Real time adaptive filtering for digital X-ray applications.
Bockenbach, Olivier; Mangin, Michel; Schuberth, Sebastian
2006-01-01
Over the last decade, many methods for adaptively filtering a data stream have been proposed. Those methods have applications in two dimensional imaging as well as in three dimensional image reconstruction. Although the primary objective of this filtering technique is to reduce the noise while avoiding to blur the edges, diagnostic, automated segmentation and surgery show a growing interest in enhancing the features contained in the image flow. Most of the methods proposed so far emerged from thorough studies of the physics of the considered modality and therefore show only a marginal capability to be extended across modalities. Moreover, adaptive filtering belongs to the family of processing intensive algorithms. Existing technology has often driven to simplifications and modality specific optimization to sustain the expected performances. In the specific case of real time digital X-ray as used surgery, the system has to sustain a throughput of 30 frames per second. In this study, we take a generalized approach for adaptive filtering based on multiple oriented filters. Mapping the filtering part to the embedded real time image processing while a user/application defined adaptive recombination of the filter outputs allow to change the smoothing and edge enhancement properties of the filter without changing the oriented filter parameters. We have implemented the filtering on a Cell Broadband Engine processor and the adaptive recombination on an off-the-shelf PC, connected via Gigabit Ethernet. This implementation is capable of filtering images of 5122 pixels at a throughput in excess of 40 frames per second while allowing to change the parameters in real time. PMID:17354937
Adaptive noise cancellation based on beehive pattern evolutionary digital filter
NASA Astrophysics Data System (ADS)
Zhou, Xiaojun; Shao, Yimin
2014-01-01
Evolutionary digital filtering (EDF) exhibits the advantage of avoiding the local optimum problem by using cloning and mating searching rules in an adaptive noise cancellation system. However, convergence performance is restricted by the large population of individuals and the low level of information communication among them. The special beehive structure enables the individuals on neighbour beehive nodes to communicate with each other and thus enhance the information spread and random search ability of the algorithm. By introducing the beehive pattern evolutionary rules into the original EDF, this paper proposes an improved beehive pattern evolutionary digital filter (BP-EDF) to overcome the defects of the original EDF. In the proposed algorithm, a new evolutionary rule which combines competing cloning, complete cloning and assistance mating methods is constructed to enable the individuals distributed on the beehive to communicate with their neighbours. Simulation results are used to demonstrate the improved performance of the proposed algorithm in terms of convergence speed to the global optimum compared with the original methods. Experimental results also verify the effectiveness of the proposed algorithm in extracting feature signals that are contaminated by significant amounts of noise during the fault diagnosis task.
Kikuchi, Kazuro
2011-03-14
We analyze the clock-recovery process based on adaptive finite-impulse-response (FIR) filtering in digital coherent optical receivers. When the clock frequency is synchronized between the transmitter and the receiver, only five taps in half-symbol-spaced FIR filters can adjust the sampling phase of analog-to-digital conversion optimally, enabling bit-error rate performance independent of the initial sampling phase. Even if the clock frequency is not synchronized between them, the clock-frequency misalignment can be adjusted within an appropriate block interval; thus, we can achieve an asynchronous clock mode of operation of digital coherent receivers with block processing of the symbol sequence. PMID:21445201
New cardiac MRI gating method using event-synchronous adaptive digital filter.
Park, Hodong; Park, Youngcheol; Cho, Sungpil; Jang, Bongryoel; Lee, Kyoungjoung
2009-11-01
When imaging the heart using MRI, an artefact-free electrocardiograph (ECG) signal is not only important for monitoring the patient's heart activity but also essential for cardiac gating to reduce noise in MR images induced by moving organs. The fundamental problem in conventional ECG is the distortion induced by electromagnetic interference. Here, we propose an adaptive algorithm for the suppression of MR gradient artefacts (MRGAs) in ECG leads of a cardiac MRI gating system. We have modeled MRGAs by assuming a source of strong pulses used for dephasing the MR signal. The modeled MRGAs are rectangular pulse-like signals. We used an event-synchronous adaptive digital filter whose reference signal is synchronous to the gradient peaks of MRI. The event detection processor for the event-synchronous adaptive digital filter was implemented using the phase space method-a sort of topology mapping method-and least-squares acceleration filter. For evaluating the efficiency of the proposed method, the filter was tested using simulation and actual data. The proposed method requires a simple experimental setup that does not require extra hardware connections to obtain the reference signals of adaptive digital filter. The proposed algorithm was more effective than the multichannel approach. PMID:19644754
Stent enhancement in digital x-ray fluoroscopy using an adaptive feature enhancement filter
NASA Astrophysics Data System (ADS)
Jiang, Yuhao; Zachary, Josey
2016-03-01
Fluoroscopic images belong to the classes of low contrast and high noise. Simply lowering radiation dose will render the images unreadable. Feature enhancement filters can reduce patient dose by acquiring images at low dose settings and then digitally restoring them to the original quality. In this study, a stent contrast enhancement filter is developed to selectively improve the contrast of stent contour without dramatically boosting the image noise including quantum noise and clinical background noise. Gabor directional filter banks are implemented to detect the edges and orientations of the stent. A high orientation resolution of 9° is used. To optimize the use of the information obtained from Gabor filters, a computerized Monte Carlo simulation followed by ROC study is used to find the best nonlinear operator. The next stage of filtering process is to extract symmetrical parts in the stent. The global and local symmetry measures are used. The information gathered from previous two filter stages are used to generate a stent contour map. The contour map is then scaled and added back to the original image to get a contrast enhanced stent image. We also apply a spatio-temporal channelized Hotelling observer model and other numerical measures to characterize the response of the filters and contour map to optimize the selections of parameters for image quality. The results are compared to those filtered by an adaptive unsharp masking filter previously developed. It is shown that stent enhancement filter can effectively improve the stent detection and differentiation in the interventional fluoroscopy.
Adaptive box filters for removal of random noise from digital images
Eliason, E.M.; McEwen, A.S.
1990-01-01
We have developed adaptive box-filtering algorithms to (1) remove random bit errors (pixel values with no relation to the image scene) and (2) smooth noisy data (pixels related to the image scene but with an additive or multiplicative component of noise). For both procedures, we use the standard deviation (??) of those pixels within a local box surrounding each pixel, hence they are adaptive filters. This technique effectively reduces speckle in radar images without eliminating fine details. -from Authors
Adaptive box filters for removal of random noise from digital images
NASA Technical Reports Server (NTRS)
Eliason, Eric M.; Mcewen, Alfred S.
1990-01-01
Adaptive box-filtering algorithms to remove random bit errors and to smooth noisy data have been developed. For both procedures, the standard deviation of those pixels within a local box surrounding each pixel is used. A series of two or three filters with decreasing box sizes can be run to clean up extremely noisy images and to remove bit errors near sharp edges. The second filter, for noise smoothing, is similar to the 'sigma filter' of Lee (1983). The technique effectively reduces speckle in radar images without eliminating fine details.
NASA Technical Reports Server (NTRS)
Nagle, H. T., Jr.
1972-01-01
A three part survey is made of the state-of-the-art in digital filtering. Part one presents background material including sampled data transformations and the discrete Fourier transform. Part two, digital filter theory, gives an in-depth coverage of filter categories, transfer function synthesis, quantization and other nonlinear errors, filter structures and computer aided design. Part three presents hardware mechanization techniques. Implementations by general purpose, mini-, and special-purpose computers are presented.
Stent enhancement using a locally adaptive unsharp masking filter in digital x-ray fluoroscopy
NASA Astrophysics Data System (ADS)
Jiang, Yuhao; Ekanayake, Eranda
2014-03-01
Low exposure X-ray fluoroscopy is used to guide some complicate interventional procedures. Due to the inherent high levels of noise, improving the visibility of some interventional devices such as stent will greatly benefit those interventional procedures. Stent, which is made up of tiny steel wires, is also suffered from contrast dilutions of large flat panel detector pixels. A novel adaptive unsharp masking filter has been developed to improve stent contrast in real-time applications. In unsharp masking processing, the background is estimated and subtracted from the original input image to create a foreground image containing objects of interest. A background estimator is therefore critical in the unsharp masking processing. In this specific study, orientation filter kernels are used as the background estimator. To make the process simple and fast, the kernels average along a line of pixels. A high orientation resolution of 18° is used. A nonlinear operator is then used to combine the information from the images generated from convolving the original background and noise only images with orientation filters. A computerized Monte Carlo simulation followed by ROC study is used to identify the best nonlinear operator. We then apply the unsharp masking filter to the images with stents present. It is shown that the locally adaptive unsharp making filter is an effective filter for improving stent visibility in the interventional fluoroscopy. We also apply a spatio-temporal channelized human observer model to quantitatively optimize and evaluate the filter.
NASA Technical Reports Server (NTRS)
Zohar, S. (Inventor)
1973-01-01
Several embodiments of a counting digital filter of the non-recursive type are disclosed. In each embodiment two registers, at least one of which is a shift register, are included. The shift register received j sub x-bit data input words bit by bit. The kth data word is represented by the integer.
Knapp, R.W.; Anderson, N.L.
1994-01-01
Data may be overprinted by a steady-state cyclical noise (hum). Steady-state indicates that the noise is invariant with time; its attributes, frequency, amplitude, and phase, do not change with time. Hum recorded on seismic data usually is powerline noise and associated higher harmonics; leakage from full-waveform rectified cathodic protection devices that contain the odd higher harmonics of powerline frequencies; or vibrational noise from mechanical devices. The fundamental frequency of powerline hum may be removed during data acquisition with the use of notch filters. Unfortunately, notch filters do not discriminate signal and noise, attenuating both. They also distort adjacent frequencies by phase shifting. Finally, they attenuate only the fundamental mode of the powerline noise; higher harmonics and frequencies other than that of powerlines are not removed. Digital notch filters, applied during processing, have many of the same problems as analog filters applied in the field. The method described here removes hum of a particular frequency. Hum attributes are measured by discrete Fourier analysis, and the hum is canceled from the data by subtraction. Errors are slight and the result of the presence of (random) noise in the window or asynchrony of the hum and data sampling. Error is minimized by increasing window size or by resampling to a finer interval. Errors affect the degree of hum attenuation, not the signal. The residual is steady-state hum of the same frequency. ?? 1994.
Digital filter synthesis computer program
NASA Technical Reports Server (NTRS)
Moyer, R. A.; Munoz, R. M.
1968-01-01
Digital filter synthesis computer program expresses any continuous function of a complex variable in approximate form as a computational algorithm or difference equation. Once the difference equation has been developed, digital filtering can be performed by the program on any input data list.
NASA Astrophysics Data System (ADS)
Stevens, Mark R.; Gutchess, Dan; Checka, Neal; Snorrason, Magnús
2006-05-01
Image exploitation algorithms for Intelligence, Surveillance and Reconnaissance (ISR) and weapon systems are extremely sensitive to differences between the operating conditions (OCs) under which they are trained and the extended operating conditions (EOCs) in which the fielded algorithms are tested. As an example, terrain type is an important OC for the problem of tracking hostile vehicles from an airborne camera. A system designed to track cars driving on highways and on major city streets would probably not do well in the EOC of parking lots because of the very different dynamics. In this paper, we present a system we call ALPS for Adaptive Learning in Particle Systems. ALPS takes as input a sequence of video images and produces labeled tracks. The system detects moving targets and tracks those targets across multiple frames using a multiple hypothesis tracker (MHT) tightly coupled with a particle filter. This tracker exploits the strengths of traditional MHT based tracking algorithms by directly incorporating tree-based hypothesis considerations into the particle filter update and resampling steps. We demonstrate results in a parking lot domain tracking objects through occlusions and object interactions.
Advanced simulation of digital filters
NASA Astrophysics Data System (ADS)
Doyle, G. S.
1980-09-01
An Advanced Simulation of Digital Filters has been implemented on the IBM 360/67 computer utilizing Tektronix hardware and software. The program package is appropriate for use by persons beginning their study of digital signal processing or for filter analysis. The ASDF programs provide the user with an interactive method by which filter pole and zero locations can be manipulated. Graphical output on both the Tektronix graphics screen and the Versatec plotter are provided to observe the effects of pole-zero movement.
Nanophotonic filters for digital imaging
NASA Astrophysics Data System (ADS)
Walls, Kirsty
There has been an increasing demand for low cost, portable CMOS image sensors because of increased integration, and new applications in the automotive, mobile communication and medical industries, amongst others. Colour reproduction remains imperfect in conventional digital image sensors, due to the limitations of the dye-based filters. Further improvement is required if the full potential of digital imaging is to be realised. In alternative systems, where accurate colour reproduction is a priority, existing equipment is too bulky for anything but specialist use. In this work both these issues are addressed by exploiting nanophotonic techniques to create enhanced trichromatic filters, and multispectral filters, all of which can be fabricated on-chip, i.e. integrated into a conventional digital image sensor, to create compact, low cost, mass produceable imaging systems with accurate colour reproduction. The trichromatic filters are based on plasmonic structures. They exploit the excitation of surface plasmon resonances in arrays of subwavelength holes in metal films to filter light. The currently-known analytical expressions are inadequate for optimising all relevant parameters of a plasmonic structure. In order to obtain arbitrary filter characteristics, an automated design procedure was developed that integrated a genetic algorithm and 3D finite-difference time-domain tool. The optimisation procedure's efficacy is demonstrated by designing a set of plasmonic filters that replicate the CIE (1931) colour matching functions, which themselves mimic the human eye's daytime colour response.
Lossless compression of weight vectors from an adaptive filter
Bredemann, M.V.; Elliott, G.R.; Stearns, S.D.
1994-08-01
Techniques for lossless waveform compression can be applied to the transmission of weight vectors from an orbiting satellite. The vectors, which are a part of a hybrid analog/digital adaptive filter, are a representation of the radio frequency background seen by the satellite. An approach is used which treats each adaptive weight as a time-varying waveform.
Behavior of adaptive digital erosions
NASA Astrophysics Data System (ADS)
Cuciurean-Zapan, Clara; Dougherty, Edward R.; Chen, Yidong
1996-10-01
Design of statistically optimal erosion-based filters is problematic due to the complexity of the search process. Specialized search techniques and constraints on optimality are used to mitigate the full search. Adaptation of structuring elements has also ben employed. The present paper looks at the behavior of an adaptive filter relative to the actual optimal filter for a single erosion in two models, signal-union-noise and dilation. It does so in the context of state transitions, where filter states are stacks that determine the structuring element upon thresholding.
Frequency domain FIR and IIR adaptive filters
NASA Technical Reports Server (NTRS)
Lynn, D. W.
1990-01-01
A discussion of the LMS adaptive filter relating to its convergence characteristics and the problems associated with disparate eigenvalues is presented. This is used to introduce the concept of proportional convergence. An approach is used to analyze the convergence characteristics of block frequency-domain adaptive filters. This leads to a development showing how the frequency-domain FIR adaptive filter is easily modified to provide proportional convergence. These ideas are extended to a block frequency-domain IIR adaptive filter and the idea of proportional convergence is applied. Experimental results illustrating proportional convergence in both FIR and IIR frequency-domain block adaptive filters is presented.
FORTRAN IV Digital Filter Design Programs. Digital Systems Education Project.
ERIC Educational Resources Information Center
Reuss, E.; And Others
The goals of the Digital Systems Education Project (DISE) include the development and distribution of educational/instructional materials in the digital systems area. Toward that end, this document contains three reports: (1) A FORTRAN IV Design Program for Low-Pass Butterworth and Chebychev Digital Filters; (2) A FORTRAN IV Design Program for…
Digital filter design for radar image formation
NASA Technical Reports Server (NTRS)
Adams, John W.; Nelson, Jeffrey E.; Banh, N. D.; Moncada, John J.; Bayma, Robert W.
1989-01-01
Novel weighted-least-squares approaches to the design of digital filters for SAR applications are presented. The filters belong to three different categories according to their combinations of minimax passband, least-squares stopband, minimax stopband, and maximally-flat passband. For real-time applications, it is important to design the sets of digital filter coefficient tables in an offline environment; the appropriate precomputed filter is then selected for each SAR signal-processing function, as a function of both mode and mapping geometry during real-time processing.
Speckle reduction in optical coherence tomography images using digital filtering
Ozcan, Aydogan; Bilenca, Alberto; Desjardins, Adrien E.; Bouma, Brett E.; Tearney, Guillermo J.
2009-01-01
Speckle noise is a ubiquitous artifact that limits the interpretation of optical coherence tomography images. Here we apply various speckle-reduction digital filters to optical coherence tomography images and compare their performance. Our results indicate that shift-invariant, nonorthogonal wavelet-transform-based filters together with enhanced Lee and adaptive Wiener filters can significantly reduce speckle and increase the signal-to-noise ratio, while preserving strong edges. The speckle reduction capabilities of these filters are also compared with speckle reduction from incoherent angular compounding. Our results suggest that by using these digital filters, the number of individual angles required to attain a certain level of speckle reduction can be decreased. PMID:17728812
Smartphone adapters for digital photomicrography
Roy, Somak; Pantanowitz, Liron; Amin, Milon; Seethala, Raja R.; Ishtiaque, Ahmed; Yousem, Samuel A.; Parwani, Anil V.; Cucoranu, Ioan; Hartman, Douglas J.
2014-01-01
Background: Photomicrographs in Anatomic Pathology provide a means of quickly sharing information from a glass slide for consultation, education, documentation and publication. While static image acquisition historically involved the use of a permanently mounted camera unit on a microscope, such cameras may be expensive, need to be connected to a computer, and often require proprietary software to acquire and process images. Another novel approach for capturing digital microscopic images is to use smartphones coupled with the eyepiece of a microscope. Recently, several smartphone adapters have emerged that allow users to attach mobile phones to the microscope. The aim of this study was to test the utility of these various smartphone adapters. Materials and Methods: We surveyed the market for adapters to attach smartphones to the ocular lens of a conventional light microscope. Three adapters (Magnifi, Skylight and Snapzoom) were tested. We assessed the designs of these adapters and their effectiveness at acquiring static microscopic digital images. Results: All adapters facilitated the acquisition of digital microscopic images with a smartphone. The optimal adapter was dependent on the type of phone used. The Magnifi adapters for iPhone were incompatible when using a protective case. The Snapzoom adapter was easiest to use with iPhones and other smartphones even with protective cases. Conclusions: Smartphone adapters are inexpensive and easy to use for acquiring digital microscopic images. However, they require some adjustment by the user in order to optimize focus and obtain good quality images. Smartphone microscope adapters provide an economically feasible method of acquiring and sharing digital pathology photomicrographs. PMID:25191623
Adaptive WMMR filters for edge enhancement
NASA Astrophysics Data System (ADS)
Zhou, Jun; Longbotham, Harold G.
1993-05-01
In this paper, an adaptive WMMR filter is introduced, which adaptively changes its window size to accommodate edge width variations. We prove that for any given one dimensional input signal convergence is to fixed points, which are PICO (piecewise constant), by iterative application of the adaptive WMMR filter. An application of the filters to one-D data (non- PICO) and images of printed circuit boards are then provided. Application to images in general is discussed.
On the design of recursive digital filters
NASA Technical Reports Server (NTRS)
Shenoi, K.; Narasimha, M. J.; Peterson, A. M.
1976-01-01
A change of variables is described which transforms the problem of designing a recursive digital filter to that of approximation by a ratio of polynomials on a finite interval. Some analytic techniques for the design of low-pass filters are presented, illustrating the use of the transformation. Also considered are methods for the design of phase equalizers.
Turbo LMS algorithm: supercharger meets adaptive filter
NASA Astrophysics Data System (ADS)
Meyer-Baese, Uwe
2006-04-01
Adaptive digital filters (ADFs) are, in general, the most sophisticated and resource intensive components of modern digital signal processing (DSP) and communication systems. Improvements in performance or the complexity of ADFs can have a significant impact on the overall size, speed, and power properties of a complete system. The least mean square (LMS) algorithm is a popular algorithm for coefficient adaptation in ADF because it is robust, easy to implement, and a close approximation to the optimal Wiener-Hopf least mean square solution. The main weakness of the LMS algorithm is the slow convergence, especially for non Markov-1 colored noise input signals with high eigenvalue ratios (EVRs). Since its introduction in 1993, the turbo (supercharge) principle has been successfully applied in error correction decoding and has become very popular because it reaches the theoretical limits of communication capacity predicted 5 decades ago by Shannon. The turbo principle applied to LMS ADF is analogous to the turbo principle used for error correction decoders: First, an "interleaver" is used to minimize crosscorrelation, secondly, an iterative improvement which uses the same data set several times is implemented using the standard LMS algorithm. Results for 6 different interleaver schemes for EVR in the range 1-100 are presented.
Objects tracking with adaptive correlation filters and Kalman filtering
NASA Astrophysics Data System (ADS)
Ontiveros-Gallardo, Sergio E.; Kober, Vitaly
2015-09-01
Object tracking is commonly used for applications such as video surveillance, motion based recognition, and vehicle navigation. In this work, a tracking system using adaptive correlation filters and robust Kalman prediction of target locations is proposed. Tracking is performed by means of multiple object detections in reduced frame areas. A bank of filters is designed from multiple views of a target using synthetic discriminant functions. An adaptive approach is used to improve discrimination capability of the synthesized filters adapting them to multiple types of backgrounds. With the help of computer simulation, the performance of the proposed algorithm is evaluated in terms of detection efficiency and accuracy of object tracking.
Digital filters for coherent optical receivers.
Savory, Seb J
2008-01-21
Digital filters underpin the performance of coherent optical receivers which exploit digital signal processing (DSP) to mitigate transmission impairments. We outline the principles of such receivers and review our experimental investigations into compensation of polarization mode dispersion. We then consider the details of the digital filtering employed and present an analytical solution to the design of a chromatic dispersion compensating filter. Using the analytical solution an upper bound on the number of taps required to compensate chromatic dispersion is obtained, with simulation revealing an improved bound of 2.2 taps per 1000ps/nm for 10.7GBaud data. Finally the principles of digital polarization tracking are outlined and through simulation, it is demonstrated that 100krad/s polarization rotations could be tracked using DSP with a clock frequency of less than 500MHz. PMID:18542155
Adaptive Mallow's optimization for weighted median filters
NASA Astrophysics Data System (ADS)
Rachuri, Raghu; Rao, Sathyanarayana S.
2002-05-01
This work extends the idea of spectral optimization for the design of Weighted Median filters and employ adaptive filtering that updates the coefficients of the FIR filter from which the weights of the median filters are derived. Mallows' theory of non-linear smoothers [1] has proven to be of great theoretical significance providing simple design guidelines for non-linear smoothers. It allows us to find a set of positive weights for a WM filter whose sample selection probabilities (SSP's) are as close as possible to a SSP set predetermined by Mallow's. Sample selection probabilities have been used as a basis for designing stack smoothers as they give a measure of the filter's detail preserving ability and give non-negative filter weights. We will extend this idea to design weighted median filters admitting negative weights. The new method first finds the linear FIR filter coefficients adaptively, which are then used to determine the weights of the median filter. WM filters can be designed to have band-pass, high-pass as well as low-pass frequency characteristics. Unlike the linear filters, however, the weighted median filters are robust in the presence of impulsive noise, as shown by the simulation results.
Switched Band-Pass Filters for Adaptive Transceivers
NASA Technical Reports Server (NTRS)
Wang, Ray
2007-01-01
Switched band-pass filters are key components of proposed adaptive, software- defined radio transceivers that would be parts of envisioned digital-data-communication networks that would enable real-time acquisition and monitoring of data from geographically distributed sensors. Examples of sensors to be connected to such networks include security cameras, radio-frequency identification units, and geolocation units based on the Global Positioning System. Through suitable software configuration and without changing hardware, these transceivers could be made to operate according to any of a number of complex wireless-communication standards that could be characterized by diverse modulation schemes, bandwidths, and data-handling protocols. The adaptive transceivers would include field-programmable gate arrays (FPGAs) and digital signal-processing hardware. In the receiving path of a transceiver, the incoming signal would be amplified by a low-noise amplifier (LNA). The output spectrum of the LNA would be processed by a band-pass filter operating in the frequency range between 900 MHz and 2.4 GHz. Then a down-converter would translate the signal to a lower frequency range to facilitate analog-to-digital conversion, which would be followed by baseband processing by one or more FPGAs. In the transmitting path, a digital stream would first be converted to an analog signal, which would then be up-converted to a selected frequency band before being applied to a transmitting power amplifier. The aforementioned band-pass filter in the receiving path would be a combination of resonant inductor-and-capacitor filters and switched band-pass filters. The overall combination would implement a switch function designed mathematically to exhibit desired frequency responses and to switch the signal in each frequency band to an analog-to-digital converter appropriate for that band to produce a digital intermediate-frequency signal for digital signal processing.
Adaptive filtering in biological signal processing.
Iyer, V K; Ploysongsang, Y; Ramamoorthy, P A
1990-01-01
The high dependence of conventional optimal filtering methods on the a priori knowledge of the signal and noise statistics render them ineffective in dealing with signals whose statistics cannot be predetermined accurately. Adaptive filtering methods offer a better alternative, since the a priori knowledge of statistics is less critical, real time processing is possible, and the computations are less expensive for this approach. Adaptive filtering methods compute the filter coefficients "on-line", converging to the optimal values in the least-mean square (LMS) error sense. Adaptive filtering is therefore apt for dealing with the "unknown" statistics situation and has been applied extensively in areas like communication, speech, radar, sonar, seismology, and biological signal processing and analysis for channel equalization, interference and echo canceling, line enhancement, signal detection, system identification, spectral analysis, beamforming, modeling, control, etc. In this review article adaptive filtering in the context of biological signals is reviewed. An intuitive approach to the underlying theory of adaptive filters and its applicability are presented. Applications of the principles in biological signal processing are discussed in a manner that brings out the key ideas involved. Current and potential future directions in adaptive biological signal processing are also discussed. PMID:2180633
A New Method to Cancel RFI---The Adaptive Filter
NASA Astrophysics Data System (ADS)
Bradley, R.; Barnbaum, C.
1996-12-01
An increasing amount of precious radio frequency spectrum in the VHF, UHF, and microwave bands is being utilized each year to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Some radio spectral lines of astronomical interest occur outside the protected radio astronomy bands and are unobservable due to heavy interference. Conventional approaches to deal with RFI include legislation, notch filters, RF shielding, and post-processing techniques. Although these techniques are somewhat successful, each suffers from insufficient interference cancellation. One concept of interference excision that has not been used before in radio astronomy is adaptive interference cancellation. The concept of adaptive interference canceling was first introduced in the mid-1970s as a way to reduce unwanted noise in low frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartment of automobiles. Only recently have high-speed digital filter chips made adaptive filtering possible in a bandwidth as large a few megahertz, finally opening the door to astronomical uses. The system consists of two receivers: the main beam of the radio telescope receives the desired signal corrupted by RFI coming in the sidelobes, and the reference antenna receives only the RFI. The reference antenna is processed using a digital adaptive filter and then subtracted from the signal in the main beam, thus producing the system output. The weights of the digital filter are adjusted by way of an algorithm that minimizes, in a least-squares sense, the power output of the system. Through an adaptive-iterative process, the interference canceler will lock onto the RFI and the filter will adjust itself to minimize the effect of the RFI at the system output. We are building a prototype 100 MHz receiver and will measure the cancellation
Adaptable Iterative and Recursive Kalman Filter Schemes
NASA Technical Reports Server (NTRS)
Zanetti, Renato
2014-01-01
Nonlinear filters are often very computationally expensive and usually not suitable for real-time applications. Real-time navigation algorithms are typically based on linear estimators, such as the extended Kalman filter (EKF) and, to a much lesser extent, the unscented Kalman filter. The Iterated Kalman filter (IKF) and the Recursive Update Filter (RUF) are two algorithms that reduce the consequences of the linearization assumption of the EKF by performing N updates for each new measurement, where N is the number of recursions, a tuning parameter. This paper introduces an adaptable RUF algorithm to calculate N on the go, a similar technique can be used for the IKF as well.
Enhancement of Electrolaryngeal Speech by Adaptive Filtering.
ERIC Educational Resources Information Center
Espy-Wilson, Carol Y.; Chari, Venkatesh R.; MacAuslan, Joel M.; Huang, Caroline B.; Walsh, Michael J.
1998-01-01
A study tested the quality and intelligibility, as judged by several listeners, of four users' electrolaryngeal speech, with and without filtering to compensate for perceptually objectionable acoustic characteristics. Results indicated that an adaptive filtering technique produced a noticeable improvement in the quality of the Transcutaneous…
Coherent Digital Holographic Adaptive Optics
NASA Astrophysics Data System (ADS)
Liu, Changgeng
A new type of adaptive optics (AO) based on the principles of digital holography (DH) is proposed and developed for the use in wide-field and confocal retinal imaging. Digital holographic adaptive optics (DHAO) dispenses with the wavefront sensor and wavefront corrector of the conventional AO system. DH is an emergent imaging technology that gives direct numerical access to the phase of the optical field, thus allowing precise control and manipulation of the optical field. Incorporation of DH in an ophthalmic imaging system can lead to versatile imaging capabilities at substantially reduced complexity and cost of the instrument. A typical conventional AO system includes several critical hardware pieces: spatial light modulator, lenslet array, and a second CCD camera in addition to the camera for imaging. The proposed DHAO system replaces these hardware components with numerical processing for wavefront measurement and compensation of aberration through the principles of DH. (Abstract shortened by UMI.).
Recursive total-least-squares adaptive filtering
NASA Astrophysics Data System (ADS)
Dowling, Eric M.; DeGroat, Ronald D.
1991-12-01
In this paper a recursive total least squares (RTLS) adaptive filter is introduced and studied. The TLS approach is more appropriate and provides more accurate results than the LS approach when there is error on both sides of the adaptive filter equation; for example, linear prediction, AR modeling, and direction finding. The RTLS filter weights are updated in time O(mr) where m is the filter order and r is the dimension of the tracked subspace. In conventional adaptive filtering problems, r equals 1, so that updates can be performed with complexity O(m). The updates are performed by tracking an orthonormal basis for the smaller of the signal or noise subspaces using a computationally efficient subspace tracking algorithm. The filter is shown to outperform both LMS and RLS in terms of tracking and steady state tap weight error norms. It is also more versatile in that it can adapt its weight in the absence of persistent excitation, i.e., when the input data correlation matrix is near rank deficient. Through simulation, the convergence and tracking properties of the filter are presented and compared with LMS and RLS.
Adaptive Embedded Digital System for Plasma Diagnostics
NASA Astrophysics Data System (ADS)
González, Angel; Rodríguez, Othoniel; Mangual, Osvaldo; Ponce, Eduardo; Vélez, Xavier
2014-05-01
An Adaptive Embedded Digital System to perform plasma diagnostics using electrostatic probes was developed at the Plasma Engineering Laboratory at Polytechnic University of Puerto Rico. The system will replace the existing instrumentation at the Laboratory, using reconfigurable hardware to minimize the equipment and software needed to perform diagnostics. The adaptability of the design resides on the possibility of replacing the computational algorithm on the fly, allowing to use the same hardware for different probes. The system was prototyped using Very High Speed Integrated Circuits Hardware Description Language (VHDL) into an Field Programmable Gate Array (FPGA) board. The design of the Embedded Digital System includes a Zero Phase Digital Filter, a Derivative Unit, and a Computational Unit designed using the VHDL-2008 Support Library. The prototype is able to compute the Plasma Electron Temperature and Density from a Single Langmuir probe. The system was tested using real data previously acquired from a single Langmuir probe. The plasma parameters obtained from the embedded system were compared with results computed using matlab yielding excellent matching. The new embedded system operates on 4096 samples versus 500 on the previous system, and completes its computations in 26 milliseconds compared with about 15 seconds on the previous system.
Integrated-Circuit Active Digital Filter
NASA Technical Reports Server (NTRS)
Nathan, R.
1986-01-01
Pipeline architecture with parallel multipliers and adders speeds calculation of weighted sums. Picture-element values and partial sums flow through delay-adder modules. After each cycle or time unit of calculation, each value in filter moves one position right. Digital integrated-circuit chips with pipeline architecture rapidly move 35 X 35 two-dimensional convolutions. Need for such circuits in image enhancement, data filtering, correlation, pattern extraction, and synthetic-aperture-radar image processing: all require repeated calculations of weighted sums of values from images or two-dimensional arrays of data.
A realization of the RAM digital filter. [Random Access Memory
NASA Technical Reports Server (NTRS)
Zohar, S.
1976-01-01
The digital filtering algorithm of W. D. Little, which employs a large RAM to obtain high speed, is implemented in a simple hardware configuration. The nonrecursive version of this filter is compared to the counting digital filter and found to be competitive for low-order filters up to order 7 (8 coefficients).
Fault-tolerant adaptive FIR filters using variable detection threshold
NASA Astrophysics Data System (ADS)
Lin, L. K.; Redinbo, G. R.
1994-10-01
Adaptive filters are widely used in many digital signal processing applications, where tap weight of the filters are adjusted by stochastic gradient search methods. Block adaptive filtering techniques, such as block least mean square and block conjugate gradient algorithm, were developed to speed up the convergence as well as improve the tracking capability which are two important factors in designing real-time adaptive filter systems. Even though algorithm-based fault tolerance can be used as a low-cost high level fault-tolerant technique to protect the aforementioned systems from hardware failures with minimal hardware overhead, the issue of choosing a good detection threshold remains a challenging problem. First of all, the systems usually only have limited computational resources, i.e., concurrent error detection and correction is not feasible. Secondly, any prior knowledge of input data is very difficult to get in practical settings. We propose a checksum-based fault detection scheme using two-level variable detection thresholds that is dynamically dependent on the past syndromes. Simulations show that the proposed scheme reduces the possibility of false alarms and has a high degree of fault coverage in adaptive filter systems.
Digital filter design approach for SQUID gradiometers
Bruno, A.C.; Ribeiro, P.C.
1988-04-15
A review of the traditional method for designing gradiometers is made. A nonrecursive digital filter model for the gradiometer is presented, giving a new set of parameters for the gradiometer identification. Some designs are analyzed using the proposed set. As an example, a true differentiator is designed to be used as the SQUID input coil. It is shown that the differentiator has the same noise rejection as the conventional gradiometer but provides more signal sensitivity.
Fast digital noise filter capable of locating spectral peaks and shoulders
NASA Technical Reports Server (NTRS)
Edwards, T. R.; Knight, R. D.
1972-01-01
Experimental data frequently have a poor signal-to-noise ratio which one would like to enhance before analysis. With the data in digital form, this may be accomplished by means of a digital filter. A fast digital filter based upon the principle of least squares and using the techniques of convoluting integers is described. In addition to smoothing, this filter also is capable of accurately and simultaneously locating spectral peaks and shoulders. This technique has been adapted into a computer subroutine, and results of several test cases are shown, including mass spectral data and data from a proportional counter for the High Energy Astronomy Observatory.
VSP wave separation by adaptive masking filters
NASA Astrophysics Data System (ADS)
Rao, Ying; Wang, Yanghua
2016-06-01
In vertical seismic profiling (VSP) data processing, the first step might be to separate the down-going wavefield from the up-going wavefield. When using a masking filter for VSP wave separation, there are difficulties associated with two termination ends of the up-going waves. A critical challenge is how the masking filter can restore the energy tails, the edge effect associated with these terminations uniquely exist in VSP data. An effective strategy is to implement masking filters in both τ-p and f-k domain sequentially. Meanwhile it uses a median filter, producing a clean but smooth version of the down-going wavefield, used as a reference data set for designing the masking filter. The masking filter is implemented adaptively and iteratively, gradually restoring the energy tails cut-out by any surgical mute. While the τ-p and the f-k domain masking filters target different depth ranges of VSP, this combination strategy can accurately perform in wave separation from field VSP data.
Digital filtering of plume emission spectra
NASA Technical Reports Server (NTRS)
Madzsar, George C.
1990-01-01
Fourier transformation and digital filtering techniques were used to separate the superpositioned spectral phenomena observed in the exhaust plumes of liquid propellant rocket engines. Space shuttle main engine (SSME) spectral data were used to show that extraction of spectral lines in the spatial frequency domain does not introduce error, and extraction of the background continuum introduces only minimal error. Error introduced during band extraction could not be quantified due to poor spectrometer resolution. Based on the atomic and molecular species found in the SSME plume, it was determined that spectrometer resolution must be 0.03 nm for SSME plume spectral monitoring.
Spectral analysis and filtering techniques in digital spatial data processing
Pan, Jeng-Jong
1989-01-01
A filter toolbox has been developed at the EROS Data Center, US Geological Survey, for retrieving or removing specified frequency information from two-dimensional digital spatial data. This filter toolbox provides capabilities to compute the power spectrum of a given data and to design various filters in the frequency domain. Three types of filters are available in the toolbox: point filter, line filter, and area filter. Both the point and line filters employ Gaussian-type notch filters, and the area filter includes the capabilities to perform high-pass, band-pass, low-pass, and wedge filtering techniques. These filters are applied for analyzing satellite multispectral scanner data, airborne visible and infrared imaging spectrometer (AVIRIS) data, gravity data, and the digital elevation models (DEM) data. -from Author
Statistical Error Analysis for Digital Recursive Filters
NASA Astrophysics Data System (ADS)
Wu, Kevin Chi-Rung
The study of arithmetic roundoff error has attracted many researchers to investigate how the signal-to-noise ratio (SNR) is affected by algorithmic parameters, especially since the VLSI (Very Large Scale Integrated circuits) technologies have become more promising for digital signal processing. Typically, digital signal processing involving, either with or without matrix inversion, will have tradeoffs on speed and processor cost. Hence, the problems of an area-time efficient matrix computation and roundoff error behavior analysis will play an important role in this dissertation. A newly developed non-Cholesky square-root matrix will be discussed which precludes the arithmetic roundoff error over some interesting operations, such as complex -valued matrix inversion with its SNR analysis and error propagation effects. A non-CORDIC parallelism approach for complex-valued matrix will be presented to upgrade speed at the cost of moderate increase of processor. The lattice filter will also be looked into, in such a way, that one can understand the SNR behavior under the conditions of different inputs in the joint process system. Pipelining technique will be demonstrated to manifest the possibility of high-speed non-matrix-inversion lattice filter. Floating point arithmetic modelings used in this study have been focused on effective methodologies that have been proved to be reliable and feasible. With the models in hand, we study the roundoff error behavior based on some statistical assumptions. Results are demonstrated by carrying out simulation to show the feasibility of SNR analysis. We will observe that non-Cholesky square-root matrix has advantage of saving a time of O(n^3) as well as a reduced realization cost. It will be apparent that for a Kalman filter the register size is increasing significantly, if pole of the system matrix is moving closer to the edge of the unit circle. By comparing roundoff error effect due to floating-point and fixed-point arithmetics, we
Digital Integrate-And-Dump Filter With Offset Sampling
NASA Technical Reports Server (NTRS)
Sadr, R.; Hurd, W. J.
1989-01-01
Detection of weak signals improved slightly. Digital integrate-and-dump filter proposed for detection of weak rectangular-pulse signals corrupted by additive white Gaussian noise. Theory of filter takes account of degradation of performance caused by offset sampling.
Adaptive Filtering Using Recurrent Neural Networks
NASA Technical Reports Server (NTRS)
Parlos, Alexander G.; Menon, Sunil K.; Atiya, Amir F.
2005-01-01
A method for adaptive (or, optionally, nonadaptive) filtering has been developed for estimating the states of complex process systems (e.g., chemical plants, factories, or manufacturing processes at some level of abstraction) from time series of measurements of system inputs and outputs. The method is based partly on the fundamental principles of the Kalman filter and partly on the use of recurrent neural networks. The standard Kalman filter involves an assumption of linearity of the mathematical model used to describe a process system. The extended Kalman filter accommodates a nonlinear process model but still requires linearization about the state estimate. Both the standard and extended Kalman filters involve the often unrealistic assumption that process and measurement noise are zero-mean, Gaussian, and white. In contrast, the present method does not involve any assumptions of linearity of process models or of the nature of process noise; on the contrary, few (if any) assumptions are made about process models, noise models, or the parameters of such models. In this regard, the method can be characterized as one of nonlinear, nonparametric filtering. The method exploits the unique ability of neural networks to approximate nonlinear functions. In a given case, the process model is limited mainly by limitations of the approximation ability of the neural networks chosen for that case. Moreover, despite the lack of assumptions regarding process noise, the method yields minimum- variance filters. In that they do not require statistical models of noise, the neural- network-based state filters of this method are comparable to conventional nonlinear least-squares estimators.
Filtering Algebraic Multigrid and Adaptive Strategies
Nagel, A; Falgout, R D; Wittum, G
2006-01-31
Solving linear systems arising from systems of partial differential equations, multigrid and multilevel methods have proven optimal complexity and efficiency properties. Due to shortcomings of geometric approaches, algebraic multigrid methods have been developed. One example is the filtering algebraic multigrid method introduced by C. Wagner. This paper proposes a variant of Wagner's method with substantially improved robustness properties. The method is used in an adaptive, self-correcting framework and tested numerically.
Musical noise reduction using an adaptive filter
NASA Astrophysics Data System (ADS)
Hanada, Takeshi; Murakami, Takahiro; Ishida, Yoshihisa; Hoya, Tetsuya
2003-10-01
This paper presents a method for reducing a particular noise (musical noise). The musical noise is artificially produced by Spectral Subtraction (SS), which is one of the most conventional methods for speech enhancement. The musical noise is the tin-like sound and annoying in human auditory. We know that the duration of the musical noise is considerably short in comparison with that of speech, and that the frequency components of the musical noise are random and isolated. In the ordinary SS-based methods, the musical noise is removed by the post-processing. However, the output of the ordinary post-processing is delayed since the post-processing uses the succeeding frames. In order to improve this problem, we propose a novel method using an adaptive filter. In the proposed system, the observed noisy signal is used as the input signal to the adaptive filter and the output of SS is used as the reference signal. In this paper we exploit the normalized LMS (Least Mean Square) algorithm for the adaptive filter. Simulation results show that the proposed method has improved the intelligibility of the enhanced speech in comparison with the conventional method.
Adaptive noise Wiener filter for scanning electron microscope imaging system.
Sim, K S; Teh, V; Nia, M E
2016-01-01
Noise on scanning electron microscope (SEM) images is studied. Gaussian noise is the most common type of noise in SEM image. We developed a new noise reduction filter based on the Wiener filter. We compared the performance of this new filter namely adaptive noise Wiener (ANW) filter, with four common existing filters as well as average filter, median filter, Gaussian smoothing filter and the Wiener filter. Based on the experiments results the proposed new filter has better performance on different noise variance comparing to the other existing noise removal filters in the experiments. PMID:26235517
Development of a digital adaptive optimal linear regulator flight controller
NASA Technical Reports Server (NTRS)
Berry, P.; Kaufman, H.
1975-01-01
Digital adaptive controllers have been proposed as a means for retaining uniform handling qualities over the flight envelope of a high-performance aircraft. Towards such an implementation, an explicit adaptive controller, which makes direct use of online parameter identification, has been developed and applied to the linearized lateral equations of motion for a typical fighter aircraft. The system is composed of an online weighted least-squares parameter identifier, a Kalman state filter, and a model following control law designed using optimal linear regulator theory. Simulation experiments with realistic measurement noise indicate that the proposed adaptive system has the potential for onboard implementation.
Parallel digital modem using multirate digital filter banks
NASA Technical Reports Server (NTRS)
Sadr, Ramin; Vaidyanathan, P. P.; Raphaeli, Dan; Hinedi, Sami
1994-01-01
A new class of architectures for an all-digital modem is presented in this report. This architecture, referred to as the parallel receiver (PRX), is based on employing multirate digital filter banks (DFB's) to demodulate, track, and detect the received symbol stream. The resulting architecture is derived, and specifications are outlined for designing the DFB for the PRX. The key feature of this approach is a lower processing rate then either the Nyquist rate or the symbol rate, without any degradation in the symbol error rate. Due to the freedom in choosing the processing rate, the designer is able to arbitrarily select and use digital components, independent of the speed of the integrated circuit technology. PRX architecture is particularly suited for high data rate applications, and due to the modular structure of the parallel signal path, expansion to even higher data rates is accommodated with each. Applications of the PRX would include gigabit satellite channels, multiple spacecraft, optical links, interactive cable-TV, telemedicine, code division multiple access (CDMA) communications, and others.
Tunable photonic filters: a digital signal processing design approach.
Binh, Le Nguyen
2009-05-20
Digital signal processing techniques are used for synthesizing tunable optical filters with variable bandwidth and centered reference frequency including the tunability of the low-pass, high-pass, bandpass, and bandstop optical filters. Potential applications of such filters are discussed, and the design techniques and properties of recursive digital filters are outlined. The basic filter structures, namely, the first-order all-pole optical filter (FOAPOF) and the first-order all-zero optical filter (FOAZOF), are described, and finally the design process of tunable optical filters and the designs of the second-order Butterworth low-pass, high-pass, bandpass, and bandstop tunable optical filters are presented. Indeed, we identify that the all-zero and all-pole networks are equivalent with well known principles of optics of interference and resonance, respectively. It is thus very straightforward to implement tunable optical filters, which is a unique feature. PMID:19458728
Low Power Systolic Array Based Digital Filter for DSP Applications.
Karthick, S; Valarmathy, S; Prabhu, E
2015-01-01
Main concepts in DSP include filtering, averaging, modulating, and correlating the signals in digital form to estimate characteristic parameter of a signal into a desirable form. This paper presents a brief concept of low power datapath impact for Digital Signal Processing (DSP) based biomedical application. Systolic array based digital filter used in signal processing of electrocardiogram analysis is presented with datapath architectural innovations in low power consumption perspective. Implementation was done with ASIC design methodology using TSMC 65 nm technological library node. The proposed systolic array filter has reduced leakage power up to 8.5% than the existing filter architectures. PMID:25922854
Research in digital adaptive flight controllers
NASA Technical Reports Server (NTRS)
Kaufman, H.
1976-01-01
A design study of adaptive control logic suitable for implementation in modern airborne digital flight computers was conducted. Both explicit controllers which directly utilize parameter identification and implicit controllers which do not require identification were considered. Extensive analytical and simulation efforts resulted in the recommendation of two explicit digital adaptive flight controllers. Interface weighted least squares estimation procedures with control logic were developed using either optimal regulator theory or with control logic based upon single stage performance indices.
Canonical Signed Digit Study. Part 2; FIR Digital Filter Simulation Results
NASA Technical Reports Server (NTRS)
Kim, Heechul
1996-01-01
Finite Impulse Response digital filter using Canonical Signed-Digit (CSD) number representation for the coefficients has been studied and its computer simulation results are presented here. Minimum Mean Square Error (MMSE) criterion is employed to optimize filter coefficients into the corresponding CSD numbers. To further improve coefficients optimization process, an extra non-zero bit is added for any filter coefficients exceeding 1/2. This technique improves frequency response of filter without increasing filter complexity almost at all. The simulation results show outstanding performance in bit-error-rate (BER) curve for all CSD implemented digital filters included in this presentation material.
Design and application of finite impulse response digital filters.
Miller, T R; Sampathkumaran, K S
1982-01-01
The finite impulse response (FIR) digital filter is a spatial domain filter with a frequency domain representation. The theory of the FIR filter is presented and techniques are described for designing FIR filters with known frequency response characteristics. Rational design principles are emphasized based on characterization of the imaging system using the modulation transfer function and physical properties of the imaged objects. Bandpass, Wiener, and low-pass filters were designed and applied to 201Tl myocardial images. The bandpass filter eliminates low-frequency image components that represent background activity and high-frequency components due to noise. The Wiener, or minimum mean square error filter 'sharpens' the image while also reducing noise. The Wiener filter illustrates the power of the FIR technique to design filters with any desired frequency response. The low-pass filter, while of relative limited use, is presented to compare it with a popular elementary 'smoothing' filter. PMID:7060600
NASA Technical Reports Server (NTRS)
Gevargiz, J. M.; Holmes, J. K.
1991-01-01
The next generation of digital receivers for NASA's Deep Space Network is composed of in-phase and quadrature-phase channels. The authors have modeled and simulated a quadrature-phase baseband channel that includes a low-pass filter and a digital matched filter. The simulation is used to study the performance of the three schemes of digital matched filtering that use digital weighted integrate-and-dump filters. Using three methods for calculating the near-optimum matched filter weight coefficients, the simulation results are analyzed for the NRZ and Manchester data formats. The performances of the digital matched filters are studied in the presence of a timing error between the demodulated symbols and the integrate-and-dump filters.
Digital adaptive control laws for VTOL aircraft
NASA Technical Reports Server (NTRS)
Hartmann, G. L.; Stein, G.
1979-01-01
Honeywell has designed a digital self-adaptive flight control system for flight test in the VALT Research Aircraft (a modified CH-47). The final design resulted from a comparison of two different adaptive concepts: one based on explicit parameter estimates from a real-time maximum likelihood estimation algorithm and the other based on an implicit model reference adaptive system. The two designs are compared on the basis of performance and complexity.
Statistical properties of filtered pseudo-random digital sequences
NASA Technical Reports Server (NTRS)
Weathers, G. D.
1972-01-01
A tutorial presentation of pseudo-random digital sequences, their generation and properties is given. The results of a study of filtered pseudo-random sequences, and their statistical properties are reported. The generator, to be used in a telemetry communications system test unit, must generate its pseudo-random signals by filtering a long digital sequence. Desired signal properties include: (1) approximately Gaussian amplitude probability density function; and (2) signal spectral envelope approximately that of the filter being used in the generator. Filtered maximum-length sequences have been used for this, and similar applications in the past. The results were good for low-pass filtered sequences when the ratio of digital clock frequency to filter cutoff frequency was between fifteen and twenty. However, for higher values of this ratio, a definite skewing of the amplitude density function was observed.
NASA Technical Reports Server (NTRS)
Kim, Heechul
1997-01-01
NASA Lewis Research Center's Space Communications Division has been investigating high-speed digital filters that can operate at a higher speed than those in current use for a digital modulator and demodulator (modem). Using the Canonical Signed Digits (CSD) number representation for filter coefficients is a very effective way to increase the filter's speed while reducing complexity in the digital filter hardware design. This approach is a good alternative to using an expensive parallel-processing design technique or custom, application-specific integrated circuits. Such integrated circuits may not be suitable for applications that require filter speeds faster than what application-specific integrated circuits digital signal processors can offer for a dedicated channel. When a communication channel is a dedicated, multiplication process--a costly, time-consuming process--it can be greatly simplified by a replacement of the filter coefficients with CSD numbers. A computer code written with the MATLAB software package runs the program and generates CSD-represented filter coefficients that are based on minimizing minimum mean square errors. Also, the Alta Group of Cadence's Signal Processing Workstation is used to simulate and analyze the CSD filter responses. The impulse response of the root-raised cosine filter that is used as a base model is defined. From this filter, a set of coefficients is sampled and stored in a file. For the all coefficients, the optimal CSD number for each coefficient is searched on the basis of the minimum-mean-square-errors criterion. Because the distribution of CSD numbers is not uniform, quantization errors tend to be bigger for coefficients greater than 1/2. To offset errors that occur in a region of coefficients between 1/2 to 1 and to better represent fractions with CSD numbers, an extra nonzero digit is allowed for any coefficients exceeding 1/2. This will greatly improve frequency response as well as intersymbol interference at the
Adaptive filters for detection of gravitational waves from coalescing binaries
Eleuteri, Antonio; Milano, Leopoldo; De Rosa, Rosario; Garufi, Fabio; Acernese, Fausto; Barone, Fabrizio; Giordano, Lara; Pardi, Silvio
2006-06-15
In this work we propose use of infinite impulse response adaptive line enhancer (IIR ALE) filters for detection of gravitational waves from coalescing binaries. We extend our previous work and define an adaptive matched filter structure. Filter performance is analyzed in terms of the tracking capability and determination of filter parameters. Furthermore, following the Neyman-Pearson strategy, receiver operating characteristics are derived, with closedform expressions for detection threshold, false alarm, and detection probability. Extensive tests demonstrate the effectiveness of adaptive filters both in terms of small computational cost and robustness.
Burst noise reduction of image by decimation and adaptive weighted median filter
NASA Astrophysics Data System (ADS)
Nakayama, Fumitaka; Meguro, Mitsuhiko; Hamada, Nozomu
2000-12-01
The removal of noise in image is one of the important issues, and useful as a preprocessing for edge detection, motion estimation and so on. Recently, many studies on the nonlinear digital filter for impulsive noise reduction have been reported. The median filter, the representative of the nonlinear filters, is very effective for removing impulsive noise and preserving sharp edge. In some cases, burst (i.e., successive) impulsive noise is added to image, and this type of noise is difficult to remove by using the median filter. In this paper, we propose an Adaptive Weighted Median (AWM) filter with Decimation (AWM-D filter) for burst noise reduction. This method can also be applied to recover large destructive regions, such as blotch and scratch. The proposed filter is an extension of the Decimated Median (DM) filter, which is useful for reducing successive impulsive noise. The DM filter can split long impulsive noise sequences into short ones, and remove burst noise in spite of the short filter window. Nevertheless, the DM filter also has two disadvantages. One is that the signals without added noise is unnecessary filtered. The other is that the position information in the window is not considered in the weight determinative process, as common in the median type filter. To improve detail-preserving property of the DM filter, we use the noise detection procedure and the AWM-D filter, which can be tuned by Least Mean Absolute (LMA) algorithm. The AWM-D filter preserves details more precisely than the median-type filter, because the AWM-D filter has the weights that can control the filter output. Through some simulations, the higher performance of the proposed filter is shown compared with the simple median, the WM filter, and the DM filter.
Adaptive multidirectional frequency domain filter for noise removal in wrapped phase patterns.
Liu, Guixiong; Chen, Dongxue; Peng, Yanhua; Zeng, Qilin
2016-08-01
In order to avoid the detrimental effects of excessive noise in the phase fringe patterns of a laser digital interferometer over the accuracy of phase unwrapping and the successful detection of mechanical fatigue defects, an effective method of adaptive multidirectional frequency domain filtering is introduced based on the characteristics of the energy spectrum of localized wrapped phase patterns. Not only can this method automatically set the cutoff frequency, but it can also effectively filter out noise while preserving the image edge information. Compared with the sine and cosine transform filtering and the multidirectional frequency domain filtering, the experimental results demonstrate that the image filtered by our method has the fewest number of residues and is the closest to the noise-free image, compared to the two aforementioned methods, demonstrating the effectiveness of this adaptive multidirectional frequency domain filter. PMID:27505376
Impulse radar imaging for dispersive concrete using inverse adaptive filtering techniques
Arellano, J.; Hernandez, J.M.; Brase, J.
1993-05-01
This publication addresses applications of a delayed inverse model adaptive filter for modeled data obtained from short-pulse radar reflectometry. To determine the integrity of concrete, a digital adaptive filter was used, which allows compensation of dispersion and clutter generated by the concrete. A standard set of weights produced by an adaptive filter are used on modeled data to obtain the inverse-impulse response of the concrete. The data for this report include: Multiple target, nondispersive data; single-target, variable-size dispersive data; single-target, variable-depth dispersive data; and single-target, variable transmitted-pulse-width dispersive data. Results of this simulation indicate that data generated by the weights of the adaptive filter, coupled with a two-dimensional, synthetic-aperture focusing technique, successfully generate two-dimensional images of targets within the concrete from modeled data.
Adapting Digital Libraries to Continual Evolution
NASA Technical Reports Server (NTRS)
Barkstrom, Bruce R.; Finch, Melinda; Ferebee, Michelle; Mackey, Calvin
2002-01-01
In this paper, we describe five investment streams (data storage infrastructure, knowledge management, data production control, data transport and security, and personnel skill mix) that need to be balanced against short-term operating demands in order to maximize the probability of long-term viability of a digital library. Because of the rapid pace of information technology change, a digital library cannot be a static institution. Rather, it has to become a flexible organization adapted to continuous evolution of its infrastructure.
A study of digital holographic filter generation
NASA Technical Reports Server (NTRS)
Calhoun, M.; Ingels, F.
1976-01-01
Problems associated with digital computer generation of holograms are discussed along with a criteria for producing optimum digital holograms. This criteria revolves around amplitude resolution and spatial frequency limitations induced by the computer and plotter process.
Digital high-pass filter deconvolution by means of an infinite impulse response filter
NASA Astrophysics Data System (ADS)
Födisch, P.; Wohsmann, J.; Lange, B.; Schönherr, J.; Enghardt, W.; Kaever, P.
2016-09-01
In the application of semiconductor detectors, the charge-sensitive amplifier is widely used in front-end electronics. The output signal is shaped by a typical exponential decay. Depending on the feedback network, this type of front-end electronics suffers from the ballistic deficit problem, or an increased rate of pulse pile-ups. Moreover, spectroscopy applications require a correction of the pulse-height, while a shortened pulse-width is desirable for high-throughput applications. For both objectives, digital deconvolution of the exponential decay is convenient. With a general method and the signals of our custom charge-sensitive amplifier for cadmium zinc telluride detectors, we show how the transfer function of an amplifier is adapted to an infinite impulse response (IIR) filter. This paper investigates different design methods for an IIR filter in the discrete-time domain and verifies the obtained filter coefficients with respect to the equivalent continuous-time frequency response. Finally, the exponential decay is shaped to a step-like output signal that is exploited by a forward-looking pulse processing.
Reduction of MPEG ringing artifacts using adaptive sigma filter
NASA Astrophysics Data System (ADS)
Pan, Hao
2006-01-01
In this paper, we propose a novel computationally efficient post-processing algorithm to reduce ringing artifacts in the decoded DCT-coded video without using coding information. While the proposed algorithm is based on edge information as most filtering-based de-ringing algorithms do, this algorithm solely uses one single computationally efficient nonlinear filter, namely sigma filter, for both edge detection and smoothing. Specifically, the sigma filter, which was originally designed for nonlinear filtering, is extended to generate edge proximity information. Different from other adaptive filtering-based methods, whose filters typically use a fixed small window but flexible weights, this sigma filter adaptively switches between small and large windows. The adaptation is designed for removing ringing artifacts only, so the algorithm cannot be used for de-blocking. Overall, the proposed algorithm achieves a good balance among removing ringing artifacts, preserving edges and details, and computational complexity.
Adaptive filtering image preprocessing for smart FPA technology
NASA Astrophysics Data System (ADS)
Brooks, Geoffrey W.
1995-05-01
This paper discusses two applications of adaptive filters for image processing on parallel architectures. The first, based on the results of previously accomplished work, summarizes the analyses of various adaptive filters implemented for pixel-level image prediction. FIR filters, fixed and adaptive IIR filters, and various variable step size algorithms were compared with a focus on algorithm complexity against the ability to predict future pixel values. A gaussian smoothing operation with varying spatial and temporal constants were also applied for comparisons of random noise reductions. The second application is a suggestion to use memory-adaptive IIR filters for detecting and tracking motion within an image. Objects within an image are made of edges, or segments, with varying degrees of motion. An application has been previously published that describes FIR filters connecting pixels and using correlations to determine motion and direction. This implementation seems limited to detecting motion coinciding with FIR filter operation rate and the associated harmonics. Upgrading the FIR structures with adaptive IIR structures can eliminate these limitations. These and any other pixel-level adaptive filtering application require data memory for filter parameters and some basic computational capability. Tradeoffs have to be made between chip real estate and these desired features. System tradeoffs will also have to be made as to where it makes the most sense to do which level of processing. Although smart pixels may not be ready to implement adaptive filters, applications such as these should give the smart pixel designer some long range goals.
Digital Filters for Two-Dimensional Data
NASA Technical Reports Server (NTRS)
Edwards, T. R.
1983-01-01
Computational efficient filters speed processing of two-dimensional experimental data. Two-dimensional smoothing filter used to attenuate highfrequency noise in two-dimensional numerical data arrays. Filter provides smoothed data values equal to values obtained by fitting surface with secondand third-order terms to 5 by 5 subset of data points centered on points and replacing data at each point by value of surface fitted at point. Especially suited for efficient analysis of two-dimensional experimental data on images.
Low power adder based digital filter for QRS detector.
Murali, L; Chitra, D; Manigandan, T
2014-01-01
Most of the Biomedical applications use dedicated processors for the implementation of complex signal processing. Among them, sensor network is also a type, which has the constraint of low power consumption. Since the processing elements are the most copiously used operations in the signal processors, the power consumption of this has the major impact on the system level application. In this paper, we introduce low power concept of transistor stacking to reduce leakage power; and new architectures based on stacking to implement the full adder and its significance at the digital filter level for QRS detector are implemented. The proposed concept has lesser leakage power at the adder as well as filter level with trade-off in other quality metrics of the design. This enabled the design to be dealt with as the low-power corner and can be made adaptable to any level of hierarchical abstractions as per the requirement of the application. The proposed architectures are designed, modeled at RTL level using the Verilog-HDL, and synthesized in Synopsys Design Compiler by mapping the design to 65 nm technology library standard cells. PMID:24895649
Implementation of Adaptive Digital Controllers on Programmable Logic Devices
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Ormsby, John (Technical Monitor)
2002-01-01
Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing (DSP) functions. Such capability also makes and FPGA a suitable platform for the digital implementation of closed loop controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance in a compact form-factor. Other researchers have presented the notion that a second order digital filter with proportional-integral-derivative (PID) control functionality can be implemented in an FPGA. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSF) devices. Our goal is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. Meeting our goals requires alternative compact implementation of such functionality to withstand the harsh environment encountered on spacecraft. Radiation tolerant FPGA's are a feasible option for reaching these goals.
Autonomous navigation system using a fuzzy adaptive nonlinear H∞ filter.
Outamazirt, Fariz; Li, Fu; Yan, Lin; Nemra, Abdelkrim
2014-01-01
Although nonlinear H∞ (NH∞) filters offer good performance without requiring assumptions concerning the characteristics of process and/or measurement noises, they still require additional tuning parameters that remain fixed and that need to be determined through trial and error. To address issues associated with NH∞ filters, a new SINS/GPS sensor fusion scheme known as the Fuzzy Adaptive Nonlinear H∞ (FANH∞) filter is proposed for the Unmanned Aerial Vehicle (UAV) localization problem. Based on a real-time Fuzzy Inference System (FIS), the FANH∞ filter continually adjusts the higher order of the Taylor development thorough adaptive bounds and adaptive disturbance attenuation , which significantly increases the UAV localization performance. The results obtained using the FANH∞ navigation filter are compared to the NH∞ navigation filter results and are validated using a 3D UAV flight scenario. The comparison proves the efficiency and robustness of the UAV localization process using the FANH∞ filter. PMID:25244587
FIR digital filter-based ZCDPLL for carrier recovery
NASA Astrophysics Data System (ADS)
Nasir, Qassim
2016-04-01
The objective of this work is to analyse the performance of the newly proposed two-tap FIR digital filter-based first-order zero-crossing digital phase-locked loop (ZCDPLL) in the absence or presence of additive white Gaussian noise (AWGN). The introduction of the two-tap FIR digital filter widens the lock range of a ZCDPLL and improves the loop's operation in the presence of AWGN. The FIR digital filter tap coefficients affect the loop convergence behaviour and appropriate selection of those gains should be taken into consideration. The new proposed loop has wider locking range and faster acquisition time and reduces the phase error variations in the presence of noise.
Theory and experimental study on low-light-level images by adaptive mode filter
NASA Astrophysics Data System (ADS)
Bai, Lianfa; Zhang, Baomin; Liu, Yunfen; Chen, Qian
1996-09-01
Real-time low light level (LLL) image processing technology is the important developmental subject in the area of LLL night vision. But there is an essential distinction between the LLL TV image and ordinary TV image, so the conventional digital image processing technique aren't suitable for LLL image. In this paper, the noise theoretical model of LLL imaging system is described and the LLL image processing system is set up. With regard to the characteristics of LLL image and its noise, a novel noise suppression method, adaptive mode filter, is presented. The experimental results show that the adaptive mode filter can suppress the sharp noise of LLL image effectively, and as for the protection of the image edge, the property of adaptive mode filter is better that of median filter. Finally, the processing results and the conclusions are given.
Real-time 3D adaptive filtering for portable imaging systems
NASA Astrophysics Data System (ADS)
Bockenbach, Olivier; Ali, Murtaza; Wainwright, Ian; Nadeski, Mark
2015-03-01
Portable imaging devices have proven valuable for emergency medical services both in the field and hospital environments and are becoming more prevalent in clinical settings where the use of larger imaging machines is impractical. 3D adaptive filtering is one of the most advanced techniques aimed at noise reduction and feature enhancement, but is computationally very demanding and hence often not able to run with sufficient performance on a portable platform. In recent years, advanced multicore DSPs have been introduced that attain high processing performance while maintaining low levels of power dissipation. These processors enable the implementation of complex algorithms like 3D adaptive filtering, improving the image quality of portable medical imaging devices. In this study, the performance of a 3D adaptive filtering algorithm on a digital signal processor (DSP) is investigated. The performance is assessed by filtering a volume of size 512x256x128 voxels sampled at a pace of 10 MVoxels/sec.
Nakajima, K; Tamura, T; Miike, H
1996-07-01
An apparatus for simultaneously monitoring heart and respiratory rates was developed using photoplethysmography (PPG) and digital filters, and compared with conventional methods. The PPG signal, which includes both heart and respiratory components, was measured at the earlobe with an original transmission mode photoplethysmographic device. A digital filtering technique was used to distinguish heart and respiratory signals from the PPG signal. The cut-off frequency of the respiratory signal filter was selected automatically depending on the heart rate. Using digital filtering techniques, heart and respiratory signals were separated at rest and during exercise. The digital signal processor was employed to realize an adaptive and real-time filtering. The heart rate was calculated by the zero-crossing method and the respiratory rate from the peak interval of the filtered signal. To evaluate the newly developed monitor, an ECG for heart rate and a transthoracic impedance plethysmogram for respiratory rate were monitored simultaneously. To obtain higher heart and respiratory rates, exercise was performed on an electrical bicycle ergometer. Heart and respiratory rates calculated by the new method compare to those obtained from ECG and the transthoracic impedance plethysmogram. The maximum error of heart and respiratory rates was 10 beats/min and 7 breaths/min, respectively. PMID:8818134
Digital tunable color filter and beam scanner
NASA Technical Reports Server (NTRS)
Wang, Y.
2000-01-01
A new technology invented at JPL of color filtering and beam scanning device based on electro-optical switching of internal-reflection states have been proposed for use in DWDM, display and measurement applications.
Decentralized digital adaptive control of robot motion
NASA Technical Reports Server (NTRS)
Tarokh, M.
1990-01-01
A decentralized model reference adaptive scheme is developed for digital control of robot manipulators. The adaptation laws are derived using hyperstability theory, which guarantees asymptotic trajectory tracking despite gross robot parameter variations. The control scheme has a decentralized structure in the sense that each local controller receives only its joint angle measurement to produce its joint torque. The independent joint controllers have simple structures and can be programmed using a very simple and computationally fast algorithm. As a result, the scheme is suitable for real-time motion control.
Block-adaptive filtering and its application to seismic-event detection
Clark, G.A.
1981-04-01
Block digital filtering involves the calculation of a block or finite set of filter output samples from a block of input samples. The motivation for block processing arises from computational advantages of the technique. Block filters take good advantage of parallel processing architectures, which are becoming more and more attractive with the advent of very large scale integrated (VLSI) circuits. This thesis extends the block technique to Wiener and adaptive filters, both of which are statistical filters. The key ingredient to this extension turns out to be the definition of a new performance index, block mean square error (BMSE), which combines the well known sum square error (SSE) and mean square error (MSE). A block adaptive filtering procedure is derived in which the filter coefficients are adjusted once per each output block in accordance with a generalized block least mean-square (BLMS) algorithm. Convergence properties of the BLMS algorithm are studied, including conditions for guaranteed convergence, convergence speed, and convergence accuracy. Simulation examples are given for clarity. Convergence properties of the BLMS and LMS algorithms are analyzed and compared. They are shown to be analogous, and under the proper circumstances, equivalent. The block adaptive filter was applied to the problem of detecting small seismic events in microseismic background noise. The predictor outperformed the world-wide standardized seismograph network (WWSSN) seismometers in improving signal-to-noise ratio (SNR).
A DSP-Based Beam Current Monitoring System for Machine Protection Using Adaptive Filtering
J. Musson; H. Dong; R. Flood; C. Hovater; J. Hereford
2001-06-01
The CEBAF accelerator at Jefferson Lab is currently using an analog beam current monitoring (BCM) system for its machine protection system (MPS), which has a loss accuracy of 2 micro-amps. Recent burn-through simulations predict catastrophic beam line component failures below 1 micro-amp of loss, resulting in a blind spot for the MPS. Revised MPS requirements target an ultimate beam loss accuracy of 250 nA. A new beam current monitoring system has been developed which utilizes modern digital receiver technology and digital signal processing concepts. The receiver employs a direct-digital down converter integrated circuit, mated with a Jefferson Lab digital signal processor VME card. Adaptive filtering is used to take advantage of current-dependent burn-through rates. Benefits of such a system include elimination of DC offsets, generic algorithm development, extensive filter options, and interfaces to UNIX-based control systems.
Digital Filter ASIC for NASA Deep Space Radio Science
NASA Technical Reports Server (NTRS)
Kowalski, James E.
1995-01-01
This paper is about the implementation of an 80 MHz, 16-bit, multi-stage digital filter to decimate by 1600, providing a 50 kHz output with bandpass ripple of less than +/-0.1 dB. The chip uses two decimation by five units and six decimations by two executed by a single decimation by two units. The six decimations by two consist of six halfband filters, five having 30-taps and one having 51-taps. Use of a 16x16 register file for the digital delay lines enables implementation in the Vitesse 350K gate array.
Digital Filter Separates Signal From Noise
NASA Technical Reports Server (NTRS)
Lear, W. M.
1986-01-01
Variance of signal-estimation error minimized. Mathematical technique extracts best estimates of signal component from periodic digital samples of signal plus noise. Technique combines Kalman- and smoothingfilter algorithms to minimize mean-square estimation error based on past, present, and predicted samples of signal plus noise. Technique useful in image analysis and other applications involving processing of noisy signals.
Adaptive Wiener filter super-resolution of color filter array images.
Karch, Barry K; Hardie, Russell C
2013-08-12
Digital color cameras using a single detector array with a Bayer color filter array (CFA) require interpolation or demosaicing to estimate missing color information and provide full-color images. However, demosaicing does not specifically address fundamental undersampling and aliasing inherent in typical camera designs. Fast non-uniform interpolation based super-resolution (SR) is an attractive approach to reduce or eliminate aliasing and its relatively low computational load is amenable to real-time applications. The adaptive Wiener filter (AWF) SR algorithm was initially developed for grayscale imaging and has not previously been applied to color SR demosaicing. Here, we develop a novel fast SR method for CFA cameras that is based on the AWF SR algorithm and uses global channel-to-channel statistical models. We apply this new method as a stand-alone algorithm and also as an initialization image for a variational SR algorithm. This paper presents the theoretical development of the color AWF SR approach and applies it in performance comparisons to other SR techniques for both simulated and real data. PMID:23938797
Optimal multiobjective design of digital filters using spiral optimization technique.
Ouadi, Abderrahmane; Bentarzi, Hamid; Recioui, Abdelmadjid
2013-01-01
The multiobjective design of digital filters using spiral optimization technique is considered in this paper. This new optimization tool is a metaheuristic technique inspired by the dynamics of spirals. It is characterized by its robustness, immunity to local optima trapping, relative fast convergence and ease of implementation. The objectives of filter design include matching some desired frequency response while having minimum linear phase; hence, reducing the time response. The results demonstrate that the proposed problem solving approach blended with the use of the spiral optimization technique produced filters which fulfill the desired characteristics and are of practical use. PMID:24083108
Superresolution restoration of an image sequence: adaptive filtering approach.
Elad, M; Feuer, A
1999-01-01
This paper presents a new method based on adaptive filtering theory for superresolution restoration of continuous image sequences. The proposed methodology suggests least squares (LS) estimators which adapt in time, based on adaptive filters, least mean squares (LMS) or recursive least squares (RLS). The adaptation enables the treatment of linear space and time-variant blurring and arbitrary motion, both of them assumed known. The proposed new approach is shown to be of relatively low computational requirements. Simulations demonstrating the superresolution restoration algorithms are presented. PMID:18262881
Filter. Remix. Make.: Cultivating Adaptability through Multimodality
ERIC Educational Resources Information Center
Dusenberry, Lisa; Hutter, Liz; Robinson, Joy
2015-01-01
This article establishes traits of adaptable communicators in the 21st century, explains why adaptability should be a goal of technical communication educators, and shows how multimodal pedagogy supports adaptability. Three examples of scalable, multimodal assignments (infographics, research interviews, and software demonstrations) that evidence…
A digital matched filter for reverse time chaos.
Bailey, J Phillip; Beal, Aubrey N; Dean, Robert N; Hamilton, Michael C
2016-07-01
The use of reverse time chaos allows the realization of hardware chaotic systems that can operate at speeds equivalent to existing state of the art while requiring significantly less complex circuitry. Matched filter decoding is possible for the reverse time system since it exhibits a closed form solution formed partially by a linear basis pulse. Coefficients have been calculated and are used to realize the matched filter digitally as a finite impulse response filter. Numerical simulations confirm that this correctly implements a matched filter that can be used for detection of the chaotic signal. In addition, the direct form of the filter has been implemented in hardware description language and demonstrates performance in agreement with numerical results. PMID:27475068
Improved digital filters for evaluating Fourier and Hankel transform integrals
Anderson, Walter L.
1975-01-01
New algorithms are described for evaluating Fourier (cosine, sine) and Hankel (J0,J1) transform integrals by means of digital filters. The filters have been designed with extended lengths so that a variable convolution operation can be applied to a large class of integral transforms having the same system transfer function. A f' lagged-convolution method is also presented to significantly decrease the computation time when computing a series of like-transforms over a parameter set spaced the same as the filters. Accuracy of the new filters is comparable to Gaussian integration, provided moderate parameter ranges and well-behaved kernel functions are used. A collection of Fortran IV subprograms is included for both real and complex functions for each filter type. The algorithms have been successfully used in geophysical applications containing a wide variety of integral transforms
A digital matched filter for reverse time chaos
NASA Astrophysics Data System (ADS)
Bailey, J. Phillip; Beal, Aubrey N.; Dean, Robert N.; Hamilton, Michael C.
2016-07-01
The use of reverse time chaos allows the realization of hardware chaotic systems that can operate at speeds equivalent to existing state of the art while requiring significantly less complex circuitry. Matched filter decoding is possible for the reverse time system since it exhibits a closed form solution formed partially by a linear basis pulse. Coefficients have been calculated and are used to realize the matched filter digitally as a finite impulse response filter. Numerical simulations confirm that this correctly implements a matched filter that can be used for detection of the chaotic signal. In addition, the direct form of the filter has been implemented in hardware description language and demonstrates performance in agreement with numerical results.
Adaptive Control of Flexible Structures Using Residual Mode Filters
NASA Technical Reports Server (NTRS)
Balas, Mark J.; Frost, Susan
2010-01-01
Flexible structures containing a large number of modes can benefit from adaptive control techniques which are well suited to applications that have unknown modeling parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend our adaptive control theory to accommodate troublesome modal subsystems of a plant that might inhibit the adaptive controller. In some cases the plant does not satisfy the requirements of Almost Strict Positive Realness. Instead, there maybe be a modal subsystem that inhibits this property. This section will present new results for our adaptive control theory. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for the troublesome modal subsystem, or the Q modes. Here we present the theory for adaptive controllers modified by RMFs, with attention to the issue of disturbances propagating through the Q modes. We apply the theoretical results to a flexible structure example to illustrate the behavior with and without the residual mode filter. We have proposed a modified adaptive controller with a residual mode filter. The RMF is used to accommodate troublesome modes in the system that might otherwise inhibit the adaptive controller, in particular the ASPR condition. This new theory accounts for leakage of the disturbance term into the Q modes. A simple three-mode example shows that the RMF can restore stability to an otherwise unstable adaptively controlled system. This is done without modifying the adaptive controller design.
Adaptive median filtering for preprocessing of time series measurements
NASA Technical Reports Server (NTRS)
Paunonen, Matti
1993-01-01
A median (L1-norm) filtering program using polynomials was developed. This program was used in automatic recycling data screening. Additionally, a special adaptive program to work with asymmetric distributions was developed. Examples of adaptive median filtering of satellite laser range observations and TV satellite time measurements are given. The program proved to be versatile and time saving in data screening of time series measurements.
A Windowing Frequency Domain Adaptive Filter for Acoustic Echo Cancellation
NASA Astrophysics Data System (ADS)
Wu, Sheng; Qiu, Xiaojun
This letter proposes a windowing frequency domain adaptive algorithm, which reuses the filtering error to apply window function in the filter updating symmetrically. By using a proper window function to reduce the negative influence of the spectral leakage, the proposed algorithm can significantly improve the performance of the acoustic echo cancellation for speech signals.
Likelihood Methods for Adaptive Filtering and Smoothing. Technical Report #455.
ERIC Educational Resources Information Center
Butler, Ronald W.
The dynamic linear model or Kalman filtering model provides a useful methodology for predicting the past, present, and future states of a dynamic system, such as an object in motion or an economic or social indicator that is changing systematically with time. Recursive likelihood methods for adaptive Kalman filtering and smoothing are developed.…
NASA Technical Reports Server (NTRS)
Goodman, L. S.; Salter, F. O.
1968-01-01
Digital filter suppresses the effects of nonstatistical noise bursts on data averaged over multichannel scaler. Interposed between the sampled channels and the digital averaging system, it uses binary logic circuitry to compare the number of counts per channel with the average number of counts per channel.
Least squares approximation of two-dimensional FIR digital filters
NASA Astrophysics Data System (ADS)
Alliney, S.; Sgallari, F.
1980-02-01
In this paper, a new method for the synthesis of two-dimensional FIR digital filters is presented. The method is based on a least-squares approximation of the ideal frequency response; an orthogonality property of certain functions, related to the frequency sampling design, improves the computational efficiency.
Finite word length effects on digital filter implementation.
NASA Technical Reports Server (NTRS)
Bowman, J. D.; Clark, F. H.
1972-01-01
This paper is a discussion of two known techniques to analyze finite word length effects on digital filters. These techniques are extended to several additional programming forms and the results verified experimentally. A correlation of the analytical weighting functions for the two methods is made through the Mason Gain Formula.
Digital filtering for data compression in telemetry systems
Bell, R.M.
1994-08-01
There are many obstacles to using data compression in a telemetry system. Non-linear quantization is often too lossy, and the data is too highly structured to make variable-length entropy codes practical. This paper describes a lossless telemetry data compression system that was built using digital FIR filters. The method of compression takes advantage of the fact that the optimal Nyquist sampling rate is rarely achievable due to two factors: (1) Sensor/transducers are not bandlimited to the frequencies of interest, and (2) Accurate, high-order analog filters are not available to perform effective band limiting and prevent aliasing. Real-time digital filtering can enhance the performance of a typical sampling system so that it approaches Nyquist sampling rates, effectively compressing the amount of data and reducing transmission bandwidth. The system that was built reduced the sampling rate of 14 high-frequency vibration channels by a factor of two, and reduced the bandwidth of the-data link from 1.8 Mbps to 1.28 Mbps. The entire circuit uses seven function-specific, digital-filter DSP`s operating in parallel (two 128-tap FIR filters can be implemented on each Motorola DSP56200), one EPROM and a Programmable Logic Device as the controller.
A hybrid method for optimization of the adaptive Goldstein filter
NASA Astrophysics Data System (ADS)
Jiang, Mi; Ding, Xiaoli; Tian, Xin; Malhotra, Rakesh; Kong, Weixue
2014-12-01
The Goldstein filter is a well-known filter for interferometric filtering in the frequency domain. The main parameter of this filter, alpha, is set as a power of the filtering function. Depending on it, considered areas are strongly or weakly filtered. Several variants have been developed to adaptively determine alpha using different indicators such as the coherence, and phase standard deviation. The common objective of these methods is to prevent areas with low noise from being over filtered while simultaneously allowing stronger filtering over areas with high noise. However, the estimators of these indicators are biased in the real world and the optimal model to accurately determine the functional relationship between the indicators and alpha is also not clear. As a result, the filter always under- or over-filters and is rarely correct. The study presented in this paper aims to achieve accurate alpha estimation by correcting the biased estimator using homogeneous pixel selection and bootstrapping algorithms, and by developing an optimal nonlinear model to determine alpha. In addition, an iteration is also merged into the filtering procedure to suppress the high noise over incoherent areas. The experimental results from synthetic and real data show that the new filter works well under a variety of conditions and offers better and more reliable performance when compared to existing approaches.
Estimated spectrum adaptive postfilter and the iterative prepost filtering algirighms
NASA Technical Reports Server (NTRS)
Linares, Irving (Inventor)
2004-01-01
The invention presents The Estimated Spectrum Adaptive Postfilter (ESAP) and the Iterative Prepost Filter (IPF) algorithms. These algorithms model a number of image-adaptive post-filtering and pre-post filtering methods. They are designed to minimize Discrete Cosine Transform (DCT) blocking distortion caused when images are highly compressed with the Joint Photographic Expert Group (JPEG) standard. The ESAP and the IPF techniques of the present invention minimize the mean square error (MSE) to improve the objective and subjective quality of low-bit-rate JPEG gray-scale images while simultaneously enhancing perceptual visual quality with respect to baseline JPEG images.
Analysis on Influence Factors of Adaptive Filter Acting on ANC
NASA Astrophysics Data System (ADS)
Zhang, Xiuqun; Zou, Liang; Ni, Guangkui; Wang, Xiaojun; Han, Tao; Zhao, Quanfu
The noise problem has become more and more serious in recent years. The adaptive filter theory which is applied in ANC [1] (active noise control) has also attracted more and more attention. In this article, the basic principle and algorithm of adaptive theory are both researched. And then the influence factor that affects its covergence rate and noise reduction is also simulated.
A Nonlinear Adaptive Filter for Gyro Thermal Bias Error Cancellation
NASA Technical Reports Server (NTRS)
Galante, Joseph M.; Sanner, Robert M.
2012-01-01
Deterministic errors in angular rate gyros, such as thermal biases, can have a significant impact on spacecraft attitude knowledge. In particular, thermal biases are often the dominant error source in MEMS gyros after calibration. Filters, such as J\\,fEKFs, are commonly used to mitigate the impact of gyro errors and gyro noise on spacecraft closed loop pointing accuracy, but often have difficulty in rapidly changing thermal environments and can be computationally expensive. In this report an existing nonlinear adaptive filter is used as the basis for a new nonlinear adaptive filter designed to estimate and cancel thermal bias effects. A description of the filter is presented along with an implementation suitable for discrete-time applications. A simulation analysis demonstrates the performance of the filter in the presence of noisy measurements and provides a comparison with existing techniques.
Improving nonlinear modeling capabilities of functional link adaptive filters.
Comminiello, Danilo; Scarpiniti, Michele; Scardapane, Simone; Parisi, Raffaele; Uncini, Aurelio
2015-09-01
The functional link adaptive filter (FLAF) represents an effective solution for online nonlinear modeling problems. In this paper, we take into account a FLAF-based architecture, which separates the adaptation of linear and nonlinear elements, and we focus on the nonlinear branch to improve the modeling performance. In particular, we propose a new model that involves an adaptive combination of filters downstream of the nonlinear expansion. Such combination leads to a cooperative behavior of the whole architecture, thus yielding a performance improvement, particularly in the presence of strong nonlinearities. An advanced architecture is also proposed involving the adaptive combination of multiple filters on the nonlinear branch. The proposed models are assessed in different nonlinear modeling problems, in which their effectiveness and capabilities are shown. PMID:26057613
An Adaptive Filter for the Removal of Drifting Sinusoidal Noise Without a Reference.
Kelly, John W; Siewiorek, Daniel P; Smailagic, Asim; Wang, Wei
2016-01-01
This paper presents a method for filtering sinusoidal noise with a variable bandwidth filter that is capable of tracking a sinusoid's drifting frequency. The method, which is based on the adaptive noise canceling (ANC) technique, will be referred to here as the adaptive sinusoid canceler (ASC). The ASC eliminates sinusoidal contamination by tracking its frequency and achieving a narrower bandwidth than typical notch filters. The detected frequency is used to digitally generate an internal reference instead of relying on an external one as ANC filters typically do. The filter's bandwidth adjusts to achieve faster and more accurate convergence. In this paper, the focus of the discussion and the data is physiological signals, specifically electrocorticographic (ECoG) neural data contaminated with power line noise, but the presented technique could be applicable to other recordings as well. On simulated data, the ASC was able to reliably track the noise's frequency, properly adjust its bandwidth, and outperform comparative methods including standard notch filters and an adaptive line enhancer. These results were reinforced by visual results obtained from real ECoG data. The ASC showed that it could be an effective method for increasing signal to noise ratio in the presence of drifting sinusoidal noise, which is of significant interest for biomedical applications. PMID:25474814
Seasonal signal capturing in time series of up coordinates by means of adaptive filters
NASA Astrophysics Data System (ADS)
Yalvac, S.; Ustun, A.
2013-12-01
Digital filters, is a system that performs mathematical operations on a sampled or discrete time signals. Adaptive filters designed for noise canceling are capable tools of decomposing correlated parts of data sets. This kind of filters which optimize itself using Least Mean Square (LMS) algorithm is a powerful tool for understand the truth hidden into the complex data sets like time series in Geosciences. The complex data sets such as CGPS (Continuously operating reference station) station's time series can be understood better with adaptive noise canceling by means of decompose coherent (seasonal effect, tectonic plate motion) and incoherent (noise; site-specific effects) parts of data. In this study, it is aimed to model the subsidence caused by groundwater withdrawal based on the seasonal correlation between consecutive years of CGPS time series. For this purpose, two stations where located into subsidence area of 3 year time series have analyzed with adaptive noise canceling filter. According to the results, the annual movement of these two stations have strong relationship. Also, subsidence behavior are correlated with annual rainfall data. BELD station one year filtered movement KAMN station one year filtered movements
Gigabit Digital Filter Bank: Digital Backend Subsystem in the VERA Data-Acquisition System
NASA Astrophysics Data System (ADS)
Iguchi, Satoru; Kkurayama, Tomoharu; Kawaguchi, Noriyuki; Kawakami, Kazuyuki
2005-02-01
The VERA terminal is a new data-acquisition system developed for the VERA project, which is a project to construct a new Japanese VLBI array dedicated to make a 3-D map of our Milky Way Galaxy in terms of high-precision astrometry. New technology, a gigabit digital filter, was introduced in the development. The importance and advantages of a digital filter for radio astronomy have been studied as follows: (1) the digital filter can realize a variety of observation modes and maintain compatibility with different data-acquisition systems (Kiuchi et al. 1997 and Iguchi et al. 2000a), (2) the folding noise occurring in the sampling process can be reduced by combination with a higher-order sampling technique (Iguchi, Kawaguchi 2002), (3) and an ideal sharp cut-off bandedge and a flat amplitude/phase responses are approached by using a large number of taps available to use LSI of a large number of logic cells (Iguchi et al. 2000a). We developed the custom Finite Impulse Response filter chips and manufactured the Gigabit Digital Filter Banks (GDFBs) as a digital backend subsystem in the VERA terminal. In this paper, the design and development of the GDFB are presented in detail, and the performances and demonstrations of the developed GDFB are shown.
Optimal Recursive Digital Filters for Active Bending Stabilization
NASA Technical Reports Server (NTRS)
Orr, Jeb S.
2013-01-01
In the design of flight control systems for large flexible boosters, it is common practice to utilize active feedback control of the first lateral structural bending mode so as to suppress transients and reduce gust loading. Typically, active stabilization or phase stabilization is achieved by carefully shaping the loop transfer function in the frequency domain via the use of compensating filters combined with the frequency response characteristics of the nozzle/actuator system. In this paper we present a new approach for parameterizing and determining optimal low-order recursive linear digital filters so as to satisfy phase shaping constraints for bending and sloshing dynamics while simultaneously maximizing attenuation in other frequency bands of interest, e.g. near higher frequency parasitic structural modes. By parameterizing the filter directly in the z-plane with certain restrictions, the search space of candidate filter designs that satisfy the constraints is restricted to stable, minimum phase recursive low-pass filters with well-conditioned coefficients. Combined with optimal output feedback blending from multiple rate gyros, the present approach enables rapid and robust parametrization of autopilot bending filters to attain flight control performance objectives. Numerical results are presented that illustrate the application of the present technique to the development of rate gyro filters for an exploration-class multi-engined space launch vehicle.
Optimized digital filtering techniques for radiation detection with HPGe detectors
NASA Astrophysics Data System (ADS)
Salathe, Marco; Kihm, Thomas
2016-02-01
This paper describes state-of-the-art digital filtering techniques that are part of GEANA, an automatic data analysis software used for the GERDA experiment. The discussed filters include a novel, nonlinear correction method for ballistic deficits, which is combined with one of three shaping filters: a pseudo-Gaussian, a modified trapezoidal, or a modified cusp filter. The performance of the filters is demonstrated with a 762 g Broad Energy Germanium (BEGe) detector, produced by Canberra, that measures γ-ray lines from radioactive sources in an energy range between 59.5 and 2614.5 keV. At 1332.5 keV, together with the ballistic deficit correction method, all filters produce a comparable energy resolution of ~1.61 keV FWHM. This value is superior to those measured by the manufacturer and those found in publications with detectors of a similar design and mass. At 59.5 keV, the modified cusp filter without a ballistic deficit correction produced the best result, with an energy resolution of 0.46 keV. It is observed that the loss in resolution by using a constant shaping time over the entire energy range is small when using the ballistic deficit correction method.
Dynamic analysis of neural encoding by point process adaptive filtering.
Eden, Uri T; Frank, Loren M; Barbieri, Riccardo; Solo, Victor; Brown, Emery N
2004-05-01
Neural receptive fields are dynamic in that with experience, neurons change their spiking responses to relevant stimuli. To understand how neural systems adapt their representations of biological information, analyses of receptive field plasticity from experimental measurements are crucial. Adaptive signal processing, the well-established engineering discipline for characterizing the temporal evolution of system parameters, suggests a framework for studying the plasticity of receptive fields. We use the Bayes' rule Chapman-Kolmogorov paradigm with a linear state equation and point process observation models to derive adaptive filters appropriate for estimation from neural spike trains. We derive point process filter analogues of the Kalman filter, recursive least squares, and steepest-descent algorithms and describe the properties of these new filters. We illustrate our algorithms in two simulated data examples. The first is a study of slow and rapid evolution of spatial receptive fields in hippocampal neurons. The second is an adaptive decoding study in which a signal is decoded from ensemble neural spiking activity as the receptive fields of the neurons in the ensemble evolve. Our results provide a paradigm for adaptive estimation for point process observations and suggest a practical approach for constructing filtering algorithms to track neural receptive field dynamics on a millisecond timescale. PMID:15070506
Adaptive Control Using Residual Mode Filters Applied to Wind Turbines
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Balas, Mark J.
2011-01-01
Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a model reference direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will augment the adaptive controller using a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. We apply these theoretical results to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine that has minimum phase zeros.
Local adaptive filtering of images corrupted by nonstationary noise
NASA Astrophysics Data System (ADS)
Lukin, Vladimir V.; Fevralev, Dmitriy V.; Ponomarenko, Nikolay N.; Pogrebnyak, Oleksiy B.; Egiazarian, Karen O.; Astola, Jaakko T.
2009-02-01
In various practical situations of remote sensing image processing it is assumed that noise is nonstationary and no a priory information on noise dependence on local mean or about local properties of noise statistics is available. It is shown that in such situations it is difficult to find a proper filter for effective image processing, i.e., for noise removal with simultaneous edge/detail preservation. To deal with such images, a local adaptive filter based on discrete cosine transform in overlapping blocks is proposed. A threshold is set locally based on a noise standard deviation estimate obtained for each block. Several other operations to improve performance of the locally adaptive filter are proposed and studied. The designed filter effectiveness is demonstrated for simulated data as well as for real life radar remote sensing and marine polarimetric radar images.
On detection of median filtering in digital images
NASA Astrophysics Data System (ADS)
Kirchner, Matthias; Fridrich, Jessica
2010-01-01
In digital image forensics, it is generally accepted that intentional manipulations of the image content are most critical and hence numerous forensic methods focus on the detection of such 'malicious' post-processing. However, it is also beneficial to know as much as possible about the general processing history of an image, including content-preserving operations, since they can affect the reliability of forensic methods in various ways. In this paper, we present a simple yet effective technique to detect median filtering in digital images-a widely used denoising and smoothing operator. As a great variety of forensic methods relies on some kind of a linearity assumption, a detection of non-linear median filtering is of particular interest. The effectiveness of our method is backed with experimental evidence on a large image database.
Acoustic Echo Cancellation Using Sub-Adaptive Filter
NASA Astrophysics Data System (ADS)
Ohta, Satoshi; Kajikawa, Yoshinobu; Nomura, Yasuo
In the acoustic echo canceller (AEC), the step-size parameter of the adaptive filter must be varied according to the situation if double talk occurs and/or the echo path changes. We propose an AEC that uses a sub-adaptive filter. The proposed AEC can control the step-size parameter according to the situation. Moreover, it offers superior convergence compared to the conventional AEC even when the double talk and the echo path change occur simultaneously. Simulations demonstrate that the proposed AEC can achieve higher ERLE and faster convergence than the conventional AEC. The computational complexity of the proposed AEC can be reduced by reducing the number of taps of the sub-adaptive filter.
Particle-filter-based phase estimation in digital holographic interferometry.
Waghmare, Rahul G; Ram Sukumar, P; Subrahmanyam, G R K S; Singh, Rakesh Kumar; Mishra, Deepak
2016-03-01
In this paper, we propose a particle-filter-based technique for the analysis of a reconstructed interference field. The particle filter and its variants are well proven as tracking filters in non-Gaussian and nonlinear situations. We propose to apply the particle filter for direct estimation of phase and its derivatives from digital holographic interferometric fringes via a signal-tracking approach on a Taylor series expanded state model and a polar-to-Cartesian-conversion-based measurement model. Computation of sample weights through non-Gaussian likelihood forms the major contribution of the proposed particle-filter-based approach compared to the existing unscented-Kalman-filter-based approach. It is observed that the proposed approach is highly robust to noise and outperforms the state-of-the-art especially at very low signal-to-noise ratios (i.e., especially in the range of -5 to 20 dB). The proposed approach, to the best of our knowledge, is the only method available for phase estimation from severely noisy fringe patterns even when the underlying phase pattern is rapidly varying and has a larger dynamic range. Simulation results and experimental data demonstrate the fact that the proposed approach is a better choice for direct phase estimation. PMID:26974901
Chen, Ming-Hung
2015-01-01
This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters. PMID:26451391
Chen, Ming-Hung
2015-01-01
This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters. PMID:26451391
Improvement of Digital Filter for the FNAL Booster Transverse Dampers
Zolkin, Timofey; Eddy, N.; Lebedev, V.
2013-09-26
Fermilab Booster has two transverse dampers which independently suppress beam instabilities in the horizontal and vertical planes. A suppression of the common mode signal is achieved by digital notch filter which is based on subtracting beam positions for two consecutive turns. Such system operates well if the orbit position changes sufficiently slow. Unfortunately it is not the case for FNAL Booster where the entire accelerating cycle consists of about 20000 turns, and successful transition crossing requires the orbit drifts up to about 10 μm/turn, resulting in excessive power, power amplifier saturation and loss of stability. To suppress this effect we suggest an improvement of the digital filter which can take into account fast orbit changes by using bunch positions of a few previous turns. To take into account the orbit change up toN-th order polynomial in time the system requires (N + 3) turns of “prehistory”. In the case of sufficiently small gain the damping rate and the optimal digital filter coefficients are obtained analytically. Numerical simulations verify analytical theory for the small gain and predict a system performance with gain increase.
Robust Wiener filtering for Adaptive Optics
Poyneer, L A
2004-06-17
In many applications of optical systems, the observed field in the pupil plane has a non-uniform phase component. This deviation of the phase of the field from uniform is called a phase aberration. In imaging systems this aberration will degrade the quality of the images. In the case of a large astronomical telescope, random fluctuations in the atmosphere lead to significant distortion. These time-varying distortions can be corrected using an Adaptive Optics (AO) system, which is a real-time control system composed of optical, mechanical and computational parts. Adaptive optics is also applicable to problems in vision science, laser propagation and communication. For a high-level overview, consult this web site. For an in-depth treatment of the astronomical case, consult these books.
Generalized filtered back-projection for digital breast tomosynthesis reconstruction
NASA Astrophysics Data System (ADS)
Erhard, Klaus; Grass, Michael; Hitziger, Sebastian; Iske, Armin; Nielsen, Tim
2012-03-01
Filtered backprojection (FBP) has been commonly used as an efficient and robust reconstruction technique in tomographic X-ray imaging during the last decades. For standard geometries like circle or helix it is known how to efficiently filter the data. However, for geometries with only few projection views or with a limited angular range, the application of FBP algorithms generally provides poor results. In digital breast tomosynthesis (DBT) these limitations give rise to image artifacts due to the limited angular range and the coarse angular sampling. In this work, a generalized FBP algorithm is presented, which uses the filtered projection data of all acquired views for backprojection along one direction. The proposed method yields a computationally efficient generalized FBP algorithm for DBT, which provides similar image quality as iterative reconstruction techniques while preserving the ability for region of interest reconstructions. To demonstrate the excellent performance of this method, examples are given with a simulated breast phantom and the hardware BR3D phantom.
An information theoretic approach of designing sparse kernel adaptive filters.
Liu, Weifeng; Park, Il; Principe, José C
2009-12-01
This paper discusses an information theoretic approach of designing sparse kernel adaptive filters. To determine useful data to be learned and remove redundant ones, a subjective information measure called surprise is introduced. Surprise captures the amount of information a datum contains which is transferable to a learning system. Based on this concept, we propose a systematic sparsification scheme, which can drastically reduce the time and space complexity without harming the performance of kernel adaptive filters. Nonlinear regression, short term chaotic time-series prediction, and long term time-series forecasting examples are presented. PMID:19923047
Adaptive high temperature superconducting filters for interference rejection
Raihn, K.F.; Fenzi, N.O.; Hey-Shipton, G.L.; Saito, E.R.; Loung, P.V.; Aidnik, D.L.
1996-07-01
An optically switched high temperature superconducting (HTS) band-reject filter bank is presented. Fast low loss switching of high quality (Q) factor HTS filter elements enables digital selection of arbitrary pass-bands and stop-bands. Patterned pieces of GaAs and silicon are used in the manufacture of the photosensitive switches. Fiber optic cabling is used to transfer the optical energy from an LED to the switch. The fiber optic cable minimizes the thermal loading of the filter package and de-couples the switch`s power source from the RF circuit. This paper will discuss the development of a computer-controlled HTS bank of optically switchable, narrow band, high Q bandstop filters which incorporates a cryocooler to maintain the 77 K operating temperature of the HTS microwave circuit.
Enhancing Adaptive Filtering Approaches for Land Data Assimilation Systems
Technology Transfer Automated Retrieval System (TEKTRAN)
Recent work has presented the initial application of adaptive filtering techniques to land surface data assimilation systems. Such techniques are motivated by our current lack of knowledge concerning the structure of large-scale error in either land surface modeling output or remotely-sensed estima...
An improved adaptive deblocking filter for MPEG video decoder
NASA Astrophysics Data System (ADS)
Kwon, Do-Kyoung; Shen, Mei-Yin; Kuo, C.-C. Jay
2005-03-01
A highly adaptive deblocking algorithm is proposed for MPEG video in this research. In comparison with previous work in this area, the proposed deblocking filter improves in three aspects. First, the proposed algorithm is adaptive to the change of the quantization parameter (QP). Since blocking artifacts between two blocks encoded with different QPs tend to be more visible due to quality difference, filters should be able to adapt dynamically to the QP change between blocks. Second, the proposed algorithm classifies the block boundary into three different region modes based on local region characteristics. The three modes are active, smooth and dormant regions. The active region represents a complex region with details and high activities while the smooth and the dormant regions refer to moderately flat and extremely flat regions, respectively. By applying different filters of different strengths to each region mode, the proposed algorithm can minimize the undesirable blur so that both subjective and objective qualities improve for various types of sequences at a wide range of bitrates. Finally, the proposed algorithm also provides a way to determine the threshold values. The proposed adaptive deblocking algorithms require several thresholds in determining proper region modes and filters. Since the quality of image sequences after filtering depends largely on the threshold values, they have to be determined carefully. In the proposed algorithm, thresholds are determined adaptively to the strength of the blocking artifact and, as a result, to various encoding parameters such as QP, absolute difference between QPs, the coding type, and motion vectors. It is shown by experimental results that the proposed algorithm can achieve 0.2-0.4 dB gains for I- and P-frames, and 0.1-0.3 dB gains for the B-frame when bit streams are encoded using the TM5 rate control algorithm.
NASA Technical Reports Server (NTRS)
Smith, J. W.; Edwards, J. W.
1980-01-01
Analysis of a longitudinal pilot-induced oscillation (PIO) experienced just prior to touchdown on the final flight of the space shuttle's approach landing tests indicated that the source of the problem was a combination of poor basic handling qualities aggravated by time delays through the digital flight control computer and rate limiting of the elevator actuators due to high pilot gain. A nonlinear PIO suppression (PIOS) filter was designed and developed to alleviate the vehicle's PIO tendencies by reducing the gain in the command path. From analytical and simulator studies it was shown that the PIOS filter, in an adaptive fashion, can attenuate the command path gain without adding phase lag to the system. With the pitch attitude loop of a simulated shuttle model closed, the PIOS filter increased the gain margin by a factor of about two.
Properties of digital 1/3-octave filters implemented according to ANSI S1.11
NASA Astrophysics Data System (ADS)
Geras, Antonina; Starecki, Tomasz
The paper presents results of investigation into properties of digital filters implemented in compliance with ANSI S1.11 Standard: Octave-Band and Fractional-Octave Band Analog and Digital Filters. The discussed solutions are digital one-third-octave IIR filters with Direct Form I topology. Performed simulations showed that the filters exhibit strong problems with stability, especially in the case of low center frequency filters. Another problem clearly visible in all investigated structures was poor attenuation at the frequencies above the passband. Although the filters were implemented according to the ANSI standard, none of them met all of the requirements of the standard.
Adaptive filtering of radar images for autofocus applications
NASA Technical Reports Server (NTRS)
Stiles, J. A.; Frost, V. S.; Gardner, J. S.; Eland, D. R.; Shanmugam, K. S.; Holtzman, J. C.
1981-01-01
Autofocus techniques are being designed at the Jet Propulsion Laboratory to automatically choose the filter parameters (i.e., the focus) for the digital synthetic aperture radar correlator; currently, processing relies upon interaction with a human operator who uses his subjective assessment of the quality of the processed SAR data. Algorithms were devised applying image cross-correlation to aid in the choice of filter parameters, but this method also has its drawbacks in that the cross-correlation result may not be readily interpretable. Enhanced performance of the cross-correlation techniques of JPL was hypothesized given that the images to be cross-correlated were first filtered to improve the signal-to-noise ratio for the pair of scenes. The results of experiments are described and images are shown.
Extended adaptive filtering for wide-angle SAR image formation
NASA Astrophysics Data System (ADS)
Wang, Yanwei; Roberts, William; Li, Jian
2005-05-01
For two-dimensional (2-D) spectral analysis, the adaptive filtering based technologies, such as CAPON and APES (Amplitude and Phase EStimation), are developed under the implicit assumption that the data sets are rectangular. However, in real SAR applications, especially for the wide-angle cases, the collected data sets are always non-rectangular. This raises the problem of how to extend the original adaptive filtering based algorithms for such kind of scenarios. In this paper, we propose an extended adaptive filtering (EAF) approach, which includes Extended APES (E-APES) and Extended CAPON (E-CAPON), for arbitrarily shaped 2-D data. The EAF algorithms adopt a missing-data approach where the unavailable data samples close to the collected data set are assumed missing. Using a group of filter-banks with varying sizes, these algorithms are non-iterative and do not require the estimation of the unavailable samples. The improved imaging results of the proposed algorithms are demonstrated by applying them to two different SAR data sets.
Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems.
Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing
2016-01-01
This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches. PMID:27472336
NASA Astrophysics Data System (ADS)
Chen, Yangkang
2016-07-01
The seislet transform has been demonstrated to have a better compression performance for seismic data compared with other well-known sparsity promoting transforms, thus it can be used to remove random noise by simply applying a thresholding operator in the seislet domain. Since the seislet transform compresses the seismic data along the local structures, the seislet thresholding can be viewed as a simple structural filtering approach. Because of the dependence on a precise local slope estimation, the seislet transform usually suffers from low compression ratio and high reconstruction error for seismic profiles that have dip conflicts. In order to remove the limitation of seislet thresholding in dealing with conflicting-dip data, I propose a dip-separated filtering strategy. In this method, I first use an adaptive empirical mode decomposition based dip filter to separate the seismic data into several dip bands (5 or 6). Next, I apply seislet thresholding to each separated dip component to remove random noise. Then I combine all the denoised components to form the final denoised data. Compared with other dip filters, the empirical mode decomposition based dip filter is data-adaptive. One only needs to specify the number of dip components to be separated. Both complicated synthetic and field data examples show superior performance of my proposed approach than the traditional alternatives. The dip-separated structural filtering is not limited to seislet thresholding, and can also be extended to all those methods that require slope information.
NASA Astrophysics Data System (ADS)
Chen, Yangkang
2016-04-01
The seislet transform has been demonstrated to have a better compression performance for seismic data compared with other well-known sparsity promoting transforms, thus it can be used to remove random noise by simply applying a thresholding operator in the seislet domain. Since the seislet transform compresses the seismic data along the local structures, the seislet thresholding can be viewed as a simple structural filtering approach. Because of the dependence on a precise local slope estimation, the seislet transform usually suffers from low compression ratio and high reconstruction error for seismic profiles that have dip conflicts. In order to remove the limitation of seislet thresholding in dealing with conflicting-dip data, I propose a dip-separated filtering strategy. In this method, I first use an adaptive empirical mode decomposition based dip filter to separate the seismic data into several dip bands (5 or 6). Next, I apply seislet thresholding to each separated dip component to remove random noise. Then I combine all the denoised components to form the final denoised data. Compared with other dip filters, the empirical mode decomposition based dip filter is data-adaptive. One only need to specify the number of dip components to be separated. Both complicated synthetic and field data examples show superior performance of my proposed approach than the traditional alternatives. The dip-separated structural filtering is not limited to seislet thresholding, and can also be extended to all those methods that require slope information.
Maier, Andreas; Wigström, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu, Lei; Strobel, Norbert; Fahrig, Rebecca
2011-01-01
Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia’s CUDA Interface provided an 8
Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca
2011-11-15
Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold
Digital watermarking for secure and adaptive teleconferencing
NASA Astrophysics Data System (ADS)
Vorbrueggen, Jan C.; Thorwirth, Niels
2002-04-01
The EC-sponsored project ANDROID aims to develop a management system for secure active networks. Active network means allowing the network's customers to execute code (Java-based so-called proxylets) on parts of the network infrastructure. Secure means that the network operator nonetheless retains full control over the network and its resources, and that proxylets use ANDROID-developed facilities to provide secure applications. Management is based on policies and allows autonomous, distributed decisions and actions to be taken. Proxylets interface with the system via policies; among actions they can take is controlling execution of other proxylets or redirection of network traffic. Secure teleconferencing is used as the application to demonstrate the approach's advantages. A way to control a teleconference's data streams is to use digital watermarking of the video, audio and/or shared-whiteboard streams, providing an imperceptible and inseparable side channel that delivers information from originating or intermediate stations to downstream stations. Depending on the information carried by the watermark, these stations can take many different actions. Examples are forwarding decisions based on security classifications (possibly time-varying) at security boundaries, set-up and tear-down of virtual private networks, intelligent and adaptive transcoding, recorder or playback control (e.g., speaking off the record), copyright protection, and sender authentication.
Fuel-flow filter for internal combustion engine, adaptable for use with a by-pass filter
Schmidt, R.
1987-06-16
This patent describes a filter apparatus for an internal combustion engine to replace a spin-on, full-flow oil filter threadably connected to an oil filter bushing. The engine has an oil system with an oil pump, an oil pan, and an oil cap at a low pressure side of the oil system. The apparatus comprises: a full-flow filter to be connected to the oil filter bushing to permit oil within the oil system to flow into the full-flow filter. The full-flow filter is of such density and filtering capacity that the oil flows from the oil pump through the full-flow filter with a minimum pressure drop; adapter means to permit use of the full-flow filter either with or without a by-pass filter. The adapter means is a nut located at the forward end of the full-flow filter opposite the oil filter bushing and extending outwardly. The nut defines an area that can be either left intact, permitting all of the oil flow outward from the full-flow filter after filtering, or punctured, permitting most of the oil to flow outward from the full-flow filter after filtering. A small portion of the oil to flows outward therefrom prior to filtering. The nut is within a specific range of depth and circumference so as to provide a means for controlling the size of the hole. The nut is inwardly threaded.
Adaptive gain and filtering circuit for a sound reproduction system
NASA Technical Reports Server (NTRS)
Engebretson, A. Maynard (Inventor); O'Connell, Michael P. (Inventor)
1998-01-01
Adaptive compressive gain and level dependent spectral shaping circuitry for a hearing aid include a microphone to produce an input signal and a plurality of channels connected to a common circuit output. Each channel has a preset frequency response. Each channel includes a filter with a preset frequency response to receive the input signal and to produce a filtered signal, a channel amplifier to amplify the filtered signal to produce a channel output signal, a threshold register to establish a channel threshold level, and a gain circuit. The gain circuit increases the gain of the channel amplifier when the channel output signal falls below the channel threshold level and decreases the gain of the channel amplifier when the channel output signal rises above the channel threshold level. A transducer produces sound in response to the signal passed by the common circuit output.
Kalman filtering to suppress spurious signals in Adaptive Optics control
Poyneer, L; Veran, J P
2010-03-29
In many scenarios, an Adaptive Optics (AO) control system operates in the presence of temporally non-white noise. We use a Kalman filter with a state space formulation that allows suppression of this colored noise, hence improving residual error over the case where the noise is assumed to be white. We demonstrate the effectiveness of this new filter in the case of the estimated Gemini Planet Imager tip-tilt environment, where there are both common-path and non-common path vibrations. We discuss how this same framework can also be used to suppress spatial aliasing during predictive wavefront control assuming frozen flow in a low-order AO system without a spatially filtered wavefront sensor, and present experimental measurements from Altair that clearly reveal these aliased components.
Infinite impulse response modal filtering in visible adaptive optics
NASA Astrophysics Data System (ADS)
Agapito, G.; Arcidiacono, C.; Quirós-Pacheco, F.; Puglisi, A.; Esposito, S.
2012-07-01
Diffraction limited resolution adaptive optics (AO) correction in visible wavelengths requires a high performance control. In this paper we investigate infinite impulse response filters that optimize the wavefront correction: we tested these algorithms through full numerical simulations of a single-conjugate AO system comprising an adaptive secondary mirror with 1127 actuators and a pyramid wavefront sensor (WFS). The actual practicability of the algorithms depends on both robustness and knowledge of the real system: errors in the system model may even worsen the performance. In particular we checked the robustness of the algorithms in different conditions, proving that the proposed method can reject both disturbance and calibration errors.
Adaptive control of large space structures using recursive lattice filters
NASA Technical Reports Server (NTRS)
Sundararajan, N.; Goglia, G. L.
1985-01-01
The use of recursive lattice filters for identification and adaptive control of large space structures is studied. Lattice filters were used to identify the structural dynamics model of the flexible structures. This identification model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures is control engaged. This type of validation scheme prevents instability when the overall loop is closed. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods. The method uses the Linear Quadratic Guassian/Loop Transfer Recovery (LQG/LTR) approach to ensure stability against unmodeled higher frequency modes and achieves the desired performance.
Adaptive control of large space structures using recursive lattice filters
NASA Technical Reports Server (NTRS)
Goglia, G. L.
1985-01-01
The use of recursive lattice filters for identification and adaptive control of large space structures was studied. Lattice filters are used widely in the areas of speech and signal processing. Herein, they are used to identify the structural dynamics model of the flexible structures. This identified model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures control is engaged. This type of validation scheme prevents instability when the overall loop is closed. The results obtained from simulation were compared to those obtained from experiments. In this regard, the flexible beam and grid apparatus at the Aerospace Control Research Lab (ACRL) of NASA Langley Research Center were used as the principal candidates for carrying out the above tasks. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods.
Model Adaptation for Prognostics in a Particle Filtering Framework
NASA Technical Reports Server (NTRS)
Saha, Bhaskar; Goebel, Kai Frank
2011-01-01
One of the key motivating factors for using particle filters for prognostics is the ability to include model parameters as part of the state vector to be estimated. This performs model adaptation in conjunction with state tracking, and thus, produces a tuned model that can used for long term predictions. This feature of particle filters works in most part due to the fact that they are not subject to the "curse of dimensionality", i.e. the exponential growth of computational complexity with state dimension. However, in practice, this property holds for "well-designed" particle filters only as dimensionality increases. This paper explores the notion of wellness of design in the context of predicting remaining useful life for individual discharge cycles of Li-ion batteries. Prognostic metrics are used to analyze the tradeoff between different model designs and prediction performance. Results demonstrate how sensitivity analysis may be used to arrive at a well-designed prognostic model that can take advantage of the model adaptation properties of a particle filter.
Image super-resolution via adaptive filtering and regularization
NASA Astrophysics Data System (ADS)
Ren, Jingbo; Wu, Hao; Dong, Weisheng; Shi, Guangming
2014-11-01
Image super-resolution (SR) is widely used in the fields of civil and military, especially for the low-resolution remote sensing images limited by the sensor. Single-image SR refers to the task of restoring a high-resolution (HR) image from the low-resolution image coupled with some prior knowledge as a regularization term. One classic method regularizes image by total variation (TV) and/or wavelet or some other transform which introduce some artifacts. To compress these shortages, a new framework for single image SR is proposed by utilizing an adaptive filter before regularization. The key of our model is that the adaptive filter is used to remove the spatial relevance among pixels first and then only the high frequency (HF) part, which is sparser in TV and transform domain, is considered as the regularization term. Concretely, through transforming the original model, the SR question can be solved by two alternate iteration sub-problems. Before each iteration, the adaptive filter should be updated to estimate the initial HF. A high quality HF part and HR image can be obtained by solving the first and second sub-problem, respectively. In experimental part, a set of remote sensing images captured by Landsat satellites are tested to demonstrate the effectiveness of the proposed framework. Experimental results show the outstanding performance of the proposed method in quantitative evaluation and visual fidelity compared with the state-of-the-art methods.
Frequency-shift low-pass filtering and least mean square adaptive filtering for ultrasound imaging
NASA Astrophysics Data System (ADS)
Wang, Shanshan; Li, Chunyu; Ding, Mingyue; Yuchi, Ming
2016-04-01
Ultrasound image quality enhancement is a problem of considerable interest in medical imaging modality and an ongoing challenge to date. This paper investigates a method based on frequency-shift low-pass filtering (FSLF) and least mean square adaptive filtering (LMSAF) for ultrasound image quality enhancement. FSLF is used for processing the ultrasound signal in the frequency domain, while LMSAPF in the time domain. Firstly, FSLF shifts the center frequency of the focused signal to zero. Then the real and imaginary part of the complex data are filtered respectively by finite impulse response (FIR) low-pass filter. Thus the information around the center frequency are retained while the undesired ones, especially background noises are filtered. Secondly, LMSAF multiplies the signals with an automatically adjusted weight vector to further eliminate the noises and artifacts. Through the combination of the two filters, the ultrasound image is expected to have less noises and artifacts and higher resolution, and contrast. The proposed method was verified with the RF data of the CIRS phantom 055A captured by SonixTouch DAQ system. Experimental results show that the background noises and artifacts can be efficiently restrained, the wire object has a higher resolution and the contrast ratio (CR) can be enhanced for about 12dB to 15dB at different image depth comparing to delay-and-sum (DAS).
Adaptive distributed Kalman filtering with wind estimation for astronomical adaptive optics.
Massioni, Paolo; Gilles, Luc; Ellerbroek, Brent
2015-12-01
In the framework of adaptive optics (AO) for astronomy, it is a common assumption to consider the atmospheric turbulent layers as "frozen flows" sliding according to the wind velocity profile. For this reason, having knowledge of such a velocity profile is beneficial in terms of AO control system performance. In this paper we show that it is possible to exploit the phase estimate from a Kalman filter running on an AO system in order to estimate wind velocity. This allows the update of the Kalman filter itself with such knowledge, making it adaptive. We have implemented such an adaptive controller based on the distributed version of the Kalman filter, for a realistic simulation of a multi-conjugate AO system with laser guide stars on a 30 m telescope. Simulation results show that this approach is effective and promising and the additional computational cost with respect to the distributed filter is negligible. Comparisons with a previously published slope detection and ranging wind profiler are made and the impact of turbulence profile quantization is assessed. One of the main findings of the paper is that all flavors of the adaptive distributed Kalman filter are impacted more significantly by turbulence profile quantization than the static minimum mean square estimator which does not incorporate wind profile information. PMID:26831389
Gong, Yushun; Yu, Tao; Chen, Bihua; He, Mi; Li, Yongqin
2014-01-01
Current automated external defibrillators mandate interruptions of chest compression to avoid the effect of artifacts produced by CPR for reliable rhythm analyses. But even seconds of interruption of chest compression during CPR adversely affects the rate of restoration of spontaneous circulation and survival. Numerous digital signal processing techniques have been developed to remove the artifacts or interpret the corrupted ECG with promising result, but the performance is still inadequate, especially for nonshockable rhythms. In the present study, we suppressed the CPR artifacts with an enhanced adaptive filtering method. The performance of the method was evaluated by comparing the sensitivity and specificity for shockable rhythm detection before and after filtering the CPR corrupted ECG signals. The dataset comprised 283 segments of shockable and 280 segments of nonshockable ECG signals during CPR recorded from 22 adult pigs that experienced prolonged cardiac arrest. For the unfiltered signals, the sensitivity and specificity were 99.3% and 46.8%, respectively. After filtering, a sensitivity of 93.3% and a specificity of 96.0% were achieved. This animal trial demonstrated that the enhanced adaptive filtering method could significantly improve the detection of nonshockable rhythms without compromising the ability to detect a shockable rhythm during uninterrupted CPR. PMID:24795878
A New Adaptive Framework for Collaborative Filtering Prediction.
Almosallam, Ibrahim A; Shang, Yi
2008-06-01
Collaborative filtering is one of the most successful techniques for recommendation systems and has been used in many commercial services provided by major companies including Amazon, TiVo and Netflix. In this paper we focus on memory-based collaborative filtering (CF). Existing CF techniques work well on dense data but poorly on sparse data. To address this weakness, we propose to use z-scores instead of explicit ratings and introduce a mechanism that adaptively combines global statistics with item-based values based on data density level. We present a new adaptive framework that encapsulates various CF algorithms and the relationships among them. An adaptive CF predictor is developed that can self adapt from user-based to item-based to hybrid methods based on the amount of available ratings. Our experimental results show that the new predictor consistently obtained more accurate predictions than existing CF methods, with the most significant improvement on sparse data sets. When applied to the Netflix Challenge data set, our method performed better than existing CF and singular value decomposition (SVD) methods and achieved 4.67% improvement over Netflix's system. PMID:21572924
NASA Astrophysics Data System (ADS)
Alaeddine, Hamzé Haidar; Bazzi, Oussama; Alaeddine, Ali Haidar; Mohanna, Yasser; Burel, Gilles
This paper is about a new efficient method for the implementation of a Block Proportionate Normalized Least Mean Square (BPNLMS++) adaptive filter using the Fermat Number Transform (FNT) and its inverse (IFNT). These transforms present advantages compared to Fast Fourier Transform (FFT) and the inverse (IFFT). An efficient state space method for implementing the FNT over rectangular windows is used in the cases where there is a large overlap between the consecutive input signals. This is called Generalized Sliding Fermat Number Transform (GSFNT) and is useful for reducing the computational complexity of finite ring convolvers and correlators. In this contribution, we propose, as a first objective, an efficient state algorithm with the purpose of reducing the complexity of IFNT. This algorithm, called Inverse Generalized Sliding Fermat Number Transform (IGSFNT), uses the technique of Generalized Sliding associated to matricial calculation in the Galois Field. The second objective is to realize an implementation of the BPNLMS++ adaptive filter using GSFNT and IGSFNT, which can significantly reduce the computation complexity of the filter implantation on digital signal processors.
NASA Astrophysics Data System (ADS)
Meng, Yang; Gao, Shesheng; Zhong, Yongmin; Hu, Gaoge; Subic, Aleksandar
2016-03-01
The use of the direct filtering approach for INS/GNSS integrated navigation introduces nonlinearity into the system state equation. As the unscented Kalman filter (UKF) is a promising method for nonlinear problems, an obvious solution is to incorporate the UKF concept in the direct filtering approach to address the nonlinearity involved in INS/GNSS integrated navigation. However, the performance of the standard UKF is dependent on the accurate statistical characterizations of system noise. If the noise distributions of inertial instruments and GNSS receivers are not appropriately described, the standard UKF will produce deteriorated or even divergent navigation solutions. This paper presents an adaptive UKF with noise statistic estimator to overcome the limitation of the standard UKF. According to the covariance matching technique, the innovation and residual sequences are used to determine the covariance matrices of the process and measurement noises. The proposed algorithm can estimate and adjust the system noise statistics online, and thus enhance the adaptive capability of the standard UKF. Simulation and experimental results demonstrate that the performance of the proposed algorithm is significantly superior to that of the standard UKF and adaptive-robust UKF under the condition without accurate knowledge on system noise, leading to improved navigation precision.
NASA Astrophysics Data System (ADS)
Park, Yeonok; Park, Chulkyu; Cho, Hyosung; Je, Uikyu; Hong, Daeki; Lee, Minsik; Cho, Heemoon; Choi, Sungil; Koo, Yangseo
2014-09-01
Digital breast tomosynthesis (DBT) is considered in clinics as a standard three-dimensional imaging modality, allowing the earlier detection of cancer. It typically acquires only 10-30 projections over a limited angle range of 15-60° with a stationary detector and typically uses a computationally-efficient filtered-backprojection (FBP) algorithm for image reconstruction. However, a common FBP algorithm yields poor image quality resulting from the loss of average image value and the presence of severe image artifacts due to the elimination of the dc component of the image by the ramp filter and to the incomplete data, respectively. As an alternative, iterative reconstruction methods are often used in DBT to overcome these difficulties, even though they are still computationally expensive. In this study, as a compromise, we considered a projection-angle-dependent filtering method in which one-dimensional geometry-adapted filter kernels are computed with the aid of a conjugate-gradient method and are incorporated into the standard FBP framework. We implemented the proposed algorithm and performed systematic simulation works to investigate the imaging characteristics. Our results indicate that the proposed method is superior to a conventional FBP method for DBT imaging and has a comparable computational cost, while preserving good image homogeneity and edge sharpening with no serious image artifacts.
Adaptive SVD-Based Digital Image Watermarking
NASA Astrophysics Data System (ADS)
Shirvanian, Maliheh; Torkamani Azar, Farah
Digital data utilization along with the increase popularity of the Internet has facilitated information sharing and distribution. However, such applications have also raised concern about copyright issues and unauthorized modification and distribution of digital data. Digital watermarking techniques which are proposed to solve these problems hide some information in digital media and extract it whenever needed to indicate the data owner. In this paper a new method of image watermarking based on singular value decomposition (SVD) of images is proposed which considers human visual system prior to embedding watermark by segmenting the original image into several blocks of different sizes, with more density in the edges of the image. In this way the original image quality is preserved in the watermarked image. Additional advantages of the proposed technique are large capacity of watermark embedding and robustness of the method against different types of image manipulation techniques.
Statistical-uncertainty-based adaptive filtering of lidar signals
Fuehrer, P. L.; Friehe, C. A.; Hristov, T. S.; Cooper, D. I.; Eichinger, W. E.
2000-02-10
An adaptive filter signal processing technique is developed to overcome the problem of Raman lidar water-vapor mixing ratio (the ratio of the water-vapor density to the dry-air density) with a highly variable statistical uncertainty that increases with decreasing photomultiplier-tube signal strength and masks the true desired water-vapor structure. The technique, applied to horizontal scans, assumes only statistical horizontal homogeneity. The result is a variable spatial resolution water-vapor signal with a constant variance out to a range limit set by a specified signal-to-noise ratio. The technique was applied to Raman water-vapor lidar data obtained at a coastal pier site together with in situ instruments located 320 m from the lidar. The micrometerological humidity data were used to calibrate the ratio of the lidar gains of the H{sub 2}O and the N{sub 2} photomultiplier tubes and set the water-vapor mixing ratio variance for the adaptive filter. For the coastal experiment the effective limit of the lidar range was found to be approximately 200 m for a maximum noise-to-signal variance ratio of 0.1 with the implemented data-reduction procedure. The technique can be adapted to off-horizontal scans with a small reduction in the constraints and is also applicable to other remote-sensing devices that exhibit the same inherent range-dependent signal-to-noise ratio problem. (c) 2000 Optical Society of America.
Fast Source Camera Identification Using Content Adaptive Guided Image Filter.
Zeng, Hui; Kang, Xiangui
2016-03-01
Source camera identification (SCI) is an important topic in image forensics. One of the most effective fingerprints for linking an image to its source camera is the sensor pattern noise, which is estimated as the difference between the content and its denoised version. It is widely believed that the performance of the sensor-based SCI heavily relies on the denoising filter used. This study proposes a novel sensor-based SCI method using content adaptive guided image filter (CAGIF). Thanks to the low complexity nature of the CAGIF, the proposed method is much faster than the state-of-the-art methods, which is a big advantage considering the potential real-time application of SCI. Despite the advantage of speed, experimental results also show that the proposed method can achieve comparable or better performance than the state-of-the-art methods in terms of accuracy. PMID:27404627
An adaptive filter method for spacecraft using gravity assist
NASA Astrophysics Data System (ADS)
Ning, Xiaolin; Huang, Panpan; Fang, Jiancheng; Liu, Gang; Ge, Shuzhi Sam
2015-04-01
Celestial navigation (CeleNav) has been successfully used during gravity assist (GA) flyby for orbit determination in many deep space missions. Due to spacecraft attitude errors, ephemeris errors, the camera center-finding bias, and the frequency of the images before and after the GA flyby, the statistics of measurement noise cannot be accurately determined, and yet have time-varying characteristics, which may introduce large estimation error and even cause filter divergence. In this paper, an unscented Kalman filter (UKF) with adaptive measurement noise covariance, called ARUKF, is proposed to deal with this problem. ARUKF scales the measurement noise covariance according to the changes in innovation and residual sequences. Simulations demonstrate that ARUKF is robust to the inaccurate initial measurement noise covariance matrix and time-varying measurement noise. The impact factors in the ARUKF are also investigated.
Attitude determination using an adaptive multiple model filtering Scheme
NASA Technical Reports Server (NTRS)
Lam, Quang; Ray, Surendra N.
1995-01-01
Attitude determination has been considered as a permanent topic of active research and perhaps remaining as a forever-lasting interest for spacecraft system designers. Its role is to provide a reference for controls such as pointing the directional antennas or solar panels, stabilizing the spacecraft or maneuvering the spacecraft to a new orbit. Least Square Estimation (LSE) technique was utilized to provide attitude determination for the Nimbus 6 and G. Despite its poor performance (estimation accuracy consideration), LSE was considered as an effective and practical approach to meet the urgent need and requirement back in the 70's. One reason for this poor performance associated with the LSE scheme is the lack of dynamic filtering or 'compensation'. In other words, the scheme is based totally on the measurements and no attempts were made to model the dynamic equations of motion of the spacecraft. We propose an adaptive filtering approach which employs a bank of Kalman filters to perform robust attitude estimation. The proposed approach, whose architecture is depicted, is essentially based on the latest proof on the interactive multiple model design framework to handle the unknown of the system noise characteristics or statistics. The concept fundamentally employs a bank of Kalman filter or submodel, instead of using fixed values for the system noise statistics for each submodel (per operating condition) as the traditional multiple model approach does, we use an on-line dynamic system noise identifier to 'identify' the system noise level (statistics) and update the filter noise statistics using 'live' information from the sensor model. The advanced noise identifier, whose architecture is also shown, is implemented using an advanced system identifier. To insure the robust performance for the proposed advanced system identifier, it is also further reinforced by a learning system which is implemented (in the outer loop) using neural networks to identify other unknown
Attitude determination using an adaptive multiple model filtering Scheme
NASA Astrophysics Data System (ADS)
Lam, Quang; Ray, Surendra N.
1995-05-01
Attitude determination has been considered as a permanent topic of active research and perhaps remaining as a forever-lasting interest for spacecraft system designers. Its role is to provide a reference for controls such as pointing the directional antennas or solar panels, stabilizing the spacecraft or maneuvering the spacecraft to a new orbit. Least Square Estimation (LSE) technique was utilized to provide attitude determination for the Nimbus 6 and G. Despite its poor performance (estimation accuracy consideration), LSE was considered as an effective and practical approach to meet the urgent need and requirement back in the 70's. One reason for this poor performance associated with the LSE scheme is the lack of dynamic filtering or 'compensation'. In other words, the scheme is based totally on the measurements and no attempts were made to model the dynamic equations of motion of the spacecraft. We propose an adaptive filtering approach which employs a bank of Kalman filters to perform robust attitude estimation. The proposed approach, whose architecture is depicted, is essentially based on the latest proof on the interactive multiple model design framework to handle the unknown of the system noise characteristics or statistics. The concept fundamentally employs a bank of Kalman filter or submodel, instead of using fixed values for the system noise statistics for each submodel (per operating condition) as the traditional multiple model approach does, we use an on-line dynamic system noise identifier to 'identify' the system noise level (statistics) and update the filter noise statistics using 'live' information from the sensor model. The advanced noise identifier, whose architecture is also shown, is implemented using an advanced system identifier. To insure the robust performance for the proposed advanced system identifier, it is also further reinforced by a learning system which is implemented (in the outer loop) using neural networks to identify other unknown
NASA Astrophysics Data System (ADS)
Varjonen, Mari; Strömmer, Pekka
2008-03-01
This paper presents the optimized image quality and average glandular dose in digital mammography, and provides recommendations concerning anode-filter combinations in digital mammography, which is based on amorphous selenium (a-Se) detector technology. The full field digital mammography (FFDM) system based on a-Se technology, which is also a platform of tomosynthesis prototype, was used in this study. X-ray tube anode-filter combinations, which we studied, were tungsten (W) - rhodium (Rh) and tungsten (W) - silver (Ag). Anatomically adaptable fully automatic exposure control (AAEC) was used. The average glandular doses (AGD) were calculated using a specific program developed by Planmed, which automates the method described by Dance et al. Image quality was evaluated in two different ways: a subjective image quality evaluation, and contrast and noise analysis. By using W-Rh and W-Ag anode-filter combinations can be achieved a significantly lower average glandular dose compared with molybdenum (Mo) - molybdenum (Mo) or Mo-Rh. The average glandular dose reduction was achieved from 25 % to 60 %. In the future, the evaluation will concentrate to study more filter combinations and the effect of higher kV (>35 kV) values, which seems be useful while optimizing the dose in digital mammography.
NASA Astrophysics Data System (ADS)
Campos Trujillo, Oliver G.; Díaz Blancas, Gerardo
2014-09-01
In recent years, many proposals that consider an adaptive perspective had been developed to solve some drawbacks, such as geometric distortions, background noise and target discrimination. The metrics are based only in the correlation peak output for the filter synthesis. In this paper, the correlation shape is studied to implement adaptive correlation filters guided by the peak and shape of the correlation output. Furthermore, the shape of correlation output is studied to improve the search in the filters bank. In addition, parallel algorithms are developed for accelerated the search in the filters bank. Some results are shown, such as time of synthesis, filter performance and comparisons with other adaptive correlation filter proposals.
Application of multirate digital filter banks to wideband all-digital phase-locked loops design
NASA Technical Reports Server (NTRS)
Sadr, R.; Shah, B.; Hinedi, S.
1992-01-01
A new class of architecture for all-digital phase-locked loops (DPLL's) is presented in this article. These architectures, referred to as parallel DPLL (PDPLL), employ multirate digital filter banks (DFB's) to track signals with a lower processing rate than the Nyquist rate, without reducing the input (Nyquist) bandwidth. The PDPLL basically trades complexity for hardware-processing speed by introducing parallel processing in the receiver. It is demonstrated here that the DPLL performance is identical to that of a PDPLL for both steady-state and transient behavior. A test signal with a time-varying Doppler characteristic is used to compare the performance of both the DPLL and the PDPLL.
Improving the Response of Accelerometers for Automotive Applications by Using LMS Adaptive Filters
Hernandez, Wilmar; de Vicente, Jesús; Sergiyenko, Oleg; Fernández, Eduardo
2010-01-01
In this paper, the least-mean-squares (LMS) algorithm was used to eliminate noise corrupting the important information coming from a piezoresisitive accelerometer for automotive applications. This kind of accelerometer is designed to be easily mounted in hard to reach places on vehicles under test, and they usually feature ranges from 50 to 2,000 g (where is the gravitational acceleration, 9.81 m/s2) and frequency responses to 3,000 Hz or higher, with DC response, durable cables, reliable performance and relatively low cost. However, here we show that the response of the sensor under test had a lot of noise and we carried out the signal processing stage by using both conventional and optimal adaptive filtering. Usually, designers have to build their specific analog and digital signal processing circuits, and this fact increases considerably the cost of the entire sensor system and the results are not always satisfactory, because the relevant signal is sometimes buried in a broad-band noise background where the unwanted information and the relevant signal sometimes share a very similar frequency band. Thus, in order to deal with this problem, here we used the LMS adaptive filtering algorithm and compare it with others based on the kind of filters that are typically used for automotive applications. The experimental results are satisfactory. PMID:22315542
Automated detection scheme of architectural distortion in mammograms using adaptive Gabor filter
NASA Astrophysics Data System (ADS)
Yoshikawa, Ruriha; Teramoto, Atsushi; Matsubara, Tomoko; Fujita, Hiroshi
2013-03-01
Breast cancer is a serious health concern for all women. Computer-aided detection for mammography has been used for detecting mass and micro-calcification. However, there are challenges regarding the automated detection of the architectural distortion about the sensitivity. In this study, we propose a novel automated method for detecting architectural distortion. Our method consists of the analysis of the mammary gland structure, detection of the distorted region, and reduction of false positive results. We developed the adaptive Gabor filter for analyzing the mammary gland structure that decides filter parameters depending on the thickness of the gland structure. As for post-processing, healthy mammary glands that run from the nipple to the chest wall are eliminated by angle analysis. Moreover, background mammary glands are removed based on the intensity output image obtained from adaptive Gabor filter. The distorted region of the mammary gland is then detected as an initial candidate using a concentration index followed by binarization and labeling. False positives in the initial candidate are eliminated using 23 types of characteristic features and a support vector machine. In the experiments, we compared the automated detection results with interpretations by a radiologist using 50 cases (200 images) from the Digital Database of Screening Mammography (DDSM). As a result, true positive rate was 82.72%, and the number of false positive per image was 1.39. There results indicate that the proposed method may be useful for detecting architectural distortion in mammograms.
High performance 3D adaptive filtering for DSP based portable medical imaging systems
NASA Astrophysics Data System (ADS)
Bockenbach, Olivier; Ali, Murtaza; Wainwright, Ian; Nadeski, Mark
2015-03-01
Portable medical imaging devices have proven valuable for emergency medical services both in the field and hospital environments and are becoming more prevalent in clinical settings where the use of larger imaging machines is impractical. Despite their constraints on power, size and cost, portable imaging devices must still deliver high quality images. 3D adaptive filtering is one of the most advanced techniques aimed at noise reduction and feature enhancement, but is computationally very demanding and hence often cannot be run with sufficient performance on a portable platform. In recent years, advanced multicore digital signal processors (DSP) have been developed that attain high processing performance while maintaining low levels of power dissipation. These processors enable the implementation of complex algorithms on a portable platform. In this study, the performance of a 3D adaptive filtering algorithm on a DSP is investigated. The performance is assessed by filtering a volume of size 512x256x128 voxels sampled at a pace of 10 MVoxels/sec with an Ultrasound 3D probe. Relative performance and power is addressed between a reference PC (Quad Core CPU) and a TMS320C6678 DSP from Texas Instruments.
Residual mode filters and adaptive control in large space structures
NASA Technical Reports Server (NTRS)
Davidson, Roger A.; Balas, Mark J.
1989-01-01
One of the most difficult problems in controlling large systems and structures is compensating for the destructive interaction which can occur between the reduced-order model (ROM) of the plant, which is used by the controller, and the unmodeled dynamics of the plant, often called the residual modes. The problem is more significant in the case of large space structures because their naturally light damping and high performance requirements lead to more frequent, destructive residual mode interaction (RMI). Using the design/compensation technique of residual mode filters (RMF's), effective compensation of RMI can be accomplished in a straightforward manner when using linear controllers. The use of RMF's has been shown to be effective for a variety of large structures, including a space-based laser and infinite dimensional systems. However, the dynamics of space structures is often uncertain and may even change over time due to on-orbit erosion from space debris and corrosive chemicals in the upper atmosphere. In this case, adaptive control can be extremely beneficial in meeting the performance requirements of the structure. Adaptive control for large structures is also based on ROM's and so destructive RMI may occur. Unfortunately, adaptive control is inherently nonlinear, and therefore the known results of RMF's cannot be applied. The purpose is to present the results of new research showing the effects of RMI when using adaptive control and the work which will hopefully lead to RMF compensation of this problem.
Multimodal Medical Image Fusion by Adaptive Manifold Filter.
Geng, Peng; Liu, Shuaiqi; Zhuang, Shanna
2015-01-01
Medical image fusion plays an important role in diagnosis and treatment of diseases such as image-guided radiotherapy and surgery. The modified local contrast information is proposed to fuse multimodal medical images. Firstly, the adaptive manifold filter is introduced into filtering source images as the low-frequency part in the modified local contrast. Secondly, the modified spatial frequency of the source images is adopted as the high-frequency part in the modified local contrast. Finally, the pixel with larger modified local contrast is selected into the fused image. The presented scheme outperforms the guided filter method in spatial domain, the dual-tree complex wavelet transform-based method, nonsubsampled contourlet transform-based method, and four classic fusion methods in terms of visual quality. Furthermore, the mutual information values by the presented method are averagely 55%, 41%, and 62% higher than the three methods and those values of edge based similarity measure by the presented method are averagely 13%, 33%, and 14% higher than the three methods for the six pairs of source images. PMID:26664494
On application of adaptive decorrelation filtering to assistive listening
NASA Astrophysics Data System (ADS)
Zhao, Yunxin; Yen, Kuan-Chieh; Soli, Sig; Gao, Shawn; Vermiglio, Andy
2002-02-01
This paper describes an application of the multichannel signal processing technique of adaptive decorrelation filtering to the design of an assistive listening system. A simulated ``dinner table'' scenario was studied. The speech signal of a desired talker was corrupted by three simultaneous speech jammers and by a speech-shaped diffusive noise. The technique of adaptive decorrelation filtering processing was used to extract the desired speech from the interference speech and noise. The effectiveness of the assistive listening system was evaluated by observing improvements in A-weighted signal-to-noise ratio (SNR) and in sentence intelligibility, where the latter was evaluated in a listening test with eight normal hearing subjects and three subjects with hearing impairments. Significant improvements in SNR and sentence intelligibility were achieved with the use of the assistive listening system. For subjects with normal hearing, the speech reception threshold was improved by 3 to 5 dBA, and for subjects with hearing impairments, the threshold was improved by 4 to 8 dBA.
A wavelet packet adaptive filtering algorithm for enhancing manatee vocalizations.
Gur, M Berke; Niezrecki, Christopher
2011-04-01
Approximately a quarter of all West Indian manatee (Trichechus manatus latirostris) mortalities are attributed to collisions with watercraft. A boater warning system based on the passive acoustic detection of manatee vocalizations is one possible solution to reduce manatee-watercraft collisions. The success of such a warning system depends on effective enhancement of the vocalization signals in the presence of high levels of background noise, in particular, noise emitted from watercraft. Recent research has indicated that wavelet domain pre-processing of the noisy vocalizations is capable of significantly improving the detection ranges of passive acoustic vocalization detectors. In this paper, an adaptive denoising procedure, implemented on the wavelet packet transform coefficients obtained from the noisy vocalization signals, is investigated. The proposed denoising algorithm is shown to improve the manatee detection ranges by a factor ranging from two (minimum) to sixteen (maximum) compared to high-pass filtering alone, when evaluated using real manatee vocalization and background noise signals of varying signal-to-noise ratios (SNR). Furthermore, the proposed method is also shown to outperform a previously suggested feedback adaptive line enhancer (FALE) filter on average 3.4 dB in terms of noise suppression and 0.6 dB in terms of waveform preservation. PMID:21476661
An adaptive filtered back-projection for photoacoustic image reconstruction
Huang, He; Bustamante, Gilbert; Peterson, Ralph; Ye, Jing Yong
2015-01-01
Purpose: The purpose of this study is to develop an improved filtered-back-projection (FBP) algorithm for photoacoustic tomography (PAT), which allows image reconstruction with higher quality compared to images reconstructed through traditional algorithms. Methods: A rigorous expression of a weighting function has been derived directly from a photoacoustic wave equation and used as a ramp filter in Fourier domain. The authors’ new algorithm utilizes this weighting function to precisely calculate each photoacoustic signal’s contribution and then reconstructs the image based on the retarded potential generated from the photoacoustic sources. In addition, an adaptive criterion has been derived for selecting the cutoff frequency of a low pass filter. Two computational phantoms were created to test the algorithm. The first phantom contained five spheres with each sphere having different absorbances. The phantom was used to test the capability for correctly representing both the geometry and the relative absorbed energy in a planar measurement system. The authors also used another phantom containing absorbers of different sizes with overlapping geometry to evaluate the performance of the new method for complicated geometry. In addition, random noise background was added to the simulated data, which were obtained by using an arc-shaped array of 50 evenly distributed transducers that spanned 160° over a circle with a radius of 65 mm. A normalized factor between the neighbored transducers was applied for correcting measurement signals in PAT simulations. The authors assumed that the scanned object was mounted on a holder that rotated over the full 360° and the scans were set to a sampling rate of 20.48 MHz. Results: The authors have obtained reconstructed images of the computerized phantoms by utilizing the new FBP algorithm. From the reconstructed image of the first phantom, one can see that this new approach allows not only obtaining a sharp image but also showing
An adaptive filtered back-projection for photoacoustic image reconstruction
Huang, He; Bustamante, Gilbert; Peterson, Ralph; Ye, Jing Yong
2015-05-15
Purpose: The purpose of this study is to develop an improved filtered-back-projection (FBP) algorithm for photoacoustic tomography (PAT), which allows image reconstruction with higher quality compared to images reconstructed through traditional algorithms. Methods: A rigorous expression of a weighting function has been derived directly from a photoacoustic wave equation and used as a ramp filter in Fourier domain. The authors’ new algorithm utilizes this weighting function to precisely calculate each photoacoustic signal’s contribution and then reconstructs the image based on the retarded potential generated from the photoacoustic sources. In addition, an adaptive criterion has been derived for selecting the cutoff frequency of a low pass filter. Two computational phantoms were created to test the algorithm. The first phantom contained five spheres with each sphere having different absorbances. The phantom was used to test the capability for correctly representing both the geometry and the relative absorbed energy in a planar measurement system. The authors also used another phantom containing absorbers of different sizes with overlapping geometry to evaluate the performance of the new method for complicated geometry. In addition, random noise background was added to the simulated data, which were obtained by using an arc-shaped array of 50 evenly distributed transducers that spanned 160° over a circle with a radius of 65 mm. A normalized factor between the neighbored transducers was applied for correcting measurement signals in PAT simulations. The authors assumed that the scanned object was mounted on a holder that rotated over the full 360° and the scans were set to a sampling rate of 20.48 MHz. Results: The authors have obtained reconstructed images of the computerized phantoms by utilizing the new FBP algorithm. From the reconstructed image of the first phantom, one can see that this new approach allows not only obtaining a sharp image but also showing
Longmire, M S; Milton, A F; Takken, E H
1982-11-01
Several 1-D signal processing techniques have been evaluated by simulation with a digital computer using high-spatial-resolution (0.15 mrad) noise data gathered from back-lit clouds and uniform sky with a scanning data collection system operating in the 4.0-4.8-microm spectral band. Two ordinary bandpass filters and a least-mean-square (LMS) spatial filter were evaluated in combination with a fixed or adaptive threshold algorithm. The combination of a 1-D LMS filter and a 1-D adaptive threshold sensor was shown to reject extreme cloud clutter effectively and to provide nearly equal signal detection in a clear and cluttered sky, at least in systems whose NEI (noise equivalent irradiance) exceeds 1.5 x 10(-13) W/cm(2) and whose spatial resolution is better than 0.15 x 0.36 mrad. A summary gives highlights of the work, key numerical results, and conclusions. PMID:20396326
Controller-structure interaction compensation using adaptive residual mode filters
NASA Technical Reports Server (NTRS)
Davidson, Roger A.; Balas, Mark J.
1990-01-01
It is not feasible to construct controllers for large space structures or large scale systems (LSS's) which are of the same order as the structures. The complexity of the dynamics of these systems is such that full knowledge of its behavior cannot by processed by today's controller design methods. The controller for system performance of such a system is therefore based on a much smaller reduced-order model (ROM). Unfortunately, the interaction between the LSS and the ROM-based controller can produce instabilities in the closed-loop system due to the unmodeled dynamics of the LSS. Residual mode filters (RMF's) allow the systematic removal of these instabilities in a matter which does not require a redesign of the controller. In addition RMF's have a strong theoretical basis. As simple first- or second-order filters, the RMF CSI compensation technique is at once modular, simple and highly effective. RMF compensation requires knowledge of the dynamics of the system modes which resulted in the previous closed-loop instabilities (the residual modes), but this information is sometimes known imperfectly. An adaptive, self-tuning RMF design, which compensates for uncertainty in the frequency of the residual mode, has been simulated using continuous-time and discrete-time models of a flexible robot manipulator. Work has also been completed on the discrete-time experimental implementation on the Martin Marietta flexible robot manipulator experiment. This paper will present the results of that work on adaptive, self-tuning RMF's, and will clearly show the advantage of this adaptive compensation technique for controller-structure interaction (CSI) instabilities in actively-controlled LSS's.
Digital adaptive control laws for the F-8
NASA Technical Reports Server (NTRS)
Hartmann, G. L.; Harvey, C. A.
1976-01-01
NASA is conducting a flight control research program in digital fly-by-wire technology using a modified F-8C aircraft. The first phase of this program used Apollo hardware to demonstrate the practicality of digital fly-by-wire in an actual test vehicle. For the second phase, conventional aircraft sensors and a large floating point digital computer are being utilized to test advanced control laws and redundancy concepts. As part of NASA's research in digital fly-by-wire technology, Honeywell developed digital adaptive flight control laws for flight test in the F-8C. Adaptation of the control laws was to be based on information sensed from conventional aircraft sensors excluding air data. The control laws were constrained to use only existing elevator, rudder, and ailerons as control effectors, each powered by existing actuators. Three adaptive control laws were successfully designed using maximum likelihood estimation, a Liapunov stable model tracker and a self-excited limit cycle concept. The maximum likelihood estimation design was selected as the most promising because of its capability to identify more than surface effectiveness parameters. The adaptive concepts, the control laws and comparisons of predicted performance are described.
Digital DC-Reconstruction of AC-Coupled Electrophysiological Signals with a Single Inverting Filter
Schmid, Ramun; Leber, Remo; Schmid, Hans-Jakob; Generali, Gianluca
2016-01-01
Since the introduction of digital electrocardiographs, high-pass filters have been necessary for successful analog-to-digital conversion with a reasonable amplitude resolution. On the other hand, such high-pass filters may distort the diagnostically significant ST-segment of the ECG, which can result in a misleading diagnosis. We present an inverting filter that successfully undoes the effects of a 0.05 Hz single pole high-pass filter. The inverting filter has been tested on more than 1600 clinical ECGs with one-minute durations and produces a negligible mean RMS-error of 3.1*10−8 LSB. Alternative, less strong inverting filters have also been tested, as have different applications of the filters with respect to rounding of the signals after filtering. A design scheme for the alternative inverting filters has been suggested, based on the maximum strength of the filter. With the use of the suggested filters, it is possible to recover the original DC-coupled ECGs from AC-coupled ECGs, at least when a 0.05 Hz first order digital single pole high-pass filter is used for the AC-coupling. PMID:26938769
A 3-D nonlinear recursive digital filter for video image processing
NASA Technical Reports Server (NTRS)
Bauer, P. H.; Qian, W.
1991-01-01
This paper introduces a recursive 3-D nonlinear digital filter, which is capable of performing noise suppression without degrading important image information such as edges in space or time. It also has the property of unnoticeable bandwidth reduction immediately after a scene change, which makes the filter an attractive preprocessor to many interframe compression algorithms. The filter consists of a nonlinear 2-D spatial subfilter and a 1-D temporal filter. In order to achieve the required computational speed and increase the flexibility of the filter, all of the linear shift-variant filter modules are of the IIR type.
Reduced-Rank Adaptive Filtering Using Krylov Subspace
NASA Astrophysics Data System (ADS)
Burykh, Sergueï; Abed-Meraim, Karim
2003-12-01
A unified view of several recently introduced reduced-rank adaptive filters is presented. As all considered methods use Krylov subspace for rank reduction, the approach taken in this work is inspired from Krylov subspace methods for iterative solutions of linear systems. The alternative interpretation so obtained is used to study the properties of each considered technique and to relate one reduced-rank method to another as well as to algorithms used in computational linear algebra. Practical issues are discussed and low-complexity versions are also included in our study. It is believed that the insight developed in this paper can be further used to improve existing reduced-rank methods according to known results in the domain of Krylov subspace methods.
Shih, Cheng-Ting; Lin, Hsin-Hon; Chuang, Keh-Shih; Wu, Jay; Chang, Shu-Jun
2014-08-15
Purpose: Several positron emission tomography (PET) scanners with special detector block arrangements have been developed in recent years to improve the resolution of PET images. However, the discontinuous detector blocks cause gaps in the sinogram. This study proposes an adaptive discrete cosine transform-based (aDCT) filter for gap-inpainting. Methods: The gap-corrupted sinogram was morphologically closed and subsequently converted to the DCT domain. A certain number of the largest coefficients in the DCT spectrum were identified to determine the low-frequency preservation region. The weighting factors for the remaining coefficients were determined by an exponential weighting function. The aDCT filter was constructed and applied to two digital phantoms and a simulated phantom introduced with various levels of noise. Results: For the Shepp-Logan head phantom, the aDCT filter filled the gaps effectively. For the Jaszczak phantom, no secondary artifacts were induced after aDCT filtering. The percent mean square error and mean structure similarity of the aDCT filter were superior to those of the DCT2 filter at all noise levels. For the simulated striatal dopamine innervation study, the aDCT filter recovered the shape of the striatum and restored the striatum to reference activity ratios to the ideal value. Conclusions: The proposed aDCT filter can recover the missing gap data in the sinogram and improve the image quality and quantitative accuracy of PET images.
NASA Technical Reports Server (NTRS)
Peterson, A.; Narasimha, M.; Narayan, S.
1980-01-01
The system design of a wideband (8 MHz) million-channel digital spectrum analyzer for use with a SETI receiver is presented. The analyzer makes use of a digital bandpass filter bank for transforming the wideband input signal into a specified number (120) of uniform narrowband output channels by the use of a Fourier transform digital processor combined with a prototype digital weighting network (finite impulse response filter). The output is then processed separately by 120 microprocessor-based discrete Fourier transform computers, each producing 8190 output channels of approximately 8 Hz bandwidth by the use of an 8190-point prime factor algorithm.
Adaptive Data Filtering of Inertial Sensors with Variable Bandwidth
Alam, Mushfiqul; Rohac, Jan
2015-01-01
MEMS (micro-electro-mechanical system)-based inertial sensors, i.e., accelerometers and angular rate sensors, are commonly used as a cost-effective solution for the purposes of navigation in a broad spectrum of terrestrial and aerospace applications. These tri-axial inertial sensors form an inertial measurement unit (IMU), which is a core unit of navigation systems. Even if MEMS sensors have an advantage in their size, cost, weight and power consumption, they suffer from bias instability, noisy output and insufficient resolution. Furthermore, the sensor's behavior can be significantly affected by strong vibration when it operates in harsh environments. All of these constitute conditions require treatment through data processing. As long as the navigation solution is primarily based on using only inertial data, this paper proposes a novel concept in adaptive data pre-processing by using a variable bandwidth filtering. This approach utilizes sinusoidal estimation to continuously adapt the filtering bandwidth of the accelerometer's data in order to reduce the effects of vibration and sensor noise before attitude estimation is processed. Low frequency vibration generally limits the conditions under which the accelerometers can be used to aid the attitude estimation process, which is primarily based on angular rate data and, thus, decreases its accuracy. In contrast, the proposed pre-processing technique enables using accelerometers as an aiding source by effective data smoothing, even when they are affected by low frequency vibration. Verification of the proposed concept is performed on simulation and real-flight data obtained on an ultra-light aircraft. The results of both types of experiments confirm the suitability of the concept for inertial data pre-processing. PMID:25648711
Adaptive data filtering of inertial sensors with variable bandwidth.
Alam, Mushfiqul; Rohac, Jan
2015-01-01
MEMS (micro-electro-mechanical system)-based inertial sensors, i.e., accelerometers and angular rate sensors, are commonly used as a cost-effective solution for the purposes of navigation in a broad spectrum of terrestrial and aerospace applications. These tri-axial inertial sensors form an inertial measurement unit (IMU), which is a core unit of navigation systems. Even if MEMS sensors have an advantage in their size, cost, weight and power consumption, they suffer from bias instability, noisy output and insufficient resolution. Furthermore, the sensor's behavior can be significantly affected by strong vibration when it operates in harsh environments. All of these constitute conditions require treatment through data processing. As long as the navigation solution is primarily based on using only inertial data, this paper proposes a novel concept in adaptive data pre-processing by using a variable bandwidth filtering. This approach utilizes sinusoidal estimation to continuously adapt the filtering bandwidth of the accelerometer's data in order to reduce the effects of vibration and sensor noise before attitude estimation is processed. Low frequency vibration generally limits the conditions under which the accelerometers can be used to aid the attitude estimation process, which is primarily based on angular rate data and, thus, decreases its accuracy. In contrast, the proposed pre-processing technique enables using accelerometers as an aiding source by effective data smoothing, even when they are affected by low frequency vibration. Verification of the proposed concept is performed on simulation and real-flight data obtained on an ultra-light aircraft. The results of both types of experiments confirm the suitability of the concept for inertial data pre-processing. PMID:25648711
Digital adaptive optics line-scanning confocal imaging system.
Liu, Changgeng; Kim, Myung K
2015-01-01
A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack–Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea. PMID:26140334
Digital adaptive optics line-scanning confocal imaging system
NASA Astrophysics Data System (ADS)
Liu, Changgeng; Kim, Myung K.
2015-11-01
A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack-Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea.
Holographic fluorescence microscopy with incoherent digital holographic adaptive optics.
Jang, Changwon; Kim, Jonghyun; Clark, David C; Lee, Seungjae; Lee, Byoungho; Kim, Myung K
2015-01-01
Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex—i.e., amplitude plus phase—hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media. PMID:26146767
Adapting to the Digital Age: A Narrative Approach
ERIC Educational Resources Information Center
Cousins, Sarah; Bissar, Dounia
2012-01-01
The article adopts a narrative inquiry approach to foreground informal learning and exposes a collection of stories from tutors about how they adapted comfortably to the digital age.We were concerned that despite substantial evidence that bringing about changes in pedagogic practices can be difficult, there is a gap in convincing approaches to…
Holographic fluorescence microscopy with incoherent digital holographic adaptive optics
NASA Astrophysics Data System (ADS)
Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Seungjae; Lee, Byoungho; Kim, Myung K.
2015-11-01
Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex-i.e., amplitude plus phase-hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.
Fast complex memory polynomial-based adaptive digital predistorter
NASA Astrophysics Data System (ADS)
Singh Sappal, Amandeep; Singh Patterh, Manjeet; Sharma, Sanjay
2011-07-01
Today's 3G wireless systems require both high linearity and high power amplifier (PA) efficiency. The high peak-to-average ratios of the digital modulation schemes used in 3G wireless systems require that the RF PA maintain high linearity over a large range while maintaining this high efficiency; these two requirements are often at odds with each other with many of the traditional amplifier architectures. In this article, a fast and easy-to-implement adaptive digital predistorter has been presented for Wideband Code Division Multiplexed signals using complex memory polynomial work function. The proposed algorithm has been implemented to test a Motorola LDMOSFET PA. The proposed technique also takes care of the memory effects of the PA, which have been ignored in many proposed techniques in the literature. The results show that the new complex memory polynomial-based adaptive digital predistorter has better linearisation performance than conventional predistortion techniques.
Modeling of Rate-Dependent Hysteresis Using a GPO-Based Adaptive Filter.
Zhang, Zhen; Ma, Yaopeng
2016-01-01
A novel generalized play operator-based (GPO-based) nonlinear adaptive filter is proposed to model rate-dependent hysteresis nonlinearity for smart actuators. In the proposed filter, the input signal vector consists of the output of a tapped delay line. GPOs with various thresholds are used to construct a nonlinear network and connected with the input signals. The output signal of the filter is composed of a linear combination of signals from the output of GPOs. The least-mean-square (LMS) algorithm is used to adjust the weights of the nonlinear filter. The modeling results of four adaptive filter methods are compared: GPO-based adaptive filter, Volterra filter, backlash filter and linear adaptive filter. Moreover, a phenomenological operator-based model, the rate-dependent generalized Prandtl-Ishlinskii (RDGPI) model, is compared to the proposed adaptive filter. The various rate-dependent modeling methods are applied to model the rate-dependent hysteresis of a giant magnetostrictive actuator (GMA). It is shown from the modeling results that the GPO-based adaptive filter can describe the rate-dependent hysteresis nonlinear of the GMA more accurately and effectively. PMID:26861349
Modeling of Rate-Dependent Hysteresis Using a GPO-Based Adaptive Filter
Zhang, Zhen; Ma, Yaopeng
2016-01-01
A novel generalized play operator-based (GPO-based) nonlinear adaptive filter is proposed to model rate-dependent hysteresis nonlinearity for smart actuators. In the proposed filter, the input signal vector consists of the output of a tapped delay line. GPOs with various thresholds are used to construct a nonlinear network and connected with the input signals. The output signal of the filter is composed of a linear combination of signals from the output of GPOs. The least-mean-square (LMS) algorithm is used to adjust the weights of the nonlinear filter. The modeling results of four adaptive filter methods are compared: GPO-based adaptive filter, Volterra filter, backlash filter and linear adaptive filter. Moreover, a phenomenological operator-based model, the rate-dependent generalized Prandtl-Ishlinskii (RDGPI) model, is compared to the proposed adaptive filter. The various rate-dependent modeling methods are applied to model the rate-dependent hysteresis of a giant magnetostrictive actuator (GMA). It is shown from the modeling results that the GPO-based adaptive filter can describe the rate-dependent hysteresis nonlinear of the GMA more accurately and effectively. PMID:26861349
A digital matched filter technique for the tracking and data acquisition system
NASA Technical Reports Server (NTRS)
Sussman, S. M.
1971-01-01
Design information and test results for a breadboard implementation of a digital matched filter for PN sequences are reported. The device is intended to expedite acquisition in PN spread-spectrum communication systems.
Adaptive Noise Suppression Using Digital Signal Processing
NASA Technical Reports Server (NTRS)
Kozel, David; Nelson, Richard
1996-01-01
A signal to noise ratio dependent adaptive spectral subtraction algorithm is developed to eliminate noise from noise corrupted speech signals. The algorithm determines the signal to noise ratio and adjusts the spectral subtraction proportion appropriately. After spectra subtraction low amplitude signals are squelched. A single microphone is used to obtain both eh noise corrupted speech and the average noise estimate. This is done by determining if the frame of data being sampled is a voiced or unvoiced frame. During unvoice frames an estimate of the noise is obtained. A running average of the noise is used to approximate the expected value of the noise. Applications include the emergency egress vehicle and the crawler transporter.
NASA Astrophysics Data System (ADS)
Chen, Liang; Piché, Robert; Kuusniemi, Heidi; Chen, Ruizhi
2014-12-01
This paper studies the problem of tracking a mobile device in mixed line-of-sight (LOS) and non-line-of-sight (NLOS) conditions. NLOS error is assumed to be Gaussian with unknown mean and variance. An adaptive Rao-Blackwellized particle filter (RBPF) is proposed for mobile tracking in such scenarios. An extended Kalman filter is used to approximately estimate the mobile state, and the particle filter is applied to estimate the posterior distribution of sight conditions and the unknown static parameters, the distribution of which is updated by sufficient statistics. To improve the efficiency of the particle filtering, we use the approximate optimal proposal distribution for particle inference. Algorithm performance is investigated in the scenario of mobile tracking using signals of opportunity from digital TV (DTV) network. Simulation results show that the adaptive RBPF method is effective to infer the unknown NLOS parameter and can achieve good tracking accuracy using a small number of particles.
Subsurface characterization with localized ensemble Kalman filter employing adaptive thresholding
NASA Astrophysics Data System (ADS)
Delijani, Ebrahim Biniaz; Pishvaie, Mahmoud Reza; Boozarjomehry, Ramin Bozorgmehry
2014-07-01
Ensemble Kalman filter, EnKF, as a Monte Carlo sequential data assimilation method has emerged promisingly for subsurface media characterization during past decade. Due to high computational cost of large ensemble size, EnKF is limited to small ensemble set in practice. This results in appearance of spurious correlation in covariance structure leading to incorrect or probable divergence of updated realizations. In this paper, a universal/adaptive thresholding method is presented to remove and/or mitigate spurious correlation problem in the forecast covariance matrix. This method is, then, extended to regularize Kalman gain directly. Four different thresholding functions have been considered to threshold forecast covariance and gain matrices. These include hard, soft, lasso and Smoothly Clipped Absolute Deviation (SCAD) functions. Three benchmarks are used to evaluate the performances of these methods. These benchmarks include a small 1D linear model and two 2D water flooding (in petroleum reservoirs) cases whose levels of heterogeneity/nonlinearity are different. It should be noted that beside the adaptive thresholding, the standard distance dependant localization and bootstrap Kalman gain are also implemented for comparison purposes. We assessed each setup with different ensemble sets to investigate the sensitivity of each method on ensemble size. The results indicate that thresholding of forecast covariance yields more reliable performance than Kalman gain. Among thresholding function, SCAD is more robust for both covariance and gain estimation. Our analyses emphasize that not all assimilation cycles do require thresholding and it should be performed wisely during the early assimilation cycles. The proposed scheme of adaptive thresholding outperforms other methods for subsurface characterization of underlying benchmarks.
Color filter array demosaicing: an adaptive progressive interpolation based on the edge type
NASA Astrophysics Data System (ADS)
Dong, Qiqi; Liu, Zhaohui
2015-10-01
Color filter array (CFA) is one of the key points for single-sensor digital cameras to produce color images. Bayer CFA is the most commonly used pattern. In this array structure, the sampling frequency of green is two times of red or blue, which is consistent with the sensitivity of human eyes to colors. However, each sensor pixel only samples one of three primary color values. To render a full-color image, an interpolation process, commonly referred to CFA demosaicing, is required to estimate the other two missing color values at each pixel. In this paper, we explore an adaptive progressive interpolation based on the edge type algorithm. The proposed demosaicing method consists of two successive steps: an interpolation step that estimates missing color values according to various edges and a post-processing step by iterative interpolation.
Automated Fourier space region-recognition filtering for off-axis digital holographic microscopy
He, Xuefei; Nguyen, Chuong Vinh; Pratap, Mrinalini; Zheng, Yujie; Wang, Yi; Nisbet, David R.; Williams, Richard J.; Rug, Melanie; Maier, Alexander G.; Lee, Woei Ming
2016-01-01
Automated label-free quantitative imaging of biological samples can greatly benefit high throughput diseases diagnosis. Digital holographic microscopy (DHM) is a powerful quantitative label-free imaging tool that retrieves structural details of cellular samples non-invasively. In off-axis DHM, a proper spatial filtering window in Fourier space is crucial to the quality of reconstructed phase image. Here we describe a region-recognition approach that combines shape recognition with an iterative thresholding method to extracts the optimal shape of frequency components. The region recognition technique offers fully automated adaptive filtering that can operate with a variety of samples and imaging conditions. When imaging through optically scattering biological hydrogel matrix, the technique surpasses previous histogram thresholding techniques without requiring any manual intervention. Finally, we automate the extraction of the statistical difference of optical height between malaria parasite infected and uninfected red blood cells. The method described here paves way to greater autonomy in automated DHM imaging for imaging live cell in thick cell cultures. PMID:27570702
High-resolution image digitizing through 12x3-bit RGB-filtered CCD camera
NASA Astrophysics Data System (ADS)
Cheng, Andrew Y. S.; Pau, Michael C. Y.
1996-09-01
A high resolution computer-controlled CCD image capturing system is developed by using a 12 bits 1024 by 1024 pixels CCD camera and motorized RGB filters to grasp an image with color depth up to 36 bits. The filters distinguish the major components of color and collect them separately while the CCD camera maintains the spatial resolution and detector filling factor. The color separation can be done optically rather than electronically. The operation is simply by placing the capturing objects like color photos, slides and even x-ray transparencies under the camera system, the necessary parameters such as integration time, mixing level and light intensity are automatically adjusted by an on-line expert system. This greatly reduces the restrictions of the capturing species. This unique approach can save considerable time for adjusting the quality of image, give much more flexibility of manipulating captured object even if it is a 3D object with minimal setup fixers. In addition, cross sectional dimension of a 3D capturing object can be analyzed by adapting a fiber optic ring light source. It is particularly useful in non-contact metrology of a 3D structure. The digitized information can be stored in an easily transferable format. Users can also perform a special LUT mapping automatically or manually. Applications of the system include medical images archiving, printing quality control, 3D machine vision, and etc.
Automated Fourier space region-recognition filtering for off-axis digital holographic microscopy.
He, Xuefei; Nguyen, Chuong Vinh; Pratap, Mrinalini; Zheng, Yujie; Wang, Yi; Nisbet, David R; Williams, Richard J; Rug, Melanie; Maier, Alexander G; Lee, Woei Ming
2016-08-01
Automated label-free quantitative imaging of biological samples can greatly benefit high throughput diseases diagnosis. Digital holographic microscopy (DHM) is a powerful quantitative label-free imaging tool that retrieves structural details of cellular samples non-invasively. In off-axis DHM, a proper spatial filtering window in Fourier space is crucial to the quality of reconstructed phase image. Here we describe a region-recognition approach that combines shape recognition with an iterative thresholding method to extracts the optimal shape of frequency components. The region recognition technique offers fully automated adaptive filtering that can operate with a variety of samples and imaging conditions. When imaging through optically scattering biological hydrogel matrix, the technique surpasses previous histogram thresholding techniques without requiring any manual intervention. Finally, we automate the extraction of the statistical difference of optical height between malaria parasite infected and uninfected red blood cells. The method described here paves way to greater autonomy in automated DHM imaging for imaging live cell in thick cell cultures. PMID:27570702
The design of digital-adaptive controllers for VTOL aircraft
NASA Technical Reports Server (NTRS)
Stengel, R. F.; Broussard, J. R.; Berry, P. W.
1976-01-01
Design procedures for VTOL automatic control systems have been developed and are presented. Using linear-optimal estimation and control techniques as a starting point, digital-adaptive control laws have been designed for the VALT Research Aircraft, a tandem-rotor helicopter which is equipped for fully automatic flight in terminal area operations. These control laws are designed to interface with velocity-command and attitude-command guidance logic, which could be used in short-haul VTOL operations. Developments reported here include new algorithms for designing non-zero-set-point digital regulators, design procedures for rate-limited systems, and algorithms for dynamic control trim setting.
Holographic fluorescence microscopy with incoherent digital holographic adaptive optics
NASA Astrophysics Data System (ADS)
Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Byoungho; Kim, Myung K.
2015-03-01
Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: wavefront sensor, wavefront corrector and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, e.g., lenslet arrays for sensing or multi-acuator deformable mirrors for correcting. We have previously introduced an alternate approach to adaptive optics based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile is possible not only with the conventional coherent type of digital holography, but also with a new type of digital holography using incoherent light: self-interference incoherent digital holography (SIDH). The SIDH generates complex - i.e. amplitude plus phase - hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using a guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. The adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.
Implementation of Adaptive Digital Controllers on Programmable Logic Devices
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Monenegro, Justino (Technical Monitor)
2002-01-01
Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used proportional-integral-derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM-based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a DSP (Digital Signal Processor) or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSP) devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. An alternative is required for compact implementation of such functionality to withstand the harsh environment
Efficient design of two-dimensional recursive digital filters. Final report
Twogood, R.E.; Mitra, S.K.
1980-01-01
This report outlines the research progress during the period August 1978 to July 1979. This work can be divided into seven basic project areas. Project 1 deals with a comparative study of 2-D recursive and nonrecursive digital filters. The second project addresses a new design technique for 2-D half-plane recursive filters, and Projects 3 thru 5 deal with implementation issues. The sixth project presents our recent study of the applicability of array processors to 2-D digital signal processing. The final project involves our investigation into techniques for incorporating symmetry constraints on 2-D recursive filters in order to yield more efficient implementations.
NASA Astrophysics Data System (ADS)
Zhang, Yan; Tang, Baoping; Liu, Ziran; Chen, Rengxiang
2016-02-01
Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses
Digital adaptive controllers for VTOL vehicles. Volume 1: Concept evaluation
NASA Technical Reports Server (NTRS)
Hartmann, G. L.; Stein, G.; Pratt, S. G.
1979-01-01
A digital self-adaptive flight control system was developed for flight test in the VTOL approach and landing technology (VALT) research aircraft (a modified CH-47 helicopter). The control laws accept commands from an automatic on-board guidance system. The primary objective of the control laws is to provide good command-following with a minimum cross-axis response. Three attitudes and vertical velocity are separately commanded. Adaptation of the control laws is based on information from rate and attitude gyros and a vertical velocity measurement. The final design resulted from a comparison of two different adaptive concepts--one based on explicit parameter estimates from a real-time maximum-likelihood estimation algorithm, the other based on an implicit model reference adaptive system. The two designs were compared on the basis of performance and complexity.
On the design of wave digital filters with low sensitivity properties.
NASA Technical Reports Server (NTRS)
Renner, K.; Gupta, S. C.
1973-01-01
The wave digital filter patterned after doubly terminated maximum available power (MAP) networks by means of the Richard's transformation has been shown to have low-coefficient-sensitivity properties. This paper examines the exact nature of the relationship between the wave-digital-filter structure and the MAP networks and how the sensitivity property arises, which permits implementation of the digital structure with a lower coefficient word length than that possible with the conventional structures. The proper design procedure is specified and the nature of the unique complementary outputs is discussed. Finally, an example is considered which illustrates the design, the conversion techniques, and the low sensitivity properties.
NASA Astrophysics Data System (ADS)
Hu, Hongtao; Jing, Zhongliang; Hu, Shiqiang
2006-12-01
A novel adaptive algorithm for tracking maneuvering targets is proposed. The algorithm is implemented with fuzzy-controlled current statistic model adaptive filtering and unscented transformation. A fuzzy system allows the filter to tune the magnitude of maximum accelerations to adapt to different target maneuvers, and unscented transformation can effectively handle nonlinear system. A bearing-only tracking scenario simulation results show the proposed algorithm has a robust advantage over a wide range of maneuvers and overcomes the shortcoming of the traditional current statistic model and adaptive filtering algorithm.
The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation.
Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck
2016-01-01
This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix 'R' and the system noise V-C matrix 'Q'. Then, the global filter uses R to calculate the information allocation factor 'β' for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively. PMID:27438835
The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation
Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck
2016-01-01
This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix ‘R’ and the system noise V-C matrix ‘Q’. Then, the global filter uses R to calculate the information allocation factor ‘β’ for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively. PMID:27438835
Kneissler, Jan; Drugowitsch, Jan; Friston, Karl; Butz, Martin V
2015-01-01
Predictive coding appears to be one of the fundamental working principles of brain processing. Amongst other aspects, brains often predict the sensory consequences of their own actions. Predictive coding resembles Kalman filtering, where incoming sensory information is filtered to produce prediction errors for subsequent adaptation and learning. However, to generate prediction errors given motor commands, a suitable temporal forward model is required to generate predictions. While in engineering applications, it is usually assumed that this forward model is known, the brain has to learn it. When filtering sensory input and learning from the residual signal in parallel, a fundamental problem arises: the system can enter a delusional loop when filtering the sensory information using an overly trusted forward model. In this case, learning stalls before accurate convergence because uncertainty about the forward model is not properly accommodated. We present a Bayes-optimal solution to this generic and pernicious problem for the case of linear forward models, which we call Predictive Inference and Adaptive Filtering (PIAF). PIAF filters incoming sensory information and learns the forward model simultaneously. We show that PIAF is formally related to Kalman filtering and to the Recursive Least Squares linear approximation method, but combines these procedures in a Bayes optimal fashion. Numerical evaluations confirm that the delusional loop is precluded and that the learning of the forward model is more than 10-times faster when compared to a naive combination of Kalman filtering and Recursive Least Squares. PMID:25983690
An Adaptive Fourier Filter for Relaxing Time Stepping Constraints for Explicit Solvers
Gelb, Anne; Archibald, Richard K
2015-01-01
Filtering is necessary to stabilize piecewise smooth solutions. The resulting diffusion stabilizes the method, but may fail to resolve the solution near discontinuities. Moreover, high order filtering still requires cost prohibitive time stepping. This paper introduces an adaptive filter that controls spurious modes of the solution, but is not unnecessarily diffusive. Consequently we are able to stabilize the solution with larger time steps, but also take advantage of the accuracy of a high order filter.
An online novel adaptive filter for denoising time series measurements.
Willis, Andrew J
2006-04-01
A nonstationary form of the Wiener filter based on a principal components analysis is described for filtering time series data possibly derived from noisy instrumentation. The theory of the filter is developed, implementation details are presented and two examples are given. The filter operates online, approximating the maximum a posteriori optimal Bayes reconstruction of a signal with arbitrarily distributed and non stationary statistics. PMID:16649562
Fu, Rong; Ma, Xiaomian; Bian, Zhaoying; Ma, Jianhua
2015-02-01
The digital separation of diaminobenzidine (DAB)-stained tissues from hematoxylin background is an important pre-processing step to analyze immunostains. In most stain separation methods, specific color channels (for example: RGB, HSI, CMYK) or color deconvolution matrices are used to obtain different tissue contrasts between DAB- and hematoxylin-stained areas. However, these methods could produce incomplete separation or color changes because the color spectra of stains and co-localized stains overlap in histological images. Therefore, we proposed an automatic color-filtering to separate hematoxylin- and DAB-stained tissues. In implantation, the RGB images of DAB-labeled immunostains are first converted to 8-bit BN images by a mathematical translation to produce the largest contrast between brown DAB-stained tissues and blue hematoxylin-stained tissues. The first valley in the histogram revised by nonuniform quantization is set as the cut-off point to obtain a brown filter. DAB-stained tissues are accurately delineated from the background counterstain, resulting in DAB-only-image and De-DAB-image. Subsequently, a blue filter is designed in the CIE-Lab color space to further delineate the hematoxylin-stained tissues from the De-DAB-image. Finally, the average values of the remaining pixels of the De-DAB-image are set as the background color of the DAB-only-image to manage uneven dyeing and provide DAB-stained-image for adaptive immunohistochemistry quantitation. Extensive experimental results demonstrated that the proposed method has significant advantages compared with existing methods in terms of complete stain separation without changing the color in DAB-stained areas. PMID:25780744
Removing tidal-period variations from time-series data using low-pass digital filters
Walters, Roy A.; Heston, Cynthia
1982-01-01
Several low-pass, digital filters are examined for their ability to remove tidal Period Variations from a time-series of water surface elevation for San Francisco Bay. The most efficient filter is the one which is applied to the Fourier coefficients of the transformed data, and the filtered data recovered through an inverse transform. The ability of the filters to remove the tidal components increased in the following order: 1) cosine-Lanczos filter, 2) cosine-Lanczos squared filter; 3) Godin filter; and 4) a transform fitter. The Godin fitter is not sufficiently sharp to prevent severe attenuation of 2–3 day variations in surface elevation resulting from weather events.
NASA Astrophysics Data System (ADS)
Xu, Dexiang
This dissertation presents a novel method of designing finite word length Finite Impulse Response (FIR) digital filters using a Real Parameter Parallel Genetic Algorithm (RPPGA). This algorithm is derived from basic Genetic Algorithms which are inspired by natural genetics principles. Both experimental results and theoretical studies in this work reveal that the RPPGA is a suitable method for determining the optimal or near optimal discrete coefficients of finite word length FIR digital filters. Performance of RPPGA is evaluated by comparing specifications of filters designed by other methods with filters designed by RPPGA. The parallel and spatial structures of the algorithm result in faster and more robust optimization than basic genetic algorithms. A filter designed by RPPGA is implemented in hardware to attenuate high frequency noise in a data acquisition system for collecting seismic signals. These studies may lead to more applications of the Real Parameter Parallel Genetic Algorithms in Electrical Engineering.
Design of efficient circularly symmetric two-dimensional variable digital FIR filters
Bindima, Thayyil; Elias, Elizabeth
2016-01-01
Circularly symmetric two-dimensional (2D) finite impulse response (FIR) filters find extensive use in image and medical applications, especially for isotropic filtering. Moreover, the design and implementation of 2D digital filters with variable fractional delay and variable magnitude responses without redesigning the filter has become a crucial topic of interest due to its significance in low-cost applications. Recently the design using fixed word length coefficients has gained importance due to the replacement of multipliers by shifters and adders, which reduces the hardware complexity. Among the various approaches to 2D design, transforming a one-dimensional (1D) filter to 2D by transformation, is reported to be an efficient technique. In this paper, 1D variable digital filters (VDFs) with tunable cut-off frequencies are designed using Farrow structure based interpolation approach, and the sub-filter coefficients in the Farrow structure are made multiplier-less using canonic signed digit (CSD) representation. The resulting performance degradation in the filters is overcome by using artificial bee colony (ABC) optimization. Finally, the optimized 1D VDFs are mapped to 2D using generalized McClellan transformation resulting in low complexity, circularly symmetric 2D VDFs with real-time tunability. PMID:27222739
Design of efficient circularly symmetric two-dimensional variable digital FIR filters.
Bindima, Thayyil; Elias, Elizabeth
2016-05-01
Circularly symmetric two-dimensional (2D) finite impulse response (FIR) filters find extensive use in image and medical applications, especially for isotropic filtering. Moreover, the design and implementation of 2D digital filters with variable fractional delay and variable magnitude responses without redesigning the filter has become a crucial topic of interest due to its significance in low-cost applications. Recently the design using fixed word length coefficients has gained importance due to the replacement of multipliers by shifters and adders, which reduces the hardware complexity. Among the various approaches to 2D design, transforming a one-dimensional (1D) filter to 2D by transformation, is reported to be an efficient technique. In this paper, 1D variable digital filters (VDFs) with tunable cut-off frequencies are designed using Farrow structure based interpolation approach, and the sub-filter coefficients in the Farrow structure are made multiplier-less using canonic signed digit (CSD) representation. The resulting performance degradation in the filters is overcome by using artificial bee colony (ABC) optimization. Finally, the optimized 1D VDFs are mapped to 2D using generalized McClellan transformation resulting in low complexity, circularly symmetric 2D VDFs with real-time tunability. PMID:27222739
Implementation of Adaptive Digital Controllers on Programmable Logic Devices
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Montenegro, Justino (Technical Monitor)
2002-01-01
Much has been made of the capabilities of Field Programmable Gate Arrays (FPGA's) in the hardware implementation of fast digital signal processing functions. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used Proportional-Integral-Derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a Digital Signal Processor (DSP) device or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using DSP devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, Pulse Width Modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacemap. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive-control algorithm
Adaptive RSOV filter using the FELMS algorithm for nonlinear active noise control systems
NASA Astrophysics Data System (ADS)
Zhao, Haiquan; Zeng, Xiangping; He, Zhengyou; Li, Tianrui
2013-01-01
This paper presents a recursive second-order Volterra (RSOV) filter to solve the problems of signal saturation and other nonlinear distortions that occur in nonlinear active noise control systems (NANC) used for actual applications. Since this nonlinear filter based on an infinite impulse response (IIR) filter structure can model higher than second-order and third-order nonlinearities for systems where the nonlinearities are harmonically related, the RSOV filter is more effective in NANC systems with either a linear secondary path (LSP) or a nonlinear secondary path (NSP). Simulation results clearly show that the RSOV adaptive filter using the multichannel structure filtered-error least mean square (FELMS) algorithm can further greatly reduce the computational burdens and is more suitable to eliminate nonlinear distortions in NANC systems than a SOV filter, a bilinear filter and a third-order Volterra (TOV) filter.
NASA Technical Reports Server (NTRS)
Baer-Riedhart, Jennifer L.; Landy, Robert J.
1987-01-01
The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.
Discrete cosine transform-based local adaptive filtering of images corrupted by nonstationary noise
NASA Astrophysics Data System (ADS)
Lukin, Vladimir V.; Fevralev, Dmitriy V.; Ponomarenko, Nikolay N.; Abramov, Sergey K.; Pogrebnyak, Oleksiy; Egiazarian, Karen O.; Astola, Jaakko T.
2010-04-01
In many image-processing applications, observed images are contaminated by a nonstationary noise and no a priori information on noise dependence on local mean or about local properties of noise statistics is available. In order to remove such a noise, a locally adaptive filter has to be applied. We study a locally adaptive filter based on evaluation of image local activity in a ``blind'' manner and on discrete cosine transform computed in overlapping blocks. Two mechanisms of local adaptation are proposed and applied. The first mechanism takes into account local estimates of noise standard deviation while the second one exploits discrimination of homogeneous and heterogeneous image regions by adaptive threshold setting. The designed filter performance is tested for simulated data as well as for real-life remote-sensing and maritime radar images. Recommendations concerning filter parameter setting are provided. An area of applicability of the proposed filter is defined.
Geometric-Algebra LMS Adaptive Filter and Its Application to Rotation Estimation
NASA Astrophysics Data System (ADS)
Lopes, Wilder B.; Al-Nuaimi, Anas; Lopes, Cassio G.
2016-06-01
This paper exploits Geometric (Clifford) Algebra (GA) theory in order to devise and introduce a new adaptive filtering strategy. From a least-squares cost function, the gradient is calculated following results from Geometric Calculus (GC), the extension of GA to handle differential and integral calculus. The novel GA least-mean-squares (GA-LMS) adaptive filter, which inherits properties from standard adaptive filters and from GA, is developed to recursively estimate a rotor (multivector), a hypercomplex quantity able to describe rotations in any dimension. The adaptive filter (AF) performance is assessed via a 3D point-clouds registration problem, which contains a rotation estimation step. Calculating the AF computational complexity suggests that it can contribute to reduce the cost of a full-blown 3D registration algorithm, especially when the number of points to be processed grows. Moreover, the employed GA/GC framework allows for easily applying the resulting filter to estimating rotors in higher dimensions.
NASA Technical Reports Server (NTRS)
Benardini, James N.; Koukol, Robert C.; Schubert, Wayne W.; Morales, Fabian; Klatte, Marlin F.
2012-01-01
A report describes an adaptation of a filter assembly to enable it to be used to filter out microorganisms from a propulsion system. The filter assembly has previously been used for particulates greater than 2 micrometers. Projects that utilize large volumes of nonmetallic materials of planetary protection concern pose a challenge to their bioburden budget, as a conservative specification value of 30 spores per cubic centimeter is typically used. Helium was collected utilizing an adapted filtration approach employing an existing Millipore filter assembly apparatus used by the propulsion team for particulate analysis. The filter holder on the assembly has a 47-mm diameter, and typically a 1.2-5 micrometer pore-size filter is used for particulate analysis making it compatible with commercially available sterilization filters (0.22 micrometers) that are necessary for biological sampling. This adaptation to an existing technology provides a proof-of-concept and a demonstration of successful use in a ground equipment system. This adaptation has demonstrated that the Millipore filter assembly can be utilized to filter out microorganisms from a propulsion system, whereas in previous uses the filter assembly was utilized for particulates greater than 2 micrometers.
Adaptive mean filtering for noise reduction in CT polymer gel dosimetry
Hilts, Michelle; Jirasek, Andrew
2008-01-15
X-ray computed tomography (CT) as a method of extracting 3D dose information from irradiated polymer gel dosimeters is showing potential as a practical means to implement gel dosimetry in a radiation therapy clinic. However, the response of CT contrast to dose is weak and noise reduction is critical in order to achieve adequate dose resolutions with this method. Phantom design and CT imaging technique have both been shown to decrease image noise. In addition, image postprocessing using noise reduction filtering techniques have been proposed. This work evaluates in detail the use of the adaptive mean filter for reducing noise in CT gel dosimetry. Filter performance is systematically tested using both synthetic patterns mimicking a range of clinical dose distribution features as well as actual clinical dose distributions. Both low and high signal-to-noise ratio (SNR) situations are examined. For all cases, the effects of filter kernel size and the number of iterations are investigated. Results indicate that adaptive mean filtering is a highly effective tool for noise reduction CT gel dosimetry. The optimum filtering strategy depends on characteristics of the dose distributions and image noise level. For low noise images (SNR {approx}20), the filtered results are excellent and use of adaptive mean filtering is recommended as a standard processing tool. For high noise images (SNR {approx}5) adaptive mean filtering can also produce excellent results, but filtering must be approached with more caution as spatial and dose distortions of the original dose distribution can occur.
Optimal design of 2D digital filters based on neural networks
NASA Astrophysics Data System (ADS)
Wang, Xiao-hua; He, Yi-gang; Zheng, Zhe-zhao; Zhang, Xu-hong
2005-02-01
Two-dimensional (2-D) digital filters are widely useful in image processing and other 2-D digital signal processing fields,but designing 2-D filters is much more difficult than designing one-dimensional (1-D) ones.In this paper, a new design approach for designing linear-phase 2-D digital filters is described,which is based on a new neural networks algorithm (NNA).By using the symmetry of the given 2-D magnitude specification,a compact express for the magnitude response of a linear-phase 2-D finite impulse response (FIR) filter is derived.Consequently,the optimal problem of designing linear-phase 2-D FIR digital filters is turned to approximate the desired 2-D magnitude response by using the compact express.To solve the problem,a new NNA is presented based on minimizing the mean-squared error,and the convergence theorem is presented and proved to ensure the designed 2-D filter stable.Three design examples are also given to illustrate the effectiveness of the NNA-based design approach.
Analysis of dynamic deformation processes with adaptive KALMAN-filtering
NASA Astrophysics Data System (ADS)
Eichhorn, Andreas
2007-05-01
In this paper the approach of a full system analysis is shown quantifying a dynamic structural ("white-box"-) model for the calculation of thermal deformations of bar-shaped machine elements. The task was motivated from mechanical engineering searching new methods for the precise prediction and computational compensation of thermal influences in the heating and cooling phases of machine tools (i.e. robot arms, etc.). The quantification of thermal deformations under variable dynamic loads requires the modelling of the non-stationary spatial temperature distribution inside the object. Based upon FOURIERS law of heat flow the high-grade non-linear temperature gradient is represented by a system of partial differential equations within the framework of a dynamic Finite Element topology. It is shown that adaptive KALMAN-filtering is suitable to quantify relevant disturbance influences and to identify thermal parameters (i.e. thermal diffusivity) with a deviation of only 0,2%. As result an identified (and verified) parametric model for the realistic prediction respectively simulation of dynamic temperature processes is presented. Classifying the thermal bend as the main deformation quantity of bar-shaped machine tools, the temperature model is extended to a temperature deformation model. In lab tests thermal load steps are applied to an aluminum column. Independent control measurements show that the identified model can be used to predict the columns bend with a mean deviation (
NASA Astrophysics Data System (ADS)
Rodríguez-Caballero, E.; Afana, A.; Chamizo, S.; Solé-Benet, A.; Canton, Y.
2016-07-01
Terrestrial laser scanning (TLS), widely known as light detection and ranging (LiDAR) technology, is increasingly used to provide highly detailed digital terrain models (DTM) with millimetric precision and accuracy. In order to generate a DTM, TLS data has to be filtered from undesired spurious objects, such as vegetation, artificial structures, etc., Early filtering techniques, successfully applied to airborne laser scanning (ALS), fail when applied to TLS data, as they heavily smooth the terrain surface and do not retain their real morphology. In this article, we present a new methodology for filtering TLS data based on the geometric and radiometric properties of the scanned surfaces. This methodology was built on previous morphological filters that select the minimum point height within a sliding window as the real surface. However, contrary to those methods, which use a fixed window size, the new methodology operates under different spatial scales represented by different window sizes, and can be adapted to different types and sizes of plants. This methodology has been applied to two study areas of differing vegetation type and density. The accuracy of the final DTMs was improved by ∼30% under dense canopy plants and over ∼40% on the open spaces between plants, where other methodologies drastically underestimated the real surface heights. This resulted in more accurate representation of the soil surface and microtopography than up-to-date techniques, eventually having strong implications in hydrological and geomorphological studies.
Wang, Xin; Wu, Linhui; Yi, Xi; Zhang, Yanqi; Zhang, Limin; Zhao, Huijuan; Gao, Feng
2015-01-01
Due to both the physiological and morphological differences in the vascularization between healthy and diseased tissues, pharmacokinetic diffuse fluorescence tomography (DFT) can provide contrast-enhanced and comprehensive information for tumor diagnosis and staging. In this regime, the extended Kalman filtering (EKF) based method shows numerous advantages including accurate modeling, online estimation of multiparameters, and universal applicability to any optical fluorophore. Nevertheless the performance of the conventional EKF highly hinges on the exact and inaccessible prior knowledge about the initial values. To address the above issues, an adaptive-EKF scheme is proposed based on a two-compartmental model for the enhancement, which utilizes a variable forgetting-factor to compensate the inaccuracy of the initial states and emphasize the effect of the current data. It is demonstrated using two-dimensional simulative investigations on a circular domain that the proposed adaptive-EKF can obtain preferable estimation of the pharmacokinetic-rates to the conventional-EKF and the enhanced-EKF in terms of quantitativeness, noise robustness, and initialization independence. Further three-dimensional numerical experiments on a digital mouse model validate the efficacy of the method as applied in realistic biological systems. PMID:26089975
2014-01-01
Background Extracting cardiorespiratory signals from non-invasive and non-contacting sensor arrangements, i.e. magnetic induction sensors, is a challenging task. The respiratory and cardiac signals are mixed on top of a large and time-varying offset and are likely to be disturbed by measurement noise. Basic filtering techniques fail to extract relevant information for monitoring purposes. Methods We present a real-time filtering system based on an adaptive Kalman filter approach that separates signal offsets, respiratory and heart signals from three different sensor channels. It continuously estimates respiration and heart rates, which are fed back into the system model to enhance performance. Sensor and system noise covariance matrices are automatically adapted to the aimed application, thus improving the signal separation capabilities. We apply the filtering to two different subjects with different heart rates and sensor properties and compare the results to the non-adaptive version of the same Kalman filter. Also, the performance, depending on the initialization of the filters, is analyzed using three different configurations ranging from best to worst case. Results Extracted data are compared with reference heart rates derived from a standard pulse-photoplethysmographic sensor and respiration rates from a flowmeter. In the worst case for one of the subjects the adaptive filter obtains mean errors (standard deviations) of -0.2 min −1 (0.3 min −1) and -0.7 bpm (1.7 bpm) (compared to -0.2 min −1 (0.4 min −1) and 42.0 bpm (6.1 bpm) for the non-adaptive filter) for respiration and heart rate, respectively. In bad conditions the heart rate is only correctly measurable when the Kalman matrices are adapted to the target sensor signals. Also, the reduced mean error between the extracted offset and the raw sensor signal shows that adapting the Kalman filter continuously improves the ability to separate the desired signals from the raw sensor data. The average
Integration, heterochrony, and adaptation in pedal digits of syndactylous marsupials
2008-01-01
Background Marsupial syndactyly is a curious morphology of the foot found in all species of diprotodontian and peramelemorph marsupials. It is traditionally defined as a condition in which digits II and III of the foot are bound by skin and are reduced. Past treatments of marsupial syndactyly have not considered the implications of this unique morphology for broader issues of digit development and evolution, and the ongoing debate regarding its phylogenetic meaning lacks a broad empirical basis. This study undertakes the first interdisciplinary characterisation of syndactyly, using variance/covariance matrix comparisons of morphometric measurements, locomotor indices, ossification sequences, and re-assessment of the largely anecdotal data on the phylogenetic distribution of tarsal/metatarsal articulations and "incipient syndactyly". Results Syndactylous digits have virtually identical variance/covariance matrices and display heterochronic ossification timing with respect to digits IV/V. However, this does not impact on overall locomotor adaptation patterns in the syndactylous foot as determined by analysis of locomotor predictor ratios. Reports of incipient syndactyly in some marsupial clades could not be confirmed; contrary to previous claims, syndactyly does not appear to impact on tarsal bone arrangement. Conclusion The results suggest that marsupial syndactyly originates from a constraint that is rooted in early digit ontogeny and results in evolution of the syndactylous digits as a highly integrated unit. Although convergent evolution appears likely, syndactyly in Diprotodontia and Peramelemorpha may occur through homologous developmental processes. We argue that the term "syndactyly" is a misnomer because the marsupial condition only superficially resembles its name-giving human soft-tissue syndactyly. PMID:18501017
Kim, Dong Sik; Lee, Sanggyun
2013-06-15
Purpose: Grid artifacts are caused when using the antiscatter grid in obtaining digital x-ray images. In this paper, research on grid artifact reduction techniques is conducted especially for the direct detectors, which are based on amorphous selenium. Methods: In order to analyze and reduce the grid artifacts, the authors consider a multiplicative grid image model and propose a homomorphic filtering technique. For minimal damage due to filters, which are used to suppress the grid artifacts, rotated grids with respect to the sampling direction are employed, and min-max optimization problems for searching optimal grid frequencies and angles for given sampling frequencies are established. The authors then propose algorithms for the grid artifact reduction based on the band-stop filters as well as low-pass filters. Results: The proposed algorithms are experimentally tested for digital x-ray images, which are obtained from direct detectors with the rotated grids, and are compared with other algorithms. It is shown that the proposed algorithms can successfully reduce the grid artifacts for direct detectors. Conclusions: By employing the homomorphic filtering technique, the authors can considerably suppress the strong grid artifacts with relatively narrow-bandwidth filters compared to the normal filtering case. Using rotated grids also significantly reduces the ringing artifact. Furthermore, for specific grid frequencies and angles, the authors can use simple homomorphic low-pass filters in the spatial domain, and thus alleviate the grid artifacts with very low implementation complexity.
Adaptive optics in digital micromirror based confocal microscopy
NASA Astrophysics Data System (ADS)
Pozzi, P.; Wilding, D.; Soloviev, O.; Vdovin, G.; Verhaegen, M.
2016-03-01
This proceeding reports early results in the development of a new technique for adaptive optics in confocal microscopy. The term adaptive optics refers to the branch of optics in which an active element in the optical system is used to correct inhomogeneities in the media through which light propagates. In its most classical form, mostly used in astronomical imaging, adaptive optics is achieved through a closed loop in which the actuators of a deformable mirror are driven by a wavefront sensor. This approach is severely limited in fluorescence microscopy, as the use of a wavefront sensor requires the presence of a bright, point like source in the field of view, a condition rarely satisfied in microscopy samples. Previously reported approaches to adaptive optics in fluorescence microscopy are therefore limited to the inclusion of fluorescent microspheres in the sample, to use as bright stars for wavefront sensors, or time consuming sensorless optimization procedures, requiring several seconds of optimization before the acquisition of a single image. We propose an alternative approach to the problem, implementing sensorless adaptive optics in a Programmable array microscope. A programmable array microscope is a microscope based on a digital micromirror device, in which the single elements of the micromirror act both as point sources and pinholes.
An image adaptive, wavelet-based watermarking of digital images
NASA Astrophysics Data System (ADS)
Agreste, Santa; Andaloro, Guido; Prestipino, Daniela; Puccio, Luigia
2007-12-01
In digital management, multimedia content and data can easily be used in an illegal way--being copied, modified and distributed again. Copyright protection, intellectual and material rights protection for authors, owners, buyers, distributors and the authenticity of content are crucial factors in solving an urgent and real problem. In such scenario digital watermark techniques are emerging as a valid solution. In this paper, we describe an algorithm--called WM2.0--for an invisible watermark: private, strong, wavelet-based and developed for digital images protection and authenticity. Using discrete wavelet transform (DWT) is motivated by good time-frequency features and well-matching with human visual system directives. These two combined elements are important in building an invisible and robust watermark. WM2.0 works on a dual scheme: watermark embedding and watermark detection. The watermark is embedded into high frequency DWT components of a specific sub-image and it is calculated in correlation with the image features and statistic properties. Watermark detection applies a re-synchronization between the original and watermarked image. The correlation between the watermarked DWT coefficients and the watermark signal is calculated according to the Neyman-Pearson statistic criterion. Experimentation on a large set of different images has shown to be resistant against geometric, filtering and StirMark attacks with a low rate of false alarm.
Carving and adaptive drainage enforcement of grid digital elevation models
NASA Astrophysics Data System (ADS)
Soille, Pierre; Vogt, Jürgen; Colombo, Roberto
2003-12-01
An effective and widely used method for removing spurious pits in digital elevation models consists of filling them until they overflow. However, this method sometimes creates large flat regions which in turn pose a problem for the determination of accurate flow directions. In this study, we propose to suppress each pit by creating a descending path from it to the nearest point having a lower elevation value. This is achieved by carving, i.e., lowering, the terrain elevations along the detected path. Carving paths are identified through a flooding simulation starting from the river outlets. The proposed approach allows for adaptive drainage enforcement whereby river networks coming from other data sources are imposed to the digital elevation model only in places where the automatic river network extraction deviates substantially from the known networks. An improvement to methods for routing flow over flat regions is also introduced. Detailed results are presented over test areas of the Danube basin.
Optimized FIR filters for digital pulse compression of biphase codes with low sidelobes
NASA Astrophysics Data System (ADS)
Sanal, M.; Kuloor, R.; Sagayaraj, M. J.
In miniaturized radars where power, real estate, speed and low cost are tight constraints and Doppler tolerance is not a major concern biphase codes are popular and FIR filter is used for digital pulse compression (DPC) implementation to achieve required range resolution. Disadvantage of low peak to sidelobe ratio (PSR) of biphase codes can be overcome by linear programming for either single stage mismatched filter or two stage approach i.e. matched filter followed by sidelobe suppression filter (SSF) filter. Linear programming (LP) calls for longer filter lengths to obtain desirable PSR. Longer the filter length greater will be the number of multipliers, hence more will be the requirement of logic resources used in the FPGAs and many time becomes design challenge for system on chip (SoC) requirement. This requirement of multipliers can be brought down by clustering the tap weights of the filter by kmeans clustering algorithm at the cost of few dB deterioration in PSR. The cluster centroid as tap weight reduces logic used in FPGA for FIR filters to a great extent by reducing number of weight multipliers. Since k-means clustering is an iterative algorithm, centroid for weights cluster is different in different iterations and causes different clusters. This causes difference in clustering of weights and sometimes even it may happen that lesser number of multiplier and lesser length of filter provide better PSR.
On the Performance of the Martin Digital Filter for High- and Low-pass Applications
NASA Technical Reports Server (NTRS)
Mcclain, C. R.
1979-01-01
A nonrecursive numerical filter is described in which the weighting sequence is optimized by minimizing the excursion from the ideal rectangular filter in a least squares sense over the entire domain of normalized frequency. Additional corrections to the weights in order to reduce overshoot oscillations (Gibbs phenomenon) and to insure unity gain at zero frequency for the low pass filter are incorporated. The filter is characterized by a zero phase shift for all frequencies (due to a symmetric weighting sequence), a finite memory and stability, and it may readily be transformed to a high pass filter. Equations for the filter weights and the frequency response function are presented, and applications to high and low pass filtering are examined. A discussion of optimization of high pass filter parameters for a rather stringent response requirement is given in an application to the removal of aircraft low frequency oscillations superimposed on remotely sensed ocean surface profiles. Several frequency response functions are displayed, both in normalized frequency space and in period space. A comparison of the performance of the Martin filter with some other commonly used low pass digital filters is provided in an application to oceanographic data.
NASA Astrophysics Data System (ADS)
Ferragina, V.; Frassone, A.; Ghittori, N.; Malcovati, P.; Vigna, A.
2005-06-01
The behavioral analysis and the design in a 0.13 μm CMOS technology of a digital interpolator filter for wireless applications are presented. The proposed block is designed to be embedded in the baseband part of a reconfigurable transmitter (WLAN 802.11a, UMTS) to operate as a sampling frequency boost between the digital signal processor (DSP) and the digital-to-analog converter (DAC). In recent trends the DAC of such transmitters usually operates at high conversion frequencies (to allow a relaxed implementation of the following analog reconstruction filter), while the DSP output flows at low frequencies (typically Nyquist rate). Thus a block able to increase the digital data rate, like the one proposed, is needed before the DAC. For example, in the WLAN case, an interpolation factor of 4 has been used, allowing the digital data frequency to raise from 20 MHz to 80 MHz. Using a time-domain model of the TX chain, a behavioral analysis has been performed to determine the impact of the filter performance on the quality of the signal at the antenna. This study has led to the evaluation of the z-domain filter transfer function, together with the specifications concerning a finite precision implementation. A VHDL description has allowed an automatic synthesis of the circuit in a 0.13 μm CMOS technology (with a supply voltage of 1.2 V). Post-synthesis simulations have confirmed the effectiveness of the proposed study.
An Efficient Adaptive Weighted Switching Median Filter for Removing High Density Impulse Noise
NASA Astrophysics Data System (ADS)
Nair, Madhu S.; Ameera Mol, P. M.
2014-09-01
Restoration of images corrupted by impulse noise is a very active research area in image processing. In this paper, an Efficient Adaptive Weighted Switching Median filter for restoration of images that are corrupted by high density impulse noise is proposed. The filtering is performed as a two phase process—a detection phase followed by a filtering phase. In the proposed method, noise detection is done by HEIND algorithm proposed by Duan et al. The filtering algorithm is then applied to the pixels which are detected as noisy by the detection algorithm. All uncorrupted pixels in the image are left unchanged. The filtering window size is chosen adaptively depending on the local noise distribution around each corrupted pixels. Noisy pixels are replaced by a weighted median value of uncorrupted pixels in the filtering window. The weight value assigned to each uncorrupted pixels depends on its closeness to the central pixel.
Adaptive Filtering for Large Space Structures: A Closed-Form Solution
NASA Technical Reports Server (NTRS)
Rauch, H. E.; Schaechter, D. B.
1985-01-01
In a previous paper Schaechter proposes using an extended Kalman filter to estimate adaptively the (slowly varying) frequencies and damping ratios of a large space structure. The time varying gains for estimating the frequencies and damping ratios can be determined in closed form so it is not necessary to integrate the matrix Riccati equations. After certain approximations, the time varying adaptive gain can be written as the product of a constant matrix times a matrix derived from the components of the estimated state vector. This is an important savings of computer resources and allows the adaptive filter to be implemented with approximately the same effort as the nonadaptive filter. The success of this new approach for adaptive filtering was demonstrated using synthetic data from a two mode system.
Applying well flow adapted filtering to transient pumping tests
NASA Astrophysics Data System (ADS)
Zech, Alraune; Attinger, Sabine
2014-05-01
Transient pumping tests are often used to estimate porous medium characteristics like hydraulic conductivity and storativity. The interpretation of pumping test drawdowns is based on methods which are normally developed under the assumption of homogeneous porous media. However aquifer heterogeneity strongly impacts on well flow pattern, in particular in the vicinity of the pumping well. The purpose of this work is to present a method to interpret drawdowns of transient pumping tests in heterogeneous porous media. With this method we are able to describe the effects that statistical quantities like variance and correlation length have on pumping test drawdowns. Furthermore it allows inferring on the statistical parameters of aquifer heterogeneity from drawdown data by invers estimation, which is not possible using methods for homogeneous media like Theis' solution. The method is based on a representative description of hydraulic conductivity for radial flow regimes. It is derived from a well flow adapted filtering procedure (Coarse Graining), where the heterogeneity of hydraulic conductivity is assumed to be log-normal distributed with a Gaussian correlation structure. applying the up scaled hydraulic conductivity to the groundwater flow equation results in a hydraulic head which depends on the statistical parameters of the porous medium. It describes the drawdown of a transient pumping test in heterogeneous media. We used an ensemble of transient pumping test simulations to verify the up scaled drawdown solution. We generated transient pumping tests in heterogeneous media for various values of the statistical parameters variance and correlation length and evaluated their impact on the drawdown behavior as well as on the temporal evolution. We further examined the impact of several aspects like the location of an observation well or the local conductivity at the pumping well on the drawdown behavior. This work can be understood as an expansion of the work of Zech et
Microwave Photonic Filters for Interference Cancellation and Adaptive Beamforming
NASA Astrophysics Data System (ADS)
Chang, John
Wireless communication has experienced an explosion of growth, especially in the past half- decade, due to the ubiquity of wireless devices, such as tablets, WiFi-enabled devices, and especially smartphones. Proliferation of smartphones with powerful processors and graphic chips have given an increasing amount of people the ability to access anything from anywhere. Unfortunately, this ease of access has greatly increased mobile wireless bandwidth and have begun to stress carrier networks and spectra. Wireless interference cancellation will play a big role alongside the popularity of wire- less communication. In this thesis, we will investigate optical signal processing methods for wireless interference cancellation methods. Optics provide the perfect backdrop for interference cancellation. Mobile wireless data is already aggregated and transported through fiber backhaul networks in practice. By sandwiching the signal processing stage between the receiver and the fiber backhaul, processing can easily be done locally in one location. Further, optics offers the advantages of being instantaneously broadband and size, weight, and power (SWAP). We are primarily concerned with two methods for interference cancellation, based on microwave photonic filters, in this thesis. The first application is for a co-channel situation, in which a transmitter and receiver are co-located and transmitting at the same frequency. A novel analog optical technique extended for multipath interference cancellation of broadband signals is proposed and experimentally demonstrated in this thesis. The proposed architecture was able to achieve a maximum of 40 dB of cancellation over 200 MHz and 50 dB of cancellation over 10 MHz. The broadband nature of the cancellation, along with its depth, demonstrates both the precision of the optical components and the validity of the architecture. Next, we are interested in a scenario with dynamically changing interference, which requires an adaptive photonic
2015-01-01
A digital filter derived from linear discriminant analysis (LDA) is developed for recovering impulse responses in photon counting from a high speed photodetector (rise time of ∼1 ns) and applied to remove ringing distortions from impedance mismatch in multiphoton fluorescence microscopy. Training of the digital filter was achieved by defining temporally coincident and noncoincident transients and identifying the projection within filter-space that best separated the two classes. Once trained, data analysis by digital filtering can be performed quickly. Assessment of the reliability of the approach was performed through comparisons of simulated voltage transients, in which the ground truth results were known a priori. The LDA filter was also found to recover deconvolved impulses for single photon counting from highly distorted ringing waveforms from an impedance mismatched photomultiplier tube. The LDA filter was successful in removing these ringing distortions from two-photon excited fluorescence micrographs and through data simulations was found to extend the dynamic range of photon counting by approximately 3 orders of magnitude through minimization of detector paralysis. PMID:24559143
Zhu, Wu; Fang, Jian-an; Tang, Yang; Zhang, Wenbing; Du, Wei
2012-01-01
Design of a digital infinite-impulse-response (IIR) filter is the process of synthesizing and implementing a recursive filter network so that a set of prescribed excitations results a set of desired responses. However, the error surface of IIR filters is usually non-linear and multi-modal. In order to find the global minimum indeed, an improved differential evolution (DE) is proposed for digital IIR filter design in this paper. The suggested algorithm is a kind of DE variants with a controllable probabilistic (CPDE) population size. It considers the convergence speed and the computational cost simultaneously by nonperiodic partial increasing or declining individuals according to fitness diversities. In addition, we discuss as well some important aspects for IIR filter design, such as the cost function value, the influence of (noise) perturbations, the convergence rate and successful percentage, the parameter measurement, etc. As to the simulation result, it shows that the presented algorithm is viable and comparable. Compared with six existing State-of-the-Art algorithms-based digital IIR filter design methods obtained by numerical experiments, CPDE is relatively more promising and competitive. PMID:22808191
Sullivan, Shane Z; Schmitt, Paul D; Muir, Ryan D; DeWalt, Emma L; Simpson, Garth J
2014-04-01
A digital filter derived from linear discriminant analysis (LDA) is developed for recovering impulse responses in photon counting from a high speed photodetector (rise time of ~1 ns) and applied to remove ringing distortions from impedance mismatch in multiphoton fluorescence microscopy. Training of the digital filter was achieved by defining temporally coincident and noncoincident transients and identifying the projection within filter-space that best separated the two classes. Once trained, data analysis by digital filtering can be performed quickly. Assessment of the reliability of the approach was performed through comparisons of simulated voltage transients, in which the ground truth results were known a priori. The LDA filter was also found to recover deconvolved impulses for single photon counting from highly distorted ringing waveforms from an impedance mismatched photomultiplier tube. The LDA filter was successful in removing these ringing distortions from two-photon excited fluorescence micrographs and through data simulations was found to extend the dynamic range of photon counting by approximately 3 orders of magnitude through minimization of detector paralysis. PMID:24559143
Airy-Kaup-Kupershmidt filters applied to digital image processing
NASA Astrophysics Data System (ADS)
Hoyos Yepes, Laura Cristina
2015-09-01
The Kaup-Kupershmidt operator is applied to the two-dimensional solution of the Airy-diffusion equation and the resulting filter is applied via convolution to image processing. The full procedure is implemented using Maple code with the package ImageTools. Some experiments were performed using a wide category of images including biomedical images generated by magnetic resonance, computarized axial tomography, positron emission tomography, infrared and photon diffusion. The Airy-Kaup-Kupershmidt filter can be used as a powerful edge detector and as powerful enhancement tool in image processing. It is expected that the Airy-Kaup-Kupershmidt could be incorporated in standard programs for image processing such as ImageJ.
Object tracking with adaptive HOG detector and adaptive Rao-Blackwellised particle filter
NASA Astrophysics Data System (ADS)
Rosa, Stefano; Paleari, Marco; Ariano, Paolo; Bona, Basilio
2012-01-01
Scenarios for a manned mission to the Moon or Mars call for astronaut teams to be accompanied by semiautonomous robots. A prerequisite for human-robot interaction is the capability of successfully tracking humans and objects in the environment. In this paper we present a system for real-time visual object tracking in 2D images for mobile robotic systems. The proposed algorithm is able to specialize to individual objects and to adapt to substantial changes in illumination and object appearance during tracking. The algorithm is composed by two main blocks: a detector based on Histogram of Oriented Gradient (HOG) descriptors and linear Support Vector Machines (SVM), and a tracker which is implemented by an adaptive Rao-Blackwellised particle filter (RBPF). The SVM is re-trained online on new samples taken from previous predicted positions. We use the effective sample size to decide when the classifier needs to be re-trained. Position hypotheses for the tracked object are the result of a clustering procedure applied on the set of particles. The algorithm has been tested on challenging video sequences presenting strong changes in object appearance, illumination, and occlusion. Experimental tests show that the presented method is able to achieve near real-time performances with a precision of about 7 pixels on standard video sequences of dimensions 320 × 240.
Hernandez, Wilmar; de Vicente, Jesús; Sergiyenko, Oleg Y; Fernández, Eduardo
2010-01-01
In this paper, the fast least-mean-squares (LMS) algorithm was used to both eliminate noise corrupting the important information coming from a piezoresisitive accelerometer for automotive applications, and improve the convergence rate of the filtering process based on the conventional LMS algorithm. The response of the accelerometer under test was corrupted by process and measurement noise, and the signal processing stage was carried out by using both conventional filtering, which was already shown in a previous paper, and optimal adaptive filtering. The adaptive filtering process relied on the LMS adaptive filtering family, which has shown to have very good convergence and robustness properties, and here a comparative analysis between the results of the application of the conventional LMS algorithm and the fast LMS algorithm to solve a real-life filtering problem was carried out. In short, in this paper the piezoresistive accelerometer was tested for a multi-frequency acceleration excitation. Due to the kind of test conducted in this paper, the use of conventional filtering was discarded and the choice of one adaptive filter over the other was based on the signal-to-noise ratio improvement and the convergence rate. PMID:22315579
Adaptive Spatial Filtering with Principal Component Analysis for Biomedical Photoacoustic Imaging
NASA Astrophysics Data System (ADS)
Nagaoka, Ryo; Yamazaki, Rena; Saijo, Yoshifumi
Photoacoustic (PA) signal is very sensitive to noise generated by peripheral equipment such as power supply, stepping motor or semiconductor laser. Band-pass filter is not effective because the frequency bandwidth of the PA signal also covers the noise frequency. The objective of the present study is to reduce the noise by using an adaptive spatial filter with principal component analysis (PCA).
MobiDiC: Context Adaptive Digital Signage with Coupons
NASA Astrophysics Data System (ADS)
Müller, Jörg; Krüger, Antonio
In this paper we present a field study of a digital signage system that measures audience response with coupons in order to enable context adaptivity. In the concept for context adaptivity, the signs sense their environment; decide which content to show, and then sense the audience reaction to the content shown. From this audience measurement, the strategies which content to show in which situation are refined. As one instantiation of audience measurement, we propose a novel simple couponing system, where customers can photograph the coupons at the signs. Thus, it can be measured whether customers really went to the shop. To investigate the feasibility of this approach, we implemented a prototype of 20 signs in the city center of Münster, Germany. During one year of deployment, we investigated usage of the system through interviews with shop owners and customers. Our experiences show that customer attention towards the signs is a major hurdle to overcome.
Adaptive digital beamforming for a CDMA mobile communications payload
NASA Technical Reports Server (NTRS)
Munoz-Garcia, Samuel G.; Ruiz, Javier Benedicto
1993-01-01
In recent years, Spread-Spectrum Code Division Multiple Access (CDMA) has become a very popular access scheme for mobile communications due to a variety of reasons: excellent performance in multipath environments, high scope for frequency reuse, graceful degradation near saturation, etc. In this way, a CDMA system can support simultaneous digital communication among a large community of relatively uncoordinated users sharing a given frequency band. Nevertheless, there are also important problems associated with the use of CDMA. First, in a conventional CDMA scheme, the signature sequences of asynchronous users are not orthogonal and, as the number of active users increases, the self-noise generated by the mutual interference between users considerably degrades the performance, particularly in the return link. Furthermore, when there is a large disparity in received powers - due to differences in slant range or atmospheric attenuation - the non-zero cross-correlation between the signals gives rise to the so-called near-far problem. This leads to an inefficient utilization of the satellite resources and, consequently, to a drastic reduction in capacity. Several techniques were proposed to overcome this problem, such as Synchronized CDMA - in which the signature sequences of the different users are quasi-orthogonal - and power control. At the expense of increased network complexity and user coordination, these techniques enable the system capacity to be restored by equitably sharing the satellite resources among the users. An alternative solution is presented based upon the use of time-reference adaptive digital beamforming on board the satellite. This technique enables a high number of independently steered beams to be generated from a single phased array antenna, which automatically track the desired user signal and null the unwanted interference source. In order to use a time-reference adaptive antenna in a communications system, the main challenge is to obtain a
Fast count-dependent digital filtering of nuclear medicine images: concise communication
King, M.A.; Doherty, P.W.; Schwinger, R.B.; Jacobs, D.A.; Kidder, R.E.; Miller, T.R.
1983-11-01
The formulation of an ''optimal'' filter for improving the quality of digitally recorded nuclear medicine images is reported in this paper. The method forms a Metz filter for each image based upon the total number of counts in the image, which in turn determines the average noise level. The parameters of the filter were optimized for a set of simulated images using the minimization of the mean-square error as the criterion. The speed of the image formation results from the use of an array processor. In a study of localization receiver operating characteristics (LROC) using the Alderson liver phantom, a significant improvement in tumor localization was found in images filtered with this technique, compared with the original digital images and those filtered by the nine-point binomial smoothing algorithm. The technique has been found useful for the filtering of static and dynamic studies as well as the two-dimensional pre-reconstruction filtering of images from single photon emission computerized tomography.
Digital breast tomosynthesis reconstruction with an adaptive voxel grid
NASA Astrophysics Data System (ADS)
Claus, Bernhard; Chan, Heang-Ping
2014-03-01
In digital breast tomosynthesis (DBT) volume datasets are typically reconstructed with an anisotropic voxel size, where the in-plane voxel size usually reflects the detector pixel size (e.g., 0.1 mm), and the slice separation is generally between 0.5-1.0 mm. Increasing the tomographic angle is expected to give better 3D image quality; however, the slice spacing in the reconstruction should be reduced, otherwise one may risk losing fine-scale image detail (e.g., small microcalcifications). An alternative strategy consists of reconstructing on an adaptive voxel grid, where the voxel height at each location is adapted based on the backprojected data at this location, with the goal to improve image quality for microcalcifications. In this paper we present an approach for generating such an adaptive voxel grid. This approach is based on an initial reconstruction step that is performed at a finer slice-spacing combined with a selection of an "optimal" height for each voxel. This initial step is followed by a (potentially iterative) reconstruction acting now on the adaptive grid only.
NASA Astrophysics Data System (ADS)
Shanmugavadivu, P.; Eliahim Jeevaraj, P. S.
2014-06-01
The Adaptive Iterated Functions Systems (AIFS) Filter presented in this paper has an outstanding potential to attenuate the fixed-value impulse noise in images. This filter has two distinct phases namely noise detection and noise correction which uses Measure of Statistics and Iterated Function Systems (IFS) respectively. The performance of AIFS filter is assessed by three metrics namely, Peak Signal-to-Noise Ratio (PSNR), Mean Structural Similarity Index Matrix (MSSIM) and Human Visual Perception (HVP). The quantitative measures PSNR and MSSIM endorse the merit of this filter in terms of degree of noise suppression and details/edge preservation respectively, in comparison with the high performing filters reported in the recent literature. The qualitative measure HVP confirms the noise suppression ability of the devised filter. This computationally simple noise filter broadly finds application wherein the images are highly degraded by fixed-value impulse noise.
Duan, X; Giddings, R P; Bolea, M; Ling, Y; Cao, B; Mansoor, S; Tang, J M
2014-08-11
Real-time optical OFDM (OOFDM) transceivers with on-line software-controllable channel reconfigurability and transmission performance adaptability are experimentally demonstrated, for the first time, utilizing Hilbert-pair-based 32-tap digital orthogonal filters implemented in FPGAs. By making use of an 8-bit DAC/ADC operating at 2GS/s, an oversampling factor of 2 and an EML intensity modulator, the demonstrated RF conversion-free transceiver supports end-to-end real-time simultaneous adaptive transmissions, within a 1GHz signal spectrum region, of a 2.03Gb/s in-phase OOFDM channel and a 1.41Gb/s quadrature-phase OOFDM channel over a 25km SSMF IMDD system. In addition, detailed experimental explorations are also undertaken of key physical mechanisms limiting the maximum achievable transmission performance, impacts of transceiver's channel multiplexing/demultiplexing operations on the system BER performance, and the feasibility of utilizing adaptive modulation to combat impairments associated with low-complexity digital filter designs. Furthermore, experimental results indicate that the transceiver incorporating a fixed digital orthogonal filter DSP architecture can be made transparent to various signal modulation formats up to 64-QAM. PMID:25321051
Learning Motivation and Adaptive Video Caption Filtering for EFL Learners Using Handheld Devices
ERIC Educational Resources Information Center
Hsu, Ching-Kun
2015-01-01
The aim of this study was to provide adaptive assistance to improve the listening comprehension of eleventh grade students. This study developed a video-based language learning system for handheld devices, using three levels of caption filtering adapted to student needs. Elementary level captioning excluded 220 English sight words (see Section 1…
Low-Complexity Lossless Compression of Hyperspectral Imagery Via Adaptive Filtering
NASA Technical Reports Server (NTRS)
Klimesh, Matthew A.
2005-01-01
A low-complexity, adaptive predictive technique for lossless compression of hyperspectral data is presented. The technique relies on the sign algorithm from the repertoire of adaptive filtering. The compression effectiveness obtained with the technique is competitive with that of the best of previously described techniques with similar complexity.
Low-Complexity Lossless Compression of Hyperspectral Imagery via Adaptive Filtering
NASA Technical Reports Server (NTRS)
Klimesh, M.
2005-01-01
A low-complexity, adaptive predictive technique for lossless compression of hyperspectral data is presented. The technique relies on the sign algorithm from the repertoire of adaptive filtering. The compression effectiveness obtained with the technique is competitive with that of the best of previously described techniques with similar complexity.
3D shape measurement with binary phase-shifted technique and digital filters
NASA Astrophysics Data System (ADS)
Silva, Adriana; Legarda-Saenz, Ricardo; García-Torales, G.; Balderas-Mata, Sandra; Flores, Jorge L.
2014-09-01
Shape measurements by sinusoidal phase-shifting methods require high-quality sinusoidal fringes. Furthermore, most of the video projectors are nonlinear, making it difficult to generate high quality phase without nonlinearity calibration and correction. To overcome the limitations of the conventional digital fringe projection techniques, we proposed a method that involves the projection of digital binary patterns generated by the pulse-width modulation (PWM). We will demonstrate that applying digital filtering, in particular, low pass filters, one can obtain a high-quality sinusoidal pattern. Which in combination with phase-shifting methods, allows a reliable 3-D profiling surface reconstruction at large timerates. Validation experiments using a commercial video projector are presented.
Low-Cutoff, High-Pass Digital Filtering of Neural Signals
NASA Technical Reports Server (NTRS)
Mojarradi,Mohammad; Johnson, Travis; Ortiz, Monico; Cunningham, Thomas; Andersen, Richard
2004-01-01
The figure depicts the major functional blocks of a system, now undergoing development, for conditioning neural signals acquired by electrodes implanted in a brain. The overall functions to be performed by this system can be summarized as preamplification, multiplexing, digitization, and high-pass filtering. Other systems under development for recording neural signals typically contain resistor-capacitor analog low-pass filters characterized by cutoff frequencies in the vicinity of 100 Hz. In the application for which this system is being developed, there is a requirement for a cutoff frequency of 5 Hz. Because the resistors needed to obtain such a low cutoff frequency would be impractically large, it was decided to perform low-pass filtering by use of digital rather than analog circuitry. In addition, it was decided to timemultiplex the digitized signals from the multiple input channels into a single stream of data in a single output channel. The signal in each input channel is first processed by a preamplifier having a voltage gain of approximately 50. Embedded in each preamplifier is a low-pass anti-aliasing filter having a cutoff frequency of approximately 10 kHz. The anti-aliasing filters make it possible to couple the outputs of the preamplifiers to the input ports of a multiplexer. The output of the multiplexer is a single stream of time-multiplexed samples of analog signals. This stream is processed by a main differential amplifier, the output of which is sent to an analog-to-digital converter (ADC). The output of the ADC is sent to a digital signal processor (DSP).
Alternative X-ray filters for an intra-oral digital radiographic system
Stecke, J; Cruz, AD; Almeida, SM; Bóscolo, FN
2012-01-01
Objective The aim of this study was to evaluate the effect of the modulation of the radiation spectrum with the use of alternative X-ray filters in the quality of intra-oral digital images from storage phosphor plates. Methods The radiographic exposures were performed in a GE 1000 X-ray machine (General Electric Co., Milwaukee, WI), operating at 65 kVp, 10 mA, 40 cm focus receptor distance using three different exposure times: 0.05 s, 0.16 s and 0.35 s. The control filter (GC) was 100% aluminium (Al) with a thickness of 1.5 mm. The tested filters were: G1, 97% Al and 3% copper (Cu) with 1.47 mm thickness; G2, 96% Al and 4% Cu with 1.53 mm thickness; G3, 95% Al and 5% zinc (Zn) with 1.56 mm thickness; G4, 98% Al and 2% Zn with 1.5 mm thickness; and G5, 95% Cu and 5% Zn with 1.6 mm thickness. For formation of the image, a 12-step Al wedge (each step with increments of 1 mm in thickness) was radiographed 10 times. Pixel values measured in digital images were converted into optical density (OD). Results All replicates showed OD with high reproducibility (r > 0.95) for all exposure times and tested filters. In comparison between filters, statistically significant differences in density (p < 0.05) were observed. The OD curve of the G5 filter in all exposure times and G3 filter in an exposure time of 0.05 s showed changes in shape (p < 0.05). Conclusions Excluding the G5 filter, all others tested filters can be used as a substitute for GC without losses in image quality. PMID:22282509
An Adaptive Kalman Filter using a Simple Residual Tuning Method
NASA Technical Reports Server (NTRS)
Harman, Richard R.
1999-01-01
One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.
An Adaptive Kalman Filter Using a Simple Residual Tuning Method
NASA Technical Reports Server (NTRS)
Harman, Richard R.
1999-01-01
One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. A. H. Jazwinski developed a specialized version of this technique for estimation of process noise. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.
New Approach for IIR Adaptive Lattice Filter Structure Using Simultaneous Perturbation Algorithm
NASA Astrophysics Data System (ADS)
Martinez, Jorge Ivan Medina; Nakano, Kazushi; Higuchi, Kohji
Adaptive infinite impulse response (IIR), or recursive, filters are less attractive mainly because of the stability and the difficulties associated with their adaptive algorithms. Therefore, in this paper the adaptive IIR lattice filters are studied in order to devise algorithms that preserve the stability of the corresponding direct-form schemes. We analyze the local properties of stationary points, a transformation achieving this goal is suggested, which gives algorithms that can be efficiently implemented. Application to the Steiglitz-McBride (SM) and Simple Hyperstable Adaptive Recursive Filter (SHARF) algorithms is presented. Also a modified version of Simultaneous Perturbation Stochastic Approximation (SPSA) is presented in order to get the coefficients in a lattice form more efficiently and with a lower computational cost and complexity. The results are compared with previous lattice versions of these algorithms. These previous lattice versions may fail to preserve the stability of stationary points.
NASA Astrophysics Data System (ADS)
Ma, Jun; Parhi, Keshab K.; Hekstra, Gerben J.; Deprettere, Ed F. A.
1998-10-01
CORDIC based IIR digital filters are orthogonal filters whose internal computations consist of orthogonal transformations. These filters possess desirable properties for VLSI implementations such as regularity, local connection, low sensitivity to finite word-length implementation, and elimination of limit cycles. Recently, fine-grain pipelined CORDIC based IIR digital filter architectures which can perform the filtering operations at arbitrarily high sample rates at the cost of linear increase in hardware complexity have been developed. These pipelined architectures consists of only Givens rotations and a few additions which can be mapped onto CORDIC arithmetic based processors. However, in practical applications, implementations of GIvens rotations using traditional CORDIC arithmetic are quite expensive. For example, for 16 bit accuracy, using floating point data format with 16 bit mantissa and 5 bit exponent, it will require approximately 20 pairs of shift-add operations for one Givens rotation. In this paper, we propose an efficient implementation of pipelined CORDIC based IIR digital filters based on fast orthonormal (mu) -rotations. Using this method, the Givens rotations are approximated by angel corresponding to orthonormal (mu) -rotations, which are based on the idea of CORDIC and can perform rotation with minimal number of shift-add operations. We present various methods of construction for such orthonormal (mu) -rotations. A significant reduction of the number of required shift-add operations is achieved. All types of fast rotations can be implemented as a cascade of only four basic types of shift-add stages. These stages can be executed on a modified floating-point CORDIC architecture, making the pipelined filter highly suitable for VLSI implementations.
On the properties of artificial neural network filters for bone-suppressed digital radiography
NASA Astrophysics Data System (ADS)
Park, Eunpyeong; Park, Junbeom; Kim, Daecheon; Youn, Hanbean; Jeon, Hosang; Kim, Jin Sung; Kang, Dong-Joong; Kim, Ho Kyung
2016-04-01
Dual-energy imaging can enhance lesion conspicuity. However, the conventional (fast kilovoltage switching) dual-shot dual-energy imaging is vulnerable to patient motion. The single-shot method requires a special design of detector system. Alternatively, single-shot bone-suppressed imaging is possible using post-image processing combined with a filter obtained from training an artificial neural network. In this study, the authors investigate the general properties of artificial neural network filters for bone-suppressed digital radiography. The filter properties are characterized in terms of various parameters such as the size of input vector, the number of hidden units, the learning rate, and so on. The preliminary result shows that the bone-suppressed image obtained from the filter, which is designed with 5,000 teaching images from a single radiograph, results in about 95% similarity with a commercial bone-enhanced image.
Prototype adaptive bow-tie filter based on spatial exposure time modulation
NASA Astrophysics Data System (ADS)
Badal, Andreu
2016-03-01
In recent years, there has been an increased interest in the development of dynamic bow-tie filters that are able to provide patient-specific x-ray beam shaping. We introduce the first physical prototype of a new adaptive bow-tie filter design based on the concept of "spatial exposure time modulation." While most existing bow-tie filters operate by attenuating the radiation beam differently in different locations using partially attenuating objects, the presented filter shapes the radiation field using two movable completely radio-opaque collimators. The aperture and speed of the collimators is modulated in synchrony with the x-ray exposure to selectively block the radiation emitted to different parts of the object. This mode of operation does not allow the reproduction of every possible attenuation profile, but it can reproduce the profile of any object with an attenuation profile monotonically decreasing from the center to the periphery, such as an object with an elliptical cross section. Therefore, the new adaptive filter provides the same advantages as the currently existing static bow-tie filters, which are typically designed to work for a pre-determined cylindrical object at a fixed distance from the source, and provides the additional capability to adapt its performance at image acquisition time to better compensate for the actual diameter and location of the imaged object. A detailed description of the prototype filter, the implemented control methods, and a preliminary experimental validation of its performance are presented.
An adaptive filter bank for motor imagery based Brain Computer Interface.
Thomas, Kavitha P; Guan, Cuntai; Tong, Lau Chiew; Prasad, Vinod A
2008-01-01
Brain Computer Interface (BCI) provides an alternative communication and control method for people with severe motor disabilities. Motor imagery patterns are widely used in Electroencephalogram (EEG) based BCIs. These motor imagery activities are associated with variation in alpha and beta band power of EEG signals called Event Related Desynchronization/synchronization (ERD/ERS). The dominant frequency bands are subject-specific and therefore performance of motor imagery based BCIs are sensitive to both temporal filtering and spatial filtering. As the optimum filter is strongly subject-dependent, we propose a method that selects the subject-specific discriminative frequency components using time-frequency plots of Fisher ratio of two-class motor imagery patterns. We also propose a low complexity adaptive Finite Impulse Response (FIR) filter bank system based on coefficient decimation technique which can realize the subject-specific bandpass filters adaptively depending on the information of Fisher ratio map. Features are extracted only from the selected frequency components. The proposed adaptive filter bank based system offers average classification accuracy of about 90%, which is slightly better than the existing fixed filter bank system. PMID:19162856
Fourier transform digital holographic adaptive optics imaging system
Liu, Changgeng; Yu, Xiao; Kim, Myung K.
2013-01-01
A Fourier transform digital holographic adaptive optics imaging system and its basic principles are proposed. The CCD is put at the exact Fourier transform plane of the pupil of the eye lens. The spherical curvature introduced by the optics except the eye lens itself is eliminated. The CCD is also at image plane of the target. The point-spread function of the system is directly recorded, making it easier to determine the correct guide-star hologram. Also, the light signal will be stronger at the CCD, especially for phase-aberration sensing. Numerical propagation is avoided. The sensor aperture has nothing to do with the resolution and the possibility of using low coherence or incoherent illumination is opened. The system becomes more efficient and flexible. Although it is intended for ophthalmic use, it also shows potential application in microscopy. The robustness and feasibility of this compact system are demonstrated by simulations and experiments using scattering objects. PMID:23262541
Detection of signals by the digital integrate-and-dump filter with offset sampling
NASA Technical Reports Server (NTRS)
Sadr, R.; Hurd, W. J.
1987-01-01
The Integrate and Dump Filter (IDF) is used as a matched filter for the detection of signals in additive white Gaussian noise. The performance of the digital integrate and dump filter is evaluated. The case considered is when symbol times are known and the sampling clock is free running at a constant rate, i.e., the sampling clock is not phase locked to the symbol clock. Degradations in the output signal to noise ratio of the digital implementation due to sampling rate, sampling offset, and finite bandwidth, resulting from the anti-aliasing low pass prefilter, are computed and compared with those of the analog counterpart. It is shown that the digital IDF performs within 0.6 dB of the ideal analog IDF whenever the prefilter bandwidth exceeds four times the symbol rate and when sampling is performed at the Nyquist rate. The loss can be reduced to 0.3 dB by doubling the sampling rate, where 0.2 dB loss results from finite bandwidth and 0.1 dB results from the digital IDF.
Independent motion detection with a rival penalized adaptive particle filter
NASA Astrophysics Data System (ADS)
Becker, Stefan; Hübner, Wolfgang; Arens, Michael
2014-10-01
Aggregation of pixel based motion detection into regions of interest, which include views of single moving objects in a scene is an essential pre-processing step in many vision systems. Motion events of this type provide significant information about the object type or build the basis for action recognition. Further, motion is an essential saliency measure, which is able to effectively support high level image analysis. When applied to static cameras, background subtraction methods achieve good results. On the other hand, motion aggregation on freely moving cameras is still a widely unsolved problem. The image flow, measured on a freely moving camera is the result from two major motion types. First the ego-motion of the camera and second object motion, that is independent from the camera motion. When capturing a scene with a camera these two motion types are adverse blended together. In this paper, we propose an approach to detect multiple moving objects from a mobile monocular camera system in an outdoor environment. The overall processing pipeline consists of a fast ego-motion compensation algorithm in the preprocessing stage. Real-time performance is achieved by using a sparse optical flow algorithm as an initial processing stage and a densely applied probabilistic filter in the post-processing stage. Thereby, we follow the idea proposed by Jung and Sukhatme. Normalized intensity differences originating from a sequence of ego-motion compensated difference images represent the probability of moving objects. Noise and registration artefacts are filtered out, using a Bayesian formulation. The resulting a posteriori distribution is located on image regions, showing strong amplitudes in the difference image which are in accordance with the motion prediction. In order to effectively estimate the a posteriori distribution, a particle filter is used. In addition to the fast ego-motion compensation, the main contribution of this paper is the design of the probabilistic
Real-time design of N-dimensional digital filters for image processing
NASA Astrophysics Data System (ADS)
Drynkin, Vladimir N.
1995-12-01
The main body of remote sensing data is obtained with the aid of optoelectronic and photographic devices. This data is usually referred to as the video information since it may be presented as images of terrestrial surface on a satellite track or an airway. This is the reason of increasing interest of specialists in the field of the remote sensing devices design to the methods of synthesis of optimal data processing hardware. The design of effective systems of the remote sensing data formation and transmission are impossible without using the state-of- the-art synthesis methods of digital image processing systems, taking account of a message source and their recipient characteristic properties. It is possible to take account of these characteristic properties only on the basis of optimal N-dimensional digital filtering. From this point of view the N-dimensional filter, used for video images filtering, becomes optimal only in the case of coincidence of the pass band region of its spatial frequency response (SFR) with the isoenergetic surface of the image spectrum with allowance for eyesight characteristics. In the light of the above the problem of N-dimensional digital filters design with the given pass band region configuration becomes actual. Incidentally the practicable interest presents first of all the methods, allowing with relatively low hardware expenses to design structures, from one part operating in the real time, and from the other -- approaching best of all the given characteristics. In this case it is necessary to ensure stability during their operation. In the following we shall present the results of the synthesis method development of N-dimensional digital filters with the guaranteed stability and the given pass band region configuration, realizing the image processing in the real time.
NASA Technical Reports Server (NTRS)
Houts, R. C.; Burlage, D. W.
1972-01-01
A time domain technique is developed to design finite-duration impulse response digital filters using linear programming. Two related applications of this technique in data transmission systems are considered. The first is the design of pulse shaping digital filters to generate or detect signaling waveforms transmitted over bandlimited channels that are assumed to have ideal low pass or bandpass characteristics. The second is the design of digital filters to be used as preset equalizers in cascade with channels that have known impulse response characteristics. Example designs are presented which illustrate that excellent waveforms can be generated with frequency-sampling filters and the ease with which digital transversal filters can be designed for preset equalization.
Digital hydrograph filtering in small size rainfall-dominated terrigenous watershed
NASA Astrophysics Data System (ADS)
Longobardi, Antonia; Villani, Paolo; Guida, Domenico; Cuomo, Albina
2016-04-01
The study aim is an analysis of the ability of digital hydrograph filtering tools for the characterization of the baseflow source contributing to total streamflow for a forested, terrigenous hard rock rainfall-dominated small catchment. Daily streamflow and electrical conductivity (EC) data for an experimental catchment, the T. Ciciriello catchment, a 3km2 watershed located in Southern Italy, have been collected to the purpose since 2012. The application of a mass balance filter (MBF using electrical conductivity as tracer data) has pointed out a seasonal characterization of the baseflow pattern, contributing to total streamflow by 90% during the low flow period and up to 40% during the high flow period. The Lyne and Hollick one parameter and the two parameter Eckhardt digital filters have been furthermore processed, both in an uncalibrated and calibrated application. During the low flow period, the one parameter filter appears particularly suited for ungauged cases, as the uncalibrated and calibrated application are almost identical, with relative prediction errors, compared to MBF, smaller than 5%. The uncalibrated two parameters filter generates instead large relative error of about 35%. To improve the baseflow description in particular during the low flow period and to correct large (28%) underestimation of the minimum baseflow value, a seasonal calibration for the BFImax parameter was needed. During the high flow period, the one and the two parameters filters are respectively associated to an overestimation (20%) and underestimation (10%). For this period of the year, the monitoring campaign strongly indicates a large range of variability for the EC values, probably caused by dilution and mixing processes from different water sources and flow paths. As the variability is intrinsically embedded within the MBF method, it is not at all accounted for by the digital filters, which are only able to distinguish between two different component and then between two
NASA Technical Reports Server (NTRS)
Kelly, D. A.; Fermelia, A.; Lee, G. K. F.
1990-01-01
An adaptive Kalman filter design that utilizes recursive maximum likelihood parameter identification is discussed. At the center of this design is the Kalman filter itself, which has the responsibility for attitude determination. At the same time, the identification algorithm is continually identifying the system parameters. The approach is applicable to nonlinear, as well as linear systems. This adaptive Kalman filter design has much potential for real time implementation, especially considering the fast clock speeds, cache memory and internal RAM available today. The recursive maximum likelihood algorithm is discussed in detail, with special attention directed towards its unique matrix formulation. The procedure for using the algorithm is described along with comments on how this algorithm interacts with the Kalman filter.
Noise impact of single-event upsets on an FPGA-based digital filter
Morgan, Keith S; Caffrey, Michael P; Graham, Paul S; Pratt, Brian H; Wirthlin, Michael J
2009-01-01
Field-programmable gate arrays are well-suited to DSP and digital communications applications. SRAM-based FPGAs, however, are susceptible to radiation-induced single-event upsets (SEUs) when deployed in space environments. These effects are often handled with the area and power-intensive TMR mitigation technique. This paper evaluates the effects of SEUs in the FPGA configuration memory as noise in a digital filter, showing that many SEUs in a digital communications system cause effects that could be considered noise rather than circuit failure. Since DSP and digital communications applications are designed to withstand certain types of noise, SEU mitigation techniques that are less costly than TMR may be applicable. This could result in large savings in area and power when implementing a reliable system. Our experiments show that, of the SEUs that affected the digital filter with a 20 dB SNR input signal, less than 14% caused an SNR loss of more than 1 dB at the output.
Adaptive filtering and prediction of the Southern Oscillation index
NASA Astrophysics Data System (ADS)
Keppenne, Christian L.; Ghil, Michael
1992-12-01
Singular spectrum analysis (SSA), a variant of principal component analysis, is applied to a time series of the Southern Oscillation index (SOI). The analysis filters out variability unrelated to the Southern Oscillation and separates the high-frequency, 2- to 3-year variability, including the quasi-biennial oscillation, from the lower-frequency 4- to 6-year El Niño cycle. The maximum entropy method (MEM) is applied to forecasting the prefiltered SOI. Prediction based on MEM-associated autoregressive models has useful skill for 30-36 months. A 1993-1994 La Niña event is predicted based on data through February 1992.
Adaptive filtering and prediction of the Southern Oscillation index
NASA Technical Reports Server (NTRS)
Keppenne, Christian L.; Ghil, Michael
1992-01-01
Singular spectrum analysis (SSA), a variant of principal component analysis, is applied to a time series of the Southern Oscillation index (SOI). The analysis filters out variability unrelated to the Southern Oscillation and separates the high-frequency, 2- to 3-year variability, including the quasi-biennial oscillation, from the lower-frequency 4- to 6-year El Nino cycle. The maximum entropy method (MEM) is applied to forecasting the prefiltered SOI. Prediction based on MEM-associated autoregresive models has useful skill for 30-36 months. A 1993-1994 La Nina event is predicted based on data through February 1992.
Adaptive filtering and prediction of the Southern Oscillation index
Keppenne, C.L. California Inst. of Technology, Pasadena ); Ghil, M. )
1992-12-20
Singular spectrum analysis (SSA), a variant of principal component analysis, is applied to a time series of the Southern Oscillation index (SOI). The analysis filters out variability unrelated to the Southern Oscillation and separates the high-frequency, 2- to 3-year variability, including the quasi-biennial oscillation, from the lower-frequency 4- to 6-year El Nino cycle. The maximum entropy method (MEM) is applied to forecasting the prefiltered SOI. Prediction based on MEM-associated autoregressive models has useful skill for 30-36 months. A 1993-1994 La Nina event is predicted based on data through February 1992. 52 refs., 4 figs.
Predicting Hyper-Chaotic Time Series Using Adaptive Higher-Order Nonlinear Filter
NASA Astrophysics Data System (ADS)
Zhang, Jia-Shu; Xiao, Xian-Ci
2001-03-01
A newly proposed method, i.e. the adaptive higher-order nonlinear finite impulse response (HONFIR) filter based on higher-order sparse Volterra series expansions, is introduced to predict hyper-chaotic time series. The effectiveness of using the adaptive HONFIR filter for making one-step and multi-step predictions is tested based on very few data points by computer-generated hyper-chaotic time series including the Mackey-Glass equation and four-dimensional nonlinear dynamical system. A comparison is made with some neural networks for predicting the Mackey-Glass hyper-chaotic time series. Numerical simulation results show that the adaptive HONFIR filter proposed here is a very powerful tool for making prediction of hyper-chaotic time series.
Adaptive filters for suppressing irregular hostile jamming in direct sequence spread-spectrum system
NASA Astrophysics Data System (ADS)
Lee, Jung Hoon; Lee, Choong Woong
A stable and high-performance adaptive filter for suppressing irregular hostile jamming in direct-sequence (DS) spread-spectrum systems is designed. A gradient-search fast converging algorithm (GFC) is suggested. For the case of a sudden parameter jump or incoming of an interference, the transient behaviors of the receiver using a GFC adaptive filter are investigated and compared with those of the receiver using a least-mean-square (LMS) or a lattice adaptive filter. The results are shown in the response graphs of the simulated receiver during the short period when the characteristic of a jammer is suddenly changed. Steady-state performances of those receivers are also evaluated in the sense of the excess mean-square error over that of an optimum receiver for suppressing stationary interferences.
A study of infrared spectroscopy de-noising based on LMS adaptive filter
NASA Astrophysics Data System (ADS)
Mo, Jia-qing; Lv, Xiao-yi; Yu, Xiao
2015-12-01
Infrared spectroscopy has been widely used, but which often contains a lot of noise, so the spectral characteristic of the sample is seriously affected. Therefore the de-noising is very important in the spectrum analysis and processing. In the study of infrared spectroscopy, the least mean square (LMS) adaptive filter was applied in the field firstly. LMS adaptive filter algorithm can reserve the detail and envelope of the effective signal when the method was applied to infrared spectroscopy of breast cancer which signal-to-noise ratio (SNR) is lower than 10 dB, contrast and analysis the result with result of wavelet transform and ensemble empirical mode decomposition (EEMD). The three evaluation standards (SNR, root mean square error (RMSE) and the correlation coefficient (ρ)) fully proved de-noising advantages of LMS adaptive filter in infrared spectroscopy of breast cancer.
ROI extraction of chest CT images using adaptive opening filter
NASA Astrophysics Data System (ADS)
Yamada, Nobuhiro; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Eguchi, Kenji; Omatsu, Hironobu; Kakinuma, Ryutaro; Kaneko, Masahiro; Kusumoto, Masahiko; Nishiyama, Hiroyuki; Moriyama, Noriyuki
2003-05-01
We have already developed a prototype of computer-aided diagnosis (CAD) system that can automatically detect suspicious shadows from Chest CT images. But the CAD system cannot detect Ground-Grass-Attenuation perfectly. In many cases, this reason depends on the inaccurate extraction of the region of interests (ROI) that CAD system analyzes, so we need to improve it. In this paper, we propose a method of an accurate extraction of the ROI, and compare proposed method to ordinary method that have used in CAD system. Proposed Method is performed by application of the three steps. Firstly we extract lung area using threshold. Secondly we remove the slowly varying bias field using flexible Opening Filter. This Opening Filter is calculated by the combination of the ordinary opening value and the distribution which CT value and contrast follow. Finally we extract Region of Interest using fuzzy clustering. When we applied proposal method to Chest CT images, we got a good result in which ordinary method cannot achieve. In this study we used the Helical CT images that are obtained under the following measurement: 10mm beam width; 20mm/sec table speed; 120kV tube voltage; 50mA tube current; 10mm reconstruction interval.
NASA Astrophysics Data System (ADS)
Li, Wei; Haese-Coat, Veronique; Ronsin, Joseph
1996-03-01
An adaptive GA scheme is adopted for the optimal morphological filter design problem. The adaptive crossover and mutation rate which make the GA avoid premature and at the same time assure convergence of the program are successfully used in optimal morphological filter design procedure. In the string coding step, each string (chromosome) is composed of a structuring element coding chain concatenated with a filter sequence coding chain. In decoding step, each string is divided into 3 chains which then are decoded respectively into one structuring element with a size inferior to 5 by 5 and two concatenating morphological filter operators. The fitness function in GA is based on the mean-square-error (MSE) criterion. In string selection step, a stochastic tournament procedure is used to replace the simple roulette wheel program in order to accelerate the convergence. The final convergence of our algorithm is reached by a two step converging strategy. In presented applications of noise removal from texture images, it is found that with the optimized morphological filter sequences, the obtained MSE values are smaller than those using corresponding non-adaptive morphological filters, and the optimized shapes and orientations of structuring elements take approximately the same shapes and orientations as those of the image textons.
Method and system for training dynamic nonlinear adaptive filters which have embedded memory
NASA Technical Reports Server (NTRS)
Rabinowitz, Matthew (Inventor)
2002-01-01
Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6.
An Application Specific Instruction Set Processor (ASIP) for Adaptive Filters in Neural Prosthetics.
Xin, Yao; Li, Will X Y; Zhang, Zhaorui; Cheung, Ray C C; Song, Dong; Berger, Theodore W
2015-01-01
Neural coding is an essential process for neuroprosthetic design, in which adaptive filters have been widely utilized. In a practical application, it is needed to switch between different filters, which could be based on continuous observations or point process, when the neuron models, conditions, or system requirements have changed. As candidates of coding chip for neural prostheses, low-power general purpose processors are not computationally efficient especially for large scale neural population coding. Application specific integrated circuits (ASICs) do not have flexibility to switch between different adaptive filters while the cost for design and fabrication is formidable. In this research work, we explore an application specific instruction set processor (ASIP) for adaptive filters in neural decoding activity. The proposed architecture focuses on efficient computation for the most time-consuming matrix/vector operations among commonly used adaptive filters, being able to provide both flexibility and throughput. Evaluation and implementation results are provided to demonstrate that the proposed ASIP design is area-efficient while being competitive to commercial CPUs in computational performance. PMID:26451817
Sudeep, P V; Issac Niwas, S; Palanisamy, P; Rajan, Jeny; Xiaojun, Yu; Wang, Xianghong; Luo, Yuemei; Liu, Linbo
2016-04-01
Optical coherence tomography (OCT) has continually evolved and expanded as one of the most valuable routine tests in ophthalmology. However, noise (speckle) in the acquired images causes quality degradation of OCT images and makes it difficult to analyze the acquired images. In this paper, an iterative approach based on bilateral filtering is proposed for speckle reduction in multiframe OCT data. Gamma noise model is assumed for the observed OCT image. First, the adaptive version of the conventional bilateral filter is applied to enhance the multiframe OCT data and then the bias due to noise is reduced from each of the filtered frames. These unbiased filtered frames are then refined using an iterative approach. Finally, these refined frames are averaged to produce the denoised OCT image. Experimental results on phantom images and real OCT retinal images demonstrate the effectiveness of the proposed filter. PMID:26907572
Adaptive identification and control of structural dynamics systems using recursive lattice filters
NASA Technical Reports Server (NTRS)
Sundararajan, N.; Montgomery, R. C.; Williams, J. P.
1985-01-01
A new approach for adaptive identification and control of structural dynamic systems by using least squares lattice filters thar are widely used in the signal processing area is presented. Testing procedures for interfacing the lattice filter identification methods and modal control method for stable closed loop adaptive control are presented. The methods are illustrated for a free-free beam and for a complex flexible grid, with the basic control objective being vibration suppression. The approach is validated by using both simulations and experimental facilities available at the Langley Research Center.
Low-complexity digital filter geometry for spherical coded imaging systems
NASA Astrophysics Data System (ADS)
Feng, Guotong; Shoaib, Mohammed; Robinson, M. D.
2009-08-01
Recent research in the area of electro-optical system design identified the benefits of spherical aberration for extending the depth-of-field of electro-optical imaging systems. In such imaging systems, spherical aberration is deliberately introduced by the optical system lowering system modulation transfer function (MTF) and then subsequently corrected using digital processing. Previous research, however, requires complex digital postprocessing algorithms severely limiting its applicability to only expensive systems. In this paper, we examine the ability of low-cost spatially invariant finite impulse response (FIR) digital filters to restore system MTF degraded by spherical aberration. We introduce an analytical model for choosing the minimum, and hence cheapest, FIR filter size capable of providing the critical level sharpening to render artifact-free images. We identify a robust quality criterion based on the post-processed MTF for developing this model. We demonstrate the reliability of the estimated model by showing simulated spherical coded imaging results. We also evaluate the hardware complexity of the FIR filters implemented for various spherical aberrations on a low-end Field-Programmable Gate Array (FPGA) platform.
Two dimensional recursive digital filters for near real time image processing
NASA Technical Reports Server (NTRS)
Olson, D.; Sherrod, E.
1980-01-01
A program was designed toward the demonstration of the feasibility of using two dimensional recursive digital filters for subjective image processing applications that require rapid turn around. The concept of the use of a dedicated minicomputer for the processor for this application was demonstrated. The minicomputer used was the HP1000 series E with a RTE 2 disc operating system and 32K words of memory. A Grinnel 256 x 512 x 8 bit display system was used to display the images. Sample images were provided by NASA Goddard on a 800 BPI, 9 track tape. Four 512 x 512 images representing 4 spectral regions of the same scene were provided. These images were filtered with enhancement filters developed during this effort.
Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin
2015-01-01
Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis. PMID:25619991
Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin
2015-01-01
Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis. PMID:25619991
Takeshita, Wilton Mitsunari; Vessoni Iwaki, Lilian Cristina; Da Silva, Mariliani Chicarelli; Filho, Liogi Iwaki; Queiroz, Alfredo De Franco; Geron, Lucas Bachegas Gomes
2013-01-01
Background: To compare the diagnostic accuracy of three different imaging systems: Direct digital radiography system (DDR-CMOS), four types of filtered images, and a priori and a posteriori registration of digital subtraction radiography (DSR) in the diagnosis of proximal defects. Materials and Methods: The teeth were arranged in pairs in 10 blocks of vinyl polysiloxane, and proximal defects were performed with drills of 0.25, 0.5, and 1 mm diameter. Kodak RVG 6100 sensor was used to capture the images. A posteriori DSR registrations were done with Regeemy 0.2.43 and subtraction with Image Tool 3.0. Filtered images were obtained with Kodak Dental Imaging 6.1 software. Images (n = 360) were evaluated by three raters, all experts in dental radiology. Results: Sensitivity and specificity of the area under the receiver operator characteristic (ROC) curve (Az) were higher for DSR images with all three drills (Az = 0.896, 0.979, and 1.000 for drills 0.25, 0.5, and 1 mm, respectively). The highest values were found for 1-mm drills and the lowest for 0.25-mm drills, with negative filter having the lowest values of all (Az = 0.631). Conclusion: The best method of diagnosis was by using a DSR. The negative filter obtained the worst results. Larger drills showed the highest sensitivity and specificity values of the area under the ROC curve. PMID:24124300
Phase Response Design of Recursive All-Pass Digital Filters Using a Modified PSO Algorithm
Chang, Wei-Der
2015-01-01
This paper develops a new design scheme for the phase response of an all-pass recursive digital filter. A variant of particle swarm optimization (PSO) algorithm will be utilized for solving this kind of filter design problem. It is here called the modified PSO (MPSO) algorithm in which another adjusting factor is more introduced in the velocity updating formula of the algorithm in order to improve the searching ability. In the proposed method, all of the designed filter coefficients are firstly collected to be a parameter vector and this vector is regarded as a particle of the algorithm. The MPSO with a modified velocity formula will force all particles into moving toward the optimal or near optimal solution by minimizing some defined objective function of the optimization problem. To show the effectiveness of the proposed method, two different kinds of linear phase response design examples are illustrated and the general PSO algorithm is compared as well. The obtained results show that the MPSO is superior to the general PSO for the phase response design of digital recursive all-pass filter. PMID:26366168
Effect of filter on average glandular dose and image quality in digital mammography
NASA Astrophysics Data System (ADS)
Songsaeng, C.; Krisanachinda, A.; Theerakul, K.
2016-03-01
To determine the average glandular dose and entrance surface air kerma in both phantoms and patients to assess image quality for different target-filters (W/Rh and W/Ag) in digital mammography system. The compressed breast thickness, compression force, average glandular dose, entrance surface air kerma, peak kilovoltage and tube current time were recorded and compared between W/Rh and W/Ag target filter. The CNR and the figure of merit were used to determine the effect of target filter on image quality. The mean AGD of the W/Rh target filter was 1.75 mGy, the mean ESAK was 6.67 mGy, the mean CBT was 54.1 mm, the mean CF was 14 1bs. The mean AGD of W/Ag target filter was 2.7 mGy, the mean ESAK was 12.6 mGy, the mean CBT was 75.5 mm, the mean CF was 15 1bs. In phantom study, the AGD was 1.2 mGy at 4 cm, 3.3 mGy at 6 cm and 3.83 mGy at 7 cm thickness. The FOM was 24.6, CNR was 9.02 at thickness 6 cm. The FOM was 18.4, CNR was 8.6 at thickness 7 cm. The AGD from Digital Mammogram system with W/Rh of thinner CBT was lower than the AGD from W/Ag target filter.
Image pre-filtering for measurement error reduction in digital image correlation
NASA Astrophysics Data System (ADS)
Zhou, Yihao; Sun, Chen; Song, Yuntao; Chen, Jubing
2015-02-01
In digital image correlation, the sub-pixel intensity interpolation causes a systematic error in the measured displacements. The error increases toward high-frequency component of the speckle pattern. In practice, a captured image is usually corrupted by additive white noise. The noise introduces additional energy in the high frequencies and therefore raises the systematic error. Meanwhile, the noise also elevates the random error which increases with the noise power. In order to reduce the systematic error and the random error of the measurements, we apply a pre-filtering to the images prior to the correlation so that the high-frequency contents are suppressed. Two spatial-domain filters (binomial and Gaussian) and two frequency-domain filters (Butterworth and Wiener) are tested on speckle images undergoing both simulated and real-world translations. By evaluating the errors of the various combinations of speckle patterns, interpolators, noise levels, and filter configurations, we come to the following conclusions. All the four filters are able to reduce the systematic error. Meanwhile, the random error can also be reduced if the signal power is mainly distributed around DC. For high-frequency speckle patterns, the low-pass filters (binomial, Gaussian and Butterworth) slightly increase the random error and Butterworth filter produces the lowest random error among them. By using Wiener filter with over-estimated noise power, the random error can be reduced but the resultant systematic error is higher than that of low-pass filters. In general, Butterworth filter is recommended for error reduction due to its flexibility of passband selection and maximal preservation of the allowed frequencies. Binomial filter enables efficient implementation and thus becomes a good option if computational cost is a critical issue. While used together with pre-filtering, B-spline interpolator produces lower systematic error than bicubic interpolator and similar level of the random
Adaptive error covariances estimation methods for ensemble Kalman filters
Zhen, Yicun; Harlim, John
2015-08-01
This paper presents a computationally fast algorithm for estimating, both, the system and observation noise covariances of nonlinear dynamics, that can be used in an ensemble Kalman filtering framework. The new method is a modification of Belanger's recursive method, to avoid an expensive computational cost in inverting error covariance matrices of product of innovation processes of different lags when the number of observations becomes large. When we use only product of innovation processes up to one-lag, the computational cost is indeed comparable to a recently proposed method by Berry–Sauer's. However, our method is more flexible since it allows for using information from product of innovation processes of more than one-lag. Extensive numerical comparisons between the proposed method and both the original Belanger's and Berry–Sauer's schemes are shown in various examples, ranging from low-dimensional linear and nonlinear systems of SDEs and 40-dimensional stochastically forced Lorenz-96 model. Our numerical results suggest that the proposed scheme is as accurate as the original Belanger's scheme on low-dimensional problems and has a wider range of more accurate estimates compared to Berry–Sauer's method on L-96 example.
NASA Technical Reports Server (NTRS)
Balas, Mark; Frost, Susan
2012-01-01
Flexible structures containing a large number of modes can benefit from adaptive control techniques which are well suited to applications that have unknown modeling parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend our adaptive control theory to accommodate troublesome modal subsystems of a plant that might inhibit the adaptive controller. In some cases the plant does not satisfy the requirements of Almost Strict Positive Realness. Instead, there maybe be a modal subsystem that inhibits this property. This section will present new results for our adaptive control theory. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for the troublesome modal subsystem, or the Q modes. Here we present the theory for adaptive controllers modified by RMFs, with attention to the issue of disturbances propagating through the Q modes. We apply the theoretical results to a flexible structure example to illustrate the behavior with and without the residual mode filter.
Zurbenko, I.; Chen, J.; Rao, S.T.
1997-11-01
The issue of global climate change due to increased anthropogenic emissions of greenhouse gases in the atmosphere has gained considerable attention and importance. Climate change studies require the interpretation of weather data collected in numerous locations and/or over the span of several decades. Unfortunately, these data contain biases caused by changes in instruments and data acquisition procedures. It is essential that biases are identified and/or removed before these data can be used confidently in the context of climate change research. The purpose of this paper is to illustrate the use of an adaptive moving average filter and compare it with traditional parametric methods. The advantage of the adaptive filter over traditional parametric methods is that it is less effected by seasonal patterns and trends. The filter has been applied to upper air relative humidity and temperature data. Applied to generated data, the filter has a root mean squared error accuracy of about 600 days when locating changes of 0.1 standard deviations and about 20 days for changes of 0.5 standard deviations. In some circumstances, the accuracy of location estimation can be improved through parametric techniques used in conjunction with the adaptive filter.
NASA Technical Reports Server (NTRS)
Kim, Heechul
1996-01-01
Filters implemented using Canonical Signed-Digit (CSD) number representation for the coefficients have been studied for many years as an efficient way to increase the speed and reduce the hardware complexity. A simple and very effective method for designing a CSD filter with a specific set of filter parameters has been investigated and its simulation results are presented here. In order to optimize filter coefficients into the corresponding CSD numbers, the Minimum Mean Square Error (MMSE) criterion is used. Furthermore, an attempt is made to improve frequency response of the CSD filter by allocating an extra non-zero digit for normalized coefficients exceeding one-half. Due to limited filter aperture width in examples presented here, the frequency response of CSD filter as the number of non-zero digits in a CSD code increases is not affected much. A root-raised cosine filter model is employed as a base line for this design approach. Finally, the CSD filter simulation results and a hardware complexity comparison with a conventional filter are also shown along with the eye diagrams an Bit-Error-Rate (BER) performance curves.
NASA Astrophysics Data System (ADS)
Boz, Utku; Basdogan, Ipek
2015-12-01
Structural vibrations is a major cause for noise problems, discomfort and mechanical failures in aerospace, automotive and marine systems, which are mainly composed of plate-like structures. In order to reduce structural vibrations on these structures, active vibration control (AVC) is an effective approach. Adaptive filtering methodologies are preferred in AVC due to their ability to adjust themselves for varying dynamics of the structure during the operation. The filtered-X LMS (FXLMS) algorithm is a simple adaptive filtering algorithm widely implemented in active control applications. Proper implementation of FXLMS requires availability of a reference signal to mimic the disturbance and model of the dynamics between the control actuator and the error sensor, namely the secondary path. However, the controller output could interfere with the reference signal and the secondary path dynamics may change during the operation. This interference problem can be resolved by using an infinite impulse response (IIR) filter which considers feedback of the one or more previous control signals to the controller output and the changing secondary path dynamics can be updated using an online modeling technique. In this paper, IIR filtering based filtered-U LMS (FULMS) controller is combined with online secondary path modeling algorithm to suppress the vibrations of a plate-like structure. The results are validated through numerical and experimental studies. The results show that the FULMS with online secondary path modeling approach has more vibration rejection capabilities with higher convergence rate than the FXLMS counterpart.
Berset, Torfinn; Geng, Di; Romero, Iñaki
2012-01-01
Noise from motion artifacts is currently one of the main challenges in the field of ambulatory ECG recording. To address this problem, we propose the use of two different approaches. First, an adaptive filter with electrode-skin impedance as a reference signal is described. Secondly, a multi-channel ECG algorithm based on Independent Component Analysis is introduced. Both algorithms have been designed and further optimized for real-time work embedded in a dedicated Digital Signal Processor. We show that both algorithms improve the performance of a beat detection algorithm when applied in high noise conditions. In addition, an efficient way of choosing this methods is suggested with the aim of reduce the overall total system power consumption. PMID:23367417
Aelterman, Jan; Goossens, Bart; De Vylder, Jonas; Pižurica, Aleksandra; Philips, Wilfried
2013-01-01
Most digital cameras use an array of alternating color filters to capture the varied colors in a scene with a single sensor chip. Reconstruction of a full color image from such a color mosaic is what constitutes demosaicing. In this paper, a technique is proposed that performs this demosaicing in a way that incurs a very low computational cost. This is done through a (dual-tree complex) wavelet interpretation of the demosaicing problem. By using a novel locally adaptive approach for demosaicing (complex) wavelet coefficients, we show that many of the common demosaicing artifacts can be avoided in an efficient way. Results demonstrate that the proposed method is competitive with respect to the current state of the art, but incurs a lower computational cost. The wavelet approach also allows for computationally effective denoising or deblurring approaches. PMID:23671575
Phase aberration correction by correlation in digital holographic adaptive optics
Liu, Changgeng; Yu, Xiao; Kim, Myung K.
2013-01-01
We present a phase aberration correction method based on the correlation between the complex full-field and guide-star holograms in the context of digital holographic adaptive optics (DHAO). Removal of a global quadratic phase term before the correlation operation plays an important role in the correction. Correlation operation can remove the phase aberration at the entrance pupil plane and automatically refocus the corrected optical field. Except for the assumption that most aberrations lie at or close to the entrance pupil, the presented method does not impose any other constraints on the optical systems. Thus, it greatly enhances the flexibility of the optical design for DHAO systems in vision science and microscopy. Theoretical studies show that the previously proposed Fourier transform DHAO (FTDHAO) is just a special case of this general correction method, where the global quadratic phase term and a defocus term disappear. Hence, this correction method realizes the generalization of FTDHAO into arbitrary DHAO systems. The effectiveness and robustness of this method are demonstrated by simulations and experiments. PMID:23669707
NASA Astrophysics Data System (ADS)
Hayes, Charles E.; McClellan, James H.; Scott, Waymond R.; Kerr, Andrew J.
2016-05-01
This work introduces two advances in wide-band electromagnetic induction (EMI) processing: a novel adaptive matched filter (AMF) and matched subspace detection methods. Both advances make use of recent work with a subspace SVD approach to separating the signal, soil, and noise subspaces of the frequency measurements The proposed AMF provides a direct approach to removing the EMI self-response while improving the signal to noise ratio of the data. Unlike previous EMI adaptive downtrack filters, this new filter will not erroneously optimize the EMI soil response instead of the EMI target response because these two responses are projected into separate frequency subspaces. The EMI detection methods in this work elaborate on how the signal and noise subspaces in the frequency measurements are ideal for creating the matched subspace detection (MSD) and constant false alarm rate matched subspace detection (CFAR) metrics developed by Scharf The CFAR detection metric has been shown to be the uniformly most powerful invariant detector.
A multi-stage noise adaptive switching filter for extremely corrupted images
NASA Astrophysics Data System (ADS)
Dinh, Hai; Adhami, Reza; Wang, Yi
2015-07-01
A multi-stage noise adaptive switching filter (MSNASF) is proposed for the restoration of images extremely corrupted by impulse and impulse-like noise. The filter consists of two steps: noise detection and noise removal. The proposed extrema-based noise detection scheme utilizes the false contouring effect to get better over detection rate at low noise density. It is adaptive and will detect not only impulse but also impulse-like noise. In the noise removal step, a novel multi-stage filtering scheme is proposed. It replaces corrupted pixel with the nearest uncorrupted median to preserve details. When compared with other methods, MSNASF provides better peak signal to noise ratio (PSNR) and structure similarity index (SSIM). A subjective evaluation carried out online also demonstrates that MSNASF yields higher fidelity.
NASA Astrophysics Data System (ADS)
Liu, Delian; Li, Zhaohui; Wang, Xiaorui; Zhang, Jianqi
2015-11-01
Target detection is of great importance both in civil and military fields. Here a new moving target detection approach is proposed, which employs a nonlinear adaptive filter to remove large fluctuations on temporal profiles that are produced by evolving clutters. Initially, this paper discusses the temporal behaviors of different pixels in infrared sequences. Then, the new nonlinear adaptive filter that is a variation of the median-modified Wiener filter is given to extract pulse signals on temporal profiles that relate to moving targets. Next, the variance of each temporal profile is estimated by segmenting each temporal profile into several segments to normalize the amplitude of the pulse signals. Finally, the proposed approach is tested via two infrared image sequences and compared with several conventional target detection algorithms. The results show our approach has a high effectiveness in extracting target temporal profiles amidst heavy and slowly evolving clutters.
Digital restoration of indium-111 and iodine-123 SPECT images with optimized Metz filters
King, M.A.; Schwinger, R.B.; Penney, B.C.; Doherty, P.W.; Bianco, J.A.
1986-08-01
A number of radiopharmaceuticals of great current clinical interest for imaging are labeled with radionuclides that emit medium- to high-energy photons either as their primary radiation, or in low abundance in addition to their primary radiation. The imaging characteristics of these radionuclides result in gamma camera image quality that is inferior to that of /sup 99m/Tc images. Thus, in this investigation /sup 111/In and /sup 123/I contaminated with approximately 4% /sup 124/I were chosen to test the hypothesis that a dramatic improvement in planar and SPECT images may be obtainable with digital image restoration. The count-dependent Metz filter is shown to be able to deconvolve the rapid drop at low spatial frequencies in the imaging system modulation transfer function (MTF) resulting from the acceptance of septal penetration and scatter in the camera window. Use of the Metz filter was found to result in improved spatial resolution as measured by both the full width at half maximum and full width at tenth maximum for both planar and SPECT studies. Two-dimensional, prereconstruction filtering with optimized Metz filters was also determined to improve image contrast, while decreasing the noise level for SPECT studies. A dramatic improvement in image quality was observed with the clinical application of this filter to SPECT imaging.
Efficient variable bandwidth filters for digital hearing aid using Farrow structure
Haridas, Nisha; Elias, Elizabeth
2015-01-01
Design of a digital hearing aid requires a set of filters that gives reasonable audiogram matching for the concerned type of hearing loss. This paper proposes the use of a variable bandwidth filter, using Farrow subfilters, for this purpose. The design of the variable bandwidth filter is carried out for a set of selected bandwidths. Each of these bands is frequency shifted and provided with sufficient magnitude gain, such that, the different bands combine to give a frequency response that closely matches the audiogram. Due to the adjustable bandedges in the basic filter, this technique allows the designer to add reconfigurability to the system. This technique is simple and efficient when compared with the existing methods. Results show that lower order filters and better audiogram matching with lesser matching errors are obtained using Farrow structure. This, in turn reduces implementation complexity. The cost effectiveness of this technique also comes from the fact that, the user can reprogram the same device, once his hearing loss pattern is found to have changed in due course of time, without the need to replace it completely. PMID:26966566
Soft-error filtering: A solution to the reliability problem of future VLSI digital circuits
Savaria, Y.; Rumin, N.C.; Hayes, J.F.; Agarwal, V.
1986-05-01
As the semiconductor industry continues to scale down the feature sizes in VLSI digital circuits, soft errors will eventually limit the reliability of these circuits. An important source of these errors will be the products of radioactive decay. It is proposed to combat these transient errors by a new technique called soft-error filtering (SEF). This is based on filtering the input to every latch in the VLSI circuit, thereby preventing these transients, generated by alpha particle hits in the combinational section, from being latched in the corresponding registers. Several approaches to the problem of designing filtering latches are compared. This comparison demonstrates the superiority of a double-filter realization. The design for a CMOS implementation of the double-filter latch is presented. Not only is the design simple and efficient, but it can be expected to be tolerant to process variations. A comparison of SEF with conventional techniques for dealing with soft errors shows the former to be generally much more attractive, from the point of view of both area and time overhead.
NASA Technical Reports Server (NTRS)
Wallace, G. R.; Weathers, G. D.; Graf, E. R.
1973-01-01
The statistics of filtered pseudorandom digital sequences called hybrid-sum sequences, formed from the modulo-two sum of several maximum-length sequences, are analyzed. The results indicate that a relation exists between the statistics of the filtered sequence and the characteristic polynomials of the component maximum length sequences. An analysis procedure is developed for identifying a large group of sequences with good statistical properties for applications requiring the generation of analog pseudorandom noise. By use of the analysis approach, the filtering process is approximated by the convolution of the sequence with a sum of unit step functions. A parameter reflecting the overall statistical properties of filtered pseudorandom sequences is derived. This parameter is called the statistical quality factor. A computer algorithm to calculate the statistical quality factor for the filtered sequences is presented, and the results for two examples of sequence combinations are included. The analysis reveals that the statistics of the signals generated with the hybrid-sum generator are potentially superior to the statistics of signals generated with maximum-length generators. Furthermore, fewer calculations are required to evaluate the statistics of a large group of hybrid-sum generators than are required to evaluate the statistics of the same size group of approximately equivalent maximum-length sequences.
Baksi, BG; Alpöz, E; Soğur, E; Mert, A
2010-01-01
Objectives The aims of the study were to compare subjective image quality of clinical images obtained with a storage phosphor plate (SPP)-based digital and conventional film-based panoramic system for the visualization of various anatomical structures and to evaluate the effect of various processing algorithms on image interpretation. Methods Panoramic radiographs were taken in 42 patients both with film and with a SPP system. SPP images were treated with shadow, sharpen, negative, greyscale sigma and greyscale exponential filters. Four observers subjectively evaluated films and unfiltered and filtered SPP images for the visibility of anatomical structures with various radiodensities as well as for overall image quality on a three-point rating scale. The statistical methods used were Kruskal–Wallis, odds ratio analysis and Cohen's kappa. Results No statistically significant difference was found between film and unfiltered digital images except for low-contrast structures (P > 0.05). Film images were preferred for the visibility of low-contrast structures (P < 0.05). Best overall image quality was obtained with sharpened images (P < 0.05) followed by films and unfiltered digital images. Among all filtered images, sharpened ones received the highest ratings for the visibility of all anatomical structures (P < 0.05). The intra- and interobserver agreement ranged between moderate and substantial and between fair and moderate, respectively. Conclusions Film and unfiltered SPP-based panoramic images performed equally well in terms of overall quality; however, films were best for the perception of low-contrast structures. The sharpening filter may be recommended for enhancing SPP panoramic images to improve the visual perception of most of the anatomical structures as well as overall quality. PMID:20841460
NASA Astrophysics Data System (ADS)
Krainer, Karl; Hammerle, Albin; Wohlfahrt, Georg
2015-04-01
Remote and proximal sensing have become valuable and broadly used tools in ecosystem research. Radiation reflected and scattered at and from the vegetation is used to infer information about vegetation biomass, structure, vitality and functioning, just to name a few. To this end numerous vegetation indices have been established, which relate reflectance in different wavelengths to each other. While such indices are usually calculated from reflectance data measured by spectro-radiometers we did a study using a commercially available digital camera, from which the infrared (IR) band elimination filter was removed. By removing this filter, the camera sensor became sensitive for IR radiation besides the visible spectrum. Comparing measurements with this modified camera and a hyperspectral spectro-radiometer over different vegetation and surfaces we determined the potential of such a modified camera to measure different vegetation indices. To this end we compared 71 vegetation indices derived from spectro-radiometer data with 63 indices derived from the modified digital camera. We found that many of these different indices featured relatively high correlations. Especially the rgR (green/red ratio) and NDI (normalized difference vegetation index) calculated from data of the modified camera do correlate very well with vegetation indices that are known for representing the amount and vitality of green biomass, as these are the NIDI (normalized infrared vegetation index) and the LIC (curvature index). We thus conclude from this experiment, that given a proper inter-calibration, a commercially available digital camera can be modified and used as a reasonable alternative tool to determine vegetation biomass and/or vitality. In addition to these measurements currently different band elimination filters are used to improve the information content of the digital images.
Ham, Bumsub; Min, Dongbo; Sohn, Kwanghoon
2013-03-01
Anisotropic diffusion has been known to be closely related to adaptive smoothing and discretized in a similar manner. This paper revisits a fundamental relationship between two approaches. It is shown that adaptive smoothing and anisotropic diffusion have different theoretical backgrounds by exploring their characteristics with the perspective of normalization, evolution step size, and energy flow. Based on this principle, adaptive smoothing is derived from a second order partial differential equation (PDE), not a conventional anisotropic diffusion, via the coupling of Fick's law with a generalized continuity equation where a "source" or "sink" exists, which has not been extensively exploited. We show that the source or sink is closely related to the asymmetry of energy flow as well as the normalization term of adaptive smoothing. It enables us to analyze behaviors of adaptive smoothing, such as the maximum principle and stability with a perspective of a PDE. Ultimately, this relationship provides new insights into application-specific filtering algorithm design. By modeling the source or sink in the PDE, we introduce two specific diffusion filters, the robust anisotropic diffusion and the robust coherence enhancing diffusion, as novel instantiations which are more robust against the outliers than the conventional filters. PMID:23193236
Analog and digital signal processing
NASA Astrophysics Data System (ADS)
Baher, H.
The techniques of signal processing in both the analog and digital domains are addressed in a fashion suitable for undergraduate courses in modern electrical engineering. The topics considered include: spectral analysis of continuous and discrete signals, analysis of continuous and discrete systems and networks using transform methods, design of analog and digital filters, digitization of analog signals, power spectrum estimation of stochastic signals, FFT algorithms, finite word-length effects in digital signal processes, linear estimation, and adaptive filtering.
Guo, Qing; Sun, Ping; Yin, Jing-Min; Yu, Tian; Jiang, Dan
2016-05-01
Some unknown parameter estimation of electro-hydraulic system (EHS) should be considered in hydraulic controller design due to many parameter uncertainties in practice. In this study, a parametric adaptive backstepping control method is proposed to improve the dynamic behavior of EHS under parametric uncertainties and unknown disturbance (i.e., hydraulic parameters and external load). The unknown parameters of EHS model are estimated by the parametric adaptive estimation law. Then the recursive backstepping controller is designed by Lyapunov technique to realize the displacement control of EHS. To avoid explosion of virtual control in traditional backstepping, a decayed memory filter is presented to re-estimate the virtual control and the dynamic external load. The effectiveness of the proposed controller has been demonstrated by comparison with the controller without adaptive and filter estimation. The comparative experimental results in critical working conditions indicate the proposed approach can achieve better dynamic performance on the motion control of Two-DOF robotic arm. PMID:26920086
Neural Network Aided Adaptive Extended Kalman Filtering Approach for DGPS Positioning
NASA Astrophysics Data System (ADS)
Jwo, Dah-Jing; Huang, Hung-Chih
2004-09-01
The extended Kalman filter, when employed in the GPS receiver as the navigation state estimator, provides optimal solutions if the noise statistics for the measurement and system are completely known. In practice, the noise varies with time, which results in performance degradation. The covariance matching method is a conventional adaptive approach for estimation of noise covariance matrices. The technique attempts to make the actual filter residuals consistent with their theoretical covariance. However, this innovation-based adaptive estimation shows very noisy results if the window size is small. To resolve the problem, a multilayered neural network is trained to identify the measurement noise covariance matrix, in which the back-propagation algorithm is employed to iteratively adjust the link weights using the steepest descent technique. Numerical simulations show that based on the proposed approach the adaptation performance is substantially enhanced and the positioning accuracy is substantially improved.
A unified set-based test with adaptive filtering for gene-environment interaction analyses.
Liu, Qianying; Chen, Lin S; Nicolae, Dan L; Pierce, Brandon L
2016-06-01
In genome-wide gene-environment interaction (GxE) studies, a common strategy to improve power is to first conduct a filtering test and retain only the SNPs that pass the filtering in the subsequent GxE analyses. Inspired by two-stage tests and gene-based tests in GxE analysis, we consider the general problem of jointly testing a set of parameters when only a few are truly from the alternative hypothesis and when filtering information is available. We propose a unified set-based test that simultaneously considers filtering on individual parameters and testing on the set. We derive the exact distribution and approximate the power function of the proposed unified statistic in simplified settings, and use them to adaptively calculate the optimal filtering threshold for each set. In the context of gene-based GxE analysis, we show that although the empirical power function may be affected by many factors, the optimal filtering threshold corresponding to the peak of the power curve primarily depends on the size of the gene. We further propose a resampling algorithm to calculate P-values for each gene given the estimated optimal filtering threshold. The performance of the method is evaluated in simulation studies and illustrated via a genome-wide gene-gender interaction analysis using pancreatic cancer genome-wide association data. PMID:26496228
A unified set-based test with adaptive filtering for gene-environment interaction analyses
Liu, Qianying; Chen, Lin S.; Nicolae, Dan L.; Pierce, Brandon L.
2015-01-01
Summary In genome-wide gene-environment interaction (GxE) studies, a common strategy to improve power is to first conduct a filtering test and retain only the SNPs that pass the filtering in the subsequent GxE analyses. Inspired by two-stage tests and gene-based tests in GxE analysis, we consider the general problem of jointly testing a set of parameters when only a few are truly from the alternative hypothesis and when filtering information is available. We propose a unified set-based test that simultaneously considers filtering on individual parameters and testing on the set. We derive the exact distribution and approximate the power function of the proposed unified statistic in simplified settings, and use them to adaptively calculate the optimal filtering threshold for each set. In the context of gene-based GxE analysis, we show that although the empirical power function may be affected by many factors, the optimal filtering threshold corresponding to the peak of the power curve primarily depends on the size of the gene. We further propose a resampling algorithm to calculate p-values for each gene given the estimated optimal filtering threshold. The performance of the method is evaluated in simulation studies and illustrated via a genome-wide gene-gender interaction analysis using pancreatic cancer genome-wide association data. PMID:26496228
Kaltenbach, T.
1994-12-31
As part of an agreement with the New York State Department of Environmental Conservation, Eastman Kodak Company has a program to monitor ambient air concentrations of volatile organic compounds at its fence lines. Currently, canister-based point sensors are used to collect a time-averaged sample every sixth day. The staff required to position, retrieve, and analyze these canisters makes this procedure expensive. Alternative methods are being investigated that can provide similar results in real time, while also saving costs. One such method is Fourier transform infrared (FTIR) spectroscopy. Radian Corporation performed a series of FTIR fence-line monitoring experiments at Kodak about one year ago. The spectra collected during this experiment are complicated by the presence of water vapor bands. Digital filtering techniques utilizing the Fourier transform are being explored as a means of removing the interference due to water vapor. When a digital filter is used as a spectral preprocessor, partial least squares (PLS) techniques can be employed to provide a powerful prediction pool. This seminar will describe the operation of the Fourier filters and present some encouraging preliminary results from PLS models.
Filter accuracy for the Lorenz 96 model: Fixed versus adaptive observation operators
NASA Astrophysics Data System (ADS)
Law, K. J. H.; Sanz-Alonso, D.; Shukla, A.; Stuart, A. M.
2016-06-01
In the context of filtering chaotic dynamical systems it is well-known that partial observations, if sufficiently informative, can be used to control the inherent uncertainty due to chaos. The purpose of this paper is to investigate, both theoretically and numerically, conditions on the observations of chaotic systems under which they can be accurately filtered. In particular, we highlight the advantage of adaptive observation operators over fixed ones. The Lorenz '96 model is used to exemplify our findings. We consider discrete-time and continuous-time observations in our theoretical developments. We prove that, for fixed observation operator, the 3DVAR filter can recover the system state within a neighbourhood determined by the size of the observational noise. It is required that a sufficiently large proportion of the state vector is observed, and an explicit form for such sufficient fixed observation operator is given. Numerical experiments, where the data is incorporated by use of the 3DVAR and extended Kalman filters, suggest that less informative fixed operators than given by our theory can still lead to accurate signal reconstruction. Adaptive observation operators are then studied numerically; we show that, for carefully chosen adaptive observation operators, the proportion of the state vector that needs to be observed is drastically smaller than with a fixed observation operator. Indeed, we show that the number of state coordinates that need to be observed may even be significantly smaller than the total number of positive Lyapunov exponents of the underlying system.
NASA Technical Reports Server (NTRS)
Keel, Byron M.
1989-01-01
An optimum adaptive clutter rejection filter for use with airborne Doppler weather radar is presented. The radar system is being designed to operate at low-altitudes for the detection of windshear in an airport terminal area where ground clutter returns may mask the weather return. The coefficients of the adaptive clutter rejection filter are obtained using a complex form of a square root normalized recursive least squares lattice estimation algorithm which models the clutter return data as an autoregressive process. The normalized lattice structure implementation of the adaptive modeling process for determining the filter coefficients assures that the resulting coefficients will yield a stable filter and offers possible fixed point implementation. A 10th order FIR clutter rejection filter indexed by geographical location is designed through autoregressive modeling of simulated clutter data. Filtered data, containing simulated dry microburst and clutter return, are analyzed using pulse-pair estimation techniques. To measure the ability of the clutter rejection filters to remove the clutter, results are compared to pulse-pair estimates of windspeed within a simulated dry microburst without clutter. In the filter evaluation process, post-filtered pulse-pair width estimates and power levels are also used to measure the effectiveness of the filters. The results support the use of an adaptive clutter rejection filter for reducing the clutter induced bias in pulse-pair estimates of windspeed.
Parameter estimation with an iterative version of the adaptive Gaussian mixture filter
NASA Astrophysics Data System (ADS)
Stordal, A.; Lorentzen, R.
2012-04-01
The adaptive Gaussian mixture filter (AGM) was introduced in Stordal et. al. (ECMOR 2010) as a robust filter technique for large scale applications and an alternative to the well known ensemble Kalman filter (EnKF). It consists of two analysis steps, one linear update and one weighting/resampling step. The bias of AGM is determined by two parameters, one adaptive weight parameter (forcing the weights to be more uniform to avoid filter collapse) and one pre-determined bandwidth parameter which decides the size of the linear update. It has been shown that if the adaptive parameter approaches one and the bandwidth parameter decrease with increasing sample size, the filter can achieve asymptotic optimality. For large scale applications with a limited sample size the filter solution may be far from optimal as the adaptive parameter gets close to zero depending on how well the samples from the prior distribution match the data. The bandwidth parameter must often be selected significantly different from zero in order to make large enough linear updates to match the data, at the expense of bias in the estimates. In the iterative AGM we take advantage of the fact that the history matching problem is usually estimation of parameters and initial conditions. If the prior distribution of initial conditions and parameters is close to the posterior distribution, it is possible to match the historical data with a small bandwidth parameter and an adaptive weight parameter that gets close to one. Hence the bias of the filter solution is small. In order to obtain this scenario we iteratively run the AGM throughout the data history with a very small bandwidth to create a new prior distribution from the updated samples after each iteration. After a few iterations, nearly all samples from the previous iteration match the data and the above scenario is achieved. A simple toy problem shows that it is possible to reconstruct the true posterior distribution using the iterative version of
Measurement of subcellular texture by optical Gabor-like filtering with a digital micromirror device
Pasternack, Robert M.; Qian, Zhen; Zheng, Jing-Yi; Metaxas, Dimitris N.; White, Eileen; Boustany, Nada N.
2010-01-01
We demonstrate an optical Fourier processing method to quantify object texture arising from subcellular feature orientation within unstained living cells. Using a digital micromirror device as a Fourier spatial filter, we measured cellular responses to two-dimensional optical Gabor-like filters optimized to sense orientation of nonspherical particles, such as mitochondria, with a width around 0.45 μm. Our method showed significantly rounder structures within apoptosis-defective cells lacking the proapoptotic mitochondrial effectors Bax and Bak, when compared with Bax/Bak expressing cells functional for apoptosis, consistent with reported differences in mitochondrial shape in these cells. By decoupling spatial frequency resolution from image resolution, this method enables rapid analysis of nonspherical submicrometer scatterers in an under-sampled large field of view and yields spatially localized morphometric parameters that improve the quantitative assessment of biological function. PMID:18830354
NASA Astrophysics Data System (ADS)
Lee, Seunghee; Bae, Kwanghyuk; Kyung, Kyu-min; Kim, Tae-Chan
2012-03-01
In this work, we present an adaptive switching filter for noise reduction and sharpness preservation in depth maps provided by Time-of-Flight (ToF) image sensors. Median filter and bilateral filter are commonly used in cost-sensitive applications where low computational complexity is needed. However, median filter blurs fine details and edges in depth map while bilateral filter works poorly with impulse noise present in the image. Since the variance of depth is inversely proportional to amplitude, we suggest an adaptive filter that switches between median filter and bilateral filter based on the level of amplitude. If a region of interest has low amplitude indicating low confidence level of measured depth data, then median filter is applied on the depth at the position while regions with high level of amplitude is processed with bilateral filter using Gaussian kernel with adaptive weights. Results show that the suggested algorithm performs surface smoothing and detail preservation as well as median filter and bilateral filter, respectively. By using the suggested algorithm, significant gain in visual quality is obtained in depth maps while low computational cost is maintained.
Digital direct electron imaging of energy-filtered electron backscatter diffraction patterns
NASA Astrophysics Data System (ADS)
Vespucci, S.; Winkelmann, A.; Naresh-Kumar, G.; Mingard, K. P.; Maneuski, D.; Edwards, P. R.; Day, A. P.; O'Shea, V.; Trager-Cowan, C.
2015-11-01
Electron backscatter diffraction is a scanning electron microscopy technique used to obtain crystallographic information on materials. It allows the nondestructive mapping of crystal structure, texture, and strain with a lateral and depth resolution on the order of tens of nanometers. Electron backscatter diffraction patterns (EBSPs) are presently acquired using a detector comprising a scintillator coupled to a digital camera, and the crystallographic information obtainable is limited by the conversion of electrons to photons and then back to electrons again. In this article we will report the direct acquisition of energy-filtered EBSPs using a digital complementary metal-oxide-semiconductor hybrid pixel detector, Timepix. We show results from a range of samples with different mass and density, namely diamond, silicon, and GaN. Direct electron detection allows the acquisition of EBSPs at lower (≤5 keV) electron beam energies. This results in a reduction in the depth and lateral extension of the volume of the specimen contributing to the pattern and will lead to a significant improvement in lateral and depth resolution. Direct electron detection together with energy filtering (electrons having energy below a specific value are excluded) also leads to an improvement in spatial resolution but in addition provides an unprecedented increase in the detail in the acquired EBSPs. An increase in contrast and higher-order diffraction features are observed. In addition, excess-deficiency effects appear to be suppressed on energy filtering. This allows the fundamental physics of pattern formation to be interrogated and will enable a step change in the use of electron backscatter diffraction (EBSD) for crystal phase identification and the mapping of strain. The enhancement in the contrast in high-pass energy-filtered EBSD patterns is found to be stronger for lighter, less dense materials. The improved contrast for such materials will enable the application of the EBSD
Chest Radiography using Patient-Specific Digitally-Prepared Compensating Filters
NASA Astrophysics Data System (ADS)
Hasegawa, Bruce H.; Naimuddin, Shaikh; Dobbins, James T.; Mistretta, Charles A.; Peppler, Walter W.; Hangiandreou, Nicholas J.; Cusma, Jack T.; McDermott, John C.; Kudva, Bakki V.; Melbve, Kenneth M.
1985-09-01
We have used a prototype digital beam attenuator (DBA) system to generate patient-specific digitally-prepared compensating filters for chest radiography of a human subject. The compensated radiographs demonstrate substantially more information in areas such as the mediastinum and upper abdomen which normally are underpenetrated in conventional chest radiographs. The compensated image was acquired with high contrast, high speed film-screen receptors improving the visibility of pulmonary parenchymal detail while minimizing patient radiation exposure. Currently we are limited by a two-hour preparation time and position the attenuator manually. We are developing a second generation DBA system featuring fast (15 second) fabrication times and automatic positioning of the attenuator. We expect that these features will relieve some of the misregistration errors present in our initial examination.
Adaptive nonlocal means filtering based on local noise level for CT denoising
Li, Zhoubo; Trzasko, Joshua D.; Lake, David S.; Blezek, Daniel J.; Manduca, Armando; Yu, Lifeng; Fletcher, Joel G.; McCollough, Cynthia H.
2014-01-15
Purpose: To develop and evaluate an image-domain noise reduction method based on a modified nonlocal means (NLM) algorithm that is adaptive to local noise level of CT images and to implement this method in a time frame consistent with clinical workflow. Methods: A computationally efficient technique for local noise estimation directly from CT images was developed. A forward projection, based on a 2D fan-beam approximation, was used to generate the projection data, with a noise model incorporating the effects of the bowtie filter and automatic exposure control. The noise propagation from projection data to images was analytically derived. The analytical noise map was validated using repeated scans of a phantom. A 3D NLM denoising algorithm was modified to adapt its denoising strength locally based on this noise map. The performance of this adaptive NLM filter was evaluated in phantom studies in terms of in-plane and cross-plane high-contrast spatial resolution, noise power spectrum (NPS), subjective low-contrast spatial resolution using the American College of Radiology (ACR) accreditation phantom, and objective low-contrast spatial resolution using a channelized Hotelling model observer (CHO). Graphical processing units (GPU) implementation of this noise map calculation and the adaptive NLM filtering were developed to meet demands of clinical workflow. Adaptive NLM was piloted on lower dose scans in clinical practice. Results: The local noise level estimation matches the noise distribution determined from multiple repetitive scans of a phantom, demonstrated by small variations in the ratio map between the analytical noise map and the one calculated from repeated scans. The phantom studies demonstrated that the adaptive NLM filter can reduce noise substantially without degrading the high-contrast spatial resolution, as illustrated by modulation transfer function and slice sensitivity profile results. The NPS results show that adaptive NLM denoising preserves the
Adaptive Laplacian filtering for sensorimotor rhythm-based brain-computer interfaces
NASA Astrophysics Data System (ADS)
Lu, Jun; McFarland, Dennis J.; Wolpaw, Jonathan R.
2013-02-01
Objective. Sensorimotor rhythms (SMRs) are 8-30 Hz oscillations in the electroencephalogram (EEG) recorded from the scalp over sensorimotor cortex that change with movement and/or movement imagery. Many brain-computer interface (BCI) studies have shown that people can learn to control SMR amplitudes and can use that control to move cursors and other objects in one, two or three dimensions. At the same time, if SMR-based BCIs are to be useful for people with neuromuscular disabilities, their accuracy and reliability must be improved substantially. These BCIs often use spatial filtering methods such as common average reference (CAR), Laplacian (LAP) filter or common spatial pattern (CSP) filter to enhance the signal-to-noise ratio of EEG. Here, we test the hypothesis that a new filter design, called an ‘adaptive Laplacian (ALAP) filter’, can provide better performance for SMR-based BCIs. Approach. An ALAP filter employs a Gaussian kernel to construct a smooth spatial gradient of channel weights and then simultaneously seeks the optimal kernel radius of this spatial filter and the regularization parameter of linear ridge regression. This optimization is based on minimizing the leave-one-out cross-validation error through a gradient descent method and is computationally feasible. Main results. Using a variety of kinds of BCI data from a total of 22 individuals, we compare the performances of ALAP filter to CAR, small LAP, large LAP and CSP filters. With a large number of channels and limited data, ALAP performs significantly better than CSP, CAR, small LAP and large LAP both in classification accuracy and in mean-squared error. Using fewer channels restricted to motor areas, ALAP is still superior to CAR, small LAP and large LAP, but equally matched to CSP. Significance. Thus, ALAP may help to improve the accuracy and robustness of SMR-based BCIs.
A 3D approach for object recognition in illuminated scenes with adaptive correlation filters
NASA Astrophysics Data System (ADS)
Picos, Kenia; Díaz-Ramírez, Víctor H.
2015-09-01
In this paper we solve the problem of pose recognition of a 3D object in non-uniformly illuminated and noisy scenes. The recognition system employs a bank of space-variant correlation filters constructed with an adaptive approach based on local statistical parameters of the input scene. The position and orientation of the target are estimated with the help of the filter bank. For an observed input frame, the algorithm computes the correlation process between the observed image and the bank of filters using a combination of data and task parallelism by taking advantage of a graphics processing unit (GPU) architecture. The pose of the target is estimated by finding the template that better matches the current view of target within the scene. The performance of the proposed system is evaluated in terms of recognition accuracy, location and orientation errors, and computational performance.
Adaptive filtering for reduction of speckle in ultrasonic pulse-echo images.
Bamber, J C; Daft, C
1986-01-01
Current medical ultrasonic scanning instrumentation permits the display of fine image detail (speckle) which does not transfer useful information but degrades the apparent low contrast resolution in the image. An adaptive two-dimensional filter has been developed which uses local features of image texture to recognize and maximally low-pass filter those parts of the image which correspond to fully developed speckle, while substantially preserving information associated with resolved-object structure. A first implementation of the filter is described which uses the ratio of the local variance and the local mean as the speckle recognition feature. Preliminary results of applying this form of display processing to medical ultrasound images are very encouraging; it appears that the visual perception of features such as small discrete structures, subtle fluctuations in mean echo level and changes in image texture may be enhanced relative to that for unprocessed images. PMID:3510500
Biohybrid Control of General Linear Systems Using the Adaptive Filter Model of Cerebellum
Wilson, Emma D.; Assaf, Tareq; Pearson, Martin J.; Rossiter, Jonathan M.; Dean, Paul; Anderson, Sean R.; Porrill, John
2015-01-01
The adaptive filter model of the cerebellar microcircuit has been successfully applied to biological motor control problems, such as the vestibulo-ocular reflex (VOR), and to sensory processing problems, such as the adaptive cancelation of reafferent noise. It has also been successfully applied to problems in robotics, such as adaptive camera stabilization and sensor noise cancelation. In previous applications to inverse control problems, the algorithm was applied to the velocity control of a plant dominated by viscous and elastic elements. Naive application of the adaptive filter model to the displacement (as opposed to velocity) control of this plant results in unstable learning and control. To be more generally useful in engineering problems, it is essential to remove this restriction to enable the stable control of plants of any order. We address this problem here by developing a biohybrid model reference adaptive control (MRAC) scheme, which stabilizes the control algorithm for strictly proper plants. We evaluate the performance of this novel cerebellar-inspired algorithm with MRAC scheme in the experimental control of a dielectric electroactive polymer, a class of artificial muscle. The results show that the augmented cerebellar algorithm is able to accurately control the displacement response of the artificial muscle. The proposed solution not only greatly extends the practical applicability of the cerebellar-inspired algorithm, but may also shed light on cerebellar involvement in a wider range of biological control tasks. PMID:26257638
NASA Astrophysics Data System (ADS)
Ma, Shaokang; Wu, Peijun; Ji, Jinhu; Li, Xuchun
2016-02-01
This article presents a sensorless control approach of salient PMSM with an online parameter identifier. Adaptive Integrator is proposed and utilised for the estimation of active flux and rotor position. As a result, integrator overflow caused by DC offset is avoided. Meanwhile, an online stator resistance identification algorithm using strong tracking filter is employed, and the identified stator resistance is fed back to the estimating algorithm. Thus, the estimating algorithm can calculate the rotor position correctly. Simulations and experimental results validate the feasibility of both adaptive integrator and the parameter identification method.
Particle filter based visual tracking with multi-cue adaptive fusion
NASA Astrophysics Data System (ADS)
Li, Anping; Jing, Zhongliang; Hu, Shiqiang
2005-06-01
To improve the robustness of visual tracking in complex environments such as: cluttered backgrounds, partial occlusions, similar distraction and pose variations, a novel tracking method based on adaptive fusion and particle filter is proposed in this paper. In this method, the image color and shape cues are adaptively fused to represent the target observation; fuzzy logic is applied to dynamically adjust each cue weight according to its associated reliability in the past frame; particle filter is adopted to deal with non-linear and non-Gaussian problems in visual tracking. The method is demonstrated to be robust to illumination changes, pose variations, partial occlusions, cluttered backgrounds and camera motion for a test image sequence.
Denoising preterm EEG by signal decomposition and adaptive filtering: a comparative study.
Navarro, X; Porée, F; Beuchée, A; Carrault, G
2015-03-01
Electroencephalography (EEG) from preterm infant monitoring systems is usually contaminated by several sources of noise that have to be removed in order to correctly interpret signals and perform automated analysis reliably. Band-pass and adaptive filters (AF) continue to be systematically applied, but their efficacy may be decreased facing preterm EEG patterns such as the tracé alternant and slow delta-waves. In this paper, we propose the combination of EEG decomposition with AF to improve the overall denoising process. Using artificially contaminated signals from real EEGs, we compared the quality of filtered signals applying different decomposition techniques: the discrete wavelet transform, the empirical mode decomposition (EMD) and a recent improved version, the complete ensemble EMD with adaptive noise. Simulations demonstrate that introducing EMD-based techniques prior to AF can reduce up to 30% the root mean squared errors in denoised EEGs. PMID:25659233
Li, Yongxiao; Wang, Zinan; Peng, Chao; Li, Zhengbin
2014-10-10
Conventional signal processing methods for improving the random walk coefficient and the bias stability of interferometric fiber-optic gyroscopes are usually implemented in one-dimension sequence. In this paper, as a comparison, we allocated synchronous adaptive filters with the calculations of correlations of multidimensional signals in the perspective of the signal subspace. First, two synchronous independent channels are obtained through quadrature demodulation. Next, synchronous adaptive filters were carried out in order to project the original channels to the high related error channels and the approximation channels. The error channel signals were then processed by principal component analysis for suppressing coherent noises. Finally, an optimal state estimation of these error channels and approximation channels based on the Kalman gain coefficient was operated. Experimental results show that this signal processing method improved the raw measurements' variance from 0.0630 [(°/h)2] to 0.0103 [(°/h)2]. PMID:25322393
NASA Technical Reports Server (NTRS)
Penland, Cecile; Ghil, Michael; Weickmann, Klaus M.
1991-01-01
The spectral resolution and statistical significance of a harmonic analysis obtained by low-order MEM can be improved by subjecting the data to an adaptive filter. This adaptive filter consists of projecting the data onto the leading temporal empirical orthogonal functions obtained from singular spectrum analysis (SSA). The combined SSA-MEM method is applied both to a synthetic time series and a time series of AAM data. The procedure is very effective when the background noise is white and less so when the background noise is red. The latter case obtains in the AAM data. Nevertheless, reliable evidence for intraseasonal and interannual oscillations in AAM is detected. The interannual periods include a quasi-biennial one and an LF one, of 5 years, both related to the El Nino/Southern Oscillation. In the intraseasonal band, separate oscillations of about 48.5 and 51 days are ascertained.
Ensembles of adaptive spatial filters increase BCI performance: an online evaluation
NASA Astrophysics Data System (ADS)
Sannelli, Claudia; Vidaurre, Carmen; Müller, Klaus-Robert; Blankertz, Benjamin
2016-08-01
Objective: In electroencephalographic (EEG) data, signals from distinct sources within the brain are widely spread by volume conduction and superimposed such that sensors receive mixtures of a multitude of signals. This reduction of spatial information strongly hampers single-trial analysis of EEG data as, for example, required for brain–computer interfacing (BCI) when using features from spontaneous brain rhythms. Spatial filtering techniques are therefore greatly needed to extract meaningful information from EEG. Our goal is to show, in online operation, that common spatial pattern patches (CSPP) are valuable to counteract this problem. Approach: Even though the effect of spatial mixing can be encountered by spatial filters, there is a trade-off between performance and the requirement of calibration data. Laplacian derivations do not require calibration data at all, but their performance for single-trial classification is limited. Conversely, data-driven spatial filters, such as common spatial patterns (CSP), can lead to highly distinctive features; however they require a considerable amount of training data. Recently, we showed in an offline analysis that CSPP can establish a valuable compromise. In this paper, we confirm these results in an online BCI study. In order to demonstrate the paramount feature that CSPP requires little training data, we used them in an adaptive setting with 20 participants and focused on users who did not have success with previous BCI approaches. Main results: The results of the study show that CSPP adapts faster and thereby allows users to achieve better feedback within a shorter time than previous approaches performed with Laplacian derivations and CSP filters. The success of the experiment highlights that CSPP has the potential to further reduce BCI inefficiency. Significance: CSPP are a valuable compromise between CSP and Laplacian filters. They allow users to attain better feedback within a shorter time and thus reduce BCI
NASA Astrophysics Data System (ADS)
Fontes, S. L.; Harinarayana, T.; Dawes, G. J. K.; Hutton, V. R. S.
1988-10-01
Although the magnetotelluric (MT) method is known to be effective and fast in probing the electrical conductivity structure of the Earth at crustal depths, the results are often degraded by industrial and cultural noise. To obtain reliable processed results for modelling, it is first necessary to extract or select the natural signals from the contaminated time series. Various noise-reduction techniques based on digital filters are discussed with special reference to persistent noise signals, e.g. from power lines, DC-operated railways and electrical fences. Both previously suggested techniques (delay-line and notch filtering) and two other procedures (maximum entropy extension and deconvolution filtering) are applied to both synthetic data and to field observations from southern Scotland and the Italian Alps. Better quality data sets and more geophysically acceptable Earth models are shown to result. Noise of a more intermittent nature has recently been observed in MT observations near the development site of the geothermal power station on Milos, Greece. Large highly coherent electromagnetic field signals were observed to coincide with the opening and closure of the valves on the test wells. In this case, meaningful apparent resistivity curves could be obtained from an undisturbed subset of the previously accepted data, which had been selected mainly on the basis of signal power. Delay-line filtering is shown to be superior to notch filtering in eliminating non-sinusoidal noise, while both the MEM extension and the window deconvolution techniques are found to be useful in spike removal. These studies illustrate that use of an automatic data selection procedure should only be undertaken with great care in areas where the cultural noise is high. In such cases, continuous time-domain monitoring of the MT signals is recommended. The appropriate techniques of noise reduction can then be applied.
Heel effect adaptive flat field correction of digital x-ray detectors
Yu, Yongjian; Wang, Jue
2013-08-15
Purpose: Anode heel effect renders large-scale background nonuniformities in digital radiographs. Conventional offset/gain calibration is performed at mono source-to-image distance (SID), and disregards the SID-dependent characteristic of heel effect. It results in a residual nonuniform background in the corrected radiographs when the SID settings for calibration and correction differ. In this work, the authors develop a robust and efficient computational method for digital x-ray detector gain correction adapted to SID-variant heel effect, without resorting to physical filters, phantoms, complicated heel effect models, or multiple-SID calibration and interpolation.Methods: The authors present the Duo-SID projection correction method. In our approach, conventional offset/gain calibrations are performed only twice, at the minimum and maximum SIDs of the system in typical clinical use. A fast iterative separation algorithm is devised to extract the detector gain and basis heel patterns from the min/max SID calibrations. The resultant detector gain is independent of SID, while the basis heel patterns are parameterized by the min- and max-SID. The heel pattern at any SID is obtained from the min-SID basis heel pattern via projection imaging principles. The system gain desired at a specific acquisition SID is then constructed using the projected heel pattern and detector gain map.Results: The method was evaluated for flat field and anatomical phantom image corrections. It demonstrated promising improvements over interpolation and conventional gain calibration/correction methods, lowering their correction errors by approximately 70% and 80%, respectively. The separation algorithm was able to extract the detector gain and heel patterns with less than 2% error, and the Duo-SID corrected images showed perceptually appealing uniform background across the detector.Conclusions: The Duo-SID correction method has substantially improved on conventional offset/gain corrections for
Blended particle methods with adaptive subspaces for filtering turbulent dynamical systems
NASA Astrophysics Data System (ADS)
Qi, Di; Majda, Andrew J.
2015-04-01
It is a major challenge throughout science and engineering to improve uncertain model predictions by utilizing noisy data sets from nature. Hybrid methods combining the advantages of traditional particle filters and the Kalman filter offer a promising direction for filtering or data assimilation in high dimensional turbulent dynamical systems. In this paper, blended particle filtering methods that exploit the physical structure of turbulent dynamical systems are developed. Non-Gaussian features of the dynamical system are captured adaptively in an evolving-in-time low dimensional subspace through particle methods, while at the same time statistics in the remaining portion of the phase space are amended by conditional Gaussian mixtures interacting with the particles. The importance of both using the adaptively evolving subspace and introducing conditional Gaussian statistics in the orthogonal part is illustrated here by simple examples. For practical implementation of the algorithms, finding the most probable distributions that characterize the statistics in the phase space as well as effective resampling strategies is discussed to handle realizability and stability issues. To test the performance of the blended algorithms, the forty dimensional Lorenz 96 system is utilized with a five dimensional subspace to run particles. The filters are tested extensively in various turbulent regimes with distinct statistics and with changing observation time frequency and both dense and sparse spatial observations. In real applications perfect dynamical models are always inaccessible considering the complexities in both modeling and computation of high dimensional turbulent system. The effects of model errors from imperfect modeling of the systems are also checked for these methods. The blended methods show uniformly high skill in both capturing non-Gaussian statistics and achieving accurate filtering results in various dynamical regimes with and without model errors.
Gas image enhancement based on adaptive time-domain filtering and morphology
NASA Astrophysics Data System (ADS)
Zhang, Changxing; Wang, Lingxue; Li, Jiakun; Long, Yunting; Zhang, Bei
2011-05-01
The fingerprint region of most gases is within 3 to 14μm. A mid-wave or long-wave infrared thermal imager is therefore commonly applied in gas detection. With further influence of low gas concentration and heterogeneity of infrared focal plane arrays, the image has numerous drawbacks. These include loud noise, weak gas signal, gridding, and dead points, all of which are particularly evident in sequential images. In order to solve these problems, we take into account the characteristics of the leaking gas image and propose an enhancement method based on adaptive time-domain filtering with morphology. The adaptive time-domain filtering which operates on time sequence images is a hybrid method combining the recursive filtering and mean filtering. It segments gas and background according to a selected threshold; removes speckle noise according to the median; and removes background domain using weighted difference image. The morphology method can not only dilate the gas region along the direction of gas diffusion to greatly enhance the visibility of the leakage area, but also effectively remove the noise, and smooth the contour. Finally, the false color is added to the gas domain. Results show that the gas infrared region is effectively enhanced.
Adaptive filter design based on the LMS algorithm for delay elimination in TCR/FC compensators.
Hooshmand, Rahmat Allah; Torabian Esfahani, Mahdi
2011-04-01
Thyristor controlled reactor with fixed capacitor (TCR/FC) compensators have the capability of compensating reactive power and improving power quality phenomena. Delay in the response of such compensators degrades their performance. In this paper, a new method based on adaptive filters (AF) is proposed in order to eliminate delay and increase the response of the TCR compensator. The algorithm designed for the adaptive filters is performed based on the least mean square (LMS) algorithm. In this design, instead of fixed capacitors, band-pass LC filters are used. To evaluate the filter, a TCR/FC compensator was used for nonlinear and time varying loads of electric arc furnaces (EAFs). These loads caused occurrence of power quality phenomena in the supplying system, such as voltage fluctuation and flicker, odd and even harmonics and unbalancing in voltage and current. The above design was implemented in a realistic system model of a steel complex. The simulation results show that applying the proposed control in the TCR/FC compensator efficiently eliminated delay in the response and improved the performance of the compensator in the power system. PMID:21193194
Design of adaptive control systems by means of self-adjusting transversal filters
NASA Technical Reports Server (NTRS)
Merhav, S. J.
1986-01-01
The design of closed-loop adaptive control systems based on nonparametric identification was addressed. Implementation is by self-adjusting Least Mean Square (LMS) transversal filters. The design concept is Model Reference Adaptive Control (MRAC). Major issues are to preserve the linearity of the error equations of each LMS filter, and to prevent estimation bias that is due to process or measurement noise, thus providing necessary conditions for the convergence and stability of the control system. The controlled element is assumed to be asymptotically stable and minimum phase. Because of the nonparametric Finite Impulse Response (FIR) estimates provided by the LMS filters, a-priori information on the plant model is needed only in broad terms. Following a survey of control system configurations and filter design considerations, system implementation is shown here in Single Input Single Output (SISO) format which is readily extendable to multivariable forms. In extensive computer simulation studies the controlled element is represented by a second-order system with widely varying damping, natural frequency, and relative degree.
Adaptive non-local means filtering based on local noise level for CT denoising
NASA Astrophysics Data System (ADS)
Li, Zhoubo; Yu, Lifeng; Trzasko, Joshua D.; Fletcher, Joel G.; McCollough, Cynthia H.; Manduca, Armando
2012-03-01
Radiation dose from CT scans is an increasing health concern in the practice of radiology. Higher dose scans can produce clearer images with high diagnostic quality, but may increase the potential risk of radiation-induced cancer or other side effects. Lowering radiation dose alone generally produces a noisier image and may degrade diagnostic performance. Recently, CT dose reduction based on non-local means (NLM) filtering for noise reduction has yielded promising results. However, traditional NLM denoising operates under the assumption that image noise is spatially uniform noise, while in CT images the noise level varies significantly within and across slices. Therefore, applying NLM filtering to CT data using a global filtering strength cannot achieve optimal denoising performance. In this work, we have developed a technique for efficiently estimating the local noise level for CT images, and have modified the NLM algorithm to adapt to local variations in noise level. The local noise level estimation technique matches the true noise distribution determined from multiple repetitive scans of a phantom object very well. The modified NLM algorithm provides more effective denoising of CT data throughout a volume, and may allow significant lowering of radiation dose. Both the noise map calculation and the adaptive NLM filtering can be performed in times that allow integration with the clinical workflow.
NASA Astrophysics Data System (ADS)
Man, Jun; Li, Weixuan; Zeng, Lingzao; Wu, Laosheng
2016-06-01
The ensemble Kalman filter (EnKF) has gained popularity in hydrological data assimilation problems. As a Monte Carlo based method, a sufficiently large ensemble size is usually required to guarantee the accuracy. As an alternative approach, the probabilistic collocation based Kalman filter (PCKF) employs the polynomial chaos expansion (PCE) to represent and propagate the uncertainties in parameters and states. However, PCKF suffers from the so-called "curse of dimensionality". Its computational cost increases drastically with the increasing number of parameters and system nonlinearity. Furthermore, PCKF may fail to provide accurate estimations due to the joint updating scheme for strongly nonlinear models. Motivated by recent developments in uncertainty quantification and EnKF, we propose a restart adaptive probabilistic collocation based Kalman filter (RAPCKF) for data assimilation in unsaturated flow problems. During the implementation of RAPCKF, the important parameters are identified and active PCE basis functions are adaptively selected at each assimilation step; the "restart" scheme is utilized to eliminate the inconsistency between updated model parameters and states variables. The performance of RAPCKF is systematically tested with numerical cases of unsaturated flow models. It is shown that the adaptive approach and restart scheme can significantly improve the performance of PCKF. Moreover, RAPCKF has been demonstrated to be more efficient than EnKF with the same computational cost.
NASA Astrophysics Data System (ADS)
Sullivan, Shane Z.; Schmitt, Paul D.; DeWalt, Emma L.; Muir, Ryan D.; Simpson, Garth J.
2013-03-01
Photon counting represents the Poisson limit in signal to noise, but can often be complicated in imaging applications by detector paralysis, arising from the finite rise / fall time of the detector upon photon absorption. We present here an approach for reducing dead-time by generating a deconvolution digital filter based on optimizing the Fisher linear discriminant. In brief, two classes are defined, one in which a photon event is initiated at the origin of the digital filter, and one in the photon event is non-coincident with the filter origin. Linear discriminant analysis (LDA) is then performed to optimize the digital filter that best resolves the coincident and non-coincident training set data.1 Once trained, implementation of the filter can be performed quickly, significantly reducing dead-time issues and measurement bias in photon counting applications. Experimental demonstration of the LDA-filter approach was performed in fluorescence microscopy measurements using a highly convolved impulse response with considerable ringing. Analysis of the counts supports the capabilities of the filter in recovering deconvolved impulse responses under the conditions considered in the study. Potential additional applications and possible limitations are also considered.
Rimell, Andrew N; Mansfield, Neil J; Paddan, Gurmail S
2015-01-01
Many workers are exposed to noise in their industrial environment. Excessive noise exposure can cause health problems and therefore it is important that the worker's noise exposure is assessed. This may require measurement by an equipment manufacturer or the employer. Human exposure to noise may be measured using microphones; however, weighting filters are required to correlate the physical noise sound pressure level measurements to the human's response to an auditory stimulus. IEC 61672-1 and ANSI S1.43 describe suitable weighting filters, but do not explain how to implement them for digitally recorded sound pressure level data. By using the bilinear transform, it is possible to transform the analogue equations given in the standards into digital filters. This paper describes the implementation of the weighting filters as digital IIR (Infinite Impulse Response) filters and provides all the necessary formulae to directly calculate the filter coefficients for any sampling frequency. Thus, the filters in the standards can be implemented in any numerical processing software (such as a spreadsheet or programming language running on a PC, mobile device or embedded system). PMID:25224333
RIMELL, Andrew N.; MANSFIELD, Neil J.; PADDAN, Gurmail S.
2014-01-01
Many workers are exposed to noise in their industrial environment. Excessive noise exposure can cause health problems and therefore it is important that the worker’s noise exposure is assessed. This may require measurement by an equipment manufacturer or the employer. Human exposure to noise may be measured using microphones; however, weighting filters are required to correlate the physical noise sound pressure level measurements to the human’s response to an auditory stimulus. IEC 61672-1 and ANSI S1.43 describe suitable weighting filters, but do not explain how to implement them for digitally recorded sound pressure level data. By using the bilinear transform, it is possible to transform the analogue equations given in the standards into digital filters. This paper describes the implementation of the weighting filters as digital IIR (Infinite Impulse Response) filters and provides all the necessary formulae to directly calculate the filter coefficients for any sampling frequency. Thus, the filters in the standards can be implemented in any numerical processing software (such as a spreadsheet or programming language running on a PC, mobile device or embedded system). PMID:25224333
Adapted fan-beam volume reconstruction for stationary digital breast tomosynthesis
NASA Astrophysics Data System (ADS)
Wu, Gongting; Inscoe, Christine; Calliste, Jabari; Lee, Yueh Z.; Zhou, Otto; Lu, Jianping
2015-03-01
Digital breast tomosynthesis (DBT) provides 3D images which remove tissue overlapping and enables better cancer detection. Stationary DBT (s-DBT) uses a fixed X-ray source array to eliminate image blur associated with the x-ray tube motion and provides better image quality as well as faster scanning speed. For limited angle tomography, it is known that iterative reconstructions generally produces better images with fewer artifacts. However classical iterative tomosynthesis reconstruction methods are considerably slower than the filtered back-projection (FBP) reconstruction. The linear x-ray source array used in s-DBT enables a computationally more efficient volume reconstruction using adapted fan beam slice sampling, which transforms the 3-D cone beam reconstruction to a series of 2-D fan beam slice reconstructions. In this paper, we report the first results of the adapted fan-beam volume reconstruction (AFVR) for the s-DBT system currently undergoing clinical trial at UNC, using a simultaneous algebraic reconstruction technique (SART). An analytic breast phantom is used to quantitatively analyze the performance of the AFVR. Image quality of a CIRS biopsy phantom reconstructed using the AFVR method are compared to that using FBP algorithm with a commercial package. Our results show a significant reduction in memory usage and an order of magnitude speed increase in reconstructing speed using AFVR compared to that of classical 3-D cone beam reconstruction. We also observed that images reconstructed by AFVR with SART had a better sharpness and contrast compared to that using FBP. Preliminary results on patient images demonstrates the improved detectability of the s-DBT system over the mammography. By utilizing parallel computing with graphics processing unit (GPU), it is expected that the AFVR method will enable iterative reconstruction technique to be practical for clinical applications.
Detecting curvatures in digital images using filters derived from differential geometry
NASA Astrophysics Data System (ADS)
Toro Giraldo, Juanita
2015-09-01
Detection of curvature in digital images is an important theoretical and practical problem in image processing. Many important features in an image are associated with curvature and the detection of such features is reduced to detection and characterization of curvatures. Differential geometry studies many kinds of curvature operators and from these curvature operators is possible to derive powerful filters for image processing which are able to detect curvature in digital images and videos. The curvature operators are formulated in terms of partial differential operators which can be applied to images via convolution with generalized kernels derived from the the Korteweg- de Vries soliton . We present an algorithm for detection of curvature in digital images which is implemented using the Maple package ImageTools. Some experiments were performed and the results were very good. In a future research will be interesting to compare the results using the Korteweg-de Vries soliton with the results obtained using Airy derivatives. It is claimed that the resulting curvature detectors could be incorporated in standard programs for image processing.
Ship detection for high resolution optical imagery with adaptive target filter
NASA Astrophysics Data System (ADS)
Ju, Hongbin
2015-10-01
Ship detection is important due to both its civil and military use. In this paper, we propose a novel ship detection method, Adaptive Target Filter (ATF), for high resolution optical imagery. The proposed framework can be grouped into two stages, where in the first stage, a test image is densely divided into different detection windows and each window is transformed to a feature vector in its feature space. The Histograms of Oriented Gradients (HOG) is accumulated as a basic feature descriptor. In the second stage, the proposed ATF highlights all the ship regions and suppresses the undesired backgrounds adaptively. Each detection window is assigned a score, which represents the degree of the window belonging to a certain ship category. The ATF can be adaptively obtained by the weighted Logistic Regression (WLR) according to the distribution of backgrounds and targets of the input image. The main innovation of our method is that we only need to collect positive training samples to build the filter, while the negative training samples are adaptively generated by the input image. This is different to other classification method such as Support Vector Machine (SVM) and Logistic Regression (LR), which need to collect both positive and negative training samples. The experimental result on 1-m high resolution optical images shows the proposed method achieves a desired ship detection performance with higher quality and robustness than other methods, e.g., SVM and LR.
Filter accuracy for the Lorenz 96 model: Fixed versus adaptive observation operators
Stuart, Andrew M.; Shukla, Abhishek; Sanz-Alonso, Daniel; Law, K. J. H.
2016-02-23
In the context of filtering chaotic dynamical systems it is well-known that partial observations, if sufficiently informative, can be used to control the inherent uncertainty due to chaos. The purpose of this paper is to investigate, both theoretically and numerically, conditions on the observations of chaotic systems under which they can be accurately filtered. In particular, we highlight the advantage of adaptive observation operators over fixed ones. The Lorenz ’96 model is used to exemplify our findings. Here, we consider discrete-time and continuous-time observations in our theoretical developments. We prove that, for fixed observation operator, the 3DVAR filter can recovermore » the system state within a neighbourhood determined by the size of the observational noise. It is required that a sufficiently large proportion of the state vector is observed, and an explicit form for such sufficient fixed observation operator is given. Numerical experiments, where the data is incorporated by use of the 3DVAR and extended Kalman filters, suggest that less informative fixed operators than given by our theory can still lead to accurate signal reconstruction. Adaptive observation operators are then studied numerically; we show that, for carefully chosen adaptive observation operators, the proportion of the state vector that needs to be observed is drastically smaller than with a fixed observation operator. Indeed, we show that the number of state coordinates that need to be observed may even be significantly smaller than the total number of positive Lyapunov exponents of the underlying system.« less
Digital adaptive controllers for VTOL vehicles. Volume 2: Software documentation
NASA Technical Reports Server (NTRS)
Hartmann, G. L.; Stein, G.; Pratt, S. G.
1979-01-01
The VTOL approach and landing test (VALT) adaptive software is documented. Two self-adaptive algorithms, one based on an implicit model reference design and the other on an explicit parameter estimation technique were evaluated. The organization of the software, user options, and a nominal set of input data are presented along with a flow chart and program listing of each algorithm.
Samala, Ravi K. Chan, Heang-Ping; Lu, Yao; Hadjiiski, Lubomir; Wei, Jun; Helvie, Mark A.; Sahiner, Berkman
2014-02-15
Purpose: Develop a computer-aided detection (CADe) system for clustered microcalcifications in digital breast tomosynthesis (DBT) volume enhanced with multiscale bilateral filtering (MSBF) regularization. Methods: With Institutional Review Board approval and written informed consent, two-view DBT of 154 breasts, of which 116 had biopsy-proven microcalcification (MC) clusters and 38 were free of MCs, was imaged with a General Electric GEN2 prototype DBT system. The DBT volumes were reconstructed with MSBF-regularized simultaneous algebraic reconstruction technique (SART) that was designed to enhance MCs and reduce background noise while preserving the quality of other tissue structures. The contrast-to-noise ratio (CNR) of MCs was further improved with enhancement-modulated calcification response (EMCR) preprocessing, which combined multiscale Hessian response to enhance MCs by shape and bandpass filtering to remove the low-frequency structured background. MC candidates were then located in the EMCR volume using iterative thresholding and segmented by adaptive region growing. Two sets of potential MC objects, cluster centroid objects and MC seed objects, were generated and the CNR of each object was calculated. The number of candidates in each set was controlled based on the breast volume. Dynamic clustering around the centroid objects grouped the MC candidates to form clusters. Adaptive criteria were designed to reduce false positive (FP) clusters based on the size, CNR values and the number of MCs in the cluster, cluster shape, and cluster based maximum intensity projection. Free-response receiver operating characteristic (FROC) and jackknife alternative FROC (JAFROC) analyses were used to assess the performance and compare with that of a previous study. Results: Unpaired two-tailedt-test showed a significant increase (p < 0.0001) in the ratio of CNRs for MCs with and without MSBF regularization compared to similar ratios for FPs. For view-based detection, a
Li, Xiaofan; Zhao, Yubin; Zhang, Sha; Fan, Xiaopeng
2016-01-01
Particle filters (PFs) are widely used for nonlinear signal processing in wireless sensor networks (WSNs). However, the measurement uncertainty makes the WSN observations unreliable to the actual case and also degrades the estimation accuracy of the PFs. In addition to the algorithm design, few works focus on improving the likelihood calculation method, since it can be pre-assumed by a given distribution model. In this paper, we propose a novel PF method, which is based on a new likelihood fusion method for WSNs and can further improve the estimation performance. We firstly use a dynamic Gaussian model to describe the nonparametric features of the measurement uncertainty. Then, we propose a likelihood adaptation method that employs the prior information and a belief factor to reduce the measurement noise. The optimal belief factor is attained by deriving the minimum Kullback-Leibler divergence. The likelihood adaptation method can be integrated into any PFs, and we use our method to develop three versions of adaptive PFs for a target tracking system using wireless sensor network. The simulation and experimental results demonstrate that our likelihood adaptation method has greatly improved the estimation performance of PFs in a high noise environment. In addition, the adaptive PFs are highly adaptable to the environment without imposing computational complexity. PMID:27249002
Li, Xiaofan; Zhao, Yubin; Zhang, Sha; Fan, Xiaopeng
2016-01-01
Particle filters (PFs) are widely used for nonlinear signal processing in wireless sensor networks (WSNs). However, the measurement uncertainty makes the WSN observations unreliable to the actual case and also degrades the estimation accuracy of the PFs. In addition to the algorithm design, few works focus on improving the likelihood calculation method, since it can be pre-assumed by a given distribution model. In this paper, we propose a novel PF method, which is based on a new likelihood fusion method for WSNs and can further improve the estimation performance. We firstly use a dynamic Gaussian model to describe the nonparametric features of the measurement uncertainty. Then, we propose a likelihood adaptation method that employs the prior information and a belief factor to reduce the measurement noise. The optimal belief factor is attained by deriving the minimum Kullback–Leibler divergence. The likelihood adaptation method can be integrated into any PFs, and we use our method to develop three versions of adaptive PFs for a target tracking system using wireless sensor network. The simulation and experimental results demonstrate that our likelihood adaptation method has greatly improved the estimation performance of PFs in a high noise environment. In addition, the adaptive PFs are highly adaptable to the environment without imposing computational complexity. PMID:27249002
NASA Astrophysics Data System (ADS)
Yushkov, Konstantin B.; Molchanov, Vladimir Y.; Belousov, Pavel V.; Abrosimov, Aleksander Y.
2016-01-01
We report a method for edge enhancement in the images of transparent samples using analog image processing in coherent light. The experimental technique is based on adaptive spatial filtering with an acousto-optic tunable filter in a telecentric optical system. We demonstrate processing of microscopic images of unstained and stained histological sections of human thyroid tumor with improved contrast.
Adaptive Spatial Filtering of Interferometric Data Stack Oriented to Distributed Scatterers
NASA Astrophysics Data System (ADS)
Zhang, Y.; Xie, C.; Shao, Y.; Yuan, M.
2013-07-01
Standard interferometry poses a challenge in non-urban areas due to temporal and spatial decorrelation of the radar signal, where there is high signal noise. Techniques such as Small Baseline Subset Algorithm (SBAS) have been proposed to make use of multiple interferometric combinations to alleviate the problem. However, the interferograms used in SBAS are multilooked with a boxcar (rectangle) filter to reduce phase noise, resulting in a loss of resolution and signal superstition from different objects. In this paper, we proposed a modified adaptive spatial filtering algorithm for accurate estimation of interferogram and coherence without resolution loss even in rural areas, to better support the deformation monitoring with time series interferometric synthetic aperture radar (InSAR) technique. The implemented method identifies the statistically homogenous pixels in a neighbourhood based on the goodness-of-fit test, and then applies an adaptive spatial filtering of interferograms. Three statistical tests for the identification of distributed targets will be presented, applied to real data. PALSAR data of the yellow river delta in China is used for demonstrating the effectiveness of this algorithm in rural areas.
Chen, Xiyuan; Wang, Xiying; Xu, Yuan
2014-01-01
This paper deals with the problem of state estimation for the vector-tracking loop of a software-defined Global Positioning System (GPS) receiver. For a nonlinear system that has the model error and white Gaussian noise, a noise statistics estimator is used to estimate the model error, and based on this, a modified iterated extended Kalman filter (IEKF) named adaptive iterated Kalman filter (AIEKF) is proposed. A vector-tracking GPS receiver utilizing AIEKF is implemented to evaluate the performance of the proposed method. Through road tests, it is shown that the proposed method has an obvious accuracy advantage over the IEKF and Adaptive Extended Kalman filter (AEKF) in position determination. The results show that the proposed method is effective to reduce the root-mean-square error (RMSE) of position (including longitude, latitude and altitude). Comparing with EKF, the position RMSE values of AIEKF are reduced by about 45.1%, 40.9% and 54.6% in the east, north and up directions, respectively. Comparing with IEKF, the position RMSE values of AIEKF are reduced by about 25.7%, 19.3% and 35.7% in the east, north and up directions, respectively. Compared with AEKF, the position RMSE values of AIEKF are reduced by about 21.6%, 15.5% and 30.7% in the east, north and up directions, respectively. PMID:25502124
Ray, Jaideep; Lefantzi, Sophia; Najm, Habib N.; Kennedy, Christopher A.
2006-01-01
Block-structured adaptively refined meshes (SAMR) strive for efficient resolution of partial differential equations (PDEs) solved on large computational domains by clustering mesh points only where required by large gradients. Previous work has indicated that fourth-order convergence can be achieved on such meshes by using a suitable combination of high-order discretizations, interpolations, and filters and can deliver significant computational savings over conventional second-order methods at engineering error tolerances. In this paper, we explore the interactions between the errors introduced by discretizations, interpolations and filters. We develop general expressions for high-order discretizations, interpolations, and filters, in multiple dimensions, using a Fourier approach, facilitating the high-order SAMR implementation. We derive a formulation for the necessary interpolation order for given discretization and derivative orders. We also illustrate this order relationship empirically using one and two-dimensional model problems on refined meshes. We study the observed increase in accuracy with increasing interpolation order. We also examine the empirically observed order of convergence, as the effective resolution of the mesh is increased by successively adding levels of refinement, with different orders of discretization, interpolation, or filtering.
Investigating University Students' Adaptation to a Digital Learner Course Portfolio
ERIC Educational Resources Information Center
Lopez-Fernandez, Olatz; Rodriguez-Illera, Jose Luis
2009-01-01
Digital learner portfolios are of growing importance in higher education as the sector seeks new teaching-learning-assessment methods which promote students' autonomy as managers of their own virtual learning environment. The purpose of this study was to analyse descriptively the undergraduate students' perceptions, attitudes and behaviour when…
Digital optical processor based on symbolic substitution using holographic matched filtering.
Jeon, H I; Abushagur, M A; Sawchuk, A A; Jenkins, B K
1990-05-10
We propose a digital optical arithmetic processor design based on symbolic substitution using holographic matched and space-invariant filters. The proposed system performs Boolean logic, binary addition, and subtraction in a highly parallel manner; i.e., the processing time depends on word size but not array size. Algorithms for performing binary addition and subtraction in parallel are presented. A skew problem occurring when symbolic substitution is applied to binary addition and subtraction with space-invariant systems is addressed, and its solution is suggested. Crosstalk in symbolic substitution is described, and new symbols which can prevent the crosstalk are introduced. System analysis and fundamental limitations of the proposed system are also presented in terms of processing time, overall light efficiency, and the maximum array size of the input data plane. The performance of the proposed system with that of the current electronic supercomputers has been compared by combining information about the processing time and maximum array size. PMID:20563140
Multiwavelength phase unwrapping and aberration correction using depth filtered digital holography.
Jaedicke, Volker; Goebel, Sebastian; Koukourakis, Nektarios; Gerhardt, Nils C; Welp, Hubert; Hofmann, Martin R
2014-07-15
In this Letter, we present a new approach to processing data from a standard spectral domain optical coherence tomography (OCT) system using depth filtered digital holography (DFDH). Intensity-based OCT processing has an axial resolution of the order of a few micrometers. When the phase information is used to obtain optical path length differences, subwavelength accuracy can be achieved, but this limits the resolvable step heights to half of the wavelength of the system. Thus there is a metrology gap between phase- and intensity-based methods. Our concept addresses this metrology gap by combining DFHD with multiwavelength phase unwrapping. Additionally, the measurements are corrected for aberrations. Here, we present proof of concept measurements of a structured semiconductor sample. PMID:25121676
Subband Quantum Scattering Times for Algaas/GaAs Obtained Using Digital Filtering
NASA Technical Reports Server (NTRS)
Mena, R. A.; Schacham, S. E.; Haughland, E. J.; Alterovitz, S. A.; Bibyk, S. B.; Ringel, S. A.
1995-01-01
In this study we investigate both the transport and quantum scattering times as a function of the carrier concentration for a modulation doped Al(0.3)Ga(0.7)As/GaAs structure. Carriers in the well are generated as a result of the persistent photoconductivity effect. When more than one subband becomes populated, digital filtering is used to separate the components for each of the excited subbands. We find that the quantum scattering time for the ground subband increases initially as the carrier concentration is increased. However, once the second subband becomes populated, the ground subband scattering time begins to decrease. The quantum scattering time for the excited subband is also observed to decrease as the concentration is increased. From the ratio of the transport and quantum scattering times, it is seen that the transport in the well becomes more isotropic also as the concentration is increased.
NASA Astrophysics Data System (ADS)
Fang, Hao; Li, Qian; Huang, Zhenghua
2015-12-01
Denoising algorithms based on gradient dependent energy functionals, such as Perona-Malik, total variation and adaptive total variation denoising, modify images towards piecewise constant functions. Although edge sharpness and location is well preserved, important information, encoded in image features like textures or certain details, is often compromised in the process of denoising. In this paper, We propose a novel Spatially Adaptive Guide-Filtering Total Variation (SAGFTV) regularization with image restoration algorithm for denoising images. The guide-filter is extended to the variational formulations of imaging problem, and the spatially adaptive operator can easily distinguish flat areas from texture areas. Our simulating experiments show the improvement of peak signal noise ratio (PSNR), root mean square error (RMSE) and structure similarity increment measurement (SSIM) over other prior algorithms. The results of both simulating and practical experiments are more appealing visually. This type of processing can be used for a variety of tasks in PDE-based image processing and computer vision, and is stable and meaningful from a mathematical viewpoint.
Li, Jing; Song, Ningfang; Yang, Gongliu; Jiang, Rui
2016-07-01
In the initial alignment process of strapdown inertial navigation system (SINS), large misalignment angles always bring nonlinear problem, which can usually be processed using the scaled unscented Kalman filter (SUKF). In this paper, the problem of large misalignment angles in SINS alignment is further investigated, and the strong tracking scaled unscented Kalman filter (STSUKF) is proposed with fixed parameters to improve convergence speed, while these parameters are artificially constructed and uncertain in real application. To further improve the alignment stability and reduce the parameters selection, this paper proposes a fuzzy adaptive strategy combined with STSUKF (FUZZY-STSUKF). As a result, initial alignment scheme of large misalignment angles based on FUZZY-STSUKF is designed and verified by simulations and turntable experiment. The results show that the scheme improves the accuracy and convergence speed of SINS initial alignment compared with those based on SUKF and STSUKF. PMID:27475606
NASA Astrophysics Data System (ADS)
Li, Jing; Song, Ningfang; Yang, Gongliu; Jiang, Rui
2016-07-01
In the initial alignment process of strapdown inertial navigation system (SINS), large misalignment angles always bring nonlinear problem, which can usually be processed using the scaled unscented Kalman filter (SUKF). In this paper, the problem of large misalignment angles in SINS alignment is further investigated, and the strong tracking scaled unscented Kalman filter (STSUKF) is proposed with fixed parameters to improve convergence speed, while these parameters are artificially constructed and uncertain in real application. To further improve the alignment stability and reduce the parameters selection, this paper proposes a fuzzy adaptive strategy combined with STSUKF (FUZZY-STSUKF). As a result, initial alignment scheme of large misalignment angles based on FUZZY-STSUKF is designed and verified by simulations and turntable experiment. The results show that the scheme improves the accuracy and convergence speed of SINS initial alignment compared with those based on SUKF and STSUKF.
Automatic artifact suppression in simultaneous tDCS-EEG using adaptive filtering.
Mancini, Matteo; Pellicciari, Maria Concetta; Brignani, Debora; Mauri, Piercarlo; De Marchis, Cristiano; Miniussi, Carlo; Conforto, Silvia
2015-08-01
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation method that can be used in cognitive and clinical protocols in order to modulate neural activity. Although some macro effects are known, the underlying mechanisms are still not clear. tDCS in combination with electroencephalography (EEG) could help to understand these mechanisms from a neural point of view. However, simultaneous tDCS-EEG still remains challenging because of the artifacts that affect the recorded signals. In this paper, an automated artifact cancellation method based on adaptive filtering is proposed. Using independent component analysis (ICA), the artifacts were characterized using data from both a phantom and a group of healthy subjects. The resulting filter can successfully remove tDCS-related artifacts during anodal and cathodal stimulations. PMID:26736856
Cardiac fiber tracking using adaptive particle filtering based on tensor rotation invariant in MRI
NASA Astrophysics Data System (ADS)
Kong, Fanhui; Liu, Wanyu; Magnin, Isabelle E.; Zhu, Yuemin
2016-03-01
Diffusion magnetic resonance imaging (dMRI) is a non-invasive method currently available for cardiac fiber tracking. However, accurate and efficient cardiac fiber tracking is still a challenge. This paper presents a probabilistic cardiac fiber tracking method based on particle filtering. In this framework, an adaptive sampling technique is presented to describe the posterior distribution of fiber orientations by adjusting the number and status of particles according to the fractional anisotropy of diffusion. An observation model is then proposed to update the weight of particles by rotating diffusion tensor from the primary eigenvector to a given fiber orientation while keeping the shape of the tensor invariant. The results on human cardiac dMRI show that the proposed method is robust to noise and outperforms conventional streamline and particle filtering techniques.
Paixão, Lucas; Oliveira, Bruno Beraldo; Viloria, Carolina; de Oliveira, Marcio Alves; Teixeira, Maria Helena Araújo; Nogueira, Maria do Socorro
2015-01-01
Objective Derive filtered tungsten X-ray spectra used in digital mammography systems by means of Monte Carlo simulations. Materials and Methods Filtered spectra for rhodium filter were obtained for tube potentials between 26 and 32 kV. The half-value layer (HVL) of simulated filtered spectra were compared with those obtained experimentally with a solid state detector Unfors model 8202031-H Xi R/F & MAM Detector Platinum and 8201023-C Xi Base unit Platinum Plus w mAs in a Hologic Selenia Dimensions system using a direct radiography mode. Results Calculated HVL values showed good agreement as compared with those obtained experimentally. The greatest relative difference between the Monte Carlo calculated HVL values and experimental HVL values was 4%. Conclusion The results show that the filtered tungsten anode X-ray spectra and the EGSnrc Monte Carlo code can be used for mean glandular dose determination in mammography. PMID:26811553
Automatic balancing of AMB systems using plural notch filter and adaptive synchronous compensation
NASA Astrophysics Data System (ADS)
Xu, Xiangbo; Chen, Shao; Zhang, Yanan
2016-07-01
To achieve automatic balancing in active magnetic bearing (AMB) system, a control method with notch filters and synchronous compensators is widely employed. However, the control precision is significantly affected by the synchronous compensation error, which is caused by parameter errors and variations of the power amplifiers. Furthermore, the computation effort may become intolerable if a 4-degree-of-freedom (dof) AMB system is studied. To solve these problems, an adaptive automatic balancing control method in the AMB system is presented in this study. Firstly, a 4-dof radial AMB system is described and analyzed. To simplify the controller design, the 4-dof dynamic equations are transferred into two plural functions related to translation and rotation, respectively. Next, to achieve automatic balancing of the AMB system, two synchronous equations are formed. Solution of them leads to a control strategy based on notch filters and feedforward controllers with an inverse function of the power amplifier. The feedforward controllers can be simplified as synchronous phases and amplitudes. Then, a plural phase-shift notch filter which can identify the synchronous components in 2-dof motions is formulated, and an adaptive compensation method that can form two closed-loop systems to tune the synchronous amplitude of the feedforward controller and the phase of the plural notch filter is proposed. Finally, the proposed control strategy is verified by both simulations and experiments on a test rig of magnetically suspended control moment gyro. The results indicate that this method can fulfill the automatic balancing of the AMB system with a light computational load.
NASA Astrophysics Data System (ADS)
Chang, Gao-Wei; Jian, Hong-Da; Yeh, Zong-Mu; Cheng, Chin-Pao
2004-02-01
For estimating spectral responsivities of digital video cameras, a filter-based optical system is designed with sophisticated filter selections, in this paper. The filter consideration in the presence of noise is central to the optical systems design, since the spectral filters primarily prescribe the structure of the perturbed system. A theoretical basis is presented to confirm that sophisticated filter selections can make this system as insensitive to noise as possible. Also, we propose a filter selection method based on the orthogonal-triangular (QR) decomposition with column pivoting (QRCP). To investigate the noise effects, we assess the estimation errors between the actual and estimated spectral responsivities, with the different signal-to-noise ratio (SNR) levels of an eight-bit/channel camera. Simulation results indicate that the proposed method yields satisfactory estimation accuracy. That is, the filter-based optical system with the spectral filters selected from the QRCP-based method is much less sensitive to noise than those with other filters from different selections.
NASA Astrophysics Data System (ADS)
Gómez Valverde, Juan J.; Ortuño, Juan E.; Guerra, Pedro; Hermann, Boris; Zabihian, Behrooz; Rubio-Guivernau, José L.; Santos, Andrés.; Drexler, Wolfgang; Ledesma-Carbayo, Maria J.
2015-07-01
Optical Coherence Tomography (OCT) has shown a great potential as a complementary imaging tool in the diagnosis of skin diseases. Speckle noise is the most prominent artifact present in OCT images and could limit the interpretation and detection capabilities. In this work we propose a new speckle reduction process and compare it with various denoising filters with high edge-preserving potential, using several sets of dermatological OCT B-scans. To validate the performance we used a custom-designed spectral domain OCT and two different data set groups. The first group consisted in five datasets of a single B-scan captured N times (with N<20), the second were five 3D volumes of 25 Bscans. As quality metrics we used signal to noise (SNR), contrast to noise (CNR) and equivalent number of looks (ENL) ratios. Our results show that a process based on a combination of a 2D enhanced sigma digital filter and a wavelet compounding method achieves the best results in terms of the improvement of the quality metrics. In the first group of individual B-scans we achieved improvements in SNR, CNR and ENL of 16.87 dB, 2.19 and 328 respectively; for the 3D volume datasets the improvements were 15.65 dB, 3.44 and 1148. Our results suggest that the proposed enhancement process may significantly reduce speckle, increasing SNR, CNR and ENL and reducing the number of extra acquisitions of the same frame.
On the structural limitations of recursive digital filters for base flow estimation
NASA Astrophysics Data System (ADS)
Su, Chun-Hsu; Costelloe, Justin F.; Peterson, Tim J.; Western, Andrew W.
2016-06-01
Recursive digital filters (RDFs) are widely used for estimating base flow from streamflow hydrographs, and various forms of RDFs have been developed based on different physical models. Numerical experiments have been used to objectively evaluate their performance, but they have not been sufficiently comprehensive to assess a wide range of RDFs. This paper extends these studies to understand the limitations of a generalized RDF method as a pathway for future field calibration. Two formalisms are presented to generalize most existing RDFs, allowing systematic tuning of their complexity. The RDFs with variable complexity are evaluated collectively in a synthetic setting, using modeled daily base flow produced by Li et al. (2014) from a range of synthetic catchments simulated with HydroGeoSphere. Our evaluation reveals that there are optimal RDF complexities in reproducing base flow simulations but shows that there is an inherent physical inconsistency within the RDF construction. Even under the idealized setting where true base flow data are available to calibrate the RDFs, there is persistent disagreement between true and estimated base flow over catchments with small base flow components, low saturated hydraulic conductivity of the soil and larger surface runoff. The simplest explanation is that low base flow "signal" in the streamflow data is hard to distinguish, although more complex RDFs can improve upon the simpler Eckhardt filter at these catchments.
Application of digital tomosynthesis (DTS) of optimal deblurring filters for dental X-ray imaging
NASA Astrophysics Data System (ADS)
Oh, J. E.; Cho, H. S.; Kim, D. S.; Choi, S. I.; Je, U. K.
2012-04-01
Digital tomosynthesis (DTS) is a limited-angle tomographic technique that provides some of the tomographic benefits of computed tomography (CT) but at reduced dose and cost. Thus, the potential for application of DTS to dental X-ray imaging seems promising. As a continuation of our dental radiography R&D, we developed an effective DTS reconstruction algorithm and implemented it in conjunction with a commercial dental CT system for potential use in dental implant placement. The reconstruction algorithm employed a backprojection filtering (BPF) method based upon optimal deblurring filters to suppress effectively both the blur artifacts originating from the out-focus planes and the high-frequency noise. To verify the usefulness of the reconstruction algorithm, we performed systematic simulation works and evaluated the image characteristics. We also performed experimental works in which DTS images of enhanced anatomical resolution were successfully obtained by using the algorithm and were promising to our ongoing applications to dental X-ray imaging. In this paper, our approach to the development of the DTS reconstruction algorithm and the results are described in detail.
Low-Light Image Enhancement Using Adaptive Digital Pixel Binning
Yoo, Yoonjong; Im, Jaehyun; Paik, Joonki
2015-01-01
This paper presents an image enhancement algorithm for low-light scenes in an environment with insufficient illumination. Simple amplification of intensity exhibits various undesired artifacts: noise amplification, intensity saturation, and loss of resolution. In order to enhance low-light images without undesired artifacts, a novel digital binning algorithm is proposed that considers brightness, context, noise level, and anti-saturation of a local region in the image. The proposed algorithm does not require any modification of the image sensor or additional frame-memory; it needs only two line-memories in the image signal processor (ISP). Since the proposed algorithm does not use an iterative computation, it can be easily embedded in an existing digital camera ISP pipeline containing a high-resolution image sensor. PMID:26121609
Low-Light Image Enhancement Using Adaptive Digital Pixel Binning.
Yoo, Yoonjong; Im, Jaehyun; Paik, Joonki
2015-01-01
This paper presents an image enhancement algorithm for low-light scenes in an environment with insufficient illumination. Simple amplification of intensity exhibits various undesired artifacts: noise amplification, intensity saturation, and loss of resolution. In order to enhance low-light images without undesired artifacts, a novel digital binning algorithm is proposed that considers brightness, context, noise level, and anti-saturation of a local region in the image. The proposed algorithm does not require any modification of the image sensor or additional frame-memory; it needs only two line-memories in the image signal processor (ISP). Since the proposed algorithm does not use an iterative computation, it can be easily embedded in an existing digital camera ISP pipeline containing a high-resolution image sensor. PMID:26121609
Aboutabikh, Kamal; Aboukerdah, Nader
2015-07-01
In this paper, we propose a practical way to synthesize and filter an ECG signal in the presence of four types of interference signals: (1) those arising from power networks with a fundamental frequency of 50Hz, (2) those arising from respiration, having a frequency range from 0.05 to 0.5Hz, (3) muscle signals with a frequency of 25Hz, and (4) white noise present within the ECG signal band. This was done by implementing a multiband digital filter (seven bands) of type FIR Multiband Least Squares using a digital programmable device (Cyclone II EP2C70F896C6 FPGA, Altera), which was placed on an education and development board (DE2-70, Terasic). This filter was designed using the VHDL language in the Quartus II 9.1 design environment. The proposed method depends on Direct Digital Frequency Synthesizers (DDFS) designed to synthesize the ECG signal and various interference signals. So that the synthetic ECG specifications would be closer to actual ECG signals after filtering, we designed in a single multiband digital filter instead of using three separate digital filters LPF, HPF, BSF. Thus all interference signals were removed with a single digital filter. The multiband digital filter results were studied using a digital oscilloscope to characterize input and output signals in the presence of differing sinusoidal interference signals and white noise. PMID:25912983
Using digital filtering techniques as an aid in wind turbine data analysis
NASA Astrophysics Data System (ADS)
Young, Teresa
1994-11-01
Research involving very large sets of digital data is often difficult due to the enormity of the database. In the case of a wind turbine operating under varying environmental conditions, determining which data are representative of the blade aerodynamics and which are due to transient flow ingestion effects or errors in instrumentation, operation, and data collection is of primary concern to researchers. The National Renewable Energy Laboratory in Golden, Colorado collected extensive data on a downwind horizontal axis wind turbine (HAWT) during a turbine test project called the Combined Experiment. A principal objective of this experiment was to provide a means to predict HAWT aerodynamic, mechanical, and electrical operational loads based upon analytical models of aerodynamic performance related to blade design and inflow conditions. In a collaborative effort with the Aerospace Engineering Department at the University of Colorado at Boulder, a team of researchers has evolved and utilized various digital filtering techniques in analyzing the data from the Combined Experiment. A preliminary analysis of the data set was performed to determine how to best approach the data. The reduced data set emphasized selection of inflow conditions such that the aerodynamic data could be compared directly to wind tunnel data obtained for the same airfoil design as used for the HAWT's blades. It will be shown that this reduced data set has yielded valid, reproducible results that a simple averaging technique or a random selection approach cannot achieve. These findings provide a stable baseline against which operational HAWT data can be compared.
Using digital filtering techniques as an aid in wind turbine data analysis
Young, T.
1994-11-01
Research involving very large sets of digital data is often difficult due to the enormity of the database. In the case of a wind turbine operating under varying environmental conditions, determining which data are representative of the blade aerodynamics and which are due to transient flow ingestion effects or errors in instrumentation, operation, and data collection is of primary concern to researchers. The National Renewable Energy Laboratory in Golden, Colorado collected extensive data on a downwind horizontal axis wind turbine (HAWT) during a turbine test project called the Combined Experiment. A principal objective of this experiment was to provide a means to predict HAWT aerodynamic, mechanical, and electrical operational loads based upon analytical models of aerodynamic performance related to blade design and inflow conditions. In a collaborative effort with the Aerospace Engineering Department at the University of Colorado at Boulder, a team of researchers has evolved and utilized various digital filtering techniques in analyzing the data from the Combined Experiment. A preliminary analysis of the data set was performed to determine how to best approach the data. The reduced data set emphasized selection of inflow conditions such that the aerodynamic data could be compared directly to wind tunnel data obtained for the same airfoil design as used for the HAWT`s blades. It will be shown that this reduced data set has yielded valid, reproducible results that a simple averaging technique or a random selection approach cannot achieve. These findings provide a stable baseline against which operational HAWT data can be compared.
Zhang, Junwen; Yu, Jianjun; Chi, Nan; Chien, Hung-Chang
2014-08-25
We theoretically and experimentally investigate a time-domain digital pre-equalization (DPEQ) scheme for bandwidth-limited optical coherent communication systems, which is based on feedback of channel characteristics from the receiver-side blind and adaptive equalizers, such as least-mean-squares (LMS) algorithm and constant or multi- modulus algorithms (CMA, MMA). Based on the proposed DPEQ scheme, we theoretically and experimentally study its performance in terms of various channel conditions as well as resolutions for channel estimation, such as filtering bandwidth, taps length, and OSNR. Using a high speed 64-GSa/s DAC in cooperation with the proposed DPEQ technique, we successfully synthesized band-limited 40-Gbaud signals in modulation formats of polarization-diversion multiplexed (PDM) quadrature phase shift keying (QPSK), 8-quadrature amplitude modulation (QAM) and 16-QAM, and significant improvement in both back-to-back and transmission BER performances are also demonstrated. PMID:25321257
Adaptive control technique for accelerators using digital signal processing
Eaton, L.; Jachim, S.; Natter, E.
1987-01-01
The use of present Digital Signal Processing (DSP) techniques can drastically reduce the residual rf amplitude and phase error in an accelerating rf cavity. Accelerator beam loading contributes greatly to this residual error, and the low-level rf field control loops cannot completely absorb the fast transient of the error. A feedforward technique using DSP is required to maintain the very stringent rf field amplitude and phase specifications. 7 refs.
A 2-D orientation-adaptive prediction filter in lifting structures for image coding.
Gerek, Omer N; Cetin, A Enis
2006-01-01
Lifting-style implementations of wavelets are widely used in image coders. A two-dimensional (2-D) edge adaptive lifting structure, which is similar to Daubechies 5/3 wavelet, is presented. The 2-D prediction filter predicts the value of the next polyphase component according to an edge orientation estimator of the image. Consequently, the prediction domain is allowed to rotate +/-45 degrees in regions with diagonal gradient. The gradient estimator is computationally inexpensive with additional costs of only six subtractions per lifting instruction, and no multiplications are required. PMID:16435541
Evaluation of an adaptive filtering algorithm for CT cardiac imaging with EKG modulated tube current
NASA Astrophysics Data System (ADS)
Li, Jianying; Hsieh, Jiang; Mohr, Kelly; Okerlund, Darin
2005-04-01
We have developed an adaptive filtering algorithm for cardiac CT scans with EKG-modulated tube current to optimize resolution and noise for different cardiac phases and to provide safety net for cases where end-systole phase is used for coronary imaging. This algorithm has been evaluated using patient cardiac CT scans where lower tube currents are used for the systolic phases. In this paper, we present the evaluation results. The results demonstrated that with the use of the proposed algorithm, we could improve image quality for all cardiac phases, while providing greater noise and streak artifact reduction for systole phases where lower CT dose were used.
Digital tapped delay lines for HWIL testing of matched filter radar receivers
NASA Astrophysics Data System (ADS)
Olson, Richard F.; Braselton, William J.; Mohlere, Richard D.
2009-05-01
Matched filter processing for pulse compression of phase coded waveforms is a classic method for increasing radar range measurement resolution. A generic approach for simulating high resolution range extended radar scenes in a Hardware in the Loop (HWIL) test environment is to pass the phase coded radar transmit pulse through an RF tapped delay line comprised of individually amplitude- and phase-weighted output taps. In the generic approach, the taps are closely spaced relative to time intervals equivalent to the range resolution of the compressed radar pulse. For a range-extended high resolution clutter scene, the increased number of these taps can make an analog implementation of an RF tapped delay system impractical. Engineers at the U.S. Army Aviation and Missile Research, Development and Engineering Center (AMRDEC) have addressed this problem by transferring RF tapped delay line signal operations to the digital domain. New digital tapped delay line (DTDL) systems have been designed and demonstrated which are physically compact compared to analog RF TDLs, leverage low cost FPGA and data converter technology, and may be readily expanded using open slots in a VME card cage. In initial HWIL applications, the new DTDLs have been shown to produce better dynamic range in pulse compressed range profiles than their analog TDL predecessors. This paper describes the signal requirements and system architecture for digital tapped delay lines. Implementation, performance, and HWIL simulation integration issues for AMRDEC's first generation DTDLs are addressed. The paper concludes with future requirements and plans for ongoing DTDL technology development at AMRDEC.
NASA Astrophysics Data System (ADS)
Koga, Takanori; Suetake, Noriaki
2015-02-01
This paper describes the detail-preserving impulse noise removal performance of a one-dimensional (1-D) switching median filter (SMF) applied along an adaptive space-filling curve. Usually, a SMF with a two-dimensional (2-D) filter window is widely used for impulse noise removal while still preserving detailed parts in an input image. However, the noise detector of the 2-D filter does not always distinguish between the original pixels and the noise-corrupted ones perfectly. In particular, pixels constituting thin lines in an input image tend to be incorrectly detected as noise-corrupted pixels, and such pixels are filtered regardless of the necessity of the filtering. To cope with this problem, we propose a new impulse noise removal method based on a 1-D SMF and a space-filling curve which is adaptively drawn using a minimum spanning tree reflecting structural context of an input image.
An Adaptive Digital Image Watermarking Algorithm Based on Morphological Haar Wavelet Transform
NASA Astrophysics Data System (ADS)
Huang, Xiaosheng; Zhao, Sujuan
At present, much more of the wavelet-based digital watermarking algorithms are based on linear wavelet transform and fewer on non-linear wavelet transform. In this paper, we propose an adaptive digital image watermarking algorithm based on non-linear wavelet transform--Morphological Haar Wavelet Transform. In the algorithm, the original image and the watermark image are decomposed with multi-scale morphological wavelet transform respectively. Then the watermark information is adaptively embedded into the original image in different resolutions, combining the features of Human Visual System (HVS). The experimental results show that our method is more robust and effective than the ordinary wavelet transform algorithms.
Adaptive Fuzzy Hysteresis Band Current Controller for Four-Wire Shunt Active Filter
NASA Astrophysics Data System (ADS)
Hamoudi, F.; Chaghi, A.; Amimeur, H.; Merabet, E.
2008-06-01
This paper presents an adaptive fuzzy hysteresis band current controller for four-wire shunt active power filters to eliminate harmonics and to compensate reactive power in distribution systems in order to keep currents at the point of common coupling sinusoidal and in phase with the corresponding voltage and the cancel neutral current. The conventional hysteresis band known for its robustness and its advantage in current controlled applications is adapted with a fuzzy logic controller to change the bandwidth according to the operating point in order to keep the frequency modulation at tolerable limits. The algorithm used to identify the reference currents is based on the synchronous reference frame theory (dqγ). Finally, simulation results using Matlab/Simulink are given to validate the proposed control.
Digital timing recovery combined with adaptive equalization for optical coherent receivers
NASA Astrophysics Data System (ADS)
Zhou, Xian; Chen, Xue; Zhou, Weiqing; Fan, Yangyang; Zhu, Hai; Li, Zhiyu
2009-11-01
We propose a novel equalization and timing recovery scheme, which adds an adaptive butterfly-structured equalizer in an all-digital timing recovery loop, for polarization multiplexing (POLMUX) coherent receivers. It resolves an incompatible problem that digital equalizer requires the timing recovered (synchronous) signal and Gardner timing-error detection algorithm requires the equalized signal because of its small tolerance on dispersion. This joint module can complete synchronization, equalization and polarization de-multiplexing simultaneously without any extra computational cost. Finally, we demonstrate the good performance of the new scheme in a 112-Gbit/s POLMUX-NRZ-DQPSK digital optical coherent receiver.
A Digitalized Gyroscope System Based on a Modified Adaptive Control Method
Xia, Dunzhu; Hu, Yiwei; Ni, Peizhen
2016-01-01
In this work we investigate the possibility of applying the adaptive control algorithm to Micro-Electro-Mechanical System (MEMS) gyroscopes. Through comparing the gyroscope working conditions with the reference model, the adaptive control method can provide online estimation of the key parameters and the proper control strategy for the system. The digital second-order oscillators in the reference model are substituted for two phase locked loops (PLLs) to achieve a more steady amplitude and frequency control. The adaptive law is modified to satisfy the condition of unequal coupling stiffness and coupling damping coefficient. The rotation mode of the gyroscope system is considered in our work and a rotation elimination section is added to the digitalized system. Before implementing the algorithm in the hardware platform, different simulations are conducted to ensure the algorithm can meet the requirement of the angular rate sensor, and some of the key adaptive law coefficients are optimized. The coupling components are detected and suppressed respectively and Lyapunov criterion is applied to prove the stability of the system. The modified adaptive control algorithm is verified in a set of digitalized gyroscope system, the control system is realized in digital domain, with the application of Field Programmable Gate Array (FPGA). Key structure parameters are measured and compared with the estimation results, which validated that the algorithm is feasible in the setup. Extra gyroscopes are used in repeated experiments to prove the commonality of the algorithm. PMID:26959019
A Digitalized Gyroscope System Based on a Modified Adaptive Control Method.
Xia, Dunzhu; Hu, Yiwei; Ni, Peizhen
2016-01-01
In this work we investigate the possibility of applying the adaptive control algorithm to Micro-Electro-Mechanical System (MEMS) gyroscopes. Through comparing the gyroscope working conditions with the reference model, the adaptive control method can provide online estimation of the key parameters and the proper control strategy for the system. The digital second-order oscillators in the reference model are substituted for two phase locked loops (PLLs) to achieve a more steady amplitude and frequency control. The adaptive law is modified to satisfy the condition of unequal coupling stiffness and coupling damping coefficient. The rotation mode of the gyroscope system is considered in our work and a rotation elimination section is added to the digitalized system. Before implementing the algorithm in the hardware platform, different simulations are conducted to ensure the algorithm can meet the requirement of the angular rate sensor, and some of the key adaptive law coefficients are optimized. The coupling components are detected and suppressed respectively and Lyapunov criterion is applied to prove the stability of the system. The modified adaptive control algorithm is verified in a set of digitalized gyroscope system, the control system is realized in digital domain, with the application of Field Programmable Gate Array (FPGA). Key structure parameters are measured and compared with the estimation results, which validated that the algorithm is feasible in the setup. Extra gyroscopes are used in repeated experiments to prove the commonality of the algorithm. PMID:26959019
AMA- and RWE- Based Adaptive Kalman Filter for Denoising Fiber Optic Gyroscope Drift Signal.
Yang, Gongliu; Liu, Yuanyuan; Li, Ming; Song, Shunguang
2015-01-01
An improved double-factor adaptive Kalman filter called AMA-RWE-DFAKF is proposed to denoise fiber optic gyroscope (FOG) drift signal in both static and dynamic conditions. The first factor is Kalman gain updated by random weighting estimation (RWE) of the covariance matrix of innovation sequence at any time to ensure the lowest noise level of output, but the inertia of KF response increases in dynamic condition. To decrease the inertia, the second factor is the covariance matrix of predicted state vector adjusted by RWE only when discontinuities are detected by adaptive moving average (AMA).The AMA-RWE-DFAKF is applied for denoising FOG static and dynamic signals, its performance is compared with conventional KF (CKF), RWE-based adaptive KF with gain correction (RWE-AKFG), AMA- and RWE- based dual mode adaptive KF (AMA-RWE-DMAKF). Results of Allan variance on static signal and root mean square error (RMSE) on dynamic signal show that this proposed algorithm outperforms all the considered methods in denoising FOG signal. PMID:26512665
AMA- and RWE- Based Adaptive Kalman Filter for Denoising Fiber Optic Gyroscope Drift Signal
Yang, Gongliu; Liu, Yuanyuan; Li, Ming; Song, Shunguang
2015-01-01
An improved double-factor adaptive Kalman filter called AMA-RWE-DFAKF is proposed to denoise fiber optic gyroscope (FOG) drift signal in both static and dynamic conditions. The first factor is Kalman gain updated by random weighting estimation (RWE) of the covariance matrix of innovation sequence at any time to ensure the lowest noise level of output, but the inertia of KF response increases in dynamic condition. To decrease the inertia, the second factor is the covariance matrix of predicted state vector adjusted by RWE only when discontinuities are detected by adaptive moving average (AMA).The AMA-RWE-DFAKF is applied for denoising FOG static and dynamic signals, its performance is compared with conventional KF (CKF), RWE-based adaptive KF with gain correction (RWE-AKFG), AMA- and RWE- based dual mode adaptive KF (AMA-RWE-DMAKF). Results of Allan variance on static signal and root mean square error (RMSE) on dynamic signal show that this proposed algorithm outperforms all the considered methods in denoising FOG signal. PMID:26512665
NASA Astrophysics Data System (ADS)
Longobardi, A.; Villani, P.; Guida, D.; Cuomo, A.
2016-08-01
The aim of the present study is an analysis of the ability of digital hydrograph filtering tools for the characterization of the baseflow source contributing to total streamflow for a typical, small, sandstone, rainfall dominated catchment. Daily streamflow and electrical conductivity data for an experimental catchment, the Ciciriello catchment, a 3km2 watershed located in Southern Italy, have been collected to the purpose since 2012. The application of a mass balance filter (MBF), using electrical conductivity as tracer data, has pointed out a seasonal characterization of the baseflow pattern, contributing to total streamflow by 90% during the low flow period and up to 40% during the high flow period. The Lyne and Hollick one parameter and the two parameters Eckhardt digital filters have been furthermore processed, both in an uncalibrated and calibrated application. Providing a preliminary total streamflow and baseflow recession analysis, the one parameter filter appears particularly suited for ungauged cases, as the uncalibrated and calibrated applications are almost identical, with relative prediction errors, compared to MBF, smaller than 5%. The uncalibrated two parameters filter generates instead large relative error of about 35%. To improve the baseflow description, in particular during the low flow period, and to correct large (28%) underestimation of the minimum baseflow value, a seasonal calibration for the BFImax parameter (the maximum BaseFlow Index that can be modeled by the filter algorithm) is in fact needed.
Speir, Jacqueline A; Hietpas, Jack
2014-09-01
Fingerprint evidence can benefit in image quality if transformed using digital image processing techniques. This is especially true when considering prints that cannot be easily lifted (such as those deposited on porous paper substrates), or when the mechanism of lifting does not effectively reduce background interferences. In these instances, frequency filtering is one type of mathematical transformation that can serve to increase image clarity and the ability to extract minutiae relevant to pairwise comparisons. To quantify the impact of frequency filtering on image quality, high quality and low quality (noisy) prints were collected. The high quality prints served as exemplars that were compared to the low quality prints both pre- and post-filtering. The resulting pairwise match scores indicate that: (1) frequency filtering has a low probability of creating false positive associations, (2) 90% of the post-filtered images result in a normalized gain in match score, (3) frequency filtering doubled the probability of obtaining match scores greater than 30% (for the automated algorithm employed in this study), and (4) filtering can double the probability of obtaining 10 or more matching minutiae when comparing same source prints. Overall, the research indicates a reasonable and quantifiable payoff in increased clarity, matching minutiae and pairwise similarity for post-filtered images when compared to known-match exemplars. PMID:25047216
Adaptive Bloom Filter: A Space-Efficient Counting Algorithm for Unpredictable Network Traffic
NASA Astrophysics Data System (ADS)
Matsumoto, Yoshihide; Hazeyama, Hiroaki; Kadobayashi, Youki
The Bloom Filter (BF), a space-and-time-efficient hashcoding method, is used as one of the fundamental modules in several network processing algorithms and applications such as route lookups, cache hits, packet classification, per-flow state management or network monitoring. BF is a simple space-efficient randomized data structure used to represent a data set in order to support membership queries. However, BF generates false positives, and cannot count the number of distinct elements. A counting Bloom Filter (CBF) can count the number of distinct elements, but CBF needs more space than BF. We propose an alternative data structure of CBF, and we called this structure an Adaptive Bloom Filter (ABF). Although ABF uses the same-sized bit-vector used in BF, the number of hash functions employed by ABF is dynamically changed to record the number of appearances of a each key element. Considering the hash collisions, the multiplicity of a each key element on ABF can be estimated from the number of hash functions used to decode the membership of the each key element. Although ABF can realize the same functionality as CBF, ABF requires the same memory size as BF. We describe the construction of ABF and IABF (Improved ABF), and provide a mathematical analysis and simulation using Zipf's distribution. Finally, we show that ABF can be used for an unpredictable data set such as real network traffic.
A characterization of a single-trial adaptive filter and its implementation in the frequency domain.
Arpaia, J P; Isenhart, R; Sandman, C A
1989-10-01
A single-trial adaptive filter (SAF) was implemented in the frequency domain (FDAF) by using the Fast Fourier Transform. The FDAF is significantly more efficient than the SAF. In the data presented the FDAF ran approximately 2 times faster than the SAF. For time series containing larger numbers of data points (n) the efficiency of the calculation will increase on the order of N/Ln(N). The FDAF was tested under a variety of conditions to determine the limits of its usefulness. Pre-filtering the data was found to be necessary to prevent the FDAF from lining up on high frequency activity not related to the signal. The importance of minimizing the amount of low frequency noise was emphasized since it adversely affected the performance of the FDAF and was difficult to filter. The single-trial latencies predicted by the FDAF were much more sensitive to increasing noise than the final wave form. In the absence of excessive low frequency noise a negative exponential relationship was found between the mean error in latency prediction and the SNR estimate. Since the SAF technique is also used to determine signal latency in single sweep data the SNR estimate can be a useful test to determine if the FDAF is locating the signal correctly or merely amplifying chance regularities in noisy data. PMID:2477222
Echo motion imaging with adaptive clutter filter for assessment of cardiac blood flow
NASA Astrophysics Data System (ADS)
Takahashi, Hiroki; Hasegawa, Hideyuki; Kanai, Hiroshi
2015-07-01
Visualization of the vortex blood flow in the cardiac chamber is a potential diagnostic tool for the evaluation of cardiac function. In the present study, a method for automatic selection of the desirable cutoff frequency of a moving target indicator filter, namely, a clutter filter, was proposed in order to visualize complex blood flows by the ultrahigh-frame-rate imaging of echoes from blood particles while suppressing clutter echoes. In this method, the cutoff frequency was adaptively changed as a function of the velocity of the heart wall (clutter source) in each frame. The feasibility of the proposed method was examined through the measurement of a healthy volunteer using parallel receive beamforming with a single transmission of a non-steered diverging beam. Using the moving target indicator filter as above with the cutoff frequency determined by the proposed method, the vortex-like blood flow in the cardiac chamber was visualized as movements of echoes from blood particles at a very high frame rate of 6024 Hz while suppressing clutter echoes.
NASA Astrophysics Data System (ADS)
Steeb, P.; Krause, S.; Linke, P.; Hensen, C.; Dale, A. W.; Nuzzo, M.; Treude, T.
2014-11-01
Large amounts of methane are delivered by fluids through the erosive forearc of the convergent margin offshore Costa Rica and lead to the formation of cold seeps at the sediment surface. Besides mud extrusion, numerous cold seeps are created by landslides induced by seamount subduction or fluid migration along major faults. Most of the dissolved methane reaching the seafloor at cold seeps is oxidized within the benthic microbial methane filter by anaerobic oxidation of methane (AOM). Measurements of AOM and sulfate reduction as well as numerical modeling of porewater profiles revealed a highly active and efficient benthic methane filter at Quepos Slide site; a landslide on the continental slope between the Nicoya and Osa Peninsula. Integrated areal rates of AOM ranged from 12.9 ± 6.0 to 45.2 ± 11.5 mmol m-2 d-1, with only 1 to 2.5% of the upward methane flux being released into the water column. Additionally, two parallel sediment cores from Quepos Slide were used for in vitro experiments in a recently developed Sediment-F low-Through (SLOT) system to simulate an increased fluid and methane flux from the bottom of the sediment core. The benthic methane filter revealed a high adaptability whereby the methane oxidation efficiency responded to the increased fluid flow within 150-170 days. To our knowledge, this study provides the first estimation of the natural biogeochemical response of seep sediments to changes in fluid flow.
Bai, Mingsian R; Chi, Li-Wen; Liang, Li-Huang; Lo, Yi-Yang
2016-02-01
In this paper, an evolutionary exposition is given in regard to the enhancing strategies for acoustic echo cancellers (AECs). A fixed beamformer (FBF) is utilized to focus on the near-end speaker while suppressing the echo from the far end. In reality, the array steering vector could differ considerably from the ideal freefield plane wave model. Therefore, an experimental procedure is developed to interpolate a practical array model from the measured frequency responses. Subband (SB) filtering with polyphase implementation is exploited to accelerate the cancellation process. Generalized sidelobe canceller (GSC) composed of an FBF and an adaptive blocking module is combined with AEC to maximize cancellation performance. Another enhancement is an internal iteration (IIT) procedure that enables efficient convergence in the adaptive SB filters within a sample time. Objective tests in terms of echo return loss enhancement (ERLE), perceptual evaluation of speech quality (PESQ), word recognition rate for automatic speech recognition (ASR), and subjective listening tests are conducted to validate the proposed AEC approaches. The results show that the GSC-SB-AEC-IIT approach has attained the highest ERLE without speech quality degradation, even in double-talk scenarios. PMID:26936567
Adaptive Kalman filter based state of charge estimation algorithm for lithium-ion battery
NASA Astrophysics Data System (ADS)
Zheng, Hong; Liu, Xu; Wei, Min
2015-09-01
In order to improve the accuracy of the battery state of charge (SOC) estimation, in this paper we take a lithium-ion battery as an example to study the adaptive Kalman filter based SOC estimation algorithm. Firstly, the second-order battery system model is introduced. Meanwhile, the temperature and charge rate are introduced into the model. Then, the temperature and the charge rate are adopted to estimate the battery SOC, with the help of the parameters of an adaptive Kalman filter based estimation algorithm model. Afterwards, it is verified by the numerical simulation that in the ideal case, the accuracy of SOC estimation can be enhanced by adding two elements, namely, the temperature and charge rate. Finally, the actual road conditions are simulated with ADVISOR, and the simulation results show that the proposed method improves the accuracy of battery SOC estimation under actual road conditions. Thus, its application scope in engineering is greatly expanded. Project supported by the National Natural Science Foundation of China (Grant Nos. 61004048 and 61201010).
Reduction of EEG artifacts in simultaneous EEG-fMRI: Reference layer adaptive filtering (RLAF).
Steyrl, David; Patz, Franz; Krausz, Gunther; Edlinger, Günter; Müller-Putz, Gernot R
2015-08-01
Although simultaneous measurement of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is one of the most valuable methods for studying human brain activity non-invasively, it remains challenging to measure high quality EEG inside the MRI scanner. Recently, a new approach for minimizing residual MRI scanner artifacts in the EEG was presented: reference layer artifact subtraction (RLAS). Here, reference electrodes capture only the artifacts, which are subsequently subtracted from the measurement electrodes. With the present work we demonstrate that replacing the subtraction by adaptive filtering statistically significantly outperforms RLAS. Reference layer adaptive filtering (RLAF) attenuates the average artifact root-mean-square (RMS) voltage of the passive MRI scanner to 0.7 μV (-14.4 dB). RLAS achieves 0.78 μV (-13.5 dB). The combination of average artifact subtraction (AAS) and RLAF reduces the residual average gradient artifact RMS voltage to 2.3 μV (-49.2 dB). AAS alone achieves 5.7 μV (-39.0 dB). All measurements were conducted with an MRI phantom, as the reference layer cap available to us was a prototype. PMID:26737122
NASA Astrophysics Data System (ADS)
Dong, Gangqi; Zhu, Zheng H.
2016-05-01
This paper presents a real-time, vision-based algorithm for the pose and motion estimation of non-cooperative targets and its application in visual servo robotic manipulator to perform autonomous capture. A hybrid approach of adaptive extended Kalman filter and photogrammetry is developed for the real-time pose and motion estimation of non-cooperative targets. Based on the pose and motion estimates, the desired pose and trajectory of end-effector is defined and the corresponding desired joint angles of the robotic manipulator are derived by inverse kinematics. A close-loop visual servo control scheme is then developed for the robotic manipulator to track, approach and capture the target. Validating experiments are designed and performed on a custom-built six degrees of freedom robotic manipulator with an eye-in-hand configuration. The experimental results demonstrate the feasibility, effectiveness and robustness of the proposed adaptive extended Kalman filter enabled pose and motion estimation and visual servo strategy.
CROWDER, STEPHEN V.
1999-09-01
In many manufacturing environments such as the nuclear weapons complex, emphasis has shifted from the regular production and delivery of large orders to infrequent small orders. However, the challenge to maintain the same high quality and reliability standards while building much smaller lot sizes remains. To meet this challenge, specific areas need more attention, including fast and on-target process start-up, low volume statistical process control, process characterization with small experiments, and estimating reliability given few actual performance tests of the product. In this paper we address the issue of low volume statistical process control. We investigate an adaptive filtering approach to process monitoring with a relatively short time series of autocorrelated data. The emphasis is on estimation and minimization of mean squared error rather than the traditional hypothesis testing and run length analyses associated with process control charting. We develop an adaptive filtering technique that assumes initial process parameters are unknown, and updates the parameters as more data become available. Using simulation techniques, we study the data requirements (the length of a time series of autocorrelated data) necessary to adequately estimate process parameters. We show that far fewer data values are needed than is typically recommended for process control applications. We also demonstrate the techniques with a case study from the nuclear weapons manufacturing complex.
Crowder, S.V.; Eshleman, L.
1998-08-01
In many manufacturing environments such as the nuclear weapons complex, emphasis has shifted from the regular production and delivery of large orders to infrequent small orders. However, the challenge to maintain the same high quality and reliability standards white building much smaller lot sizes remains. To meet this challenge, specific areas need more attention, including fast and on-target process start-up, low volume statistical process control, process characterization with small experiments, and estimating reliability given few actual performance tests of the product. In this paper the authors address the issue of low volume statistical process control. They investigate an adaptive filtering approach to process monitoring with a relatively short time series of autocorrelated data. The emphasis is on estimation and minimization of mean squared error rather than the traditional hypothesis testing and run length analyses associated with process control charting. The authors develop an adaptive filtering technique that assumes initial process parameters are unknown, and updates the parameters as more data become available. Using simulation techniques, they study the data requirements (the length of a time series of autocorrelated data) necessary to adequately estimate process parameters. They show that far fewer data values are needed than is typically recommended for process control applications. And they demonstrate the techniques with a case study from the nuclear weapons manufacturing complex.
Design of adaptive steganographic schemes for digital images
NASA Astrophysics Data System (ADS)
Filler, Tomás; Fridrich, Jessica
2011-02-01
Most steganographic schemes for real digital media embed messages by minimizing a suitably defined distortion function. In practice, this is often realized by syndrome codes which offer near-optimal rate-distortion performance. However, the distortion functions are designed heuristically and the resulting steganographic algorithms are thus suboptimal. In this paper, we present a practical framework for optimizing the parameters of additive distortion functions to minimize statistical detectability. We apply the framework to digital images in both spatial and DCT domain by first defining a rich parametric model which assigns a cost of making a change at every cover element based on its neighborhood. Then, we present a practical method for optimizing the parameters with respect to a chosen detection metric and feature space. We show that the size of the margin between support vectors in soft-margin SVMs leads to a fast detection metric and that methods minimizing the margin tend to be more secure w.r.t. blind steganalysis. The parameters obtained by the Nelder-Mead simplex-reflection algorithm for spatial and DCT-domain images are presented and the new embedding methods are tested by blind steganalyzers utilizing various feature sets. Experimental results show that as few as 80 images are sufficient for obtaining good candidates for parameters of the cost model, which allows us to speed up the parameter search.
Carmena, Jose M.
2016-01-01
Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain’s behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user’s motor intention during CLDA—a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to
Shanechi, Maryam M; Orsborn, Amy L; Carmena, Jose M
2016-04-01
Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain's behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user's motor intention during CLDA-a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to parameter
Mazumder, Ria; Clymer, Bradley D; Mo, Xiaokui; White, Richard D; Kolipaka, Arunark
2016-06-01
Diffusion tensor imaging (DTI) is used to quantify myocardial fiber orientation based on helical angles (HA). Accurate HA measurements require multiple excitations (NEX) and/or several diffusion encoding directions (DED). However, increasing NEX and/or DED increases acquisition time (TA). Therefore, in this study, we propose to reduce TA by implementing a 3D adaptive anisotropic Gaussian filter (AAGF) on the DTI data acquired from ex-vivo healthy and infarcted porcine hearts. DTI was performed on ex-vivo hearts [9-healthy, 3-myocardial infarction (MI)] with several combinations of DED and NEX. AAGF, mean (AVF) and median filters (MF) were applied on the primary eigenvectors of the diffusion tensor prior to HA estimation. The performance of AAGF was compared against AVF and MF. Root mean square error (RMSE), concordance correlation-coefficients and Bland-Altman's technique was used to determine optimal combination of DED and NEX that generated the best HA maps in the least possible TA. Lastly, the effect of implementing AAGF on the infarcted porcine hearts was also investigated. RMSE in HA estimation for AAGF was lower compared to AVF or MF. Post-filtering (AAGF) fewer DED and NEX were required to achieve HA maps with similar integrity as those obtained from higher NEX and/or DED. Pathological alterations caused in HA orientation in the MI model were preserved post-filtering (AAGF). Our results demonstrate that AAGF reduces TA without affecting the integrity of the myocardial microstructure. PMID:26843150
NASA Astrophysics Data System (ADS)
Alexander, P.; de la Torre, A.; Llamedo, P.; Hierro, R.; Schmidt, T.; Haser, A.; Wickert, J.
2011-09-01
GPS radio occultation satellite data allowed to analyze in the last decade for the first time a large amount of atmospheric temperature profiles including both the troposphere and the stratosphere all over the globe. Wave amplitude enhancements have been systematically observed around tropopause levels, which are apparently due to artifacts generated by any digital filter used to isolate the wave components from these data. We present a new filtering method which can be equally applied to temperature or refractivity profiles. It was tested with synthetic temperature data based on NCEP reanalyes and observed wave climatologies and it was also statistically validated with GPS radio occultation profiles from the COSMIC mission. The suggested technique significantly reduces artificial enhancements around the tropopause, mainly at low latitudes, where a sharp lapse rate change usually exists. This represents an improvement in comparison to previous applications of standard filters. In addition it would allow the study of longer vertical wavelengths than previously done with other filtering procedures.
Adaptive nonseparable vector lifting scheme for digital holographic data compression.
Xing, Yafei; Kaaniche, Mounir; Pesquet-Popescu, Béatrice; Dufaux, Frédéric
2015-01-01
Holographic data play a crucial role in recent three-dimensional imaging as well as microscopic applications. As a result, huge amounts of storage capacity will be involved for this kind of data. Therefore, it becomes necessary to develop efficient hologram compression schemes for storage and transmission purposes. In this paper, we focus on the shifted distance information, obtained by the phase-shifting algorithm, where two sets of difference data need to be encoded. More precisely, a nonseparable vector lifting scheme is investigated in order to exploit the two-dimensional characteristics of the holographic contents. Simulations performed on different digital holograms have shown the effectiveness of the proposed method in terms of bitrate saving and quality of object reconstruction. PMID:25967029
Adaptive design for digital nonlinear autopilot of ship-to-ship missiles
NASA Astrophysics Data System (ADS)
Im, Ki Hong; Chaw, Dongkyoung; Choi, Jin Young
2005-12-01
This paper proposes a practical design method for ship-to-ship missiles' autopilot. When the pre-designed analogue autopilot is implemented in digital way, they generally suffer from severe performance degradation and instability problem even for a sufficiently small sampling time. Also, aerodynamic uncertainties can affect the overall stability and this happens more severely when the nonlinear autopilot is digitally implemented. In order to realize a practical autopilot, two main issues, digital implementation problem and compensation for the aerodynamic uncertainties, are considered in this paper. MIMO (multi-input multi-output) nonlinear autopilot is presented first and the input and output of the missile are discretized for implementation. In this step, the discretization effect is compensated by designing an additional control input. Finally, we design a parameter adaptation law to compensate the control performance. Stability analysis and 6-DOF (degree-of-freedom) simulations are presented to verify the proposed adaptive autopilot.
Multiscale bilateral filtering for improving image quality in digital breast tomosynthesis
Lu, Yao; Chan, Heang-Ping; Wei, Jun; Hadjiiski, Lubomir M.; Samala, Ravi K.
2015-01-01
Purpose: Detection of subtle microcalcifications in digital breast tomosynthesis (DBT) is a challenging task because of the large, noisy DBT volume. It is important to enhance the contrast-to-noise ratio (CNR) of microcalcifications in DBT reconstruction. Most regularization methods depend on local gradient and may treat the ill-defined margins or subtle spiculations of masses and subtle microcalcifications as noise because of their small gradient. The authors developed a new multiscale bilateral filtering (MSBF) regularization method for the simultaneous algebraic reconstruction technique (SART) to improve the CNR of microcalcifications without compromising the quality of masses. Methods: The MSBF exploits a multiscale structure of DBT images to suppress noise and selectively enhance high frequency structures. At the end of each SART iteration, every DBT slice is decomposed into several frequency bands via Laplacian pyramid decomposition. No regularization is applied to the low frequency bands so that subtle edges of masses and structured background are preserved. Bilateral filtering is applied to the high frequency bands to enhance microcalcifications while suppressing noise. The regularized DBT images are used for updating in the next SART iteration. The new MSBF method was compared with the nonconvex total p-variation (TpV) method for noise regularization with SART. A GE GEN2 prototype DBT system was used for acquisition of projections at 21 angles in 3° increments over a ±30° range. The reconstruction image quality with no regularization (NR) and that with the two regularization methods were compared using the DBT scans of a heterogeneous breast phantom and several human subjects with masses and microcalcifications. The CNR and the full width at half maximum (FWHM) of the line profiles of microcalcifications and across the spiculations within their in-focus DBT slices were used as image quality measures. Results: The MSBF method reduced contouring artifacts
Digital redesign of the decentralised adaptive tracker for linear large-scale systems
NASA Astrophysics Data System (ADS)
Lin, Ming-Hong; Sheng-Hong Tsai, Jason; Chen, Chia-Wei; Guo, Shu-Mei; Chu, Che-An
2010-02-01
A novel digital redesign of the analogue model-reference-based decentralized adaptive tracker is proposed for the sampled-data large scale system consisting of N interconnected linear subsystems, so that the system output will follow any trajectory specified at sampling instant which may not be presented by the analytic reference initially, and shows that the proposed decentralized controller induces a good robustness on the decoupling of the closed-loop controlled system. The adaptation of the analogue controller gain is derived by using the model-reference adaptive control theory based on Lyapunov's method. In this article, it is shown that using the sampled-data decentralized adaptive control system it is theoretically possible to asymptotically track the desired output with a desired performance. It is assumed that all the controllers share their prior information and the principal result is derived when they cooperate implicitly. Based on the prediction-based digital redesign methodology, the optimal digital redesigned tracker for the sampled-data decentralised adaptive control systems is newly proposed. An illustrative example of interconnected linear system is presented to demonstrate the effectiveness of the proposed design methodology.
NASA Astrophysics Data System (ADS)
Mahmood, Muhammad Tariq; Chu, Yeon-Ho; Choi, Young-Kyu
2016-05-01
This paper proposes a Rician noise reduction method for magnetic resonance (MR) images. The proposed method is based on adaptive non-local mean and guided image filtering techniques. In the first phase, a guidance image is obtained from the noisy image through an adaptive non-local mean filter. Sobel operators are applied to compute the strength of edges which is further used to control the spread of the kernel in non-local mean filtering. In the second phase, the noisy and the guidance images are provided to the guided image filter as input to restore the noise-free image. The improved performance of the proposed method is investigated using the simulated and real data sets of MR images. Its performance is also compared with the previously proposed state-of-the art methods. Comparative analysis demonstrates the superiority of the proposed scheme over the existing approaches.
NASA Astrophysics Data System (ADS)
Mahmood, Muhammad Tariq; Chu, Yeon-Ho; Choi, Young-Kyu
2016-06-01
This paper proposes a Rician noise reduction method for magnetic resonance (MR) images. The proposed method is based on adaptive non-local mean and guided image filtering techniques. In the first phase, a guidance image is obtained from the noisy image through an adaptive non-local mean filter. Sobel operators are applied to compute the strength of edges which is further used to control the spread of the kernel in non-local mean filtering. In the second phase, the noisy and the guidance images are provided to the guided image filter as input to restore the noise-free image. The improved performance of the proposed method is investigated using the simulated and real data sets of MR images. Its performance is also compared with the previously proposed state-of-the art methods. Comparative analysis demonstrates the superiority of the proposed scheme over the existing approaches.
Mollazadeh, Mohsen; Murari, Kartikeya; Cauwenberghs, Gert; Thakor, Nitish
2009-01-01
Electrical activity in the brain spans a wide range of spatial and temporal scales, requiring simultaneous recording of multiple modalities of neurophysiological signals in order to capture various aspects of brain state dynamics. Here, we present a 16-channel neural interface integrated circuit fabricated in a 0.5 μm 3M2P CMOS process for selective digital acquisition of biopotentials across the spectrum of neural signal modalities in the brain, ranging from single spike action potentials to local field potentials (LFP), electrocorticograms (ECoG), and electroencephalograms (EEG). Each channel is composed of a tunable bandwidth, fixed gain front-end amplifier and a programmable gain/resolution continuous-time incremental ΔΣ analog-to-digital converter (ADC). A two-stage topology for the front-end voltage amplifier with capacitive feedback offers independent tuning of the amplifier bandpass frequency corners, and attains a noise efficiency factor (NEF) of 2.9 at 8.2 kHz bandwidth for spike recording, and a NEF of 3.2 at 140 Hz bandwidth for EEG recording. The amplifier has a measured midband gain of 39.6 dB, frequency response from 0.2 Hz to 8.2 kHz, and an input-referred noise of 1.94 μVrms while drawing 12.2 μA of current from a 3.3 V supply. The lower and higher cutoff frequencies of the bandpass filter are adjustable from 0.2 to 94 Hz and 140 Hz to 8.2 kHz, respectively. At 10-bit resolution, the ADC has an SNDR of 56 dB while consuming 76 μW power. Time-modulation feedback in the ADC offers programmable digital gain (1–4096) for auto-ranging, further improving the dynamic range and linearity of the ADC. Experimental recordings with the system show spike signals in rat somatosensory cortex as well as alpha EEG activity in a human subject. PMID:20046962
Mollazadeh, M; Murari, K; Cauwenberghs, G; Thakor, N
2009-02-01
Electrical activity in the brain spans a wide range of spatial and temporal scales, requiring simultaneous recording of multiple modalities of neurophysiological signals in order to capture various aspects of brain state dynamics. Here, we present a 16-channel neural interface integrated circuit fabricated in a 0.5 mum 3M2P CMOS process for selective digital acquisition of biopotentials across the spectrum of neural signal modalities in the brain, ranging from single spike action potentials to local field potentials (LFP), electrocorticograms (ECoG), and electroencephalograms (EEG). Each channel is composed of a tunable bandwidth, fixed gain front-end amplifier and a programmable gain/resolution continuous-time incremental DeltaSigma analog-to-digital converter (ADC). A two-stage topology for the front-end voltage amplifier with capacitive feedback offers independent tuning of the amplifier bandpass frequency corners, and attains a noise efficiency factor (NEF) of 2.9 at 8.2 kHz bandwidth for spike recording, and a NEF of 3.2 at 140 Hz bandwidth for EEG recording. The amplifier has a measured midband gain of 39.6 dB, frequency response from 0.2 Hz to 8.2 kHz, and an input-referred noise of 1.94 muV rms while drawing 12.2 muA of current from a 3.3 V supply. The lower and higher cutoff frequencies of the bandpass filter are adjustable from 0.2 to 94 Hz and 140 Hz to 8.2 kHz, respectively. At 10-bit resolution, the ADC has an SNDR of 56 dB while consuming 76 muW power. Time-modulation feedback in the ADC offers programmable digital gain (1-4096) for auto-ranging, further improving the dynamic range and linearity of the ADC. Experimental recordings with the system show spike signals in rat somatosensory cortex as well as alpha EEG activity in a human subject. PMID:20046962
Time-domain damping models in structural acoustics using digital filtering
NASA Astrophysics Data System (ADS)
Parret-Fréaud, Augustin; Cotté, Benjamin; Chaigne, Antoine
2016-02-01
This paper describes a new approach in order to formulate well-posed time-domain damping models able to represent various frequency domain profiles of damping properties. The novelty of this approach is to represent the behavior law of a given material directly in a discrete-time framework as a digital filter, which is synthesized for each material from a discrete set of frequency-domain data such as complex modulus through an optimization process. A key point is the addition of specific constraints to this process in order to guarantee stability, causality and verification of thermodynamics second law when transposing the resulting discrete-time behavior law into the time domain. Thus, this method offers a framework which is particularly suitable for time-domain simulations in structural dynamics and acoustics for a wide range of materials (polymers, wood, foam, etc.), allowing to control and even reduce the distortion effects induced by time-discretization schemes on the frequency response of continuous-time behavior laws.
Singh, Omkar; Sunkaria, Ramesh Kumar
2015-01-01
Separating an information-bearing signal from the background noise is a general problem in signal processing. In a clinical environment during acquisition of an electrocardiogram (ECG) signal, The ECG signal is corrupted by various noise sources such as powerline interference (PLI), baseline wander and muscle artifacts. This paper presents novel methods for reduction of powerline interference in ECG signals using empirical wavelet transform (EWT) and adaptive filtering. The proposed methods are compared with the empirical mode decomposition (EMD) based PLI cancellation methods. A total of six methods for PLI reduction based on EMD and EWT are analysed and their results are presented in this paper. The EWT-based de-noising methods have less computational complexity and are more efficient as compared with the EMD-based de-noising methods. PMID:25412942
Adaptation of Gabor filters for simulation of human preattentive mechanism for a mobile robot
NASA Astrophysics Data System (ADS)
Kulkarni, Naren; Naghdy, Golshah A.
1993-08-01
Vision guided mobile robot navigation is complex and requires analysis of tremendous amounts of information in real time. In order to simplify the task and reduce the amount of information, human preattentive mechanism can be adapted [Nag90]. During the preattentive search the scene is analyzed rapidly but in sufficient detail for the attention to be focused on the `area of interest.' The `area of interest' can further be scrutinized in more detail for recognition purposes. This `area of interest' can be a text message to facilitate navigation. Gabor filters and an automated turning mechanism are used to isolate the `area of interest.' These regions are subsequently processed with optimal spatial resolution for perception tasks. This method has clear advantages over the global operators in that, after an initial search, it scans each region of interest with optimum resolution. This reduces the volume of information for recognition stages and ensures that no region is over or under estimated.
Adaptive UAV Attitude Estimation Employing Unscented Kalman Filter, FOAM and Low-Cost MEMS Sensors
de Marina, Héctor García; Espinosa, Felipe; Santos, Carlos
2012-01-01
Navigation employing low cost MicroElectroMechanical Systems (MEMS) sensors in Unmanned Aerial Vehicles (UAVs) is an uprising challenge. One important part of this navigation is the right estimation of the attitude angles. Most of the existent algorithms handle the sensor readings in a fixed way, leading to large errors in different mission stages like take-off aerobatic maneuvers. This paper presents an adaptive method to estimate these angles using off-the-shelf components. This paper introduces an Attitude Heading Reference System (AHRS) based on the Unscented Kalman Filter (UKF) using the Fast Optimal Attitude Matrix (FOAM) algorithm as the observation model. The performance of the method is assessed through simulations. Moreover, field experiments are presented using a real fixed-wing UAV. The proposed low cost solution, implemented in a microcontroller, shows a satisfactory real time performance. PMID:23012559
Yoon, Paul K; Zihajehzadeh, Shaghayegh; Bong-Soo Kang; Park, Edward J
2015-08-01
This paper proposes a novel indoor localization method using the Bluetooth Low Energy (BLE) and an inertial measurement unit (IMU). The multipath and non-line-of-sight errors from low-power wireless localization systems commonly result in outliers, affecting the positioning accuracy. We address this problem by adaptively weighting the estimates from the IMU and BLE in our proposed cascaded Kalman filter (KF). The positioning accuracy is further improved with the Rauch-Tung-Striebel smoother. The performance of the proposed algorithm is compared against that of the standard KF experimentally. The results show that the proposed algorithm can maintain high accuracy for position tracking the sensor in the presence of the outliers. PMID:26736389
An adaptive Kalman filter technique for context-aware heart rate monitoring.
Xu, Min; Goldfain, Albert; Dellostritto, Jim; Iyengar, Satish
2012-01-01
Traditional physiological monitoring systems convert a person's vital sign waveforms, such as heart rate, respiration rate and blood pressure, into meaningful information by comparing the instant reading with a preset threshold or a baseline without considering the contextual information of the person. It would be beneficial to incorporate the contextual data such as activity status of the person to the physiological data in order to obtain a more accurate representation of a person's physiological status. In this paper, we proposed an algorithm based on adaptive Kalman filter that describes the heart rate response with respect to different activity levels. It is towards our final goal of intelligent detection of any abnormality in the person's vital signs. Experimental results are provided to demonstrate the feasibility of the algorithm. PMID:23367423
Adaptive UAV attitude estimation employing unscented Kalman Filter, FOAM and low-cost MEMS sensors.
de Marina, Héctor García; Espinosa, Felipe; Santos, Carlos
2012-01-01
Navigation employing low cost MicroElectroMechanical Systems (MEMS) sensors in Unmanned Aerial Vehicles (UAVs) is an uprising challenge. One important part of this navigation is the right estimation of the attitude angles. Most of the existent algorithms handle the sensor readings in a fixed way, leading to large errors in different mission stages like take-off aerobatic maneuvers. This paper presents an adaptive method to estimate these angles using off-the-shelf components. This paper introduces an Attitude Heading Reference System (AHRS) based on the Unscented Kalman Filter (UKF) using the Fast Optimal Attitude Matrix (FOAM) algorithm as the observation model. The performance of the method is assessed through simulations. Moreover, field experiments are presented using a real fixed-wing UAV. The proposed low cost solution, implemented in a microcontroller, shows a satisfactory real time performance. PMID:23012559
Ko, Byung-hoon; Lee, Takhyung; Choi, Changmok; Kim, Youn-ho; Park, Gunguk; Kang, KyoungHo; Bae, Sang Kon; Shin, Kunsoo
2012-01-01
The electrocardiogram (ECG) is the main measurement parameter for effectively diagnosing chronic disease and guiding cardio-fitness therapy. ECGs contaminated by noise or artifacts disrupt the normal functioning of the automatic analysis algorithm. The objective of this study is to evaluate a method of measuring the HCP variation in motion artifacts through direct monitoring. The proposed wearable sensing device has two channels. One channel is used to measure the ECG through a differential amplifier. The other is for monitoring motion artifacts using the modified electrode and the same differential amplifier. Noise reduction was performed using adaptive filtering, based on a reference signal highly correlated with it. Direct measurement of HCP variations can eliminate the need for additional sensors. PMID:23366209
Adaptive filters for monitoring localized brain activity from surface potential time series
Spencer, M.E. |; Leahy, R.M.; Mosher, J.C. |; Lewis, P.S.
1992-12-01
We address the problem of processing electroencephalographic (EEG) data to monitor the time series of the components of a current dipole source vector at a given location in the head. This is the spatial filtering problem for vector sources in a lossy, three dimensional, zero delay medium. Dipolar and distributed sources at other than the desired location are canceled or attenuated with an adaptive linearly constrained minimum variance (LCMV) beamformer. Actual EEG data acquired from a human subject serves as the interference in a case where the desired source is simulated and superimposed on the actual data. It is shown that the LCMV beamformer extracts the desired dipole time series while effectively canceling the subjects interference.
Adaptive filters for monitoring localized brain activity from surface potential time series
Spencer, M.E. . Signal and Image Processing Inst. TRW, Inc., Redondo Beach, CA ); Leahy, R.M. . Signal and Image Processing Inst.); Mosher, J.C. . Signal and Image Processing Inst. Lo
1992-01-01
We address the problem of processing electroencephalographic (EEG) data to monitor the time series of the components of a current dipole source vector at a given location in the head. This is the spatial filtering problem for vector sources in a lossy, three dimensional, zero delay medium. Dipolar and distributed sources at other than the desired location are canceled or attenuated with an adaptive linearly constrained minimum variance (LCMV) beamformer. Actual EEG data acquired from a human subject serves as the interference in a case where the desired source is simulated and superimposed on the actual data. It is shown that the LCMV beamformer extracts the desired dipole time series while effectively canceling the subjects interference.
Adaptive Kalman filtering for real-time mapping of the visual field
Ward, B. Douglas; Janik, John; Mazaheri, Yousef; Ma, Yan; DeYoe, Edgar A.
2013-01-01
This paper demonstrates the feasibility of real-time mapping of the visual field for clinical applications. Specifically, three aspects of this problem were considered: (1) experimental design, (2) statistical analysis, and (3) display of results. Proper experimental design is essential to achieving a successful outcome, particularly for real-time applications. A random-block experimental design was shown to have less sensitivity to measurement noise, as well as greater robustness to error in modeling of the hemodynamic impulse response function (IRF) and greater flexibility than common alternatives. In addition, random encoding of the visual field allows for the detection of voxels that are responsive to multiple, not necessarily contiguous, regions of the visual field. Due to its recursive nature, the Kalman filter is ideally suited for real-time statistical analysis of visual field mapping data. An important feature of the Kalman filter is that it can be used for nonstationary time series analysis. The capability of the Kalman filter to adapt, in real time, to abrupt changes in the baseline arising from subject motion inside the scanner and other external system disturbances is important for the success of clinical applications. The clinician needs real-time information to evaluate the success or failure of the imaging run and to decide whether to extend, modify, or terminate the run. Accordingly, the analytical software provides real-time displays of (1) brain activation maps for each stimulus segment, (2) voxel-wise spatial tuning profiles, (3) time plots of the variability of response parameters, and (4) time plots of activated volume. PMID:22100663
A novel nonlinear adaptive filter using a pipelined second-order Volterra recurrent neural network.
Zhao, Haiquan; Zhang, Jiashu
2009-12-01
To enhance the performance and overcome the heavy computational complexity of recurrent neural networks (RNN), a novel nonlinear adaptive filter based on a pipelined second-order Volterra recurrent neural network (PSOVRNN) is proposed in this paper. A modified real-time recurrent learning (RTRL) algorithm of the proposed filter is derived in much more detail. The PSOVRNN comprises of a number of simple small-scale second-order Volterra recurrent neural network (SOVRNN) modules. In contrast to the standard RNN, these modules of a PSOVRNN can be performed simultaneously in a pipelined parallelism fashion, which can lead to a significant improvement in its total computational efficiency. Moreover, since each module of the PSOVRNN is a SOVRNN in which nonlinearity is introduced by the recursive second-order Volterra (RSOV) expansion, its performance can be further improved. Computer simulations have demonstrated that the PSOVRNN performs better than the pipelined recurrent neural network (PRNN) and RNN for nonlinear colored signals prediction and nonlinear channel equalization. However, the superiority of the PSOVRNN over the PRNN is at the cost of increasing computational complexity due to the introduced nonlinear expansion of each module. PMID:19523787
Bilateral filtering and adaptive tone-mapping for qualified edge and image enhancement
NASA Astrophysics Data System (ADS)
Hu, Kuo-Jui; Chang, Ting-Ting; Lu, Min-Yao; Li, Wu-Jeng; Huang, Jih-Fon
2009-01-01
Most of high-contrast images are common with dark and bright area. It is difficult to present the detail on both dark and high light areas on display devices. In order to resolve this problem, we proposed a method of image enhancement to improve this image quality and used bilateral filter to keep the detail. In paper, we applied an appropriate algorithm to process images. At first, we use bilateral filter to separate image. One is large scale image and the other is detail image. Second, we made large scale image which was translated into histogram. In order to make the images divided into three stairs, such as lightness, middle-tone and darkness region. We decided two optimal threshold parameters. Finally, according to three images we use different tone-mapping method to process each stair. The tone-mapping method includes adaptive s-curve and gamma curve algorithms. The experiment results of this study revealed image detail and enhancement. To avoid contour phenomenon is in lightness region.
Charisis, Vasileios S; Hadjileontiadis, Leontios J
2016-03-01
The aim of this Letter is to present a new capsule endoscopy (CE) image analysis scheme for the detection of small bowel ulcers that relate to Crohn's disease. More specifically, this scheme is based on: (i) a hybrid adaptive filtering (HAF) process, that utilises genetic algorithms to the curvelet-based representation of images for efficient extraction of the lesion-related morphological characteristics, (ii) differential lacunarity (DL) analysis for texture feature extraction from the HAF-filtered images and (iii) support vector machines for robust classification performance. For the training of the proposed scheme, namely HAF-DL, an 800-image database was used and the evaluation was based on ten 30-second long endoscopic videos. Experimental results, along with comparison with other related efforts, have shown that the HAF-DL approach evidently outperforms the latter in the field of CE image analysis for automated lesion detection, providing higher classification results. The promising performance of HAF-DL paves the way for a complete computer-aided diagnosis system that could support the physicians' clinical practice. PMID:27222730
Adaptive Filter-bank Approach to Restoration and Spectral Analysis of Gapped Data
NASA Astrophysics Data System (ADS)
Stoica, Petre; Larsson, Erik G.; Li, Jian
2000-10-01
The main topic of this paper is the nonparametric estimation of complex (both amplitude and phase) spectra from gapped data, as well as the restoration of such data. The focus is on the extension of the APES (amplitude and phase estimation) approach to data sequences with gaps. APES, which is one of the most successful existing nonparametric approaches to the spectral analysis of full data sequences, uses a bank of narrowband adaptive (both frequency and data dependent) filters to estimate the spectrum. A recent interpretation of this approach showed that the filterbank used by APES and the resulting spectrum minimize a least-squares (LS) fitting criterion between the filtered sequence and its spectral decomposition. The extended approach, which is called GAPES for somewhat obvious reasons, capitalizes on the aforementioned interpretation: it minimizes the APES-LS fitting criterion with respect to the missing data as well. This should be a sensible thing to do whenever the full data sequence is stationary, and hence the missing data have the same spectral content as the available data. We use both simulated and real data examples to show that GAPES estimated spectra and interpolated data sequences have excellent accuracy. We also show the performance gain achieved by GAPES over two of the most commonly used approaches for gapped-data spectral analysis, viz., the periodogram and the parametric CLEAN method. This work was partly supported by the Swedish Foundation for Strategic Research.
NASA Astrophysics Data System (ADS)
Gruneisen, Mark T.; Sickmiller, Brett A.; Flanagan, Michael B.; Black, James P.; Stoltenberg, Kurt E.; Duchane, Alexander W.
2016-02-01
Spatial filtering is an important technique for reducing sky background noise in a satellite quantum key distribution downlink receiver. Atmospheric turbulence limits the extent to which spatial filtering can reduce sky noise without introducing signal losses. Using atmospheric propagation and compensation simulations, the potential benefit of adaptive optics (AO) to secure key generation (SKG) is quantified. Simulations are performed assuming optical propagation from a low-Earth-orbit satellite to a terrestrial receiver that includes AO. Higher-order AO correction is modeled assuming a Shack-Hartmann wavefront sensor and a continuous-face-sheet deformable mirror. The effects of atmospheric turbulence, tracking, and higher-order AO on the photon capture efficiency are simulated using statistical representations of turbulence and a time-domain wave-optics hardware emulator. SKG rates are calculated for a decoy-state protocol as a function of the receiver field of view for various strengths of turbulence, sky radiances, and pointing angles. The results show that at fields of view smaller than those discussed by others, AO technologies can enhance SKG rates in daylight and enable SKG where it would otherwise be prohibited as a consequence of background optical noise and signal loss due to propagation and turbulence effects.
Local stimulus disambiguation with global motion filters predicts adaptive surround modulation.
Dellen, Babette; Torras, Carme
2013-10-01
Humans have no problem segmenting different motion stimuli despite the ambiguity of local motion signals. Adaptive surround modulation, i.e., the apparent switching between integrative and antagonistic modes, is assumed to play a crucial role in this process. However, so far motion processing models based on local integration have not been able to provide a unifying explanation for this phenomenon. This motivated us to investigate the problem of local stimulus disambiguation in an alternative and fundamentally distinct motion-processing model which uses global motion filters for velocity computation. Local information is reconstructed at the end of the processing stream through the constructive interference of global signals, i.e., inverse transformations. We show that in this model local stimulus disambiguation can be achieved by means of a novel filter embedded in this architecture. This gives rise to both integrative and antagonistic effects which are in agreement with those observed in psychophysical experiments with humans, providing a functional explanation for effects of motion repulsion. PMID:23685285
Bittanti, S.; Gatti, E.; Ripamonti, G.; Savaresi, S.M.
1997-04-01
In this paper, a method for the identification of the poles` and zeros` position of an analog amplifier for nuclear spectroscopy used as a prefilter for a subsequent digital filter setup is presented. The proposed technique is based upon a subspace-based system state-space identification (4SID) method, which is well suited to a data set constituted by a noisy measurement of the sampled impulse response of the circuit. The algorithm runs unassisted and does not require skills by the operator. The experiments confirm that by using the so-obtained pole values, the shape of the impulse response of the amplifier can be fit with much better than 1% accuracy. Consequently, the overall filtering (analog + digital) can have finite duration and a top with a flatness much better than 1%.
NASA Astrophysics Data System (ADS)
Edwards, A. W.; Blackler, K.; Gill, R. D.; van der Goot, E.; Holm, J.
1990-10-01
Based upon the experience gained with the present soft x-ray data acquisition system, new techniques are being developed which make extensive use of digital signal processors (DSPs). Digital filters make 13 further frequencies available in real time from the input sampling frequency of 200 kHz. In parallel, various algorithms running on further DSPs generate triggers in response to a range of events in the plasma. The sawtooth crash can be detected, for example, with a delay of only 50 μs from the onset of the collapse. The trigger processor interacts with the digital filter boards to ensure data of the appropriate frequency is recorded throughout a plasma discharge. An independent link is used to pass 780 and 24 Hz filtered data to a network of transputers. A full tomographic inversion and display of the 24 Hz data is carried out in real time using this 15 transputer array. The 780 Hz data are stored for immediate detailed playback following the pulse. Such a system could considerably improve the quality of present plasma diagnostic data which is, in general, sampled at one fixed frequency throughout a discharge. Further, it should provide valuable information towards designing diagnostic data acquisition systems for future long pulse operation machines when a high degree of real-time processing will be required, while retaining the ability to detect, record, and analyze events of interest within such long plasma discharges.
NASA Astrophysics Data System (ADS)
Alexander, P.; de la Torre, A.; Llamedo, P.; Hierro, R.; Schmidt, T.; Haser, A.; Wickert, J.
2011-02-01
Calculations of gravity wave activity all over the globe derived from GPS radio occultation temperature profiles led some years ago to the following question: are the wave amplitude enhancements systematically observed around tropopause levels due to physical processes or are they a simple artifact generated by any digital filter used to isolate the wave components? The latter alternative has been found to be the correct one. This has been concluded after almost a decade of work on global wave climatologies obtained from GPS radio occultation satellite data, which allowed to analyze, for the first time, a large amount of atmospheric profiles including both the troposphere and the stratosphere. We present a new filtering method which can be equally applied to temperature or refractivity profiles. The suggested technique significantly reduces artificial enhancements around the tropopause, which represents an improvement in comparison to previous applications of standard filters.
NASA Astrophysics Data System (ADS)
Kowada, Daisuke; Ueno, Akinori
In this paper, we propose a novel method for extending bandwidth of ECG measuring device without deteriorating the baseline tolerance for body motion. The proposed method is realized by synthesizing a two-stage analog forward filter with two different corner frequencies and a digital inverse filter having a corner frequency identical with the higher one of the analog filter. We applied the method to bed-type capacitive ECG sensor which can detect electrocardiographic potential non-intrusively and indirectly. The results demonstrated that the proposed method could precisely recover low-frequency components like T-wave. Furthermore, we confirmed that QTc (corrected QT interval) could be estimated from the recovered wave and that the QTc correlated 0.81 on the average with that obtained from Lead II ECG for seven subjects. These results indicate that the proposed method is useful to screening of long QT syndrome by combining the method with the bed-type capacitive ECG sensor.
Emergence of band-pass filtering through adaptive spiking in the owl's cochlear nucleus.
Fontaine, Bertrand; MacLeod, Katrina M; Lubejko, Susan T; Steinberg, Louisa J; Köppl, Christine; Peña, Jose L
2014-07-15
In the visual, auditory, and electrosensory modalities, stimuli are defined by first- and second-order attributes. The fast time-pressure signal of a sound, a first-order attribute, is important, for instance, in sound localization and pitch perception, while its slow amplitude-modulated envelope, a second-order attribute, can be used for sound recognition. Ascending the auditory pathway from ear to midbrain, neurons increasingly show a preference for the envelope and are most sensitive to particular envelope modulation frequencies, a tuning considered important for encoding sound identity. The level at which this tuning property emerges along the pathway varies across species, and the mechanism of how this occurs is a matter of debate. In this paper, we target the transition between auditory nerve fibers and the cochlear nucleus angularis (NA). While the owl's auditory nerve fibers simultaneously encode the fast and slow attributes of a sound, one synapse further, NA neurons encode the envelope more efficiently than the auditory nerve. Using in vivo and in vitro electrophysiology and computational analysis, we show that a single-cell mechanism inducing spike threshold adaptation can explain the difference in neural filtering between the two areas. We show that spike threshold adaptation can explain the increased selectivity to modulation frequency, as input level increases in NA. These results demonstrate that a spike generation nonlinearity can modulate the tuning to second-order stimulus features, without invoking network or synaptic mechanisms. PMID:24790170
Iterative version of the QRD for adaptive recursive least squares (RLS) filtering
NASA Astrophysics Data System (ADS)
Goetze, Juergen
1994-10-01
A modified version of the QR-decomposition (QRD) is presented. It uses approximate Givens rotations instead of exact Givens rotations, i.e., a matrix entry usually annihilated with an exact rotation by an angle (sigma) is only reduced by using an approximate rotation by an angle (sigma) . The approximation of the rotations is based on the idea of CORDIC. Evaluating a CORDIC-based approximate rotation is to determine the angle (sigma) equals (sigma) t equals arctan 2-t, which is closest to the exact rotation angle (sigma) . This angle (sigma) t is applied instead of (sigma) . Using approximate rotations for computing the QRD results in an iterative version of the original QRD. A recursive version of this QRD using CORDIC-based approximate rotations is applied to adaptive RLS filtering. Only a few angles of the CORDIC sequence, r say (r << b, where b is the word length), work as well as using exact rotations (r equals b, original CORDIC). The misadjustment error decreases as r increases. The convergence of the QRD-RLS algorithm, however, is insensitive to the value of r. Adapting the approximation accuracy during the course of the QRD-RLS algorithm is also discussed. Simulations (channel equalization) confirm the results.
Emergence of band-pass filtering through adaptive spiking in the owl's cochlear nucleus
MacLeod, Katrina M.; Lubejko, Susan T.; Steinberg, Louisa J.; Köppl, Christine; Peña, Jose L.
2014-01-01
In the visual, auditory, and electrosensory modalities, stimuli are defined by first- and second-order attributes. The fast time-pressure signal of a sound, a first-order attribute, is important, for instance, in sound localization and pitch perception, while its slow amplitude-modulated envelope, a second-order attribute, can be used for sound recognition. Ascending the auditory pathway from ear to midbrain, neurons increasingly show a preference for the envelope and are most sensitive to particular envelope modulation frequencies, a tuning considered important for encoding sound identity. The level at which this tuning property emerges along the pathway varies across species, and the mechanism of how this occurs is a matter of debate. In this paper, we target the transition between auditory nerve fibers and the cochlear nucleus angularis (NA). While the owl's auditory nerve fibers simultaneously encode the fast and slow attributes of a sound, one synapse further, NA neurons encode the envelope more efficiently than the auditory nerve. Using in vivo and in vitro electrophysiology and computational analysis, we show that a single-cell mechanism inducing spike threshold adaptation can explain the difference in neural filtering between the two areas. We show that spike threshold adaptation can explain the increased selectivity to modulation frequency, as input level increases in NA. These results demonstrate that a spike generation nonlinearity can modulate the tuning to second-order stimulus features, without invoking network or synaptic mechanisms. PMID:24790170
Multiframe adaptive Wiener filter super-resolution with JPEG2000-compressed images
NASA Astrophysics Data System (ADS)
Narayanan, Barath Narayanan; Hardie, Russell C.; Balster, Eric J.
2014-12-01
Historically, Joint Photographic Experts Group 2000 (JPEG2000) image compression and multiframe super-resolution (SR) image processing techniques have evolved separately. In this paper, we propose and compare novel processing architectures for applying multiframe SR with JPEG2000 compression. We propose a modified adaptive Wiener filter (AWF) SR method and study its performance as JPEG2000 is incorporated in different ways. In particular, we perform compression prior to SR and compare this to compression after SR. We also compare both independent-frame compression and difference-frame compression approaches. We find that some of the SR artifacts that result from compression can be reduced by decreasing the assumed global signal-to-noise ratio (SNR) for the AWF SR method. We also propose a novel spatially adaptive SNR estimate for the AWF designed to compensate for the spatially varying compression artifacts in the input frames. The experimental results include the use of simulated imagery for quantitative analysis. We also include real-video results for subjective analysis.
Adaptive Resampling Particle Filters for GPS Carrier-Phase Navigation and Collision Avoidance System
NASA Astrophysics Data System (ADS)
Hwang, Soon Sik
This dissertation addresses three problems: 1) adaptive resampling technique (ART) for Particle Filters, 2) precise relative positioning using Global Positioning System (GPS) Carrier-Phase (CP) measurements applied to nonlinear integer resolution problem for GPS CP navigation using Particle Filters, and 3) collision detection system based on GPS CP broadcasts. First, Monte Carlo filters, called Particle Filters (PF), are widely used where the system is non-linear and non-Gaussian. In real-time applications, their estimation accuracies and efficiencies are significantly affected by the number of particles and the scheduling of relocating weights and samples, the so-called resampling step. In this dissertation, the appropriate number of particles is estimated adaptively such that the error of the sample mean and variance stay in bounds. These bounds are given by the confidence interval of a normal probability distribution for a multi-variate state. Two required number of samples maintaining the mean and variance error within the bounds are derived. The time of resampling is determined when the required sample number for the variance error crosses the required sample number for the mean error. Second, the PF using GPS CP measurements with adaptive resampling is applied to precise relative navigation between two GPS antennas. In order to make use of CP measurements for navigation, the unknown number of cycles between GPS antennas, the so called integer ambiguity, should be resolved. The PF is applied to this integer ambiguity resolution problem where the relative navigation states estimation involves nonlinear observations and nonlinear dynamics equation. Using the PF, the probability density function of the states is estimated by sampling from the position and velocity space and the integer ambiguities are resolved without using the usual hypothesis tests to search for the integer ambiguity. The ART manages the number of position samples and the frequency of the
ADAPT: A knowledge-based synthesis tool for digital signal processing system design
Cooley, E.S.
1988-01-01
A computer aided synthesis tool for expansion, compression, and filtration of digital images is described. ADAPT, the Autonomous Digital Array Programming Tool, uses an extensive design knowledge base to synthesize a digital signal processing (DSP) system. Input to ADAPT can be either a behavioral description in English, or a block level specification via Petri Nets. The output from ADAPT comprises code to implement the DSP system on an array of processors. ADAPT is constructed using C, Prolog, and X Windows on a SUN 3/280 workstation. ADAPT knowledge encompasses DSP component information and the design algorithms and heuristics of a competent DSP designer. The knowledge is used to form queries for design capture, to generate design constraints from the user's responses, and to examine the design constraints. These constraints direct the search for possible DSP components and target architectures. Constraints are also used for partitioning the target systems into less complex subsystems. The subsystems correspond to architectural building blocks of the DSP design. These subsystems inherit design constraints and DSP characteristics from their parent blocks. Thus, a DSP subsystem or parent block, as designed by ADAPT, must meet the user's design constraints. Design solutions are sought by searching the Components section of the design knowledge base. Component behavior which matches or is similar to that required by the DSP subsystems is sought. Each match, which corresponds to a design alternative, is evaluated in terms of its behavior. When a design is sufficiently close to the behavior required by the user, detailed mathematical simulations may be performed to accurately determine exact behavior.
NASA Astrophysics Data System (ADS)
Wu, Chunyan; Liu, Jian; Peng, Fuqiang; Yu, Dejie; Li, Rong
2013-07-01
When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To overcome this drawback, the zero phase filter is introduced to the mentioned filter, and a fault diagnosis method for speed-changing gearbox is proposed. Firstly, the gear meshing frequency of each gearbox is estimated by chirplet path pursuit. Then, according to the estimated gear meshing frequencies, an adaptive zero phase time-varying filter(AZPTF) is designed to filter the original signal. Finally, the basis for fault diagnosis is acquired by the envelope order analysis to the filtered signal. The signal consisting of two time-varying amplitude modulation and frequency modulation(AM-FM) signals is respectively analyzed by ATF and AZPTF based on MCSSD. The simulation results show the variances between the original signals and the filtered signals yielded by AZPTF based on MCSSD are 13.67 and 41.14, which are far less than variances (323.45 and 482.86) between the original signals and the filtered signals obtained by ATF based on MCSSD. The experiment results on the vibration signals of gearboxes indicate that the vibration signals of the two speed-changing gearboxes installed on one foundation bed can be separated by AZPTF effectively. Based on the demodulation information of the vibration signal of each gearbox, the fault diagnosis can be implemented. Both simulation and experiment examples prove that the proposed filter can extract a mono-component time-varying AM-FM signal from the multi-component time-varying AM-FM signal without distortion.
Adaptive Control of Non-Minimum Phase Modal Systems Using Residual Mode Filters2. Parts 1 and 2
NASA Technical Reports Server (NTRS)
Balas, Mark J.; Frost, Susan
2011-01-01
Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. This paper will be divided into two parts. Here in Part I we will review the basic adaptive control approach and introduce the primary ideas. In Part II, we will present the RMF methodology and complete the proofs of all our results. Also, we will apply the above theoretical results to a simple flexible structure example to illustrate the behavior with and without the residual mode filter.
Adaptive clutter filter in 2-D color flow imaging based on in vivo I/Q signal.
Zhou, Xiaoming; Zhang, Congyao; Liu, Dong C
2014-01-01
Color flow imaging has been well applied in clinical diagnosis. For the high quality color flow images, clutter filter is important to separate the Doppler signals from blood and tissue. Traditional clutter filters, such as finite impulse response, infinite impulse response and regression filters, were applied, which are based on the hypothesis that the clutter signal is stationary or tissue moves slowly. However, in realistic clinic color flow imaging, the signals are non-stationary signals because of accelerated moving tissue. For most related papers, simulated RF signals are widely used without in vivo I/Q signal. Hence, in this paper, adaptive polynomial regression filter, which is down mixing with instantaneous clutter frequency, was proposed based on in vivo carotid I/Q signal in realistic color flow imaging. To get the best performance, the optimal polynomial order of polynomial regression filter and the optimal polynomial order for estimation of instantaneous clutter frequency respectively were confirmed. Finally, compared with the mean blood velocity and quality of 2-D color flow image, the experiment results show that adaptive polynomial regression filter, which is down mixing with instantaneous clutter frequency, can significantly enhance the mean blood velocity and get high quality 2-D color flow image. PMID:24211911
Handwritten digit recognition by adaptive-subspace self-organizing map (ASSOM).
Zhang, B; Fu, M; Yan, H; Jabri, M A
1999-01-01
The adaptive-subspace self-organizing map (ASSOM) proposed by Kohonen is a recent development in self-organizing map (SOM) computation. In this paper, we propose a method to realize ASSOM using a neural learning algorithm in nonlinear autoencoder networks. Our method has the advantage of numerical stability. We have applied our ASSOM model to build a modular classification system for handwritten digit recognition. Ten ASSOM modules are used to capture different features in the ten classes of digits. When a test digit is presented to all the modules, each module provides a reconstructed pattern and the system outputs a class label by comparing the ten reconstruction errors. Our experiments show promising results. For relatively small size modules, the classification accuracy reaches 99.3% on the training set and over 97% on the testing set. PMID:18252591
NASA Technical Reports Server (NTRS)
Toldalagi, P. M.
1980-01-01
A review is made of recursive statistical regression techniques incorporating past or past and future observations through smoothing and Kalman filtering, respectively; with results for the cases of the Tiros-N/MSU and Nimbus-6/Scams remote sensing satellite experiments. In response to the lack of a satisfactory model for the medium sounded, which is presently a major limitation on retrieval technique performance, a novel, global approach is proposed which casts the retrieval problem into the framework of adaptive filtering. A numerical implementation of such an adaptive system is presented, with a multilayer, semi-spectral general circulation model for the atmosphere being used to fine-tune the sensor as well as the dynamical equations of a Kalman filter. It is shown that the assimilation of radiometric data becomes a straightforward subproblem.
A multiresolution approach to image enhancement via histogram shaping and adaptive Wiener filtering
NASA Astrophysics Data System (ADS)
Pace, T.; Manville, D.; Lee, H.; Cloud, G.; Puritz, J.
2008-04-01
It is critical in military applications to be able to extract features in imagery that may be of interest to the viewer at any time of the day or night. Infrared (IR) imagery is ideally suited for producing these types of images. However, even under the best of circumstances, the traditional approach of applying a global automatic gain control (AGC) to the digital image may not provide the user with local area details that may be of interest. Processing the imagery locally can enhance additional features and characteristics in the image which provide the viewer with an improved understanding of the scene being observed. This paper describes a multi-resolution pyramid approach for decomposing an image, enhancing its contrast by remapping the histograms to desired pdfs, filtering them and recombining them to create an output image with much more visible detail than the input image. The technique improves the local area image contrast in light and dark areas providing the warfighter with significantly improved situational awareness.
Conductivity image enhancement in MREIT using adaptively weighted spatial averaging filter
2014-01-01
Background In magnetic resonance electrical impedance tomography (MREIT), we reconstruct conductivity images using magnetic flux density data induced by externally injected currents. Since we extract magnetic flux density data from acquired MR phase images, the amount of measurement noise increases in regions of weak MR signals. Especially for local regions of MR signal void, there may occur excessive amounts of noise to deteriorate the quality of reconstructed conductivity images. In this paper, we propose a new conductivity image enhancement method as a postprocessing technique to improve the image quality. Methods Within a magnetic flux density image, the amount of noise varies depending on the position-dependent MR signal intensity. Using the MR magnitude image which is always available in MREIT, we estimate noise levels of measured magnetic flux density data in local regions. Based on the noise estimates, we adjust the window size and weights of a spatial averaging filter, which is applied to reconstructed conductivity images. Without relying on a partial differential equation, the new method is fast and can be easily implemented. Results Applying the novel conductivity image enhancement method to experimental data, we could improve the image quality to better distinguish local regions with different conductivity contrasts. From phantom experiments, the estimated conductivity values had 80% less variations inside regions of homogeneous objects. Reconstructed conductivity images from upper and lower abdominal regions of animals showed much less artifacts in local regions of weak MR signals. Conclusion We developed the fast and simple method to enhance the conductivity image quality by adaptively adjusting the weights and window size of the spatial averaging filter using MR magnitude images. Since the new method is implemented as a postprocessing step, we suggest adopting it without or with other preprocessing methods for application studies where conductivity
Improved characterization of slow-moving landslides by means of adaptive NL-InSAR filtering
NASA Astrophysics Data System (ADS)
Albiol, David; Iglesias, Rubén.; Sánchez, Francisco; Duro, Javier
2014-10-01
Advanced remote sensing techniques based on space-borne Synthetic Aperture Radar (SAR) have been developed during the last decade showing their applicability for the monitoring of surface displacements in landslide areas. This paper presents an advanced Persistent Scatterer Interferometry (PSI) processing based on the Stable Point Network (SPN) technique, developed by the company Altamira-Information, for the monitoring of an active slowmoving landslide in the mountainous environment of El Portalet, Central Spanish Pyrenees. For this purpose, two TerraSAR-X data sets acquired in ascending mode corresponding to the period from April to November 2011, and from August to November 2013, respectively, are employed. The objective of this work is twofold. On the one hand, the benefits of employing Nonlocal Interferomtric SAR (NL-InSAR) adaptive filtering techniques over vegetated scenarios to maximize the chances of detecting natural distributed scatterers, such as bare or rocky areas, and deterministic point-like scatterers, such as man-made structures or poles, is put forward. In this context, the final PSI displacement maps retrieved with the proposed filtering technique are compared in terms of pixels' density and quality with classical PSI, showing a significant improvement. On the other hand, since SAR systems are only sensitive to detect displacements in the line-of-sight (LOS) direction, the importance of projecting the PSI displacement results retrieved along the steepest gradient of the terrain slope is discussed. The improvements presented in this paper are particularly interesting in these type of applications since they clearly allow to better determine the extension and dynamics of complex landslide phenomena.
NASA Astrophysics Data System (ADS)
Schneider, Martin; Kellermann, Walter
2016-01-01
Acoustic echo cancellation (AEC) is a well-known application of adaptive filters in communication acoustics. To implement AEC for multichannel reproduction systems, powerful adaptation algorithms like the generalized frequency-domain adaptive filtering (GFDAF) algorithm are required for satisfactory convergence behavior. In this paper, the GFDAF algorithm is rigorously derived as an approximation of the block recursive least-squares (RLS) algorithm. Thereby, the original formulation of the GFDAF algorithm is generalized while avoiding an error that has been in the original derivation. The presented algorithm formulation is applied to pruned transform-domain loudspeaker-enclosure-microphone models in a mathematically consistent manner. Such pruned models have recently been proposed to cope with the tremendous computational demands of massive multichannel AEC. Beyond its generalization, a regularization of the GFDAF is shown to have a close relation to the well-known block least-mean-squares algorithm.
NASA Astrophysics Data System (ADS)
Shams Esfand Abadi, Mohammad; AbbasZadeh Arani, Seyed Ali Asghar
2011-12-01
This paper extends the recently introduced variable step-size (VSS) approach to the family of adaptive filter algorithms. This method uses prior knowledge of the channel impulse response statistic. Accordingly, optimal step-size vector is obtained by minimizing the mean-square deviation (MSD). The presented algorithms are the VSS affine projection algorithm (VSS-APA), the VSS selective partial update NLMS (VSS-SPU-NLMS), the VSS-SPU-APA, and the VSS selective regressor APA (VSS-SR-APA). In VSS-SPU adaptive algorithms the filter coefficients are partially updated which reduce the computational complexity. In VSS-SR-APA, the optimal selection of input regressors is performed during the adaptation. The presented algorithms have good convergence speed, low steady state mean square error (MSE), and low computational complexity features. We demonstrate the good performance of the proposed algorithms through several simulations in system identification scenario.
NASA Astrophysics Data System (ADS)
Kiani, Maryam; Pourtakdoust, Seid H.
2014-12-01
A novel algorithm is presented in this study for estimation of spacecraft's attitudes and angular rates from vector observations. In this regard, a new cubature-quadrature particle filter (CQPF) is initially developed that uses the Square-Root Cubature-Quadrature Kalman Filter (SR-CQKF) to generate the importance proposal distribution. The developed CQPF scheme avoids the basic limitation of particle filter (PF) with regards to counting the new measurements. Subsequently, CQPF is enhanced to adjust the sample size at every time step utilizing the idea of confidence intervals, thus improving the efficiency and accuracy of the newly proposed adaptive CQPF (ACQPF). In addition, application of the q-method for filter initialization has intensified the computation burden as well. The current study also applies ACQPF to the problem of attitude estimation of a low Earth orbit (LEO) satellite. For this purpose, the undertaken satellite is equipped with a three-axis magnetometer (TAM) as well as a sun sensor pack that provide noisy geomagnetic field data and Sun direction measurements, respectively. The results and performance of the proposed filter are investigated and compared with those of the extended Kalman filter (EKF) and the standard particle filter (PF) utilizing a Monte Carlo simulation. The comparison demonstrates the viability and the accuracy of the proposed nonlinear estimator.
Lei, Shufei; Iles, Alastair; Kelly, Maggi
2015-07-01
Some of the factors that can contribute to the success of collaborative adaptive management--such as social learning, open communication, and trust--are built upon a foundation of the open exchange of information about science and management between participants and the public. Despite the importance of information transparency, the use and flow of information in collaborative adaptive management has not been characterized in detail in the literature, and currently there exist opportunities to develop strategies for increasing the exchange of information, as well as to track information flow in such contexts. As digital information channels and networks have been increased over the last decade, powerful new information monitoring tools have also been evolved allowing for the complete characterization of information products through their production, transport, use, and monitoring. This study uses these tools to investigate the use of various science and management information products in a case study--the Sierra Nevada Adaptive Management Project--using a mixed method (citation analysis, web analytics, and content analysis) research approach borrowed from the information processing and management field. The results from our case study show that information technologies greatly facilitate the flow and use of digital information, leading to multiparty collaborations such as knowledge transfer and public participation in science research. We conclude with recommendations for expanding information exchange in collaborative adaptive management by taking advantage of available information technologies and networks. PMID:25877459
NASA Astrophysics Data System (ADS)
Lei, Shufei; Iles, Alastair; Kelly, Maggi
2015-07-01
Some of the factors that can contribute to the success of collaborative adaptive management—such as social learning, open communication, and trust—are built upon a foundation of the open exchange of information about science and management between participants and the public. Despite the importance of information transparency, the use and flow of information in collaborative adaptive management has not been characterized in detail in the literature, and currently there exist opportunities to develop strategies for increasing the exchange of information, as well as to track information flow in such contexts. As digital information channels and networks have been increased over the last decade, powerful new information monitoring tools have also been evolved allowing for the complete characterization of information products through their production, transport, use, and monitoring. This study uses these tools to investigate the use of various science and management information products in a case study—the Sierra Nevada Adaptive Management Project—using a mixed method (citation analysis, web analytics, and content analysis) research approach borrowed from the information processing and management field. The results from our case study show that information technologies greatly facilitate the flow and use of digital information, leading to multiparty collaborations such as knowledge transfer and public participation in science research. We conclude with recommendations for expanding information exchange in collaborative adaptive management by taking advantage of available information technologies and networks.
Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing
2016-01-01
A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method. PMID:26761006
NASA Astrophysics Data System (ADS)
Pipa, Daniel; Morikawa, Sérgio; Pires, Gustavo; Camerini, Claudio; Santos, JoãoMárcio
2010-12-01
Flexible riser is a class of flexible pipes which is used to connect subsea pipelines to floating offshore installations, such as FPSOs (floating production/storage/off-loading unit) and SS (semisubmersible) platforms, in oil and gas production. Flexible risers are multilayered pipes typically comprising an inner flexible metal carcass surrounded by polymer layers and spiral wound steel ligaments, also referred to as armor wires. Since these armor wires are made of steel, their magnetic properties are sensitive to the stress they are subjected to. By measuring their magnetic properties in a nonintrusive manner, it is possible to compare the stress in the armor wires, thus allowing the identification of damaged ones. However, one encounters several sources of noise when measuring electromagnetic properties contactlessly, such as movement between specimen and probe, and magnetic noise. This paper describes the development of a new technique for automatic monitoring of armor layers of flexible risers. The proposed approach aims to minimize these current uncertainties by combining electromagnetic measurements with optical strain gage data through a recursive least squares (RLSs) adaptive filter.
Seismic random noise attenuation based on adaptive time-frequency peak filtering
NASA Astrophysics Data System (ADS)
Deng, Xinhuan; Ma, Haitao; Li, Yue; Zeng, Qian
2015-02-01
Time-frequency peak filtering (TFPF) method uses a specific window with fixed length to recover band-limited signal in stationary random noise. However, the derivatives of signal such as seismic wavelets may change rapidly in some short time intervals. In this case, TFPF equipped with fixed window length will not provide an optimal solution. In this letter, we present an adaptive version of TFPF for seismic random noise attenuation. In our version, the improved intersection of confidence intervals combined with short-time energy criterion is used to preprocess the noisy signal. And then, we choose an appropriate threshold to divide the noisy signal into signal, buffer and noise. Different optimal window lengths are used in each type of segments. We test the proposed method on both synthetic and field seismic data. The experimental results illustrate that the proposed method makes the degree of amplitude preservation raise more than 10% and signal-to-noise (SNR) improve 2-4 dB compared with the original algorithm.
Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing
2016-01-01
A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method. PMID:26761006
Anantrasirichai, N; Nicholson, Lindsay; Morgan, James E; Erchova, Irina; Mortlock, Katie; North, Rachel V; Albon, Julie; Achim, Alin
2014-09-01
This paper presents novel pre-processing image enhancement algorithms for retinal optical coherence tomography (OCT). These images contain a large amount of speckle causing them to be grainy and of very low contrast. To make these images valuable for clinical interpretation, we propose a novel method to remove speckle, while preserving useful information contained in each retinal layer. The process starts with multi-scale despeckling based on a dual-tree complex wavelet transform (DT-CWT). We further enhance the OCT image through a smoothing process that uses a novel adaptive-weighted bilateral filter (AWBF). This offers the desirable property of preserving texture within the OCT image layers. The enhanced OCT image is then segmented to extract inner retinal layers that contain useful information for eye research. Our layer segmentation technique is also performed in the DT-CWT domain. Finally we describe an OCT/fundus image registration algorithm which is helpful when two modalities are used together for diagnosis and for information fusion. PMID:25034317
NASA Astrophysics Data System (ADS)
Wells, Gregg B.; Ricci, Anthony J.
2011-11-01
In the auditory system, mechanotransduction occurs in the hair cell sensory hair bundle and is the first major step in the translation of mechanical energy into electrical. Tonotopic variations in the activation kinetics of this process are posited to provide a low pass filter to the input. An adaptation process, also associated with mechanotransduction, is postulated to provide a high pass filter to the input in a tonotopic manner. Together a bandpass filter is created at the hair cell input. Corresponding mechanical components to both activation and adaptation are also suggested to be involved in generating cochlear amplification. A paradox to this story is that hair cells where the mechanotransduction properties are most robust possess an intrinsic electrical resonance mechanism proposed to account for all required tuning and amplification. A simple Hodgkin-Huxley type model is presented to attempt to determine the role of the activation and adaptation kinetics in further tuning hair cells that exhibit electrical resonance. Results further support that steady state mechanotransduction properties are critical for setting the resting potential of the hair cell while the kinetics of activation and adaptation are important for sharpening tuning around the characteristic frequency of the hair cell.
NASA Astrophysics Data System (ADS)
Xu, Gu; Mayo, Jonathan W.; Planje, Curtis; Rieken, Lorie; Brand, Gary
2002-04-01
In this study, we have developed a new set of cyan, magenta and yellow (CMY) dyed color filter materials to meet the need of digital photography applications. These new color filter materials consist of a dye, a photo sensitive polymer binder, photo initiators, and acrylic monomers in addition to safe solvents such as propylene glycol methyl ether (PGME) which allow deposition of thin film layers by standard spin-on coating techniques. CMY materials share many desirable properties with standard photoresists, e.g., excellent coating quality, thin film uniformity, and good adhesion to semiconductor substrates. They work as negative resists and are sensitive to i-line UV light with photo speed of 300 mJ/cm2 and below. We have shown, for example, that a 1 micrometers film exposed and developed will exhibit high- resolution feature sizes of 3 micrometers pixels and below. These CMY materials have excellent thermal and light stability and good color characteristics.
NASA Astrophysics Data System (ADS)
de Serio, R.; Ruff, G. A.; Wing, W. H.
1984-02-01
A scanning Fabry-Perot interferometer, servolocked to one of the output frequencies of a multiline laser, is used as a tracking filter so that a second servoloop can accurately stabilize that laser line to features of its intensity-versus-frequency profile. More stable locks occur where two longitudinal modes lase simultaneously than where the single-mode line intensity is maximized. Both analog and digital servoloops have been used for stabilizing a continuous-wave CO laser cavity. The microcomputer-aided digital stabilization yields the more reliable frequency locks and needs negligible frequency dithering. It has produced short-term (less than 1 s) laser linewidths less than 100 kHz and long-term (greater than 100 s) instability estimated as 80 kHz at a laser operating frequency of 55 THz in a noisy laboratory environment.
Watson, Bobby L.; Aeby, Ian
1982-01-01
An adaptive data compression device for compressing data having variable frequency content, including a plurality of digital filters for analyzing the content of the data over a plurality of frequency regions, a memory, and a control logic circuit for generating a variable rate memory clock corresponding to the analyzed frequency content of the data in the frequency region and for clocking the data into the memory in response to the variable rate memory clock.
Watson, B.L.; Aeby, I.
1980-08-26
An adaptive data compression device for compressing data is described. The device has a frequency content, including a plurality of digital filters for analyzing the content of the data over a plurality of frequency regions, a memory, and a control logic circuit for generating a variable rate memory clock corresponding to the analyzed frequency content of the data in the frequency region and for clocking the data into the memory in response to the variable rate memory clock.
A gaussian band pass filter for digital enhancement of nuclear medicine images
Madsen, M.T.; Park, C.H.; Hichwa, R.D.
1985-05-01
Information in nuclear medicine images is obscured due to the presence of Poisson noise and the finite resolution of the detection system. Many filters have been developed to recover resolution and suppress noise, most notably the Metz and Wiener filters. The generation of these filters requires knowledge of the system MTF. The authors have investigated the properties of a two dimensional circularly symmetric truncated Gaussian function as a filter to be applied in the spatial frequency domain. The filter is expressed as exp(-(..mu..-..mu../sub o/)/sup 2//2sigma/sup 2/) where ..mu../sub o/ is the displacement of the Gaussian from the origin and sigma is the degree of spread. These parameters are optimized from the image power spectrum according to the following empirical rules the magnitude at the origin is 0.3, and the spatial frequency at which the magnitude of the power spectrum exceeds twice that of the noise level is 2sigma from the mean of the Gaussian (..mu../sub o/). Condition 1 preferentially enhances the information in the middle frequencies while condition 2 assures that the filter goes to 0 at spatial frequencies where noise dominates. The filter can be generated automatically by computer program. It does not require the knowledge of MTF. In addition, the coordinate space representation is a Gaussian modulated by a cosine function which can be analytically determined allowing straightfoward application of this filter as a convolution in coordinate space. The filter has been successfully applied to all types of nuclear medicine images including PET brain section images.
Digital lock-in techniques for adaptive power-line interference extraction.
Dobrev, Dobromir; Neycheva, Tatyana; Mudrov, Nikolay
2008-07-01
This paper presents a simple digital approach for adaptive power-line (PL) or other periodic interference extraction. By means of two digital square (or sine) wave mixers, the real and imaginary parts of the interference are found, and the interference waveform is synthesized and finally subtracted. The described technique can be implemented in an open-loop architecture where the interference is synthesized as a complex sinusoid or in a closed-loop architecture for automatic phase and gain control. The same approach can be used for removal of the fundamental frequency of the PL interference as well as its higher harmonics. It is suitable for real-time operation with popular low-cost microcontrollers. PMID:18560061
NASA Astrophysics Data System (ADS)
Wang, Xudong; Syrmos, Vassilis L.
2004-07-01
In this paper, an adaptive reconfigurable control system based on extended Kalman filter approach and eigenstructure assignments is proposed. System identification is carried out using an extended Kalman filter (EKF) approach. An eigenstructure assignment (EA) technique is applied for reconfigurable feedback control law design to recover the system dynamic performance. The reconfigurable feedforward controllers are designed to achieve the steady-state tracking using input weighting approach. The proposed scheme can identify not only actuator and sensor variations, but also changes in the system structures using the extended Kalman filtering method. The overall design is robust with respect to uncertainties in the state-space matrices of the reconfigured system. To illustrate the effectiveness of the proposed reconfigurable control system design technique, an aircraft longitudinal vertical takeoff and landing (VTOL) control system is used to demonstrate the reconfiguration procedure.
Design of recursive digital filters having specified phase and magnitude characteristics
NASA Technical Reports Server (NTRS)
King, R. E.; Condon, G. W.
1972-01-01
A method for a computer-aided design of a class of optimum filters, having specifications in the frequency domain of both magnitude and phase, is described. The method, an extension to the work of Steiglitz, uses the Fletcher-Powell algorithm to minimize a weighted squared magnitude and phase criterion. Results using the algorithm for the design of filters having specified phase as well as specified magnitude and phase compromise are presented.
NASA Astrophysics Data System (ADS)
Ushaq, Muhammad; Fang, Jiancheng
2013-10-01
Integrated navigation systems for various applications, generally employs the centralized Kalman filter (CKF) wherein all measured sensor data are communicated to a single central Kalman filter. The advantage of CKF is that there is a minimal loss of information and high precision under benign conditions. But CKF may suffer computational overloading, and poor fault tolerance. The alternative is the federated Kalman filter (FKF) wherein the local estimates can deliver optimal or suboptimal state estimate as per certain information fusion criterion. FKF has enhanced throughput and multiple level fault detection capability. The Standard CKF or FKF require that the system noise and the measurement noise are zero-mean and Gaussian. Moreover it is assumed that covariance of system and measurement noises remain constant. But if the theoretical and actual statistical features employed in Kalman filter are not compatible, the Kalman filter does not render satisfactory solutions and divergence problems also occur. To resolve such problems, in this paper, an adaptive Kalman filter scheme strengthened with fuzzy inference system (FIS) is employed to adapt the statistical features of contributing sensors, online, in the light of real system dynamics and varying measurement noises. The excessive faults are detected and isolated by employing Chi Square test method. As a case study, the presented scheme has been implemented on Strapdown Inertial Navigation System (SINS) integrated with the Celestial Navigation System (CNS), GPS and Doppler radar using FKF. Collectively the overall system can be termed as SINS/CNS/GPS/Doppler integrated navigation system. The simulation results have validated the effectiveness of the presented scheme with significantly enhanced precision, reliability and fault tolerance. Effectiveness of the scheme has been tested against simulated abnormal errors/noises during different time segments of flight. It is believed that the presented scheme can be
Hybrid method for designing digital FIR filters based on fractional derivative constraints.
Baderia, Kuldeep; Kumar, Anil; Kumar Singh, Girish
2015-09-01
In this manuscript, a hybrid approach based on Lagrange multiplier method and cuckoo search (CS) optimization technique is proposed for the design of linear phase finite impulse response (FIR) filters using fractional derivative constraints. In the proposed method, FIR filter is designed by optimizing the integral squares in passband and stopband from ideal response such that the fractional derivatives of designed filter response become zero at a given frequency point. Lagrange multiplier method is exploited for finding the optimized filter coefficients. Optimal value of fractional derivative constraints for optimized filter coefficients are determined by minimizing the objective function constructed using a sum of maximum passband ripple and maximum stopband ripple in frequency domain using CS algorithm. Performance of the proposed method is evaluated by passband error (ϕ(p)), stopband error (ϕ(s)), stopband attenuation (A(s)), maximum passband ripple (MPR), maximum stopband ripple (MSR) and CPU time. A comparative study of the performance of particle swarm optimization (PSO) and artificial bee colony (ABC) for designing FIR filters using the proposed method is also made. PMID:26142984
Adaptive Practice: Next Generation Evidence-Based Practice in Digital Environments.
Kennedy, Margaret Ann
2016-01-01
Evidence-based practice in nursing is considered foundational to safe, competent care. To date, rigid traditional perceptions of what constitutes 'evidence' have constrained the recognition and use of practice-based evidence and the exploitation of novel forms of evidence from data rich environments. Advancements such as the conceptualization of clinical intelligence, the prevalence of increasingly sophisticated digital health information systems, and the advancement of the Big Data phenomenon have converged to generate a new contemporary context. In today's dynamic data-rich environments, clinicians have new sources of valid evidence, and need a new paradigm supporting clinical practice that is adaptive to information generated by diverse electronic sources. This opinion paper presents adaptive practice as the next generation of evidence-based practice in contemporary evidence-rich environments and provides recommendations for the next phase of evolution. PMID:27332234
Low cost voice compression for mobile digital radios
NASA Technical Reports Server (NTRS)
Omura, J. K.
1985-01-01
A new technique for low cost rubust voice compression at 4800 bits per second was studied. The approach was based on using a cascade of digital biquad adaptive filters with simplified multipulse excitation followed by simple bit sequence compression.
NASA Astrophysics Data System (ADS)
Bogovac, M.; Csato, C.
2012-12-01
In this work the transfer function for a truncated cusp infinite impulse response (IIR) filter has been derived. The truncated cusp filter, when given an exponential pulse in the presence of white noise, outputs a truncated cusp pulse which is optimum pulse shape under the constraint of finite pulse duration. However it features a pole outside of the unit-circle and is therefore inherently unstable. To overcome this instability a switching algorithm with two alternating poles has been applied. The filter has been simulated with MATLAB and Simulink and implemented on-board a FPGA. The pulses from a waveform generator and silicon drift detector (SDD) have been also processed by the filter and results compared with theory. We find that the simulation and measurements were in agreement and show that energy resolution due to electronic noise can be improved by up to 7.5% using a truncated cusp instead of triangular filter. An improvement of up to 2.8% in overall energy resolution was measured with a typical X-ray spectrometer based on a SDD detector with a nominal energy resolution of 150 eV at energies of MnKα line.
High-performance RC bandpass filter is adapted to miniaturized construction
NASA Technical Reports Server (NTRS)
1966-01-01
Miniaturized bandpass filter with RC networks is suitable for use in integrated circuits. The circuit consists of three stages of amplification with additional resistive and capacitive components to obtain the desired characteristics. The advantages of the active RC filter network are the reduction in size and weight and elimination of magnetic materials.
Digital filter design with zero shift on charge amplifiers for low shock calibration
NASA Astrophysics Data System (ADS)
Nozato, H.; Bruns, T.; Volkers, H.; Oota, A.
2014-03-01
Zero shift caused by the low frequency response of charge amplifiers is one of the most significant factors in shock measurements with long duration, such as low shock calibration of accelerometers. In order to reproduce the same zero shift as the charge amplifier, infinite impulse response (IIR) filters were developed by applying a second order transfer function to the high pass characteristic in the low frequency part of the measured frequency response of charge amplifiers. For the experimental verification of the zero shift using the IIR filter, input/output signals of the charge amplifier were investigated by using rectangular waveforms with a peak voltage of 2 V and pulse width of 10 ms and 5 ms, respectively. As indicated by the results, the IIR filter succeeds in following the same zero shift as the charge amplifier.
NASA Astrophysics Data System (ADS)
Gamadia, Mark Noel
In order to gain valuable market share in the growing consumer digital still camera and camera phone market, camera manufacturers have to continually add and improve existing features to their latest product offerings. Auto-focus (AF) is one such feature, whose aim is to enable consumers to quickly take sharply focused pictures with little or no manual intervention in adjusting the camera's focus lens. While AF has been a standard feature in digital still and cell-phone cameras, consumers often complain about their cameras' slow AF performance, which may lead to missed photographic opportunities, rendering valuable moments and events with undesired out-of-focus pictures. This dissertation addresses this critical issue to advance the state-of-the-art in the digital band-pass filter, passive AF method. This method is widely used to realize AF in the camera industry, where a focus actuator is adjusted via a search algorithm to locate the in-focus position by maximizing a sharpness measure extracted from a particular frequency band of the incoming image of the scene. There are no known systematic methods for automatically deriving the parameters such as the digital pass-bands or the search step-size increments used in existing passive AF schemes. Conventional methods require time consuming experimentation and tuning in order to arrive at a set of parameters which balance AF performance in terms of speed and accuracy ultimately causing a delay in product time-to-market. This dissertation presents a new framework for determining an optimal set of passive AF parameters, named Filter- Switching AF, providing an automatic approach to achieve superior AF performance, both in good and low lighting conditions based on the following performance measures (metrics): speed (total number of iterations), accuracy (offset from truth), power consumption (total distance moved), and user experience (in-focus position overrun). Performance results using three different prototype cameras
NASA Astrophysics Data System (ADS)
Yang, Jianfei; Poot, Dirk H. J.; Arkesteijn, Georgius A. M.; Caan, Matthan W.; van Vliet, Lucas J.; Vos, Frans M.
2015-03-01
Conventionally, a single rank-2 tensor is used to assess the white matter integrity in diffusion imaging of the human brain. However, a single tensor fails to describe the diffusion in fiber crossings. Although a dual tensor model is able to do so, the low signal-to-noise ratio hampers reliable parameter estimation as the number of parameters is doubled. We present a framework for structure-adaptive tensor field filtering to enhance the statistical analysis in complex fiber structures. In our framework, a tensor model will be fitted based on an automated relevance determination method. Particularly, a single tensor model is applied to voxels in which the data seems to represent a single fiber and a dualtensor model to voxels appearing to contain crossing fibers. To improve the estimation of the model parameters we propose a structure-adaptive tensor filter that is applied to tensors belonging to the same fiber compartment only. It is demonstrated that the structure-adaptive tensor-field filter improves the continuity and regularity of the estimated tensor field. It outperforms an existing denoising approach called LMMSE, which is applied to the diffusion-weighted images. Track-based spatial statistics analysis of fiber-specific FA maps show that the method sustains the detection of more subtle changes in white matter tracts than the classical single-tensor-based analysis. Thus, the filter enhances the applicability of the dual-tensor model in diffusion imaging research. Specifically, the reliable estimation of two tensor diffusion properties facilitates fiber-specific extraction of diffusion features.
A Study on Compact Wide Bandpass Filter Using Inter-Digital Resonator
NASA Astrophysics Data System (ADS)
Yamamoto, Jumpei; Yasuzumi, Takenori; Uwano, Tomoki; Hashimoto, Osamu
A new type of the wide-band BPF made up of an inter-digital resonator and parallel-coupled lines was proposed. The bandwidth of the inter-digital resonator becomes wider by increasing the number of fingers. The design of the parallel-coupled line was performed by optimazing the structural parameters so that the bandwidth is the same as that of the inter-digital resonator. The measured results of the combination of above elements for the BPF agreed well with the simulated ones such that the insertion loss is less than 0.67dB and that the sharp skirt characteristics are realized by attenuation poles near the edges of the passband.
Radiation dose reduction with application of non-linear adaptive filters for abdominal CT
Singh, Sarabjeet; Kalra, Mannudeep K; Sung, Mi Kim; Back, Anni; Blake, Michael A
2012-01-01
AIM: To evaluate the effect of non-linear adaptive filters (NLAF) on abdominal computed tomography (CT) images acquired at different radiation dose levels. METHODS: Nineteen patients (mean age 61.6 ± 7.9 years, M:F = 8:11) gave informed consent for an Institutional Review Board approved prospective study involving acquisition of 4 additional image series (200, 150, 100, 50 mAs and 120 kVp) on a 64 slice multidetector row CT scanner over an identical 10 cm length in the abdomen. The CT images acquired at 150, 100 and 50 mAs were processed with the NLAF. Two radiologists reviewed unprocessed and processed images for image quality in a blinded randomized manner. CT dose index volume, dose length product, patient weight, transverse diameters, objective noise and CT numbers were recorded. Data were analyzed using Analysis of Variance and Wilcoxon signed rank test. RESULTS: Of the 31 lesions detected in abdominal CT images, 28 lesions were less than 1 cm in size. Subjective image noise was graded as unacceptable in unprocessed images at 50 and 100 mAs, and in NLAF processed images at 50 mAs only. In NLAF processed images, objective image noise was decreased by 21% (14.4 ± 4/18.2 ± 4.9) at 150 mAs, 28.3% (15.7 ± 5.6/21.9 ± 4) at 100 mAs and by 39.4% (18.8 ± 9/30.4 ± 9.2) at 50 mAs compared to unprocessed images acquired at respective radiation dose levels. At 100 mAs the visibility of smaller structures improved from suboptimal in unprocessed images to excellent in NLAF processed images, whereas diagnostic confidence was respectively improved from probably confident to fully confident. CONCLUSION: NLAF lowers image noise, improves the visibility of small structures and maintains lesion conspicuity at down to 100 mAs for abdominal CT. PMID:22328968
NASA Astrophysics Data System (ADS)
Seddik, Hassene
2014-12-01
Noise can occur during image capture, transmission, or processing phases. Image de-noising is a very important step in image processing, and many approaches are developed in order to achieve this goal such as the Gaussian filter which is efficient in noise removal. Its smoothing efficiency depends on the value of its standard deviation. The mask representing the filter presents generally static weights with invariant lobe. In this paper, an adaptive de-noising approach is proposed. The proposed approach uses a Gaussian kernel with variable width and direction called adaptive Gaussian kernel (AGK). In each processed window of the image, the smoothing strength changes according to the image content, noise kind, and intensity. In addition, the location of its lobe changes in eight different directions over the processed window. This directional variability avoids averaging details by the highest mask weights in order to preserve the edges and the borders. The recovered data is de-noised efficiently without introducing blur or losing details. A comparative study with the static Gaussian filter and other recent techniques is presented to prove the efficiency of the proposed approach.
Sun, Jin; Xu, Xiaosu; Liu, Yiting; Zhang, Tao; Li, Yao
2016-01-01
In order to reduce the influence of fiber optic gyroscope (FOG) random drift error on inertial navigation systems, an improved auto regressive (AR) model is put forward in this paper. First, based on real-time observations at each restart of the gyroscope, the model of FOG random drift can be established online. In the improved AR model, the FOG measured signal is employed instead of the zero mean signals. Then, the modified Sage-Husa adaptive Kalman filter (SHAKF) is introduced, which can directly carry out real-time filtering on the FOG signals. Finally, static and dynamic experiments are done to verify the effectiveness. The filtering results are analyzed with Allan variance. The analysis results show that the improved AR model has high fitting accuracy and strong adaptability, and the minimum fitting accuracy of single noise is 93.2%. Based on the improved AR(3) model, the denoising method of SHAKF is more effective than traditional methods, and its effect is better than 30%. The random drift error of FOG is reduced effectively, and the precision of the FOG is improved. PMID:27420062
Sun, Jin; Xu, Xiaosu; Liu, Yiting; Zhang, Tao; Li, Yao
2016-01-01
In order to reduce the influence of fiber optic gyroscope (FOG) random drift error on inertial navigation systems, an improved auto regressive (AR) model is put forward in this paper. First, based on real-time observations at each restart of the gyroscope, the model of FOG random drift can be established online. In the improved AR model, the FOG measured signal is employed instead of the zero mean signals. Then, the modified Sage-Husa adaptive Kalman filter (SHAKF) is introduced, which can directly carry out real-time filtering on the FOG signals. Finally, static and dynamic experiments are done to verify the effectiveness. The filtering results are analyzed with Allan variance. The analysis results show that the improved AR model has high fitting accuracy and strong adaptability, and the minimum fitting accuracy of single noise is 93.2%. Based on the improved AR(3) model, the denoising method of SHAKF is more effective than traditional methods, and its effect is better than 30%. The random drift error of FOG is reduced effectively, and the precision of the FOG is improved. PMID:27420062
NASA Astrophysics Data System (ADS)
Wijayaratna, Sewwandi; Madanayake, Arjuna; Beall, Brandon D.; Bruton, Len T.
2014-05-01
Real-time digital implementation of three-dimensional (3-D) infinite impulse response (IIR) beam filters are discussed. The 3-D IIR filter building blocks have filter coefficients, which are defined using algebraic closed-form expressions that are functions of desired beam personalities, such as the look-direction of the aperture, the bandwidth and sampling frequency of interest, inter antenna spacing, and 3dB beam size. Real-time steering of such 3-D beam filters are obtained by proposed calculation of filter coefficients. Application specific computing units for rapidly calculating the 3-D IIR filter coefficients at nanosecond speed potentially allows fast real-time tracking of low radar cross section (RCS) objects at close range. Proposed design consists of 3-D IIR beam filter with 4 4 antenna grid and the filter coefficient generation block in separate FPGAs. The hardware is designed and co-simulated using a Xilinx Virtex-6 XC6VLX240T FPGA. The 3-D filter operates over 90 MHz and filter coefficient computing structure can operate at up to 145 MHz.
NASA Astrophysics Data System (ADS)
Little, Sarah A.; Smith, Deborah K.
1996-12-01
Digital filters designed using wavelet theory are applied to high resolution deep-towed side-scan sonar data from the median valley walls, crestal mountains, and flanks of the Mid-Atlantic Ridge at 29°10' N. With proper tuning, the digital filters are able to identify the location, orientation, length, and width of highly reflective linear features in sonar images. These features are presumed to represent the acoustic backscatter from axis-facing normal faults. The fault locations obtained from the digital filters are well correlated with visual geologic interpretation of the images. The side-scan sonar images are also compared with swath bathymetry from the same area. The digitally filtered bathymetry images contain nine of the eleven faults identified by eye in the detailed geologic interpretation of the side-scan data. Faults with widths (measured perpendicular to their strike) of less than about 150 m are missed in the bathymetry analysis due to the coarser resolution of these data. This digital image processing technique demonstrates the potential of wavelet-based analysis to reduce subjectivity and labor involved in mapping and analyzing topographic features in side-scan sonar and bathymetric image data.
Lin, Hui; Gao, Jian; Mei, Qing; He, Yunbo; Liu, Junxiu; Wang, Xingjin
2016-04-01
It is a challenge for any optical method to measure objects with a large range of reflectivity variation across the surface. Image saturation results in incorrect intensities in captured fringe pattern images, leading to phase and measurement errors. This paper presents a new adaptive digital fringe projection technique which avoids image saturation and has a high signal to noise ratio (SNR) in the three-dimensional (3-D) shape measurement of objects that has a large range of reflectivity variation across the surface. Compared to previous high dynamic range 3-D scan methods using many exposures and fringe pattern projections, which consumes a lot of time, the proposed technique uses only two preliminary steps of fringe pattern projection and image capture to generate the adapted fringe patterns, by adaptively adjusting the pixel-wise intensity of the projected fringe patterns based on the saturated pixels in the captured images of the surface being measured. For the bright regions due to high surface reflectivity and high illumination by the ambient light and surfaces interreflections, the projected intensity is reduced just to be low enough to avoid image saturation. Simultaneously, the maximum intensity of 255 is used for those dark regions with low surface reflectivity to maintain high SNR. Our experiments demonstrate that the proposed technique can achieve higher 3-D measurement accuracy across a surface with a large range of reflectivity variation. PMID:27137056
Adaptive filtering in spatial vision: evidence from feature marking in plaids.
Georgeson, M A; Meese, T S
1999-01-01
Much evidence shows that early vision employs an array of spatial filters tuned for different spatial frequencies and orientations. We suggest that for moderately low spatial frequencies these preliminary filters are not treated independently, but are used to perform grouping and segmentation in the patchwise Fourier domain. For example, consider a stationary plaid made from two superimposed sinusoidal gratings of the same contrast and spatial frequency oriented +/- 45 degrees from vertical. Most of the energy in a wavelet-like (e.g. simple-cell) transform of this stimulus is in the oblique orientations, but typically it looks like a compound structure containing blurred vertical and horizontal edges. This checkerboard structure corresponds with the locations of zero crossings in the output of an isotropic (circular) filter, synthesised from the linear sum of a set of oriented basis-filters (Georgeson, 1992 Proceedings of the Royal Society of London, Series B 249 235-245). However, the addition of a third harmonic in square-wave phase causes almost complete perceptual segmentation of the plaid into two overlapping oblique gratings. Here we confirm this result psychophysically using a feature-marking technique, and argue that this perceptual segmentation cannot be understood in terms of the zero crossings marked in the output of any static linear filter that is sensitive to all of the plaid's components. If it is assumed that zero crossings or similar are an appropriate feature-primitive in human vision, our results require a flexible process that combines and segments early basis-filters according to prevailing image conditions. Thus, we suggest that combination and segmentation of spatial filters in the patchwise Fourier domain underpins the perceptual segmentation observed in our experiments. Under this kind of image-processing scheme, registration across spatial scales occurs at the level of spatial filters, before features are extracted. This contrasts with
Adaptation of filtered back-projection to compton imaging with non-uniform azimuthal geometry
NASA Astrophysics Data System (ADS)
Lee, Hyounggun; Lee, Taewoong; Lee, Wonho
2016-05-01
For Compton image reconstruction, analytic reconstruction methods such as filtered backprojection have been used for real-time imaging. The conventional filtered back-projection method assumes a uniformly distributed azimuthal response in the detector system. In this study, we applied filtered back-projection to the experimental data from detector systems with limited azimuthal angle coverage ranges and estimated the limitations of the analytic reconstruction methods when applied to these systems. For the system with a uniform azimuthal response, the images reconstructed by using filtered back-projection showed better angular resolutions than the images obtained by using simple back-projection did. However, when filtered back-projection was applied to reconstruct Compton images based on measurements performed by using Compton cameras with limited response geometries, the reconstructed images exhibited artifacts caused by the geometrical limitations. Our proposed method employs the Compton camera's rotation to overcome the angular response limitations; when the rotation method was applied in this study, the artifacts in the reconstructed images caused by angular response limitations were minimized. With this method, filtered back-projection can be applied to reconstruct real-time Compton images even when the radiation measurements are performed by using Compton cameras with non-uniform azimuthal response geometries.
Stability margins in a design method for 2-dimensional recursive digital filters
NASA Astrophysics Data System (ADS)
Crebbin, G.; Attikiouzel, J.
1982-06-01
The present investigation is concerned with the extension of a concept of stability margin introduced by Crebbin and Attikiouzel (1981). When implemented as a constraint in a 2-D filter design problem, the stability margin guarantees stability, and, in addition, has a moderating effect on the behavior in either the frequency or the spatial domain. An investigation is conducted regarding the possibility of incorporating stability margins into available automated design methods, and a description is provided of a design method which uses the simplex algorithm reported by Nelder and Mead (1975). The considered algorithm is well suited to handle the constraints imposed by stability and by stability margins. Attention is given to filter structures, the design program, additional computing time for stability testing, problems of stable-only design methods, and relationships between pole position, frequency response, and spatial response.
Pipelined digital SAR azimuth correlator using hybrid FFT-transversal filter
NASA Technical Reports Server (NTRS)
Wu, C.; Liu, K. Y. (Inventor)
1984-01-01
A synthetic aperture radar system (SAR) having a range correlator is provided with a hybrid azimuth correlator which utilizes a block-pipe-lined fast Fourier transform (FFT). The correlator has a predetermined FFT transform size with delay elements for delaying SAR range correlated data so as to embed in the Fourier transform operation a corner-turning function as the range correlated SAR data is converted from the time domain to a frequency domain. The azimuth correlator is comprised of a transversal filter to receive the SAR data in the frequency domain, a generator for range migration compensation and azimuth reference functions, and an azimuth reference multiplier for correlation of the SAR data. Following the transversal filter is a block-pipelined inverse FFT used to restore azimuth correlated data in the frequency domain to the time domain for imaging.
NASA Astrophysics Data System (ADS)
Sheng-Hui, Rong; Hui-Xin, Zhou; Han-Lin, Qin; Rui, Lai; Kun, Qian
2016-05-01
Imaging non-uniformity of infrared focal plane array (IRFPA) behaves as fixed-pattern noise superimposed on the image, which affects the imaging quality of infrared system seriously. In scene-based non-uniformity correction methods, the drawbacks of ghosting artifacts and image blurring affect the sensitivity of the IRFPA imaging system seriously and decrease the image quality visibly. This paper proposes an improved neural network non-uniformity correction method with adaptive learning rate. On the one hand, using guided filter, the proposed algorithm decreases the effect of ghosting artifacts. On the other hand, due to the inappropriate learning rate is the main reason of image blurring, the proposed algorithm utilizes an adaptive learning rate with a temporal domain factor to eliminate the effect of image blurring. In short, the proposed algorithm combines the merits of the guided filter and the adaptive learning rate. Several real and simulated infrared image sequences are utilized to verify the performance of the proposed algorithm. The experiment results indicate that the proposed algorithm can not only reduce the non-uniformity with less ghosting artifacts but also overcome the problems of image blurring in static areas.
NASA Astrophysics Data System (ADS)
Fayadh, Rashid A.; Malek, F.; Fadhil, Hilal A.; Aldhaibani, Jaafar A.; Salman, M. K.; Abdullah, Farah Salwani
2015-05-01
For high data rate propagation in wireless ultra-wideband (UWB) communication systems, the inter-symbol interference (ISI), multiple-access interference (MAI), and multiple-users interference (MUI) are influencing the performance of the wireless systems. In this paper, the rake-receiver was presented with the spread signal by direct sequence spread spectrum (DS-SS) technique. The adaptive rake-receiver structure was shown with adjusting the receiver tap weights using least mean squares (LMS), normalized least mean squares (NLMS), and affine projection algorithms (APA) to support the weak signals by noise cancellation and mitigate the interferences. To minimize the data convergence speed and to reduce the computational complexity by the previous algorithms, a well-known approach of partial-updates (PU) adaptive filters were employed with algorithms, such as sequential-partial, periodic-partial, M-max-partial, and selective-partial updates (SPU) in the proposed system. The simulation results of bit error rate (BER) versus signal-to-noise ratio (SNR) are illustrated to show the performance of partial-update algorithms that have nearly comparable performance with the full update adaptive filters. Furthermore, the SPU-partial has closed performance to the full-NLMS and full-APA while the M-max-partial has closed performance to the full-LMS updates algorithms.
Impulsive noise reduction in digital phase-sensitive demodulation by nonlinear filtering
NASA Astrophysics Data System (ADS)
Cui, Ziqiang; Wang, Huaxiang; Yin, Wuliang; Yang, Wuqiang
2015-07-01
Phase-sensitive demodulation is widely used in many systems, e.g. impedance measurement, communication, sonar and radar. In most cases, white noise is assumed in system design and analysis. However, impulsive noise is often encountered in many applications, which imposes challenges for a phase-sensitive demodulator (PSD). This paper presents a nonlinear filter for removing impulsive noise prior to the PSD. Unlike its linear counterparts, it is analysed in the time domain rather than in the frequency domain, making it easier to implement. The performance of the proposed method is compared to a standard PSD with a low-pass filter to suppress the impulsive noise and the theoretical limits of the signal-to-noise ratio (SNR) is analysed. The theoretical prediction has been validated by numerical simulation and experiment. Experimental results show that the proposed method can achieve SNR improvement of 10.8 dB or greater when impulse rate α = 0.01. Statistical analysis shows that 97.2% of the impulses can be rejected by the median filter of length 3 when impulse rate is less than or equal to 0.1.
NASA Astrophysics Data System (ADS)
Gray, Morgan; Petit, Cyril; Rodionov, Sergey; Bertino, Laurent; Bocquet, Marc; Fusco, Thierry
2013-12-01
We propose a new algorithm for an AO control law which allows to reduce the computation burden in the case of an Extremely Large Telescope and to deal with a non stationary behavior of the atmospheric turbulence. This approach uses Ensemble Transform Kalman Filter (ETKF) and localizations by domains decomposition: the assimilation is split into local domains on the pupil of the telescope and each of the update data assimilation for each domain is performed independently. This kind of assimilation enables parallel computation of much less data during the update stage. This is a Kalman Filter adaptation for large scale systems with a non stationary turbulence when the explicit storage and manipulation of extremely large covariance matrices are impossible. This distributed parallel environment implementation is highlighted and studied in the context of an ELT application. First simulation results are proposed to assess our theoretical analysis and to demonstrate the potentiality of this new approach for an AO control law on ELTs.
NASA Astrophysics Data System (ADS)
Yano, Ken'ichi; Ohara, Eiichi; Horihata, Satoshi; Aoki, Takaaki; Nishimoto, Yutaka
A robot that supports independent living by assisting with eating and other activities which use the operator's own hand would be helpful for people suffering from tremors of the hand or any other body part. The proposed system using adaptive filter estimates tremor frequencies with a time-varying property and individual differences online. In this study, the estimated frequency is used to adjusting the tremor suppression filter which insulates the voluntary motion signal from the sensor signal containing tremor components. These system are integrated into the control system of the Meal-Assist Robot. As a result, the developed system makes it possible for the person with a tremor to manipulate the supporting robot without causing operability to deteriorate and without hazards due to improper operation.
Mihajlovic, Vojkan; Patki, Shrishail; Grundlehner, Bernard
2014-01-01
Designing and developing a comfortable and convenient EEG system for daily usage that can provide reliable and robust EEG signal, encompasses a number of challenges. Among them, the most ambitious is the reduction of artifacts due to body movements. This paper studies the effect of head movement artifacts on the EEG signal and on the dry electrode-tissue impedance (ETI), monitored continuously using the imec's wireless EEG headset. We have shown that motion artifacts have huge impact on the EEG spectral content in the frequency range lower than 20 Hz. Coherence and spectral analysis revealed that ETI is not capable of describing disturbances at very low frequencies (below 2 Hz). Therefore, we devised a motion artifact reduction (MAR) method that uses a combination of a band-pass filtering and multi-channel adaptive filtering (AF), suitable for real-time MAR. This method was capable of substantially reducing artifacts produced by head movements. PMID:25571131
A real-time digital adaptive tracking controller for a dc motor
Hwang, S.
1995-12-31
The objective of this design is to implement an accurate and cost effective adaptive tracking controller for a DC motor using an 80C196kr microcontroller system. The on-chip embedded functions, optical quadrature encoder and a Pulse Width Modulated (PWM) waveform generator, are used to measure motor positions and generate DC voltages to drive a DC motor respectively. A homing routine that incorporates a photo electric sensor is used to position the motor at a reference point. Users communicate with the system through a 4x4 matrix keypad and 20x2 LCD display or through a PC. The experimental results have shown the validity of this simple microcontroller-based digital control system. This system is performed on a real-time basis, and the control law can be easily replaced by any advanced control laws without changing the hardware setup.
Predicted performance benefits of an adaptive digital engine control system of an F-15 airplane
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Myers, L. P.; Ray, R. J.
1985-01-01
The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrating engine-airframe control systems. Currently this is accomplished on the NASA Ames Research Center's F-15 airplane. The two control modes used to implement the systems are an integrated flightpath management mode and in integrated adaptive engine control system (ADECS) mode. The ADECS mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the available engine stall margin are continually computed. The excess stall margin is traded for thrust. The predicted increase in engine performance due to the ADECS mode is presented in this report.
Predicted performance benefits of an adaptive digital engine control system on an F-15 airplane
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Myers, L. P.; Ray, R. J.
1985-01-01
The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrating engine-airframe control systems. Currently this is accomplished on the NASA Ames Research Center's F-15 airplane. The two control modes used to implement the systems are an integrated flightpath management mode and an integrated adaptive engine control system (ADECS) mode. The ADECS mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the available engine stall margin are continually computed. The excess stall margin is traded for thrust. The predicted increase in engine performance due to the ADECS mode is presented in this report.
Sun, W Y
1993-04-01
This thesis solves the problem of finding the optimal linear noise-reduction filter for linear tomographic image reconstruction. The optimization is data dependent and results in minimizing the mean-square error of the reconstructed image. The error is defined as the difference between the result and the best possible reconstruction. Applications for the optimal filter include reconstructions of positron emission tomographic (PET), X-ray computed tomographic, single-photon emission tomographic, and nuclear magnetic resonance imaging. Using high resolution PET as an example, the optimal filter is derived and presented for the convolution backprojection, Moore-Penrose pseudoinverse, and the natural-pixel basis set reconstruction methods. Simulations and experimental results are presented for the convolution backprojection method.
Kumar, Abhishek; Kamali, Tschackad; Platzer, René; Unterhuber, Angelika; Drexler, Wolfgang; Leitgeb, Rainer A.
2015-01-01
In this paper a numerical technique is presented to compensate for anisotropic optical aberrations, which are usually present across the lateral field of view in the out of focus regions, in high resolution optical coherence tomography and microscopy (OCT/OCM) setups. The recorded enface image field at different depths in the tomogram is digitally divided into smaller sub-regions or the regions of interest (ROIs), processed individually using subaperture based digital adaptive optics (DAO), and finally stitched together to yield a final image with a uniform diffraction limited resolution across the entire field of view (FOV). Using this method, a sub-micron lateral resolution is achieved over a depth range of 218 μmfor a nano-particle phantom sample imaged using a fiber based point scanning spectral domain (SD) OCM system with a limited depth of focus (DOF) of ~7 μmat a numerical aperture (NA) of 0.6. Thus, an increase in DOF by ~30x is demonstrated in this case. The application of this method is also shown in ex vivo mouse adipose tissue. PMID:25908999
Yang, Qiang; Zhang, Jie; Nozato, Koji; Saito, Kenichi; Williams, David R.; Roorda, Austin; Rossi, Ethan A.
2014-01-01
Eye motion is a major impediment to the efficient acquisition of high resolution retinal images with the adaptive optics (AO) scanning light ophthalmoscope (AOSLO). Here we demonstrate a solution to this problem by implementing both optical stabilization and digital image registration in an AOSLO. We replaced the slow scanning mirror with a two-axis tip/tilt mirror for the dual functions of slow scanning and optical stabilization. Closed-loop optical stabilization reduced the amplitude of eye-movement related-image motion by a factor of 10–15. The residual RMS error after optical stabilization alone was on the order of the size of foveal cones: ~1.66–2.56 μm or ~0.34–0.53 arcmin with typical fixational eye motion for normal observers. The full implementation, with real-time digital image registration, corrected the residual eye motion after optical stabilization with an accuracy of ~0.20–0.25 μm or ~0.04–0.05 arcmin RMS, which to our knowledge is more accurate than any method previously reported. PMID:25401030
NASA Astrophysics Data System (ADS)
Millán, María S.
2012-10-01
On the verge of the 50th anniversary of Vander Lugt’s formulation for pattern matching based on matched filtering and optical correlation, we acknowledge the very intense research activity developed in the field of correlation-based pattern recognition during this period of time. The paper reviews some domains that appeared as emerging fields in the last years of the 20th century and have been developed later on in the 21st century. Such is the case of three-dimensional (3D) object recognition, biometric pattern matching, optical security and hybrid optical-digital processors. 3D object recognition is a challenging case of multidimensional image recognition because of its implications in the recognition of real-world objects independent of their perspective. Biometric recognition is essentially pattern recognition for which the personal identification is based on the authentication of a specific physiological characteristic possessed by the subject (e.g. fingerprint, face, iris, retina, and multifactor combinations). Biometric recognition often appears combined with encryption-decryption processes to secure information. The optical implementations of correlation-based pattern recognition processes still rely on the 4f-correlator, the joint transform correlator, or some of their variants. But the many applications developed in the field have been pushing the systems for a continuous improvement of their architectures and algorithms, thus leading towards merged optical-digital solutions.