BPI, 9 track tape. Four 512 x 512 images representing 4 spectral regions of the same scene were provided. These images were filtered with enhancement filters developed during this effort.
Takeshita, Wilton Mitsunari; Vessoni Iwaki, Lilian Cristina; Da Silva, Mariliani Chicarelli; Filho, Liogi Iwaki; Queiroz, Alfredo De Franco; Geron, Lucas Bachegas Gomes
2013-01-01
Background: To compare the diagnostic accuracy of three different imaging systems: Direct digital radiography system (DDR-CMOS), four types of filtered images, and a priori and a posteriori registration of digital subtraction radiography (DSR) in the diagnosis of proximal defects. Materials and Methods: The teeth were arranged in pairs in 10 blocks of vinyl polysiloxane, and proximal defects were performed with drills of 0.25, 0.5, and 1 mm diameter. Kodak RVG 6100 sensor was used to capture the images. A posteriori DSR registrations were done with Regeemy 0.2.43 and subtraction with Image Tool 3.0. Filtered images were obtained with Kodak Dental Imaging 6.1 software. Images (n = 360) were evaluated by three raters, all experts in dental radiology. Results: Sensitivity and specificity of the area under the receiver operator characteristic (ROC) curve (Az) were higher for DSR images with all three drills (Az = 0.896, 0.979, and 1.000 for drills 0.25, 0.5, and 1 mm, respectively). The highest values were found for 1-mm drills and the lowest for 0.25-mm drills, with negative filter having the lowest values of all (Az = 0.631). Conclusion: The best method of diagnosis was by using a DSR. The negative filter obtained the worst results. Larger drills showed the highest sensitivity and specificity values of the area under the ROC curve. PMID:24124300
Phase Response Design of Recursive All-Pass Digital Filters Using a Modified PSO Algorithm
Chang, Wei-Der
2015-01-01
This paper develops a new design scheme for the phase response of an all-pass recursive digital filter. A variant of particle swarm optimization (PSO) algorithm will be utilized for solving this kind of filter design problem. It is here called the modified PSO (MPSO) algorithm in which another adjusting factor is more introduced in the velocity updating formula of the algorithm in order to improve the searching ability. In the proposed method, all of the designed filter coefficients are firstly collected to be a parameter vector and this vector is regarded as a particle of the algorithm. The MPSO with a modified velocity formula will force all particles into moving toward the optimal or near optimal solution by minimizing some defined objective function of the optimization problem. To show the effectiveness of the proposed method, two different kinds of linear phase response design examples are illustrated and the general PSO algorithm is compared as well. The obtained results show that the MPSO is superior to the general PSO for the phase response design of digital recursive all-pass filter. PMID:26366168
NASA Astrophysics Data System (ADS)
Li, Wei; Haese-Coat, Veronique; Ronsin, Joseph
1996-03-01
An adaptive GA scheme is adopted for the optimal morphological filter design problem. The adaptive crossover and mutation rate which make the GA avoid premature and at the same time assure convergence of the program are successfully used in optimal morphological filter design procedure. In the string coding step, each string (chromosome) is composed of a structuring element coding chain concatenated with a filter sequence coding chain. In decoding step, each string is divided into 3 chains which then are decoded respectively into one structuring element with a size inferior to 5 by 5 and two concatenating morphological filter operators. The fitness function in GA is based on the mean-square-error (MSE) criterion. In string selection step, a stochastic tournament procedure is used to replace the simple roulette wheel program in order to accelerate the convergence. The final convergence of our algorithm is reached by a two step converging strategy. In presented applications of noise removal from texture images, it is found that with the optimized morphological filter sequences, the obtained MSE values are smaller than those using corresponding non-adaptive morphological filters, and the optimized shapes and orientations of structuring elements take approximately the same shapes and orientations as those of the image textons.
Sudeep, P V; Issac Niwas, S; Palanisamy, P; Rajan, Jeny; Xiaojun, Yu; Wang, Xianghong; Luo, Yuemei; Liu, Linbo
2016-04-01
Optical coherence tomography (OCT) has continually evolved and expanded as one of the most valuable routine tests in ophthalmology. However, noise (speckle) in the acquired images causes quality degradation of OCT images and makes it difficult to analyze the acquired images. In this paper, an iterative approach based on bilateral filtering is proposed for speckle reduction in multiframe OCT data. Gamma noise model is assumed for the observed OCT image. First, the adaptive version of the conventional bilateral filter is applied to enhance the multiframe OCT data and then the bias due to noise is reduced from each of the filtered frames. These unbiased filtered frames are then refined using an iterative approach. Finally, these refined frames are averaged to produce the denoised OCT image. Experimental results on phantom images and real OCT retinal images demonstrate the effectiveness of the proposed filter. PMID:26907572
Effect of filter on average glandular dose and image quality in digital mammography
NASA Astrophysics Data System (ADS)
Songsaeng, C.; Krisanachinda, A.; Theerakul, K.
2016-03-01
To determine the average glandular dose and entrance surface air kerma in both phantoms and patients to assess image quality for different target-filters (W/Rh and W/Ag) in digital mammography system. The compressed breast thickness, compression force, average glandular dose, entrance surface air kerma, peak kilovoltage and tube current time were recorded and compared between W/Rh and W/Ag target filter. The CNR and the figure of merit were used to determine the effect of target filter on image quality. The mean AGD of the W/Rh target filter was 1.75 mGy, the mean ESAK was 6.67 mGy, the mean CBT was 54.1 mm, the mean CF was 14 1bs. The mean AGD of W/Ag target filter was 2.7 mGy, the mean ESAK was 12.6 mGy, the mean CBT was 75.5 mm, the mean CF was 15 1bs. In phantom study, the AGD was 1.2 mGy at 4 cm, 3.3 mGy at 6 cm and 3.83 mGy at 7 cm thickness. The FOM was 24.6, CNR was 9.02 at thickness 6 cm. The FOM was 18.4, CNR was 8.6 at thickness 7 cm. The AGD from Digital Mammogram system with W/Rh of thinner CBT was lower than the AGD from W/Ag target filter.
An Application Specific Instruction Set Processor (ASIP) for Adaptive Filters in Neural Prosthetics.
Xin, Yao; Li, Will X Y; Zhang, Zhaorui; Cheung, Ray C C; Song, Dong; Berger, Theodore W
2015-01-01
Neural coding is an essential process for neuroprosthetic design, in which adaptive filters have been widely utilized. In a practical application, it is needed to switch between different filters, which could be based on continuous observations or point process, when the neuron models, conditions, or system requirements have changed. As candidates of coding chip for neural prostheses, low-power general purpose processors are not computationally efficient especially for large scale neural population coding. Application specific integrated circuits (ASICs) do not have flexibility to switch between different adaptive filters while the cost for design and fabrication is formidable. In this research work, we explore an application specific instruction set processor (ASIP) for adaptive filters in neural decoding activity. The proposed architecture focuses on efficient computation for the most time-consuming matrix/vector operations among commonly used adaptive filters, being able to provide both flexibility and throughput. Evaluation and implementation results are provided to demonstrate that the proposed ASIP design is area-efficient while being competitive to commercial CPUs in computational performance.
An Application Specific Instruction Set Processor (ASIP) for Adaptive Filters in Neural Prosthetics.
Xin, Yao; Li, Will X Y; Zhang, Zhaorui; Cheung, Ray C C; Song, Dong; Berger, Theodore W
2015-01-01
Neural coding is an essential process for neuroprosthetic design, in which adaptive filters have been widely utilized. In a practical application, it is needed to switch between different filters, which could be based on continuous observations or point process, when the neuron models, conditions, or system requirements have changed. As candidates of coding chip for neural prostheses, low-power general purpose processors are not computationally efficient especially for large scale neural population coding. Application specific integrated circuits (ASICs) do not have flexibility to switch between different adaptive filters while the cost for design and fabrication is formidable. In this research work, we explore an application specific instruction set processor (ASIP) for adaptive filters in neural decoding activity. The proposed architecture focuses on efficient computation for the most time-consuming matrix/vector operations among commonly used adaptive filters, being able to provide both flexibility and throughput. Evaluation and implementation results are provided to demonstrate that the proposed ASIP design is area-efficient while being competitive to commercial CPUs in computational performance. PMID:26451817
Method and system for training dynamic nonlinear adaptive filters which have embedded memory
NASA Technical Reports Server (NTRS)
Rabinowitz, Matthew (Inventor)
2002-01-01
Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6.
Adaptive identification and control of structural dynamics systems using recursive lattice filters
NASA Technical Reports Server (NTRS)
Sundararajan, N.; Montgomery, R. C.; Williams, J. P.
1985-01-01
A new approach for adaptive identification and control of structural dynamic systems by using least squares lattice filters thar are widely used in the signal processing area is presented. Testing procedures for interfacing the lattice filter identification methods and modal control method for stable closed loop adaptive control are presented. The methods are illustrated for a free-free beam and for a complex flexible grid, with the basic control objective being vibration suppression. The approach is validated by using both simulations and experimental facilities available at the Langley Research Center.
NASA Technical Reports Server (NTRS)
Kim, Heechul
1996-01-01
Filters implemented using Canonical Signed-Digit (CSD) number representation for the coefficients have been studied for many years as an efficient way to increase the speed and reduce the hardware complexity. A simple and very effective method for designing a CSD filter with a specific set of filter parameters has been investigated and its simulation results are presented here. In order to optimize filter coefficients into the corresponding CSD numbers, the Minimum Mean Square Error (MMSE) criterion is used. Furthermore, an attempt is made to improve frequency response of the CSD filter by allocating an extra non-zero digit for normalized coefficients exceeding one-half. Due to limited filter aperture width in examples presented here, the frequency response of CSD filter as the number of non-zero digits in a CSD code increases is not affected much. A root-raised cosine filter model is employed as a base line for this design approach. Finally, the CSD filter simulation results and a hardware complexity comparison with a conventional filter are also shown along with the eye diagrams an Bit-Error-Rate (BER) performance curves.
NASA Astrophysics Data System (ADS)
Öhberg, Fredrik; Lundström, Ronnie; Grip, Helena
2013-08-01
For all segments and tests, a modified Kalman filter and a quasi-static sensor fusion algorithm were equally accurate (precision and accuracy ˜2-3°) compared to normalized least mean squares filtering, recursive least-squares filtering and standard Kalman filtering. The aims were to: (1) compare adaptive filtering techniques used for sensor fusion and (2) evaluate the precision and accuracy for a chosen adaptive filter. Motion sensors (based on inertial measurement units) are limited by accumulative integration errors arising from sensor bias. This drift can partly be handled with adaptive filtering techniques. To advance the measurement technique in this area, a new modified Kalman filter is developed. Differences in accuracy were observed during different tests especially drift in the internal/external rotation angle. This drift can be minimized if the sensors include magnetometers.
Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin
2015-01-01
Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis. PMID:25619991
NASA Astrophysics Data System (ADS)
Abramovich, Iu. I.; Arov, D. Z.; Kachur, V. G.
1987-12-01
The paper considers the problem of finding the vector of an adaptive filter of stationary-noise compensation which corresponds to a Toeplitz correlation-matrix structure. The existence of a Toeplitz solution is demonstrated. Lower-bound estimates are obtained for the gain in noise-compensation efficiency using a priori information about the Toeplitz matrix structure. Constructive methods for obtaining adaptive solutions corresponding to these estimates are indicated.
Adaptive error covariances estimation methods for ensemble Kalman filters
Zhen, Yicun; Harlim, John
2015-08-01
This paper presents a computationally fast algorithm for estimating, both, the system and observation noise covariances of nonlinear dynamics, that can be used in an ensemble Kalman filtering framework. The new method is a modification of Belanger's recursive method, to avoid an expensive computational cost in inverting error covariance matrices of product of innovation processes of different lags when the number of observations becomes large. When we use only product of innovation processes up to one-lag, the computational cost is indeed comparable to a recently proposed method by Berry–Sauer's. However, our method is more flexible since it allows for using information from product of innovation processes of more than one-lag. Extensive numerical comparisons between the proposed method and both the original Belanger's and Berry–Sauer's schemes are shown in various examples, ranging from low-dimensional linear and nonlinear systems of SDEs and 40-dimensional stochastically forced Lorenz-96 model. Our numerical results suggest that the proposed scheme is as accurate as the original Belanger's scheme on low-dimensional problems and has a wider range of more accurate estimates compared to Berry–Sauer's method on L-96 example.
Development of a digital method for neutron/gamma-ray discrimination based on matched filtering
NASA Astrophysics Data System (ADS)
Korolczuk, S.; Linczuk, M.; Romaniuk, R.; Zychor, I.
2016-09-01
Neutron/gamma-ray discrimination is crucial for measurements with detectors sensitive to both neutron and gamma-ray radiation. Different techniques to discriminate between neutrons and gamma-rays based on pulse shape analysis are widely used in many applications, e.g., homeland security, radiation dosimetry, environmental monitoring, fusion experiments, nuclear spectroscopy. A common requirement is to improve a radiation detection level with a high detection reliability. Modern electronic components, such as high speed analog to digital converters and powerful programmable digital circuits for signal processing, allow us to develop a fully digital measurement system. With this solution it is possible to optimize digital signal processing algorithms without changing any electronic components in an acquisition signal path. We report on results obtained with a digital acquisition system DNG@NCBJ designed at the National Centre for Nuclear Research. A 2'' × 2'' EJ309 liquid scintillator was used to register mixed neutron and gamma-ray radiation from PuBe sources. A dedicated algorithm for pulse shape discrimination, based on real-time filtering, was developed and implemented in hardware.
NASA Technical Reports Server (NTRS)
Balas, Mark; Frost, Susan
2012-01-01
Flexible structures containing a large number of modes can benefit from adaptive control techniques which are well suited to applications that have unknown modeling parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend our adaptive control theory to accommodate troublesome modal subsystems of a plant that might inhibit the adaptive controller. In some cases the plant does not satisfy the requirements of Almost Strict Positive Realness. Instead, there maybe be a modal subsystem that inhibits this property. This section will present new results for our adaptive control theory. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for the troublesome modal subsystem, or the Q modes. Here we present the theory for adaptive controllers modified by RMFs, with attention to the issue of disturbances propagating through the Q modes. We apply the theoretical results to a flexible structure example to illustrate the behavior with and without the residual mode filter.
NASA Astrophysics Data System (ADS)
Boz, Utku; Basdogan, Ipek
2015-12-01
Structural vibrations is a major cause for noise problems, discomfort and mechanical failures in aerospace, automotive and marine systems, which are mainly composed of plate-like structures. In order to reduce structural vibrations on these structures, active vibration control (AVC) is an effective approach. Adaptive filtering methodologies are preferred in AVC due to their ability to adjust themselves for varying dynamics of the structure during the operation. The filtered-X LMS (FXLMS) algorithm is a simple adaptive filtering algorithm widely implemented in active control applications. Proper implementation of FXLMS requires availability of a reference signal to mimic the disturbance and model of the dynamics between the control actuator and the error sensor, namely the secondary path. However, the controller output could interfere with the reference signal and the secondary path dynamics may change during the operation. This interference problem can be resolved by using an infinite impulse response (IIR) filter which considers feedback of the one or more previous control signals to the controller output and the changing secondary path dynamics can be updated using an online modeling technique. In this paper, IIR filtering based filtered-U LMS (FULMS) controller is combined with online secondary path modeling algorithm to suppress the vibrations of a plate-like structure. The results are validated through numerical and experimental studies. The results show that the FULMS with online secondary path modeling approach has more vibration rejection capabilities with higher convergence rate than the FXLMS counterpart.
Analog and digital signal processing
NASA Astrophysics Data System (ADS)
Baher, H.
The techniques of signal processing in both the analog and digital domains are addressed in a fashion suitable for undergraduate courses in modern electrical engineering. The topics considered include: spectral analysis of continuous and discrete signals, analysis of continuous and discrete systems and networks using transform methods, design of analog and digital filters, digitization of analog signals, power spectrum estimation of stochastic signals, FFT algorithms, finite word-length effects in digital signal processes, linear estimation, and adaptive filtering.
Phase aberration correction by correlation in digital holographic adaptive optics
Liu, Changgeng; Yu, Xiao; Kim, Myung K.
2013-01-01
We present a phase aberration correction method based on the correlation between the complex full-field and guide-star holograms in the context of digital holographic adaptive optics (DHAO). Removal of a global quadratic phase term before the correlation operation plays an important role in the correction. Correlation operation can remove the phase aberration at the entrance pupil plane and automatically refocus the corrected optical field. Except for the assumption that most aberrations lie at or close to the entrance pupil, the presented method does not impose any other constraints on the optical systems. Thus, it greatly enhances the flexibility of the optical design for DHAO systems in vision science and microscopy. Theoretical studies show that the previously proposed Fourier transform DHAO (FTDHAO) is just a special case of this general correction method, where the global quadratic phase term and a defocus term disappear. Hence, this correction method realizes the generalization of FTDHAO into arbitrary DHAO systems. The effectiveness and robustness of this method are demonstrated by simulations and experiments. PMID:23669707
NASA Astrophysics Data System (ADS)
Hayes, Charles E.; McClellan, James H.; Scott, Waymond R.; Kerr, Andrew J.
2016-05-01
This work introduces two advances in wide-band electromagnetic induction (EMI) processing: a novel adaptive matched filter (AMF) and matched subspace detection methods. Both advances make use of recent work with a subspace SVD approach to separating the signal, soil, and noise subspaces of the frequency measurements The proposed AMF provides a direct approach to removing the EMI self-response while improving the signal to noise ratio of the data. Unlike previous EMI adaptive downtrack filters, this new filter will not erroneously optimize the EMI soil response instead of the EMI target response because these two responses are projected into separate frequency subspaces. The EMI detection methods in this work elaborate on how the signal and noise subspaces in the frequency measurements are ideal for creating the matched subspace detection (MSD) and constant false alarm rate matched subspace detection (CFAR) metrics developed by Scharf The CFAR detection metric has been shown to be the uniformly most powerful invariant detector.
NASA Astrophysics Data System (ADS)
Liu, Delian; Li, Zhaohui; Wang, Xiaorui; Zhang, Jianqi
2015-11-01
Target detection is of great importance both in civil and military fields. Here a new moving target detection approach is proposed, which employs a nonlinear adaptive filter to remove large fluctuations on temporal profiles that are produced by evolving clutters. Initially, this paper discusses the temporal behaviors of different pixels in infrared sequences. Then, the new nonlinear adaptive filter that is a variation of the median-modified Wiener filter is given to extract pulse signals on temporal profiles that relate to moving targets. Next, the variance of each temporal profile is estimated by segmenting each temporal profile into several segments to normalize the amplitude of the pulse signals. Finally, the proposed approach is tested via two infrared image sequences and compared with several conventional target detection algorithms. The results show our approach has a high effectiveness in extracting target temporal profiles amidst heavy and slowly evolving clutters.
Spatial adaptive upsampling filter for HDR image based on multiple luminance range
NASA Astrophysics Data System (ADS)
Chen, Qian; Su, Guan-ming; Peng, Yin
2014-03-01
In this paper, we propose an adaptive upsampling filter to spatially upscale HDR image based on luminance range of the HDR picture in each color channel. It first searches for the optimal luminance range values to partition an HDR image to three different parts: dark, mid-tone and highlight. Then we derive the optimal set of filter coefficients both vertically and horizontally for each part. When the HDR pixel is within the dark area, we apply one set of filter coefficients to vertically upsample the pixel. If the HDR pixel falls in mid-tone area, we apply another set of filter for vertical upsampling. Otherwise the HDR pixel is in highlight area, another set of filter will be applied for vertical upsampling. Horizontal upsampling will be carried out likewise based on its luminance. The inherent idea to partition HDR image to different luminance areas is based on the fact that most HDR images are created from multiple exposures. Different exposures usually demonstrate slight variation in captured signal statistics, such as noise level, subtle misalignment etc. Hence, to group different regions to three luminance partitions actually helps to eliminate the variation between signals, and to derive optimal filter for each group with signals of lesser variation is certainly more efficient than for the entire HDR image. Experimental results show that the proposed adaptive upsampling filter based on luminance ranges outperforms the optimal upsampling filter around 0.57dB for R channel, 0.44dB for G channel and 0.31dB for B channel.
A unified set-based test with adaptive filtering for gene-environment interaction analyses.
Liu, Qianying; Chen, Lin S; Nicolae, Dan L; Pierce, Brandon L
2016-06-01
In genome-wide gene-environment interaction (GxE) studies, a common strategy to improve power is to first conduct a filtering test and retain only the SNPs that pass the filtering in the subsequent GxE analyses. Inspired by two-stage tests and gene-based tests in GxE analysis, we consider the general problem of jointly testing a set of parameters when only a few are truly from the alternative hypothesis and when filtering information is available. We propose a unified set-based test that simultaneously considers filtering on individual parameters and testing on the set. We derive the exact distribution and approximate the power function of the proposed unified statistic in simplified settings, and use them to adaptively calculate the optimal filtering threshold for each set. In the context of gene-based GxE analysis, we show that although the empirical power function may be affected by many factors, the optimal filtering threshold corresponding to the peak of the power curve primarily depends on the size of the gene. We further propose a resampling algorithm to calculate P-values for each gene given the estimated optimal filtering threshold. The performance of the method is evaluated in simulation studies and illustrated via a genome-wide gene-gender interaction analysis using pancreatic cancer genome-wide association data. PMID:26496228
A unified set-based test with adaptive filtering for gene-environment interaction analyses
Liu, Qianying; Chen, Lin S.; Nicolae, Dan L.; Pierce, Brandon L.
2015-01-01
Summary In genome-wide gene-environment interaction (GxE) studies, a common strategy to improve power is to first conduct a filtering test and retain only the SNPs that pass the filtering in the subsequent GxE analyses. Inspired by two-stage tests and gene-based tests in GxE analysis, we consider the general problem of jointly testing a set of parameters when only a few are truly from the alternative hypothesis and when filtering information is available. We propose a unified set-based test that simultaneously considers filtering on individual parameters and testing on the set. We derive the exact distribution and approximate the power function of the proposed unified statistic in simplified settings, and use them to adaptively calculate the optimal filtering threshold for each set. In the context of gene-based GxE analysis, we show that although the empirical power function may be affected by many factors, the optimal filtering threshold corresponding to the peak of the power curve primarily depends on the size of the gene. We further propose a resampling algorithm to calculate p-values for each gene given the estimated optimal filtering threshold. The performance of the method is evaluated in simulation studies and illustrated via a genome-wide gene-gender interaction analysis using pancreatic cancer genome-wide association data. PMID:26496228
Guo, Qing; Sun, Ping; Yin, Jing-Min; Yu, Tian; Jiang, Dan
2016-05-01
Some unknown parameter estimation of electro-hydraulic system (EHS) should be considered in hydraulic controller design due to many parameter uncertainties in practice. In this study, a parametric adaptive backstepping control method is proposed to improve the dynamic behavior of EHS under parametric uncertainties and unknown disturbance (i.e., hydraulic parameters and external load). The unknown parameters of EHS model are estimated by the parametric adaptive estimation law. Then the recursive backstepping controller is designed by Lyapunov technique to realize the displacement control of EHS. To avoid explosion of virtual control in traditional backstepping, a decayed memory filter is presented to re-estimate the virtual control and the dynamic external load. The effectiveness of the proposed controller has been demonstrated by comparison with the controller without adaptive and filter estimation. The comparative experimental results in critical working conditions indicate the proposed approach can achieve better dynamic performance on the motion control of Two-DOF robotic arm. PMID:26920086
Guo, Qing; Sun, Ping; Yin, Jing-Min; Yu, Tian; Jiang, Dan
2016-05-01
Some unknown parameter estimation of electro-hydraulic system (EHS) should be considered in hydraulic controller design due to many parameter uncertainties in practice. In this study, a parametric adaptive backstepping control method is proposed to improve the dynamic behavior of EHS under parametric uncertainties and unknown disturbance (i.e., hydraulic parameters and external load). The unknown parameters of EHS model are estimated by the parametric adaptive estimation law. Then the recursive backstepping controller is designed by Lyapunov technique to realize the displacement control of EHS. To avoid explosion of virtual control in traditional backstepping, a decayed memory filter is presented to re-estimate the virtual control and the dynamic external load. The effectiveness of the proposed controller has been demonstrated by comparison with the controller without adaptive and filter estimation. The comparative experimental results in critical working conditions indicate the proposed approach can achieve better dynamic performance on the motion control of Two-DOF robotic arm.
NASA Technical Reports Server (NTRS)
Houts, R. C.; Vaughn, G. L.
1974-01-01
Three algorithms are developed for designing finite impulse response digital filters to be used for pulse shaping and channel equalization. The first is the Minimax algorithm which uses linear programming to design a frequency-sampling filter with a pulse shape that approximates the specification in a minimax sense. Design examples are included which accurately approximate a specified impulse response with a maximum error of 0.03 using only six resonators. The second algorithm is an extension of the Minimax algorithm to design preset equalizers for channels with known impulse responses. Both transversal and frequency-sampling equalizer structures are designed to produce a minimax approximation of a specified channel output waveform. Examples of these designs are compared as to the accuracy of the approximation, the resultant intersymbol interference (ISI), and the required transmitted energy. While the transversal designs are slightly more accurate, the frequency-sampling designs using six resonators have smaller ISI and energy values.
Measurement of subcellular texture by optical Gabor-like filtering with a digital micromirror device
Pasternack, Robert M.; Qian, Zhen; Zheng, Jing-Yi; Metaxas, Dimitris N.; White, Eileen; Boustany, Nada N.
2010-01-01
We demonstrate an optical Fourier processing method to quantify object texture arising from subcellular feature orientation within unstained living cells. Using a digital micromirror device as a Fourier spatial filter, we measured cellular responses to two-dimensional optical Gabor-like filters optimized to sense orientation of nonspherical particles, such as mitochondria, with a width around 0.45 μm. Our method showed significantly rounder structures within apoptosis-defective cells lacking the proapoptotic mitochondrial effectors Bax and Bak, when compared with Bax/Bak expressing cells functional for apoptosis, consistent with reported differences in mitochondrial shape in these cells. By decoupling spatial frequency resolution from image resolution, this method enables rapid analysis of nonspherical submicrometer scatterers in an under-sampled large field of view and yields spatially localized morphometric parameters that improve the quantitative assessment of biological function. PMID:18830354
Filter accuracy for the Lorenz 96 model: Fixed versus adaptive observation operators
NASA Astrophysics Data System (ADS)
Law, K. J. H.; Sanz-Alonso, D.; Shukla, A.; Stuart, A. M.
2016-06-01
In the context of filtering chaotic dynamical systems it is well-known that partial observations, if sufficiently informative, can be used to control the inherent uncertainty due to chaos. The purpose of this paper is to investigate, both theoretically and numerically, conditions on the observations of chaotic systems under which they can be accurately filtered. In particular, we highlight the advantage of adaptive observation operators over fixed ones. The Lorenz '96 model is used to exemplify our findings. We consider discrete-time and continuous-time observations in our theoretical developments. We prove that, for fixed observation operator, the 3DVAR filter can recover the system state within a neighbourhood determined by the size of the observational noise. It is required that a sufficiently large proportion of the state vector is observed, and an explicit form for such sufficient fixed observation operator is given. Numerical experiments, where the data is incorporated by use of the 3DVAR and extended Kalman filters, suggest that less informative fixed operators than given by our theory can still lead to accurate signal reconstruction. Adaptive observation operators are then studied numerically; we show that, for carefully chosen adaptive observation operators, the proportion of the state vector that needs to be observed is drastically smaller than with a fixed observation operator. Indeed, we show that the number of state coordinates that need to be observed may even be significantly smaller than the total number of positive Lyapunov exponents of the underlying system.
ADAPTIVE LAPLACIAN FILTERING FOR SENSORIMOTOR RHYTHM-BASED BRAIN-COMPUTER INTERFACES
Lu, Jun; McFarland, Dennis J.; Wolpaw, Jonathan R.
2013-01-01
Objective Sensorimotor rhythms (SMRs) are 8–30 Hz oscillations in the EEG recorded from the scalp over sensorimotor cortex that change with movement and/or movement imagery. Many brain-computer interface (BCI) studies have shown that people can learn to control SMR amplitudes and can use that control to move cursors and other objects in one, two, or three dimensions. At the same time, if SMR-based BCIs are to be useful for people with neuromuscular disabilities, their accuracy and reliability must be improved substantially. These BCIs often use spatial filtering methods such as common average reference (CAR), Laplacian (LAP) filter or common spatial pattern (CSP) filter to enhance the signal-to-ratio of EEG. Here we test the hypothesis that a new filter design, called an “adaptive Laplacian (ALAP) filter,” can provide better performance for SMR-based BCIs. Approach An ALAP filter employs a Gaussian kernel to construct a smooth spatial gradient of channel weights, and then simultaneously seeks the optimal kernel radius of this spatial filter and the regularization parameter of linear ridge regression. This optimization is based on minimizing leave-one-out cross-validation error through a gradient descent method, and is computationally feasible. Main results Using a variety of kinds of BCI data from a total of 22 individuals, we compare the performances of ALAP filter to CAR, small LAP, large LAP and CSP filter. With a large number of channels and limited data, ALAP performs significantly better than CSP, CAR, small LAP and large LAP both in classification accuracy as well as in mean squared error. Using fewer channels restricted to motor areas, ALAP is still superior to CAR, small LAP and large LAP, but equally matched to CSP. Significance Thus, ALAP may help to improve the accuracy and robustness of SMR-based BCIs. PMID:23220879
NASA Technical Reports Server (NTRS)
Keel, Byron M.
1989-01-01
An optimum adaptive clutter rejection filter for use with airborne Doppler weather radar is presented. The radar system is being designed to operate at low-altitudes for the detection of windshear in an airport terminal area where ground clutter returns may mask the weather return. The coefficients of the adaptive clutter rejection filter are obtained using a complex form of a square root normalized recursive least squares lattice estimation algorithm which models the clutter return data as an autoregressive process. The normalized lattice structure implementation of the adaptive modeling process for determining the filter coefficients assures that the resulting coefficients will yield a stable filter and offers possible fixed point implementation. A 10th order FIR clutter rejection filter indexed by geographical location is designed through autoregressive modeling of simulated clutter data. Filtered data, containing simulated dry microburst and clutter return, are analyzed using pulse-pair estimation techniques. To measure the ability of the clutter rejection filters to remove the clutter, results are compared to pulse-pair estimates of windspeed within a simulated dry microburst without clutter. In the filter evaluation process, post-filtered pulse-pair width estimates and power levels are also used to measure the effectiveness of the filters. The results support the use of an adaptive clutter rejection filter for reducing the clutter induced bias in pulse-pair estimates of windspeed.
An adaptive filter for studying the life cycle of optical rogue waves.
Liu, Chu; Rees, Eric J; Laurila, Toni; Jian, Shuisheng; Kaminski, Clemens F
2010-12-01
We present an adaptive numerical filter for analyzing fiber-length dependent properties of optical rogue waves, which are highly intense and extremely red-shifted solitons that arise during supercontinuum generation in photonic crystal fiber. We use this filter to study a data set of 1000 simulated supercontinuum pulses, produced from 5 ps pump pulses containing random noise. Optical rogue waves arise in different supercontinuum pulses at various positions along the fiber, and exhibit a lifecycle: their intensity peaks over a finite range of fiber length before declining slowly.
NASA Astrophysics Data System (ADS)
Zhang, Deying; Jiang, Qin; Ahmed, Mohiuddin
2012-05-01
Software defined radio (SDR) hardware platform is in high demand for ultra-wideband digital EW receiver to carry out different mission requirements. Due to the limitations of current Analog-to-Digital conversion (ADC) techniques, the ideal receiver structure of SDR, with digital RF frequency conversion, cannot be achieved. In this article, a new channelization technique called ADC polyphase fast Fourier transformation (ADC PFFT) filter bank channelization is demonstrated. The key concept is to separate the speed at which the two functional units of an ADC - the sample and hold and the quantizer - operate. The sample and hold unit operates at the sampling frequency fs and the quantizer (the speed limiting factor in ADCs) can operate at a much slower rate, fs/M, where M is the decimation factor for digital filter bank. By integrated this ADC PFFT technique in ultra-wideband digital channelized EW receivers, directly digital RF down conversion can be achieved. With the ADC PFFT channelization for RF down conversion and polyphase FFT channelization for IF down conversion, 2-18 GHz frequency coverage can be accomplished in such ultra-wideband digital channelized EW receivers without the requirement of EW receivers being time-shared among outputs from many subbands due to bandwidth limitation in digital IF channelized EW receivers. Because the frequency down conversion from RF to BB are all processed digitally, issues such as image rejection and I/Q imbalance due to analog mixing will be eliminated in the ultrawideband digital channelized EW receivers.
NASA Astrophysics Data System (ADS)
Royer, L.; Manen, S.; Gay, P.
2010-12-01
A very-front-end electronics dedicated to high granularity calorimeters has been designed and its performance measured. This electronics performs the amplification of the charge delivered by the detector thanks to a low-noise Charge Sensitive Amplifier. The dynamic range is improved using a bandpass filter based on a Gated Integrator. Studying its weighting function, we show that this filter is more efficient than standard CRRC shaper, thanks to the integration time which can be expand near the bunch interval time, whereas the peaking time of the CRRC shaper is limited to pile-up consideration. Moreover, the Gated Integrator performs intrinsically the analog memorization of the signal before its delayed digital conversion. The analog-to-digital conversion is performed through a 12-bit cyclic ADC specifically developed for this application. The very-front-end channel has been fabricated using a 0.35 μm CMOS technology. Measurements show a global non-linearity better than 0.1%. The Equivalent Noise Charge at the input of the channel is evaluated to 1.8 fC, compare to the maximum input charge of 10 pC. The power consumption of the complete channel is limited to 6.5 mW.
Digital image analysis of cigarette filter staining to estimate smoke exposure.
O'Connor, Richard J; Kozlowski, Lynn T; Hammond, David; Vance, Tammy T; Stitt, Joseph P; Cummings, K Michael
2007-08-01
Sufficient variation exists in how people smoke each cigarette that the number of cigarettes smoked daily and the years of smoking represent only crude measures of exposure to the toxins in tobacco smoke. Previous research has shown that spent cigarette filters can provide information about how individuals smoke cigarettes. Digital image analysis has been used to identify filter vent blocking and may also provide an inexpensive, unobtrusive index of overall smoke exposure. A total of 1,124 cigarette butts smoked by 53 participants in a smoking topography study were imaged and analyzed. Imaging showed test-retest reliability of more than 95% among those smoking their own brand. Mean color scores (CIELAB system) showed acceptable stability (>.60) across days, paralleling the basic stability of smoking topography measures across waves. A principal components scoring showed that center tar staining, edge tar staining, and their interaction were significantly related to total smoke volume, accounting for 73% of the variation. Estimated smoke volume was a significant predictor of salivary cotinine when accounting for cigarettes smoked per day. These data suggest that digital image analysis of spent cigarette butts can serve as a reliable proxy measure of total smoke volume.
Adaptive nonlocal means filtering based on local noise level for CT denoising
Li, Zhoubo; Trzasko, Joshua D.; Lake, David S.; Blezek, Daniel J.; Manduca, Armando; Yu, Lifeng; Fletcher, Joel G.; McCollough, Cynthia H.
2014-01-15
Purpose: To develop and evaluate an image-domain noise reduction method based on a modified nonlocal means (NLM) algorithm that is adaptive to local noise level of CT images and to implement this method in a time frame consistent with clinical workflow. Methods: A computationally efficient technique for local noise estimation directly from CT images was developed. A forward projection, based on a 2D fan-beam approximation, was used to generate the projection data, with a noise model incorporating the effects of the bowtie filter and automatic exposure control. The noise propagation from projection data to images was analytically derived. The analytical noise map was validated using repeated scans of a phantom. A 3D NLM denoising algorithm was modified to adapt its denoising strength locally based on this noise map. The performance of this adaptive NLM filter was evaluated in phantom studies in terms of in-plane and cross-plane high-contrast spatial resolution, noise power spectrum (NPS), subjective low-contrast spatial resolution using the American College of Radiology (ACR) accreditation phantom, and objective low-contrast spatial resolution using a channelized Hotelling model observer (CHO). Graphical processing units (GPU) implementation of this noise map calculation and the adaptive NLM filtering were developed to meet demands of clinical workflow. Adaptive NLM was piloted on lower dose scans in clinical practice. Results: The local noise level estimation matches the noise distribution determined from multiple repetitive scans of a phantom, demonstrated by small variations in the ratio map between the analytical noise map and the one calculated from repeated scans. The phantom studies demonstrated that the adaptive NLM filter can reduce noise substantially without degrading the high-contrast spatial resolution, as illustrated by modulation transfer function and slice sensitivity profile results. The NPS results show that adaptive NLM denoising preserves the
Adaptive Laplacian filtering for sensorimotor rhythm-based brain-computer interfaces
NASA Astrophysics Data System (ADS)
Lu, Jun; McFarland, Dennis J.; Wolpaw, Jonathan R.
2013-02-01
Objective. Sensorimotor rhythms (SMRs) are 8-30 Hz oscillations in the electroencephalogram (EEG) recorded from the scalp over sensorimotor cortex that change with movement and/or movement imagery. Many brain-computer interface (BCI) studies have shown that people can learn to control SMR amplitudes and can use that control to move cursors and other objects in one, two or three dimensions. At the same time, if SMR-based BCIs are to be useful for people with neuromuscular disabilities, their accuracy and reliability must be improved substantially. These BCIs often use spatial filtering methods such as common average reference (CAR), Laplacian (LAP) filter or common spatial pattern (CSP) filter to enhance the signal-to-noise ratio of EEG. Here, we test the hypothesis that a new filter design, called an ‘adaptive Laplacian (ALAP) filter’, can provide better performance for SMR-based BCIs. Approach. An ALAP filter employs a Gaussian kernel to construct a smooth spatial gradient of channel weights and then simultaneously seeks the optimal kernel radius of this spatial filter and the regularization parameter of linear ridge regression. This optimization is based on minimizing the leave-one-out cross-validation error through a gradient descent method and is computationally feasible. Main results. Using a variety of kinds of BCI data from a total of 22 individuals, we compare the performances of ALAP filter to CAR, small LAP, large LAP and CSP filters. With a large number of channels and limited data, ALAP performs significantly better than CSP, CAR, small LAP and large LAP both in classification accuracy and in mean-squared error. Using fewer channels restricted to motor areas, ALAP is still superior to CAR, small LAP and large LAP, but equally matched to CSP. Significance. Thus, ALAP may help to improve the accuracy and robustness of SMR-based BCIs.
Rimell, Andrew N; Mansfield, Neil J; Paddan, Gurmail S
2015-01-01
Many workers are exposed to noise in their industrial environment. Excessive noise exposure can cause health problems and therefore it is important that the worker's noise exposure is assessed. This may require measurement by an equipment manufacturer or the employer. Human exposure to noise may be measured using microphones; however, weighting filters are required to correlate the physical noise sound pressure level measurements to the human's response to an auditory stimulus. IEC 61672-1 and ANSI S1.43 describe suitable weighting filters, but do not explain how to implement them for digitally recorded sound pressure level data. By using the bilinear transform, it is possible to transform the analogue equations given in the standards into digital filters. This paper describes the implementation of the weighting filters as digital IIR (Infinite Impulse Response) filters and provides all the necessary formulae to directly calculate the filter coefficients for any sampling frequency. Thus, the filters in the standards can be implemented in any numerical processing software (such as a spreadsheet or programming language running on a PC, mobile device or embedded system). PMID:25224333
RIMELL, Andrew N.; MANSFIELD, Neil J.; PADDAN, Gurmail S.
2014-01-01
Many workers are exposed to noise in their industrial environment. Excessive noise exposure can cause health problems and therefore it is important that the worker’s noise exposure is assessed. This may require measurement by an equipment manufacturer or the employer. Human exposure to noise may be measured using microphones; however, weighting filters are required to correlate the physical noise sound pressure level measurements to the human’s response to an auditory stimulus. IEC 61672-1 and ANSI S1.43 describe suitable weighting filters, but do not explain how to implement them for digitally recorded sound pressure level data. By using the bilinear transform, it is possible to transform the analogue equations given in the standards into digital filters. This paper describes the implementation of the weighting filters as digital IIR (Infinite Impulse Response) filters and provides all the necessary formulae to directly calculate the filter coefficients for any sampling frequency. Thus, the filters in the standards can be implemented in any numerical processing software (such as a spreadsheet or programming language running on a PC, mobile device or embedded system). PMID:25224333
Rucci, Michael; Hardie, Russell C; Barnard, Kenneth J
2014-05-01
In this paper, we present a computationally efficient video restoration algorithm to address both blur and noise for a Nyquist sampled imaging system. The proposed method utilizes a temporal Kalman filter followed by a correlation-model based spatial adaptive Wiener filter (AWF). The Kalman filter employs an affine background motion model and novel process-noise variance estimate. We also propose and demonstrate a new multidelay temporal Kalman filter designed to more robustly treat local motion. The AWF is a spatial operation that performs deconvolution and adapts to the spatially varying residual noise left in the Kalman filter stage. In image areas where the temporal Kalman filter is able to provide significant noise reduction, the AWF can be aggressive in its deconvolution. In other areas, where less noise reduction is achieved with the Kalman filter, the AWF balances the deconvolution with spatial noise reduction. In this way, the Kalman filter and AWF work together effectively, but without the computational burden of full joint spatiotemporal processing. We also propose a novel hybrid system that combines a temporal Kalman filter and BM3D processing. To illustrate the efficacy of the proposed methods, we test the algorithms on both simulated imagery and video collected with a visible camera.
Tone reproduction for high-dynamic range imaging based on adaptive filtering
NASA Astrophysics Data System (ADS)
Ha, Changwoo; Lee, Joohyun; Jeong, Jechang
2014-03-01
A tone reproduction algorithm with enhanced contrast of high-dynamic range images on conventional low-dynamic range display devices is presented. The proposed algorithm consists mainly of block-based parameter estimation, a characteristic-based luminance adjustment, and an adaptive Gaussian filter using minimum description length. Instead of relying only on the reduction of the dynamic range, a characteristic-based luminance adjustment process modifies the luminance values. The Gaussian-filtered luminance value is obtained from appropriate value of variance, and the contrast is then enhanced through the use of a relation between the adjusted luminance and Gaussian-filtered luminance values. In the final tone-reproduction process, the proposed algorithm combines color and luminance components in order to preserve the color consistency. The experimental results demonstrate that the proposed algorithm achieves a good subjective quality while enhancing the contrast of the image details.
Ensembles of adaptive spatial filters increase BCI performance: an online evaluation
NASA Astrophysics Data System (ADS)
Sannelli, Claudia; Vidaurre, Carmen; Müller, Klaus-Robert; Blankertz, Benjamin
2016-08-01
Objective: In electroencephalographic (EEG) data, signals from distinct sources within the brain are widely spread by volume conduction and superimposed such that sensors receive mixtures of a multitude of signals. This reduction of spatial information strongly hampers single-trial analysis of EEG data as, for example, required for brain-computer interfacing (BCI) when using features from spontaneous brain rhythms. Spatial filtering techniques are therefore greatly needed to extract meaningful information from EEG. Our goal is to show, in online operation, that common spatial pattern patches (CSPP) are valuable to counteract this problem. Approach: Even though the effect of spatial mixing can be encountered by spatial filters, there is a trade-off between performance and the requirement of calibration data. Laplacian derivations do not require calibration data at all, but their performance for single-trial classification is limited. Conversely, data-driven spatial filters, such as common spatial patterns (CSP), can lead to highly distinctive features; however they require a considerable amount of training data. Recently, we showed in an offline analysis that CSPP can establish a valuable compromise. In this paper, we confirm these results in an online BCI study. In order to demonstrate the paramount feature that CSPP requires little training data, we used them in an adaptive setting with 20 participants and focused on users who did not have success with previous BCI approaches. Main results: The results of the study show that CSPP adapts faster and thereby allows users to achieve better feedback within a shorter time than previous approaches performed with Laplacian derivations and CSP filters. The success of the experiment highlights that CSPP has the potential to further reduce BCI inefficiency. Significance: CSPP are a valuable compromise between CSP and Laplacian filters. They allow users to attain better feedback within a shorter time and thus reduce BCI
Ensembles of adaptive spatial filters increase BCI performance: an online evaluation
NASA Astrophysics Data System (ADS)
Sannelli, Claudia; Vidaurre, Carmen; Müller, Klaus-Robert; Blankertz, Benjamin
2016-08-01
Objective: In electroencephalographic (EEG) data, signals from distinct sources within the brain are widely spread by volume conduction and superimposed such that sensors receive mixtures of a multitude of signals. This reduction of spatial information strongly hampers single-trial analysis of EEG data as, for example, required for brain–computer interfacing (BCI) when using features from spontaneous brain rhythms. Spatial filtering techniques are therefore greatly needed to extract meaningful information from EEG. Our goal is to show, in online operation, that common spatial pattern patches (CSPP) are valuable to counteract this problem. Approach: Even though the effect of spatial mixing can be encountered by spatial filters, there is a trade-off between performance and the requirement of calibration data. Laplacian derivations do not require calibration data at all, but their performance for single-trial classification is limited. Conversely, data-driven spatial filters, such as common spatial patterns (CSP), can lead to highly distinctive features; however they require a considerable amount of training data. Recently, we showed in an offline analysis that CSPP can establish a valuable compromise. In this paper, we confirm these results in an online BCI study. In order to demonstrate the paramount feature that CSPP requires little training data, we used them in an adaptive setting with 20 participants and focused on users who did not have success with previous BCI approaches. Main results: The results of the study show that CSPP adapts faster and thereby allows users to achieve better feedback within a shorter time than previous approaches performed with Laplacian derivations and CSP filters. The success of the experiment highlights that CSPP has the potential to further reduce BCI inefficiency. Significance: CSPP are a valuable compromise between CSP and Laplacian filters. They allow users to attain better feedback within a shorter time and thus reduce BCI
Multicomponent AM-FM demodulation based on energy separation and adaptive filtering
NASA Astrophysics Data System (ADS)
Qin, Yi
2013-07-01
Multicomponent AM-FM demodulation is an important tool in many engineering applications. To improve the demodulation accuracy of the commonly used methods, such as iterative Hilbert transform (IHT) and Hilbert-Huang transform (HHT), a new multicomponent AM-FM demodulation method is proposed in this paper. The proposed method achieves multicomponent demodulation by using an iteratively energy separation algorithm and adaptive low-pass filtering. Using the frequency spectra of instantaneous amplitude and frequency obtained by the energy separation algorithm at each level, the used filters are adaptively designed. In addition, this proposed method uses symmetric extension to solve the boundary effect in the estimation of instantaneous amplitudes and frequencies. The demodulation process is automatic for an arbitrary signal. Simulation and application results show that the proposed method has high demodulation accuracy than IHT, HHT and other typical methods, and it can be effectively applied to extracting weak fault feature from mechanical vibration signals.
NASA Technical Reports Server (NTRS)
Penland, Cecile; Ghil, Michael; Weickmann, Klaus M.
1991-01-01
The spectral resolution and statistical significance of a harmonic analysis obtained by low-order MEM can be improved by subjecting the data to an adaptive filter. This adaptive filter consists of projecting the data onto the leading temporal empirical orthogonal functions obtained from singular spectrum analysis (SSA). The combined SSA-MEM method is applied both to a synthetic time series and a time series of AAM data. The procedure is very effective when the background noise is white and less so when the background noise is red. The latter case obtains in the AAM data. Nevertheless, reliable evidence for intraseasonal and interannual oscillations in AAM is detected. The interannual periods include a quasi-biennial one and an LF one, of 5 years, both related to the El Nino/Southern Oscillation. In the intraseasonal band, separate oscillations of about 48.5 and 51 days are ascertained.
Heel effect adaptive flat field correction of digital x-ray detectors
Yu, Yongjian; Wang, Jue
2013-08-15
Purpose: Anode heel effect renders large-scale background nonuniformities in digital radiographs. Conventional offset/gain calibration is performed at mono source-to-image distance (SID), and disregards the SID-dependent characteristic of heel effect. It results in a residual nonuniform background in the corrected radiographs when the SID settings for calibration and correction differ. In this work, the authors develop a robust and efficient computational method for digital x-ray detector gain correction adapted to SID-variant heel effect, without resorting to physical filters, phantoms, complicated heel effect models, or multiple-SID calibration and interpolation.Methods: The authors present the Duo-SID projection correction method. In our approach, conventional offset/gain calibrations are performed only twice, at the minimum and maximum SIDs of the system in typical clinical use. A fast iterative separation algorithm is devised to extract the detector gain and basis heel patterns from the min/max SID calibrations. The resultant detector gain is independent of SID, while the basis heel patterns are parameterized by the min- and max-SID. The heel pattern at any SID is obtained from the min-SID basis heel pattern via projection imaging principles. The system gain desired at a specific acquisition SID is then constructed using the projected heel pattern and detector gain map.Results: The method was evaluated for flat field and anatomical phantom image corrections. It demonstrated promising improvements over interpolation and conventional gain calibration/correction methods, lowering their correction errors by approximately 70% and 80%, respectively. The separation algorithm was able to extract the detector gain and heel patterns with less than 2% error, and the Duo-SID corrected images showed perceptually appealing uniform background across the detector.Conclusions: The Duo-SID correction method has substantially improved on conventional offset/gain corrections for
Biohybrid Control of General Linear Systems Using the Adaptive Filter Model of Cerebellum
Wilson, Emma D.; Assaf, Tareq; Pearson, Martin J.; Rossiter, Jonathan M.; Dean, Paul; Anderson, Sean R.; Porrill, John
2015-01-01
The adaptive filter model of the cerebellar microcircuit has been successfully applied to biological motor control problems, such as the vestibulo-ocular reflex (VOR), and to sensory processing problems, such as the adaptive cancelation of reafferent noise. It has also been successfully applied to problems in robotics, such as adaptive camera stabilization and sensor noise cancelation. In previous applications to inverse control problems, the algorithm was applied to the velocity control of a plant dominated by viscous and elastic elements. Naive application of the adaptive filter model to the displacement (as opposed to velocity) control of this plant results in unstable learning and control. To be more generally useful in engineering problems, it is essential to remove this restriction to enable the stable control of plants of any order. We address this problem here by developing a biohybrid model reference adaptive control (MRAC) scheme, which stabilizes the control algorithm for strictly proper plants. We evaluate the performance of this novel cerebellar-inspired algorithm with MRAC scheme in the experimental control of a dielectric electroactive polymer, a class of artificial muscle. The results show that the augmented cerebellar algorithm is able to accurately control the displacement response of the artificial muscle. The proposed solution not only greatly extends the practical applicability of the cerebellar-inspired algorithm, but may also shed light on cerebellar involvement in a wider range of biological control tasks. PMID:26257638
Adaptive filter design based on the LMS algorithm for delay elimination in TCR/FC compensators.
Hooshmand, Rahmat Allah; Torabian Esfahani, Mahdi
2011-04-01
Thyristor controlled reactor with fixed capacitor (TCR/FC) compensators have the capability of compensating reactive power and improving power quality phenomena. Delay in the response of such compensators degrades their performance. In this paper, a new method based on adaptive filters (AF) is proposed in order to eliminate delay and increase the response of the TCR compensator. The algorithm designed for the adaptive filters is performed based on the least mean square (LMS) algorithm. In this design, instead of fixed capacitors, band-pass LC filters are used. To evaluate the filter, a TCR/FC compensator was used for nonlinear and time varying loads of electric arc furnaces (EAFs). These loads caused occurrence of power quality phenomena in the supplying system, such as voltage fluctuation and flicker, odd and even harmonics and unbalancing in voltage and current. The above design was implemented in a realistic system model of a steel complex. The simulation results show that applying the proposed control in the TCR/FC compensator efficiently eliminated delay in the response and improved the performance of the compensator in the power system.
Design of adaptive control systems by means of self-adjusting transversal filters
NASA Technical Reports Server (NTRS)
Merhav, S. J.
1986-01-01
The design of closed-loop adaptive control systems based on nonparametric identification was addressed. Implementation is by self-adjusting Least Mean Square (LMS) transversal filters. The design concept is Model Reference Adaptive Control (MRAC). Major issues are to preserve the linearity of the error equations of each LMS filter, and to prevent estimation bias that is due to process or measurement noise, thus providing necessary conditions for the convergence and stability of the control system. The controlled element is assumed to be asymptotically stable and minimum phase. Because of the nonparametric Finite Impulse Response (FIR) estimates provided by the LMS filters, a-priori information on the plant model is needed only in broad terms. Following a survey of control system configurations and filter design considerations, system implementation is shown here in Single Input Single Output (SISO) format which is readily extendable to multivariable forms. In extensive computer simulation studies the controlled element is represented by a second-order system with widely varying damping, natural frequency, and relative degree.
Adaptive filter design based on the LMS algorithm for delay elimination in TCR/FC compensators.
Hooshmand, Rahmat Allah; Torabian Esfahani, Mahdi
2011-04-01
Thyristor controlled reactor with fixed capacitor (TCR/FC) compensators have the capability of compensating reactive power and improving power quality phenomena. Delay in the response of such compensators degrades their performance. In this paper, a new method based on adaptive filters (AF) is proposed in order to eliminate delay and increase the response of the TCR compensator. The algorithm designed for the adaptive filters is performed based on the least mean square (LMS) algorithm. In this design, instead of fixed capacitors, band-pass LC filters are used. To evaluate the filter, a TCR/FC compensator was used for nonlinear and time varying loads of electric arc furnaces (EAFs). These loads caused occurrence of power quality phenomena in the supplying system, such as voltage fluctuation and flicker, odd and even harmonics and unbalancing in voltage and current. The above design was implemented in a realistic system model of a steel complex. The simulation results show that applying the proposed control in the TCR/FC compensator efficiently eliminated delay in the response and improved the performance of the compensator in the power system. PMID:21193194
Adaptive non-local means filtering based on local noise level for CT denoising
NASA Astrophysics Data System (ADS)
Li, Zhoubo; Yu, Lifeng; Trzasko, Joshua D.; Fletcher, Joel G.; McCollough, Cynthia H.; Manduca, Armando
2012-03-01
Radiation dose from CT scans is an increasing health concern in the practice of radiology. Higher dose scans can produce clearer images with high diagnostic quality, but may increase the potential risk of radiation-induced cancer or other side effects. Lowering radiation dose alone generally produces a noisier image and may degrade diagnostic performance. Recently, CT dose reduction based on non-local means (NLM) filtering for noise reduction has yielded promising results. However, traditional NLM denoising operates under the assumption that image noise is spatially uniform noise, while in CT images the noise level varies significantly within and across slices. Therefore, applying NLM filtering to CT data using a global filtering strength cannot achieve optimal denoising performance. In this work, we have developed a technique for efficiently estimating the local noise level for CT images, and have modified the NLM algorithm to adapt to local variations in noise level. The local noise level estimation technique matches the true noise distribution determined from multiple repetitive scans of a phantom object very well. The modified NLM algorithm provides more effective denoising of CT data throughout a volume, and may allow significant lowering of radiation dose. Both the noise map calculation and the adaptive NLM filtering can be performed in times that allow integration with the clinical workflow.
Detecting curvatures in digital images using filters derived from differential geometry
NASA Astrophysics Data System (ADS)
Toro Giraldo, Juanita
2015-09-01
Detection of curvature in digital images is an important theoretical and practical problem in image processing. Many important features in an image are associated with curvature and the detection of such features is reduced to detection and characterization of curvatures. Differential geometry studies many kinds of curvature operators and from these curvature operators is possible to derive powerful filters for image processing which are able to detect curvature in digital images and videos. The curvature operators are formulated in terms of partial differential operators which can be applied to images via convolution with generalized kernels derived from the the Korteweg- de Vries soliton . We present an algorithm for detection of curvature in digital images which is implemented using the Maple package ImageTools. Some experiments were performed and the results were very good. In a future research will be interesting to compare the results using the Korteweg-de Vries soliton with the results obtained using Airy derivatives. It is claimed that the resulting curvature detectors could be incorporated in standard programs for image processing.
NASA Astrophysics Data System (ADS)
Man, Jun; Li, Weixuan; Zeng, Lingzao; Wu, Laosheng
2016-06-01
The ensemble Kalman filter (EnKF) has gained popularity in hydrological data assimilation problems. As a Monte Carlo based method, a sufficiently large ensemble size is usually required to guarantee the accuracy. As an alternative approach, the probabilistic collocation based Kalman filter (PCKF) employs the polynomial chaos expansion (PCE) to represent and propagate the uncertainties in parameters and states. However, PCKF suffers from the so-called "curse of dimensionality". Its computational cost increases drastically with the increasing number of parameters and system nonlinearity. Furthermore, PCKF may fail to provide accurate estimations due to the joint updating scheme for strongly nonlinear models. Motivated by recent developments in uncertainty quantification and EnKF, we propose a restart adaptive probabilistic collocation based Kalman filter (RAPCKF) for data assimilation in unsaturated flow problems. During the implementation of RAPCKF, the important parameters are identified and active PCE basis functions are adaptively selected at each assimilation step; the "restart" scheme is utilized to eliminate the inconsistency between updated model parameters and states variables. The performance of RAPCKF is systematically tested with numerical cases of unsaturated flow models. It is shown that the adaptive approach and restart scheme can significantly improve the performance of PCKF. Moreover, RAPCKF has been demonstrated to be more efficient than EnKF with the same computational cost.
Subotić, Miško; Šarić, Zoran; Jovičić, Slobodan T
2012-03-01
Transient otoacoustic emission (TEOAE) is a method widely used in clinical practice for assessment of hearing quality. The main problem in TEOAE detection is its much lower level than the level of environmental and biological noise. While the environmental noise level can be controlled, the biological noise can be only reduced by appropriate signal processing. This paper presents a new two-probe preprocessing TEOAE system for suppression of the biological noise by adaptive filtering. The system records biological noises in both ears and applies a specific adaptive filtering approach for suppression of biological noise in the ear canal with TEOAE. The adaptive filtering approach includes robust sign error LMS algorithm, stimuli response summation according to the derived non-linear response (DNLR) technique, subtraction of the estimated TEOAE signal and residual noise suppression. The proposed TEOAE detection system is tested by three quality measures: signal-to-noise ratio (S/N), reproducibility of TEOAE, and measurement time. The maximal TEOAE detection improvement is dependent on the coherence function between biological noise in left and right ears. The experimental results show maximal improvement of 7 dB in S/N, improvement in reproducibility near 40% and reduction in duration of TEOAE measurement of over 30%.
Samala, Ravi K.; Chan, Heang-Ping; Lu, Yao; Hadjiiski, Lubomir; Wei, Jun; Sahiner, Berkman; Helvie, Mark A.
2014-01-01
Purpose: Develop a computer-aided detection (CADe) system for clustered microcalcifications in digital breast tomosynthesis (DBT) volume enhanced with multiscale bilateral filtering (MSBF) regularization. Methods: With Institutional Review Board approval and written informed consent, two-view DBT of 154 breasts, of which 116 had biopsy-proven microcalcification (MC) clusters and 38 were free of MCs, was imaged with a General Electric GEN2 prototype DBT system. The DBT volumes were reconstructed with MSBF-regularized simultaneous algebraic reconstruction technique (SART) that was designed to enhance MCs and reduce background noise while preserving the quality of other tissue structures. The contrast-to-noise ratio (CNR) of MCs was further improved with enhancement-modulated calcification response (EMCR) preprocessing, which combined multiscale Hessian response to enhance MCs by shape and bandpass filtering to remove the low-frequency structured background. MC candidates were then located in the EMCR volume using iterative thresholding and segmented by adaptive region growing. Two sets of potential MC objects, cluster centroid objects and MC seed objects, were generated and the CNR of each object was calculated. The number of candidates in each set was controlled based on the breast volume. Dynamic clustering around the centroid objects grouped the MC candidates to form clusters. Adaptive criteria were designed to reduce false positive (FP) clusters based on the size, CNR values and the number of MCs in the cluster, cluster shape, and cluster based maximum intensity projection. Free-response receiver operating characteristic (FROC) and jackknife alternative FROC (JAFROC) analyses were used to assess the performance and compare with that of a previous study. Results: Unpaired two-tailed t-test showed a significant increase (p < 0.0001) in the ratio of CNRs for MCs with and without MSBF regularization compared to similar ratios for FPs. For view-based detection, a
Samala, Ravi K. Chan, Heang-Ping; Lu, Yao; Hadjiiski, Lubomir; Wei, Jun; Helvie, Mark A.; Sahiner, Berkman
2014-02-15
Purpose: Develop a computer-aided detection (CADe) system for clustered microcalcifications in digital breast tomosynthesis (DBT) volume enhanced with multiscale bilateral filtering (MSBF) regularization. Methods: With Institutional Review Board approval and written informed consent, two-view DBT of 154 breasts, of which 116 had biopsy-proven microcalcification (MC) clusters and 38 were free of MCs, was imaged with a General Electric GEN2 prototype DBT system. The DBT volumes were reconstructed with MSBF-regularized simultaneous algebraic reconstruction technique (SART) that was designed to enhance MCs and reduce background noise while preserving the quality of other tissue structures. The contrast-to-noise ratio (CNR) of MCs was further improved with enhancement-modulated calcification response (EMCR) preprocessing, which combined multiscale Hessian response to enhance MCs by shape and bandpass filtering to remove the low-frequency structured background. MC candidates were then located in the EMCR volume using iterative thresholding and segmented by adaptive region growing. Two sets of potential MC objects, cluster centroid objects and MC seed objects, were generated and the CNR of each object was calculated. The number of candidates in each set was controlled based on the breast volume. Dynamic clustering around the centroid objects grouped the MC candidates to form clusters. Adaptive criteria were designed to reduce false positive (FP) clusters based on the size, CNR values and the number of MCs in the cluster, cluster shape, and cluster based maximum intensity projection. Free-response receiver operating characteristic (FROC) and jackknife alternative FROC (JAFROC) analyses were used to assess the performance and compare with that of a previous study. Results: Unpaired two-tailedt-test showed a significant increase (p < 0.0001) in the ratio of CNRs for MCs with and without MSBF regularization compared to similar ratios for FPs. For view-based detection, a
Adapted fan-beam volume reconstruction for stationary digital breast tomosynthesis
NASA Astrophysics Data System (ADS)
Wu, Gongting; Inscoe, Christine; Calliste, Jabari; Lee, Yueh Z.; Zhou, Otto; Lu, Jianping
2015-03-01
Digital breast tomosynthesis (DBT) provides 3D images which remove tissue overlapping and enables better cancer detection. Stationary DBT (s-DBT) uses a fixed X-ray source array to eliminate image blur associated with the x-ray tube motion and provides better image quality as well as faster scanning speed. For limited angle tomography, it is known that iterative reconstructions generally produces better images with fewer artifacts. However classical iterative tomosynthesis reconstruction methods are considerably slower than the filtered back-projection (FBP) reconstruction. The linear x-ray source array used in s-DBT enables a computationally more efficient volume reconstruction using adapted fan beam slice sampling, which transforms the 3-D cone beam reconstruction to a series of 2-D fan beam slice reconstructions. In this paper, we report the first results of the adapted fan-beam volume reconstruction (AFVR) for the s-DBT system currently undergoing clinical trial at UNC, using a simultaneous algebraic reconstruction technique (SART). An analytic breast phantom is used to quantitatively analyze the performance of the AFVR. Image quality of a CIRS biopsy phantom reconstructed using the AFVR method are compared to that using FBP algorithm with a commercial package. Our results show a significant reduction in memory usage and an order of magnitude speed increase in reconstructing speed using AFVR compared to that of classical 3-D cone beam reconstruction. We also observed that images reconstructed by AFVR with SART had a better sharpness and contrast compared to that using FBP. Preliminary results on patient images demonstrates the improved detectability of the s-DBT system over the mammography. By utilizing parallel computing with graphics processing unit (GPU), it is expected that the AFVR method will enable iterative reconstruction technique to be practical for clinical applications.
Ship detection for high resolution optical imagery with adaptive target filter
NASA Astrophysics Data System (ADS)
Ju, Hongbin
2015-10-01
Ship detection is important due to both its civil and military use. In this paper, we propose a novel ship detection method, Adaptive Target Filter (ATF), for high resolution optical imagery. The proposed framework can be grouped into two stages, where in the first stage, a test image is densely divided into different detection windows and each window is transformed to a feature vector in its feature space. The Histograms of Oriented Gradients (HOG) is accumulated as a basic feature descriptor. In the second stage, the proposed ATF highlights all the ship regions and suppresses the undesired backgrounds adaptively. Each detection window is assigned a score, which represents the degree of the window belonging to a certain ship category. The ATF can be adaptively obtained by the weighted Logistic Regression (WLR) according to the distribution of backgrounds and targets of the input image. The main innovation of our method is that we only need to collect positive training samples to build the filter, while the negative training samples are adaptively generated by the input image. This is different to other classification method such as Support Vector Machine (SVM) and Logistic Regression (LR), which need to collect both positive and negative training samples. The experimental result on 1-m high resolution optical images shows the proposed method achieves a desired ship detection performance with higher quality and robustness than other methods, e.g., SVM and LR.
Filter accuracy for the Lorenz 96 model: Fixed versus adaptive observation operators
Stuart, Andrew M.; Shukla, Abhishek; Sanz-Alonso, Daniel; Law, K. J. H.
2016-02-23
In the context of filtering chaotic dynamical systems it is well-known that partial observations, if sufficiently informative, can be used to control the inherent uncertainty due to chaos. The purpose of this paper is to investigate, both theoretically and numerically, conditions on the observations of chaotic systems under which they can be accurately filtered. In particular, we highlight the advantage of adaptive observation operators over fixed ones. The Lorenz ’96 model is used to exemplify our findings. Here, we consider discrete-time and continuous-time observations in our theoretical developments. We prove that, for fixed observation operator, the 3DVAR filter can recovermore » the system state within a neighbourhood determined by the size of the observational noise. It is required that a sufficiently large proportion of the state vector is observed, and an explicit form for such sufficient fixed observation operator is given. Numerical experiments, where the data is incorporated by use of the 3DVAR and extended Kalman filters, suggest that less informative fixed operators than given by our theory can still lead to accurate signal reconstruction. Adaptive observation operators are then studied numerically; we show that, for carefully chosen adaptive observation operators, the proportion of the state vector that needs to be observed is drastically smaller than with a fixed observation operator. Indeed, we show that the number of state coordinates that need to be observed may even be significantly smaller than the total number of positive Lyapunov exponents of the underlying system.« less
Digital adaptive controllers for VTOL vehicles. Volume 2: Software documentation
NASA Technical Reports Server (NTRS)
Hartmann, G. L.; Stein, G.; Pratt, S. G.
1979-01-01
The VTOL approach and landing test (VALT) adaptive software is documented. Two self-adaptive algorithms, one based on an implicit model reference design and the other on an explicit parameter estimation technique were evaluated. The organization of the software, user options, and a nominal set of input data are presented along with a flow chart and program listing of each algorithm.
Paixão, Lucas; Oliveira, Bruno Beraldo; Viloria, Carolina; de Oliveira, Marcio Alves; Teixeira, Maria Helena Araújo; Nogueira, Maria do Socorro
2015-01-01
Objective Derive filtered tungsten X-ray spectra used in digital mammography systems by means of Monte Carlo simulations. Materials and Methods Filtered spectra for rhodium filter were obtained for tube potentials between 26 and 32 kV. The half-value layer (HVL) of simulated filtered spectra were compared with those obtained experimentally with a solid state detector Unfors model 8202031-H Xi R/F & MAM Detector Platinum and 8201023-C Xi Base unit Platinum Plus w mAs in a Hologic Selenia Dimensions system using a direct radiography mode. Results Calculated HVL values showed good agreement as compared with those obtained experimentally. The greatest relative difference between the Monte Carlo calculated HVL values and experimental HVL values was 4%. Conclusion The results show that the filtered tungsten anode X-ray spectra and the EGSnrc Monte Carlo code can be used for mean glandular dose determination in mammography. PMID:26811553
NASA Astrophysics Data System (ADS)
Sartori, Pablo; Tu, Yuhai
2011-04-01
Two distinct mechanisms for filtering noise in an input signal are identified in a class of adaptive sensory networks. We find that the high-frequency noise is filtered by the output degradation process through time-averaging; while the low-frequency noise is damped by adaptation through negative feedback. Both filtering processes themselves introduce intrinsic noises, which are found to be unfiltered and can thus amount to a significant internal noise floor even without signaling. These results are applied to E. coli chemotaxis. We show unambiguously that the molecular mechanism for the Berg-Purcell time-averaging scheme is the dephosphorylation of the response regulator CheY-P, not the receptor adaptation process as previously suggested. The high-frequency noise due to the stochastic ligand binding-unbinding events and the random ligand molecule diffusion is averaged by the CheY-P dephosphorylation process to a negligible level in E. coli. We identify a previously unstudied noise source caused by the random motion of the cell in a ligand gradient. We show that this random walk induced signal noise has a divergent low-frequency component, which is only rendered finite by the receptor adaptation process. For gradients within the E. coli sensing range, this dominant external noise can be comparable to the significant intrinsic noise in the system. The dependence of the response and its fluctuations on the key time scales of the system are studied systematically. We show that the chemotaxis pathway may have evolved to optimize gradient sensing, strong response, and noise control in different time scales.
Li, Xiaofan; Zhao, Yubin; Zhang, Sha; Fan, Xiaopeng
2016-01-01
Particle filters (PFs) are widely used for nonlinear signal processing in wireless sensor networks (WSNs). However, the measurement uncertainty makes the WSN observations unreliable to the actual case and also degrades the estimation accuracy of the PFs. In addition to the algorithm design, few works focus on improving the likelihood calculation method, since it can be pre-assumed by a given distribution model. In this paper, we propose a novel PF method, which is based on a new likelihood fusion method for WSNs and can further improve the estimation performance. We firstly use a dynamic Gaussian model to describe the nonparametric features of the measurement uncertainty. Then, we propose a likelihood adaptation method that employs the prior information and a belief factor to reduce the measurement noise. The optimal belief factor is attained by deriving the minimum Kullback-Leibler divergence. The likelihood adaptation method can be integrated into any PFs, and we use our method to develop three versions of adaptive PFs for a target tracking system using wireless sensor network. The simulation and experimental results demonstrate that our likelihood adaptation method has greatly improved the estimation performance of PFs in a high noise environment. In addition, the adaptive PFs are highly adaptable to the environment without imposing computational complexity. PMID:27249002
Li, Xiaofan; Zhao, Yubin; Zhang, Sha; Fan, Xiaopeng
2016-01-01
Particle filters (PFs) are widely used for nonlinear signal processing in wireless sensor networks (WSNs). However, the measurement uncertainty makes the WSN observations unreliable to the actual case and also degrades the estimation accuracy of the PFs. In addition to the algorithm design, few works focus on improving the likelihood calculation method, since it can be pre-assumed by a given distribution model. In this paper, we propose a novel PF method, which is based on a new likelihood fusion method for WSNs and can further improve the estimation performance. We firstly use a dynamic Gaussian model to describe the nonparametric features of the measurement uncertainty. Then, we propose a likelihood adaptation method that employs the prior information and a belief factor to reduce the measurement noise. The optimal belief factor is attained by deriving the minimum Kullback–Leibler divergence. The likelihood adaptation method can be integrated into any PFs, and we use our method to develop three versions of adaptive PFs for a target tracking system using wireless sensor network. The simulation and experimental results demonstrate that our likelihood adaptation method has greatly improved the estimation performance of PFs in a high noise environment. In addition, the adaptive PFs are highly adaptable to the environment without imposing computational complexity. PMID:27249002
NASA Astrophysics Data System (ADS)
Yushkov, Konstantin B.; Molchanov, Vladimir Y.; Belousov, Pavel V.; Abrosimov, Aleksander Y.
2016-01-01
We report a method for edge enhancement in the images of transparent samples using analog image processing in coherent light. The experimental technique is based on adaptive spatial filtering with an acousto-optic tunable filter in a telecentric optical system. We demonstrate processing of microscopic images of unstained and stained histological sections of human thyroid tumor with improved contrast.
Locally adaptive regression filter-based infrared focal plane array non-uniformity correction
NASA Astrophysics Data System (ADS)
Li, Jia; Qin, Hanlin; Yan, Xiang; Huang, He; Zhao, Yingjuan; Zhou, Huixin
2015-10-01
Due to the limitations of the manufacturing technology, the response rates to the same infrared radiation intensity in each infrared detector unit are not identical. As a result, the non-uniformity of infrared focal plane array, also known as fixed pattern noise (FPN), is generated. To solve this problem, correcting the non-uniformity in infrared image is a promising approach, and many non-uniformity correction (NUC) methods have been proposed. However, they have some defects such as slow convergence, ghosting and scene degradation. To overcome these defects, a novel non-uniformity correction method based on locally adaptive regression filter is proposed. First, locally adaptive regression method is used to separate the infrared image into base layer containing main scene information and the detail layer containing detailed scene with FPN. Then, the detail layer sequence is filtered by non-linear temporal filter to obtain the non-uniformity. Finally, the high quality infrared image is obtained by subtracting non-uniformity component from original image. The experimental results show that the proposed method can significantly eliminate the ghosting and the scene degradation. The results of correction are superior to the THPF-NUC and NN-NUC in the aspects of subjective visual and objective evaluation index.
Chen, Xiyuan; Wang, Xiying; Xu, Yuan
2014-01-01
This paper deals with the problem of state estimation for the vector-tracking loop of a software-defined Global Positioning System (GPS) receiver. For a nonlinear system that has the model error and white Gaussian noise, a noise statistics estimator is used to estimate the model error, and based on this, a modified iterated extended Kalman filter (IEKF) named adaptive iterated Kalman filter (AIEKF) is proposed. A vector-tracking GPS receiver utilizing AIEKF is implemented to evaluate the performance of the proposed method. Through road tests, it is shown that the proposed method has an obvious accuracy advantage over the IEKF and Adaptive Extended Kalman filter (AEKF) in position determination. The results show that the proposed method is effective to reduce the root-mean-square error (RMSE) of position (including longitude, latitude and altitude). Comparing with EKF, the position RMSE values of AIEKF are reduced by about 45.1%, 40.9% and 54.6% in the east, north and up directions, respectively. Comparing with IEKF, the position RMSE values of AIEKF are reduced by about 25.7%, 19.3% and 35.7% in the east, north and up directions, respectively. Compared with AEKF, the position RMSE values of AIEKF are reduced by about 21.6%, 15.5% and 30.7% in the east, north and up directions, respectively. PMID:25502124
Chen, Xiyuan; Wang, Xiying; Xu, Yuan
2014-12-09
This paper deals with the problem of state estimation for the vector-tracking loop of a software-defined Global Positioning System (GPS) receiver. For a nonlinear system that has the model error and white Gaussian noise, a noise statistics estimator is used to estimate the model error, and based on this, a modified iterated extended Kalman filter (IEKF) named adaptive iterated Kalman filter (AIEKF) is proposed. A vector-tracking GPS receiver utilizing AIEKF is implemented to evaluate the performance of the proposed method. Through road tests, it is shown that the proposed method has an obvious accuracy advantage over the IEKF and Adaptive Extended Kalman filter (AEKF) in position determination. The results show that the proposed method is effective to reduce the root-mean-square error (RMSE) of position (including longitude, latitude and altitude). Comparing with EKF, the position RMSE values of AIEKF are reduced by about 45.1%, 40.9% and 54.6% in the east, north and up directions, respectively. Comparing with IEKF, the position RMSE values of AIEKF are reduced by about 25.7%, 19.3% and 35.7% in the east, north and up directions, respectively. Compared with AEKF, the position RMSE values of AIEKF are reduced by about 21.6%, 15.5% and 30.7% in the east, north and up directions, respectively.
On the structural limitations of recursive digital filters for base flow estimation
NASA Astrophysics Data System (ADS)
Su, Chun-Hsu; Costelloe, Justin F.; Peterson, Tim J.; Western, Andrew W.
2016-06-01
Recursive digital filters (RDFs) are widely used for estimating base flow from streamflow hydrographs, and various forms of RDFs have been developed based on different physical models. Numerical experiments have been used to objectively evaluate their performance, but they have not been sufficiently comprehensive to assess a wide range of RDFs. This paper extends these studies to understand the limitations of a generalized RDF method as a pathway for future field calibration. Two formalisms are presented to generalize most existing RDFs, allowing systematic tuning of their complexity. The RDFs with variable complexity are evaluated collectively in a synthetic setting, using modeled daily base flow produced by Li et al. (2014) from a range of synthetic catchments simulated with HydroGeoSphere. Our evaluation reveals that there are optimal RDF complexities in reproducing base flow simulations but shows that there is an inherent physical inconsistency within the RDF construction. Even under the idealized setting where true base flow data are available to calibrate the RDFs, there is persistent disagreement between true and estimated base flow over catchments with small base flow components, low saturated hydraulic conductivity of the soil and larger surface runoff. The simplest explanation is that low base flow "signal" in the streamflow data is hard to distinguish, although more complex RDFs can improve upon the simpler Eckhardt filter at these catchments.
NASA Astrophysics Data System (ADS)
Gómez Valverde, Juan J.; Ortuño, Juan E.; Guerra, Pedro; Hermann, Boris; Zabihian, Behrooz; Rubio-Guivernau, José L.; Santos, Andrés.; Drexler, Wolfgang; Ledesma-Carbayo, Maria J.
2015-07-01
Optical Coherence Tomography (OCT) has shown a great potential as a complementary imaging tool in the diagnosis of skin diseases. Speckle noise is the most prominent artifact present in OCT images and could limit the interpretation and detection capabilities. In this work we propose a new speckle reduction process and compare it with various denoising filters with high edge-preserving potential, using several sets of dermatological OCT B-scans. To validate the performance we used a custom-designed spectral domain OCT and two different data set groups. The first group consisted in five datasets of a single B-scan captured N times (with N<20), the second were five 3D volumes of 25 Bscans. As quality metrics we used signal to noise (SNR), contrast to noise (CNR) and equivalent number of looks (ENL) ratios. Our results show that a process based on a combination of a 2D enhanced sigma digital filter and a wavelet compounding method achieves the best results in terms of the improvement of the quality metrics. In the first group of individual B-scans we achieved improvements in SNR, CNR and ENL of 16.87 dB, 2.19 and 328 respectively; for the 3D volume datasets the improvements were 15.65 dB, 3.44 and 1148. Our results suggest that the proposed enhancement process may significantly reduce speckle, increasing SNR, CNR and ENL and reducing the number of extra acquisitions of the same frame.
Application of digital tomosynthesis (DTS) of optimal deblurring filters for dental X-ray imaging
NASA Astrophysics Data System (ADS)
Oh, J. E.; Cho, H. S.; Kim, D. S.; Choi, S. I.; Je, U. K.
2012-04-01
Digital tomosynthesis (DTS) is a limited-angle tomographic technique that provides some of the tomographic benefits of computed tomography (CT) but at reduced dose and cost. Thus, the potential for application of DTS to dental X-ray imaging seems promising. As a continuation of our dental radiography R&D, we developed an effective DTS reconstruction algorithm and implemented it in conjunction with a commercial dental CT system for potential use in dental implant placement. The reconstruction algorithm employed a backprojection filtering (BPF) method based upon optimal deblurring filters to suppress effectively both the blur artifacts originating from the out-focus planes and the high-frequency noise. To verify the usefulness of the reconstruction algorithm, we performed systematic simulation works and evaluated the image characteristics. We also performed experimental works in which DTS images of enhanced anatomical resolution were successfully obtained by using the algorithm and were promising to our ongoing applications to dental X-ray imaging. In this paper, our approach to the development of the DTS reconstruction algorithm and the results are described in detail.
Aboutabikh, Kamal; Aboukerdah, Nader
2015-07-01
In this paper, we propose a practical way to synthesize and filter an ECG signal in the presence of four types of interference signals: (1) those arising from power networks with a fundamental frequency of 50Hz, (2) those arising from respiration, having a frequency range from 0.05 to 0.5Hz, (3) muscle signals with a frequency of 25Hz, and (4) white noise present within the ECG signal band. This was done by implementing a multiband digital filter (seven bands) of type FIR Multiband Least Squares using a digital programmable device (Cyclone II EP2C70F896C6 FPGA, Altera), which was placed on an education and development board (DE2-70, Terasic). This filter was designed using the VHDL language in the Quartus II 9.1 design environment. The proposed method depends on Direct Digital Frequency Synthesizers (DDFS) designed to synthesize the ECG signal and various interference signals. So that the synthetic ECG specifications would be closer to actual ECG signals after filtering, we designed in a single multiband digital filter instead of using three separate digital filters LPF, HPF, BSF. Thus all interference signals were removed with a single digital filter. The multiband digital filter results were studied using a digital oscilloscope to characterize input and output signals in the presence of differing sinusoidal interference signals and white noise.
Using digital filtering techniques as an aid in wind turbine data analysis
NASA Astrophysics Data System (ADS)
Young, Teresa
1994-11-01
Research involving very large sets of digital data is often difficult due to the enormity of the database. In the case of a wind turbine operating under varying environmental conditions, determining which data are representative of the blade aerodynamics and which are due to transient flow ingestion effects or errors in instrumentation, operation, and data collection is of primary concern to researchers. The National Renewable Energy Laboratory in Golden, Colorado collected extensive data on a downwind horizontal axis wind turbine (HAWT) during a turbine test project called the Combined Experiment. A principal objective of this experiment was to provide a means to predict HAWT aerodynamic, mechanical, and electrical operational loads based upon analytical models of aerodynamic performance related to blade design and inflow conditions. In a collaborative effort with the Aerospace Engineering Department at the University of Colorado at Boulder, a team of researchers has evolved and utilized various digital filtering techniques in analyzing the data from the Combined Experiment. A preliminary analysis of the data set was performed to determine how to best approach the data. The reduced data set emphasized selection of inflow conditions such that the aerodynamic data could be compared directly to wind tunnel data obtained for the same airfoil design as used for the HAWT's blades. It will be shown that this reduced data set has yielded valid, reproducible results that a simple averaging technique or a random selection approach cannot achieve. These findings provide a stable baseline against which operational HAWT data can be compared.
Ray, Jaideep; Lefantzi, Sophia; Najm, Habib N.; Kennedy, Christopher A.
2006-01-01
Block-structured adaptively refined meshes (SAMR) strive for efficient resolution of partial differential equations (PDEs) solved on large computational domains by clustering mesh points only where required by large gradients. Previous work has indicated that fourth-order convergence can be achieved on such meshes by using a suitable combination of high-order discretizations, interpolations, and filters and can deliver significant computational savings over conventional second-order methods at engineering error tolerances. In this paper, we explore the interactions between the errors introduced by discretizations, interpolations and filters. We develop general expressions for high-order discretizations, interpolations, and filters, in multiple dimensions, using a Fourier approach, facilitating the high-order SAMR implementation. We derive a formulation for the necessary interpolation order for given discretization and derivative orders. We also illustrate this order relationship empirically using one and two-dimensional model problems on refined meshes. We study the observed increase in accuracy with increasing interpolation order. We also examine the empirically observed order of convergence, as the effective resolution of the mesh is increased by successively adding levels of refinement, with different orders of discretization, interpolation, or filtering.
Investigating University Students' Adaptation to a Digital Learner Course Portfolio
ERIC Educational Resources Information Center
Lopez-Fernandez, Olatz; Rodriguez-Illera, Jose Luis
2009-01-01
Digital learner portfolios are of growing importance in higher education as the sector seeks new teaching-learning-assessment methods which promote students' autonomy as managers of their own virtual learning environment. The purpose of this study was to analyse descriptively the undergraduate students' perceptions, attitudes and behaviour when…
Digital tapped delay lines for HWIL testing of matched filter radar receivers
NASA Astrophysics Data System (ADS)
Olson, Richard F.; Braselton, William J.; Mohlere, Richard D.
2009-05-01
Matched filter processing for pulse compression of phase coded waveforms is a classic method for increasing radar range measurement resolution. A generic approach for simulating high resolution range extended radar scenes in a Hardware in the Loop (HWIL) test environment is to pass the phase coded radar transmit pulse through an RF tapped delay line comprised of individually amplitude- and phase-weighted output taps. In the generic approach, the taps are closely spaced relative to time intervals equivalent to the range resolution of the compressed radar pulse. For a range-extended high resolution clutter scene, the increased number of these taps can make an analog implementation of an RF tapped delay system impractical. Engineers at the U.S. Army Aviation and Missile Research, Development and Engineering Center (AMRDEC) have addressed this problem by transferring RF tapped delay line signal operations to the digital domain. New digital tapped delay line (DTDL) systems have been designed and demonstrated which are physically compact compared to analog RF TDLs, leverage low cost FPGA and data converter technology, and may be readily expanded using open slots in a VME card cage. In initial HWIL applications, the new DTDLs have been shown to produce better dynamic range in pulse compressed range profiles than their analog TDL predecessors. This paper describes the signal requirements and system architecture for digital tapped delay lines. Implementation, performance, and HWIL simulation integration issues for AMRDEC's first generation DTDLs are addressed. The paper concludes with future requirements and plans for ongoing DTDL technology development at AMRDEC.
Adaptive hybrid likelihood model for visual tracking based on Gaussian particle filter
NASA Astrophysics Data System (ADS)
Wang, Yong; Tan, Yihua; Tian, Jinwen
2010-07-01
We present a new scheme based on multiple-cue integration for visual tracking within a Gaussian particle filter framework. The proposed method integrates the color, shape, and texture cues of an object to construct a hybrid likelihood model. During the measurement step, the likelihood model can be switched adaptively according to environmental changes, which improves the object representation to deal with the complex disturbances, such as appearance changes, partial occlusions, and significant clutter. Moreover, the confidence weights of the cues are adjusted online through the estimation using a particle filter, which ensures the tracking accuracy and reliability. Experiments are conducted on several real video sequences, and the results demonstrate that the proposed method can effectively track objects in complex scenarios. Compared with previous similar approaches through some quantitative and qualitative evaluations, the proposed method performs better in terms of tracking robustness and precision.
Li, Jing; Song, Ningfang; Yang, Gongliu; Jiang, Rui
2016-07-01
In the initial alignment process of strapdown inertial navigation system (SINS), large misalignment angles always bring nonlinear problem, which can usually be processed using the scaled unscented Kalman filter (SUKF). In this paper, the problem of large misalignment angles in SINS alignment is further investigated, and the strong tracking scaled unscented Kalman filter (STSUKF) is proposed with fixed parameters to improve convergence speed, while these parameters are artificially constructed and uncertain in real application. To further improve the alignment stability and reduce the parameters selection, this paper proposes a fuzzy adaptive strategy combined with STSUKF (FUZZY-STSUKF). As a result, initial alignment scheme of large misalignment angles based on FUZZY-STSUKF is designed and verified by simulations and turntable experiment. The results show that the scheme improves the accuracy and convergence speed of SINS initial alignment compared with those based on SUKF and STSUKF. PMID:27475606
NASA Astrophysics Data System (ADS)
Li, Jing; Song, Ningfang; Yang, Gongliu; Jiang, Rui
2016-07-01
In the initial alignment process of strapdown inertial navigation system (SINS), large misalignment angles always bring nonlinear problem, which can usually be processed using the scaled unscented Kalman filter (SUKF). In this paper, the problem of large misalignment angles in SINS alignment is further investigated, and the strong tracking scaled unscented Kalman filter (STSUKF) is proposed with fixed parameters to improve convergence speed, while these parameters are artificially constructed and uncertain in real application. To further improve the alignment stability and reduce the parameters selection, this paper proposes a fuzzy adaptive strategy combined with STSUKF (FUZZY-STSUKF). As a result, initial alignment scheme of large misalignment angles based on FUZZY-STSUKF is designed and verified by simulations and turntable experiment. The results show that the scheme improves the accuracy and convergence speed of SINS initial alignment compared with those based on SUKF and STSUKF.
Li, Jing; Song, Ningfang; Yang, Gongliu; Jiang, Rui
2016-07-01
In the initial alignment process of strapdown inertial navigation system (SINS), large misalignment angles always bring nonlinear problem, which can usually be processed using the scaled unscented Kalman filter (SUKF). In this paper, the problem of large misalignment angles in SINS alignment is further investigated, and the strong tracking scaled unscented Kalman filter (STSUKF) is proposed with fixed parameters to improve convergence speed, while these parameters are artificially constructed and uncertain in real application. To further improve the alignment stability and reduce the parameters selection, this paper proposes a fuzzy adaptive strategy combined with STSUKF (FUZZY-STSUKF). As a result, initial alignment scheme of large misalignment angles based on FUZZY-STSUKF is designed and verified by simulations and turntable experiment. The results show that the scheme improves the accuracy and convergence speed of SINS initial alignment compared with those based on SUKF and STSUKF.
Automatic balancing of AMB systems using plural notch filter and adaptive synchronous compensation
NASA Astrophysics Data System (ADS)
Xu, Xiangbo; Chen, Shao; Zhang, Yanan
2016-07-01
To achieve automatic balancing in active magnetic bearing (AMB) system, a control method with notch filters and synchronous compensators is widely employed. However, the control precision is significantly affected by the synchronous compensation error, which is caused by parameter errors and variations of the power amplifiers. Furthermore, the computation effort may become intolerable if a 4-degree-of-freedom (dof) AMB system is studied. To solve these problems, an adaptive automatic balancing control method in the AMB system is presented in this study. Firstly, a 4-dof radial AMB system is described and analyzed. To simplify the controller design, the 4-dof dynamic equations are transferred into two plural functions related to translation and rotation, respectively. Next, to achieve automatic balancing of the AMB system, two synchronous equations are formed. Solution of them leads to a control strategy based on notch filters and feedforward controllers with an inverse function of the power amplifier. The feedforward controllers can be simplified as synchronous phases and amplitudes. Then, a plural phase-shift notch filter which can identify the synchronous components in 2-dof motions is formulated, and an adaptive compensation method that can form two closed-loop systems to tune the synchronous amplitude of the feedforward controller and the phase of the plural notch filter is proposed. Finally, the proposed control strategy is verified by both simulations and experiments on a test rig of magnetically suspended control moment gyro. The results indicate that this method can fulfill the automatic balancing of the AMB system with a light computational load.
Low-Light Image Enhancement Using Adaptive Digital Pixel Binning
Yoo, Yoonjong; Im, Jaehyun; Paik, Joonki
2015-01-01
This paper presents an image enhancement algorithm for low-light scenes in an environment with insufficient illumination. Simple amplification of intensity exhibits various undesired artifacts: noise amplification, intensity saturation, and loss of resolution. In order to enhance low-light images without undesired artifacts, a novel digital binning algorithm is proposed that considers brightness, context, noise level, and anti-saturation of a local region in the image. The proposed algorithm does not require any modification of the image sensor or additional frame-memory; it needs only two line-memories in the image signal processor (ISP). Since the proposed algorithm does not use an iterative computation, it can be easily embedded in an existing digital camera ISP pipeline containing a high-resolution image sensor. PMID:26121609
Low-Light Image Enhancement Using Adaptive Digital Pixel Binning.
Yoo, Yoonjong; Im, Jaehyun; Paik, Joonki
2015-01-01
This paper presents an image enhancement algorithm for low-light scenes in an environment with insufficient illumination. Simple amplification of intensity exhibits various undesired artifacts: noise amplification, intensity saturation, and loss of resolution. In order to enhance low-light images without undesired artifacts, a novel digital binning algorithm is proposed that considers brightness, context, noise level, and anti-saturation of a local region in the image. The proposed algorithm does not require any modification of the image sensor or additional frame-memory; it needs only two line-memories in the image signal processor (ISP). Since the proposed algorithm does not use an iterative computation, it can be easily embedded in an existing digital camera ISP pipeline containing a high-resolution image sensor. PMID:26121609
NASA Astrophysics Data System (ADS)
Longobardi, A.; Villani, P.; Guida, D.; Cuomo, A.
2016-08-01
The aim of the present study is an analysis of the ability of digital hydrograph filtering tools for the characterization of the baseflow source contributing to total streamflow for a typical, small, sandstone, rainfall dominated catchment. Daily streamflow and electrical conductivity data for an experimental catchment, the Ciciriello catchment, a 3km2 watershed located in Southern Italy, have been collected to the purpose since 2012. The application of a mass balance filter (MBF), using electrical conductivity as tracer data, has pointed out a seasonal characterization of the baseflow pattern, contributing to total streamflow by 90% during the low flow period and up to 40% during the high flow period. The Lyne and Hollick one parameter and the two parameters Eckhardt digital filters have been furthermore processed, both in an uncalibrated and calibrated application. Providing a preliminary total streamflow and baseflow recession analysis, the one parameter filter appears particularly suited for ungauged cases, as the uncalibrated and calibrated applications are almost identical, with relative prediction errors, compared to MBF, smaller than 5%. The uncalibrated two parameters filter generates instead large relative error of about 35%. To improve the baseflow description, in particular during the low flow period, and to correct large (28%) underestimation of the minimum baseflow value, a seasonal calibration for the BFImax parameter (the maximum BaseFlow Index that can be modeled by the filter algorithm) is in fact needed.
Liu, Yan; Pecht, Michael G
2006-01-01
The effectiveness of electrocardiogram (ECG) monitors can be significantly impaired by motion artifacts which can cause misdiagnoses, lead to inappropriate treatment decisions, and trigger false alarms. Skin stretch associated with patient motion is a significant source of motion artifacts in current ECG monitoring. In this study, motion artifacts are adaptively filtered by using skin strain as the reference variable. Skin strain is measured non-invasively using a light emitting diode (LED) and an optical sensor incorporated in an ECG electrode. The results demonstrate that this device and method can significantly reduce skin strain induced ECG artifacts.
Evaluation of an adaptive filtering algorithm for CT cardiac imaging with EKG modulated tube current
NASA Astrophysics Data System (ADS)
Li, Jianying; Hsieh, Jiang; Mohr, Kelly; Okerlund, Darin
2005-04-01
We have developed an adaptive filtering algorithm for cardiac CT scans with EKG-modulated tube current to optimize resolution and noise for different cardiac phases and to provide safety net for cases where end-systole phase is used for coronary imaging. This algorithm has been evaluated using patient cardiac CT scans where lower tube currents are used for the systolic phases. In this paper, we present the evaluation results. The results demonstrated that with the use of the proposed algorithm, we could improve image quality for all cardiac phases, while providing greater noise and streak artifact reduction for systole phases where lower CT dose were used.
Forward scattering detection of a submerged moving target based on adaptive filtering technique.
He, Chuanlin; Yang, Kunde; Lei, Bo; Ma, Yuanliang
2015-09-01
Forward scattered waves are always overwhelmed by severely intense direct blasts when a submerged target crosses the source-receiver line. A processing scheme called direct blast suppression based on adaptive filtering (DBS-AF) is proposed to suppress such blasts. A verification experiment was conducted in a lake with a vertical hydrophone array and 10 kHz CW impulses. Processing results show that the direct blast is suppressed in a single channel, and an intruding target is identified by the lobes in the detection curve. The detection performance is improved by adopting a time-delay beam-former on the array as a pre-processing technique. PMID:26428829
Speir, Jacqueline A; Hietpas, Jack
2014-09-01
Fingerprint evidence can benefit in image quality if transformed using digital image processing techniques. This is especially true when considering prints that cannot be easily lifted (such as those deposited on porous paper substrates), or when the mechanism of lifting does not effectively reduce background interferences. In these instances, frequency filtering is one type of mathematical transformation that can serve to increase image clarity and the ability to extract minutiae relevant to pairwise comparisons. To quantify the impact of frequency filtering on image quality, high quality and low quality (noisy) prints were collected. The high quality prints served as exemplars that were compared to the low quality prints both pre- and post-filtering. The resulting pairwise match scores indicate that: (1) frequency filtering has a low probability of creating false positive associations, (2) 90% of the post-filtered images result in a normalized gain in match score, (3) frequency filtering doubled the probability of obtaining match scores greater than 30% (for the automated algorithm employed in this study), and (4) filtering can double the probability of obtaining 10 or more matching minutiae when comparing same source prints. Overall, the research indicates a reasonable and quantifiable payoff in increased clarity, matching minutiae and pairwise similarity for post-filtered images when compared to known-match exemplars.
Speir, Jacqueline A; Hietpas, Jack
2014-09-01
Fingerprint evidence can benefit in image quality if transformed using digital image processing techniques. This is especially true when considering prints that cannot be easily lifted (such as those deposited on porous paper substrates), or when the mechanism of lifting does not effectively reduce background interferences. In these instances, frequency filtering is one type of mathematical transformation that can serve to increase image clarity and the ability to extract minutiae relevant to pairwise comparisons. To quantify the impact of frequency filtering on image quality, high quality and low quality (noisy) prints were collected. The high quality prints served as exemplars that were compared to the low quality prints both pre- and post-filtering. The resulting pairwise match scores indicate that: (1) frequency filtering has a low probability of creating false positive associations, (2) 90% of the post-filtered images result in a normalized gain in match score, (3) frequency filtering doubled the probability of obtaining match scores greater than 30% (for the automated algorithm employed in this study), and (4) filtering can double the probability of obtaining 10 or more matching minutiae when comparing same source prints. Overall, the research indicates a reasonable and quantifiable payoff in increased clarity, matching minutiae and pairwise similarity for post-filtered images when compared to known-match exemplars. PMID:25047216
NASA Astrophysics Data System (ADS)
Koga, Takanori; Suetake, Noriaki
2015-02-01
This paper describes the detail-preserving impulse noise removal performance of a one-dimensional (1-D) switching median filter (SMF) applied along an adaptive space-filling curve. Usually, a SMF with a two-dimensional (2-D) filter window is widely used for impulse noise removal while still preserving detailed parts in an input image. However, the noise detector of the 2-D filter does not always distinguish between the original pixels and the noise-corrupted ones perfectly. In particular, pixels constituting thin lines in an input image tend to be incorrectly detected as noise-corrupted pixels, and such pixels are filtered regardless of the necessity of the filtering. To cope with this problem, we propose a new impulse noise removal method based on a 1-D SMF and a space-filling curve which is adaptively drawn using a minimum spanning tree reflecting structural context of an input image.
Sadjadi, Firooz A; Mahalanobis, Abhijit
2006-05-01
We report the development of a technique for adaptive selection of polarization ellipse tilt and ellipticity angles such that the target separation from clutter is maximized. From the radar scattering matrix [S] and its complex components, in phase and quadrature phase, the elements of the Mueller matrix are obtained. Then, by means of polarization synthesis, the radar cross section of the radar scatters are obtained at different transmitting and receiving polarization states. By designing a maximum average correlation height filter, we derive a target versus clutter distance measure as a function of four transmit and receive polarization state angles. The results of applying this method on real synthetic aperture radar imagery indicate a set of four transmit and receive angles that lead to maximum target versus clutter discrimination. These optimum angles are different for different targets. Hence, by adaptive control of the state of polarization of polarimetric radar, one can noticeably improve the discrimination of targets from clutter.
High dynamic range image rendering with a Retinex-based adaptive filter.
Meylan, Laurence; Süsstrunk, Sabine
2006-09-01
We propose a new method to render high dynamic range images that models global and local adaptation of the human visual system. Our method is based on the center-surround Retinex model. The novelties of our method is first to use an adaptive filter, whose shape follows the image high-contrast edges, thus reducing halo artifacts common to other methods. Second, only the luminance channel is processed, which is defined by the first component of a principal component analysis. Principal component analysis provides orthogonality between channels and thus reduces the chromatic changes caused by the modification of luminance. We show that our method efficiently renders high dynamic range images and we compare our results with the current state of the art. PMID:16948325
An Adaptive Digital Image Watermarking Algorithm Based on Morphological Haar Wavelet Transform
NASA Astrophysics Data System (ADS)
Huang, Xiaosheng; Zhao, Sujuan
At present, much more of the wavelet-based digital watermarking algorithms are based on linear wavelet transform and fewer on non-linear wavelet transform. In this paper, we propose an adaptive digital image watermarking algorithm based on non-linear wavelet transform--Morphological Haar Wavelet Transform. In the algorithm, the original image and the watermark image are decomposed with multi-scale morphological wavelet transform respectively. Then the watermark information is adaptively embedded into the original image in different resolutions, combining the features of Human Visual System (HVS). The experimental results show that our method is more robust and effective than the ordinary wavelet transform algorithms.
Adaptive Learning in Psychology: Wayfinding in the Digital Age
ERIC Educational Resources Information Center
Dziuban, Charles D.; Moskal, Patsy D.; Cassisi, Jeffrey; Fawcett, Alexis
2016-01-01
This paper presents the results of a pilot study investigating the use of the Realizeit adaptive learning platform to deliver a fully online General Psychology course across two semesters. Through mutual cooperation, UCF and vendor (CCKF) researchers examined students' affective, behavioral, and cognitive reactions to the system. Student survey…
A Digitalized Gyroscope System Based on a Modified Adaptive Control Method.
Xia, Dunzhu; Hu, Yiwei; Ni, Peizhen
2016-03-04
In this work we investigate the possibility of applying the adaptive control algorithm to Micro-Electro-Mechanical System (MEMS) gyroscopes. Through comparing the gyroscope working conditions with the reference model, the adaptive control method can provide online estimation of the key parameters and the proper control strategy for the system. The digital second-order oscillators in the reference model are substituted for two phase locked loops (PLLs) to achieve a more steady amplitude and frequency control. The adaptive law is modified to satisfy the condition of unequal coupling stiffness and coupling damping coefficient. The rotation mode of the gyroscope system is considered in our work and a rotation elimination section is added to the digitalized system. Before implementing the algorithm in the hardware platform, different simulations are conducted to ensure the algorithm can meet the requirement of the angular rate sensor, and some of the key adaptive law coefficients are optimized. The coupling components are detected and suppressed respectively and Lyapunov criterion is applied to prove the stability of the system. The modified adaptive control algorithm is verified in a set of digitalized gyroscope system, the control system is realized in digital domain, with the application of Field Programmable Gate Array (FPGA). Key structure parameters are measured and compared with the estimation results, which validated that the algorithm is feasible in the setup. Extra gyroscopes are used in repeated experiments to prove the commonality of the algorithm.
A Digitalized Gyroscope System Based on a Modified Adaptive Control Method.
Xia, Dunzhu; Hu, Yiwei; Ni, Peizhen
2016-01-01
In this work we investigate the possibility of applying the adaptive control algorithm to Micro-Electro-Mechanical System (MEMS) gyroscopes. Through comparing the gyroscope working conditions with the reference model, the adaptive control method can provide online estimation of the key parameters and the proper control strategy for the system. The digital second-order oscillators in the reference model are substituted for two phase locked loops (PLLs) to achieve a more steady amplitude and frequency control. The adaptive law is modified to satisfy the condition of unequal coupling stiffness and coupling damping coefficient. The rotation mode of the gyroscope system is considered in our work and a rotation elimination section is added to the digitalized system. Before implementing the algorithm in the hardware platform, different simulations are conducted to ensure the algorithm can meet the requirement of the angular rate sensor, and some of the key adaptive law coefficients are optimized. The coupling components are detected and suppressed respectively and Lyapunov criterion is applied to prove the stability of the system. The modified adaptive control algorithm is verified in a set of digitalized gyroscope system, the control system is realized in digital domain, with the application of Field Programmable Gate Array (FPGA). Key structure parameters are measured and compared with the estimation results, which validated that the algorithm is feasible in the setup. Extra gyroscopes are used in repeated experiments to prove the commonality of the algorithm. PMID:26959019
A Digitalized Gyroscope System Based on a Modified Adaptive Control Method
Xia, Dunzhu; Hu, Yiwei; Ni, Peizhen
2016-01-01
In this work we investigate the possibility of applying the adaptive control algorithm to Micro-Electro-Mechanical System (MEMS) gyroscopes. Through comparing the gyroscope working conditions with the reference model, the adaptive control method can provide online estimation of the key parameters and the proper control strategy for the system. The digital second-order oscillators in the reference model are substituted for two phase locked loops (PLLs) to achieve a more steady amplitude and frequency control. The adaptive law is modified to satisfy the condition of unequal coupling stiffness and coupling damping coefficient. The rotation mode of the gyroscope system is considered in our work and a rotation elimination section is added to the digitalized system. Before implementing the algorithm in the hardware platform, different simulations are conducted to ensure the algorithm can meet the requirement of the angular rate sensor, and some of the key adaptive law coefficients are optimized. The coupling components are detected and suppressed respectively and Lyapunov criterion is applied to prove the stability of the system. The modified adaptive control algorithm is verified in a set of digitalized gyroscope system, the control system is realized in digital domain, with the application of Field Programmable Gate Array (FPGA). Key structure parameters are measured and compared with the estimation results, which validated that the algorithm is feasible in the setup. Extra gyroscopes are used in repeated experiments to prove the commonality of the algorithm. PMID:26959019
Baresová, E; Grieszbach, G; Schack, B; Vilser, W; Bräuer-Burchardt, C; Senff, I
This study deals with methods focused on estimating blood velocity. The estimation of the linear trend function of a non-stationary signal based on the adaptive recursive estimation of the mean value function is used for the determination of the time delay of two indicator dilution curves. The filter property of this trend operator depends on the choice of a constant parameter c, the so-called adaptation factor. The functional connection between the filter property and the adaptation factor is considered in such a way that an objective calculation of arterial blood velocity in retinal vessels is possible.
AMA- and RWE- Based Adaptive Kalman Filter for Denoising Fiber Optic Gyroscope Drift Signal
Yang, Gongliu; Liu, Yuanyuan; Li, Ming; Song, Shunguang
2015-01-01
An improved double-factor adaptive Kalman filter called AMA-RWE-DFAKF is proposed to denoise fiber optic gyroscope (FOG) drift signal in both static and dynamic conditions. The first factor is Kalman gain updated by random weighting estimation (RWE) of the covariance matrix of innovation sequence at any time to ensure the lowest noise level of output, but the inertia of KF response increases in dynamic condition. To decrease the inertia, the second factor is the covariance matrix of predicted state vector adjusted by RWE only when discontinuities are detected by adaptive moving average (AMA).The AMA-RWE-DFAKF is applied for denoising FOG static and dynamic signals, its performance is compared with conventional KF (CKF), RWE-based adaptive KF with gain correction (RWE-AKFG), AMA- and RWE- based dual mode adaptive KF (AMA-RWE-DMAKF). Results of Allan variance on static signal and root mean square error (RMSE) on dynamic signal show that this proposed algorithm outperforms all the considered methods in denoising FOG signal. PMID:26512665
AMA- and RWE- Based Adaptive Kalman Filter for Denoising Fiber Optic Gyroscope Drift Signal.
Yang, Gongliu; Liu, Yuanyuan; Li, Ming; Song, Shunguang
2015-10-23
An improved double-factor adaptive Kalman filter called AMA-RWE-DFAKF is proposed to denoise fiber optic gyroscope (FOG) drift signal in both static and dynamic conditions. The first factor is Kalman gain updated by random weighting estimation (RWE) of the covariance matrix of innovation sequence at any time to ensure the lowest noise level of output, but the inertia of KF response increases in dynamic condition. To decrease the inertia, the second factor is the covariance matrix of predicted state vector adjusted by RWE only when discontinuities are detected by adaptive moving average (AMA).The AMA-RWE-DFAKF is applied for denoising FOG static and dynamic signals, its performance is compared with conventional KF (CKF), RWE-based adaptive KF with gain correction (RWE-AKFG), AMA- and RWE- based dual mode adaptive KF (AMA-RWE-DMAKF). Results of Allan variance on static signal and root mean square error (RMSE) on dynamic signal show that this proposed algorithm outperforms all the considered methods in denoising FOG signal.
Experimental Demonstration of Adaptive Infrared Multispectral Imaging using Plasmonic Filter Array
Jang, Woo-Yong; Ku, Zahyun; Jeon, Jiyeon; Kim, Jun Oh; Lee, Sang Jun; Park, James; Noyola, Michael J.; Urbas, Augustine
2016-01-01
In our previous theoretical study, we performed target detection using a plasmonic sensor array incorporating the data-processing technique termed “algorithmic spectrometry”. We achieved the reconstruction of a target spectrum by extracting intensity at multiple wavelengths with high resolution from the image data obtained from the plasmonic array. The ultimate goal is to develop a full-scale focal plane array with a plasmonic opto-coupler in order to move towards the next generation of versatile infrared cameras. To this end, and as an intermediate step, this paper reports the experimental demonstration of adaptive multispectral imagery using fabricated plasmonic spectral filter arrays and proposed target detection scenarios. Each plasmonic filter was designed using periodic circular holes perforated through a gold layer, and an enhanced target detection strategy was proposed to refine the original spectrometry concept for spatial and spectral computation of the data measured from the plasmonic array. Both the spectrum of blackbody radiation and a metal ring object at multiple wavelengths were successfully reconstructed using the weighted superposition of plasmonic output images as specified in the proposed detection strategy. In addition, plasmonic filter arrays were theoretically tested on a target at extremely high temperature as a challenging scenario for the detection scheme. PMID:27721506
Charisis, Vasileios S; Hadjileontiadis, Leontios J
2016-01-01
A new feature extraction technique for the detection of lesions created from mucosal inflammations in Crohn’s disease, based on wireless capsule endoscopy (WCE) images processing is presented here. More specifically, a novel filtering process, namely Hybrid Adaptive Filtering (HAF), was developed for efficient extraction of lesion-related structural/textural characteristics from WCE images, by employing Genetic Algorithms to the Curvelet-based representation of images. Additionally, Differential Lacunarity (DLac) analysis was applied for feature extraction from the HAF-filtered images. The resulted scheme, namely HAF-DLac, incorporates support vector machines for robust lesion recognition performance. For the training and testing of HAF-DLac, an 800-image database was used, acquired from 13 patients who undertook WCE examinations, where the abnormal cases were grouped into mild and severe, according to the severity of the depicted lesion, for a more extensive evaluation of the performance. Experimental results, along with comparison with other related efforts, have shown that the HAF-DLac approach evidently outperforms them in the field of WCE image analysis for automated lesion detection, providing higher classification results, up to 93.8% (accuracy), 95.2% (sensitivity), 92.4% (specificity) and 92.6% (precision). The promising performance of HAF-DLac paves the way for a complete computer-aided diagnosis system that could support physicians’ clinical practice.
Experimental Demonstration of Adaptive Infrared Multispectral Imaging using Plasmonic Filter Array
NASA Astrophysics Data System (ADS)
Jang, Woo-Yong; Ku, Zahyun; Jeon, Jiyeon; Kim, Jun Oh; Lee, Sang Jun; Park, James; Noyola, Michael J.; Urbas, Augustine
2016-10-01
In our previous theoretical study, we performed target detection using a plasmonic sensor array incorporating the data-processing technique termed “algorithmic spectrometry”. We achieved the reconstruction of a target spectrum by extracting intensity at multiple wavelengths with high resolution from the image data obtained from the plasmonic array. The ultimate goal is to develop a full-scale focal plane array with a plasmonic opto-coupler in order to move towards the next generation of versatile infrared cameras. To this end, and as an intermediate step, this paper reports the experimental demonstration of adaptive multispectral imagery using fabricated plasmonic spectral filter arrays and proposed target detection scenarios. Each plasmonic filter was designed using periodic circular holes perforated through a gold layer, and an enhanced target detection strategy was proposed to refine the original spectrometry concept for spatial and spectral computation of the data measured from the plasmonic array. Both the spectrum of blackbody radiation and a metal ring object at multiple wavelengths were successfully reconstructed using the weighted superposition of plasmonic output images as specified in the proposed detection strategy. In addition, plasmonic filter arrays were theoretically tested on a target at extremely high temperature as a challenging scenario for the detection scheme.
Design of adaptive steganographic schemes for digital images
NASA Astrophysics Data System (ADS)
Filler, Tomás; Fridrich, Jessica
2011-02-01
Most steganographic schemes for real digital media embed messages by minimizing a suitably defined distortion function. In practice, this is often realized by syndrome codes which offer near-optimal rate-distortion performance. However, the distortion functions are designed heuristically and the resulting steganographic algorithms are thus suboptimal. In this paper, we present a practical framework for optimizing the parameters of additive distortion functions to minimize statistical detectability. We apply the framework to digital images in both spatial and DCT domain by first defining a rich parametric model which assigns a cost of making a change at every cover element based on its neighborhood. Then, we present a practical method for optimizing the parameters with respect to a chosen detection metric and feature space. We show that the size of the margin between support vectors in soft-margin SVMs leads to a fast detection metric and that methods minimizing the margin tend to be more secure w.r.t. blind steganalysis. The parameters obtained by the Nelder-Mead simplex-reflection algorithm for spatial and DCT-domain images are presented and the new embedding methods are tested by blind steganalyzers utilizing various feature sets. Experimental results show that as few as 80 images are sufficient for obtaining good candidates for parameters of the cost model, which allows us to speed up the parameter search.
NASA Astrophysics Data System (ADS)
Dong, Gangqi; Zhu, Zheng H.
2016-05-01
This paper presents a real-time, vision-based algorithm for the pose and motion estimation of non-cooperative targets and its application in visual servo robotic manipulator to perform autonomous capture. A hybrid approach of adaptive extended Kalman filter and photogrammetry is developed for the real-time pose and motion estimation of non-cooperative targets. Based on the pose and motion estimates, the desired pose and trajectory of end-effector is defined and the corresponding desired joint angles of the robotic manipulator are derived by inverse kinematics. A close-loop visual servo control scheme is then developed for the robotic manipulator to track, approach and capture the target. Validating experiments are designed and performed on a custom-built six degrees of freedom robotic manipulator with an eye-in-hand configuration. The experimental results demonstrate the feasibility, effectiveness and robustness of the proposed adaptive extended Kalman filter enabled pose and motion estimation and visual servo strategy.
Bai, Mingsian R; Chi, Li-Wen; Liang, Li-Huang; Lo, Yi-Yang
2016-02-01
In this paper, an evolutionary exposition is given in regard to the enhancing strategies for acoustic echo cancellers (AECs). A fixed beamformer (FBF) is utilized to focus on the near-end speaker while suppressing the echo from the far end. In reality, the array steering vector could differ considerably from the ideal freefield plane wave model. Therefore, an experimental procedure is developed to interpolate a practical array model from the measured frequency responses. Subband (SB) filtering with polyphase implementation is exploited to accelerate the cancellation process. Generalized sidelobe canceller (GSC) composed of an FBF and an adaptive blocking module is combined with AEC to maximize cancellation performance. Another enhancement is an internal iteration (IIT) procedure that enables efficient convergence in the adaptive SB filters within a sample time. Objective tests in terms of echo return loss enhancement (ERLE), perceptual evaluation of speech quality (PESQ), word recognition rate for automatic speech recognition (ASR), and subjective listening tests are conducted to validate the proposed AEC approaches. The results show that the GSC-SB-AEC-IIT approach has attained the highest ERLE without speech quality degradation, even in double-talk scenarios. PMID:26936567
Adaptive filtering of ECG interference on surface EEnGs based on signal averaging.
Garcia-Casado, Javier; Martinez-de-Juan, Jose L; Ponce, Jose L
2006-06-01
An external electroenterogram (EEnG) is the recording of the small bowel myoelectrical signal using contact electrodes placed on the abdominal surface. It is a weak signal affected by possible movements and by the interferences of respiration and, principally, of the cardiac signal. In this paper an adaptive filtering technique was proposed to identify and subsequently cancel ECG interference on canine surface EEnGs by means of a signal averaging process time-locked with the R-wave. Twelve recording sessions were carried out on six conscious dogs in the fasting state. The adaptive filtering technique used increases the signal-to-interference ratio of the raw surface EEnG from 16.7 +/- 6.5 dB up to 31.9 +/- 4.0 dB. In addition to removing ECG interference, this technique has been proven to respect intestinal SB activity, i.e. the EEnG component associated with bowel contractions, despite the fact that they overlap in the frequency domain. In this way, more robust non-invasive intestinal motility indicators can be obtained with correlation coefficients of 0.68 +/- 0.09 with internal intestinal activity. The method proposed here may also be applied to other biological recordings affected by cardiac interference and could be a very helpful tool for future applications of non-invasive recordings of gastrointestinal signals.
Research of fetal ECG extraction using wavelet analysis and adaptive filtering.
Wu, Shuicai; Shen, Yanni; Zhou, Zhuhuang; Lin, Lan; Zeng, Yanjun; Gao, Xiaofeng
2013-10-01
Extracting clean fetal electrocardiogram (ECG) signals is very important in fetal monitoring. In this paper, we proposed a new method for fetal ECG extraction based on wavelet analysis, the least mean square (LMS) adaptive filtering algorithm, and the spatially selective noise filtration (SSNF) algorithm. First, abdominal signals and thoracic signals were processed by stationary wavelet transform (SWT), and the wavelet coefficients at each scale were obtained. For each scale, the detail coefficients were processed by the LMS algorithm. The coefficient of the abdominal signal was taken as the original input of the LMS adaptive filtering system, and the coefficient of the thoracic signal as the reference input. Then, correlations of the processed wavelet coefficients were computed. The threshold was set and noise components were removed with the SSNF algorithm. Finally, the processed wavelet coefficients were reconstructed by inverse SWT to obtain fetal ECG. Twenty cases of simulated data and 12 cases of clinical data were used. Experimental results showed that the proposed method outperforms the LMS algorithm: (1) it shows improvement in case of superposition R-peaks of fetal ECG and maternal ECG; (2) noise disturbance is eliminated by incorporating the SSNF algorithm and the extracted waveform is more stable; and (3) the performance is proven quantitatively by SNR calculation. The results indicated that the proposed algorithm can be used for extracting fetal ECG from abdominal signals.
Crowder, S.V.; Eshleman, L.
1998-08-01
In many manufacturing environments such as the nuclear weapons complex, emphasis has shifted from the regular production and delivery of large orders to infrequent small orders. However, the challenge to maintain the same high quality and reliability standards white building much smaller lot sizes remains. To meet this challenge, specific areas need more attention, including fast and on-target process start-up, low volume statistical process control, process characterization with small experiments, and estimating reliability given few actual performance tests of the product. In this paper the authors address the issue of low volume statistical process control. They investigate an adaptive filtering approach to process monitoring with a relatively short time series of autocorrelated data. The emphasis is on estimation and minimization of mean squared error rather than the traditional hypothesis testing and run length analyses associated with process control charting. The authors develop an adaptive filtering technique that assumes initial process parameters are unknown, and updates the parameters as more data become available. Using simulation techniques, they study the data requirements (the length of a time series of autocorrelated data) necessary to adequately estimate process parameters. They show that far fewer data values are needed than is typically recommended for process control applications. And they demonstrate the techniques with a case study from the nuclear weapons manufacturing complex.
CROWDER, STEPHEN V.
1999-09-01
In many manufacturing environments such as the nuclear weapons complex, emphasis has shifted from the regular production and delivery of large orders to infrequent small orders. However, the challenge to maintain the same high quality and reliability standards while building much smaller lot sizes remains. To meet this challenge, specific areas need more attention, including fast and on-target process start-up, low volume statistical process control, process characterization with small experiments, and estimating reliability given few actual performance tests of the product. In this paper we address the issue of low volume statistical process control. We investigate an adaptive filtering approach to process monitoring with a relatively short time series of autocorrelated data. The emphasis is on estimation and minimization of mean squared error rather than the traditional hypothesis testing and run length analyses associated with process control charting. We develop an adaptive filtering technique that assumes initial process parameters are unknown, and updates the parameters as more data become available. Using simulation techniques, we study the data requirements (the length of a time series of autocorrelated data) necessary to adequately estimate process parameters. We show that far fewer data values are needed than is typically recommended for process control applications. We also demonstrate the techniques with a case study from the nuclear weapons manufacturing complex.
Johansson, A Torbjorn; White, Paul R
2011-08-01
This paper proposes an adaptive filter-based method for detection and frequency estimation of whistle calls, such as the calls of birds and marine mammals, which are typically analyzed in the time-frequency domain using a spectrogram. The approach taken here is based on adaptive notch filtering, which is an established technique for frequency tracking. For application to automatic whistle processing, methods for detection and improved frequency tracking through frequency crossings as well as interfering transients are developed and coupled to the frequency tracker. Background noise estimation and compensation is accomplished using order statistics and pre-whitening. Using simulated signals as well as recorded calls of marine mammals and a human whistled speech utterance, it is shown that the proposed method can detect more simultaneous whistles than two competing spectrogram-based methods while not reporting any false alarms on the example datasets. In one example, it extracts complete 1.4 and 1.8 s bottlenose dolphin whistles successfully through frequency crossings. The method performs detection and estimates frequency tracks even at high sweep rates. The algorithm is also shown to be effective on human whistled utterances. PMID:21877804
Carmena, Jose M.
2016-01-01
Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain’s behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user’s motor intention during CLDA—a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to
Shanechi, Maryam M; Orsborn, Amy L; Carmena, Jose M
2016-04-01
Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain's behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user's motor intention during CLDA-a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to parameter
Mazumder, Ria; Clymer, Bradley D; Mo, Xiaokui; White, Richard D; Kolipaka, Arunark
2016-06-01
Diffusion tensor imaging (DTI) is used to quantify myocardial fiber orientation based on helical angles (HA). Accurate HA measurements require multiple excitations (NEX) and/or several diffusion encoding directions (DED). However, increasing NEX and/or DED increases acquisition time (TA). Therefore, in this study, we propose to reduce TA by implementing a 3D adaptive anisotropic Gaussian filter (AAGF) on the DTI data acquired from ex-vivo healthy and infarcted porcine hearts. DTI was performed on ex-vivo hearts [9-healthy, 3-myocardial infarction (MI)] with several combinations of DED and NEX. AAGF, mean (AVF) and median filters (MF) were applied on the primary eigenvectors of the diffusion tensor prior to HA estimation. The performance of AAGF was compared against AVF and MF. Root mean square error (RMSE), concordance correlation-coefficients and Bland-Altman's technique was used to determine optimal combination of DED and NEX that generated the best HA maps in the least possible TA. Lastly, the effect of implementing AAGF on the infarcted porcine hearts was also investigated. RMSE in HA estimation for AAGF was lower compared to AVF or MF. Post-filtering (AAGF) fewer DED and NEX were required to achieve HA maps with similar integrity as those obtained from higher NEX and/or DED. Pathological alterations caused in HA orientation in the MI model were preserved post-filtering (AAGF). Our results demonstrate that AAGF reduces TA without affecting the integrity of the myocardial microstructure. PMID:26843150
Effect of the antiscatter grid and target/filters in full-field digital mammography
NASA Astrophysics Data System (ADS)
Chakraborty, Dev P.
1999-05-01
Computer Analysis of Mammography Phantom Images (CAMPI) is a method for making quantitative measurements of image quality. This paper reports on further applications of the method to a prototype full-field digital mammography (FFDM) machine. The specific aim was to investigate the effect on speck Signal-to- Noise-Ratio (SNR) of grid vs. non-grid techniques and different target-filter imaging conditions, for 4-cm thick phantoms. Images of a 50-50 composition, 4-cm thick phantom containing a mammography accreditation phantom insert plate, were acquired on a General Electric FFDM machine under conditions of constant pixel value and constant mean glandular dose. They were obtained under conditions of grid and no-grid with the Mo-Mo target/filter. Also acquired were 4-cm phantom grid images at constant dose using different targets-filter combinations (Mo/Mo, Mo/Rh, Rh/Rh) and different phantom material glandular-fat compositions (percentages: 30-70, 50- 50, 70-30). Analyses of the images yielded signal-to-noise- ratio (SNR) for the specks and a non-uniformity measure. The SNR was converted to a Figure of Merit (FOM) by dividing by the square root of the mean glandular dose. For the grid-non- grid study, the FOM plots showed a broad maximum at about 26 - 28 kVp, meaning that this range is optimal in dose efficiency for imaging a 4-cm breast of 50-50 composition. The non-grid FOM values were greater than the grid values, meaning that the former was more dose-efficient. For the Target/Filter study the FOM also showed broad maxima as a function of kVp. The overall trends were as follows: (1) the Mo-Rh combination was superior to the Mo-Mo combination for all tissue compositions and kVps, and was generally superior to Rh-Rh except for kVp greater than 30. (2) The optimal kVp moves towards higher values for more glandular (dense) breast equivalent material. (3) At the optimal kVp, Mo-Rh is the superior combination, outperforming both Mo-Mo and Rh-Rh for imaging a 4-cm breast
Mollazadeh, M; Murari, K; Cauwenberghs, G; Thakor, N
2009-02-01
Electrical activity in the brain spans a wide range of spatial and temporal scales, requiring simultaneous recording of multiple modalities of neurophysiological signals in order to capture various aspects of brain state dynamics. Here, we present a 16-channel neural interface integrated circuit fabricated in a 0.5 mum 3M2P CMOS process for selective digital acquisition of biopotentials across the spectrum of neural signal modalities in the brain, ranging from single spike action potentials to local field potentials (LFP), electrocorticograms (ECoG), and electroencephalograms (EEG). Each channel is composed of a tunable bandwidth, fixed gain front-end amplifier and a programmable gain/resolution continuous-time incremental DeltaSigma analog-to-digital converter (ADC). A two-stage topology for the front-end voltage amplifier with capacitive feedback offers independent tuning of the amplifier bandpass frequency corners, and attains a noise efficiency factor (NEF) of 2.9 at 8.2 kHz bandwidth for spike recording, and a NEF of 3.2 at 140 Hz bandwidth for EEG recording. The amplifier has a measured midband gain of 39.6 dB, frequency response from 0.2 Hz to 8.2 kHz, and an input-referred noise of 1.94 muV rms while drawing 12.2 muA of current from a 3.3 V supply. The lower and higher cutoff frequencies of the bandpass filter are adjustable from 0.2 to 94 Hz and 140 Hz to 8.2 kHz, respectively. At 10-bit resolution, the ADC has an SNDR of 56 dB while consuming 76 muW power. Time-modulation feedback in the ADC offers programmable digital gain (1-4096) for auto-ranging, further improving the dynamic range and linearity of the ADC. Experimental recordings with the system show spike signals in rat somatosensory cortex as well as alpha EEG activity in a human subject. PMID:20046962
Symmetry-adapted digital modeling I. Axial symmetric proteins.
Janner, A
2016-05-01
Considered are axial symmetric proteins exemplified by the octameric mitochondrial creatine kinase, the Pyr RNA-binding attenuation protein, the D-aminopeptidase and the cyclophilin A-cyclosporin complex, with tetragonal (422), trigonal (32), pentagonal (52) and pentagonal (52) point-group symmetry, respectively. One starts from the protein enclosing form, which is characterized by vertices at points of a lattice (the form lattice) whose dimension depends on the point group. This allows the indexing of Cα's at extreme radial positions. The indexing is extended to additional residues on the basis of a finer lattice, the digital modeling lattice Λ, which includes the form lattice as a sublattice. This leads to a coarse-grained description of the protein. In the crystallographic point-group case, the planar indices are obtained from a projection of atomic positions along the rotation axis, taken as the z axis. The planar indices of a Cα are then those of the nearest projected lattice point. In the non-crystallographic case, low indices are an additional requirement. The coarse-grained bead follows from the condition imposed on the residues selected to have a z coordinate within a band of value δ above and below the height of lattice points. The choice of δ permits a variation of the coarse-grained bead model. For example, the value δ = 0.5 leads to a fine-grained indexing of the full set of residues, whereas with δ = 0.25 one gets a coarse-grained model which includes only about half of these residues. Within this procedure, the indexing of the Cα only depends on the choice of the digital modeling lattice and not on the value of δ. The characteristics which distinguish the present approach from other coarse-grained models of proteins on lattices are summarized at the end. PMID:27126107
Off-axis digital holographic microscopy with LED illumination based on polarization filtering.
Guo, Rongli; Yao, Baoli; Gao, Peng; Min, Junwei; Zhou, Meiling; Han, Jun; Yu, Xun; Yu, Xianghua; Lei, Ming; Yan, Shaohui; Yang, Yanlong; Dan, Dan; Ye, Tong
2013-12-01
A reflection mode digital holographic microscope with light emitting diode (LED) illumination and off-axis interferometry is proposed. The setup is comprised of a Linnik interferometer and a grating-based 4f imaging unit. Both object and reference waves travel coaxially and are split into multiple diffraction orders in the Fourier plane by the grating. The zeroth and first orders are filtered by a polarizing array to select orthogonally polarized object waves and reference waves. Subsequently, the object and reference waves are combined again in the output plane of the 4f system, and then the hologram with uniform contrast over the entire field of view can be acquired with the aid of a polarizer. The one-shot nature in the off-axis configuration enables an interferometric recording time on a millisecond scale. The validity of the proposed setup is illustrated by imaging nanostructured substrates, and the experimental results demonstrate that the phase noise is reduced drastically by an order of 68% when compared to a He-Ne laser-based result. PMID:24513823
NASA Technical Reports Server (NTRS)
Swei, Sean; Cheung, Kenneth
2016-01-01
This project is to develop a novel aerostructure concept that takes advantage of emerging digital composite materials and manufacturing methods to build high stiffness-to-density ratio, ultra-light structures that can provide mission adaptive and aerodynamically efficient future N+3N+4 air vehicles.
Methods of Adapting Digital Content for the Learning Process via Mobile Devices
ERIC Educational Resources Information Center
Lopez, J. L. Gimenez; Royo, T. Magal; Laborda, Jesus Garcia; Calvo, F. Garde
2009-01-01
This article analyses different methods of adapting digital content for its delivery via mobile devices taking into account two aspects which are a fundamental part of the learning process; on the one hand, functionality of the contents, and on the other, the actual controlled navigation requirements that the learner needs in order to acquire high…
Bittanti, S.; Gatti, E.; Ripamonti, G.; Savaresi, S.M.
1997-04-01
In this paper, a method for the identification of the poles` and zeros` position of an analog amplifier for nuclear spectroscopy used as a prefilter for a subsequent digital filter setup is presented. The proposed technique is based upon a subspace-based system state-space identification (4SID) method, which is well suited to a data set constituted by a noisy measurement of the sampled impulse response of the circuit. The algorithm runs unassisted and does not require skills by the operator. The experiments confirm that by using the so-obtained pole values, the shape of the impulse response of the amplifier can be fit with much better than 1% accuracy. Consequently, the overall filtering (analog + digital) can have finite duration and a top with a flatness much better than 1%.
NASA Astrophysics Data System (ADS)
Bhowmik, Deepayan; Abhayaratne, Charith
2009-02-01
A framework for evaluating wavelet based watermarking schemes against scalable coded visual media content adaptation attacks is presented. The framework, Watermark Evaluation Bench for Content Adaptation Modes (WEBCAM), aims to facilitate controlled evaluation of wavelet based watermarking schemes under MPEG-21 part-7 digital item adaptations (DIA). WEBCAM accommodates all major wavelet based watermarking in single generalised framework by considering a global parameter space, from which the optimum parameters for a specific algorithm may be chosen. WEBCAM considers the traversing of media content along various links and required content adaptations at various nodes of media supply chains. In this paper, the content adaptation is emulated by the JPEG2000 coded bit stream extraction for various spatial resolution and quality levels of the content. The proposed framework is beneficial not only as an evaluation tool but also as design tool for new wavelet based watermark algorithms by picking and mixing of available tools and finding the optimum design parameters.
Piaggi, Paolo; Menicucci, Danilo; Gentili, Claudio; Handjaras, Giacomo; Gemignani, Angelo; Landi, Alberto
2014-05-01
Sources of noise in resting-state fMRI experiments include instrumental and physiological noises, which need to be filtered before a functional connectivity analysis of brain regions is performed. These noisy components show autocorrelated and nonstationary properties that limit the efficacy of standard techniques (i.e. time filtering and general linear model). Herein we describe a novel approach based on the combination of singular spectrum analysis and adaptive filtering, which allows a greater noise reduction and yields better connectivity estimates between regions at rest, providing a new feasible procedure to analyze fMRI data.
Adaptive UAV attitude estimation employing unscented Kalman Filter, FOAM and low-cost MEMS sensors.
de Marina, Héctor García; Espinosa, Felipe; Santos, Carlos
2012-01-01
Navigation employing low cost MicroElectroMechanical Systems (MEMS) sensors in Unmanned Aerial Vehicles (UAVs) is an uprising challenge. One important part of this navigation is the right estimation of the attitude angles. Most of the existent algorithms handle the sensor readings in a fixed way, leading to large errors in different mission stages like take-off aerobatic maneuvers. This paper presents an adaptive method to estimate these angles using off-the-shelf components. This paper introduces an Attitude Heading Reference System (AHRS) based on the Unscented Kalman Filter (UKF) using the Fast Optimal Attitude Matrix (FOAM) algorithm as the observation model. The performance of the method is assessed through simulations. Moreover, field experiments are presented using a real fixed-wing UAV. The proposed low cost solution, implemented in a microcontroller, shows a satisfactory real time performance.
Singh, Omkar; Sunkaria, Ramesh Kumar
2015-01-01
Separating an information-bearing signal from the background noise is a general problem in signal processing. In a clinical environment during acquisition of an electrocardiogram (ECG) signal, The ECG signal is corrupted by various noise sources such as powerline interference (PLI), baseline wander and muscle artifacts. This paper presents novel methods for reduction of powerline interference in ECG signals using empirical wavelet transform (EWT) and adaptive filtering. The proposed methods are compared with the empirical mode decomposition (EMD) based PLI cancellation methods. A total of six methods for PLI reduction based on EMD and EWT are analysed and their results are presented in this paper. The EWT-based de-noising methods have less computational complexity and are more efficient as compared with the EMD-based de-noising methods. PMID:25412942
NASA Astrophysics Data System (ADS)
Ibey, Bennett; Subramanian, Hariharan; Ericson, Nance; Xu, Weijian; Wilson, Mark; Cote, Gerard L.
2005-03-01
A blood perfusion and oxygenation sensor has been developed for in situ monitoring of transplanted organs. In processing in situ data, motion artifacts due to increased perfusion can create invalid oxygenation saturation values. In order to remove the unwanted artifacts from the pulsatile signal, adaptive filtering was employed using a third wavelength source centered at 810nm as a reference signal. The 810 nm source resides approximately at the isosbestic point in the hemoglobin absorption curve where the absorbance of light is nearly equal for oxygenated and deoxygenated hemoglobin. Using an autocorrelation based algorithm oxygenation saturation values can be obtained without the need for large sampling data sets allowing for near real-time processing. This technique has been shown to be more reliable than traditional techniques and proven to adequately improve the measurement of oxygenation values in varying perfusion states.
Ko, Byung-hoon; Lee, Takhyung; Choi, Changmok; Kim, Youn-ho; Park, Gunguk; Kang, KyoungHo; Bae, Sang Kon; Shin, Kunsoo
2012-01-01
The electrocardiogram (ECG) is the main measurement parameter for effectively diagnosing chronic disease and guiding cardio-fitness therapy. ECGs contaminated by noise or artifacts disrupt the normal functioning of the automatic analysis algorithm. The objective of this study is to evaluate a method of measuring the HCP variation in motion artifacts through direct monitoring. The proposed wearable sensing device has two channels. One channel is used to measure the ECG through a differential amplifier. The other is for monitoring motion artifacts using the modified electrode and the same differential amplifier. Noise reduction was performed using adaptive filtering, based on a reference signal highly correlated with it. Direct measurement of HCP variations can eliminate the need for additional sensors. PMID:23366209
Yoon, Paul K; Zihajehzadeh, Shaghayegh; Bong-Soo Kang; Park, Edward J
2015-08-01
This paper proposes a novel indoor localization method using the Bluetooth Low Energy (BLE) and an inertial measurement unit (IMU). The multipath and non-line-of-sight errors from low-power wireless localization systems commonly result in outliers, affecting the positioning accuracy. We address this problem by adaptively weighting the estimates from the IMU and BLE in our proposed cascaded Kalman filter (KF). The positioning accuracy is further improved with the Rauch-Tung-Striebel smoother. The performance of the proposed algorithm is compared against that of the standard KF experimentally. The results show that the proposed algorithm can maintain high accuracy for position tracking the sensor in the presence of the outliers.
Yoon, Paul K; Zihajehzadeh, Shaghayegh; Bong-Soo Kang; Park, Edward J
2015-08-01
This paper proposes a novel indoor localization method using the Bluetooth Low Energy (BLE) and an inertial measurement unit (IMU). The multipath and non-line-of-sight errors from low-power wireless localization systems commonly result in outliers, affecting the positioning accuracy. We address this problem by adaptively weighting the estimates from the IMU and BLE in our proposed cascaded Kalman filter (KF). The positioning accuracy is further improved with the Rauch-Tung-Striebel smoother. The performance of the proposed algorithm is compared against that of the standard KF experimentally. The results show that the proposed algorithm can maintain high accuracy for position tracking the sensor in the presence of the outliers. PMID:26736389
Adaptation of Gabor filters for simulation of human preattentive mechanism for a mobile robot
NASA Astrophysics Data System (ADS)
Kulkarni, Naren; Naghdy, Golshah A.
1993-08-01
Vision guided mobile robot navigation is complex and requires analysis of tremendous amounts of information in real time. In order to simplify the task and reduce the amount of information, human preattentive mechanism can be adapted [Nag90]. During the preattentive search the scene is analyzed rapidly but in sufficient detail for the attention to be focused on the `area of interest.' The `area of interest' can further be scrutinized in more detail for recognition purposes. This `area of interest' can be a text message to facilitate navigation. Gabor filters and an automated turning mechanism are used to isolate the `area of interest.' These regions are subsequently processed with optimal spatial resolution for perception tasks. This method has clear advantages over the global operators in that, after an initial search, it scans each region of interest with optimum resolution. This reduces the volume of information for recognition stages and ensures that no region is over or under estimated.
Adaptive UAV Attitude Estimation Employing Unscented Kalman Filter, FOAM and Low-Cost MEMS Sensors
de Marina, Héctor García; Espinosa, Felipe; Santos, Carlos
2012-01-01
Navigation employing low cost MicroElectroMechanical Systems (MEMS) sensors in Unmanned Aerial Vehicles (UAVs) is an uprising challenge. One important part of this navigation is the right estimation of the attitude angles. Most of the existent algorithms handle the sensor readings in a fixed way, leading to large errors in different mission stages like take-off aerobatic maneuvers. This paper presents an adaptive method to estimate these angles using off-the-shelf components. This paper introduces an Attitude Heading Reference System (AHRS) based on the Unscented Kalman Filter (UKF) using the Fast Optimal Attitude Matrix (FOAM) algorithm as the observation model. The performance of the method is assessed through simulations. Moreover, field experiments are presented using a real fixed-wing UAV. The proposed low cost solution, implemented in a microcontroller, shows a satisfactory real time performance. PMID:23012559
Adaptive filters for monitoring localized brain activity from surface potential time series
Spencer, M.E. . Signal and Image Processing Inst. TRW, Inc., Redondo Beach, CA ); Leahy, R.M. . Signal and Image Processing Inst.); Mosher, J.C. . Signal and Image Processing Inst. Lo
1992-01-01
We address the problem of processing electroencephalographic (EEG) data to monitor the time series of the components of a current dipole source vector at a given location in the head. This is the spatial filtering problem for vector sources in a lossy, three dimensional, zero delay medium. Dipolar and distributed sources at other than the desired location are canceled or attenuated with an adaptive linearly constrained minimum variance (LCMV) beamformer. Actual EEG data acquired from a human subject serves as the interference in a case where the desired source is simulated and superimposed on the actual data. It is shown that the LCMV beamformer extracts the desired dipole time series while effectively canceling the subjects interference.
Adaptive filters for monitoring localized brain activity from surface potential time series
Spencer, M.E. |; Leahy, R.M.; Mosher, J.C. |; Lewis, P.S.
1992-12-01
We address the problem of processing electroencephalographic (EEG) data to monitor the time series of the components of a current dipole source vector at a given location in the head. This is the spatial filtering problem for vector sources in a lossy, three dimensional, zero delay medium. Dipolar and distributed sources at other than the desired location are canceled or attenuated with an adaptive linearly constrained minimum variance (LCMV) beamformer. Actual EEG data acquired from a human subject serves as the interference in a case where the desired source is simulated and superimposed on the actual data. It is shown that the LCMV beamformer extracts the desired dipole time series while effectively canceling the subjects interference.
Micro-Adaptivity: Protecting Immersion in Didactically Adaptive Digital Educational Games
ERIC Educational Resources Information Center
Kickmeier-Rust, M. D.; Albert, D.
2010-01-01
The idea of utilizing the rich potential of today's computer games for educational purposes excites educators, scientists and technicians. Despite the significant hype over digital game-based learning, the genre is currently at an early stage. One of the most significant challenges for research and development in this area is establishing…
Local stimulus disambiguation with global motion filters predicts adaptive surround modulation.
Dellen, Babette; Torras, Carme
2013-10-01
Humans have no problem segmenting different motion stimuli despite the ambiguity of local motion signals. Adaptive surround modulation, i.e., the apparent switching between integrative and antagonistic modes, is assumed to play a crucial role in this process. However, so far motion processing models based on local integration have not been able to provide a unifying explanation for this phenomenon. This motivated us to investigate the problem of local stimulus disambiguation in an alternative and fundamentally distinct motion-processing model which uses global motion filters for velocity computation. Local information is reconstructed at the end of the processing stream through the constructive interference of global signals, i.e., inverse transformations. We show that in this model local stimulus disambiguation can be achieved by means of a novel filter embedded in this architecture. This gives rise to both integrative and antagonistic effects which are in agreement with those observed in psychophysical experiments with humans, providing a functional explanation for effects of motion repulsion.
Adaptive Filter-bank Approach to Restoration and Spectral Analysis of Gapped Data
NASA Astrophysics Data System (ADS)
Stoica, Petre; Larsson, Erik G.; Li, Jian
2000-10-01
The main topic of this paper is the nonparametric estimation of complex (both amplitude and phase) spectra from gapped data, as well as the restoration of such data. The focus is on the extension of the APES (amplitude and phase estimation) approach to data sequences with gaps. APES, which is one of the most successful existing nonparametric approaches to the spectral analysis of full data sequences, uses a bank of narrowband adaptive (both frequency and data dependent) filters to estimate the spectrum. A recent interpretation of this approach showed that the filterbank used by APES and the resulting spectrum minimize a least-squares (LS) fitting criterion between the filtered sequence and its spectral decomposition. The extended approach, which is called GAPES for somewhat obvious reasons, capitalizes on the aforementioned interpretation: it minimizes the APES-LS fitting criterion with respect to the missing data as well. This should be a sensible thing to do whenever the full data sequence is stationary, and hence the missing data have the same spectral content as the available data. We use both simulated and real data examples to show that GAPES estimated spectra and interpolated data sequences have excellent accuracy. We also show the performance gain achieved by GAPES over two of the most commonly used approaches for gapped-data spectral analysis, viz., the periodogram and the parametric CLEAN method. This work was partly supported by the Swedish Foundation for Strategic Research.
A waveguide invariant adaptive matched filter for active sonar target depth classification.
Goldhahn, Ryan; Hickman, Granger; Krolik, Jeffrey
2011-04-01
This paper addresses depth discrimination of a water column target from bottom clutter discretes in wideband active sonar. To facilitate classification, the waveguide invariant property is used to derive multiple snapshots by uniformly sub-sampling the short-time Fourier transform (STFT) coefficients of a single ping of wideband active sonar data. The sub-sampled target snapshots are used to define a waveguide invariant spectral density matrix (WI-SDM), which allows the application of adaptive matched-filtering based approaches for target depth classification. Depth classification is achieved using a waveguide invariant minimum variance filter (WI-MVF) which matches the observed WI-SDM to depth-dependent signal replica vectors generated from a normal mode model. Robustness to environmental mismatch is achieved by adding environmental perturbation constraints (EPC) derived from signal covariance matrices averaged over the uncertain channel parameters. Simulation and real data results from the SCARAB98 and CLUTTER09 experiments in the Mediterranean Sea are presented to illustrate the approach. Receiver operating characteristics (ROC) for robust waveguide invariant depth classification approaches are presented which illustrate performance under uncertain environmental conditions. PMID:21476638
Local stimulus disambiguation with global motion filters predicts adaptive surround modulation.
Dellen, Babette; Torras, Carme
2013-10-01
Humans have no problem segmenting different motion stimuli despite the ambiguity of local motion signals. Adaptive surround modulation, i.e., the apparent switching between integrative and antagonistic modes, is assumed to play a crucial role in this process. However, so far motion processing models based on local integration have not been able to provide a unifying explanation for this phenomenon. This motivated us to investigate the problem of local stimulus disambiguation in an alternative and fundamentally distinct motion-processing model which uses global motion filters for velocity computation. Local information is reconstructed at the end of the processing stream through the constructive interference of global signals, i.e., inverse transformations. We show that in this model local stimulus disambiguation can be achieved by means of a novel filter embedded in this architecture. This gives rise to both integrative and antagonistic effects which are in agreement with those observed in psychophysical experiments with humans, providing a functional explanation for effects of motion repulsion. PMID:23685285
A waveguide invariant adaptive matched filter for active sonar target depth classification.
Goldhahn, Ryan; Hickman, Granger; Krolik, Jeffrey
2011-04-01
This paper addresses depth discrimination of a water column target from bottom clutter discretes in wideband active sonar. To facilitate classification, the waveguide invariant property is used to derive multiple snapshots by uniformly sub-sampling the short-time Fourier transform (STFT) coefficients of a single ping of wideband active sonar data. The sub-sampled target snapshots are used to define a waveguide invariant spectral density matrix (WI-SDM), which allows the application of adaptive matched-filtering based approaches for target depth classification. Depth classification is achieved using a waveguide invariant minimum variance filter (WI-MVF) which matches the observed WI-SDM to depth-dependent signal replica vectors generated from a normal mode model. Robustness to environmental mismatch is achieved by adding environmental perturbation constraints (EPC) derived from signal covariance matrices averaged over the uncertain channel parameters. Simulation and real data results from the SCARAB98 and CLUTTER09 experiments in the Mediterranean Sea are presented to illustrate the approach. Receiver operating characteristics (ROC) for robust waveguide invariant depth classification approaches are presented which illustrate performance under uncertain environmental conditions.
Memmolo, P; Finizio, A; Paturzo, M; Ferraro, P; Javidi, B
2012-05-01
A method based on spatial transformations of multiwavelength digital holograms and the correlation matching of their numerical reconstructions is proposed, with the aim to improve superimposition of different color reconstructed images. This method is based on an adaptive affine transform of the hologram that permits management of the physical parameters of numerical reconstruction. In addition, we present a procedure to synthesize a single digital hologram in which three different colors are multiplexed. The optical reconstruction of the synthetic hologram by a spatial light modulator at one wavelength allows us to display all color features of the object, avoiding loss of details.
Lu, Jun; Xie, Kan; McFarland, Dennis J
2014-07-01
Movement related potentials (MRPs) are used as features in many brain-computer interfaces (BCIs) based on electroencephalogram (EEG). MRP feature extraction is challenging since EEG is noisy and varies between subjects. Previous studies used spatial and spatio-temporal filtering methods to deal with these problems. However, they did not optimize temporal information or may have been susceptible to overfitting when training data are limited and the feature space is of high dimension. Furthermore, most of these studies manually select data windows and low-pass frequencies. We propose an adaptive spatio-temporal (AST) filtering method to model MRPs more accurately in lower dimensional space. AST automatically optimizes all parameters by employing a Gaussian kernel to construct a low-pass time-frequency filter and a linear ridge regression (LRR) algorithm to compute a spatial filter. Optimal parameters are simultaneously sought by minimizing leave-one-out cross-validation error through gradient descent. Using four BCI datasets from 12 individuals, we compare the performances of AST filter to two popular methods: the discriminant spatial pattern filter and regularized spatio-temporal filter. The results demonstrate that our AST filter can make more accurate predictions and is computationally feasible.
Emergence of band-pass filtering through adaptive spiking in the owl's cochlear nucleus
MacLeod, Katrina M.; Lubejko, Susan T.; Steinberg, Louisa J.; Köppl, Christine; Peña, Jose L.
2014-01-01
In the visual, auditory, and electrosensory modalities, stimuli are defined by first- and second-order attributes. The fast time-pressure signal of a sound, a first-order attribute, is important, for instance, in sound localization and pitch perception, while its slow amplitude-modulated envelope, a second-order attribute, can be used for sound recognition. Ascending the auditory pathway from ear to midbrain, neurons increasingly show a preference for the envelope and are most sensitive to particular envelope modulation frequencies, a tuning considered important for encoding sound identity. The level at which this tuning property emerges along the pathway varies across species, and the mechanism of how this occurs is a matter of debate. In this paper, we target the transition between auditory nerve fibers and the cochlear nucleus angularis (NA). While the owl's auditory nerve fibers simultaneously encode the fast and slow attributes of a sound, one synapse further, NA neurons encode the envelope more efficiently than the auditory nerve. Using in vivo and in vitro electrophysiology and computational analysis, we show that a single-cell mechanism inducing spike threshold adaptation can explain the difference in neural filtering between the two areas. We show that spike threshold adaptation can explain the increased selectivity to modulation frequency, as input level increases in NA. These results demonstrate that a spike generation nonlinearity can modulate the tuning to second-order stimulus features, without invoking network or synaptic mechanisms. PMID:24790170
Low-complexity nonlinear adaptive filter based on a pipelined bilinear recurrent neural network.
Zhao, Haiquan; Zeng, Xiangping; He, Zhengyou
2011-09-01
To reduce the computational complexity of the bilinear recurrent neural network (BLRNN), a novel low-complexity nonlinear adaptive filter with a pipelined bilinear recurrent neural network (PBLRNN) is presented in this paper. The PBLRNN, inheriting the modular architectures of the pipelined RNN proposed by Haykin and Li, comprises a number of BLRNN modules that are cascaded in a chained form. Each module is implemented by a small-scale BLRNN with internal dynamics. Since those modules of the PBLRNN can be performed simultaneously in a pipelined parallelism fashion, it would result in a significant improvement of computational efficiency. Moreover, due to nesting module, the performance of the PBLRNN can be further improved. To suit for the modular architectures, a modified adaptive amplitude real-time recurrent learning algorithm is derived on the gradient descent approach. Extensive simulations are carried out to evaluate the performance of the PBLRNN on nonlinear system identification, nonlinear channel equalization, and chaotic time series prediction. Experimental results show that the PBLRNN provides considerably better performance compared to the single BLRNN and RNN models.
Adaptive optical radial basis function neural network for handwritten digit recognition
NASA Astrophysics Data System (ADS)
Foor, Wesley E.; Neifeld, Mark A.
1994-06-01
An adaptive optical radial basis function classifier for handwritten digit recognition is experimentally demonstrated. We describe a spatially- multiplexed system incorporating on-line adaptation of weights and basis function widths to provide robustness to optical system imperfections and system noise. The optical system computes the Euclidean distances between a 100-dimensional input and 198 stored reference patterns in parallel using dual vector-matrix multipliers. For this experimental software is used to perform the on-line learning of the weights and basis function widths. An experimental recognition rate of 86.7% correct out of 300 testing samples is achieved with the adaptive training versus 52.3% correct for non-adaptive training. The experimental results from the optical system are compared with data from a computer model of the system in order to identify noise sources and indicate possible improvements for system performance.
Adaptive Control of Non-Minimum Phase Modal Systems Using Residual Mode Filters2. Parts 1 and 2
NASA Technical Reports Server (NTRS)
Balas, Mark J.; Frost, Susan
2011-01-01
Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. This paper will be divided into two parts. Here in Part I we will review the basic adaptive control approach and introduce the primary ideas. In Part II, we will present the RMF methodology and complete the proofs of all our results. Also, we will apply the above theoretical results to a simple flexible structure example to illustrate the behavior with and without the residual mode filter.
NASA Technical Reports Server (NTRS)
Toldalagi, P. M.
1980-01-01
A review is made of recursive statistical regression techniques incorporating past or past and future observations through smoothing and Kalman filtering, respectively; with results for the cases of the Tiros-N/MSU and Nimbus-6/Scams remote sensing satellite experiments. In response to the lack of a satisfactory model for the medium sounded, which is presently a major limitation on retrieval technique performance, a novel, global approach is proposed which casts the retrieval problem into the framework of adaptive filtering. A numerical implementation of such an adaptive system is presented, with a multilayer, semi-spectral general circulation model for the atmosphere being used to fine-tune the sensor as well as the dynamical equations of a Kalman filter. It is shown that the assimilation of radiometric data becomes a straightforward subproblem.
Digital Signal Processing Of Optical Monitoring By Means Of A Kalman Filter
NASA Astrophysics Data System (ADS)
Nixon, M.; Seeley, J. S.
1983-11-01
A Kalman filter algorithm has been applied to interpret the optical reflectance excursions during vacuum deposition of infrared coatings and multilayer thin-film filters. The application has been described in detail elsewhere and this paper now reports on-line experience for estimating deposition rate and thickness. The estimation proved sufficiently reliable to firstly 'navigate' regular manufacture (as controlled by a skilled operator) and to subsequently reproduce the skill without interpretation or intervention whilst maintaining exemplary product quality. Optical control by means of this Kalman filter application is therefore considered suitable as a basis for the automated manufacture of infrared coatings and multilayer thin-film filters.
Conductivity image enhancement in MREIT using adaptively weighted spatial averaging filter
2014-01-01
Background In magnetic resonance electrical impedance tomography (MREIT), we reconstruct conductivity images using magnetic flux density data induced by externally injected currents. Since we extract magnetic flux density data from acquired MR phase images, the amount of measurement noise increases in regions of weak MR signals. Especially for local regions of MR signal void, there may occur excessive amounts of noise to deteriorate the quality of reconstructed conductivity images. In this paper, we propose a new conductivity image enhancement method as a postprocessing technique to improve the image quality. Methods Within a magnetic flux density image, the amount of noise varies depending on the position-dependent MR signal intensity. Using the MR magnitude image which is always available in MREIT, we estimate noise levels of measured magnetic flux density data in local regions. Based on the noise estimates, we adjust the window size and weights of a spatial averaging filter, which is applied to reconstructed conductivity images. Without relying on a partial differential equation, the new method is fast and can be easily implemented. Results Applying the novel conductivity image enhancement method to experimental data, we could improve the image quality to better distinguish local regions with different conductivity contrasts. From phantom experiments, the estimated conductivity values had 80% less variations inside regions of homogeneous objects. Reconstructed conductivity images from upper and lower abdominal regions of animals showed much less artifacts in local regions of weak MR signals. Conclusion We developed the fast and simple method to enhance the conductivity image quality by adaptively adjusting the weights and window size of the spatial averaging filter using MR magnitude images. Since the new method is implemented as a postprocessing step, we suggest adopting it without or with other preprocessing methods for application studies where conductivity
NASA Astrophysics Data System (ADS)
Kiani, Maryam; Pourtakdoust, Seid H.
2014-12-01
A novel algorithm is presented in this study for estimation of spacecraft's attitudes and angular rates from vector observations. In this regard, a new cubature-quadrature particle filter (CQPF) is initially developed that uses the Square-Root Cubature-Quadrature Kalman Filter (SR-CQKF) to generate the importance proposal distribution. The developed CQPF scheme avoids the basic limitation of particle filter (PF) with regards to counting the new measurements. Subsequently, CQPF is enhanced to adjust the sample size at every time step utilizing the idea of confidence intervals, thus improving the efficiency and accuracy of the newly proposed adaptive CQPF (ACQPF). In addition, application of the q-method for filter initialization has intensified the computation burden as well. The current study also applies ACQPF to the problem of attitude estimation of a low Earth orbit (LEO) satellite. For this purpose, the undertaken satellite is equipped with a three-axis magnetometer (TAM) as well as a sun sensor pack that provide noisy geomagnetic field data and Sun direction measurements, respectively. The results and performance of the proposed filter are investigated and compared with those of the extended Kalman filter (EKF) and the standard particle filter (PF) utilizing a Monte Carlo simulation. The comparison demonstrates the viability and the accuracy of the proposed nonlinear estimator.
NASA Astrophysics Data System (ADS)
Shams Esfand Abadi, Mohammad; AbbasZadeh Arani, Seyed Ali Asghar
2011-12-01
This paper extends the recently introduced variable step-size (VSS) approach to the family of adaptive filter algorithms. This method uses prior knowledge of the channel impulse response statistic. Accordingly, optimal step-size vector is obtained by minimizing the mean-square deviation (MSD). The presented algorithms are the VSS affine projection algorithm (VSS-APA), the VSS selective partial update NLMS (VSS-SPU-NLMS), the VSS-SPU-APA, and the VSS selective regressor APA (VSS-SR-APA). In VSS-SPU adaptive algorithms the filter coefficients are partially updated which reduce the computational complexity. In VSS-SR-APA, the optimal selection of input regressors is performed during the adaptation. The presented algorithms have good convergence speed, low steady state mean square error (MSE), and low computational complexity features. We demonstrate the good performance of the proposed algorithms through several simulations in system identification scenario.
NASA Technical Reports Server (NTRS)
Venosa, Elettra; Vermeire, Bert; Alakija, Cameron; Harris, Fred; Strobel, David; Sheehe, Charles J.; Krunz, Marwan
2017-01-01
In the last few years, radio technologies for unmanned aircraft vehicle (UAV) have advanced very rapidly. The increasing need to fly unmanned aircraft systems (UAS) in the national airspace system (NAS) to perform missions of vital importance to national security, defense, and science has pushed ahead the design and implementation of new radio platforms. However, a lot still has to be done to improve those radios in terms of performance and capabilities. In addition, an important aspect to account for is hardware cost and the feasibility to implement these radios using commercial off-the-shelf (COTS) components. UAV radios come with numerous technical challenges and their development involves contributions at different levels of the design. Cognitive algorithms need to be developed in order to perform agile communications using appropriate frequency allocation while maintaining safe and efficient operations in the NAS and, digital reconfigurable architectures have to be designed in order to ensure a prompt response to environmental changes. Command and control (C2) communications have to be preserved during "standard" operations while crew operations have to be minimized. It is clear that UAV radios have to be software-defined systems, where size, weight and power consumption (SWaP) are critical parameters. This paper provides preliminary results of the efforts performed to design a fully digital radio architecture as part of a NASA Phase I STTR. In this paper, we will explain the basic idea and technical principles behind our dynamic/adaptive frequency hopping radio for UAVs. We will present our Simulink model of the dynamic FH radio transmitter design for UAV communications and show simulation results and FPGA system analysis.
Lei, Shufei; Iles, Alastair; Kelly, Maggi
2015-07-01
Some of the factors that can contribute to the success of collaborative adaptive management--such as social learning, open communication, and trust--are built upon a foundation of the open exchange of information about science and management between participants and the public. Despite the importance of information transparency, the use and flow of information in collaborative adaptive management has not been characterized in detail in the literature, and currently there exist opportunities to develop strategies for increasing the exchange of information, as well as to track information flow in such contexts. As digital information channels and networks have been increased over the last decade, powerful new information monitoring tools have also been evolved allowing for the complete characterization of information products through their production, transport, use, and monitoring. This study uses these tools to investigate the use of various science and management information products in a case study--the Sierra Nevada Adaptive Management Project--using a mixed method (citation analysis, web analytics, and content analysis) research approach borrowed from the information processing and management field. The results from our case study show that information technologies greatly facilitate the flow and use of digital information, leading to multiparty collaborations such as knowledge transfer and public participation in science research. We conclude with recommendations for expanding information exchange in collaborative adaptive management by taking advantage of available information technologies and networks. PMID:25877459
Lei, Shufei; Iles, Alastair; Kelly, Maggi
2015-07-01
Some of the factors that can contribute to the success of collaborative adaptive management--such as social learning, open communication, and trust--are built upon a foundation of the open exchange of information about science and management between participants and the public. Despite the importance of information transparency, the use and flow of information in collaborative adaptive management has not been characterized in detail in the literature, and currently there exist opportunities to develop strategies for increasing the exchange of information, as well as to track information flow in such contexts. As digital information channels and networks have been increased over the last decade, powerful new information monitoring tools have also been evolved allowing for the complete characterization of information products through their production, transport, use, and monitoring. This study uses these tools to investigate the use of various science and management information products in a case study--the Sierra Nevada Adaptive Management Project--using a mixed method (citation analysis, web analytics, and content analysis) research approach borrowed from the information processing and management field. The results from our case study show that information technologies greatly facilitate the flow and use of digital information, leading to multiparty collaborations such as knowledge transfer and public participation in science research. We conclude with recommendations for expanding information exchange in collaborative adaptive management by taking advantage of available information technologies and networks.
NASA Astrophysics Data System (ADS)
Lei, Shufei; Iles, Alastair; Kelly, Maggi
2015-07-01
Some of the factors that can contribute to the success of collaborative adaptive management—such as social learning, open communication, and trust—are built upon a foundation of the open exchange of information about science and management between participants and the public. Despite the importance of information transparency, the use and flow of information in collaborative adaptive management has not been characterized in detail in the literature, and currently there exist opportunities to develop strategies for increasing the exchange of information, as well as to track information flow in such contexts. As digital information channels and networks have been increased over the last decade, powerful new information monitoring tools have also been evolved allowing for the complete characterization of information products through their production, transport, use, and monitoring. This study uses these tools to investigate the use of various science and management information products in a case study—the Sierra Nevada Adaptive Management Project—using a mixed method (citation analysis, web analytics, and content analysis) research approach borrowed from the information processing and management field. The results from our case study show that information technologies greatly facilitate the flow and use of digital information, leading to multiparty collaborations such as knowledge transfer and public participation in science research. We conclude with recommendations for expanding information exchange in collaborative adaptive management by taking advantage of available information technologies and networks.
Adaptive, optical, radial basis function neural network for handwritten digit recognition
NASA Astrophysics Data System (ADS)
Foor, Wesley E.; Neifeld, Mark A.
1995-11-01
An adaptive, optical, radial basis function classifier for handwritten digit recognition is experimentally demonstrated. We describe a spatially multiplexed system that incorporates an on-line adaptation of weights and basis function widths to provide robustness to optical system imperfections and system noise. The optical system computes the Euclidean distances between a 100-dimensional input vector and 198 stored reference patterns in parallel by using dual vector-matrix multipliers and a contrast-reversing spatial light modulator. Software is used to emulate an electronic chip that performs the on-line learning of the weights and basis function widths. An experimental recognition rate of 92.7% correct out of 300 testing samples is achieved with the adaptive training, versus 31.0% correct for nonadaptive training. We compare the experimental results with a detailed computer model of the system in order to analyze the influence of various noise sources on the system performance.
NASA Astrophysics Data System (ADS)
Mazzoleni, Paolo; Matta, Fabio; Zappa, Emanuele; Sutton, Michael A.; Cigada, Alfredo
2015-03-01
This paper discusses the effect of pre-processing image blurring on the uncertainty of two-dimensional digital image correlation (DIC) measurements for the specific case of numerically-designed speckle patterns having particles with well-defined and consistent shape, size and spacing. Such patterns are more suitable for large measurement surfaces on large-scale specimens than traditional spray-painted random patterns without well-defined particles. The methodology consists of numerical simulations where Gaussian digital filters with varying standard deviation are applied to a reference speckle pattern. To simplify the pattern application process for large areas and increase contrast to reduce measurement uncertainty, the speckle shape, mean size and on-center spacing were selected to be representative of numerically-designed patterns that can be applied on large surfaces through different techniques (e.g., spray-painting through stencils). Such 'designer patterns' are characterized by well-defined regions of non-zero frequency content and non-zero peaks, and are fundamentally different from typical spray-painted patterns whose frequency content exhibits near-zero peaks. The effect of blurring filters is examined for constant, linear, quadratic and cubic displacement fields. Maximum strains between ±250 and ±20,000 με are simulated, thus covering a relevant range for structural materials subjected to service and ultimate stresses. The robustness of the simulation procedure is verified experimentally using a physical speckle pattern subjected to constant displacements. The stability of the relation between standard deviation of the Gaussian filter and measurement uncertainty is assessed for linear displacement fields at varying image noise levels, subset size, and frequency content of the speckle pattern. It is shown that bias error as well as measurement uncertainty are minimized through Gaussian pre-filtering. This finding does not apply to typical spray
Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing
2016-01-01
A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method. PMID:26761006
Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing
2016-01-01
A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method.
A piezo-shunted kirigami auxetic lattice for adaptive elastic wave filtering
NASA Astrophysics Data System (ADS)
Ouisse, Morvan; Collet, Manuel; Scarpa, Fabrizio
2016-11-01
Tailoring the dynamical behavior of wave-guide structures can provide an efficient and physically elegant approach for optimizing mechanical components with regards to vibroacoustic propagation. Architectured materials as pyramidal core kirigami cells combined with smart systems may represent a promising way to improve the vibroacoustic quality of structural components. This paper describes the design and modeling of a pyramidal core with auxetic (negative Poisson’s ratio) characteristics and distributed shunted piezoelectric patches that allow for wave propagation control. The core is produced using a kirigami technique, inspired by the cutting/folding processes of the ancient Japanese art. The kirigami structure has a pyramidal unit cell shape that creates an in-plane negative Poisson’s ratio macroscopic behavior. This structure exhibits in-plane elastic properties (Young’s and shear modulus) which are higher than the out-of-plane ones, and hence this lattice has very specific properties in terms of wave propagation that are investigated in this work. The short-circuited configuration is first analyzed, before using negative capacitance and resistance as a shunt which provides impressive band gaps in the low frequency range. All configurations are investigated by using a full analysis of the Brillouin zone, rendering possible the deep understanding of the dynamical properties of the smart lattice. The results are presented in terms of dispersion and directivity diagrams, and the smart lattice shows quite interesting properties for the adaptive filtering of elastic waves at low frequencies bandwidths.
Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing
2016-01-01
A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method. PMID:26761006
Seismic random noise attenuation based on adaptive time-frequency peak filtering
NASA Astrophysics Data System (ADS)
Deng, Xinhuan; Ma, Haitao; Li, Yue; Zeng, Qian
2015-02-01
Time-frequency peak filtering (TFPF) method uses a specific window with fixed length to recover band-limited signal in stationary random noise. However, the derivatives of signal such as seismic wavelets may change rapidly in some short time intervals. In this case, TFPF equipped with fixed window length will not provide an optimal solution. In this letter, we present an adaptive version of TFPF for seismic random noise attenuation. In our version, the improved intersection of confidence intervals combined with short-time energy criterion is used to preprocess the noisy signal. And then, we choose an appropriate threshold to divide the noisy signal into signal, buffer and noise. Different optimal window lengths are used in each type of segments. We test the proposed method on both synthetic and field seismic data. The experimental results illustrate that the proposed method makes the degree of amplitude preservation raise more than 10% and signal-to-noise (SNR) improve 2-4 dB compared with the original algorithm.
NASA Astrophysics Data System (ADS)
Wells, Gregg B.; Ricci, Anthony J.
2011-11-01
In the auditory system, mechanotransduction occurs in the hair cell sensory hair bundle and is the first major step in the translation of mechanical energy into electrical. Tonotopic variations in the activation kinetics of this process are posited to provide a low pass filter to the input. An adaptation process, also associated with mechanotransduction, is postulated to provide a high pass filter to the input in a tonotopic manner. Together a bandpass filter is created at the hair cell input. Corresponding mechanical components to both activation and adaptation are also suggested to be involved in generating cochlear amplification. A paradox to this story is that hair cells where the mechanotransduction properties are most robust possess an intrinsic electrical resonance mechanism proposed to account for all required tuning and amplification. A simple Hodgkin-Huxley type model is presented to attempt to determine the role of the activation and adaptation kinetics in further tuning hair cells that exhibit electrical resonance. Results further support that steady state mechanotransduction properties are critical for setting the resting potential of the hair cell while the kinetics of activation and adaptation are important for sharpening tuning around the characteristic frequency of the hair cell.
Design of recursive digital filters having specified phase and magnitude characteristics
NASA Technical Reports Server (NTRS)
King, R. E.; Condon, G. W.
1972-01-01
A method for a computer-aided design of a class of optimum filters, having specifications in the frequency domain of both magnitude and phase, is described. The method, an extension to the work of Steiglitz, uses the Fletcher-Powell algorithm to minimize a weighted squared magnitude and phase criterion. Results using the algorithm for the design of filters having specified phase as well as specified magnitude and phase compromise are presented.
Hybrid method for designing digital FIR filters based on fractional derivative constraints.
Baderia, Kuldeep; Kumar, Anil; Kumar Singh, Girish
2015-09-01
In this manuscript, a hybrid approach based on Lagrange multiplier method and cuckoo search (CS) optimization technique is proposed for the design of linear phase finite impulse response (FIR) filters using fractional derivative constraints. In the proposed method, FIR filter is designed by optimizing the integral squares in passband and stopband from ideal response such that the fractional derivatives of designed filter response become zero at a given frequency point. Lagrange multiplier method is exploited for finding the optimized filter coefficients. Optimal value of fractional derivative constraints for optimized filter coefficients are determined by minimizing the objective function constructed using a sum of maximum passband ripple and maximum stopband ripple in frequency domain using CS algorithm. Performance of the proposed method is evaluated by passband error (ϕ(p)), stopband error (ϕ(s)), stopband attenuation (A(s)), maximum passband ripple (MPR), maximum stopband ripple (MSR) and CPU time. A comparative study of the performance of particle swarm optimization (PSO) and artificial bee colony (ABC) for designing FIR filters using the proposed method is also made. PMID:26142984
Watson, B.L.; Aeby, I.
1980-08-26
An adaptive data compression device for compressing data is described. The device has a frequency content, including a plurality of digital filters for analyzing the content of the data over a plurality of frequency regions, a memory, and a control logic circuit for generating a variable rate memory clock corresponding to the analyzed frequency content of the data in the frequency region and for clocking the data into the memory in response to the variable rate memory clock.
Watson, Bobby L.; Aeby, Ian
1982-01-01
An adaptive data compression device for compressing data having variable frequency content, including a plurality of digital filters for analyzing the content of the data over a plurality of frequency regions, a memory, and a control logic circuit for generating a variable rate memory clock corresponding to the analyzed frequency content of the data in the frequency region and for clocking the data into the memory in response to the variable rate memory clock.
Tankanag, Arina V; Chemeris, Nikolay K
2009-10-01
The paper describes an original method for analysis of the peripheral blood flow oscillations measured with the laser Doppler flowmetry (LDF) technique. The method is based on the continuous wavelet transform and adaptive wavelet theory and applies an adaptive wavelet filtering to the LDF data. The method developed allows one to examine the dynamics of amplitude oscillations in a wide frequency range (from 0.007 to 2 Hz) and to process both stationary and non-stationary short (6 min) signals. The capabilities of the method have been demonstrated by analyzing LDF signals registered in the state of rest and upon humeral occlusion. The paper shows the main advantage of the method proposed, which is the significant reduction of 'border effects', as compared to the traditional wavelet analysis. It was found that the low-frequency amplitudes obtained by adaptive wavelets are significantly higher than those obtained by non-adaptive ones. The method suggested would be useful for the analysis of low-frequency components of the short-living transitional processes under the conditions of functional tests. The method of adaptive wavelet filtering can be used to process stationary and non-stationary biomedical signals (cardiograms, encephalograms, myograms, etc), as well as signals studied in the other fields of science and engineering.
Djupsund, K; Kouvalainen, E; Järvilehto, M; Weckström, M
1995-11-01
We present a new digital feedback application for the study of the sensitivity characteristics of photoreceptors. The amplitude of the recorded membrane voltage of a cell is steered by changing the incoming light intensity with a motor-driven circular, linear neutral-density wedge (CFW). The voltage response is sampled and fed to a software position controller of the CFW. The controller determines the position of the wedge according to the desired (command) value of the response. The light intensity changes during steady-state represent the sensitivity change, the time-course of adaptation.
Digital filter design with zero shift on charge amplifiers for low shock calibration
NASA Astrophysics Data System (ADS)
Nozato, H.; Bruns, T.; Volkers, H.; Oota, A.
2014-03-01
Zero shift caused by the low frequency response of charge amplifiers is one of the most significant factors in shock measurements with long duration, such as low shock calibration of accelerometers. In order to reproduce the same zero shift as the charge amplifier, infinite impulse response (IIR) filters were developed by applying a second order transfer function to the high pass characteristic in the low frequency part of the measured frequency response of charge amplifiers. For the experimental verification of the zero shift using the IIR filter, input/output signals of the charge amplifier were investigated by using rectangular waveforms with a peak voltage of 2 V and pulse width of 10 ms and 5 ms, respectively. As indicated by the results, the IIR filter succeeds in following the same zero shift as the charge amplifier.
Implementation of a real-time adaptive digital shaping for nuclear spectroscopy
NASA Astrophysics Data System (ADS)
Regadío, Alberto; Sánchez-Prieto, Sebastián; Prieto, Manuel; Tabero, Jesús
2014-01-01
This paper presents the structure, design and implementation of a new adaptive digital shaper for processing the pulses generated in nuclear particle detectors. The proposed adaptive algorithm has the capacity to automatically adjust the coefficients for shaping an input signal with a desired profile in real-time. Typical shapers such as triangular, trapezoidal or cusp-like ones can be generated, but more exotic unipolar shaping could also be performed. A practical prototype was designed, implemented and tested in a Field Programmable Gate Array (FPGA). Particular attention was paid to the amount of internal FPGA resources required and to the sampling rate, making the design as simple as possible in order to minimize power consumption. Lastly, its performance and capabilities were measured using simulations and a real benchmark.
Adaptive Practice: Next Generation Evidence-Based Practice in Digital Environments.
Kennedy, Margaret Ann
2016-01-01
Evidence-based practice in nursing is considered foundational to safe, competent care. To date, rigid traditional perceptions of what constitutes 'evidence' have constrained the recognition and use of practice-based evidence and the exploitation of novel forms of evidence from data rich environments. Advancements such as the conceptualization of clinical intelligence, the prevalence of increasingly sophisticated digital health information systems, and the advancement of the Big Data phenomenon have converged to generate a new contemporary context. In today's dynamic data-rich environments, clinicians have new sources of valid evidence, and need a new paradigm supporting clinical practice that is adaptive to information generated by diverse electronic sources. This opinion paper presents adaptive practice as the next generation of evidence-based practice in contemporary evidence-rich environments and provides recommendations for the next phase of evolution.
Low cost voice compression for mobile digital radios
NASA Technical Reports Server (NTRS)
Omura, J. K.
1985-01-01
A new technique for low cost rubust voice compression at 4800 bits per second was studied. The approach was based on using a cascade of digital biquad adaptive filters with simplified multipulse excitation followed by simple bit sequence compression.
Chaotic keyed hash function based on feedforward feedback nonlinear digital filter
NASA Astrophysics Data System (ADS)
Zhang, Jiashu; Wang, Xiaomin; Zhang, Wenfang
2007-03-01
In this Letter, we firstly construct an n-dimensional chaotic dynamic system named feedforward feedback nonlinear filter (FFNF), and then propose a novel chaotic keyed hash algorithm using FFNF. In hashing process, the original message is modulated into FFNF's chaotic trajectory by chaotic shift keying (CSK) mode, and the final hash value is obtained by the coarse-graining quantization of chaotic trajectory. To expedite the avalanche effect of hash algorithm, a cipher block chaining (CBC) mode is introduced. Theoretic analysis and numerical simulations show that the proposed hash algorithm satisfies the requirement of keyed hash function, and it is easy to implement by the filter structure.
NASA Astrophysics Data System (ADS)
Chen, Ying; Lo, Joseph Y.; Baker, Jay A.; Dobbins, James T., III
2006-03-01
Breast cancer is a major problem and the most common cancer among women. The nature of conventional mammpgraphy makes it very difficult to distinguish a cancer from overlying breast tissues. Digital Tomosynthesis refers to a three-dimensional imaging technique that allows reconstruction of an arbitrary set of planes in the breast from limited-angle series of projection images as the x-ray source moves. Several tomosynthesis algorithms have been proposed, including Matrix Inversion Tomosynthesis (MITS) and Filtered Back Projection (FBP) that have been investigated in our lab. MITS shows better high frequency response in removing out-of-plane blur, while FBP shows better low frequency noise propertities. This paper presents an effort to combine MITS and FBP for better breast tomosynthesis reconstruction. A high-pass Gaussian filter was designed and applied to three-slice "slabbing" MITS reconstructions. A low-pass Gaussian filter was designed and applied to the FBP reconstructions. A frequency weighting parameter was studied to blend the high-passed MITS with low-passed FBP frequency components. Four different reconstruction methods were investigated and compared with human subject images: 1) MITS blended with Shift-And-Add (SAA), 2) FBP alone, 3) FBP with applied Hamming and Gaussian Filters, and 4) Gaussian Frequency Blending (GFB) of MITS and FBP. Results showed that, compared with FBP, Gaussian Frequency Blending (GFB) has better performance for high frequency content such as better reconstruction of micro-calcifications and removal of high frequency noise. Compared with MITS, GFB showed more low frequency breast tissue content.
A miniature high-efficiency fully digital adaptive voltage scaling buck converter
NASA Astrophysics Data System (ADS)
Li, Hangbiao; Zhang, Bo; Luo, Ping; Zhen, Shaowei; Liao, Pengfei; He, Yajuan; Li, Zhaoji
2015-09-01
A miniature high-efficiency fully digital adaptive voltage scaling (AVS) buck converter is proposed in this paper. The pulse skip modulation with flexible duty cycle (FD-PSM) is used in the AVS controller, which simplifies the circuit architecture (<170 gates) and greatly saves the die area and the power consumption. The converter is implemented in a 0.13-μm one-poly-eight-metal (1P8 M) complementary metal oxide semiconductor process and the active on-chip area of the controller is only 0.003 mm2, which is much smaller. The measurement results show that when the operating frequency of the digital load scales dynamically from 25.6 MHz to 112.6 MHz, the supply voltage of which can be scaled adaptively from 0.84 V to 1.95 V. The controller dissipates only 17.2 μW, while the supply voltage of the load is 1 V and the operating frequency is 40 MHz.
NASA Astrophysics Data System (ADS)
Little, Sarah A.; Smith, Deborah K.
1996-12-01
Digital filters designed using wavelet theory are applied to high resolution deep-towed side-scan sonar data from the median valley walls, crestal mountains, and flanks of the Mid-Atlantic Ridge at 29°10' N. With proper tuning, the digital filters are able to identify the location, orientation, length, and width of highly reflective linear features in sonar images. These features are presumed to represent the acoustic backscatter from axis-facing normal faults. The fault locations obtained from the digital filters are well correlated with visual geologic interpretation of the images. The side-scan sonar images are also compared with swath bathymetry from the same area. The digitally filtered bathymetry images contain nine of the eleven faults identified by eye in the detailed geologic interpretation of the side-scan data. Faults with widths (measured perpendicular to their strike) of less than about 150 m are missed in the bathymetry analysis due to the coarser resolution of these data. This digital image processing technique demonstrates the potential of wavelet-based analysis to reduce subjectivity and labor involved in mapping and analyzing topographic features in side-scan sonar and bathymetric image data.
NASA Astrophysics Data System (ADS)
Wijayaratna, Sewwandi; Madanayake, Arjuna; Beall, Brandon D.; Bruton, Len T.
2014-05-01
Real-time digital implementation of three-dimensional (3-D) infinite impulse response (IIR) beam filters are discussed. The 3-D IIR filter building blocks have filter coefficients, which are defined using algebraic closed-form expressions that are functions of desired beam personalities, such as the look-direction of the aperture, the bandwidth and sampling frequency of interest, inter antenna spacing, and 3dB beam size. Real-time steering of such 3-D beam filters are obtained by proposed calculation of filter coefficients. Application specific computing units for rapidly calculating the 3-D IIR filter coefficients at nanosecond speed potentially allows fast real-time tracking of low radar cross section (RCS) objects at close range. Proposed design consists of 3-D IIR beam filter with 4 4 antenna grid and the filter coefficient generation block in separate FPGAs. The hardware is designed and co-simulated using a Xilinx Virtex-6 XC6VLX240T FPGA. The 3-D filter operates over 90 MHz and filter coefficient computing structure can operate at up to 145 MHz.
Pipelined digital SAR azimuth correlator using hybrid FFT-transversal filter
NASA Technical Reports Server (NTRS)
Wu, C.; Liu, K. Y. (Inventor)
1984-01-01
A synthetic aperture radar system (SAR) having a range correlator is provided with a hybrid azimuth correlator which utilizes a block-pipe-lined fast Fourier transform (FFT). The correlator has a predetermined FFT transform size with delay elements for delaying SAR range correlated data so as to embed in the Fourier transform operation a corner-turning function as the range correlated SAR data is converted from the time domain to a frequency domain. The azimuth correlator is comprised of a transversal filter to receive the SAR data in the frequency domain, a generator for range migration compensation and azimuth reference functions, and an azimuth reference multiplier for correlation of the SAR data. Following the transversal filter is a block-pipelined inverse FFT used to restore azimuth correlated data in the frequency domain to the time domain for imaging.
Impulsive noise reduction in digital phase-sensitive demodulation by nonlinear filtering
NASA Astrophysics Data System (ADS)
Cui, Ziqiang; Wang, Huaxiang; Yin, Wuliang; Yang, Wuqiang
2015-07-01
Phase-sensitive demodulation is widely used in many systems, e.g. impedance measurement, communication, sonar and radar. In most cases, white noise is assumed in system design and analysis. However, impulsive noise is often encountered in many applications, which imposes challenges for a phase-sensitive demodulator (PSD). This paper presents a nonlinear filter for removing impulsive noise prior to the PSD. Unlike its linear counterparts, it is analysed in the time domain rather than in the frequency domain, making it easier to implement. The performance of the proposed method is compared to a standard PSD with a low-pass filter to suppress the impulsive noise and the theoretical limits of the signal-to-noise ratio (SNR) is analysed. The theoretical prediction has been validated by numerical simulation and experiment. Experimental results show that the proposed method can achieve SNR improvement of 10.8 dB or greater when impulse rate α = 0.01. Statistical analysis shows that 97.2% of the impulses can be rejected by the median filter of length 3 when impulse rate is less than or equal to 0.1.
Sun, Jin; Xu, Xiaosu; Liu, Yiting; Zhang, Tao; Li, Yao
2016-01-01
In order to reduce the influence of fiber optic gyroscope (FOG) random drift error on inertial navigation systems, an improved auto regressive (AR) model is put forward in this paper. First, based on real-time observations at each restart of the gyroscope, the model of FOG random drift can be established online. In the improved AR model, the FOG measured signal is employed instead of the zero mean signals. Then, the modified Sage-Husa adaptive Kalman filter (SHAKF) is introduced, which can directly carry out real-time filtering on the FOG signals. Finally, static and dynamic experiments are done to verify the effectiveness. The filtering results are analyzed with Allan variance. The analysis results show that the improved AR model has high fitting accuracy and strong adaptability, and the minimum fitting accuracy of single noise is 93.2%. Based on the improved AR(3) model, the denoising method of SHAKF is more effective than traditional methods, and its effect is better than 30%. The random drift error of FOG is reduced effectively, and the precision of the FOG is improved. PMID:27420062
NASA Astrophysics Data System (ADS)
Mohamed, Khaled M.; Hardie, Russell C.
2015-12-01
We present a new patch-based image restoration algorithm using an adaptive Wiener filter (AWF) with a novel spatial-domain multi-patch correlation model. The new filter structure is referred to as a collaborative adaptive Wiener filter (CAWF). The CAWF employs a finite size moving window. At each position, the current observation window represents the reference patch. We identify the most similar patches in the image within a given search window about the reference patch. A single-stage weighted sum of all of the pixels in the similar patches is used to estimate the center pixel in the reference patch. The weights are based on a new multi-patch correlation model that takes into account each pixel's spatial distance to the center of its corresponding patch, as well as the intensity vector distances among the similar patches. One key advantage of the CAWF approach, compared with many other patch-based algorithms, is that it can jointly handle blur and noise. Furthermore, it can also readily treat spatially varying signal and noise statistics. To the best of our knowledge, this is the first multi-patch algorithm to use a single spatial-domain weighted sum of all pixels within multiple similar patches to form its estimate and the first to use a spatial-domain multi-patch correlation model to determine the weights. The experimental results presented show that the proposed method delivers high performance in image restoration in a variety of scenarios.
Sun, Jin; Xu, Xiaosu; Liu, Yiting; Zhang, Tao; Li, Yao
2016-01-01
In order to reduce the influence of fiber optic gyroscope (FOG) random drift error on inertial navigation systems, an improved auto regressive (AR) model is put forward in this paper. First, based on real-time observations at each restart of the gyroscope, the model of FOG random drift can be established online. In the improved AR model, the FOG measured signal is employed instead of the zero mean signals. Then, the modified Sage-Husa adaptive Kalman filter (SHAKF) is introduced, which can directly carry out real-time filtering on the FOG signals. Finally, static and dynamic experiments are done to verify the effectiveness. The filtering results are analyzed with Allan variance. The analysis results show that the improved AR model has high fitting accuracy and strong adaptability, and the minimum fitting accuracy of single noise is 93.2%. Based on the improved AR(3) model, the denoising method of SHAKF is more effective than traditional methods, and its effect is better than 30%. The random drift error of FOG is reduced effectively, and the precision of the FOG is improved. PMID:27420062
Sun, Jin; Xu, Xiaosu; Liu, Yiting; Zhang, Tao; Li, Yao
2016-07-12
In order to reduce the influence of fiber optic gyroscope (FOG) random drift error on inertial navigation systems, an improved auto regressive (AR) model is put forward in this paper. First, based on real-time observations at each restart of the gyroscope, the model of FOG random drift can be established online. In the improved AR model, the FOG measured signal is employed instead of the zero mean signals. Then, the modified Sage-Husa adaptive Kalman filter (SHAKF) is introduced, which can directly carry out real-time filtering on the FOG signals. Finally, static and dynamic experiments are done to verify the effectiveness. The filtering results are analyzed with Allan variance. The analysis results show that the improved AR model has high fitting accuracy and strong adaptability, and the minimum fitting accuracy of single noise is 93.2%. Based on the improved AR(3) model, the denoising method of SHAKF is more effective than traditional methods, and its effect is better than 30%. The random drift error of FOG is reduced effectively, and the precision of the FOG is improved.
Adaptation of filtered back-projection to compton imaging with non-uniform azimuthal geometry
NASA Astrophysics Data System (ADS)
Lee, Hyounggun; Lee, Taewoong; Lee, Wonho
2016-05-01
For Compton image reconstruction, analytic reconstruction methods such as filtered backprojection have been used for real-time imaging. The conventional filtered back-projection method assumes a uniformly distributed azimuthal response in the detector system. In this study, we applied filtered back-projection to the experimental data from detector systems with limited azimuthal angle coverage ranges and estimated the limitations of the analytic reconstruction methods when applied to these systems. For the system with a uniform azimuthal response, the images reconstructed by using filtered back-projection showed better angular resolutions than the images obtained by using simple back-projection did. However, when filtered back-projection was applied to reconstruct Compton images based on measurements performed by using Compton cameras with limited response geometries, the reconstructed images exhibited artifacts caused by the geometrical limitations. Our proposed method employs the Compton camera's rotation to overcome the angular response limitations; when the rotation method was applied in this study, the artifacts in the reconstructed images caused by angular response limitations were minimized. With this method, filtered back-projection can be applied to reconstruct real-time Compton images even when the radiation measurements are performed by using Compton cameras with non-uniform azimuthal response geometries.
Lin, Hui; Gao, Jian; Mei, Qing; He, Yunbo; Liu, Junxiu; Wang, Xingjin
2016-04-01
It is a challenge for any optical method to measure objects with a large range of reflectivity variation across the surface. Image saturation results in incorrect intensities in captured fringe pattern images, leading to phase and measurement errors. This paper presents a new adaptive digital fringe projection technique which avoids image saturation and has a high signal to noise ratio (SNR) in the three-dimensional (3-D) shape measurement of objects that has a large range of reflectivity variation across the surface. Compared to previous high dynamic range 3-D scan methods using many exposures and fringe pattern projections, which consumes a lot of time, the proposed technique uses only two preliminary steps of fringe pattern projection and image capture to generate the adapted fringe patterns, by adaptively adjusting the pixel-wise intensity of the projected fringe patterns based on the saturated pixels in the captured images of the surface being measured. For the bright regions due to high surface reflectivity and high illumination by the ambient light and surfaces interreflections, the projected intensity is reduced just to be low enough to avoid image saturation. Simultaneously, the maximum intensity of 255 is used for those dark regions with low surface reflectivity to maintain high SNR. Our experiments demonstrate that the proposed technique can achieve higher 3-D measurement accuracy across a surface with a large range of reflectivity variation. PMID:27137056
Mihajlovic, Vojkan; Patki, Shrishail; Grundlehner, Bernard
2014-01-01
Designing and developing a comfortable and convenient EEG system for daily usage that can provide reliable and robust EEG signal, encompasses a number of challenges. Among them, the most ambitious is the reduction of artifacts due to body movements. This paper studies the effect of head movement artifacts on the EEG signal and on the dry electrode-tissue impedance (ETI), monitored continuously using the imec's wireless EEG headset. We have shown that motion artifacts have huge impact on the EEG spectral content in the frequency range lower than 20 Hz. Coherence and spectral analysis revealed that ETI is not capable of describing disturbances at very low frequencies (below 2 Hz). Therefore, we devised a motion artifact reduction (MAR) method that uses a combination of a band-pass filtering and multi-channel adaptive filtering (AF), suitable for real-time MAR. This method was capable of substantially reducing artifacts produced by head movements.
NASA Astrophysics Data System (ADS)
Yano, Ken'ichi; Ohara, Eiichi; Horihata, Satoshi; Aoki, Takaaki; Nishimoto, Yutaka
A robot that supports independent living by assisting with eating and other activities which use the operator's own hand would be helpful for people suffering from tremors of the hand or any other body part. The proposed system using adaptive filter estimates tremor frequencies with a time-varying property and individual differences online. In this study, the estimated frequency is used to adjusting the tremor suppression filter which insulates the voluntary motion signal from the sensor signal containing tremor components. These system are integrated into the control system of the Meal-Assist Robot. As a result, the developed system makes it possible for the person with a tremor to manipulate the supporting robot without causing operability to deteriorate and without hazards due to improper operation.
NASA Astrophysics Data System (ADS)
Fayadh, Rashid A.; Malek, F.; Fadhil, Hilal A.; Aldhaibani, Jaafar A.; Salman, M. K.; Abdullah, Farah Salwani
2015-05-01
For high data rate propagation in wireless ultra-wideband (UWB) communication systems, the inter-symbol interference (ISI), multiple-access interference (MAI), and multiple-users interference (MUI) are influencing the performance of the wireless systems. In this paper, the rake-receiver was presented with the spread signal by direct sequence spread spectrum (DS-SS) technique. The adaptive rake-receiver structure was shown with adjusting the receiver tap weights using least mean squares (LMS), normalized least mean squares (NLMS), and affine projection algorithms (APA) to support the weak signals by noise cancellation and mitigate the interferences. To minimize the data convergence speed and to reduce the computational complexity by the previous algorithms, a well-known approach of partial-updates (PU) adaptive filters were employed with algorithms, such as sequential-partial, periodic-partial, M-max-partial, and selective-partial updates (SPU) in the proposed system. The simulation results of bit error rate (BER) versus signal-to-noise ratio (SNR) are illustrated to show the performance of partial-update algorithms that have nearly comparable performance with the full update adaptive filters. Furthermore, the SPU-partial has closed performance to the full-NLMS and full-APA while the M-max-partial has closed performance to the full-LMS updates algorithms.
NASA Astrophysics Data System (ADS)
Aridgides, Tom; Libera, Peter; Fernandez, Manuel F.; Dobeck, Gerald J.
1996-05-01
An automatic, robust, adaptive clutter suppression, mine detection and classification processing string has been developed and applied to side-scan sonar imagery data. The overall processing string includes data pre-processing, adaptive clutter filtering (ACF), 2D normalization, detection, feature extraction, and classification processing blocks. The data pre-processing block contains automatic gain control and data decimation processing. The ACF technique designs a 2D adaptive range-crossrange linear FIR filter which is optimal in the Least Squares sense, simultaneously suppressing the background clutter while preserving an average peak target signature (normalized shape) computed a priori using training set data. A multiple reference ACF algorithm version was utilized to account for multiple target shapes (due to different mine types, multiple target aspect angles, etc.). The detection block consists of thresholding, clustering of exceedances and limiting their number, and a secondary thresholding process. Following feature extraction, the classification block applies a novel transformation to the data, which orthogonalizes the features and enables an efficient application of the optimal log-likelihood-ratio-test (LLRT) classification rule. The utility of the overall processing string was demonstrated with two side-scan sonar data sets. The ACF/feature orthogonalization based LLRT mine classification processing string provided average probability of correct mine classification and false alarm rate performance similar to that obtained when utilizing an expert sonar operator.
NASA Astrophysics Data System (ADS)
Aridgides, Tom; Fernandez, Manuel F.; Dobeck, Gerald J.
1997-07-01
An automatic, robust, adaptive clutter suppression, predetection level fusion, sea mine detection and classification processing string has been developed and applied to shallow water side-scan sonar imagery data. The overall processing string includes pre-processing string includes pre-processing, adaptive clutter filtering (ACF), 2D normalization, detection, feature extraction and classification processing blocks. The pre-processing block contains automatic gain control, data decimation and data alignment processing. The ACF is a multi-dimensional adaptive linear FIR filter, optimal in the least squares sense, for simultaneous background clutter suppression and preservation of an average peak target signature. After data alignment, using a 3D ACF enables simultaneous multiple frequency data fusion and clutter suppression in the composite frequency-range-crossrange domain. Following 2D normalization, the detection consists of thresholding, clustering of exceedances and limiting their number. Finally, features are extracted and a orthogonalization transformation is applied to the data, enabling an efficient application of the optimal log-likelihood-ratio-test (LLRT) classification rule. The utility of the overall processing string was demonstrated with two side-scan sonar data sets. The ACF, feature orthogonalization, LLRT-based classification processing string provided average probability of correct mine classification and false alarm rate performance exceeding the one obtained when utilizing an expert sonar operator. The overall processing string can be easily implemented in real-time using COTS technology.
NASA Astrophysics Data System (ADS)
Sheng-Hui, Rong; Hui-Xin, Zhou; Han-Lin, Qin; Rui, Lai; Kun, Qian
2016-05-01
Imaging non-uniformity of infrared focal plane array (IRFPA) behaves as fixed-pattern noise superimposed on the image, which affects the imaging quality of infrared system seriously. In scene-based non-uniformity correction methods, the drawbacks of ghosting artifacts and image blurring affect the sensitivity of the IRFPA imaging system seriously and decrease the image quality visibly. This paper proposes an improved neural network non-uniformity correction method with adaptive learning rate. On the one hand, using guided filter, the proposed algorithm decreases the effect of ghosting artifacts. On the other hand, due to the inappropriate learning rate is the main reason of image blurring, the proposed algorithm utilizes an adaptive learning rate with a temporal domain factor to eliminate the effect of image blurring. In short, the proposed algorithm combines the merits of the guided filter and the adaptive learning rate. Several real and simulated infrared image sequences are utilized to verify the performance of the proposed algorithm. The experiment results indicate that the proposed algorithm can not only reduce the non-uniformity with less ghosting artifacts but also overcome the problems of image blurring in static areas.
NASA Astrophysics Data System (ADS)
Millán, María S.
2012-10-01
On the verge of the 50th anniversary of Vander Lugt’s formulation for pattern matching based on matched filtering and optical correlation, we acknowledge the very intense research activity developed in the field of correlation-based pattern recognition during this period of time. The paper reviews some domains that appeared as emerging fields in the last years of the 20th century and have been developed later on in the 21st century. Such is the case of three-dimensional (3D) object recognition, biometric pattern matching, optical security and hybrid optical-digital processors. 3D object recognition is a challenging case of multidimensional image recognition because of its implications in the recognition of real-world objects independent of their perspective. Biometric recognition is essentially pattern recognition for which the personal identification is based on the authentication of a specific physiological characteristic possessed by the subject (e.g. fingerprint, face, iris, retina, and multifactor combinations). Biometric recognition often appears combined with encryption-decryption processes to secure information. The optical implementations of correlation-based pattern recognition processes still rely on the 4f-correlator, the joint transform correlator, or some of their variants. But the many applications developed in the field have been pushing the systems for a continuous improvement of their architectures and algorithms, thus leading towards merged optical-digital solutions.
Effects of range bin shape and Doppler filter response in a digital SAR data processor
NASA Technical Reports Server (NTRS)
Griffin, C. R.
1978-01-01
In calibrating the backscatter coefficient obtained with an imaging synthetic aperture radar (SAR) system to determine absolute values of radar cross-section and reflectivity it is common practice to use a target of known radar cross-section placed within the scene. A corner reflector acts as a point target, but the return from it may not be centered in the resolution cell. It is important, for accurate calibration, to perform straddling corrections based on the range bin and Doppler filter response curves.
NASA Technical Reports Server (NTRS)
Danielson, E. F.; Hipskind, R. S.; Gaines, S. E.
1980-01-01
Results are presented from computer processing and digital filtering of radiosonde and radar tracking data obtained during the ITCZ experiment when coordinated measurements were taken daily over a 16 day period across the Panama Canal Zone. The temperature relative humidity and wind velocity profiles are discussed.
NASA Astrophysics Data System (ADS)
Yu, Liping; Pan, Bing
2016-12-01
A low-cost, easy-to-implement but practical single-camera stereo-digital image correlation (DIC) system using a four-mirror adapter is established for accurate shape and three-dimensional (3D) deformation measurements. The mirrors assisted pseudo-stereo imaging system can convert a single camera into two virtual cameras, which view a specimen from different angles and record the surface images of the test object onto two halves of the camera sensor. To enable deformation measurement in non-laboratory conditions or extreme high temperature environments, an active imaging optical design, combining an actively illuminated monochromatic source with a coupled band-pass optical filter, is compactly integrated to the pseudo-stereo DIC system. The optical design, basic principles and implementation procedures of the established system for 3D profile and deformation measurements are described in detail. The effectiveness and accuracy of the established system are verified by measuring the profile of a regular cylinder surface and displacements of a translated planar plate. As an application example, the established system is used to determine the tensile strains and Poisson's ratio of a composite solid propellant specimen during stress relaxation test. Since the established single-camera stereo-DIC system only needs a single camera and presents strong robustness against variations in ambient light or the thermal radiation of a hot object, it demonstrates great potential in determining transient deformation in non-laboratory or high-temperature environments with the aid of a single high-speed camera.
High-gain digital speech interpolation with adaptive differential PCM encoding
NASA Astrophysics Data System (ADS)
Yatsuzuka, Y.
1982-04-01
A generalization of digital speech interpolation (DSI) combined with adaptive differential pulse-code modulation (ADPCM) is described. The general configuration of the DSI-ADPCM system is detailed, and the speech encoding strategy in a heavily loaded environment is described. Advantages obtained by incorporating a voiceband data discriminator into the DSI-ADPCM are discussed. The ADPCM encoding with voiceband shifts and sampling rate conversions is analyzed and the simulated performance of the ADPCM encoding is described in terms of a long-time averaged signal-to-noise ratio and subjective quality of the processed speech. For voiceband data, long-time averaged signal-to-noise ratios relevant to 4.8 kbit/s eight-phase PSK and 9.6 kbit/s 16-point QAM voiceband data are given.
Adaptation of multifractal analysis to segmentation of microcalcifications in digital mammograms
NASA Astrophysics Data System (ADS)
Stojić, Tomislav; Reljin, Irini; Reljin, Branimir
2006-07-01
A method for detecting microcalcifications in digital mammograms is proposed. After recognizing basic features of microcalcifications we introduced several modifications in multifractal analysis, obtaining an efficient method adapted to enhance only small light parts not belonging to surrounding tissue, possibly microcalcifications. Started with a mammogram image, a method creates corresponding multifractal image from which a radiologist has the freedom to change the level of segmentation in an interactive manner and to find suspicious regions, which may contain microcalcifications. Additional postprocessing, based on mathematical morphology, refines the procedure by selecting and outlining regions that contain clusters with microcalcifications. The proposed method was tested through referent mammograms from MiniMIAS database, which is available at public domain. The proposed method successfully extracted microcalcifications in all (clinically approved) cases belonging to this database.
Predicted performance benefits of an adaptive digital engine control system of an F-15 airplane
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Myers, L. P.; Ray, R. J.
1985-01-01
The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrating engine-airframe control systems. Currently this is accomplished on the NASA Ames Research Center's F-15 airplane. The two control modes used to implement the systems are an integrated flightpath management mode and in integrated adaptive engine control system (ADECS) mode. The ADECS mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the available engine stall margin are continually computed. The excess stall margin is traded for thrust. The predicted increase in engine performance due to the ADECS mode is presented in this report.
Switching among pulse-generation regimes in passively mode-locked fibre laser by adaptive filtering
NASA Astrophysics Data System (ADS)
Peng, Junsong; Boscolo, Sonia
2016-04-01
We show both numerically and experimentally that dispersion management can be realized by manipulating the dispersion of a filter in a passively mode-locked fibre laser. A programmable filter the dispersion of which can be software configured is employed in the laser. Solitons, stretched-pulses, and dissipative solitons can be targeted reliably by controlling the filter transmission function only, while the length of fibres is fixed in the laser. This technique shows remarkable advantages in controlling operation regimes in ultrafast fibre lasers, in contrast to the traditional technique in which dispersion management is achieved by optimizing the relative length of fibres with opposite-sign dispersion. Our versatile ultrafast fibre laser will be attractive for applications requiring different pulse profiles such as in optical signal processing and optical communications.
Sun, W Y
1993-04-01
This thesis solves the problem of finding the optimal linear noise-reduction filter for linear tomographic image reconstruction. The optimization is data dependent and results in minimizing the mean-square error of the reconstructed image. The error is defined as the difference between the result and the best possible reconstruction. Applications for the optimal filter include reconstructions of positron emission tomographic (PET), X-ray computed tomographic, single-photon emission tomographic, and nuclear magnetic resonance imaging. Using high resolution PET as an example, the optimal filter is derived and presented for the convolution backprojection, Moore-Penrose pseudoinverse, and the natural-pixel basis set reconstruction methods. Simulations and experimental results are presented for the convolution backprojection method.
NASA Astrophysics Data System (ADS)
Finkeldey, Markus; Schellenberg, Falk; Gerhardt, Nils C.; Paar, Christof; Hofmann, Martin R.
2016-03-01
We investigate digital holographic microscopy (DHM) in reflection geometry for non-destructive 3D imaging of semiconductor devices. This technique provides high resolution information of the inner structure of a sample while maintaining its integrity. To illustrate the performance of the DHM, we use our setup to localize the precise spots for laser fault injection, in the security related field of side-channel attacks. While digital holographic microscopy techniques easily offer high resolution phase images of surface structures in reflection geometry, they are typically incapable to provide high quality phase images of buried structures due to the interference of reflected waves from different interfaces inside the structure. Our setup includes a sCMOS camera for image capture, arranged in a common-path interferometer to provide very high phase stability. As a proof of principle, we show sample images of the inner structure of a modern microcontroller. Finally, we compare our holographic method to classic optical beam induced current (OBIC) imaging to demonstrate its benefits.
Yang, Qiang; Zhang, Jie; Nozato, Koji; Saito, Kenichi; Williams, David R; Roorda, Austin; Rossi, Ethan A
2014-09-01
Eye motion is a major impediment to the efficient acquisition of high resolution retinal images with the adaptive optics (AO) scanning light ophthalmoscope (AOSLO). Here we demonstrate a solution to this problem by implementing both optical stabilization and digital image registration in an AOSLO. We replaced the slow scanning mirror with a two-axis tip/tilt mirror for the dual functions of slow scanning and optical stabilization. Closed-loop optical stabilization reduced the amplitude of eye-movement related-image motion by a factor of 10-15. The residual RMS error after optical stabilization alone was on the order of the size of foveal cones: ~1.66-2.56 μm or ~0.34-0.53 arcmin with typical fixational eye motion for normal observers. The full implementation, with real-time digital image registration, corrected the residual eye motion after optical stabilization with an accuracy of ~0.20-0.25 μm or ~0.04-0.05 arcmin RMS, which to our knowledge is more accurate than any method previously reported.
Kumar, Abhishek; Kamali, Tschackad; Platzer, René; Unterhuber, Angelika; Drexler, Wolfgang; Leitgeb, Rainer A
2015-04-01
In this paper a numerical technique is presented to compensate for anisotropic optical aberrations, which are usually present across the lateral field of view in the out of focus regions, in high resolution optical coherence tomography and microscopy (OCT/OCM) setups. The recorded enface image field at different depths in the tomogram is digitally divided into smaller sub-regions or the regions of interest (ROIs), processed individually using subaperture based digital adaptive optics (DAO), and finally stitched together to yield a final image with a uniform diffraction limited resolution across the entire field of view (FOV). Using this method, a sub-micron lateral resolution is achieved over a depth range of 218 [Formula: see text]for a nano-particle phantom sample imaged using a fiber based point scanning spectral domain (SD) OCM system with a limited depth of focus (DOF) of ~7 [Formula: see text]at a numerical aperture (NA) of 0.6. Thus, an increase in DOF by ~30x is demonstrated in this case. The application of this method is also shown in ex vivo mouse adipose tissue.
Kumar, Abhishek; Kamali, Tschackad; Platzer, René; Unterhuber, Angelika; Drexler, Wolfgang; Leitgeb, Rainer A.
2015-01-01
In this paper a numerical technique is presented to compensate for anisotropic optical aberrations, which are usually present across the lateral field of view in the out of focus regions, in high resolution optical coherence tomography and microscopy (OCT/OCM) setups. The recorded enface image field at different depths in the tomogram is digitally divided into smaller sub-regions or the regions of interest (ROIs), processed individually using subaperture based digital adaptive optics (DAO), and finally stitched together to yield a final image with a uniform diffraction limited resolution across the entire field of view (FOV). Using this method, a sub-micron lateral resolution is achieved over a depth range of 218 μmfor a nano-particle phantom sample imaged using a fiber based point scanning spectral domain (SD) OCM system with a limited depth of focus (DOF) of ~7 μmat a numerical aperture (NA) of 0.6. Thus, an increase in DOF by ~30x is demonstrated in this case. The application of this method is also shown in ex vivo mouse adipose tissue. PMID:25908999
Yang, Qiang; Zhang, Jie; Nozato, Koji; Saito, Kenichi; Williams, David R.; Roorda, Austin; Rossi, Ethan A.
2014-01-01
Eye motion is a major impediment to the efficient acquisition of high resolution retinal images with the adaptive optics (AO) scanning light ophthalmoscope (AOSLO). Here we demonstrate a solution to this problem by implementing both optical stabilization and digital image registration in an AOSLO. We replaced the slow scanning mirror with a two-axis tip/tilt mirror for the dual functions of slow scanning and optical stabilization. Closed-loop optical stabilization reduced the amplitude of eye-movement related-image motion by a factor of 10–15. The residual RMS error after optical stabilization alone was on the order of the size of foveal cones: ~1.66–2.56 μm or ~0.34–0.53 arcmin with typical fixational eye motion for normal observers. The full implementation, with real-time digital image registration, corrected the residual eye motion after optical stabilization with an accuracy of ~0.20–0.25 μm or ~0.04–0.05 arcmin RMS, which to our knowledge is more accurate than any method previously reported. PMID:25401030
Parametric studies of adaptive optics by self-interference incoherent digital holography
NASA Astrophysics Data System (ADS)
Hong, Jisoo; Kim, Myung K.
2014-02-01
Adaptive optics (AO) in astronomical imaging is a technique to improve the quality of image by compensating aberrations induced by atmospheric turbulence. Digital holographic AO (DHAO) is one attractive option to implement AO scheme because it is capable of directly measuring the phase profile of aberration without complicated calculation or loss of resolution of CCD. Hence, if applicable, DHAO is expected to have advantages over traditional AO systems. Recent development of self-interference incoherent digital holography (SIDH) makes it possible to apply the concept of DHAO for an astronomical application where the illumination is incoherent and cannot be controlled. We have investigated the image characteristics according to various parameters of SIDH AO to derive optimum condition or design of the system. We observe not only well-known super-resolution property of SIDH but also interesting and significant improvement of noise behavior by aberration compensation. Because of many beneficial features, we expect that SIDH AO will be a useful tool for astronomical imaging.
Blamey, Peter J
2005-01-01
Adaptive dynamic range optimization (ADRO) is an amplification strategy that uses digital signal processing techniques to improve the audibility, comfort, and intelligibility of sounds for people who use cochlear implants and/or hearing aids. The strategy uses statistical analysis to select the most information-rich section of the input dynamic range in multiple-frequency channels. Fuzzy logic rules control the gain in each frequency channel so that the selected section of the dynamic range is presented at an audible and comfortable level. The ADRO processing thus adaptively optimizes the dynamic range of the signal in multiple-frequency channels. Clinical studies show that ADRO can be fitted easily to all degrees of hearing loss for hearing aids and cochlear implants in a direct and intuitive manner, taking the preferences of the listener into account. The result is high acceptance by new and experienced hearing aid users and strong preferences for ADRO compared with alternative amplification strategies. The ADRO processing is particularly well suited to bimodal and hybrid stimulation which combine electric and acoustic stimulation in opposite ears or in the same ear, respectively.
Blamey, Peter J.
2005-01-01
Adaptive dynamic range optimization (ADRO) is an amplification strategy that uses digital signal processing techniques to improve the audibility, comfort, and intelligibility of sounds for people who use cochlear implants and/or hearing aids. The strategy uses statistical analysis to select the most information-rich section of the input dynamic range in multiple-frequency channels. Fuzzy logic rules control the gain in each frequency channel so that the selected section of the dynamic range is presented at an audible and comfortable level. The ADRO processing thus adaptively optimizes the dynamic range of the signal in multiple-frequency channels. Clinical studies show that ADRO can be fitted easily to all degrees of hearing loss for hearing aids and cochlear implants in a direct and intuitive manner, taking the preferences of the listener into account. The result is high acceptance by new and experienced hearing aid users and strong preferences for ADRO compared with alternative amplification strategies. The ADRO processing is particularly well suited to bimodal and hybrid stimulation which combine electric and acoustic stimulation in opposite ears or in the same ear, respectively. PMID:16012705
ERIC Educational Resources Information Center
Harris, Richard W.; And Others
1988-01-01
A two-microphone adaptive digital noise cancellation technique improved word-recognition ability for 20 normal and 12 hearing-impaired adults by reducing multitalker speech babble and speech spectrum noise 18-22 dB. Word recognition improvements averaged 37-50 percent for normal and 27-40 percent for hearing-impaired subjects. Improvement was best…
NASA Astrophysics Data System (ADS)
Yao, Jianjun; Di, Duotao; Jiang, Guilin; Gao, Shuang
2012-10-01
Electro-hydraulic servo shaking table usually requires good control performance for acceleration replication. The poles of the electro-hydraulic servo shaking table are placed by three-variable control method using pole placement theory. The system frequency band is thus extended and the system stability is also enhanced. The phase delay and amplitude attenuation phenomenon occurs in electro-hydraulic servo shaking table corresponding to an acceleration sinusoidal input. The method for phase delay and amplitude attenuation elimination based on LMS adaptive filtering algorithm is proposed here. The task is accomplished by adjusting the weights using LMS adaptive filtering algorithm when there exits phase delay and amplitude attenuation between the input and its corresponding acceleration response. The reference input is weighted in such a way that it makes the system output track the input efficiently. The weighted input signal is inputted to the control system such that the output phase delay and amplitude attenuation are all cancelled. The above concept is used as a basis for the development of amplitude-phase regulation (APR) algorithm. The method does not need to estimate the system model and has good real-time performance. Experimental results demonstrate the efficiency and validity of the proposed APR control scheme.
NASA Astrophysics Data System (ADS)
Tehsin, Sara; Rehman, Saad; Awan, Ahmad B.; Chaudry, Qaiser; Abbas, Muhammad; Young, Rupert; Asif, Afia
2016-04-01
Sensitivity to the variations in the reference image is a major concern when recognizing target objects. A combinational framework of correlation filters and logarithmic transformation has been previously reported to resolve this issue alongside catering for scale and rotation changes of the object in the presence of distortion and noise. In this paper, we have extended the work to include the influence of different logarithmic bases on the resultant correlation plane. The meaningful changes in correlation parameters along with contraction/expansion in the correlation plane peak have been identified under different scenarios. Based on our research, we propose some specific log bases to be used in logarithmically transformed correlation filters for achieving suitable tolerance to different variations. The study is based upon testing a range of logarithmic bases for different situations and finding an optimal logarithmic base for each particular set of distortions. Our results show improved correlation and target detection accuracies.
Comparison of various schema of filter adaptivity for the tracking of maneuvering targets
NASA Astrophysics Data System (ADS)
Jouan, Alexandre; Bosse, Eloi; Simard, Marc-Alain; Shahbazian, Elisa
1998-09-01
Tracking maneuvering targets is a complex problem which has generated a great deal of effort over the past several years. It has now been well established that in terms of tracking accuracy, the Interacting Multiple Model (IMM) algorithm, where state estimates are mixed, performs significantly better for maneuvering targets than other types of filters. However, the complexity of the IMM algorithm can prohibit its use in these applications of which similar algorithms cannot provide the necessary accuracy and which can ont afford the computational load of IMM algorithm. This paper presents the evaluation of the tracking accuracy of a multiple model track filter using three different constant-velocity models running in parallel and a maneuver detector. The output estimate is defined by selecting the model whose likelihood function is lower than a target maneuver threshold.
Adaptive multi-scale total variation minimization filter for low dose CT imaging
NASA Astrophysics Data System (ADS)
Zamyatin, Alexander; Katsevich, Gene; Krylov, Roman; Shi, Bibo; Yang, Zhi
2014-03-01
In this work we revisit TV filter and propose an improved version that is tailored to diagnostic CT purposes. We revise TV cost function, which results in symmetric gradient function that leads to more natural noise texture. We apply a multi-scale approach to resolve noise grain issue in CT images. We examine noise texture, granularity, and loss of low contrast in the test images. We also discuss potential acceleration by Nesterov and Conjugate Gradient methods.
NASA Astrophysics Data System (ADS)
Tseng, Chien-Hsun
2015-02-01
The technique of multidimensional wave digital filtering (MDWDF) that builds on traveling wave formulation of lumped electrical elements, is successfully implemented on the study of dynamic responses of symmetrically laminated composite plate based on the first order shear deformation theory. The philosophy applied for the first time in this laminate mechanics relies on integration of certain principles involving modeling and simulation, circuit theory, and MD digital signal processing to provide a great variety of outstanding features. Especially benefited by the conservation of passivity gives rise to a nonlinear programming problem (NLP) for the issue of numerical stability of a MD discrete system. Adopting the augmented Lagrangian genetic algorithm, an effective optimization technique for rapidly achieving solution spaces of NLP models, numerical stability of the MDWDF network is well received at all time by the satisfaction of the Courant-Friedrichs-Levy stability criterion with the least restriction. In particular, optimum of the NLP has led to the optimality of the network in terms of effectively and accurately predicting the desired fundamental frequency, and thus to give an insight into the robustness of the network by looking at the distribution of system energies. To further explore the application of the optimum network, more numerical examples are engaged in efforts to achieve a qualitative understanding of the behavior of the laminar system. These are carried out by investigating various effects based on different stacking sequences, stiffness and span-to-thickness ratios, mode shapes and boundary conditions. Results are scrupulously validated by cross referencing with early published works, which show that the present method is in excellent agreement with other numerical and analytical methods.
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Novo, E. M. L. M.
1983-01-01
The effects of the seasonal variation of illumination over digital processing of LANDSAT images are evaluated. Two sets of LANDSAT data referring to the orbit 150 and row 28 were selected with illumination parameters varying from 43 deg to 64 deg for azimuth and from 30 deg to 36 deg for solar elevation respectively. IMAGE-100 system permitted the digital processing of LANDSAT data. Original images were transformed by means of digital filtering so as to enhance their spatial features. The resulting images were used to obtain an unsupervised classification of relief units. Topographic variables (declivity, altitude, relief range and slope length) were used to identify the true relief units existing on the ground. The LANDSAT over pass data show that digital processing is highly affected by illumination geometry, and there is no correspondence between relief units as defined by spectral features and those resulting from topographic features.
NASA Astrophysics Data System (ADS)
Songer, Jocelyn E.; Eatock, Ruth Anne
2011-11-01
The mammalian saccule detects head tilt and low-frequency head accelerations as well as higher-frequency bone vibrations and sounds. It has two different hair cell types, I and II, dispersed throughout two morphologically distinct regions, the striola and extrastriola. Afferents from the two zones have distinct response dynamics which may arise partly from zonal differences in hair cell properties. We find that type II hair cells in the rat saccular epithelium adapt with a time course appropriate for influencing afferent responses to head motions. Moreover, striolar type II hair cells adapted by a greater extent than extrastriolar type II hair cells and had greater phase leads in the mid-frequency range (5-50 Hz). These differences suggest that hair cell transduction may contribute to zonal differences in the adaptation of vestibular afferents to head motions.
NASA Astrophysics Data System (ADS)
Wang, Xin; Wu, Linhui; Yi, Xi; Zhang, Limin; Gao, Feng; Zhao, Huijuan
2014-03-01
According to the morphological differences in the vascularization between healthy and diseased tissues, pharmacokinetic-rate images of fluorophore can provide diagnostic information for tumor differentiation, and especially have the potential for staging of tumors. In this paper, fluorescence diffuse optical tomography method is firstly used to acquire metabolism-related time-course images of the fluorophore concentration. Based on a two-compartment model comprised of plasma and extracelluar-extravascular space, we next propose an adaptive-EKF framework to estimate the pharmacokinetic-rate images. With the aid of a forgetting factor, the adaptive-EKF compensate the inaccuracy initial values and emphasize the effect of the current data in order to realize a better online estimation compared with the conventional EKF. We use simulate data to evaluate the performance of the proposed methodology. The results suggest that the adaptive-EKF can obtain preferable pharmacokinetic-rate images than the conventional EKF with higher quantitativeness and noise robustness.
Fluctuations and information filtering in coupled populations of spiking neurons with adaptation.
Deger, Moritz; Schwalger, Tilo; Naud, Richard; Gerstner, Wulfram
2014-12-01
Finite-sized populations of spiking elements are fundamental to brain function but also are used in many areas of physics. Here we present a theory of the dynamics of finite-sized populations of spiking units, based on a quasirenewal description of neurons with adaptation. We derive an integral equation with colored noise that governs the stochastic dynamics of the population activity in response to time-dependent stimulation and calculate the spectral density in the asynchronous state. We show that systems of coupled populations with adaptation can generate a frequency band in which sensory information is preferentially encoded. The theory is applicable to fully as well as randomly connected networks and to leaky integrate-and-fire as well as to generalized spiking neurons with adaptation on multiple time scales.
Fluctuations and information filtering in coupled populations of spiking neurons with adaptation
NASA Astrophysics Data System (ADS)
Deger, Moritz; Schwalger, Tilo; Naud, Richard; Gerstner, Wulfram
2014-12-01
Finite-sized populations of spiking elements are fundamental to brain function but also are used in many areas of physics. Here we present a theory of the dynamics of finite-sized populations of spiking units, based on a quasirenewal description of neurons with adaptation. We derive an integral equation with colored noise that governs the stochastic dynamics of the population activity in response to time-dependent stimulation and calculate the spectral density in the asynchronous state. We show that systems of coupled populations with adaptation can generate a frequency band in which sensory information is preferentially encoded. The theory is applicable to fully as well as randomly connected networks and to leaky integrate-and-fire as well as to generalized spiking neurons with adaptation on multiple time scales.
Adaptive Filter for Automatic Identification of Multiple Faults in a Noisy OTDR Profile
NASA Astrophysics Data System (ADS)
von der Weid, Jean Pierre; Souto, Mario H.; Garcia, Joaquim D.; Amaral, Gustavo C.
2016-07-01
We present a novel methodology able to distinguish meaningful level shifts from typical signal fluctuations. A two-stage regularization filtering can accurately identify the location of the significant level-shifts with an efficient parameter-free algorithm. The developed methodology demands low computational effort and can easily be embedded in a dedicated processing unit. Our case studies compare the new methodology with current available ones and show that it is the most adequate technique for fast detection of multiple unknown level-shifts in a noisy OTDR profile.
A tunable electrochromic fabry-perot filter for adaptive optics applications.
Blaich, Jonathan David; Kammler, Daniel R.; Ambrosini, Andrea; Sweatt, William C.; Verley, Jason C.; Heller, Edwin J.; Yelton, William Graham
2006-10-01
The potential for electrochromic (EC) materials to be incorporated into a Fabry-Perot (FP) filter to allow modest amounts of tuning was evaluated by both experimental methods and modeling. A combination of chemical vapor deposition (CVD), physical vapor deposition (PVD), and electrochemical methods was used to produce an ECFP film stack consisting of an EC WO{sub 3}/Ta{sub 2}O{sub 5}/NiO{sub x}H{sub y} film stack (with indium-tin-oxide electrodes) sandwiched between two Si{sub 3}N{sub 4}/SiO{sub 2} dielectric reflector stacks. A process to produce a NiO{sub x}H{sub y} charge storage layer that freed the EC stack from dependence on atmospheric humidity and allowed construction of this complex EC-FP stack was developed. The refractive index (n) and extinction coefficient (k) for each layer in the EC-FP film stack was measured between 300 and 1700 nm. A prototype EC-FP filter was produced that had a transmission at 500 nm of 36%, and a FWHM of 10 nm. A general modeling approach that takes into account the desired pass band location, pass band width, required transmission and EC optical constants in order to estimate the maximum tuning from an EC-FP filter was developed. Modeling shows that minor thickness changes in the prototype stack developed in this project should yield a filter with a transmission at 600 nm of 33% and a FWHM of 9.6 nm, which could be tuned to 598 nm with a FWHM of 12.1 nm and a transmission of 16%. Additional modeling shows that if the EC WO{sub 3} absorption centers were optimized, then a shift from 600 nm to 598 nm could be made with a FWHM of 11.3 nm and a transmission of 20%. If (at 600 nm) the FWHM is decreased to 1 nm and transmission maintained at a reasonable level (e.g. 30%), only fractions of a nm of tuning would be possible with the film stack considered in this study. These tradeoffs may improve at other wavelengths or with EC materials different than those considered here. Finally, based on our limited investigation and material set
Mie light-scattering granulometer with adaptive numerical filtering. I. Theory.
Hespel, L; Delfour, A
2000-12-20
A search procedure based on a least-squares method including a regularization scheme constructed from numerical filtering is presented. This method, with the addition of a nephelometer, can be used to determine the particle-size distributions of various scattering media (aerosols, fogs, rocket exhausts, motor plumes) from angular static light-scattering measurements. For retrieval of the distribution function, the experimental data are matched with theoretical patterns derived from Mie theory. The method is numerically investigated with simulated data, and the performance of the inverse procedure is evaluated. The results show that the retrieved distribution function is quite reliable, even for strong levels of noise.
Feng, Yibo; Li, Xisheng; Zhang, Xiaojuan
2015-01-01
We present an adaptive algorithm for a system integrated with micro-electro-mechanical systems (MEMS) gyroscopes and a compass to eliminate the influence from the environment, compensate the temperature drift precisely, and improve the accuracy of the MEMS gyroscope. We use a simplified drift model and changing but appropriate model parameters to implement this algorithm. The model of MEMS gyroscope temperature drift is constructed mostly on the basis of the temperature sensitivity of the gyroscope. As the state variables of a strong tracking Kalman filter (STKF), the parameters of the temperature drift model can be calculated to adapt to the environment under the support of the compass. These parameters change intelligently with the environment to maintain the precision of the MEMS gyroscope in the changing temperature. The heading error is less than 0.6° in the static temperature experiment, and also is kept in the range from 5° to −2° in the dynamic outdoor experiment. This demonstrates that the proposed algorithm exhibits strong adaptability to a changing temperature, and performs significantly better than KF and MLR to compensate the temperature drift of a gyroscope and eliminate the influence of temperature variation. PMID:25985165
NASA Astrophysics Data System (ADS)
Neuhäuser, Markus; Krackow, Sven
2007-02-01
The neonatal incidence rate of Down syndrome (DS) is well-known to accelerate strongly with maternal age. This non-linearity renders mere accumulation of defects at recombination during prolonged first meiotic prophase implausible as an explanation for DS rate increase with maternal age, but might be anticipated from chromosomal drive (CD) for trisomy 21. Alternatively, as there is selection against genetically disadvantaged embryos, the screening system that eliminates embryos with trisomy 21 might decay with maternal age. In this paper, we provide the first evidence for relaxed filtering stringency (RFS) to represent an adaptive maternal response that could explain accelerating DS rates with maternal age. Using historical data, we show that the proportion of aberrant live births decrease with increased family size in older mothers, that inter-birth intervals are longer before affected neonates than before normal ones, and that primiparae exhibit elevated levels of DS incidence at higher age. These findings are predicted by adaptive RFS but cannot be explained by the currently available alternative non-adaptive hypotheses, including CD. The identification of the relaxation control mechanism and therapeutic restoration of a stringent screen may have considerable medical implications.
Feng, Yibo; Li, Xisheng; Zhang, Xiaojuan
2015-01-01
We present an adaptive algorithm for a system integrated with micro-electro-mechanical systems (MEMS) gyroscopes and a compass to eliminate the influence from the environment, compensate the temperature drift precisely, and improve the accuracy of the MEMS gyroscope. We use a simplified drift model and changing but appropriate model parameters to implement this algorithm. The model of MEMS gyroscope temperature drift is constructed mostly on the basis of the temperature sensitivity of the gyroscope. As the state variables of a strong tracking Kalman filter (STKF), the parameters of the temperature drift model can be calculated to adapt to the environment under the support of the compass. These parameters change intelligently with the environment to maintain the precision of the MEMS gyroscope in the changing temperature. The heading error is less than 0.6° in the static temperature experiment, and also is kept in the range from 5° to -2° in the dynamic outdoor experiment. This demonstrates that the proposed algorithm exhibits strong adaptability to a changing temperature, and performs significantly better than KF and MLR to compensate the temperature drift of a gyroscope and eliminate the influence of temperature variation. PMID:25985165
Feng, Yibo; Li, Xisheng; Zhang, Xiaojuan
2015-05-13
We present an adaptive algorithm for a system integrated with micro-electro-mechanical systems (MEMS) gyroscopes and a compass to eliminate the influence from the environment, compensate the temperature drift precisely, and improve the accuracy of the MEMS gyroscope. We use a simplified drift model and changing but appropriate model parameters to implement this algorithm. The model of MEMS gyroscope temperature drift is constructed mostly on the basis of the temperature sensitivity of the gyroscope. As the state variables of a strong tracking Kalman filter (STKF), the parameters of the temperature drift model can be calculated to adapt to the environment under the support of the compass. These parameters change intelligently with the environment to maintain the precision of the MEMS gyroscope in the changing temperature. The heading error is less than 0.6° in the static temperature experiment, and also is kept in the range from 5° to -2° in the dynamic outdoor experiment. This demonstrates that the proposed algorithm exhibits strong adaptability to a changing temperature, and performs significantly better than KF and MLR to compensate the temperature drift of a gyroscope and eliminate the influence of temperature variation.
NASA Astrophysics Data System (ADS)
Kotikalapudi, Sriram; Li, Chia-Chang; Magill, Peter D.; Whitaker, Norman A.; Dail, James E.; Dajer, Miguel A.; Siller, Curtis A., Jr.
1995-11-01
Described here is an adaptive MAC-layer protocol that supports multiservice (STM and ATM) applications in the context of subscriber access to tree and branch (e.g., fiber-coaxial cable) networks. The protocol adapts to changing demands for a mix of circuit and cell mode applications, and efficiently allocates upstream and downstream bandwidth to a variety of bursty and isochronous traffic sources. In the case of a hybrid fiber-coaxial (HFC) network the protocol resides in customer premises equipment and a common head-end controller. A medium-access control (MAC) processor provides for dividing the time domain for a given digital bitstream into successive frames, each with multiple STM and ATM time slots. Within the STM region of a frame, variable length time slots are allocated to calls (e.g., telephony, video telephony) requiring different amounts of bandwidth. A contention access signaling channel is also provided in this region for call control and set-up requests. Within the ATM region fixed-length time slots accommodate one individual ATM cell. These ATM time slots may be reserved for a user for the duration of a call or burst of successive ATM cells, or shared via a contention process. At least one contention time slot is available for signaling messages related to ATM call control and set-up requests. Further, the fixed-length ATM time slots may be reserved by a user for the duration of a call, or shared through a contention process. This paper describes the MAC-layer protocol, its relation to circuit- and ATM- amenable applications, and its performance with respect to signaling throughput and latency, and bandwidth efficiency for several service scenarios.
NASA Astrophysics Data System (ADS)
Lu, Yao; Chan, Heang-Ping; Fessler, Jeffrey A.; Hadjiiski, Lubomir; Wei, Jun; Goodsitt, Mitchell M.
2011-03-01
Digital breast tomosynthesis (DBT) has been shown to increase mass detection. Detection of microcalcifications in DBT is challenging because of the small, subtle signals to be searched in the large breast volume and the noise in the reconstructed volume. We developed an adaptive diffusion (AD) regularization method that can differentially regularize noise and potential signal regions during reconstruction based on local contrast-to-noise ratio (CNR) information. This method adaptively applies different degrees of regularity to signal and noise regions, as guided by a CNR map for each DBT slice within the image volume, such that potential signals will be preserved while noise is suppressed. DBT scans of an American College of Radiology phantom and the breast of a subject with biopsy-proven calcifications were acquired with a GE prototype DBT system at 21 angles in 3° increments over a +/-30° range. Simultaneous algebraic reconstruction technique (SART) was used for DBT reconstruction. The AD regularization method was compared to the non-convex total p-variation (TpV) method and SART with no regularization (NR) in terms of the CNR and the full width at half maximum (FWHM) of the central gray-level line profile in the focal plane of a calcification. The results demonstrated that the SART regularized by the AD method enhanced the CNR and preserved the sharpness of microcalcifications compared to reconstruction without regularization. The AD regularization was superior to the TpV method for subtle microcalcifications in terms of the CNR while the FWHM was comparable. The AD regularized reconstruction has the potential to improve the CNR of microcalcifications in DBT for human or machine detection.
Borkowski, Robert; Zhang, Xu; Zibar, Darko; Younce, Richard; Monroy, Idelfonso Tafur
2011-12-12
We experimentally demonstrate a digital signal processing (DSP)-based optical performance monitoring (OPM) algorithm for in-service monitoring of chromatic dispersion (CD) in coherent transport networks. Dispersion accumulated in 40 Gbit/s QPSK signal after 80 km of fiber transmission is successfully monitored and automatically compensated without prior knowledge of fiber dispersion coefficient. Four different metrics for assessing CD mitigation are implemented and simultaneously verified proving to have high estimation accuracy. No observable penalty is measured when the monitoring module drives an adaptive digital CD equalizer.
An Adaptive Particle Filtering Approach to Tracking Modes in a Varying Shallow Ocean Environment
Candy, J V
2011-03-22
The shallow ocean environment is ever changing mostly due to temperature variations in its upper layers (< 100m) directly affecting sound propagation throughout. The need to develop processors that are capable of tracking these changes implies a stochastic as well as an 'adaptive' design. The stochastic requirement follows directly from the multitude of variations created by uncertain parameters and noise. Some work has been accomplished in this area, but the stochastic nature was constrained to Gaussian uncertainties. It has been clear for a long time that this constraint was not particularly realistic leading a Bayesian approach that enables the representation of any uncertainty distribution. Sequential Bayesian techniques enable a class of processors capable of performing in an uncertain, nonstationary (varying statistics), non-Gaussian, variable shallow ocean. In this paper adaptive processors providing enhanced signals for acoustic hydrophonemeasurements on a vertical array as well as enhanced modal function estimates are developed. Synthetic data is provided to demonstrate that this approach is viable.
NASA Astrophysics Data System (ADS)
Flad, David; Beck, Andrea; Munz, Claus-Dieter
2016-05-01
Scale-resolving simulations of turbulent flows in complex domains demand accurate and efficient numerical schemes, as well as geometrical flexibility. For underresolved situations, the avoidance of aliasing errors is a strong demand for stability. For continuous and discontinuous Galerkin schemes, an effective way to prevent aliasing errors is to increase the quadrature precision of the projection operator to account for the non-linearity of the operands (polynomial dealiasing, overintegration). But this increases the computational costs extensively. In this work, we present a novel spatially and temporally adaptive dealiasing strategy by projection filtering. We show this to be more efficient for underresolved turbulence than the classical overintegration strategy. For this novel approach, we discuss the implementation strategy and the indicator details, show its accuracy and efficiency for a decaying homogeneous isotropic turbulence and the transitional Taylor-Green vortex and compare it to the original overintegration approach and a state of the art variational multi-scale eddy viscosity formulation.
NASA Astrophysics Data System (ADS)
Weng, Yi; Wang, Junyi; Pan, Zhongqi
2016-02-01
To support the ever-increasing demand for high-speed optical communications, Nyquist spectral shaping serves as a promising technique to improve spectral efficiency (SE) by generating near-rectangular spectra with negligible crosstalk and inter-symbol interference in wavelength-division-multiplexed (WDM) systems. Compared with specially-designed optical methods, DSP-based electrical filters are more flexible as they can generate different filter shapes and modulation formats. However, such transmitter-side pre-filtering approach is sensitive to the limited taps of finite-impulse-response (FIR) filter, for the complexity of the required DSP and digital-to-analog converter (DAC) is limited by the cost and power consumption of optical transponder. In this paper, we investigate the performance and complexity of transmitter-side FIR-based DSP with polarization-division-multiplexing (PDM) high-order quadrature-amplitude-modulation (QAM) formats. Our results show that Nyquist 64-QAM, 16-QAM and QPSK WDM signals can be sufficiently generated by digital FIR filters with 57, 37, and 17 taps respectively. Then we explore the effects of the required spectral pre-emphasis, bandwidth and resolution on the performance of Nyquist-WDM systems. To obtain negligible OSNR penalty with a roll-off factor of 0.1, two-channel-interleaved DAC requires a Gaussian electrical filter with the bandwidth of 0.4-0.6 times of the symbol rate for PDM-64QAM, 0.35-0.65 times for PDM-16QAM, and 0.3-0.8 times for PDM-QPSK, with required DAC resolutions as 8, 7, 6 bits correspondingly. As a tradeoff, PDM-64QAM can be a promising candidate for SE improvement in next-generation optical metro networks.
NASA Astrophysics Data System (ADS)
Makowski, Ryszard; Zimroz, Radoslaw
2013-07-01
A procedure for feature extraction using adaptive Schur filter for damage detection in rolling element bearings is proposed in the paper. Damaged bearings produce impact signals (shocks) related with local change (loss) of stiffness in pairs: inner/outer race-rolling element. If significant disturbances do not occur (i.e. signal to noise ratio is sufficient), diagnostics is not very complicated and usually envelope analysis is used. Unfortunately, in most industrial examples, these impulsive contributions in vibration are completely masked by noise or other high energy sources. Moreover, impulses may have time varying amplitudes caused by transmission path, load and properties of noise changing in time. Thus, in order to extract time varying signal of interest, the solution would be an adaptive one. The proposed approach is based on the normalized exact least-square time-variant lattice filter (adaptive Schur filter). It is characterized by an extremely fast start-up performance, excellent convergence behavior, and fast parameter tracking capability, making this approach interesting. Schur adaptive filter consists of P sections, estimating, among others, time-varying reflection coefficients (RCs). In this paper it is proposed to use RCs and their derivatives as diagnostic features. However, it is not convenient to analyze simultaneously P signals for P sections, so instead of these, weighted sum of derivatives of RCs can be used. The key question is how to find these weight values for summation procedure. An original contributions are: application of Schur filter to bearings vibration processing, proposal of several features that can be used for detection and mentioned procedure of weighted summation of signal from sections of Schur filter. The method of signal processing is well-adapted for analysis of the non-stationary time-series, so it sounds very promising for diagnostics of machines working in time varying load/speed conditions.
Filtering Based Adaptive Visual Odometry Sensor Framework Robust to Blurred Images
Zhao, Haiying; Liu, Yong; Xie, Xiaojia; Liao, Yiyi; Liu, Xixi
2016-01-01
Visual odometry (VO) estimation from blurred image is a challenging problem in practical robot applications, and the blurred images will severely reduce the estimation accuracy of the VO. In this paper, we address the problem of visual odometry estimation from blurred images, and present an adaptive visual odometry estimation framework robust to blurred images. Our approach employs an objective measure of images, named small image gradient distribution (SIGD), to evaluate the blurring degree of the image, then an adaptive blurred image classification algorithm is proposed to recognize the blurred images, finally we propose an anti-blurred key-frame selection algorithm to enable the VO robust to blurred images. We also carried out varied comparable experiments to evaluate the performance of the VO algorithms with our anti-blur framework under varied blurred images, and the experimental results show that our approach can achieve superior performance comparing to the state-of-the-art methods under the condition with blurred images while not increasing too much computation cost to the original VO algorithms. PMID:27399704
Filtering Based Adaptive Visual Odometry Sensor Framework Robust to Blurred Images.
Zhao, Haiying; Liu, Yong; Xie, Xiaojia; Liao, Yiyi; Liu, Xixi
2016-01-01
Visual odometry (VO) estimation from blurred image is a challenging problem in practical robot applications, and the blurred images will severely reduce the estimation accuracy of the VO. In this paper, we address the problem of visual odometry estimation from blurred images, and present an adaptive visual odometry estimation framework robust to blurred images. Our approach employs an objective measure of images, named small image gradient distribution (SIGD), to evaluate the blurring degree of the image, then an adaptive blurred image classification algorithm is proposed to recognize the blurred images, finally we propose an anti-blurred key-frame selection algorithm to enable the VO robust to blurred images. We also carried out varied comparable experiments to evaluate the performance of the VO algorithms with our anti-blur framework under varied blurred images, and the experimental results show that our approach can achieve superior performance comparing to the state-of-the-art methods under the condition with blurred images while not increasing too much computation cost to the original VO algorithms. PMID:27399704
Filtering Based Adaptive Visual Odometry Sensor Framework Robust to Blurred Images.
Zhao, Haiying; Liu, Yong; Xie, Xiaojia; Liao, Yiyi; Liu, Xixi
2016-01-01
Visual odometry (VO) estimation from blurred image is a challenging problem in practical robot applications, and the blurred images will severely reduce the estimation accuracy of the VO. In this paper, we address the problem of visual odometry estimation from blurred images, and present an adaptive visual odometry estimation framework robust to blurred images. Our approach employs an objective measure of images, named small image gradient distribution (SIGD), to evaluate the blurring degree of the image, then an adaptive blurred image classification algorithm is proposed to recognize the blurred images, finally we propose an anti-blurred key-frame selection algorithm to enable the VO robust to blurred images. We also carried out varied comparable experiments to evaluate the performance of the VO algorithms with our anti-blur framework under varied blurred images, and the experimental results show that our approach can achieve superior performance comparing to the state-of-the-art methods under the condition with blurred images while not increasing too much computation cost to the original VO algorithms.
Tsanas, Athanasios; Zañartu, Matías; Little, Max A.; Fox, Cynthia; Ramig, Lorraine O.; Clifford, Gari D.
2014-01-01
There has been consistent interest among speech signal processing researchers in the accurate estimation of the fundamental frequency (F0) of speech signals. This study examines ten F0 estimation algorithms (some well-established and some proposed more recently) to determine which of these algorithms is, on average, better able to estimate F0 in the sustained vowel /a/. Moreover, a robust method for adaptively weighting the estimates of individual F0 estimation algorithms based on quality and performance measures is proposed, using an adaptive Kalman filter (KF) framework. The accuracy of the algorithms is validated using (a) a database of 117 synthetic realistic phonations obtained using a sophisticated physiological model of speech production and (b) a database of 65 recordings of human phonations where the glottal cycles are calculated from electroglottograph signals. On average, the sawtooth waveform inspired pitch estimator and the nearly defect-free algorithms provided the best individual F0 estimates, and the proposed KF approach resulted in a ∼16% improvement in accuracy over the best single F0 estimation algorithm. These findings may be useful in speech signal processing applications where sustained vowels are used to assess vocal quality, when very accurate F0 estimation is required. PMID:24815269
Cornelis, Bram; Moonen, Marc; Wouters, Jan
2012-06-01
This paper evaluates noise reduction techniques in bilateral and binaural hearing aids. Adaptive implementations (on a real-time test platform) of the bilateral and binaural speech distortion weighted multichannel Wiener filter (SDW-MWF) and a competing bilateral fixed beamformer are evaluated. As the SDW-MWF relies on a voice activity detector (VAD), a realistic binaural VAD is also included. The test subjects (both normal hearing subjects and hearing aid users) are tested by an adaptive speech reception threshold (SRT) test in different spatial scenarios, including a realistic cafeteria scenario with nonstationary noise. The main conclusions are: (a) The binaural SDW-MWF can further improve the SRT (up to 2 dB) over the improvements achieved by bilateral algorithms, although a significant difference is only achievable if the binaural SDW-MWF uses a perfect VAD. However, in the cafeteria scenario only the binaural SDW-MWF achieves a significant SRT improvement (2.6 dB with perfect VAD, 2.2 dB with real VAD), for the group of hearing aid users. (b) There is no significant degradation when using a real VAD at the input signal-to-noise ratio (SNR) levels where the hearing aid users reach their SRT. (c) The bilateral SDW-MWF achieves no SRT improvements compared to the bilateral fixed beamformer.
Tsanas, Athanasios; Zañartu, Matías; Little, Max A; Fox, Cynthia; Ramig, Lorraine O; Clifford, Gari D
2014-05-01
There has been consistent interest among speech signal processing researchers in the accurate estimation of the fundamental frequency (F(0)) of speech signals. This study examines ten F(0) estimation algorithms (some well-established and some proposed more recently) to determine which of these algorithms is, on average, better able to estimate F(0) in the sustained vowel /a/. Moreover, a robust method for adaptively weighting the estimates of individual F(0) estimation algorithms based on quality and performance measures is proposed, using an adaptive Kalman filter (KF) framework. The accuracy of the algorithms is validated using (a) a database of 117 synthetic realistic phonations obtained using a sophisticated physiological model of speech production and (b) a database of 65 recordings of human phonations where the glottal cycles are calculated from electroglottograph signals. On average, the sawtooth waveform inspired pitch estimator and the nearly defect-free algorithms provided the best individual F(0) estimates, and the proposed KF approach resulted in a ∼16% improvement in accuracy over the best single F(0) estimation algorithm. These findings may be useful in speech signal processing applications where sustained vowels are used to assess vocal quality, when very accurate F(0) estimation is required. PMID:24815269
NASA Technical Reports Server (NTRS)
Starks, Scott; Abdel-Hafeez, Saleh; Usevitch, Bryan
1997-01-01
This paper discusses the implementation of a fuzzy logic system using an ASICs design approach. The approach is based upon combining the inherent advantages of symmetric triangular membership functions and fuzzy singleton sets to obtain a novel structure for fuzzy logic system application development. The resulting structure utilizes a fuzzy static RAM to store the rule-base and the end-points of the triangular membership functions. This provides advantages over other approaches in which all sampled values of membership functions for all universes must be stored. The fuzzy coprocessor structure implements the fuzzification and defuzzification processes through a two-stage parallel pipeline architecture which is capable of executing complex fuzzy computations in less than 0.55us with an accuracy of more than 95%, thus making it suitable for a wide range of applications. Using the approach presented in this paper, a fuzzy logic rule-base can be directly downloaded via a host processor to an onchip rule-base memory with a size of 64 words. The fuzzy coprocessor's design supports up to 49 rules for seven fuzzy membership functions associated with each of the chip's two input variables. This feature allows designers to create fuzzy logic systems without the need for additional on-board memory. Finally, the paper reports on simulation studies that were conducted for several adaptive filter applications using the least mean squared adaptive algorithm for adjusting the knowledge rule-base.
Design of order statistics filters using feedforward neural networks
NASA Astrophysics Data System (ADS)
Maslennikova, Yu. S.; Bochkarev, V. V.
2016-08-01
In recent years significant progress have been made in the development of nonlinear data processing techniques. Such techniques are widely used in digital data filtering and image enhancement. Many of the most effective nonlinear filters based on order statistics. The widely used median filter is the best known order statistic filter. Generalized form of these filters could be presented based on Lloyd's statistics. Filters based on order statistics have excellent robustness properties in the presence of impulsive noise. In this paper, we present special approach for synthesis of order statistics filters using artificial neural networks. Optimal Lloyd's statistics are used for selecting of initial weights for the neural network. Adaptive properties of neural networks provide opportunities to optimize order statistics filters for data with asymmetric distribution function. Different examples demonstrate the properties and performance of presented approach.