Multiprocessor Adaptive Control Of A Dynamic System
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Hyland, David C.
1995-01-01
Architecture for fully autonomous digital electronic control system developed for use in identification and adaptive control of dynamic system. Architecture modular and hierarchical. Combines relatively simple, standardized processing units into complex parallel-processing subsystems. Although architecture based on neural-network concept, processing units themselves not neural networks; processing units implemented by programming of currently available microprocessors.
Adaptive synchronization and anticipatory dynamical systems
NASA Astrophysics Data System (ADS)
Yang, Ying-Jen; Chen, Chun-Chung; Lai, Pik-Yin; Chan, C. K.
2015-09-01
Many biological systems can sense periodical variations in a stimulus input and produce well-timed, anticipatory responses after the input is removed. Such systems show memory effects for retaining timing information in the stimulus and cannot be understood from traditional synchronization consideration of passive oscillatory systems. To understand this anticipatory phenomena, we consider oscillators built from excitable systems with the addition of an adaptive dynamics. With such systems, well-timed post-stimulus responses similar to those from experiments can be obtained. Furthermore, a well-known model of working memory is shown to possess similar anticipatory dynamics when the adaptive mechanism is identified with synaptic facilitation. The last finding suggests that this type of oscillator can be common in neuronal systems with plasticity.
Robust adaptive dynamic programming and feedback stabilization of nonlinear systems.
Jiang, Yu; Jiang, Zhong-Ping
2014-05-01
This paper studies the robust optimal control design for a class of uncertain nonlinear systems from a perspective of robust adaptive dynamic programming (RADP). The objective is to fill up a gap in the past literature of adaptive dynamic programming (ADP) where dynamic uncertainties or unmodeled dynamics are not addressed. A key strategy is to integrate tools from modern nonlinear control theory, such as the robust redesign and the backstepping techniques as well as the nonlinear small-gain theorem, with the theory of ADP. The proposed RADP methodology can be viewed as an extension of ADP to uncertain nonlinear systems. Practical learning algorithms are developed in this paper, and have been applied to the controller design problems for a jet engine and a one-machine power system.
Adaptive and neuroadaptive control for nonnegative and compartmental dynamical systems
NASA Astrophysics Data System (ADS)
Volyanskyy, Kostyantyn Y.
Neural networks have been extensively used for adaptive system identification as well as adaptive and neuroadaptive control of highly uncertain systems. The goal of adaptive and neuroadaptive control is to achieve system performance without excessive reliance on system models. To improve robustness and the speed of adaptation of adaptive and neuroadaptive controllers several controller architectures have been proposed in the literature. In this dissertation, we develop a new neuroadaptive control architecture for nonlinear uncertain dynamical systems. The proposed framework involves a novel controller architecture with additional terms in the update laws that are constructed using a moving window of the integrated system uncertainty. These terms can be used to identify the ideal system weights of the neural network as well as effectively suppress system uncertainty. Linear and nonlinear parameterizations of the system uncertainty are considered and state and output feedback neuroadaptive controllers are developed. Furthermore, we extend the developed framework to discrete-time dynamical systems. To illustrate the efficacy of the proposed approach we apply our results to an aircraft model with wing rock dynamics, a spacecraft model with unknown moment of inertia, and an unmanned combat aerial vehicle undergoing actuator failures, and compare our results with standard neuroadaptive control methods. Nonnegative systems are essential in capturing the behavior of a wide range of dynamical systems involving dynamic states whose values are nonnegative. A sub-class of nonnegative dynamical systems are compartmental systems. These systems are derived from mass and energy balance considerations and are comprised of homogeneous interconnected microscopic subsystems or compartments which exchange variable quantities of material via intercompartmental flow laws. In this dissertation, we develop direct adaptive and neuroadaptive control framework for stabilization, disturbance
A Dynamical System that Describes Vein Graft Adaptation and Failure
Garbey, Marc; Berceli, Scott A.
2013-01-01
Adaptation of vein bypass grafts to the mechanical stresses imposed by the arterial circulation is thought to be the primary determinant for lesion development, yet an understanding of how the various forces dictate local wall remodeling is lacking. We develop a dynamical system that summarizes the complex interplay between the mechanical environment and cell/matrix kinetics, ultimately dictating changes in the vein graft architecture. Based on a systematic mapping of the parameter space, three general remodeling response patterns are observed: 1) shear stabilized intimal thickening, 2) tension induced wall thinning and lumen expansion, and 3) tension stabilized wall thickening. Notable is our observation that the integration of multiple feedback mechanisms leads to a variety of non-linear responses that would be unanticipated by an analysis of each system component independently. This dynamic analysis supports the clinical observation that the majority of vein grafts proceed along an adaptive trajectory, where grafts dilate and mildly thicken in response to the increased tension and shear, but a small portion of the grafts demonstrate a maladaptive phenotype, where progressive inward remodeling and accentuated wall thickening lead to graft failure. PMID:23871714
Quantitative adaptation analytics for assessing dynamic systems of systems: LDRD Final Report
Gauthier, John H.; Miner, Nadine E.; Wilson, Michael L.; Le, Hai D.; Kao, Gio K.; Melander, Darryl J.; Longsine, Dennis Earl; Vander Meer, Jr., Robert C.
2015-01-01
Our society is increasingly reliant on systems and interoperating collections of systems, known as systems of systems (SoS). These SoS are often subject to changing missions (e.g., nation- building, arms-control treaties), threats (e.g., asymmetric warfare, terrorism), natural environments (e.g., climate, weather, natural disasters) and budgets. How well can SoS adapt to these types of dynamic conditions? This report details the results of a three year Laboratory Directed Research and Development (LDRD) project aimed at developing metrics and methodologies for quantifying the adaptability of systems and SoS. Work products include: derivation of a set of adaptability metrics, a method for combining the metrics into a system of systems adaptability index (SoSAI) used to compare adaptability of SoS designs, development of a prototype dynamic SoS (proto-dSoS) simulation environment which provides the ability to investigate the validity of the adaptability metric set, and two test cases that evaluate the usefulness of a subset of the adaptability metrics and SoSAI for distinguishing good from poor adaptability in a SoS. Intellectual property results include three patents pending: A Method For Quantifying Relative System Adaptability, Method for Evaluating System Performance, and A Method for Determining Systems Re-Tasking.
Adaptive control of unknown unstable steady states of dynamical systems.
Pyragas, K; Pyragas, V; Kiss, I Z; Hudson, J L
2004-08-01
A simple adaptive controller based on a low-pass filter to stabilize unstable steady states of dynamical systems is considered. The controller is reference-free; it does not require knowledge of the location of the fixed point in the phase space. A topological limitation similar to that of the delayed feedback controller is discussed. We show that the saddle-type steady states cannot be stabilized by using the conventional low-pass filter. The limitation can be overcome by using an unstable low-pass filter. The use of the controller is demonstrated for several physical models, including the pendulum driven by a constant torque, the Lorenz system, and an electrochemical oscillator. Linear and nonlinear analyses of the models are performed and the problem of the basins of attraction of the stabilized steady states is discussed. The robustness of the controller is demonstrated in experiments and numerical simulations with an electrochemical oscillator, the dissolution of nickel in sulfuric acid; a comparison of the effect of using direct and indirect variables in the control is made. With the use of the controller, all unstable phase-space objects are successfully reconstructed experimentally.
Adaptive and Optimal Control of Stochastic Dynamical Systems
2015-09-14
control and stochastic differential games . Stochastic linear-quadratic, continuous time, stochastic control problems are solved for systems with noise...control problems for systems with arbitrary correlated n 15. SUBJECT TERMS Adaptive control, optimal control, stochastic differential games 16. SECURITY...explicit results have been obtained for problems of stochastic control and stochastic differential games . Stochastic linear- quadratic, continuous time
Adaptive inverse control of linear and nonlinear systems using dynamic neural networks.
Plett, G L
2003-01-01
In this paper, we see adaptive control as a three-part adaptive-filtering problem. First, the dynamical system we wish to control is modeled using adaptive system-identification techniques. Second, the dynamic response of the system is controlled using an adaptive feedforward controller. No direct feedback is used, except that the system output is monitored and used by an adaptive algorithm to adjust the parameters of the controller. Third, disturbance canceling is performed using an additional adaptive filter. The canceler does not affect system dynamics, but feeds back plant disturbance in a way that minimizes output disturbance power. The techniques work to control minimum-phase or nonminimum-phase, linear or nonlinear, single-input-single-output (SISO) or multiple-input-multiple-ouput (MIMO), stable or stabilized systems. Constraints may additionally be placed on control effort for a practical implementation. Simulation examples are presented to demonstrate that the proposed methods work very well.
A Knowledge-Structure-Based Adaptive Dynamic Assessment System for Calculus Learning
ERIC Educational Resources Information Center
Ting, M.-Y.; Kuo, B.-C.
2016-01-01
The purpose of this study was to investigate the effect of a calculus system that was designed using an adaptive dynamic assessment (DA) framework on performance in the "finding an area using an integral". In this study, adaptive testing and dynamic assessment were combined to provide different test items depending on students'…
HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems.
Kim, J; Kasabov, N
1999-11-01
This paper proposes an adaptive neuro-fuzzy system, HyFIS (Hybrid neural Fuzzy Inference System), for building and optimising fuzzy models. The proposed model introduces the learning power of neural networks to fuzzy logic systems and provides linguistic meaning to the connectionist architectures. Heuristic fuzzy logic rules and input-output fuzzy membership functions can be optimally tuned from training examples by a hybrid learning scheme comprised of two phases: rule generation phase from data; and rule tuning phase using error backpropagation learning scheme for a neural fuzzy system. To illustrate the performance and applicability of the proposed neuro-fuzzy hybrid model, extensive simulation studies of nonlinear complex dynamic systems are carried out. The proposed method can be applied to an on-line incremental adaptive learning for the prediction and control of nonlinear dynamical systems. Two benchmark case studies are used to demonstrate that the proposed HyFIS system is a superior neuro-fuzzy modelling technique.
Hamiltonian-Driven Adaptive Dynamic Programming for Continuous Nonlinear Dynamical Systems.
Yang, Yongliang; Wunsch, Donald; Yin, Yixin
2017-02-01
This paper presents a Hamiltonian-driven framework of adaptive dynamic programming (ADP) for continuous time nonlinear systems, which consists of evaluation of an admissible control, comparison between two different admissible policies with respect to the corresponding the performance function, and the performance improvement of an admissible control. It is showed that the Hamiltonian can serve as the temporal difference for continuous-time systems. In the Hamiltonian-driven ADP, the critic network is trained to output the value gradient. Then, the inner product between the critic and the system dynamics produces the value derivative. Under some conditions, the minimization of the Hamiltonian functional is equivalent to the value function approximation. An iterative algorithm starting from an arbitrary admissible control is presented for the optimal control approximation with its convergence proof. The implementation is accomplished by a neural network approximation. Two simulation studies demonstrate the effectiveness of Hamiltonian-driven ADP.
NASA Astrophysics Data System (ADS)
Yucelen, Tansel; De La Torre, Gerardo; Johnson, Eric N.
2014-11-01
Although adaptive control theory offers mathematical tools to achieve system performance without excessive reliance on dynamical system models, its applications to safety-critical systems can be limited due to poor transient performance and robustness. In this paper, we develop an adaptive control architecture to achieve stabilisation and command following of uncertain dynamical systems with improved transient performance. Our framework consists of a new reference system and an adaptive controller. The proposed reference system captures a desired closed-loop dynamical system behaviour modified by a mismatch term representing the high-frequency content between the uncertain dynamical system and this reference system, i.e., the system error. In particular, this mismatch term allows the frequency content of the system error dynamics to be limited, which is used to drive the adaptive controller. It is shown that this key feature of our framework yields fast adaptation without incurring high-frequency oscillations in the transient performance. We further show the effects of design parameters on the system performance, analyse closeness of the uncertain dynamical system to the unmodified (ideal) reference system, discuss robustness of the proposed approach with respect to time-varying uncertainties and disturbances, and make connections to gradient minimisation and classical control theory. A numerical example is provided to demonstrate the efficacy of the proposed architecture.
Yang, Cheng-Hsiung; Wu, Cheng-Lin
2014-01-01
An adaptive control scheme is developed to study the generalized adaptive chaos synchronization with uncertain chaotic parameters behavior between two identical chaotic dynamic systems. This generalized adaptive chaos synchronization controller is designed based on Lyapunov stability theory and an analytic expression of the adaptive controller with its update laws of uncertain chaotic parameters is shown. The generalized adaptive synchronization with uncertain parameters between two identical new Lorenz-Stenflo systems is taken as three examples to show the effectiveness of the proposed method. The numerical simulations are shown to verify the results. PMID:25295292
Adaptation in hindsight: dynamics and drivers shaping urban wastewater systems.
Neumann, Marc B; Rieckermann, Jörg; Hug, Thomas; Gujer, Willi
2015-03-15
Well-planned urban infrastructure should meet critical loads during its design lifetime. In order to proceed with design, engineers are forced to make numerous assumptions with very little supporting information about the development of various drivers. For the wastewater sector, these drivers include the future amount and composition of the generated wastewater, effluent requirements, technologies, prices of inputs such as energy or chemicals, and the value of outputs produced such as nutrients for fertilizer use. When planning wastewater systems, there is a lack of methods to address discrepancies between the timescales at which fundamental changes in these drivers can occur, and the long physical life expectancy of infrastructure (on the order of 25-80 years). To explore these discrepancies, we take a hindsight perspective of the long-term development of wastewater infrastructure and assess the stability of assumptions made during previous designs. Repeatedly we find that the drivers influencing wastewater loads, environmental requirements or technological innovation can change at smaller timescales than the infrastructure design lifetime, often in less than a decade. Our analysis shows that i) built infrastructure is continuously confronted with challenges it was not conceived for, ii) significant adaptation occurs during a structure's lifetime, and iii) "muddling-through" is the pre-dominant strategy for adaptive management. As a consequence, we argue, there is a need to explore robust design strategies which require the systematic use of scenario planning methods and instruments to increase operational, structural, managerial, institutional and financial flexibility. Hindsight studies, such as this one, may inform the development of robust design strategies and assist in the transition to more explicit forms of adaptive management for urban infrastructures.
NASA Astrophysics Data System (ADS)
Qin, Chunbin; Zhang, Huaguang; Luo, Yanhong
2014-05-01
In this paper, a novel theoretic formulation based on adaptive dynamic programming (ADP) is developed to solve online the optimal tracking problem of the continuous-time linear system with unknown dynamics. First, the original system dynamics and the reference trajectory dynamics are transformed into an augmented system. Then, under the same performance index with the original system dynamics, an augmented algebraic Riccati equation is derived. Furthermore, the solutions for the optimal control problem of the augmented system are proven to be equal to the standard solutions for the optimal tracking problem of the original system dynamics. Moreover, a new online algorithm based on the ADP technique is presented to solve the optimal tracking problem of the linear system with unknown system dynamics. Finally, simulation results are given to verify the effectiveness of the theoretic results.
Intelligent control of non-linear dynamical system based on the adaptive neurocontroller
NASA Astrophysics Data System (ADS)
Engel, E.; Kovalev, I. V.; Kobezhicov, V.
2015-10-01
This paper presents an adaptive neuro-controller for intelligent control of non-linear dynamical system. The formed as the fuzzy selective neural net the adaptive neuro-controller on the base of system's state, creates the effective control signal under random perturbations. The validity and advantages of the proposed adaptive neuro-controller are demonstrated by numerical simulations. The simulation results show that the proposed controller scheme achieves real-time control speed and the competitive performance, as compared to PID, fuzzy logic controllers.
A reduced adaptive observer for multivariable systems. [using reduced dynamic ordering
NASA Technical Reports Server (NTRS)
Carroll, R. L.; Lindorff, D. P.
1973-01-01
An adaptive observer for multivariable systems is presented for which the dynamic order of the observer is reduced, subject to mild restrictions. The observer structure depends directly upon the multivariable structure of the system rather than a transformation to a single-output system. The number of adaptive gains is at most the sum of the order of the system and the number of input parameters being adapted. Moreover, for the relatively frequent specific cases for which the number of required adaptive gains is less than the sum of system order and input parameters, the number of these gains is easily determined by inspection of the system structure. This adaptive observer possesses all the properties ascribed to the single-input single-output adpative observer. Like the other adaptive observers some restriction is required of the allowable system command input to guarantee convergence of the adaptive algorithm, but the restriction is more lenient than that required by the full-order multivariable observer. This reduced observer is not restricted to cycle systems.
Adaptation of adaptive optics systems.
NASA Astrophysics Data System (ADS)
Xin, Yu; Zhao, Dazun; Li, Chen
1997-10-01
In the paper, a concept of an adaptation of adaptive optical system (AAOS) is proposed. The AAOS has certain real time optimization ability against the variation of the brightness of detected objects m, atmospheric coherence length rO and atmospheric time constant τ by means of changing subaperture number and diameter, dynamic range, and system's temporal response. The necessity of AAOS using a Hartmann-Shack wavefront sensor and some technical approaches are discussed. Scheme and simulation of an AAOS with variable subaperture ability by use of both hardware and software are presented as an example of the system.
Design implementation and control of MRAS error dynamics. [Model-Reference Adaptive System
NASA Technical Reports Server (NTRS)
Colburn, B. K.; Boland, J. S., III
1974-01-01
Use is made of linearized error characteristic equation for model-reference adaptive systems to determine a parameter adjustment rule for obtaining time-invariant error dynamics. Theoretical justification of error stability is given and an illustrative example included to demonstrate the utility of the proposed technique.
Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics
NASA Astrophysics Data System (ADS)
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro
This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.
Mansouri, Mohammad; Teshnehlab, Mohammad; Aliyari Shoorehdeli, Mahdi
2015-05-01
In this paper, a novel adaptive hierarchical fuzzy control system based on the variable structure control is developed for a class of SISO canonical nonlinear systems in the presence of bounded disturbances. It is assumed that nonlinear functions of the systems be completely unknown. Switching surfaces are incorporated into the hierarchical fuzzy control scheme to ensure the system stability. A fuzzy soft switching system decides the operation area of the hierarchical fuzzy control and variable structure control systems. All the nonlinearly appeared parameters of conclusion parts of fuzzy blocks located in different layers of the hierarchical fuzzy control system are adjusted through adaptation laws deduced from the defined Lyapunov function. The proposed hierarchical fuzzy control system reduces the number of rules and consequently the number of tunable parameters with respect to the ordinary fuzzy control system. Global boundedness of the overall adaptive system and the desired precision are achieved using the proposed adaptive control system. In this study, an adaptive hierarchical fuzzy system is used for two objectives; it can be as a function approximator or a control system based on an intelligent-classic approach. Three theorems are proven to investigate the stability of the nonlinear dynamic systems. The important point about the proposed theorems is that they can be applied not only to hierarchical fuzzy controllers with different structures of hierarchical fuzzy controller, but also to ordinary fuzzy controllers. Therefore, the proposed algorithm is more general. To show the effectiveness of the proposed method four systems (two mechanical, one mathematical and one chaotic) are considered in simulations. Simulation results demonstrate the validity, efficiency and feasibility of the proposed approach to control of nonlinear dynamic systems.
Adaptive Dynamic Bayesian Networks
Ng, B M
2007-10-26
A discrete-time Markov process can be compactly modeled as a dynamic Bayesian network (DBN)--a graphical model with nodes representing random variables and directed edges indicating causality between variables. Each node has a probability distribution, conditional on the variables represented by the parent nodes. A DBN's graphical structure encodes fixed conditional dependencies between variables. But in real-world systems, conditional dependencies between variables may be unknown a priori or may vary over time. Model errors can result if the DBN fails to capture all possible interactions between variables. Thus, we explore the representational framework of adaptive DBNs, whose structure and parameters can change from one time step to the next: a distribution's parameters and its set of conditional variables are dynamic. This work builds on recent work in nonparametric Bayesian modeling, such as hierarchical Dirichlet processes, infinite-state hidden Markov networks and structured priors for Bayes net learning. In this paper, we will explain the motivation for our interest in adaptive DBNs, show how popular nonparametric methods are combined to formulate the foundations for adaptive DBNs, and present preliminary results.
Method and system for training dynamic nonlinear adaptive filters which have embedded memory
NASA Technical Reports Server (NTRS)
Rabinowitz, Matthew (Inventor)
2002-01-01
Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6.
NASA Astrophysics Data System (ADS)
Lv, Yongfeng; Na, Jing; Yang, Qinmin; Wu, Xing; Guo, Yu
2016-01-01
An online adaptive optimal control is proposed for continuous-time nonlinear systems with completely unknown dynamics, which is achieved by developing a novel identifier-critic-based approximate dynamic programming algorithm with a dual neural network (NN) approximation structure. First, an adaptive NN identifier is designed to obviate the requirement of complete knowledge of system dynamics, and a critic NN is employed to approximate the optimal value function. Then, the optimal control law is computed based on the information from the identifier NN and the critic NN, so that the actor NN is not needed. In particular, a novel adaptive law design method with the parameter estimation error is proposed to online update the weights of both identifier NN and critic NN simultaneously, which converge to small neighbourhoods around their ideal values. The closed-loop system stability and the convergence to small vicinity around the optimal solution are all proved by means of the Lyapunov theory. The proposed adaptation algorithm is also improved to achieve finite-time convergence of the NN weights. Finally, simulation results are provided to exemplify the efficacy of the proposed methods.
Adaptive identification and control of structural dynamics systems using recursive lattice filters
NASA Technical Reports Server (NTRS)
Sundararajan, N.; Montgomery, R. C.; Williams, J. P.
1985-01-01
A new approach for adaptive identification and control of structural dynamic systems by using least squares lattice filters thar are widely used in the signal processing area is presented. Testing procedures for interfacing the lattice filter identification methods and modal control method for stable closed loop adaptive control are presented. The methods are illustrated for a free-free beam and for a complex flexible grid, with the basic control objective being vibration suppression. The approach is validated by using both simulations and experimental facilities available at the Langley Research Center.
Differential flatness properties and multivariable adaptive control of ovarian system dynamics
NASA Astrophysics Data System (ADS)
Rigatos, Gerasimos
2016-12-01
The ovarian system exhibits nonlinear dynamics which is modeled by a set of coupled nonlinear differential equations. The paper proposes adaptive fuzzy control based on differential flatness theory for the complex dynamics of the ovarian system. It is proven that the dynamic model of the ovarian system, having as state variables the LH and the FSH hormones and their derivatives, is a differentially flat one. This means that all its state variables and its control inputs can be described as differential functions of the flat output. By exploiting differential flatness properties the system's dynamic model is written in the multivariable linear canonical (Brunovsky) form, for which the design of a state feedback controller becomes possible. After this transformation, the new control inputs of the system contain unknown nonlinear parts, which are identified with the use of neurofuzzy approximators. The learning procedure for these estimators is determined by the requirement the first derivative of the closed-loop's Lyapunov function to be a negative one. Moreover, Lyapunov stability analysis shows that H-infinity tracking performance is succeeded for the feedback control loop and this assures improved robustness to the aforementioned model uncertainty as well as to external perturbations. The efficiency of the proposed adaptive fuzzy control scheme is confirmed through simulation experiments.
Sturmberg, Joachim P; Martin, Carmel M
2010-10-01
Health services demonstrate key features of complex adaptive systems (CAS), they are dynamic and unfold in unpredictable ways, and unfolding events are often unique. To better understand the complex adaptive nature of health systems around a core attractor we propose the metaphor of the health care vortex. We also suggest that in an ideal health care system the core attractor would be personal health attainment. Health care reforms around the world offer an opportunity to analyse health system change from a complex adaptive perspective. At large health care reforms have been pursued disregarding the complex adaptive nature of the health system. The paper details some recent reforms and outlines how to understand their strategies and outcomes, and what could be learnt for future efforts, utilising CAS principles. Current health systems show the inherent properties of a CAS driven by a core attractor of disease and cost containment. We content that more meaningful health systems reform requires the delicate task of shifting the core attractor from disease and cost containment towards health attainment.
A chaos detectable and time step-size adaptive numerical scheme for nonlinear dynamical systems
NASA Astrophysics Data System (ADS)
Chen, Yung-Wei; Liu, Chein-Shan; Chang, Jiang-Ren
2007-02-01
The first step in investigation the dynamics of a continuous time system described by ordinary differential equations is to integrate them to obtain trajectories. In this paper, we convert the group-preserving scheme (GPS) developed by Liu [International Journal of Non-Linear Mechanics 36 (2001) 1047-1068] to a time step-size adaptive scheme, x=x+hf(x,t), where x∈R is the system variables we are concerned with, and f(x,t)∈R is a time-varying vector field. The scheme has the form similar to the Euler scheme, x=x+Δtf(x,t), but our step-size h is adaptive automatically. Very interestingly, the ratio h/Δt, which we call the adaptive factor, can forecast the appearance of chaos if the considered dynamical system becomes chaotical. The numerical examples of the Duffing equation, the Lorenz equation and the Rossler equation, which may exhibit chaotic behaviors under certain parameters values, are used to demonstrate these phenomena. Two other non-chaotic examples are included to compare the performance of the GPS and the adaptive one.
Adaptive modeling, identification, and control of dynamic structural systems. I. Theory
Safak, Erdal
1989-01-01
A concise review of the theory of adaptive modeling, identification, and control of dynamic structural systems based on discrete-time recordings is presented. Adaptive methods have four major advantages over the classical methods: (1) Removal of the noise from the signal is done over the whole frequency band; (2) time-varying characteristics of systems can be tracked; (3) systems with unknown characteristics can be controlled; and (4) a small segment of the data is needed during the computations. Included in the paper are the discrete-time representation of single-input single-output (SISO) systems, models for SISO systems with noise, the concept of stochastic approximation, recursive prediction error method (RPEM) for system identification, and the adaptive control. Guidelines for model selection and model validation and the computational aspects of the method are also discussed in the paper. The present paper is the first of two companion papers. The theory given in the paper is limited to that which is necessary to follow the examples for applications in structural dynamics presented in the second paper.
On the global dynamics of adaptive systems - A study of an elementary example
NASA Technical Reports Server (NTRS)
Espana, Martin D.; Praly, Laurent
1993-01-01
The inherent nonlinear character of adaptive systems poses serious theoretical problems for the analysis of their dynamics. On the other hand, the importance of their dynamic behavior is directly related to the practical interest in predicting such undesirable phenomena as nonlinear oscillations, abrupt transients, intermittence or a high sensitivity with respect to initial conditions. A geometrical/qualitative description of the phase portrait of a discrete-time adaptive system with unmodeled disturbances is given. For this, the motions in the phase space are referred to normally hyperbolic (structurally stable) locally invariant sets. The study is complemented with a local stability analysis of the equilibrium point and periodic solutions. The critical character of adaptive systems under rather usual working conditions is discussed. Special emphasis is put on the causes leading to intermittence. A geometric interpretation of the effects of some commonly used palliatives to this problem is given. The 'dead-zone' approach is studied in more detail. The predicted dynamics are compared with simulation results.
Adaptive dynamic surface control for a class of MIMO nonlinear systems with actuator failures
NASA Astrophysics Data System (ADS)
Amezquita S., Kendrick; Yan, Lin; Butt, Waseem A.
2013-03-01
In this article, an adaptive dynamic surface control scheme for a class of MIMO nonlinear systems with actuator failures and uncertainties is presented. In the proposed control scheme, the dynamic changes and disturbances induced by actuator failures are detected and isolated by means of radial basis function neural networks, which also compensate system uncertainties that arise from the mismatch between nominal model and real plant. In the presence of unknown actuation functions, the effectiveness of the control scheme is guaranteed by imposing a structural condition on the actuation matrix. Moreover, the singularity problem that arises from the approximation of unknown actuation functions is circumvented, and thus the use parameter projection is avoided. In this work, the nominal plant is transformed into a suitable form via diffeomorphism. Dynamic surface control design technique is used to develop the control laws. The closed-loop signals are proven to be uniformly ultimately bounded through Lyapunov approach, and the output tracking error is shown to be bounded within a residual set which can be made arbitrarily small by appropriately tuning the controller parameters. Finally, the proposed adaptive control scheme effectiveness is verified by simulation of the longitudinal dynamics of a twin otter aircraft undergoing actuator failures.
NASA Astrophysics Data System (ADS)
Mendoza, Edgar; Prohaska, John; Kempen, Connie; Esterkin, Yan; Sun, Sunjian; Krishnaswamy, Sridhar
2010-09-01
This paper describes preliminary results obtained under a Navy SBIR contract by Redondo Optics Inc. (ROI), in collaboration with Northwestern University towards the development and demonstration of a next generation, stand-alone and fully integrated, dynamically reconfigurable, adaptive fiber optic acoustic emission sensor (FAESense™) system for the in-situ unattended detection and localization of shock events, impact damage, cracks, voids, and delaminations in new and aging critical infrastructures found in ships, submarines, aircraft, and in next generation weapon systems. ROI's FAESense™ system is based on the integration of proven state-of-the-art technologies: 1) distributed array of in-line fiber Bragg gratings (FBGs) sensors sensitive to strain, vibration, and acoustic emissions, 2) adaptive spectral demodulation of FBG sensor dynamic signals using two-wave mixing interferometry on photorefractive semiconductors, and 3) integration of all the sensor system passive and active optoelectronic components within a 0.5-cm x 1-cm photonic integrated circuit microchip. The adaptive TWM demodulation methodology allows the measurement of dynamic high frequnency acoustic emission events, while compensating for passive quasi-static strain and temperature drifts. It features a compact, low power, environmentally robust 1-inch x 1-inch x 4-inch small form factor (SFF) package with no moving parts. The FAESense™ interrogation system is microprocessor-controlled using high data rate signal processing electronics for the FBG sensors calibration, temperature compensation and the detection and analysis of acoustic emission signals. Its miniaturized package, low power operation, state-of-the-art data communications, and low cost makes it a very attractive solution for a large number of applications in naval and maritime industries, aerospace, civil structures, the oil and chemical industry, and for homeland security applications.
An adaptive, self-organizing dynamical system for hierarchical control of bio-inspired locomotion.
Arena, Paolo; Fortuna, Luigi; Frasca, Mattia; Sicurella, Giovanni
2004-08-01
In this paper, dynamical systems made up of locally coupled nonlinear units are used to control the locomotion of bio-inspired robots and, in particular, a simulation of an insect-like hexapod robot. These controllers are inspired by the biological paradigm of central pattern generators and are responsible for generating a locomotion gait. A general structure, which is able to change the locomotion gait according to environmental conditions, is introduced. This structure is based on an adaptive system, implemented by motor maps, and is able to learn the correct locomotion gait on the basis of a reward function. The proposed control system is validated by a large number of simulations carried out in a dynamic environment for simulating legged robots.
Learning from adaptive neural dynamic surface control of strict-feedback systems.
Wang, Min; Wang, Cong
2015-06-01
Learning plays an essential role in autonomous control systems. However, how to achieve learning in the nonstationary environment for nonlinear systems is a challenging problem. In this paper, we present learning method for a class of n th-order strict-feedback systems by adaptive dynamic surface control (DSC) technology, which achieves the human-like ability of learning by doing and doing with learned knowledge. To achieve the learning, this paper first proposes stable adaptive DSC with auxiliary first-order filters, which ensures the boundedness of all the signals in the closed-loop system and the convergence of tracking errors in a finite time. With the help of DSC, the derivative of the filter output variable is used as the neural network (NN) input instead of traditional intermediate variables. As a result, the proposed adaptive DSC method reduces greatly the dimension of NN inputs, especially for high-order systems. After the stable DSC design, we decompose the stable closed-loop system into a series of linear time-varying perturbed subsystems. Using a recursive design, the recurrent property of NN input variables is easily verified since the complexity is overcome using DSC. Subsequently, the partial persistent excitation condition of the radial basis function NN is satisfied. By combining a state transformation, accurate approximations of the closed-loop system dynamics are recursively achieved in a local region along recurrent orbits. Then, the learning control method using the learned knowledge is proposed to achieve the closed-loop stability and the improved control performance. Simulation studies are performed to demonstrate the proposed scheme can not only reuse the learned knowledge to achieve the better control performance with the faster tracking convergence rate and the smaller tracking error but also greatly alleviate the computational burden because of reducing the number and complexity of NN input variables.
Peng, Zhouhua; Wang, Dan; Zhang, Hongwei; Sun, Gang
2014-08-01
This paper addresses the leader-follower synchronization problem of uncertain dynamical multiagent systems with nonlinear dynamics. Distributed adaptive synchronization controllers are proposed based on the state information of neighboring agents. The control design is developed for both undirected and directed communication topologies without requiring the accurate model of each agent. This result is further extended to the output feedback case where a neighborhood observer is proposed based on relative output information of neighboring agents. Then, distributed observer-based synchronization controllers are derived and a parameter-dependent Riccati inequality is employed to prove the stability. This design has a favorable decouple property between the observer and the controller designs for nonlinear multiagent systems. For both cases, the developed controllers guarantee that the state of each agent synchronizes to that of the leader with bounded residual errors. Two illustrative examples validate the efficacy of the proposed methods.
NASA Astrophysics Data System (ADS)
Wei, Qing-Lai; Liu, De-Rong; Xu, Yan-Cai
2015-03-01
A policy iteration algorithm of adaptive dynamic programming (ADP) is developed to solve the optimal tracking control for a class of discrete-time chaotic systems. By system transformations, the optimal tracking problem is transformed into an optimal regulation one. The policy iteration algorithm for discrete-time chaotic systems is first described. Then, the convergence and admissibility properties of the developed policy iteration algorithm are presented, which show that the transformed chaotic system can be stabilized under an arbitrary iterative control law and the iterative performance index function simultaneously converges to the optimum. By implementing the policy iteration algorithm via neural networks, the developed optimal tracking control scheme for chaotic systems is verified by a simulation. Project supported by the National Natural Science Foundation of China (Grant Nos. 61034002, 61233001, 61273140, 61304086, and 61374105) and the Beijing Natural Science Foundation, China (Grant No. 4132078).
Robust dynamic sliding-mode control using adaptive RENN for magnetic levitation system.
Lin, Faa-Jeng; Chen, Syuan-Yi; Shyu, Kuo-Kai
2009-06-01
In this paper, a robust dynamic sliding mode control system (RDSMC) using a recurrent Elman neural network (RENN) is proposed to control the position of a levitated object of a magnetic levitation system considering the uncertainties. First, a dynamic model of the magnetic levitation system is derived. Then, a proportional-integral-derivative (PID)-type sliding-mode control system (SMC) is adopted for tracking of the reference trajectories. Moreover, a new PID-type dynamic sliding-mode control system (DSMC) is proposed to reduce the chattering phenomenon. However, due to the hardware being limited and the uncertainty bound being unknown of the switching function for the DSMC, an RDSMC is proposed to improve the control performance and further increase the robustness of the magnetic levitation system. In the RDSMC, an RENN estimator is used to estimate an unknown nonlinear function of lumped uncertainty online and replace the switching function in the hitting control of the DSMC directly. The adaptive learning algorithms that trained the parameters of the RENN online are derived using Lyapunov stability theorem. Furthermore, a robust compensator is proposed to confront the uncertainties including approximation error, optimal parameter vectors, and higher order terms in Taylor series. Finally, some experimental results of tracking the various periodic trajectories demonstrate the validity of the proposed RDSMC for practical applications.
Khezri, Mahdi; Firoozabadi, Mohammad; Sharafat, Ahmad Reza
2015-11-01
In this study, we proposed a new adaptive method for fusing multiple emotional modalities to improve the performance of the emotion recognition system. Three-channel forehead biosignals along with peripheral physiological measurements (blood volume pressure, skin conductance, and interbeat intervals) were utilized as emotional modalities. Six basic emotions, i.e., anger, sadness, fear, disgust, happiness, and surprise were elicited by displaying preselected video clips for each of the 25 participants in the experiment; the physiological signals were collected simultaneously. In our multimodal emotion recognition system, recorded signals with the formation of several classification units identified the emotions independently. Then the results were fused using the adaptive weighted linear model to produce the final result. Each classification unit is assigned a weight that is determined dynamically by considering the performance of the units during the testing phase and the training phase results. This dynamic weighting scheme enables the emotion recognition system to adapt itself to each new user. The results showed that the suggested method outperformed conventional fusion of the features and classification units using the majority voting method. In addition, a considerable improvement, compared to the systems that used the static weighting schemes for fusing classification units, was also shown. Using support vector machine (SVM) and k-nearest neighbors (KNN) classifiers, the overall classification accuracies of 84.7% and 80% were obtained in identifying the emotions, respectively. In addition, applying the forehead or physiological signals in the proposed scheme indicates that designing a reliable emotion recognition system is feasible without the need for additional emotional modalities.
Tu, Jia-Ying; Hsiao, Wei-De; Chen, Chih-Ying
2014-01-01
Testing techniques of dynamically substructured systems dissects an entire engineering system into parts. Components can be tested via numerical simulation or physical experiments and run synchronously. Additional actuator systems, which interface numerical and physical parts, are required within the physical substructure. A high-quality controller, which is designed to cancel unwanted dynamics introduced by the actuators, is important in order to synchronize the numerical and physical outputs and ensure successful tests. An adaptive forward prediction (AFP) algorithm based on delay compensation concepts has been proposed to deal with substructuring control issues. Although the settling performance and numerical conditions of the AFP controller are improved using new direct-compensation and singular value decomposition methods, the experimental results show that a linear dynamics-based controller still outperforms the AFP controller. Based on experimental observations, the least-squares fitting technique, effectiveness of the AFP compensation and differences between delay and ordinary differential equations are discussed herein, in order to reflect the fundamental issues of actuator modelling in relevant literature and, more specifically, to show that the actuator and numerical substructure are heterogeneous dynamic components and should not be collectively modelled as a homogeneous delay differential equation. PMID:25104902
Tu, Jia-Ying; Hsiao, Wei-De; Chen, Chih-Ying
2014-08-08
Testing techniques of dynamically substructured systems dissects an entire engineering system into parts. Components can be tested via numerical simulation or physical experiments and run synchronously. Additional actuator systems, which interface numerical and physical parts, are required within the physical substructure. A high-quality controller, which is designed to cancel unwanted dynamics introduced by the actuators, is important in order to synchronize the numerical and physical outputs and ensure successful tests. An adaptive forward prediction (AFP) algorithm based on delay compensation concepts has been proposed to deal with substructuring control issues. Although the settling performance and numerical conditions of the AFP controller are improved using new direct-compensation and singular value decomposition methods, the experimental results show that a linear dynamics-based controller still outperforms the AFP controller. Based on experimental observations, the least-squares fitting technique, effectiveness of the AFP compensation and differences between delay and ordinary differential equations are discussed herein, in order to reflect the fundamental issues of actuator modelling in relevant literature and, more specifically, to show that the actuator and numerical substructure are heterogeneous dynamic components and should not be collectively modelled as a homogeneous delay differential equation.
Modeling dynamics of adaptive complex systems: From gene regulatory networks to financial markets
NASA Astrophysics Data System (ADS)
Liu, Min
This dissertation aims to model the dynamics of two types of adaptive complex systems: gene regulatory networks and financial markets. In modeling gene regulatory networks, a dynamics-driven rewiring mechanism is introduced to Boolean networks and it is found that a critical state emerges spontaneously resulting from the interplay between topology and dynamics during evolution. For biologically realized network sizes, significant finite-size effects are observed. In networks of competing Boolean nodes, we find that in small networks, the evolutionary dynamics selects for input inverting functions rather than canalizing functions in infinitely large networks. It is found that finite sizes can cause symmetry breaking in the evolutionary dynamics. Using the Polya theorem, we show the number of the function classes increases to 46, in contrast to 14 in infinitely large networks, due to the reduced symmetry which matches our simulation results well. In addition, we find that an optimum amount of stochastic noise in the signals exchanged between nodes can result in maximum excess canalization. In modeling financial markets, we simulate a double-auction virtual market by utilizing reaction-diffusion processes to describe the dynamics of limit orders. We find that the log-returns produced have a dynamical scaling exponent of 1/4 and nonstationary, negatively autocorrelated increments. By investigating the microstructure of the virtual market, we find that the mean interarrival time between transactions satisfies an increasing power-law function of time. We propose an inhomogeneous compound Poisson process with a decreasing power-law intensity rate function and demonstrate that this purely jump process captures the essential macroscopic dynamics of the virtual market.
Turati, Pietro; Pedroni, Nicola; Zio, Enrico
2017-01-01
The end states reached by an engineered system during an accident scenario depend not only on the sequences of the events composing the scenario, but also on their timing and magnitudes. Including these additional features within an overarching framework can render the analysis infeasible in practical cases, due to the high dimension of the system state-space and the computational effort correspondingly needed to explore the possible system evolutions in search of the interesting (and very rare) ones of failure. To tackle this hurdle, in this article we introduce a framework for efficiently probing the space of event sequences of a dynamic system by means of a guided Monte Carlo simulation. Such framework is semi-automatic and allows embedding the analyst's prior knowledge about the system and his/her objectives of analysis. Specifically, the framework allows adaptively and intelligently allocating the simulation efforts preferably on those sequences leading to outcomes of interest for the objectives of the analysis, e.g., typically those that are more safety-critical (and/or rare). The emerging diversification in the filling of the state-space by the preference-guided exploration allows also the retrieval of critical system features, which can be useful to analysts and designers for taking appropriate means of prevention and mitigation of dangerous and/or unexpected consequences. A dynamic system for gas transmission is considered as a case study to demonstrate the application of the method.
Sahoo, Avimanyu; Jagannathan, Sarangapani
2017-02-01
In this paper, an event-driven stochastic adaptive dynamic programming (ADP)-based technique is introduced for nonlinear systems with a communication network within its feedback loop. A near optimal control policy is designed using an actor-critic framework and ADP with event sampled state vector. First, the system dynamics are approximated by using a novel neural network (NN) identifier with event sampled state vector. The optimal control policy is generated via an actor NN by using the NN identifier and value function approximated by a critic NN through ADP. The stochastic NN identifier, actor, and critic NN weights are tuned at the event sampled instants leading to aperiodic weight tuning laws. Above all, an adaptive event sampling condition based on estimated NN weights is designed by using the Lyapunov technique to ensure ultimate boundedness of all the closed-loop signals along with the approximation accuracy. The net result is event-driven stochastic ADP technique that can significantly reduce the computation and network transmissions. Finally, the analytical design is substantiated with simulation results.
NASA Technical Reports Server (NTRS)
Oakley, David R.; Knight, Norman F., Jr.
1994-01-01
A parallel adaptive dynamic relaxation (ADR) algorithm has been developed for nonlinear structural analysis. This algorithm has minimal memory requirements, is easily parallelizable and scalable to many processors, and is generally very reliable and efficient for highly nonlinear problems. Performance evaluations on single-processor computers have shown that the ADR algorithm is reliable and highly vectorizable, and that it is competitive with direct solution methods for the highly nonlinear problems considered. The present algorithm is implemented on the 512-processor Intel Touchstone DELTA system at Caltech, and it is designed to minimize the extent and frequency of interprocessor communication. The algorithm has been used to solve for the nonlinear static response of two and three dimensional hyperelastic systems involving contact. Impressive relative speedups have been achieved and demonstrate the high scalability of the ADR algorithm. For the class of problems addressed, the ADR algorithm represents a very promising approach for parallel-vector processing.
NASA Astrophysics Data System (ADS)
Sakata, Ren; Tomioka, Tazuko; Kobayashi, Takahiro
When a cognitive radio system dynamically utilizes a frequency band, channel control information must be communicated over the network in order for the currently available carrier frequencies to be shared. In order to keep efficient spectrum utilization, this control information should also be dynamically transmitted through channels such as cognitive pilot channels based on the channel conditions. If transmitters dynamically select carrier frequencies, receivers must receive the control signal without knowledge of its carrier frequencies. A novel scheme called differential code parallel transmission (DCPT) enables receivers to receive low-rate information without any knowledge of the carrier frequency. The transmitter simultaneously transmits two signals whose carrier frequencies are separated by a predefined value. The absolute values of the carrier frequencies can be varied. When the receiver receives the DCPT signal, it multiplies the signal by a frequency-shifted version of itself; this yields a DC component that represents the data signal, which is then demodulated. However, the multiplication process results in the noise power being squared, necessitating high received signal power. In this paper, to realize a bandpass filter that passes only DCPT signals of unknown frequency and that suppresses noise and interference at other frequencies, a DCPT-adaptive bandpass filter (ABF) that employs an adaptive equalizer is proposed. In the training phase, the received signal is the filter input and the frequency-shifted signal is the training input. Then, the filter is trained to pass the higher-frequency signal of the two DCPT signals. The performance of DCPT-ABF is evaluated through computer simulations. We find that DCPT-ABF operates successfully even under strong interference.
Dynamic Adaptive Runtime Systems for Advanced Multipole Method-based Science Achievement
NASA Astrophysics Data System (ADS)
Debuhr, Jackson; Anderson, Matthew; Sterling, Thomas; Zhang, Bo
2015-04-01
Multipole methods are a key computational kernel for a large class of scientific applications spanning multiple disciplines. Yet many of these applications are strong scaling constrained when using conventional programming practices. Hardware parallelism continues to grow, emphasizing medium and fine-grained thread parallelism rather than the coarse-grained process parallelism favored by conventional programming practices. Emerging, dynamic task management execution models can go beyond these conventional practices to significantly improve both efficiency and scalability for algorithms like multipole methods which exhibit irregular and time-varying execution properties. We present a new scientific library, DASHMM, built on the ParalleX HPX-5 runtime system, which explores the use of dynamic adaptive runtime techniques to improve scalability and efficiency for multipole-method based scientific computing. DASHMM allows application scientists to rapidly create custom, scalable, and efficient multipole methods, especially targeting the Fast Multipole Method and the Barnes-Hut N-body algorithm. After a discussion of the system and its goals, some application examples will be presented.
Research of Recurrent Dynamic Neural Networks for Adaptive Control of Complex Dynamic Systems
2010-07-08
Recognition 7.1. General description of experiment 7.2. Gesture recognition system on the base of single recurrent neural network 7.3. Experiment...results for gesture recognition system on the base of single recurrent neural network 7.4. Gesture recognition system on the base of multimodular...of non-linear effects increases an advantage of neurocontrol on linear control methods. 7. Experiments related to Gesture Recognition 7.1. General
Kumar, Rajesh; Srivastava, Smriti; Gupta, J R P
2017-03-01
In this paper adaptive control of nonlinear dynamical systems using diagonal recurrent neural network (DRNN) is proposed. The structure of DRNN is a modification of fully connected recurrent neural network (FCRNN). Presence of self-recurrent neurons in the hidden layer of DRNN gives it an ability to capture the dynamic behaviour of the nonlinear plant under consideration (to be controlled). To ensure stability, update rules are developed using lyapunov stability criterion. These rules are then used for adjusting the various parameters of DRNN. The responses of plants obtained with DRNN are compared with those obtained when multi-layer feed forward neural network (MLFFNN) is used as a controller. Also, in example 4, FCRNN is also investigated and compared with DRNN and MLFFNN. Robustness of the proposed control scheme is also tested against parameter variations and disturbance signals. Four simulation examples including one-link robotic manipulator and inverted pendulum are considered on which the proposed controller is applied. The results so obtained show the superiority of DRNN over MLFFNN as a controller.
Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems.
Liu, Derong; Wei, Qinglai
2014-03-01
This paper is concerned with a new discrete-time policy iteration adaptive dynamic programming (ADP) method for solving the infinite horizon optimal control problem of nonlinear systems. The idea is to use an iterative ADP technique to obtain the iterative control law, which optimizes the iterative performance index function. The main contribution of this paper is to analyze the convergence and stability properties of policy iteration method for discrete-time nonlinear systems for the first time. It shows that the iterative performance index function is nonincreasingly convergent to the optimal solution of the Hamilton-Jacobi-Bellman equation. It is also proven that any of the iterative control laws can stabilize the nonlinear systems. Neural networks are used to approximate the performance index function and compute the optimal control law, respectively, for facilitating the implementation of the iterative ADP algorithm, where the convergence of the weight matrices is analyzed. Finally, the numerical results and analysis are presented to illustrate the performance of the developed method.
Manor, Brad; Costa, Madalena D; Hu, Kun; Newton, Elizabeth; Starobinets, Olga; Kang, Hyun Gu; Peng, C K; Novak, Vera; Lipsitz, Lewis A
2010-12-01
The degree of multiscale complexity in human behavioral regulation, such as that required for postural control, appears to decrease with advanced aging or disease. To help delineate causes and functional consequences of complexity loss, we examined the effects of visual and somatosensory impairment on the complexity of postural sway during quiet standing and its relationship to postural adaptation to cognitive dual tasking. Participants of the MOBILIZE Boston Study were classified into mutually exclusive groups: controls [intact vision and foot somatosensation, n = 299, 76 ± 5 (SD) yr old], visual impairment only (<20/40 vision, n = 81, 77 ± 4 yr old), somatosensory impairment only (inability to perceive 5.07 monofilament on plantar halluxes, n = 48, 80 ± 5 yr old), and combined impairments (n = 25, 80 ± 4 yr old). Postural sway (i.e., center-of-pressure) dynamics were assessed during quiet standing and cognitive dual tasking, and a complexity index was quantified using multiscale entropy analysis. Postural sway speed and area, which did not correlate with complexity, were also computed. During quiet standing, the complexity index (mean ± SD) was highest in controls (9.5 ± 1.2) and successively lower in the visual (9.1 ± 1.1), somatosensory (8.6 ± 1.6), and combined (7.8 ± 1.3) impairment groups (P = 0.001). Dual tasking resulted in increased sway speed and area but reduced complexity (P < 0.01). Lower complexity during quiet standing correlated with greater absolute (R = -0.34, P = 0.002) and percent (R = -0.45, P < 0.001) increases in postural sway speed from quiet standing to dual-tasking conditions. Sensory impairments contributed to decreased postural sway complexity, which reflected reduced adaptive capacity of the postural control system. Relatively low baseline complexity may, therefore, indicate control systems that are more vulnerable to cognitive and other stressors.
Maximum-Likelihood Adaptive Filter for Partially Observed Boolean Dynamical Systems
NASA Astrophysics Data System (ADS)
Imani, Mahdi; Braga-Neto, Ulisses M.
2017-01-01
Partially-observed Boolean dynamical systems (POBDS) are a general class of nonlinear models with application in estimation and control of Boolean processes based on noisy and incomplete measurements. The optimal minimum mean square error (MMSE) algorithms for POBDS state estimation, namely, the Boolean Kalman filter (BKF) and Boolean Kalman smoother (BKS), are intractable in the case of large systems, due to computational and memory requirements. To address this, we propose approximate MMSE filtering and smoothing algorithms based on the auxiliary particle filter (APF) method from sequential Monte-Carlo theory. These algorithms are used jointly with maximum-likelihood (ML) methods for simultaneous state and parameter estimation in POBDS models. In the presence of continuous parameters, ML estimation is performed using the expectation-maximization (EM) algorithm; we develop for this purpose a special smoother which reduces the computational complexity of the EM algorithm. The resulting particle-based adaptive filter is applied to a POBDS model of Boolean gene regulatory networks observed through noisy RNA-Seq time series data, and performance is assessed through a series of numerical experiments using the well-known cell cycle gene regulatory model.
Value Iteration Adaptive Dynamic Programming for Optimal Control of Discrete-Time Nonlinear Systems.
Wei, Qinglai; Liu, Derong; Lin, Hanquan
2016-03-01
In this paper, a value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon undiscounted optimal control problems for discrete-time nonlinear systems. The present value iteration ADP algorithm permits an arbitrary positive semi-definite function to initialize the algorithm. A novel convergence analysis is developed to guarantee that the iterative value function converges to the optimal performance index function. Initialized by different initial functions, it is proven that the iterative value function will be monotonically nonincreasing, monotonically nondecreasing, or nonmonotonic and will converge to the optimum. In this paper, for the first time, the admissibility properties of the iterative control laws are developed for value iteration algorithms. It is emphasized that new termination criteria are established to guarantee the effectiveness of the iterative control laws. Neural networks are used to approximate the iterative value function and compute the iterative control law, respectively, for facilitating the implementation of the iterative ADP algorithm. Finally, two simulation examples are given to illustrate the performance of the present method.
Dynamic Adaption of Vascular Morphology
Okkels, Fridolin; Jacobsen, Jens Christian Brings
2012-01-01
The structure of vascular networks adapts continuously to meet changes in demand of the surrounding tissue. Most of the known vascular adaptation mechanisms are based on local reactions to local stimuli such as pressure and flow, which in turn reflects influence from the surrounding tissue. Here we present a simple two-dimensional model in which, as an alternative approach, the tissue is modeled as a porous medium with intervening sharply defined flow channels. Based on simple, physiologically realistic assumptions, flow-channel structure adapts so as to reach a configuration in which all parts of the tissue are supplied. A set of model parameters uniquely determine the model dynamics, and we have identified the region of the best-performing model parameters (a global optimum). This region is surrounded in parameter space by less optimal model parameter values, and this separation is characterized by steep gradients in the related fitness landscape. Hence it appears that the optimal set of parameters tends to localize close to critical transition zones. Consequently, while the optimal solution is stable for modest parameter perturbations, larger perturbations may cause a profound and permanent shift in systems characteristics. We suggest that the system is driven toward a critical state as a consequence of the ongoing parameter optimization, mimicking an evolutionary pressure on the system. PMID:23060814
Shkvarko, Yuriy; Tuxpan, José; Santos, Stewart
2011-01-01
We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the "model-free" variational analysis (VA)-based image enhancement approach and the "model-based" descriptive experiment design (DEED) regularization paradigm are unified into a new dynamic experiment design (DYED) regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA) regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations.
Dynamic optimization and adaptive controller design
NASA Astrophysics Data System (ADS)
Inamdar, S. R.
2010-10-01
In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.
Zhang, Jianhua; Yin, Zhong; Wang, Rubin
2017-01-01
This paper developed a cognitive task-load (CTL) classification algorithm and allocation strategy to sustain the optimal operator CTL levels over time in safety-critical human-machine integrated systems. An adaptive human-machine system is designed based on a non-linear dynamic CTL classifier, which maps a set of electroencephalogram (EEG) and electrocardiogram (ECG) related features to a few CTL classes. The least-squares support vector machine (LSSVM) is used as dynamic pattern classifier. A series of electrophysiological and performance data acquisition experiments were performed on seven volunteer participants under a simulated process control task environment. The participant-specific dynamic LSSVM model is constructed to classify the instantaneous CTL into five classes at each time instant. The initial feature set, comprising 56 EEG and ECG related features, is reduced to a set of 12 salient features (including 11 EEG-related features) by using the locality preserving projection (LPP) technique. An overall correct classification rate of about 80% is achieved for the 5-class CTL classification problem. Then the predicted CTL is used to adaptively allocate the number of process control tasks between operator and computer-based controller. Simulation results showed that the overall performance of the human-machine system can be improved by using the adaptive automation strategy proposed.
Zhang, Jianhua; Yin, Zhong; Wang, Rubin
2017-01-01
This paper developed a cognitive task-load (CTL) classification algorithm and allocation strategy to sustain the optimal operator CTL levels over time in safety-critical human-machine integrated systems. An adaptive human-machine system is designed based on a non-linear dynamic CTL classifier, which maps a set of electroencephalogram (EEG) and electrocardiogram (ECG) related features to a few CTL classes. The least-squares support vector machine (LSSVM) is used as dynamic pattern classifier. A series of electrophysiological and performance data acquisition experiments were performed on seven volunteer participants under a simulated process control task environment. The participant-specific dynamic LSSVM model is constructed to classify the instantaneous CTL into five classes at each time instant. The initial feature set, comprising 56 EEG and ECG related features, is reduced to a set of 12 salient features (including 11 EEG-related features) by using the locality preserving projection (LPP) technique. An overall correct classification rate of about 80% is achieved for the 5-class CTL classification problem. Then the predicted CTL is used to adaptively allocate the number of process control tasks between operator and computer-based controller. Simulation results showed that the overall performance of the human-machine system can be improved by using the adaptive automation strategy proposed. PMID:28367110
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2013-01-01
This paper presents the optimal control modification for linear uncertain plants. The Lyapunov analysis shows that the modification parameter has a limiting value depending on the nature of the uncertainty. The optimal control modification exhibits a linear asymptotic property that enables it to be analyzed in a linear time invariant framework for linear uncertain plants. The linear asymptotic property shows that the closed-loop plants in the limit possess a scaled input-output mapping. Using this property, we can derive an analytical closed-loop transfer function in the limit as the adaptive gain tends to infinity. The paper revisits the Rohrs counterexample problem that illustrates the nature of non-robustness of model-reference adaptive control in the presence of unmodeled dynamics. An analytical approach is developed to compute exactly the modification parameter for the optimal control modification that stabilizes the plant in the Rohrs counterexample. The linear asymptotic property is also used to address output feedback adaptive control for non-minimum phase plants with a relative degree 1.
Adaptive EAGLE dynamic solution adaptation and grid quality enhancement
NASA Technical Reports Server (NTRS)
Luong, Phu Vinh; Thompson, J. F.; Gatlin, B.; Mastin, C. W.; Kim, H. J.
1992-01-01
In the effort described here, the elliptic grid generation procedure in the EAGLE grid code was separated from the main code into a subroutine, and a new subroutine which evaluates several grid quality measures at each grid point was added. The elliptic grid routine can now be called, either by a computational fluid dynamics (CFD) code to generate a new adaptive grid based on flow variables and quality measures through multiple adaptation, or by the EAGLE main code to generate a grid based on quality measure variables through static adaptation. Arrays of flow variables can be read into the EAGLE grid code for use in static adaptation as well. These major changes in the EAGLE adaptive grid system make it easier to convert any CFD code that operates on a block-structured grid (or single-block grid) into a multiple adaptive code.
Blanco, Victor; Brown, Calum; Holzhauer, Sascha; Vulturius, Gregor; Rounsevell, Mark D A
2017-03-08
Adaptation is necessary to cope with or take advantage of the effects of climate change on socio-ecological systems. This is especially important in the forestry sector, which is sensitive to the ecological and economic impacts of climate change, and where the adaptive decisions of owners play out over long periods of time. Relatively little is known about how successful these decisions are likely to be in meeting demands for ecosystem services in an uncertain future. We explore adaptation to global change in the forestry sector using CRAFTY-Sweden; an agent-based model that represents large-scale land-use dynamics, based on the demand and supply of ecosystem services. Future impacts and adaptation within the Swedish forestry sector were simulated for scenarios of socio-economic change (Shared Socio-economic Pathways) and climatic change (Representative Concentration Pathways, for three climate models), between 2010 and 2100. Substantial differences were found in the competitiveness and coping ability of land owners implementing different management strategies through time. Generally, multi-objective management was found to provide the best basis for adaptation. Across large regions, however, a combination of management strategies was better at meeting ecosystem service demands. Results also show that adaptive capacity evolves through time in response to external (global) drivers and interactions between individual actors. This suggests that process-based models are more appropriate for the study of autonomous adaptation and future adaptive and coping capacities than models based on indicators, discrete time snapshots or exogenous proxies. Nevertheless, a combination of planned and autonomous adaptation by institutions and forest owners is likely to be more successful than either group acting alone.
Dewhirst, Oliver P; Angarita-Jaimes, Natalia; Simpson, David M; Allen, Robert; Newland, Philip L
2013-02-01
Nonlinear type system identification models coupled with white noise stimulation provide an experimentally convenient and quick way to investigate the often complex and nonlinear interactions between the mechanical and neural elements of reflex limb control systems. Previous steady state analysis has allowed the neurons in such systems to be categorised by their sensitivity to position, velocity or acceleration (dynamics) and has improved our understanding of network function. These neurons, however, are known to adapt their output amplitude or spike firing rate during repetitive stimulation and this transient response may be more important than the steady state response for reflex control. In the current study previously used system identification methods are developed and applied to investigate both steady state and transient dynamic and nonlinear changes in the neural circuit responsible for controlling reflex movements of the locust hind limbs. Through the use of a parsimonious model structure and Monte Carlo simulations we conclude that key system dynamics remain relatively unchanged during repetitive stimulation while output amplitude adaptation is occurring. Whilst some evidence of a significant change was found in parts of the systems nonlinear response, the effect was small and probably of little physiological relevance. Analysis using biologically more realistic stimulation reinforces this conclusion.
NASA Astrophysics Data System (ADS)
Wang, Ping; Jia, Yingmin
2015-10-01
This paper considers the adaptive containment control problem of second-order multi-agent systems with inherent nonlinear dynamics. In particular, the leaders' control inputs are nonzero, bounded, and not available to any follower. Based on the relative states among neighbouring agents, a discontinuous adaptive protocol is first proposed to ensure that the containment errors of each follower converge to zero asymptotically, i.e. the states of the followers asymptotically converge to the convex hull spanned by those of the leaders. To eliminate the chattering effect caused by the discontinuous protocol, a continuous adaptive protocol is further designed based on the boundary layer technique and the σ-modification technique. Numerical examples are provided to demonstrate the effectiveness of our theoretical results.
Karemere, Hermès; Ribesse, Nathalie; Kahindo, Jean-Bosco; Macq, Jean
2015-01-01
Introduction In many African countries, first referral hospitals received little attention from development agencies until recently. We report the evolution of two of them in an unstable region like Eastern Democratic Republic of Congo when receiving the support from development aid program. Specifically, we aimed at studying how actors’ network and institutional framework evolved over time and what could matter the most when looking at their performance in such an environment. Methods We performed two cases studies between 2006 and 2010. We used multiple sources of data: reports to document events; health information system for hospital services production, and “key-informants” interviews to interpret the relation between interventions and services production. Our analysis was inspired from complex adaptive system theory. It started from the analysis of events implementation, to explore interaction process between the main agents in each hospital, and the consequence it could have on hospital health services production. This led to the development of new theoretical propositions. Results Two events implemented in the frame of the development aid program were identified by most of the key-informants interviewed as having the greatest impact on hospital performance: the development of a hospital plan and the performance based financing. They resulted in contrasting interaction process between the main agents between the two hospitals. Two groups of services production were reviewed: consultation at outpatient department and admissions, and surgery. The evolution of both groups of services production were different between both hospitals. Conclusion By studying two first referral hospitals through the lens of a Complex Adaptive System, their performance in a context of development aid takes a different meaning. Success is not only measured through increased hospital production but through meaningful process of hospital agents’” network adaptation. Expected
Hoskins, M H; Kunz, R F; Bistline, J E; Dong, C
2009-07-01
A method for the computation of low Reynolds number dynamic blood cell systems is presented. The specific system of interest here is interaction between cancer cells and white blood cells in an experimental flow system. Fluid dynamics, structural mechanics, six-degree-of freedom motion control and surface biochemistry analysis components are coupled in the context of adaptive octree-based grid generation. Analytical and numerical verification of the quasi-steady assumption for the fluid mechanics is presented. The capabilities of the technique are demonstrated by presenting several three-dimensional cell system simulations, including the collision/interaction between a cancer cell and an endothelium adherent polymorphonuclear leukocyte (PMN) cell in a shear flow.
NASA Astrophysics Data System (ADS)
Hoskins, M. H.; Kunz, R. F.; Bistline, J. E.; Dong, C.
2009-07-01
A method for the computation of low-Reynolds number dynamic blood cell systems is presented. The specific system of interest here is interaction between cancer cells and white blood cells in an experimental flow system. Fluid dynamics, structural mechanics, six-degree-of-freedom motion control, and surface biochemistry analysis components are coupled in the context of adaptive octree-based grid generation. Analytical and numerical verification of the quasi-steady assumption for the fluid mechanics is presented. The capabilities of the technique are demonstrated by presenting several three-dimensional cell system simulations, including the collision/interaction between a cancer cell and an endothelium adherent polymorphonuclear leukocyte (PMN) cell in a shear flow.
Hu, Yinan; Albertson, R. Craig
2014-01-01
Adaptive variation in the craniofacial skeleton is a key component of resource specialization and habitat divergence in vertebrates, but the proximate genetic mechanisms that underlie complex patterns of craniofacial variation are largely unknown. Here we demonstrate that the Hedgehog (Hh) signaling pathway mediates widespread variation across a complex functional system that affects the kinematics of lower jaw depression—the opercular four-bar linkage apparatus—among Lake Malawi cichlids. By using a combined quantitative trait locus mapping and population genetics approach, we show that allelic variation in the Hh receptor, ptch1, affects the development of distinct bony elements in the head that represent two of three movable links in this functional system. The evolutionarily derived allele is found in species that feed from the water column, and is associated with shifts in anatomy that translate to a four-bar system capable of faster jaw rotation. Alternatively, the ancestral allele is found in species that feed on attached algae, and is associated with the development of a four-bar system that predicts slower jaw movement. Experimental manipulation of the Hh pathway during cichlid development recapitulates functionally salient natural variation in craniofacial geometry. In all, these results significantly extend our understanding of the mechanisms that fine-tune the craniofacial skeletal complex during adaptation to new foraging niches. PMID:24912175
Hu, Yinan; Albertson, R Craig
2014-06-10
Adaptive variation in the craniofacial skeleton is a key component of resource specialization and habitat divergence in vertebrates, but the proximate genetic mechanisms that underlie complex patterns of craniofacial variation are largely unknown. Here we demonstrate that the Hedgehog (Hh) signaling pathway mediates widespread variation across a complex functional system that affects the kinematics of lower jaw depression--the opercular four-bar linkage apparatus--among Lake Malawi cichlids. By using a combined quantitative trait locus mapping and population genetics approach, we show that allelic variation in the Hh receptor, ptch1, affects the development of distinct bony elements in the head that represent two of three movable links in this functional system. The evolutionarily derived allele is found in species that feed from the water column, and is associated with shifts in anatomy that translate to a four-bar system capable of faster jaw rotation. Alternatively, the ancestral allele is found in species that feed on attached algae, and is associated with the development of a four-bar system that predicts slower jaw movement. Experimental manipulation of the Hh pathway during cichlid development recapitulates functionally salient natural variation in craniofacial geometry. In all, these results significantly extend our understanding of the mechanisms that fine-tune the craniofacial skeletal complex during adaptation to new foraging niches.
Dynamics of some parameters of the endocrine and lymphatic systems in rats during cold adaptation
Borodin, Yu.I.; Sedova, L.A.; Selyatitskaya, V.G.; Shorin, Yu.P.
1986-02-01
This paper examines the combined behavior of the endocrine and lymphatic systems in rats at stages of long-term adaptation of the animals to moderate cold. After decapitation of male Wister rats, the corticosterone concentration in the blood plasma was determined by saturation analysis and serum levels of thyroxine (T/sub 4/) and triiodothyronine (T/sub 3/) were determined by radioimmunoassay. The thymus was weighed and the structure of the popliteal lymph nodes (LN) was studied in histological sections stained with hematoxylin and eosin and with azure II-eosin. Morphometry of the structural components of LN was undertaken and the numbers of the various cell forms per 1000 cells were counted in different zones of LN. The increase in activity of the lymphoid tissue in the phase of adaptation may be connected with intensification of the peripheral action of thyroid hormones. During long-term adaptation, in the phase of consistently increased specific resistance, a new type of endocrine-lymphoid relation is formed, and it differs significantly both in the original state and in the acute phase of stress.
NASA Astrophysics Data System (ADS)
Luo, Shaohua; Hou, Zhiwei; Zhang, Tao
2016-09-01
This paper addresses chaos suppression of the mechanical centrifugal flywheel governor system with output constraint and fully unknown parameters via adaptive dynamic surface control. To have a certain understanding of chaotic nature of the mechanical centrifugal flywheel governor system and subsequently design its controller, the useful tools like the phase diagrams and corresponding time histories are employed. By using tangent barrier Lyapunov function, a dynamic surface control scheme with neural network and tracking differentiator is developed to transform chaos oscillation into regular motion and the output constraint rule is not broken in whole process. Plugging second-order tracking differentiator into chaos controller tackles the "explosion of complexity" of backstepping and improves the accuracy in contrast with the first-order filter. Meanwhile, Chebyshev neural network with adaptive law whose input only depends on a subset of Chebyshev polynomials is derived to learn the behavior of unknown dynamics. The boundedness of all signals of the closed-loop system is verified in stability analysis. Finally, the results of numerical simulations illustrate effectiveness and exhibit the superior performance of the proposed scheme by comparing with the existing ADSC method.
NASA Astrophysics Data System (ADS)
Ali-Bey, Mohamed; Moughamir, Saïd; Manamanni, Noureddine
2011-12-01
in this paper a simulator of a multi-view shooting system with parallel optical axes and structurally variable configuration is proposed. The considered system is dedicated to the production of 3D contents for auto-stereoscopic visualization. The global shooting/viewing geometrical process, which is the kernel of this shooting system, is detailed and the different viewing, transformation and capture parameters are then defined. An appropriate perspective projection model is afterward derived to work out a simulator. At first, this latter is used to validate the global geometrical process in the case of a static configuration. Next, the simulator is used to show the limitations of a static configuration of this shooting system type by considering the case of dynamic scenes and then a dynamic scheme is achieved to allow a correct capture of this kind of scenes. After that, the effect of the different geometrical capture parameters on the 3D rendering quality and the necessity or not of their adaptation is studied. Finally, some dynamic effects and their repercussions on the 3D rendering quality of dynamic scenes are analyzed using error images and some image quantization tools. Simulation and experimental results are presented throughout this paper to illustrate the different studied points. Some conclusions and perspectives end the paper. [Figure not available: see fulltext.
A knowledge-based approach to identification and adaptation in dynamical systems control
NASA Technical Reports Server (NTRS)
Glass, B. J.; Wong, C. M.
1988-01-01
Artificial intelligence techniques are applied to the problems of model form and parameter identification of large-scale dynamic systems. The object-oriented knowledge representation is discussed in the context of causal modeling and qualitative reasoning. Structured sets of rules are used for implementing qualitative component simulations, for catching qualitative discrepancies and quantitative bound violations, and for making reconfiguration and control decisions that affect the physical system. These decisions are executed by backward-chaining through a knowledge base of control action tasks. This approach was implemented for two examples: a triple quadrupole mass spectrometer and a two-phase thermal testbed. Results of tests with both of these systems demonstrate that the software replicates some or most of the functionality of a human operator, thereby reducing the need for a human-in-the-loop in the lower levels of control of these complex systems.
Automated adaptive inference of phenomenological dynamical models
NASA Astrophysics Data System (ADS)
Daniels, Bryan C.; Nemenman, Ilya
2015-08-01
Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved.
Automated adaptive inference of phenomenological dynamical models
Daniels, Bryan C.; Nemenman, Ilya
2015-01-01
Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved. PMID:26293508
Mu, Chaoxu; Ni, Zhen; Sun, Changyin; He, Haibo
2016-04-22
A data-driven adaptive tracking control approach is proposed for a class of continuous-time nonlinear systems using a recent developed goal representation heuristic dynamic programming (GrHDP) architecture. The major focus of this paper is on designing a multivariable tracking scheme, including the filter-based action network (FAN) architecture, and the stability analysis in continuous-time fashion. In this design, the FAN is used to observe the system function, and then generates the corresponding control action together with the reference signals. The goal network will provide an internal reward signal adaptively based on the current system states and the control action. This internal reward signal is assigned as the input for the critic network, which approximates the cost function over time. We demonstrate its improved tracking performance in comparison with the existing heuristic dynamic programming (HDP) approach under the same parameter and environment settings. The simulation results of the multivariable tracking control on two examples have been presented to show that the proposed scheme can achieve better control in terms of learning speed and overall performance.
Ratliff, Eric A.; Kaduri, Pamela; Masao, Frank; Mbwambo, Jessie K.K.; McCurdy, Sheryl A.
2016-01-01
Contrary to popular belief, policies on drug use are not always based on scientific evidence or composed in a rational manner. Rather, decisions concerning drug policies reflect the negotiation of actors’ ambitions, values, and facts as they organize in different ways around the perceived problems associated with illicit drug use. Drug policy is thus best represented as a complex adaptive system (CAS) that is dynamic, self-organizing, and coevolving. In this analysis, we use a CAS framework to examine how harm reduction emerged around heroin trafficking and use in Tanzania over the past thirty years (1985-present). This account is an organizational ethnography based on of the observant participation of the authors as actors within this system. We review the dynamic history and self-organizing nature of harm reduction, noting how interactions among system actors and components have coevolved with patterns of heroin us, policing, and treatment activities over time. Using a CAS framework, we describe harm reduction as a complex process where ambitions, values, facts, and technologies interact in the Tanzanian socio-political environment. We review the dynamic history and self-organizing nature of heroin policies, noting how the interactions within and between competing prohibitionist and harm reduction policies have changed with patterns of heroin use, policing, and treatment activities over time. Actors learn from their experiences to organize with other actors, align their values and facts, and implement new policies. Using a CAS approach provides researchers and policy actors a better understanding of patterns and intricacies in drug policy. This knowledge of how the system works can help improve the policy process through adaptive action to introduce new actors, different ideas, and avenues for communication into the system. PMID:26790689
Ratliff, Eric A; Kaduri, Pamela; Masao, Frank; Mbwambo, Jessie K K; McCurdy, Sheryl A
2016-04-01
Contrary to popular belief, policies on drug use are not always based on scientific evidence or composed in a rational manner. Rather, decisions concerning drug policies reflect the negotiation of actors' ambitions, values, and facts as they organize in different ways around the perceived problems associated with illicit drug use. Drug policy is thus best represented as a complex adaptive system (CAS) that is dynamic, self-organizing, and coevolving. In this analysis, we use a CAS framework to examine how harm reduction emerged around heroin trafficking and use in Tanzania over the past thirty years (1985-present). This account is an organizational ethnography based on of the observant participation of the authors as actors within this system. We review the dynamic history and self-organizing nature of harm reduction, noting how interactions among system actors and components have coevolved with patterns of heroin us, policing, and treatment activities over time. Using a CAS framework, we describe harm reduction as a complex process where ambitions, values, facts, and technologies interact in the Tanzanian sociopolitical environment. We review the dynamic history and self-organizing nature of heroin policies, noting how the interactions within and between competing prohibitionist and harm reduction policies have changed with patterns of heroin use, policing, and treatment activities over time. Actors learn from their experiences to organize with other actors, align their values and facts, and implement new policies. Using a CAS approach provides researchers and policy actors a better understanding of patterns and intricacies in drug policy. This knowledge of how the system works can help improve the policy process through adaptive action to introduce new actors, different ideas, and avenues for communication into the system.
An adaptive streamline diffusion finite element method for hyperbolic systems in gas dynamics
NASA Astrophysics Data System (ADS)
Zhou, Guohui
1992-09-01
The paintwise error analysis of the streamline diffusion method for two dimensional stationary problem with constant coefficients is extended to the time dependent problem. The purpose of the study is to justify a local mesh refinement strategy. The one dimensional Euler equations coming from the shock tube and Riemann's problem in gas dynamics are used. The gas is assumed to be at rest on both sides of the membrane, with pressure and density different on each side. The case where the problem is scalar and linear is discussed. Linear systems of hyperbolic type in one space variable and nonlinear scalar problems are studied.
NASA Astrophysics Data System (ADS)
Weber, J.; Domenico, B.; Chiswell, S.; Baltzer, T.
2005-12-01
The problems monitoring, predicting, and responding to coastal inundation and inland flooding situations are inherently multidisciplinary. Predicting precipitation and streamflow require expertise in meteorology and hydrology. Oceanography also enters the picture in the cases where the severe storm occurs in a coastal area. Appropriate responses to such natural hazards requires integration of infrastructure and demographics data systems associated with the societal impacts community. Building and disseminating a system that will address this problem in a comprehensive and coherent manner can only be done by a team with the a broad range of technological and scientific expertise and community connections. Efforts are underway to develop interoperable data systems among the atmospheric science, hydrology, coastal oceans, and societal impacts communities, so they may conveniently and rapidly share data among their systems in cases where hazardous events threaten infrastructure and human health. The basic approach is to build on a dynamically adaptive data access and high resolution, local forecasting system being developed for the LEAD (Linked Environments for Atmospheric Discovery) project. At present, the LEAD technology is confined to local weather forecasts automatically steered by algorithms analyzing data from national forecasts. But efforts are underway to develop an expanded team that would include expertise in coupling atmospheric forecast models with hydrological and storm surge forecast models and, in turn, to coordinate those data systems with those of the GIS (Geographic Information System) community which contain most of the demographic and infrastructure information related to societal impacts. The paper will provide an update on the status of these efforts and a demonstration of how such a dynamically adaptive forecasting system focused high resolution local forecast model runs on Hurricane Katrina.
Dynamic patterns of adaptive radiation.
Gavrilets, Sergey; Vose, Aaron
2005-12-13
Adaptive radiation is defined as the evolution of ecological and phenotypic diversity within a rapidly multiplying lineage. When it occurs, adaptive radiation typically follows the colonization of a new environment or the establishment of a "key innovation," which opens new ecological niches and/or new paths for evolution. Here, we take advantage of recent developments in speciation theory and modern computing power to build and explore a large-scale, stochastic, spatially explicit, individual-based model of adaptive radiation driven by adaptation to multidimensional ecological niches. We are able to model evolutionary dynamics of populations with hundreds of thousands of sexual diploid individuals over a time span of 100,000 generations assuming realistic mutation rates and allowing for genetic variation in a large number of both selected and neutral loci. Our results provide theoretical support and explanation for a number of empirical patterns including "area effect," "overshooting effect," and "least action effect," as well as for the idea of a "porous genome." Our findings suggest that the genetic architecture of traits involved in the most spectacular radiations might be rather simple. We show that a great majority of speciation events are concentrated early in the phylogeny. Our results emphasize the importance of ecological opportunity and genetic constraints in controlling the dynamics of adaptive radiation.
The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system.
Vonk, Freek J; Casewell, Nicholas R; Henkel, Christiaan V; Heimberg, Alysha M; Jansen, Hans J; McCleary, Ryan J R; Kerkkamp, Harald M E; Vos, Rutger A; Guerreiro, Isabel; Calvete, Juan J; Wüster, Wolfgang; Woods, Anthony E; Logan, Jessica M; Harrison, Robert A; Castoe, Todd A; de Koning, A P Jason; Pollock, David D; Yandell, Mark; Calderon, Diego; Renjifo, Camila; Currier, Rachel B; Salgado, David; Pla, Davinia; Sanz, Libia; Hyder, Asad S; Ribeiro, José M C; Arntzen, Jan W; van den Thillart, Guido E E J M; Boetzer, Marten; Pirovano, Walter; Dirks, Ron P; Spaink, Herman P; Duboule, Denis; McGlinn, Edwina; Kini, R Manjunatha; Richardson, Michael K
2013-12-17
Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection.
Berg, Ronan M G; Plovsing, Ronni R; Bailey, Damian M; Holstein-Rathlou, Niels-Henrik; Møller, Kirsten
2015-07-01
Vasopressor support is used widely for maintaining vital organ perfusion pressure in septic shock, with implications for dynamic cerebral autoregulation (dCA). This study investigated whether a noradrenaline-induced steady state increase in mean arterial blood pressure (MAP) would enhance dCA following lipopolysaccharide (LPS) infusion, a human-experimental model of the systemic inflammatory response during early sepsis. The dCA in eight healthy males was examined prior to and during an intended noradrenaline-induced MAP increase of approximately 30 mmHg. This was performed at baseline and repeated after a 4-h intravenous LPS infusion. The assessments of dCA were based on transfer function analysis of spontaneous oscillations between MAP and middle cerebral artery blood flow velocity measured by transcranial Doppler ultrasound in the low frequency range (0.07-0.20 Hz). Prior to LPS, noradrenaline administration was associated with a decrease in gain (1.18 (1.12-1.35) vs 0.93 (0.87-0.97) cm/mmHg per s; P < 0.05) with no effect on phase (0.71 (0.93-0.66) vs 0.94 (0.81-1.10) radians; P = 0.58). After LPS, noradrenaline administration changed neither gain (0.91 (0.85-1.01) vs 0.87 (0.81-0.97) cm/mmHg per s; P = 0.46) nor phase (1.10 (1.04-1.30) vs 1.37 (1.23-1.51) radians; P = 0.64). The improvement of dCA to a steady state increase in MAP is attenuated during an LPS-induced systemic inflammatory response. This may suggest that vasopressor treatment with noradrenaline offers no additional neuroprotective effect by enhancing dCA in patients with early sepsis.
Hwang, Chih-Lyang; Jan, Chau
2016-02-01
At the beginning, an approximate nonlinear autoregressive moving average (NARMA) model is employed to represent a class of multivariable nonlinear dynamic systems with time-varying delay. It is known that the disadvantages of robust control for the NARMA model are as follows: 1) suitable control parameters for larger time delay are more sensitive to achieving desirable performance; 2) it only deals with bounded uncertainty; and 3) the nominal NARMA model must be learned in advance. Due to the dynamic feature of the NARMA model, a recurrent neural network (RNN) is online applied to learn it. However, the system performance becomes deteriorated due to the poor learning of the larger variation of system vector functions. In this situation, a simple network is employed to compensate the upper bound of the residue caused by the linear parameterization of the approximation error of RNN. An e -modification learning law with a projection for weight matrix is applied to guarantee its boundedness without persistent excitation. Under suitable conditions, the semiglobally ultimately bounded tracking with the boundedness of estimated weight matrix is obtained by the proposed RNN-based multivariable adaptive control. Finally, simulations are presented to verify the effectiveness and robustness of the proposed control.
Extensible Systems Dynamics Framework
2008-04-01
pedigree information across communities-of-interest and across network boundaries. 15. SUBJECT TERMS Ptolemy II, Systems Dynamics, PMESII, National...3 4.2 ADAPT THE PTOLEMY II FRAMEWORK TO ENSURE A WELL-SUITED MODELING...report of activities in the Extensible Systems Dynamics Framework project performed by the Ptolemy Project, University of California, Berkeley for
Adaptive Dynamic Event Tree in RAVEN code
Alfonsi, Andrea; Rabiti, Cristian; Mandelli, Diego; Cogliati, Joshua Joseph; Kinoshita, Robert Arthur
2014-11-01
RAVEN is a software tool that is focused on performing statistical analysis of stochastic dynamic systems. RAVEN has been designed in a high modular and pluggable way in order to enable easy integration of different programming languages (i.e., C++, Python) and coupling with other applications (system codes). Among the several capabilities currently present in RAVEN, there are five different sampling strategies: Monte Carlo, Latin Hyper Cube, Grid, Adaptive and Dynamic Event Tree (DET) sampling methodologies. The scope of this paper is to present a new sampling approach, currently under definition and implementation: an evolution of the DET me
Driver Adaptive Warning Systems
1998-03-01
this threshold, an alarm is triggered. Since TLC based systems can have user defined thresholds, a warning can be given as early as desired. However, the...Driver Adaptive Warning Systems Thesis Proposal Parag H. Batavia CMU-RI-TR-98-07 The Robotics Institute Carnegie Mellon University Pittsburgh...control number. 1. REPORT DATE MAR 1998 2. REPORT TYPE 3. DATES COVERED 00-00-1998 to 00-00-1998 4. TITLE AND SUBTITLE Driver Adaptive Warning
Architecture for Adaptive Intelligent Systems
NASA Technical Reports Server (NTRS)
Hayes-Roth, Barbara
1993-01-01
We identify a class of niches to be occupied by 'adaptive intelligent systems (AISs)'. In contrast with niches occupied by typical AI agents, AIS niches present situations that vary dynamically along several key dimensions: different combinations of required tasks, different configurations of available resources, contextual conditions ranging from benign to stressful, and different performance criteria. We present a small class hierarchy of AIS niches that exhibit these dimensions of variability and describe a particular AIS niche, ICU (intensive care unit) patient monitoring, which we use for illustration throughout the paper. We have designed and implemented an agent architecture that supports all of different kinds of adaptation by exploiting a single underlying theoretical concept: An agent dynamically constructs explicit control plans to guide its choices among situation-triggered behaviors. We illustrate the architecture and its support for adaptation with examples from Guardian, an experimental agent for ICU monitoring.
NASA Technical Reports Server (NTRS)
Griffin, Brian Joseph; Burken, John J.; Xargay, Enric
2010-01-01
This paper presents an L(sub 1) adaptive control augmentation system design for multi-input multi-output nonlinear systems in the presence of unmatched uncertainties which may exhibit significant cross-coupling effects. A piecewise continuous adaptive law is adopted and extended for applicability to multi-input multi-output systems that explicitly compensates for dynamic cross-coupling. In addition, explicit use of high-fidelity actuator models are added to the L1 architecture to reduce uncertainties in the system. The L(sub 1) multi-input multi-output adaptive control architecture is applied to the X-29 lateral/directional dynamics and results are evaluated against a similar single-input single-output design approach.
NEEDS - Information Adaptive System
NASA Technical Reports Server (NTRS)
Kelly, W. L.; Benz, H. F.; Meredith, B. D.
1980-01-01
The Information Adaptive System (IAS) is an element of the NASA End-to-End Data System (NEEDS) Phase II and is focused toward onboard image processing. The IAS is a data preprocessing system which is closely coupled to the sensor system. Some of the functions planned for the IAS include sensor response nonuniformity correction, geometric correction, data set selection, data formatting, packetization, and adaptive system control. The inclusion of these sensor data preprocessing functions onboard the spacecraft will significantly improve the extraction of information from the sensor data in a timely and cost effective manner, and provide the opportunity to design sensor systems which can be reconfigured in near real-time for optimum performance. The purpose of this paper is to present the preliminary design of the IAS and the plans for its development.
Emerging hierarchies in dynamically adapting webs
NASA Astrophysics Data System (ADS)
Katifori, Eleni; Graewer, Johannes; Magnasco, Marcelo; Modes, Carl
Transport networks play a key role across four realms of eukaryotic life: slime molds, fungi, plants, and animals. In addition to the developmental algorithms that build them, many also employ adaptive strategies to respond to stimuli, damage, and other environmental changes. We model these adapting network architectures using a generic dynamical system on weighted graphs and find in simulation that these networks ultimately develop a hierarchical organization of the final weighted architecture accompanied by the formation of a system-spanning backbone. We quantify the hierarchical organization of the networks by developing an algorithm that decomposes the architecture to multiple scales and analyzes how the organization in each scale relates to that of the scale above and below it. The methodologies developed in this work are applicable to a wide range of systems including the slime mold physarum polycephalum, human microvasculature, and force chains in granular media.
NASA Astrophysics Data System (ADS)
Acar, M. A.; Yilmaz, C.
2013-01-01
In this study, a new adaptive-passive dynamic vibration absorber design is discussed. The proposed design is composed of a string under variable tension with a central mass attachment as an undamped dynamic vibration absorber (DVA), a negative stiffness mechanism as a string tension adjustment aid and a tuning controller to make it adaptive. The dependency of the natural frequencies of this system on the string tension is determined analytically and verified using the finite element method. It is analytically shown that with the help of a negative stiffness element, the tuning force requirement is almost zero throughout the whole operation range. A string tension adjustment algorithm is proposed, which tunes the DVA system depending on the magnitude and frequency of the most dominant component of the vibration signal. Finally, a prototype of the system is built and a series of experiments are conducted on the prototype that validate the analytical and numerical calculations.
Keshavarz, M; Mojra, A
2015-11-01
Accurate identification of breast tissue's dynamic behavior in physical examination is critical to successful diagnosis and treatment. In this study a model reference adaptive system identification (MRAS) algorithm is utilized to estimate the dynamic behavior of breast tissue from mechanical stress-strain datasets. A robot-assisted device (Robo-Tac-BMI) is going to mimic physical palpation on a 45 year old woman having a benign mass in the left breast. Stress-strain datasets will be collected over 14 regions of both breasts in a specific period of time. Then, a 2nd order linear model is adapted to the experimental datasets. It was confirmed that a unique dynamic model with maximum error about 0.89% is descriptive of the breast tissue behavior meanwhile mass detection may be achieved by 56.1% difference from the normal tissue.
Sampayan, Stephen E.
2016-11-22
Apparatus, systems, and methods that provide an X-ray interrogation system having a plurality of stationary X-ray point sources arranged to substantially encircle an area or space to be interrogated. A plurality of stationary detectors are arranged to substantially encircle the area or space to be interrogated, A controller is adapted to control the stationary X-ray point sources to emit X-rays one at a time, and to control the stationary detectors to detect the X-rays emitted by the stationary X-ray point sources.
NASA Astrophysics Data System (ADS)
Enemark, Søren; Santos, Ilmar F.
2016-05-01
Helical pseudoelastic shape memory alloy (SMA) springs are integrated into a dynamic system consisting of a rigid rotor supported by passive magnetic bearings. The aim is to determine the utility of SMAs for vibration attenuation via their mechanical hysteresis, and for adaptation of the dynamic behaviour via their temperature dependent stiffness properties. The SMA performance, in terms of vibration attenuation and adaptability, is compared to a benchmark configuration of the system having steel springs instead of SMA springs. A theoretical multidisciplinary approach is used to quantify the weakly nonlinear coupled dynamics of the rotor-bearing system. The nonlinear forces from the thermo-mechanical shape memory alloy springs and from the passive magnetic bearings are coupled to the rotor and bearing housing dynamics. The equations of motion describing rotor tilt and bearing housing lateral motion are solved in the time domain. The SMA behaviour is also described by the complex modulus to form approximative equations of motion, which are solved in the frequency domain using continuation techniques. Transient responses, ramp-ups and steady-state frequency responses of the system are investigated experimentally and numerically. By using the proper SMA temperature, vibration reductions up to around 50 percent can be achieved using SMAs instead of steel. Regarding system adaptability, both the critical speeds, the mode shapes and the modes' sensitivity to disturbances (e.g. imbalance) highly depend on the SMA temperature. Examples show that vibration reduction at constant rotational speeds up to around 75 percent can be achieved by changing the SMA temperature, primarily because of stiffness change, whereas hysteresis only limits large vibrations. The model is able to capture and explain the experimental dynamic behaviour.
Systems With Emergent Dynamics
NASA Astrophysics Data System (ADS)
Stewart, Ian
2002-09-01
Evolutionary biologists often reject deterministic models of evolutionary processes because they equate `deterministic' with `goal-seeking', and have learned the hard way not to trust goal-seeking explanations of evolutionary adaptations. On the other hand, the general theory of dynamical systems potentially has much to offer for evolutionary biology— for example, as a resolution of the conflict between gradualism and punctuated equilibrium. The concept of a system with emergent dynamics retains the deterministic nature of dynamical systems, while eliminating any goal-seeking interpretation. Define an emergent property of a complex system to be a property whose computation from the entity-level rules of the system is intractable (in some reasonable sense). Say that a dynamical system has emergent dynamics if the computation of trajectories is intractable. Then systems with emergent dynamics are deterministic but not goal-seeking. As such, they offer a sensible way to use dynamical systems as models for evolutionary processes in biology, and in other areas. We discuss these issues and examine a few simple aspects of emergence in dynamical systems.
Andrade, Gizely N; Butler, John S; Mercier, Manuel R; Molholm, Sophie; Foxe, John J
2015-04-01
When sensory inputs are presented serially, response amplitudes to stimulus repetitions generally decrease as a function of presentation rate, diminishing rapidly as inter-stimulus intervals (ISIs) fall below 1 s. This 'adaptation' is believed to represent mechanisms by which sensory systems reduce responsivity to consistent environmental inputs, freeing resources to respond to potentially more relevant inputs. While auditory adaptation functions have been relatively well characterized, considerably less is known about visual adaptation in humans. Here, high-density visual-evoked potentials (VEPs) were recorded while two paradigms were used to interrogate visual adaptation. The first presented stimulus pairs with varying ISIs, comparing VEP amplitude to the second stimulus with that of the first (paired-presentation). The second involved blocks of stimulation (N = 100) at various ISIs and comparison of VEP amplitude between blocks of differing ISIs (block-presentation). Robust VEP modulations were evident as a function of presentation rate in the block-paradigm, with strongest modulations in the 130-150 ms and 160-180 ms visual processing phases. In paired-presentations, with ISIs of just 200-300 ms, an enhancement of VEP was evident when comparing S2 with S1, with no significant effect of presentation rate. Importantly, in block-presentations, adaptation effects were statistically robust at the individual participant level. These data suggest that a more taxing block-presentation paradigm is better suited to engage visual adaptation mechanisms than a paired-presentation design. The increased sensitivity of the visual processing metric obtained in the block-paradigm has implications for the examination of visual processing deficits in clinical populations.
NASA Astrophysics Data System (ADS)
Archer-Zhang, Christian Chunzi; Foster, Warren B.; Downey, Ryan D.; Arrasmith, Christopher L.; Dickensheets, David L.
2016-12-01
Active optics such as deformable mirrors can be used to control both focal depth and aberrations during scanning laser microscopy. If the focal depth can be changed dynamically during scanning, then imaging of oblique surfaces becomes possible. If aberrations can be corrected dynamically during scanning, an image can be optimized throughout the field of view. Here, we characterize the speed and dynamic precision of a Boston Micromachines Corporation Multi-DM 140 element aberration correction mirror and a Revibro Optics 4-zone focus control mirror to assess suitability for use in an active and adaptive two-photon microscope. Tests for the multi-DM include both step response and sinusoidal frequency sweeps of specific Zernike modes (defocus, spherical aberration, coma, astigmatism, and trefoil). We find wavefront error settling times for mode amplitude steps as large as 400 nm to be less than 52 μs, with 3 dB frequencies ranging from 6.5 to 10 kHz. The Revibro Optics mirror was tested for step response only, with wavefront error settling time less than 80 μs for defocus steps up to 3000 nm, and less than 45 μs for spherical aberration steps up to 600 nm. These response speeds are sufficient for intrascan correction at scan rates typical of two-photon microscopy.
Andrade, Gizely N.; Butler, John S.; Mercier, Manuel R.; Molholm, Sophie; Foxe, John J.
2015-01-01
When sensory inputs are presented serially, response amplitudes to stimulus repetitions generally decrease as a function of presentation rate, diminishing rapidly as inter-stimulus-intervals (ISIs) fall below a second. This “adaptation” is believed to represent mechanisms by which sensory systems reduce responsivity to consistent environmental inputs, freeing resources to respond to potentially more relevant inputs. While auditory adaptation functions have been relatively well-characterized, considerably less is known about visual adaptation in humans. Here, high-density visual evoked potentials (VEPs) were recorded while two paradigms were used to interrogate visual adaptation. The first presented stimulus pairs with varying ISIs, comparing VEP amplitude to the second stimulus to that of the first (paired-presentation). The second involved blocks of stimulation (N=100) at various ISIs and comparison of VEP amplitude between blocks of differing ISIs (block-presentation). Robust VEP modulations were evident as a function of presentation rate in the block-paradigm with strongest modulations in the 130–150ms and 160–180ms visual processing phases. In paired-presentations, with ISIs of just 200–300 ms, an enhancement of VEP was evident when comparing S2 to S1, with no significant effect of presentation rate. Importantly, in block-presentations, adaptation effects were statistically robust at the individual participant level. These data suggest that a more taxing block-presentation paradigm is better suited to engage visual adaptation mechanisms than a paired-presentation design. The increased sensitivity of the visual processing metric obtained in the block-paradigm has implications for the examination of visual processing deficits in clinical populations. PMID:25688539
Luo, Shaohua; Hou, Zhiwei; Chen, Zhong
2015-12-15
In this paper, chaos control is proposed for the output- constrained system with uncertain control gain and time delay and is applied to the brushless DC motor. Using the dynamic surface technology, the controller overcomes the repetitive differentiation of backstepping and boundedness hypothesis of pre-determined control gain by incorporating radial basis function neural network and adaptive technology. The tangent barrier Lyapunov function is employed for time-delay chaotic system to prevent constraint violation. It is proved that the proposed control approach can guarantee asymptotically stable in the sense of uniformly ultimate boundedness without constraint violation. Finally, the effectiveness of the proposed approach is demonstrated on the brushless DC motor example.
NASA Astrophysics Data System (ADS)
Luo, Shaohua; Hou, Zhiwei; Chen, Zhong
2015-12-01
In this paper, chaos control is proposed for the output- constrained system with uncertain control gain and time delay and is applied to the brushless DC motor. Using the dynamic surface technology, the controller overcomes the repetitive differentiation of backstepping and boundedness hypothesis of pre-determined control gain by incorporating radial basis function neural network and adaptive technology. The tangent barrier Lyapunov function is employed for time-delay chaotic system to prevent constraint violation. It is proved that the proposed control approach can guarantee asymptotically stable in the sense of uniformly ultimate boundedness without constraint violation. Finally, the effectiveness of the proposed approach is demonstrated on the brushless DC motor example.
NASA Astrophysics Data System (ADS)
Lai, Olivier; Ménard, François; Cuillandre, Jean-Charles
2003-02-01
Rethinking the efficient use of 4m-class telescopes in the dawning era of larger facilities is a timely but challenging debate. The extensive use of PUEO for imaging (and now spectroscopy) has kept CFHT at the forefront of scientific research with adaptive optics since its commissioning in 1996. Even though larger facilities are now starting to think about ways of implementing high order AO systems, we believe the medium size of the CFHT and the excellent quality of our site on Mauna Kea is a perfect combination to reach the highest performances with a high order AO system. The fields of application of high order adaptive optics are exciting: They include extremely high contrast imaging and coronography in the near-infrared and diffraction-limited imaging in the optical, with the corresponding gain in angular resolution. Specific science examples are described in and adjacent paper (Menard et al, these proceedings (4839-133)), and planned instrumentation in the form of four quadrant coronograph or existing dual (or triple) wavelength imagers (such as TRIDENT) would benefit tremendously from >90% Strehl ratios in the K band. Simulations of a high order (104 electrodes) curvature system have been performed and produce the required performance and are presented in an adjacent paper (Lai & Craven-Bartle, (4860-28)). Technologically, the system is quite simple and re-uses most of the opto-mechanics of the existing PUEO. Deformable mirrors and real time computers are well within existing (and commercially available) specifications. An innovative solution of using a dedicated low read noise CCD camera (specifically for curvature systems) overcomes the potential cost drawbacks of using avalanche photo-diodes (APDs). This detector is described in detail in an adjacent paper (Cuillandre et al, these proceedings (4839-31)).
Adaptive Networks Foundations: Modeling, Dynamics, and Applications
2013-02-13
22-Mar. 2, 2012. • Shaw, L.B., Long, Y., and Gross, T. Simultaneous spread of infection and information in adaptive networks. Casablanca ...International Workshop on Mathematical Biology, Casablanca , Morocco, Jun. 20-24, 2011. • Tunc, I. and Shaw, L.B. Dynamics of infection spreading in adaptive...Defense The number of undergraduates funded by your agreement who graduated during this period and will receive scholarships or fellowships for further
Adaptive Optics Correction in Real-Time for Dynamic Wavefront Errors
1990-03-15
This paper reports on the principles for the use of, and the experimental results obtained from, an adaptive optics system for correcting dynamic...control system. Keywords: Adaptive optics ; Wavefront sensing; Deformable mirror; Chinese translations.
Dynamics of Adaptation in Spatially Heterogeneous Metapopulations
Papaïx, Julien; David, Olivier; Lannou, Christian; Monod, Hervé
2013-01-01
The selection pressure experienced by organisms often varies across the species range. It is hence crucial to characterise the link between environmental spatial heterogeneity and the adaptive dynamics of species or populations. We address this issue by studying the phenotypic evolution of a spatial metapopulation using an adaptive dynamics approach. The singular strategy is found to be the mean of the optimal phenotypes in each habitat with larger weights for habitats present in large and well connected patches. The presence of spatial clusters of habitats in the metapopulation is found to facilitate specialisation and to increase both the level of adaptation and the evolutionary speed of the population when dispersal is limited. By showing that spatial structures are crucial in determining the specialisation level and the evolutionary speed of a population, our results give insight into the influence of spatial heterogeneity on the niche breadth of species. PMID:23424618
Adaptive control of linearizable systems
NASA Technical Reports Server (NTRS)
Sastry, S. Shankar; Isidori, Alberto
1989-01-01
Initial results are reported regarding the adaptive control of minimum-phase nonlinear systems which are exactly input-output linearizable by state feedback. Parameter adaptation is used as a technique to make robust the exact cancellation of nonlinear terms, which is called for in the linearization technique. The application of the adaptive technique to control of robot manipulators is discussed. Only the continuous-time case is considered; extensions to the discrete-time and sampled-data cases are not obvious.
Adaptive wavelet simulation of global ocean dynamics
NASA Astrophysics Data System (ADS)
Kevlahan, N. K.-R.; Dubos, T.; Aechtner, M.
2015-07-01
In order to easily enforce solid-wall boundary conditions in the presence of complex coastlines, we propose a new mass and energy conserving Brinkman penalization for the rotating shallow water equations. This penalization does not lead to higher wave speeds in the solid region. The error estimates for the penalization are derived analytically and verified numerically for linearized one dimensional equations. The penalization is implemented in a conservative dynamically adaptive wavelet method for the rotating shallow water equations on the sphere with bathymetry and coastline data from NOAA's ETOPO1 database. This code could form the dynamical core for a future global ocean model. The potential of the dynamically adaptive ocean model is illustrated by using it to simulate the 2004 Indonesian tsunami and wind-driven gyres.
Adaptive functional systems: learning with chaos.
Komarov, M A; Osipov, G V; Burtsev, M S
2010-12-01
We propose a new model of adaptive behavior that combines a winnerless competition principle and chaos to learn new functional systems. The model consists of a complex network of nonlinear dynamical elements producing sequences of goal-directed actions. Each element describes dynamics and activity of the functional system which is supposed to be a distributed set of interacting physiological elements such as nerve or muscle that cooperates to obtain certain goal at the level of the whole organism. During "normal" behavior, the dynamics of the system follows heteroclinic channels, but in the novel situation chaotic search is activated and a new channel leading to the target state is gradually created simulating the process of learning. The model was tested in single and multigoal environments and had demonstrated a good potential for generation of new adaptations.
Recruitment dynamics in adaptive social networks
NASA Astrophysics Data System (ADS)
Shkarayev, Maxim S.; Schwartz, Ira B.; Shaw, Leah B.
2013-06-01
We model recruitment in adaptive social networks in the presence of birth and death processes. Recruitment is characterized by nodes changing their status to that of the recruiting class as a result of contact with recruiting nodes. Only a susceptible subset of nodes can be recruited. The recruiting individuals may adapt their connections in order to improve recruitment capabilities, thus changing the network structure adaptively. We derive a mean-field theory to predict the dependence of the growth threshold of the recruiting class on the adaptation parameter. Furthermore, we investigate the effect of adaptation on the recruitment level, as well as on network topology. The theoretical predictions are compared with direct simulations of the full system. We identify two parameter regimes with qualitatively different bifurcation diagrams depending on whether nodes become susceptible frequently (multiple times in their lifetime) or rarely (much less than once per lifetime).
Adaptive protection algorithm and system
Hedrick, Paul [Pittsburgh, PA; Toms, Helen L [Irwin, PA; Miller, Roger M [Mars, PA
2009-04-28
An adaptive protection algorithm and system for protecting electrical distribution systems traces the flow of power through a distribution system, assigns a value (or rank) to each circuit breaker in the system and then determines the appropriate trip set points based on the assigned rank.
Evolving Systems and Adaptive Key Component Control
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Balas, Mark J.
2009-01-01
We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. An introduction to Evolving Systems and exploration of the essential topics of the control and stability properties of Evolving Systems is provided. This chapter defines a framework for Evolving Systems, develops theory and control solutions for fundamental characteristics of Evolving Systems, and provides illustrative examples of Evolving Systems and their control with adaptive key component controllers.
RNA viruses as complex adaptive systems.
Elena, Santiago F; Sanjuán, Rafael
2005-07-01
RNA viruses have high mutation rates and so their populations exist as dynamic and complex mutant distributions. It has been consistently observed that when challenged with a new environment, viral populations adapt following hyperbolic-like kinetics: adaptation is initially very rapid, but then slows down as fitness reaches an asymptotic value. These adaptive dynamics have been explained in terms of populations moving towards the top of peaks on rugged fitness landscapes. Fitness fluctuations of varying magnitude are observed during adaptation. Often the presence of fluctuations in the evolution of physical systems indicates some form of self-organization, or where many components of the system are simultaneously involved. Here we analyze data from several in vitro evolution experiments carried out with vesicular stomatitis virus (VSV) looking for the signature of criticality and scaling. Long-range fitness correlations have been detected during the adaptive process. We also found that the magnitude of fitness fluctuations, far from being trivial, conform to a Weibull probability distribution function, suggesting that viral adaptation belongs to a broad category of phenomena previously documented in other fields and related with emergence.
Adaptation dynamics of the quasispecies model
NASA Astrophysics Data System (ADS)
Jain, Kavita
2009-02-01
We study the adaptation dynamics of an initially maladapted population evolving via the elementary processes of mutation and selection. The evolution occurs on rugged fitness landscapes which are defined on the multi-dimensional genotypic space and have many local peaks separated by low fitness valleys. We mainly focus on the Eigen's model that describes the deterministic dynamics of an infinite number of self-replicating molecules. In the stationary state, for small mutation rates such a population forms a {\\it quasispecies} which consists of the fittest genotype and its closely related mutants. The quasispecies dynamics on rugged fitness landscape follow a punctuated (or step-like) pattern in which a population jumps from a low fitness peak to a higher one, stays there for a considerable time before shifting the peak again and eventually reaches the global maximum of the fitness landscape. We calculate exactly several properties of this dynamical process within a simplified version of the quasispecies model.
Target tracking with dynamically adaptive correlation
NASA Astrophysics Data System (ADS)
Gaxiola, Leopoldo N.; Diaz-Ramirez, Victor H.; Tapia, Juan J.; García-Martínez, Pascuala
2016-04-01
A reliable algorithm for target tracking based on dynamically adaptive correlation filtering is presented. The algorithm is capable of tracking with high accuracy the location of a target in an input video sequence without using an offline training process. The target is selected at the beginning of the algorithm. Afterwards, a composite correlation filter optimized for distortion tolerant pattern recognition is designed to recognize the target in the next frame. The filter is dynamically adapted to each frame using information of current and past scene observations. Results obtained with the proposed algorithm in synthetic and real-life video sequences, are analyzed and compared with those obtained with recent state-of-the-art tracking algorithms in terms of objective metrics.
Adaptive Control for Microgravity Vibration Isolation System
NASA Technical Reports Server (NTRS)
Yang, Bong-Jun; Calise, Anthony J.; Craig, James I.; Whorton, Mark S.
2005-01-01
Most active vibration isolation systems that try to a provide quiescent acceleration environment for space science experiments have utilized linear design methods. In this paper, we address adaptive control augmentation of an existing classical controller that employs a high-gain acceleration feedback together with a low-gain position feedback to center the isolated platform. The control design feature includes parametric and dynamic uncertainties because the hardware of the isolation system is built as a payload-level isolator, and the acceleration Sensor exhibits a significant bias. A neural network is incorporated to adaptively compensate for the system uncertainties, and a high-pass filter is introduced to mitigate the effect of the measurement bias. Simulations show that the adaptive control improves the performance of the existing acceleration controller and keep the level of the isolated platform deviation to that of the existing control system.
NASA Astrophysics Data System (ADS)
Graham Hoover, William; Clinton Sprott, Julien; Griswold Hoover, Carol
2016-10-01
We describe the application of adaptive (variable time step) integrators to stiff differential equations encountered in many applications. Linear harmonic oscillators subject to nonlinear thermal constraints can exhibit either stiff or smooth dynamics. Two closely related examples, Nosé's dynamics and Nosé-Hoover dynamics, are both based on Hamiltonian mechanics and generate microstates consistent with Gibbs' canonical ensemble. Nosé's dynamics is stiff and can present severe numerical difficulties. Nosé-Hoover dynamics, although it follows exactly the same trajectory, is smooth and relatively trouble-free. We emphasize the power of adaptive integrators to resolve stiff problems such as the Nosé dynamics for the harmonic oscillator. The solutions also illustrate the power of computer graphics to enrich numerical solutions.
Gradient-based adaptation of continuous dynamic model structures
NASA Astrophysics Data System (ADS)
La Cava, William G.; Danai, Kourosh
2016-01-01
A gradient-based method of symbolic adaptation is introduced for a class of continuous dynamic models. The proposed model structure adaptation method starts with the first-principles model of the system and adapts its structure after adjusting its individual components in symbolic form. A key contribution of this work is its introduction of the model's parameter sensitivity as the measure of symbolic changes to the model. This measure, which is essential to defining the structural sensitivity of the model, not only accommodates algebraic evaluation of candidate models in lieu of more computationally expensive simulation-based evaluation, but also makes possible the implementation of gradient-based optimisation in symbolic adaptation. The proposed method is applied to models of several virtual and real-world systems that demonstrate its potential utility.
Jung, JeYoung; Lambon Ralph, Matthew A.
2016-01-01
Higher cognitive function reflects the interaction of a network of multiple brain regions. Previous investigations have plotted out these networks using functional or structural connectivity approaches. While these map the topography of the regions involved, they do not explore the key aspect of this neuroscience principle—namely that the regions interact in a dynamic fashion. Here, we achieved this aim with respect to semantic memory. Although converging evidence implicates the anterior temporal lobes (ATLs), bilaterally, as a crucial component in semantic representation, the underlying neural interplay between the ATLs remains unclear. By combining continuous theta-burst stimulation (cTBS) with functional magnetic resonance imaging (fMRI), we perturbed the left ventrolateral ATL (vATL) and investigated acute changes in neural activity and effective connectivity of the semantic system. cTBS resulted in decreased activity at the target region and compensatory, increased activity at the contralateral vATL. In addition, there were task-specific increases in effective connectivity between the vATLs, reflecting an increased facilitatory intrinsic connectivity from the right to left vATL. Our results suggest that semantic representation is founded on a flexible, adaptive bilateral neural system and reveals an adaptive plasticity-based mechanism that might support functional recovery after unilateral damage in neurological patients. PMID:27242027
Adaptive security systems -- Combining expert systems with adaptive technologies
Argo, P.; Loveland, R.; Anderson, K.
1997-09-01
The Adaptive Multisensor Integrated Security System (AMISS) uses a variety of computational intelligence techniques to reason from raw sensor data through an array of processing layers to arrive at an assessment for alarm/alert conditions based on human behavior within a secure facility. In this paper, the authors give an overview of the system and briefly describe some of the major components of the system. This system is currently under development and testing in a realistic facility setting.
An adaptive strategy for controlling chaotic system.
Cao, Yi-Jia; Hang, Hong-Xian
2003-01-01
This paper presents an adaptive strategy for controlling chaotic systems. By employing the phase space reconstruction technique in nonlinear dynamical systems theory, the proposed strategy transforms the nonlinear system into canonical form, and employs a nonlinear observer to estimate the uncertainties and disturbances of the nonlinear system, and then establishes a state-error-like feedback law. The developed control scheme allows chaos control in spite of modeling errors and parametric variations. The effectiveness of the proposed approach has been demonstrated through its applications to two well-known chaotic systems: Duffing oscillator and Rössler chaos.
NASA Astrophysics Data System (ADS)
Zhang, Lijun; Zhao, Jiemei; Qi, Xue; Jia, Heming
2013-06-01
The problem of tracking control for a class of uncertain non-affine discrete-time nonlinear systems with internal dynamics is addressed. The fixed point theorem is first employed to ensure the control problem in question is solvable and well-defined. Based on it, an adaptive output feedback control scheme based on neural network (NN) is presented. The proposed control algorithm consists of two parts: a dynamic compensator is introduced to stabilise the linear portion of the tracking error system; a single-hidden-layer neural network (SHL NN) approximation mechanism is introduced to cancel the uncertainties resulting from the non-affine function, where the recursive weight update rules of NN estimation are derived from the discrete-time version of Lyapunov control theory. Ultimate boundedness of the error signals is shown through Lyapunov's direct method and the discrete-time version of input-to-state stability (ISS) theory. Finally, a model of automatical underwater vehicle (AUV) is considered to show the effectiveness of the proposed control scheme.
Integration of the immune system: a complex adaptive supersystem
NASA Astrophysics Data System (ADS)
Crisman, Mark V.
2001-10-01
Immunity to pathogenic organisms is a complex process involving interacting factors within the immune system including circulating cells, tissues and soluble chemical mediators. Both the efficiency and adaptive responses of the immune system in a dynamic, often hostile, environment are essential for maintaining our health and homeostasis. This paper will present a brief review of one of nature's most elegant, complex adaptive systems.
Adaptive ophthalmologic system
Olivier, Scot S.; Thompson, Charles A.; Bauman, Brian J.; Jones, Steve M.; Gavel, Don T.; Awwal, Abdul A.; Eisenbies, Stephen K.; Haney, Steven J.
2007-03-27
A system for improving vision that can diagnose monochromatic aberrations within a subject's eyes, apply the wavefront correction, and then enable the patient to view the results of the correction. The system utilizes a laser for producing a beam of light; a corrector; a wavefront sensor; a testing unit; an optic device for directing the beam of light to the corrector, to the retina, from the retina to the wavefront sensor, and to the testing unit; and a computer operatively connected to the wavefront sensor and the corrector.
Systems and Methods for Derivative-Free Adaptive Control
NASA Technical Reports Server (NTRS)
Yucelen, Tansel (Inventor); Kim, Kilsoo (Inventor); Calise, Anthony J. (Inventor)
2015-01-01
An adaptive control system is disclosed. The control system can control uncertain dynamic systems. The control system can employ one or more derivative-free adaptive control architectures. The control system can further employ one or more derivative-free weight update laws. The derivative-free weight update laws can comprise a time-varying estimate of an ideal vector of weights. The control system of the present invention can therefore quickly stabilize systems that undergo sudden changes in dynamics, caused by, for example, sudden changes in weight. Embodiments of the present invention can also provide a less complex control system than existing adaptive control systems. The control system can control aircraft and other dynamic systems, such as, for example, those with non-minimum phase dynamics.
1974-12-01
Melton, A. W., and Marton. E. (Eds.). Coding Processes in Human Memory, Washington, DC , Winston and Sons, 1972. Newell. A. Production systems...STM (1 A ’) (ACTION (USED) (DEP (NEXT B))) (B ?) (LOC A) (A ?) (B ?) ( SEPIc ’ fiAB) 16 TRUE IN PS STM (NEXT A) (1 A?) (ACTION (USED) (DEP (NEXT B
Adaptive Instructional Systems
2005-09-01
planning stage, which used the infbrmation obtained from the Phase I research to develop a plan for utilizing the tecnolog in the proposed system. 1.4...categories of physical stimuli are perceptual, intake, time, and mobility . 01ly one of these factors, perceptual, cam be taken into account in the simulator
Cardiac fluid dynamics anticipates heart adaptation.
Pedrizzetti, Gianni; Martiniello, Alfonso R; Bianchi, Valter; D'Onofrio, Antonio; Caso, Pio; Tonti, Giovanni
2015-01-21
Hemodynamic forces represent an epigenetic factor during heart development and are supposed to influence the pathology of the grown heart. Cardiac blood motion is characterized by a vortical dynamics, and it is common belief that the cardiac vortex has a role in disease progressions or regression. Here we provide a preliminary demonstration about the relevance of maladaptive intra-cardiac vortex dynamics in the geometrical adaptation of the dysfunctional heart. We employed an in vivo model of patients who present a stable normal heart function in virtue of the cardiac resynchronization therapy (CRT, bi-ventricular pace-maker) and who are expected to develop left ventricle remodeling if pace-maker was switched off. Intra-ventricular fluid dynamics is analyzed by echocardiography (Echo-PIV). Under normal conditions, the flow presents a longitudinal alignment of the intraventricular hemodynamic forces. When pacing is temporarily switched off, flow forces develop a misalignment hammering onto lateral walls, despite no other electro-mechanical change is noticed. Hemodynamic forces result to be the first event that evokes a physiological activity anticipating cardiac changes and could help in the prediction of longer term heart adaptations.
[Health: an adaptive complex system].
Toro-Palacio, Luis Fernando; Ochoa-Jaramillo, Francisco Luis
2012-02-01
This article points out the enormous gap that exists between complex thinking of an intellectual nature currently present in our environment, and complex experimental thinking that has facilitated the scientific and technological advances that have radically changed the world. The article suggests that life, human beings, global society, and all that constitutes health be considered as adaptive complex systems. This idea, in turn, prioritizes the adoption of a different approach that seeks to expand understanding. When this rationale is recognized, the principal characteristics and emerging properties of health as an adaptive complex system are sustained, following a care and services delivery model. Finally, some pertinent questions from this perspective are put forward in terms of research, and a series of appraisals are expressed that will hopefully serve to help us understand all that we have become as individuals and as a species. The article proposes that the delivery of health care services be regarded as an adaptive complex system.
Remote Adaptive Communication System
2001-10-25
manage several different devices using the software tool A. Client/Server Architecture The architecture we are proposing is based on the Client...communication". International Telemedicine. Julio 1999. Pp 4. [17] F. Fernández, L. Roa, "Communication System Based on a New Open Architecture...Toledo, " Fundamentos de Neurología para educadores". IDEO. Sevilla 1994. [21] P. Coad, E. Yourdon, "Object Oriented Analysis". Yourdon Press
A dynamic programming approach to adaptive fractionation
NASA Astrophysics Data System (ADS)
Ramakrishnan, Jagdish; Craft, David; Bortfeld, Thomas; Tsitsiklis, John N.
2012-03-01
We conduct a theoretical study of various solution methods for the adaptive fractionation problem. The two messages of this paper are as follows: (i) dynamic programming (DP) is a useful framework for adaptive radiation therapy, particularly adaptive fractionation, because it allows us to assess how close to optimal different methods are, and (ii) heuristic methods proposed in this paper are near-optimal, and therefore, can be used to evaluate the best possible benefit of using an adaptive fraction size. The essence of adaptive fractionation is to increase the fraction size when the tumor and organ-at-risk (OAR) are far apart (a ‘favorable’ anatomy) and to decrease the fraction size when they are close together. Given that a fixed prescribed dose must be delivered to the tumor over the course of the treatment, such an approach results in a lower cumulative dose to the OAR when compared to that resulting from standard fractionation. We first establish a benchmark by using the DP algorithm to solve the problem exactly. In this case, we characterize the structure of an optimal policy, which provides guidance for our choice of heuristics. We develop two intuitive, numerically near-optimal heuristic policies, which could be used for more complex, high-dimensional problems. Furthermore, one of the heuristics requires only a statistic of the motion probability distribution, making it a reasonable method for use in a realistic setting. Numerically, we find that the amount of decrease in dose to the OAR can vary significantly (5-85%) depending on the amount of motion in the anatomy, the number of fractions and the range of fraction sizes allowed. In general, the decrease in dose to the OAR is more pronounced when: (i) we have a high probability of large tumor-OAR distances, (ii) we use many fractions (as in a hyper-fractionated setting) and (iii) we allow large daily fraction size deviations.
Nanosatellite Launch Adapter System (NLAS)
NASA Technical Reports Server (NTRS)
Yost, Bruce D.; Hines, John W.; Agasid, Elwood F.; Buckley, Steven J.
2010-01-01
The utility of small spacecraft based on the University cubesat standard is becoming evident as more and more agencies and organizations are launching or planning to include nanosatellites in their mission portfolios. Cubesats are typically launched as secondary spacecraft in enclosed, containerized deployers such as the CalPoly Poly Picosat Orbital Deployer (P-POD) system. The P-POD allows for ease of integration and significantly reduces the risk exposure to the primary spacecraft and mission. NASA/ARC and the Operationally Responsive Space office are collaborating to develop a Nanosatellite Launch Adapter System (NLAS), which can accommodate multiple cubesat or cubesat-derived spacecraft on a single launch vehicle. NLAS is composed of the adapter structure, P-POD or similar spacecraft dispensers, and a sequencer/deployer system. This paper describes the NLAS system and it s future capabilities, and also provides status on the system s development and potential first use in space.
Adaptive typography for dynamic mapping environments
NASA Astrophysics Data System (ADS)
Bardon, Didier
1991-08-01
When typography moves across a map, it passes over areas of different colors, densities, and textures. In such a dynamic environment, the aspect of typography must be constantly adapted to provide disernibility for every new background. Adaptive typography undergoes two adaptive operations: background control and contrast control. The background control prevents the features of the map (edges, lines, abrupt changes of densities) from destroying the integrity of the letterform. This is achieved by smoothing the features of the map in the area where a text label is displayed. The modified area is limited to the space covered by the characters of the label. Dispositions are taken to insure that the smoothing operation does not introduce any new visual noise. The contrast control assures that there are sufficient lightness differences between the typography and its ever-changing background. For every new situation, background color and foreground color are compared and the foreground color lightness is adjusted according to a chosen contrast value. Criteria and methods of choosing the appropriate contrast value are presented as well as the experiments that led to them.
Adaptive Hypermedia Educational System Based on XML Technologies.
ERIC Educational Resources Information Center
Baek, Yeongtae; Wang, Changjong; Lee, Sehoon
This paper proposes an adaptive hypermedia educational system using XML technologies, such as XML, XSL, XSLT, and XLink. Adaptive systems are capable of altering the presentation of the content of the hypermedia on the basis of a dynamic understanding of the individual user. The user profile can be collected in a user model, while the knowledge…
Nonhydrostatic adaptive mesh dynamics for multiscale climate models (Invited)
NASA Astrophysics Data System (ADS)
Collins, W.; Johansen, H.; McCorquodale, P.; Colella, P.; Ullrich, P. A.
2013-12-01
Many of the atmospheric phenomena with the greatest potential impact in future warmer climates are inherently multiscale. Such meteorological systems include hurricanes and tropical cyclones, atmospheric rivers, and other types of hydrometeorological extremes. These phenomena are challenging to simulate in conventional climate models due to the relatively coarse uniform model resolutions relative to the native nonhydrostatic scales of the phenomonological dynamics. To enable studies of these systems with sufficient local resolution for the multiscale dynamics yet with sufficient speed for climate-change studies, we have adapted existing adaptive mesh dynamics for the DOE-NSF Community Atmosphere Model (CAM). In this talk, we present an adaptive, conservative finite volume approach for moist non-hydrostatic atmospheric dynamics. The approach is based on the compressible Euler equations on 3D thin spherical shells, where the radial direction is treated implicitly (using a fourth-order Runga-Kutta IMEX scheme) to eliminate time step constraints from vertical acoustic waves. Refinement is performed only in the horizontal directions. The spatial discretization is the equiangular cubed-sphere mapping, with a fourth-order accurate discretization to compute flux averages on faces. By using both space-and time-adaptive mesh refinement, the solver allocates computational effort only where greater accuracy is needed. The resulting method is demonstrated to be fourth-order accurate for model problems, and robust at solution discontinuities and stable for large aspect ratios. We present comparisons using a simplified physics package for dycore comparisons of moist physics. Hadley cell lifting an advected tracer into upper atmosphere, with horizontal adaptivity
The Limits to Adaptation; A Systems Approach
The Limits to Adaptation: A Systems Approach. The ability to adapt to climate change is delineated by capacity thresholds, after which climate damages begin to overwhelm the adaptation response. Such thresholds depend upon physical properties (natural processes and engineering...
Adaptive network dynamics and evolution of leadership in collective migration
NASA Astrophysics Data System (ADS)
Pais, Darren; Leonard, Naomi E.
2014-01-01
The evolution of leadership in migratory populations depends not only on costs and benefits of leadership investments but also on the opportunities for individuals to rely on cues from others through social interactions. We derive an analytically tractable adaptive dynamic network model of collective migration with fast timescale migration dynamics and slow timescale adaptive dynamics of individual leadership investment and social interaction. For large populations, our analysis of bifurcations with respect to investment cost explains the observed hysteretic effect associated with recovery of migration in fragmented environments. Further, we show a minimum connectivity threshold above which there is evolutionary branching into leader and follower populations. For small populations, we show how the topology of the underlying social interaction network influences the emergence and location of leaders in the adaptive system. Our model and analysis can be extended to study the dynamics of collective tracking or collective learning more generally. Thus, this work may inform the design of robotic networks where agents use decentralized strategies that balance direct environmental measurements with agent interactions.
Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems
NASA Astrophysics Data System (ADS)
Williams, Rube B.
2004-02-01
Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.
Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems
Williams, Rube B.
2004-02-04
Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.
Middleware for dynamic adaptation of component applications.
Norris, B.; Bhowmick, S.; Kaushik, D.; McInnes, L. C.
2007-01-01
Component- and service-based software engineering approaches have been gaining popularity in high-performance scientific computing, facilitating the creation and management of large multidisciplinary, multideveloper applications, and providing opportunities for improved performance and numerical accuracy. These software engineering approaches enable the development of middleware infrastructure for computational quality of service (CQoS), which provides performance optimizations through dynamic algorithm selection and configuration in a mostly automated fashion. The factors that affect performance are closely tied to a component's parallel implementation, its management of parallel communication and memory, the algorithms executed, the algorithmic parameters employed, and other operational characteristics. We present the design of a component middleware CQoS architecture for automated composition and adaptation of high-performance component- or service-based applications. We describe its initial implementation and corresponding experimental results for parallel simulations involving time-dependent nonlinear partial differential equations.
NASA Astrophysics Data System (ADS)
Viswanathan, Sasi Prabhakaran
Design, dynamics, control and implementation of a novel spacecraft attitude control actuator called the "Adaptive Singularity-free Control Moment Gyroscope" (ASCMG) is presented in this dissertation. In order to construct a comprehensive attitude dynamics model of a spacecraft with internal actuators, the dynamics of a spacecraft with an ASCMG, is obtained in the framework of geometric mechanics using the principles of variational mechanics. The resulting dynamics is general and complete model, as it relaxes the simplifying assumptions made in prior literature on Control Moment Gyroscopes (CMGs) and it also addresses the adaptive parameters in the dynamics formulation. The simplifying assumptions include perfect axisymmetry of the rotor and gimbal structures, perfect alignment of the centers of mass of the gimbal and the rotor etc. These set of simplifying assumptions imposed on the design and dynamics of CMGs leads to adverse effects on their performance and results in high manufacturing cost. The dynamics so obtained shows the complex nonlinear coupling between the internal degrees of freedom associated with an ASCMG and the spacecraft bus's attitude motion. By default, the general ASCMG cluster can function as a Variable Speed Control Moment Gyroscope, and reduced to function in CMG mode by spinning the rotor at constant speed, and it is shown that even when operated in CMG mode, the cluster can be free from kinematic singularities. This dynamics model is then extended to include the effects of multiple ASCMGs placed in the spacecraft bus, and sufficient conditions for non-singular ASCMG cluster configurations are obtained to operate the cluster both in VSCMG and CMG modes. The general dynamics model of the ASCMG is then reduced to that of conventional VSCMGs and CMGs by imposing the standard set of simplifying assumptions used in prior literature. The adverse effects of the simplifying assumptions that lead to the complexities in conventional CMG design, and
Adaptive control of force microscope cantilever dynamics
NASA Astrophysics Data System (ADS)
Jensen, S. E.; Dougherty, W. M.; Garbini, J. L.; Sidles, J. A.
2007-09-01
Magnetic resonance force microscopy (MRFM) and other emerging scanning probe microscopies entail the detection of attonewton-scale forces. Requisite force sensitivities are achieved through the use of soft force microscope cantilevers as high resonant-Q micromechanical oscillators. In practice, the dynamics of these oscillators are greatly improved by the application of force feedback control computed in real time by a digital signal processor (DSP). Improvements include increased sensitive bandwidth, reduced oscillator ring up/down time, and reduced cantilever thermal vibration amplitude. However, when the cantilever tip and the sample are in close proximity, electrostatic and Casimir tip-sample force gradients can significantly alter the cantilever resonance frequency, foiling fixed-gain narrow-band control schemes. We report an improved, adaptive control algorithm that uses a Hilbert transform technique to continuously measure the vibration frequency of the thermally-excited cantilever and seamlessly adjust the DSP program coefficients. The closed-loop vibration amplitude is typically 0.05 nm. This adaptive algorithm enables narrow-band formally-optimal control over a wide range of resonance frequencies, and preserves the thermally-limited signal to noise ratio (SNR).
Analog forecasting with dynamics-adapted kernels
NASA Astrophysics Data System (ADS)
Zhao, Zhizhen; Giannakis, Dimitrios
2016-09-01
Analog forecasting is a nonparametric technique introduced by Lorenz in 1969 which predicts the evolution of states of a dynamical system (or observables defined on the states) by following the evolution of the sample in a historical record of observations which most closely resembles the current initial data. Here, we introduce a suite of forecasting methods which improve traditional analog forecasting by combining ideas from kernel methods developed in harmonic analysis and machine learning and state-space reconstruction for dynamical systems. A key ingredient of our approach is to replace single-analog forecasting with weighted ensembles of analogs constructed using local similarity kernels. The kernels used here employ a number of dynamics-dependent features designed to improve forecast skill, including Takens’ delay-coordinate maps (to recover information in the initial data lost through partial observations) and a directional dependence on the dynamical vector field generating the data. Mathematically, our approach is closely related to kernel methods for out-of-sample extension of functions, and we discuss alternative strategies based on the Nyström method and the multiscale Laplacian pyramids technique. We illustrate these techniques in applications to forecasting in a low-order deterministic model for atmospheric dynamics with chaotic metastability, and interannual-scale forecasting in the North Pacific sector of a comprehensive climate model. We find that forecasts based on kernel-weighted ensembles have significantly higher skill than the conventional approach following a single analog.
Darzi, Soodabeh; Kiong, Tiong Sieh; Islam, Mohammad Tariqul; Ismail, Mahamod; Kibria, Salehin; Salem, Balasem
2014-01-01
Linear constraint minimum variance (LCMV) is one of the adaptive beamforming techniques that is commonly applied to cancel interfering signals and steer or produce a strong beam to the desired signal through its computed weight vectors. However, weights computed by LCMV usually are not able to form the radiation beam towards the target user precisely and not good enough to reduce the interference by placing null at the interference sources. It is difficult to improve and optimize the LCMV beamforming technique through conventional empirical approach. To provide a solution to this problem, artificial intelligence (AI) technique is explored in order to enhance the LCMV beamforming ability. In this paper, particle swarm optimization (PSO), dynamic mutated artificial immune system (DM-AIS), and gravitational search algorithm (GSA) are incorporated into the existing LCMV technique in order to improve the weights of LCMV. The simulation result demonstrates that received signal to interference and noise ratio (SINR) of target user can be significantly improved by the integration of PSO, DM-AIS, and GSA in LCMV through the suppression of interference in undesired direction. Furthermore, the proposed GSA can be applied as a more effective technique in LCMV beamforming optimization as compared to the PSO technique. The algorithms were implemented using Matlab program.
Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease
NASA Astrophysics Data System (ADS)
Sun, Jun; Earl, David J.; Deem, Michael W.
2005-09-01
The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self-antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely, gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system’s search for antibodies, a balance has evolved between binding affinity and specificity.
Making Intelligent Systems Adaptive. (Revision)
1988-10-01
eventually produce solutions. BY contrast, human beinge and other intelligent animls continuously adapt to the demands and opportunities presented by a...such as monitoring critically ill medical patients or controlling a manufacturing process. Following the model set by human intelligence, we define...signs probabilistically, using a belief network, as well as from first principles, using explicit models of system structure and function. Concurrent
Adaptive Optics Imaging of Solar System Objects
NASA Technical Reports Server (NTRS)
Roddier, Francois; Owen, Toby
1997-01-01
Most solar system objects have never been observed at wavelengths longer than the R band with an angular resolution better than 1 sec. The Hubble Space Telescope itself has only recently been equipped to observe in the infrared. However, because of its small diameter, the angular resolution is lower than that one can now achieved from the ground with adaptive optics, and time allocated to planetary science is limited. We have been using adaptive optics (AO) on a 4-m class telescope to obtain 0.1 sec resolution images solar system objects at far red and near infrared wavelengths (0.7-2.5 micron) which best discriminate their spectral signatures. Our efforts has been put into areas of research for which high angular resolution is essential, such as the mapping of Titan and of large asteroids, the dynamics and composition of Neptune stratospheric clouds, the infrared photometry of Pluto, Charon, and close satellites previously undetected from the ground.
Adaptive control design for hysteretic smart systems
NASA Astrophysics Data System (ADS)
Fan, Xiang; Smith, Ralph C.
2009-03-01
Ferroelectric and ferromagnetic actuators are being considered for a range of industrial, aerospace, aeronautic and biomedical applications due to their unique transduction capabilities. However, they also exhibit hysteretic and nonlinear behavior that must be accommodated in models and control designs. If uncompensated, these effects can yield reduced system performance and, in the worst case, can produce unpredictable behavior of the control system. One technique for control design is to approximately linearize the actuator dynamics using an adaptive inverse compensator that is also able to accommodate model uncertainties and error introduced by the inverse algorithm. This paper describes the design of an adaptive inverse control technique based on the homogenized energy model for hysteresis. The resulting inverse filter is incorporated in an L1 control theory to provide a robust control algorithm capable of providing high speed, high accuracy tracking in the presence of actuator hysteresis and nonlinearities. Properties of the control design are illustrated through numerical examples.
Adaptive control in the presence of unmodeled dynamics. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Rohrs, C. E.
1982-01-01
Stability and robustness properties of a wide class of adaptive control algorithms in the presence of unmodeled dynamics and output disturbances were investigated. The class of adaptive algorithms considered are those commonly referred to as model reference adaptive control algorithms, self-tuning controllers, and dead beat adaptive controllers, developed for both continuous-time systems and discrete-time systems. A unified analytical approach was developed to examine the class of existing adaptive algorithms. It was discovered that all existing algorithms contain an infinite gain operator in the dynamic system that defines command reference errors and parameter errors; it is argued that such an infinite gain operator appears to be generic to all adaptive algorithms, whether they exhibit explicit or implicit parameter identification. It is concluded that none of the adaptive algorithms considered can be used with confidence in a practical control system design, because instability will set in with a high probability.
Certification Considerations for Adaptive Systems
NASA Technical Reports Server (NTRS)
Bhattacharyya, Siddhartha; Cofer, Darren; Musliner, David J.; Mueller, Joseph; Engstrom, Eric
2015-01-01
Advanced capabilities planned for the next generation of aircraft, including those that will operate within the Next Generation Air Transportation System (NextGen), will necessarily include complex new algorithms and non-traditional software elements. These aircraft will likely incorporate adaptive control algorithms that will provide enhanced safety, autonomy, and robustness during adverse conditions. Unmanned aircraft will operate alongside manned aircraft in the National Airspace (NAS), with intelligent software performing the high-level decision-making functions normally performed by human pilots. Even human-piloted aircraft will necessarily include more autonomy. However, there are serious barriers to the deployment of new capabilities, especially for those based upon software including adaptive control (AC) and artificial intelligence (AI) algorithms. Current civil aviation certification processes are based on the idea that the correct behavior of a system must be completely specified and verified prior to operation. This report by Rockwell Collins and SIFT documents our comprehensive study of the state of the art in intelligent and adaptive algorithms for the civil aviation domain, categorizing the approaches used and identifying gaps and challenges associated with certification of each approach.
Dynamical Systems++ for a Theory of Biological System
NASA Astrophysics Data System (ADS)
Kaneko, Kunihiko
2014-12-01
Biological dynamical systems can autonomously change their rule governing the dynamics. To deal with the change in their rule, possible approaches to extend dynamical-systems theory are discussed: They include chaotic itinerancy in high-dimensional dynamical systems, discreteness-induced switches of states, and interference between slow and fast modes. Applications of these concepts to cell differentiation, adaptation, and memory are briefly reviewed, while biological evolution is discussed as selection of dynamical systems by dynamical systems. Finally, necessity of mathematical framework to deal with self-referential dynamics for the rule formation is stressed.
Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.
Lehn, Jean-Marie
2012-01-01
Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.
Adaptive dynamic programming for auto-resilient video streaming
NASA Astrophysics Data System (ADS)
Zhao, Juan; Li, Xingmei; Wang, Wei; Wu, Guoping
2007-11-01
Wireless video transmission encounters higher error rate than in wired network, which introduces distortion into the error-sensitive compressed data, reducing the quality of the playback video. Therefore, to ensure the end-to-end quality, wireless video needs a transmission system including both efficient source coding scheme and transmission technology against the influence of the channel error. This paper tackles a dynamic programming algorithm for robust video streaming over error-prone channels. An auto-resilient multiple-description coding with optimized transmission strategy has been proposed. Further study is done on the computational complexity of rate-distortion optimized video streaming and a dynamic programming algorithm is considered. Experiment results show that video streaming with adaptive dynamic programming gains better playback video quality at the receiver when transmitted through error-prone mobile channel.
Adaptive system for eye-fundus imaging
Larichev, A V; Ivanov, P V; Iroshnikov, N G; Shmalgauzen, V I; Otten, L J
2002-10-31
A compact adaptive system capable of imaging a human-eye retina with a spatial resolution as high as 6 {mu}m and a field of view of 15{sup 0} is developed. It is shown that a modal bimorph corrector with nonlocalised response functions provides the efficient suppression of dynamic aberrations of a human eye. The residual root-mean-square error in correction of aberrations of a real eye with nonparalysed accommodation lies in the range of 0.1 - 0.15 {mu}m.
Adaptive Behaviour Assessment System: Indigenous Australian Adaptation Model (ABAS: IAAM)
ERIC Educational Resources Information Center
du Plessis, Santie
2015-01-01
The study objectives were to develop, trial and evaluate a cross-cultural adaptation of the Adaptive Behavior Assessment System-Second Edition Teacher Form (ABAS-II TF) ages 5-21 for use with Indigenous Australian students ages 5-14. This study introduced a multiphase mixed-method design with semi-structured and informal interviews, school…
Adaptive dynamics of extortion and compliance.
Hilbe, Christian; Nowak, Martin A; Traulsen, Arne
2013-01-01
Direct reciprocity is a mechanism for the evolution of cooperation. For the iterated prisoner's dilemma, a new class of strategies has recently been described, the so-called zero-determinant strategies. Using such a strategy, a player can unilaterally enforce a linear relationship between his own payoff and the co-player's payoff. In particular the player may act in such a way that it becomes optimal for the co-player to cooperate unconditionally. In this way, a player can manipulate and extort his co-player, thereby ensuring that the own payoff never falls below the co-player's payoff. However, using a compliant strategy instead, a player can also ensure that his own payoff never exceeds the co-player's payoff. Here, we use adaptive dynamics to study when evolution leads to extortion and when it leads to compliance. We find a remarkable cyclic dynamics: in sufficiently large populations, extortioners play a transient role, helping the population to move from selfish strategies to compliance. Compliant strategies, however, can be subverted by altruists, which in turn give rise to selfish strategies. Whether cooperative strategies are favored in the long run critically depends on the size of the population; we show that cooperation is most abundant in large populations, in which case average payoffs approach the social optimum. Our results are not restricted to the case of the prisoners dilemma, but can be extended to other social dilemmas, such as the snowdrift game. Iterated social dilemmas in large populations do not lead to the evolution of strategies that aim to dominate their co-player. Instead, generosity succeeds.
The ERIS adaptive optics system
NASA Astrophysics Data System (ADS)
Marchetti, Enrico; Fedrigo, Enrico; Le Louarn, Miska; Madec, Pierre-Yves; Soenke, Christian; Brast, Roland; Conzelmann, Ralf; Delabre, Bernard; Duchateau, Michel; Frank, Christoph; Klein, Barbara; Amico, Paola; Hubin, Norbert; Esposito, Simone; Antichi, Jacopo; Carbonaro, Luca; Puglisi, Alfio; Quirós-Pacheco, Fernando; Riccardi, Armando; Xompero, Marco
2014-07-01
The Enhanced Resolution Imager and Spectrograph (ERIS) is the new Adaptive Optics based instrument for ESO's VLT aiming at replacing NACO and SINFONI to form a single compact facility with AO fed imaging and integral field unit spectroscopic scientific channels. ERIS completes the instrument suite at the VLT adaptive telescope. In particular it is equipped with a versatile AO system that delivers up to 95% Strehl correction in K band for science observations up to 5 micron It comprises high order NGS and LGS correction enabling the observation from exoplanets to distant galaxies with a large sky coverage thanks to the coupling of the LGS WFS with the high sensitivity of its visible WFS and the capability to observe in dust embedded environment thanks to its IR low order WFS. ERIS will be installed at the Cassegrain focus of the VLT unit hosting the Adaptive Optics Facility (AOF). The wavefront correction is provided by the AOF deformable secondary mirror while the Laser Guide Star is provided by one of the four launch units of the 4 Laser Guide Star Facility for the AOF. The overall layout of the ERIS AO system is extremely compact and highly optimized: the SPIFFI spectrograph is fed directly by the Cassegrain focus and both the NIX's (IR imager) and SPIFFI's entrance windows work as visible/infrared dichroics. In this paper we describe the concept of the ERIS AO system in detail, starting from the requirements and going through the estimated performance, the opto-mechanical design and the Real-Time Computer design.
ERIS adaptive optics system design
NASA Astrophysics Data System (ADS)
Marchetti, Enrico; Le Louarn, Miska; Soenke, Christian; Fedrigo, Enrico; Madec, Pierre-Yves; Hubin, Norbert
2012-07-01
The Enhanced Resolution Imager and Spectrograph (ERIS) is the next-generation instrument planned for the Very Large Telescope (VLT) and the Adaptive Optics facility (AOF). It is an AO assisted instrument that will make use of the Deformable Secondary Mirror and the new Laser Guide Star Facility (4LGSF), and it is planned for the Cassegrain focus of the telescope UT4. The project is currently in its Phase A awaiting for approval to continue to the next phases. The Adaptive Optics system of ERIS will include two wavefront sensors (WFS) to maximize the coverage of the proposed sciences cases. The first is a high order 40x40 Pyramid WFS (PWFS) for on axis Natural Guide Star (NGS) observations. The second is a high order 40x40 Shack-Hartmann WFS for single Laser Guide Stars (LGS) observations. The PWFS, with appropriate sub-aperture binning, will serve also as low order NGS WFS in support to the LGS mode with a field of view patrolling capability of 2 arcmin diameter. Both WFSs will be equipped with the very low read-out noise CCD220 based camera developed for the AOF. The real-time reconstruction and control is provided by a SPARTA real-time platform adapted to support both WFS modes. In this paper we will present the ERIS AO system in all its main aspects: opto-mechanical design, real-time computer design, control and calibrations strategy. Particular emphasis will be given to the system performance obtained via dedicated numerical simulations.
Adaptable state based control system
NASA Technical Reports Server (NTRS)
Rasmussen, Robert D. (Inventor); Dvorak, Daniel L. (Inventor); Gostelow, Kim P. (Inventor); Starbird, Thomas W. (Inventor); Gat, Erann (Inventor); Chien, Steve Ankuo (Inventor); Keller, Robert M. (Inventor)
2004-01-01
An autonomous controller, comprised of a state knowledge manager, a control executor, hardware proxies and a statistical estimator collaborates with a goal elaborator, with which it shares common models of the behavior of the system and the controller. The elaborator uses the common models to generate from temporally indeterminate sets of goals, executable goals to be executed by the controller. The controller may be updated to operate in a different system or environment than that for which it was originally designed by the replacement of shared statistical models and by the instantiation of a new set of state variable objects derived from a state variable class. The adaptation of the controller does not require substantial modification of the goal elaborator for its application to the new system or environment.
Dynamic modeling and adaptive control for space stations
NASA Technical Reports Server (NTRS)
Ih, C. H. C.; Wang, S. J.
1985-01-01
Of all large space structural systems, space stations present a unique challenge and requirement to advanced control technology. Their operations require control system stability over an extremely broad range of parameter changes and high level of disturbances. During shuttle docking the system mass may suddenly increase by more than 100% and during station assembly the mass may vary even more drastically. These coupled with the inherent dynamic model uncertainties associated with large space structural systems require highly sophisticated control systems that can grow as the stations evolve and cope with the uncertainties and time-varying elements to maintain the stability and pointing of the space stations. The aspects of space station operational properties are first examined, including configurations, dynamic models, shuttle docking contact dynamics, solar panel interaction, and load reduction to yield a set of system models and conditions. A model reference adaptive control algorithm along with the inner-loop plant augmentation design for controlling the space stations under severe operational conditions of shuttle docking, excessive model parameter errors, and model truncation are then investigated. The instability problem caused by the zero-frequency rigid body modes and a proposed solution using plant augmentation are addressed. Two sets of sufficient conditions which guarantee the globablly asymptotic stability for the space station systems are obtained.
Dynamic Interactive Learning Systems
ERIC Educational Resources Information Center
Sabry, Khaled; Barker, Jeff
2009-01-01
This paper reviews and discusses the notions of interactivity and dynamicity of learning systems in relation to information technologies and design principles that can contribute to interactive and dynamic learning. It explores the concept of dynamic interactive learning systems based on the emerging generation of information as part of a…
Adaptive diagnosis of the bilinear mechanical systems
NASA Astrophysics Data System (ADS)
Gelman, L.; Gorpinich, S.; Thompson, C.
2009-07-01
A generic adaptive approach is proposed for diagnosis of the bilinear mechanical systems. The approach adapts the free oscillation method for bilinearity diagnosis of mechanical systems. The expediency of the adaptation is proved for a recognition feature, the decrement of the free oscillations. The developed adaptation consists of variation of the adaptive likelihood ratio of the decrement with variation of the resonance frequency of the bilinear system. It is shown that in the cases of the frequency-independent and the frequency-dependent internal damping, the adaptation is expedient. To investigate effectiveness of the adaptation in these cases, a numerical simulation was carried out. The simulation results show that use of the adaptation increases the total probability of the correct diagnosis of system bilinearity.
Neural network with dynamically adaptable neurons
NASA Technical Reports Server (NTRS)
Tawel, Raoul (Inventor)
1994-01-01
This invention is an adaptive neuron for use in neural network processors. The adaptive neuron participates in the supervised learning phase of operation on a co-equal basis with the synapse matrix elements by adaptively changing its gain in a similar manner to the change of weights in the synapse IO elements. In this manner, training time is decreased by as much as three orders of magnitude.
Design of a digital adaptive control system for reentry vehicles.
NASA Technical Reports Server (NTRS)
Picon-Jimenez, J. L.; Montgomery, R. C.; Grigsby, L. L.
1972-01-01
The flying qualities of atmospheric reentry vehicles experience considerable variations due to the wide changes in flight conditions characteristic of reentry trajectories. A digital adaptive control system has been designed to modify the vehicle's dynamic characteristics and to provide desired flying qualities for all flight conditions. This adaptive control system consists of a finite-memory identifier which determines the vehicle's unknown parameters, and a gain computer which calculates feedback gains to satisfy flying quality requirements.
Elucidating Microbial Adaptation Dynamics via Autonomous Exposure and Sampling
NASA Technical Reports Server (NTRS)
Grace, Joseph M.; Verseux, Cyprien; Gentry, Diana; Moffet, Amy; Thayabaran, Ramanen; Wong, Nathan; Rothschild, Lynn
2013-01-01
The adaptation of micro-organisms to their environments is a complex process of interaction between the pressures of the environment and of competition. Reducing this multifactorial process to environmental exposure in the laboratory is a common tool for elucidating individual mechanisms of evolution, such as mutation rates. Although such studies inform fundamental questions about the way adaptation and even speciation occur, they are often limited by labor-intensive manual techniques. Current methods for controlled study of microbial adaptation limit the length of time, the depth of collected data, and the breadth of applied environmental conditions. Small idiosyncrasies in manual techniques can have large effects on outcomes; for example, there are significant variations in induced radiation resistances following similar repeated exposure protocols. We describe here a project under development to allow rapid cycling of multiple types of microbial environmental exposure. The system allows continuous autonomous monitoring and data collection of both single species and sampled communities, independently and concurrently providing multiple types of controlled environmental pressure (temperature, radiation, chemical presence or absence, and so on) to a microbial community in dynamic response to the ecosystem's current status. When combined with DNA sequencing and extraction, such a controlled environment can cast light on microbial functional development, population dynamics, inter- and intra-species competition, and microbe-environment interaction. The project's goal is to allow rapid, repeatable iteration of studies of both natural and artificial microbial adaptation. As an example, the same system can be used both to increase the pH of a wet soil aliquot over time while periodically sampling it for genetic activity analysis, or to repeatedly expose a culture of bacteria to the presence of a toxic metal, automatically adjusting the level of toxicity based on the
Elucidating Microbial Adaptation Dynamics via Autonomous Exposure and Sampling
NASA Astrophysics Data System (ADS)
Grace, J. M.; Verseux, C.; Gentry, D.; Moffet, A.; Thayabaran, R.; Wong, N.; Rothschild, L.
2013-12-01
The adaptation of micro-organisms to their environments is a complex process of interaction between the pressures of the environment and of competition. Reducing this multifactorial process to environmental exposure in the laboratory is a common tool for elucidating individual mechanisms of evolution, such as mutation rates[Wielgoss et al., 2013]. Although such studies inform fundamental questions about the way adaptation and even speciation occur, they are often limited by labor-intensive manual techniques[Wassmann et al., 2010]. Current methods for controlled study of microbial adaptation limit the length of time, the depth of collected data, and the breadth of applied environmental conditions. Small idiosyncrasies in manual techniques can have large effects on outcomes; for example, there are significant variations in induced radiation resistances following similar repeated exposure protocols[Alcántara-Díaz et al., 2004; Goldman and Travisano, 2011]. We describe here a project under development to allow rapid cycling of multiple types of microbial environmental exposure. The system allows continuous autonomous monitoring and data collection of both single species and sampled communities, independently and concurrently providing multiple types of controlled environmental pressure (temperature, radiation, chemical presence or absence, and so on) to a microbial community in dynamic response to the ecosystem's current status. When combined with DNA sequencing and extraction, such a controlled environment can cast light on microbial functional development, population dynamics, inter- and intra-species competition, and microbe-environment interaction. The project's goal is to allow rapid, repeatable iteration of studies of both natural and artificial microbial adaptation. As an example, the same system can be used both to increase the pH of a wet soil aliquot over time while periodically sampling it for genetic activity analysis, or to repeatedly expose a culture of
Hydrodynamics in adaptive resolution particle simulations: Multiparticle collision dynamics
Alekseeva, Uliana; Winkler, Roland G.; Sutmann, Godehard
2016-06-01
A new adaptive resolution technique for particle-based multi-level simulations of fluids is presented. In the approach, the representation of fluid and solvent particles is changed on the fly between an atomistic and a coarse-grained description. The present approach is based on a hybrid coupling of the multiparticle collision dynamics (MPC) method and molecular dynamics (MD), thereby coupling stochastic and deterministic particle-based methods. Hydrodynamics is examined by calculating velocity and current correlation functions for various mixed and coupled systems. We demonstrate that hydrodynamic properties of the mixed fluid are conserved by a suitable coupling of the two particle methods, and that the simulation results agree well with theoretical expectations.
Dynamics of epidemic diseases on a growing adaptive network
NASA Astrophysics Data System (ADS)
Demirel, Güven; Barter, Edmund; Gross, Thilo
2017-02-01
The study of epidemics on static networks has revealed important effects on disease prevalence of network topological features such as the variance of the degree distribution, i.e. the distribution of the number of neighbors of nodes, and the maximum degree. Here, we analyze an adaptive network where the degree distribution is not independent of epidemics but is shaped through disease-induced dynamics and mortality in a complex interplay. We study the dynamics of a network that grows according to a preferential attachment rule, while nodes are simultaneously removed from the network due to disease-induced mortality. We investigate the prevalence of the disease using individual-based simulations and a heterogeneous node approximation. Our results suggest that in this system in the thermodynamic limit no epidemic thresholds exist, while the interplay between network growth and epidemic spreading leads to exponential networks for any finite rate of infectiousness when the disease persists.
Dynamics of epidemic diseases on a growing adaptive network
Demirel, Güven; Barter, Edmund; Gross, Thilo
2017-01-01
The study of epidemics on static networks has revealed important effects on disease prevalence of network topological features such as the variance of the degree distribution, i.e. the distribution of the number of neighbors of nodes, and the maximum degree. Here, we analyze an adaptive network where the degree distribution is not independent of epidemics but is shaped through disease-induced dynamics and mortality in a complex interplay. We study the dynamics of a network that grows according to a preferential attachment rule, while nodes are simultaneously removed from the network due to disease-induced mortality. We investigate the prevalence of the disease using individual-based simulations and a heterogeneous node approximation. Our results suggest that in this system in the thermodynamic limit no epidemic thresholds exist, while the interplay between network growth and epidemic spreading leads to exponential networks for any finite rate of infectiousness when the disease persists. PMID:28186146
Coupled nonlinear dynamical systems
NASA Astrophysics Data System (ADS)
Sun, Hongyan
In this dissertation, we study coupled nonlinear dynamical systems that exhibit new types of complex behavior. We numerically and analytically examine a variety of dynamical models, ranging from systems of ordinary differential equations (ODE) with novel elements of feedback to systems of partial differential equations (PDE) that model chemical pattern formation. Chaos, dynamical uncertainty, synchronization, and spatiotemporal pattern formation constitute the primary topics of the dissertation. Following the introduction in Chapter 1, we study chaos and dynamical uncertainty in Chapter 2 with coupled Lorenz systems and demonstrate the existence of extreme complexity in high-dimensional ODE systems. In Chapter 3, we demonstrate that chaos synchronization can be achieved by mutual and multiplicative coupling of dynamical systems. Chapter 4 and 5 focus on pattern formation in reaction-diffusion systems, and we investigate segregation and integration behavior of populations in competitive and cooperative environments, respectively.
Optimal spectral tracking--adapting to dynamic regime change.
Brittain, John-Stuart; Halliday, David M
2011-01-30
Real world data do not always obey the statistical restraints imposed upon them by sophisticated analysis techniques. In spectral analysis for instance, an ergodic process--the interchangeability of temporal for spatial averaging--is assumed for a repeat-trial design. Many evolutionary scenarios, such as learning and motor consolidation, do not conform to such linear behaviour and should be approached from a more flexible perspective. To this end we previously introduced the method of optimal spectral tracking (OST) in the study of trial-varying parameters. In this extension to our work we modify the OST routines to provide an adaptive implementation capable of reacting to dynamic transitions in the underlying system state. In so doing, we generalise our approach to characterise both slow-varying and rapid fluctuations in time-series, simultaneously providing a metric of system stability. The approach is first applied to a surrogate dataset and compared to both our original non-adaptive solution and spectrogram approaches. The adaptive OST is seen to display fast convergence and desirable statistical properties. All three approaches are then applied to a neurophysiological recording obtained during a study on anaesthetic monitoring. Local field potentials acquired from the posterior hypothalamic region of a deep brain stimulation patient undergoing anaesthesia were analysed. The characterisation of features such as response delay, time-to-peak and modulation brevity are considered.
Adaptation tunes cortical dynamics to a critical regime during vision
NASA Astrophysics Data System (ADS)
Shew, Woodrow; Clawson, Wesley; Pobst, Jeff; Karimipanah, Yahya; Wright, Nathaniel; Wessel, Ralf; Shew Lab Team; Wessel Lab Team
2015-03-01
A long-standing hypothesis at the interface of physics and neuroscience is that neural networks self-organize to the critical point of a phase transition, thereby optimizing aspects of sensory information processing. This idea is partially supported by strong evidence for critical dynamics observed in the cerebral cortex, but has not been tested in systems with significant sensory input. Thus, the foundations of this hypothesis - the self-organization process and how it manifests during strong sensory input - remain unstudied experimentally. Here we report microelectrode array measurements from visual cortex of turtles during visual stimulation of the retina. We show experimentally and in a computational model that strong sensory input initially elicits cortical network dynamics that are not critical, but adaptive changes in the network rapidly tune the system to criticality. This conclusion is based on observations of multifaceted scaling laws predicted to occur at criticality. Our findings establish sensory adaptation as a self-organizing mechanism which maintains criticality in visual cortex during sensory information processing. Supported by NSF CRCNS Grant 1308174.
Dynamics of immune system vulnerabilities
NASA Astrophysics Data System (ADS)
Stromberg, Sean P.
The adaptive immune system can be viewed as a complex system, which adapts, over time, to reflect the history of infections experienced by the organism. Understanding its operation requires viewing it in terms of tradeoffs under constraints and evolutionary history. It typically displays "robust, yet fragile" behavior, meaning common tasks are robust to small changes but novel threats or changes in environment can have dire consequences. In this dissertation we use mechanistic models to study several biological processes: the immune response, the homeostasis of cells in the lymphatic system, and the process that normally prevents autoreactive cells from entering the lymphatic system. Using these models we then study the effects of these processes interacting. We show that the mechanisms that regulate the numbers of cells in the immune system, in conjunction with the immune response, can act to suppress autoreactive cells from proliferating, thus showing quantitatively how pathogenic infections can suppress autoimmune disease. We also show that over long periods of time this same effect can thin the repertoire of cells that defend against novel threats, leading to an age correlated vulnerability. This vulnerability is shown to be a consequence of system dynamics, not due to degradation of immune system components with age. Finally, modeling a specific tolerance mechanism that normally prevents autoimmune disease, in conjunction with models of the immune response and homeostasis we look at the consequences of the immune system mistakenly incorporating pathogenic molecules into its tolerizing mechanisms. The signature of this dynamic matches closely that of the dengue virus system.
Kampfner, Roberto R
2006-07-01
The structure of a system influences its adaptability. An important result of adaptability theory is that subsystem independence increases adaptability [Conrad, M., 1983. Adaptability. Plenum Press, New York]. Adaptability is essential in systems that face an uncertain environment such as biological systems and organizations. Modern organizations are the product of human design. And so it is their structure and the effect that it has on their adaptability. In this paper we explore the potential effects of computer-based information processing on the adaptability of organizations. The integration of computer-based processes into the dynamics of the functions they support and the effect it has on subsystem independence are especially relevant to our analysis.
Waddington, Dynamic Systems, and Epigenetics
Tronick, Ed; Hunter, Richard G.
2016-01-01
Waddington coined the term “epigenetic” to attempt to explain the complex, dynamic interactions between the developmental environment and the genome that led to the production of phenotype. Waddington's thoughts on the importance of both adaptability and canalization of phenotypic development are worth recalling as well, as they emphasize the available range for epigenetic action and the importance of environmental feedback (or lack thereof) in the development of complex traits. We suggest that a dynamic systems view fits well with Waddington's conception of epigenetics in the developmental context, as well as shedding light on the study of the molecular epigenetic effects of the environment on brain and behavior. Further, the dynamic systems view emphasizes the importance of the multi-directional interchange between the organism, the genome and various aspects of the environment to the ultimate phenotype. PMID:27375447
Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease
NASA Astrophysics Data System (ADS)
Sun, Jun; Deem, Michael
2006-03-01
The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross-reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system a balance has evolved between binding affinity and specificity in the mechanism for searching the amino acid sequence space of antibodies. Our model predicts that chronic infection may lead to autoimmune disease as well due to cross-reactivity and suggests a broad distribution for the time of onset of autoimmune disease due to chronic exposure. The slow search of antibody sequence space by point mutation leads to the broad of distribution times.
Is Echo a complex adaptive system?
Smith, R M; Bedau, M A
2000-01-01
We evaluate whether John Holland's Echo model exemplifies his theory of complex adaptive systems. After reviewing Holland's theory of complex adaptive systems and describing his Escho model, we describe and explain the characteristic evolutionary behavior observed in a series of Echo model runs. We conclude that Echo lacks the diversity of hierarchically organized aggregates that typify complex adaptive systems, and we explore possible explanations for this failure.
NASA Astrophysics Data System (ADS)
Roberson, Robert E.; Schwertassek, Richard
The fundamental mathematical principles of multibody-system dynamics and their implementation in numerical simulations are examined in a rigorous introduction for design engineers. Chapters are devoted to the history of rotational dynamics; typical spacecraft, vehicle, and robotics applications; terminology and notation; the kinematics of a rigid body (location and orientation, velocity, and the kinematical equations of motion); the dynamics of a rigid body; multibody formalisms, kinematics, and dynamics; the linearized equations for multibody systems; and computer simulation techniques. Diagrams, drawings, and a glossary of symbols are provided.
Yoo, Sung Jin; Park, Jin Bae; Choi, Yoon Ho
2006-12-01
A new method for the robust control of flexible-joint (FJ) robots with model uncertainties in both robot dynamics and actuator dynamics is proposed. The proposed control system is a combination of the adaptive dynamic surface control (DSC) technique and the self-recurrent wavelet neural network (SRWNN). The adaptive DSC technique provides the ability to overcome the "explosion of complexity" problem in backstepping controllers. The SRWNNs are used to observe the arbitrary model uncertainties of FJ robots, and all their weights are trained online. From the Lyapunov stability analysis, their adaptation laws are induced, and the uniformly ultimately boundedness of all signals in a closed-loop adaptive system is proved. Finally, simulation results for a three-link FJ robot are utilized to validate the good position tracking performance and robustness against payload uncertainties and external disturbances of the proposed control system.
Adaptable formations utilizing heterogeneous unmanned systems
NASA Astrophysics Data System (ADS)
Barnes, Laura E.; Garcia, Richard; Fields, MaryAnne; Valavanis, Kimon
2009-05-01
This paper addresses the problem of controlling and coordinating heterogeneous unmanned systems required to move as a group while maintaining formation. We propose a strategy to coordinate groups of unmanned ground vehicles (UGVs) with one or more unmanned aerial vehicles (UAVs). UAVs can be utilized in one of two ways: (1) as alpha robots to guide the UGVs; and (2) as beta robots to surround the UGVs and adapt accordingly. In the first approach, the UAV guides a swarm of UGVs controlling their overall formation. In the second approach, the UGVs guide the UAVs controlling their formation. The unmanned systems are brought into a formation utilizing artificial potential fields generated from normal and sigmoid functions. These functions control the overall swarm geometry. Nonlinear limiting functions are defined to provide tighter swarm control by modifying and adjusting a set of control variables forcing the swarm to behave according to set constraints. Formations derived are subsets of elliptical curves but can be generalized to any curvilinear shape. Both approaches are demonstrated in simulation and experimentally. To demonstrate the second approach in simulation, a swarm of forty UAVs is utilized in a convoy protection mission. As a convoy of UGVs travels, UAVs dynamically and intelligently adapt their formation in order to protect the convoy of vehicles as it moves. Experimental results are presented to demonstrate the approach using a fully autonomous group of three UGVs and a single UAV helicopter for coordination.
Nonlinear adaptive trajectory tracking using dynamic neural networks.
Poznyak, A S; Yu, W; Sanchez, E N; Perez, J P
1999-01-01
In this paper the adaptive nonlinear identification and trajectory tracking are discussed via dynamic neural networks. By means of a Lyapunov-like analysis we determine stability conditions for the identification error. Then we analyze the trajectory tracking error by a local optimal controller. An algebraic Riccati equation and a differential one are used for the identification and the tracking error analysis. As our main original contributions, we establish two theorems: the first one gives a bound for the identification error and the second one establishes a bound for the tracking error. We illustrate the effectiveness of these results by two examples: the second-order relay system with multiple isolated equilibrium points and the chaotic system given by Duffing equation.
Modeling Power Systems as Complex Adaptive Systems
Chassin, David P.; Malard, Joel M.; Posse, Christian; Gangopadhyaya, Asim; Lu, Ning; Katipamula, Srinivas; Mallow, J V.
2004-12-30
Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We review and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.
Self-characterization of linear and nonlinear adaptive optics systems
NASA Astrophysics Data System (ADS)
Hampton, Peter J.; Conan, Rodolphe; Keskin, Onur; Bradley, Colin; Agathoklis, Pan
2008-01-01
We present methods used to determine the linear or nonlinear static response and the linear dynamic response of an adaptive optics (AO) system. This AO system consists of a nonlinear microelectromechanical systems deformable mirror (DM), a linear tip-tilt mirror (TTM), a control computer, and a Shack-Hartmann wavefront sensor. The system is modeled using a single-input-single-output structure to determine the one-dimensional transfer function of the dynamic response of the chain of system hardware. An AO system has been shown to be able to characterize its own response without additional instrumentation. Experimentally determined models are given for a TTM and a DM.
Multithreaded Model for Dynamic Load Balancing Parallel Adaptive PDE Computations
NASA Technical Reports Server (NTRS)
Chrisochoides, Nikos
1995-01-01
We present a multithreaded model for the dynamic load-balancing of numerical, adaptive computations required for the solution of Partial Differential Equations (PDE's) on multiprocessors. Multithreading is used as a means of exploring concurrency in the processor level in order to tolerate synchronization costs inherent to traditional (non-threaded) parallel adaptive PDE solvers. Our preliminary analysis for parallel, adaptive PDE solvers indicates that multithreading can be used an a mechanism to mask overheads required for the dynamic balancing of processor workloads with computations required for the actual numerical solution of the PDE's. Also, multithreading can simplify the implementation of dynamic load-balancing algorithms, a task that is very difficult for traditional data parallel adaptive PDE computations. Unfortunately, multithreading does not always simplify program complexity, often makes code re-usability not an easy task, and increases software complexity.
Wang, Tianbo; Zhou, Wuneng; Zhao, Shouwei; Yu, Weiqin
2014-03-01
In this paper, the robust exponential synchronization problem for a class of uncertain delayed master-slave dynamical system is investigated by using the adaptive control method. Different from some existing master-slave models, the considered master-slave system includes bounded unmodeled dynamics. In order to compensate the effect of unmodeled dynamics and effectively achieve synchronization, a novel adaptive controller with simple updated laws is proposed. Moreover, the results are given in terms of LMIs, which can be easily solved by LMI Toolbox in Matlab. A numerical example is given to illustrate the effectiveness of the method.
Autonomous Organization-Based Adaptive Information Systems
2005-01-01
intentional Multi - agent System (MAS) approach [10]. While these approaches are functional AIS systems, they lack the ability to reorganize and adapt...extended a multi - agent system with a self- reorganizing architecture to create an autonomous, adaptive information system. Design Our organization-based...goals. An advantage of a multi - agent system using the organization theoretic model is its extensibility. The practical, numerical limits to the
Dynamics of adaptive agents with asymmetric information
NASA Astrophysics Data System (ADS)
DeMartino, Andrea; Galla, Tobias
2005-08-01
We apply path integral techniques to study the dynamics of agent-based models with asymmetric information structures. In particular, we devise a batch version of a model proposed originally by Berg et al (2001 Quantitative Finance 1 203), and convert the coupled multi-agent processes into an effective-agent problem from which the dynamical order parameters in ergodic regimes can be derived self-consistently together with the corresponding phase structure. Our dynamical study complements and extends the available static theory. Results are confirmed by numerical simulations.
Computerized Adaptive Mastery Tests as Expert Systems.
ERIC Educational Resources Information Center
Frick, Theodore W.
1992-01-01
Discussion of expert systems and computerized adaptive tests describes two versions of EXSPRT, a new approach that combines uncertain inference in expert systems with sequential probability ratio test (SPRT) stopping rules. Results of two studies comparing EXSPRT to adaptive mastery testing based on item response theory and SPRT approaches are…
Navigating sensory conflict in dynamic environments using adaptive state estimation.
Klein, Theresa J; Jeka, John; Kiemel, Tim; Lewis, M Anthony
2011-12-01
Most conventional robots rely on controlling the location of the center of pressure to maintain balance, relying mainly on foot pressure sensors for information. By contrast,humans rely on sensory data from multiple sources, including proprioceptive, visual, and vestibular sources. Several models have been developed to explain how humans reconcile information from disparate sources to form a stable sense of balance. These models may be useful for developing robots that are able to maintain dynamic balance more readily using multiple sensory sources. Since these information sources may conflict, reliance by the nervous system on any one channel can lead to ambiguity in the system state. In humans, experiments that create conflicts between different sensory channels by moving the visual field or the support surface indicate that sensory information is adaptively reweighted. Unreliable information is rapidly down-weighted,then gradually up-weighted when it becomes valid again.Human balance can also be studied by building robots that model features of human bodies and testing them under similar experimental conditions. We implement a sensory reweighting model based on an adaptive Kalman filter in abipedal robot, and subject it to sensory tests similar to those used on human subjects. Unlike other implementations of sensory reweighting in robots, our implementation includes vision, by using optic flow to calculate forward rotation using a camera (visual modality), as well as a three-axis gyro to represent the vestibular system (non-visual modality), and foot pressure sensors (proprioceptive modality). Our model estimates measurement noise in real time, which is then used to recompute the Kalman gain on each iteration, improving the ability of the robot to dynamically balance. We observe that we can duplicate many important features of postural sw ay in humans, including automatic sensory reweighting,effects, constant phase with respect to amplitude, and a temporal
Dynamics of adaptive structures: Design through simulations
NASA Technical Reports Server (NTRS)
Park, K. C.; Alexander, S.
1993-01-01
The use of a helical bi-morph actuator/sensor concept by mimicking the change of helical waveform in bacterial flagella is perhaps the first application of bacterial motions (living species) to longitudinal deployment of space structures. However, no dynamical considerations were analyzed to explain the waveform change mechanisms. The objective is to review various deployment concepts from the dynamics point of view and introduce the dynamical considerations from the outset as part of design considerations. Specifically, the impact of the incorporation of the combined static mechanisms and dynamic design considerations on the deployment performance during the reconfiguration stage is studied in terms of improved controllability, maneuvering duration, and joint singularity index. It is shown that intermediate configurations during articulations play an important role for improved joint mechanisms design and overall structural deployability.
Adaptive control with an expert system based supervisory level. Thesis
NASA Technical Reports Server (NTRS)
Sullivan, Gerald A.
1991-01-01
Adaptive control is presently one of the methods available which may be used to control plants with poorly modelled dynamics or time varying dynamics. Although many variations of adaptive controllers exist, a common characteristic of all adaptive control schemes, is that input/output measurements from the plant are used to adjust a control law in an on-line fashion. Ideally the adjustment mechanism of the adaptive controller is able to learn enough about the dynamics of the plant from input/output measurements to effectively control the plant. In practice, problems such as measurement noise, controller saturation, and incorrect model order, to name a few, may prevent proper adjustment of the controller and poor performance or instability result. In this work we set out to avoid the inadequacies of procedurally implemented safety nets, by introducing a two level control scheme in which an expert system based 'supervisor' at the upper level provides all the safety net functions for an adaptive controller at the lower level. The expert system is based on a shell called IPEX, (Interactive Process EXpert), that we developed specifically for the diagnosis and treatment of dynamic systems. Some of the more important functions that the IPEX system provides are: (1) temporal reasoning; (2) planning of diagnostic activities; and (3) interactive diagnosis. Also, because knowledge and control logic are separate, the incorporation of new diagnostic and treatment knowledge is relatively simple. We note that the flexibility available in the system to express diagnostic and treatment knowledge, allows much greater functionality than could ever be reasonably expected from procedural implementations of safety nets. The remainder of this chapter is divided into three sections. In section 1.1 we give a detailed review of the literature in the area of supervisory systems for adaptive controllers. In particular, we describe the evolution of safety nets from simple ad hoc techniques, up
NASA Technical Reports Server (NTRS)
Doolin, B. F.
1975-01-01
Classes of large scale dynamic systems were discussed in the context of modern control theory. Specific examples discussed were in the technical fields of aeronautics, water resources and electric power.
Dynamics of collisionless systems
NASA Technical Reports Server (NTRS)
Zang, T. A.
1980-01-01
The three dimensional dynamics of rotating stellar systems were studied. A comparison of various mathematical models of flat galaxies is presented. The effects of self-gravity upon a flat galaxy undergoing a tidal encounter with another galaxy were investigated.
Operator adaptation to changes in system reliability under adaptable automation.
Chavaillaz, Alain; Sauer, Juergen
2016-11-25
This experiment examined how operators coped with a change in system reliability between training and testing. Forty participants were trained for 3 h on a complex process control simulation modelling six levels of automation (LOA). In training, participants either experienced a high- (100%) or low-reliability system (50%). The impact of training experience on operator behaviour was examined during a 2.5 h testing session, in which participants either experienced a high- (100%) or low-reliability system (60%). The results showed that most operators did not often switch between LOA. Most chose an LOA that relieved them of most tasks but maintained their decision authority. Training experience did not have a strong impact on the outcome measures (e.g. performance, complacency). Low system reliability led to decreased performance and self-confidence. Furthermore, complacency was observed under high system reliability. Overall, the findings suggest benefits of adaptable automation because it accommodates different operator preferences for LOA. Practitioner Summary: The present research shows that operators can adapt to changes in system reliability between training and testing sessions. Furthermore, it provides evidence that each operator has his/her preferred automation level. Since this preference varies strongly between operators, adaptable automation seems to be suitable to accommodate these large differences.
Adaptive Management of Computing and Network Resources for Spacecraft Systems
NASA Technical Reports Server (NTRS)
Pfarr, Barbara; Welch, Lonnie R.; Detter, Ryan; Tjaden, Brett; Huh, Eui-Nam; Szczur, Martha R. (Technical Monitor)
2000-01-01
It is likely that NASA's future spacecraft systems will consist of distributed processes which will handle dynamically varying workloads in response to perceived scientific events, the spacecraft environment, spacecraft anomalies and user commands. Since all situations and possible uses of sensors cannot be anticipated during pre-deployment phases, an approach for dynamically adapting the allocation of distributed computational and communication resources is needed. To address this, we are evolving the DeSiDeRaTa adaptive resource management approach to enable reconfigurable ground and space information systems. The DeSiDeRaTa approach embodies a set of middleware mechanisms for adapting resource allocations, and a framework for reasoning about the real-time performance of distributed application systems. The framework and middleware will be extended to accommodate (1) the dynamic aspects of intra-constellation network topologies, and (2) the complete real-time path from the instrument to the user. We are developing a ground-based testbed that will enable NASA to perform early evaluation of adaptive resource management techniques without the expense of first deploying them in space. The benefits of the proposed effort are numerous, including the ability to use sensors in new ways not anticipated at design time; the production of information technology that ties the sensor web together; the accommodation of greater numbers of missions with fewer resources; and the opportunity to leverage the DeSiDeRaTa project's expertise, infrastructure and models for adaptive resource management for distributed real-time systems.
Applications of analysis of dynamic adaptations in parameter trajectories
van Riel, Natal A. W.; Tiemann, Christian A.; Vanlier, Joep; Hilbers, Peter A. J.
2013-01-01
Metabolic profiling in combination with pathway-based analyses and computational modelling are becoming increasingly important in clinical and preclinical research. Modelling multi-factorial, progressive diseases requires the integration of molecular data at the metabolome, proteome and transcriptome levels. Also the dynamic interaction of organs and tissues needs to be considered. The processes involved cover time scales that are several orders of magnitude different. We report applications of a computational approach to bridge the scales and different levels of biological detail. Analysis of dynamic adaptations in parameter trajectories (ADAPTs) aims to investigate phenotype transitions during disease development and after a therapeutic intervention. ADAPT is based on a time-dependent evolution of model parameters to describe the dynamics of metabolic adaptations. The progression of metabolic adaptations is predicted by identifying necessary dynamic changes in the model parameters to describe the transition between experimental data obtained during different stages. To get a better understanding of the concept, the ADAPT approach is illustrated in a theoretical study. Its application in research on progressive changes in lipoprotein metabolism is also discussed. PMID:23853705
Emergence of hierarchical networks and polysynchronous behaviour in simple adaptive systems
NASA Astrophysics Data System (ADS)
Botella-Soler, V.; Glendinning, P.
2012-03-01
We describe the dynamics of a simple adaptive network. The network architecture evolves to a number of disconnected components on which the dynamics is characterized by the possibility of differently synchronized nodes within the same network (polysynchronous states). These systems may have implications for the evolutionary emergence of polysynchrony and hierarchical networks in physical or biological systems modeled by adaptive networks.
Leadership: Enhancing Team Adaptability in Dynamic Settings
2008-04-01
regulatory processes (Karoly, 1993), team development ( Tuckman , 1965), and multilevel theory (Rousseau, 1985) to develop a normative theory of dynamic...De Meuse, K. P., & Futrell, D. (1990). Work teams: Applications and effectiveness. American Psychologist, 45, 120-133. Tuckman , B.W. (1965
The Limits to Adaptation: A Systems Approach
NASA Astrophysics Data System (ADS)
Felgenhauer, T. N.
2013-12-01
The ability to adapt to climate change is delineated by capacity thresholds, after which climate damages begin to overwhelm the adaptation response. Such thresholds depend upon physical properties (natural processes and engineering parameters), resource constraints (expressed through market prices), and societal preferences (from prices as well as cultural norms). Exceedance of adaptation capacity will require substitution either with other pre-existing policy responses or with new adaptation responses that have yet to be developed and tested. Previous modeling research shows that capacity limited adaptation will play a policy-significant role in future climate change decision-making. The aim of this study is to describe different types of adaptation response and climate damage systems and postulate how these systems might behave when the limits to adaptation are reached. The hypothesis is that this behavior will be governed by the characteristics and level of the adaptation limit, the shape of the damage curve in that specific damage area, and the availability of alternative adaptation responses once the threshold is passed, whether it is more of the old technology, a new response type, or a transformation of the climate damage and response system itself.
Brain-wide neuronal dynamics during motor adaptation in zebrafish.
Ahrens, Misha B; Li, Jennifer M; Orger, Michael B; Robson, Drew N; Schier, Alexander F; Engert, Florian; Portugues, Ruben
2012-05-09
A fundamental question in neuroscience is how entire neural circuits generate behaviour and adapt it to changes in sensory feedback. Here we use two-photon calcium imaging to record the activity of large populations of neurons at the cellular level, throughout the brain of larval zebrafish expressing a genetically encoded calcium sensor, while the paralysed animals interact fictively with a virtual environment and rapidly adapt their motor output to changes in visual feedback. We decompose the network dynamics involved in adaptive locomotion into four types of neuronal response properties, and provide anatomical maps of the corresponding sites. A subset of these signals occurred during behavioural adjustments and are candidates for the functional elements that drive motor learning. Lesions to the inferior olive indicate a specific functional role for olivocerebellar circuitry in adaptive locomotion. This study enables the analysis of brain-wide dynamics at single-cell resolution during behaviour.
Brain-wide neuronal dynamics during motor adaptation in zebrafish
Ahrens, Misha B; Li, Jennifer M; Orger, Michael B; Robson, Drew N; Schier, Alexander F; Engert, Florian; Portugues, Ruben
2013-01-01
A fundamental question in neuroscience is how entire neural circuits generate behavior and adapt it to changes in sensory feedback. Here we use two-photon calcium imaging to record activity of large populations of neurons at the cellular level throughout the brain of larval zebrafish expressing a genetically-encoded calcium sensor, while the paralyzed animals interact fictively with a virtual environment and rapidly adapt their motor output to changes in visual feedback. We decompose the network dynamics involved in adaptive locomotion into four types of neural response properties, and provide anatomical maps of the corresponding sites. A subset of these signals occurred during behavioral adjustments and are candidates for the functional elements that drive motor learning. Lesions to the inferior olive indicate a specific functional role for olivocerebellar circuitry in adaptive locomotion. This study enables the analysis of brain-wide dynamics at single-cell resolution during behavior. PMID:22622571
Structural self-assembly and avalanchelike dynamics in locally adaptive networks
NASA Astrophysics Data System (ADS)
Gräwer, Johannes; Modes, Carl D.; Magnasco, Marcelo O.; Katifori, Eleni
2015-07-01
Transport networks play a key role across four realms of eukaryotic life: slime molds, fungi, plants, and animals. In addition to the developmental algorithms that build them, many also employ adaptive strategies to respond to stimuli, damage, and other environmental changes. We model these adapting network architectures using a generic dynamical system on weighted graphs and find in simulation that these networks ultimately develop a hierarchical organization of the final weighted architecture accompanied by the formation of a system-spanning backbone. In addition, we find that the long term equilibration dynamics exhibit behavior reminiscent of glassy systems characterized by long periods of slow changes punctuated by bursts of reorganization events.
Concurrency and Complexity in Verifying Dynamic Adaptation: A Case Study
2005-01-01
Concurrency and Complexity in Verifying Dynamic Adaptation: A Case Study ? Karun N. Biyani?? Sandeep S. Kulkarni? ? ? Department of Computer Science...lattice. References 1. Sandeep S. Kulkarni, Karun N. Biyani, and Umamaheswaran Arumugam. Compos- ing distributed fault-tolerance components. In...and Autonomic Computing. PhD thesis, Michigan State University, 2004. 7. Sandeep Kulkarni and Karun Biyani. Correctness of component-based adaptation
Dynamical weights and enhanced synchronization in adaptive complex networks.
Zhou, Changsong; Kurths, Jürgen
2006-04-28
Dynamical organization of connection weights is studied in scale-free networks of chaotic oscillators, where the coupling strength of a node from its neighbors develops adaptively according to the local synchronization property between the node and its neighbors. We find that when complete synchronization is achieved, the coupling strength becomes weighted and correlated with the topology due to a hierarchical transition to synchronization in heterogeneous networks. Importantly, such an adaptive process enhances significantly the synchronizability of the networks, which could have meaningful implications in the manipulation of dynamical networks.
Semipredictable dynamical systems
NASA Astrophysics Data System (ADS)
García-Morales, Vladimir
2016-10-01
A new class of deterministic dynamical systems, termed semipredictable dynamical systems, is presented. The spatiotemporal evolution of these systems have both predictable and unpredictable traits, as found in natural complex systems. We prove a general result: The dynamics of any deterministic nonlinear cellular automaton (CA) with p possible dynamical states can be decomposed at each instant of time in a superposition of N layers involving p0, p1, …, pN - 1 dynamical states each, where the pk ∈ N , k ∈ [ 0 , N - 1 ] are divisors of p. If the divisors coincide with the prime factors of p this decomposition is unique. Conversely, we also prove that N CA working on symbols p0, p1, …, pN - 1 can be composed to create a graded CA rule with N different layers. We then show that, even when the full spatiotemporal evolution can be unpredictable, certain traits (layers) can exactly be predicted. We present explicit examples of such systems involving compositions of Wolfram's 256 elementary CA and a more complex CA rule acting on a neighborhood of two sites and 12 symbols and whose rule table corresponds to the smallest Moufang loop M12(S3, 2).
Adaptive control of Hammerstein-Wiener nonlinear systems
NASA Astrophysics Data System (ADS)
Zhang, Bi; Hong, Hyokchan; Mao, Zhizhong
2016-07-01
The Hammerstein-Wiener model is a block-oriented model, having a linear dynamic block sandwiched by two static nonlinear blocks. This note develops an adaptive controller for a special form of Hammerstein-Wiener nonlinear systems which are parameterized by the key-term separation principle. The adaptive control law and recursive parameter estimation are updated by the use of internal variable estimations. By modeling the errors due to the estimation of internal variables, we establish convergence and stability properties. Theoretical results show that parameter estimation convergence and closed-loop system stability can be guaranteed under sufficient condition. From a qualitative analysis of the sufficient condition, we introduce an adaptive weighted factor to improve the performance of the adaptive controller. Numerical examples are given to confirm the results in this paper.
Adaptation in CRISPR-Cas Systems.
Sternberg, Samuel H; Richter, Hagen; Charpentier, Emmanuelle; Qimron, Udi
2016-03-17
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins constitute an adaptive immune system in prokaryotes. The system preserves memories of prior infections by integrating short segments of foreign DNA, termed spacers, into the CRISPR array in a process termed adaptation. During the past 3 years, significant progress has been made on the genetic requirements and molecular mechanisms of adaptation. Here we review these recent advances, with a focus on the experimental approaches that have been developed, the insights they generated, and a proposed mechanism for self- versus non-self-discrimination during the process of spacer selection. We further describe the regulation of adaptation and the protein players involved in this fascinating process that allows bacteria and archaea to harbor adaptive immunity.
NASA Astrophysics Data System (ADS)
Pumpe, Daniel; Greiner, Maksim; Müller, Ewald; Enßlin, Torsten A.
2016-07-01
Stochastic differential equations describe well many physical, biological, and sociological systems, despite the simplification often made in their derivation. Here the usage of simple stochastic differential equations to characterize and classify complex dynamical systems is proposed within a Bayesian framework. To this end, we develop a dynamic system classifier (DSC). The DSC first abstracts training data of a system in terms of time-dependent coefficients of the descriptive stochastic differential equation. Thereby the DSC identifies unique correlation structures within the training data. For definiteness we restrict the presentation of the DSC to oscillation processes with a time-dependent frequency ω (t ) and damping factor γ (t ) . Although real systems might be more complex, this simple oscillator captures many characteristic features. The ω and γ time lines represent the abstract system characterization and permit the construction of efficient signal classifiers. Numerical experiments show that such classifiers perform well even in the low signal-to-noise regime.
Pumpe, Daniel; Greiner, Maksim; Müller, Ewald; Enßlin, Torsten A
2016-07-01
Stochastic differential equations describe well many physical, biological, and sociological systems, despite the simplification often made in their derivation. Here the usage of simple stochastic differential equations to characterize and classify complex dynamical systems is proposed within a Bayesian framework. To this end, we develop a dynamic system classifier (DSC). The DSC first abstracts training data of a system in terms of time-dependent coefficients of the descriptive stochastic differential equation. Thereby the DSC identifies unique correlation structures within the training data. For definiteness we restrict the presentation of the DSC to oscillation processes with a time-dependent frequency ω(t) and damping factor γ(t). Although real systems might be more complex, this simple oscillator captures many characteristic features. The ω and γ time lines represent the abstract system characterization and permit the construction of efficient signal classifiers. Numerical experiments show that such classifiers perform well even in the low signal-to-noise regime.
On the dynamics of some grid adaption schemes
NASA Technical Reports Server (NTRS)
Sweby, Peter K.; Yee, Helen C.
1994-01-01
The dynamics of a one-parameter family of mesh equidistribution schemes coupled with finite difference discretisations of linear and nonlinear convection-diffusion model equations is studied numerically. It is shown that, when time marched to steady state, the grid adaption not only influences the stability and convergence rate of the overall scheme, but can also introduce spurious dynamics to the numerical solution procedure.
Design and realization of dynamic self-adaptive technology based on disc quality
NASA Astrophysics Data System (ADS)
Zhou, Gongye; Wang, Jingqi; Fang, Xiaojing; Xie, Changsheng; Liu, Tong
2003-04-01
Dynamic self-adaptive technology makes it possible to adjust the spindle motor speed of optical disc drive based on the different quality of optical discs. It guarantees the read process have the optimal speed to read data smoothly and protect the optical-head components. This paper presents a dynamic self-adaptive technology based on disc quality which uses fussy logic control to make the speed adjusting process fast. It is applied to the servo system of high-speed CD-ROM driver system and good results are obtained.
Dynamics and Adaptive Control for Stability Recovery of Damaged Aircraft
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Krishnakumar, Kalmanje; Kaneshige, John; Nespeca, Pascal
2006-01-01
This paper presents a recent study of a damaged generic transport model as part of a NASA research project to investigate adaptive control methods for stability recovery of damaged aircraft operating in off-nominal flight conditions under damage and or failures. Aerodynamic modeling of damage effects is performed using an aerodynamic code to assess changes in the stability and control derivatives of a generic transport aircraft. Certain types of damage such as damage to one of the wings or horizontal stabilizers can cause the aircraft to become asymmetric, thus resulting in a coupling between the longitudinal and lateral motions. Flight dynamics for a general asymmetric aircraft is derived to account for changes in the center of gravity that can compromise the stability of the damaged aircraft. An iterative trim analysis for the translational motion is developed to refine the trim procedure by accounting for the effects of the control surface deflection. A hybrid direct-indirect neural network, adaptive flight control is proposed as an adaptive law for stabilizing the rotational motion of the damaged aircraft. The indirect adaptation is designed to estimate the plant dynamics of the damaged aircraft in conjunction with the direct adaptation that computes the control augmentation. Two approaches are presented 1) an adaptive law derived from the Lyapunov stability theory to ensure that the signals are bounded, and 2) a recursive least-square method for parameter identification. A hardware-in-the-loop simulation is conducted and demonstrates the effectiveness of the direct neural network adaptive flight control in the stability recovery of the damaged aircraft. A preliminary simulation of the hybrid adaptive flight control has been performed and initial data have shown the effectiveness of the proposed hybrid approach. Future work will include further investigations and high-fidelity simulations of the proposed hybrid adaptive Bight control approach.
Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems.
Zhang, Yanjun; Tao, Gang; Chen, Mou
2016-09-01
This paper presents a new study on the adaptive neural network-based control of a class of noncanonical nonlinear systems with large parametric uncertainties. Unlike commonly studied canonical form nonlinear systems whose neural network approximation system models have explicit relative degree structures, which can directly be used to derive parameterized controllers for adaptation, noncanonical form nonlinear systems usually do not have explicit relative degrees, and thus their approximation system models are also in noncanonical forms. It is well-known that the adaptive control of noncanonical form nonlinear systems involves the parameterization of system dynamics. As demonstrated in this paper, it is also the case for noncanonical neural network approximation system models. Effective control of such systems is an open research problem, especially in the presence of uncertain parameters. This paper shows that it is necessary to reparameterize such neural network system models for adaptive control design, and that such reparameterization can be realized using a relative degree formulation, a concept yet to be studied for general neural network system models. This paper then derives the parameterized controllers that guarantee closed-loop stability and asymptotic output tracking for noncanonical form neural network system models. An illustrative example is presented with the simulation results to demonstrate the control design procedure, and to verify the effectiveness of such a new design method.
Variable Neural Adaptive Robust Control: A Switched System Approach
Lian, Jianming; Hu, Jianghai; Zak, Stanislaw H.
2015-05-01
Variable neural adaptive robust control strategies are proposed for the output tracking control of a class of multi-input multi-output uncertain systems. The controllers incorporate a variable-structure radial basis function (RBF) network as the self-organizing approximator for unknown system dynamics. The variable-structure RBF network solves the problem of structure determination associated with fixed-structure RBF networks. It can determine the network structure on-line dynamically by adding or removing radial basis functions according to the tracking performance. The structure variation is taken into account in the stability analysis of the closed-loop system using a switched system approach with the aid of the piecewise quadratic Lyapunov function. The performance of the proposed variable neural adaptive robust controllers is illustrated with simulations.
An adaptive multi-swarm optimizer for dynamic optimization problems.
Li, Changhe; Yang, Shengxiang; Yang, Ming
2014-01-01
The multipopulation method has been widely used to solve dynamic optimization problems (DOPs) with the aim of maintaining multiple populations on different peaks to locate and track multiple changing optima simultaneously. However, to make this approach effective for solving DOPs, two challenging issues need to be addressed. They are how to adapt the number of populations to changes and how to adaptively maintain the population diversity in a situation where changes are complicated or hard to detect or predict. Tracking the changing global optimum in dynamic environments is difficult because we cannot know when and where changes occur and what the characteristics of changes would be. Therefore, it is necessary to take these challenging issues into account in designing such adaptive algorithms. To address the issues when multipopulation methods are applied for solving DOPs, this paper proposes an adaptive multi-swarm algorithm, where the populations are enabled to be adaptive in dynamic environments without change detection. An experimental study is conducted based on the moving peaks problem to investigate the behavior of the proposed method. The performance of the proposed algorithm is also compared with a set of algorithms that are based on multipopulation methods from different research areas in the literature of evolutionary computation.
Sex Speeds Adaptation by Altering the Dynamics of Molecular Evolution
McDonald, Michael J.; Rice, Daniel P.; Desai, Michael M.
2016-01-01
Sex and recombination are pervasive throughout nature despite their substantial costs1. Understanding the evolutionary forces that maintain these phenomena is a central challenge in biology2,3. One longstanding hypothesis argues that sex is beneficial because recombination speeds adaptation4. Theory has proposed a number of distinct population genetic mechanisms that could underlie this advantage. For example, sex can promote the fixation of beneficial mutations either by alleviating interference competition (the Fisher-Muller effect)5,6 or by separating them from deleterious load (the ruby in the rubbish effect)7,8. Previous experiments confirm that sex can increase the rate of adaptation9–17, but these studies did not observe the evolutionary dynamics that drive this effect at the genomic level. Here, we present the first comparison between the sequence-level dynamics of adaptation in experimental sexual and asexual populations, which allows us to identify the specific mechanisms by which sex speeds adaptation. We find that sex alters the molecular signatures of evolution by changing the spectrum of mutations that fix, and confirm theoretical predictions that it does so by alleviating clonal interference. We also show that substantially deleterious mutations hitchhike to fixation in adapting asexual populations. In contrast, recombination prevents such mutations from fixing. Our results demonstrate that sex both speeds adaptation and alters its molecular signature by allowing natural selection to more efficiently sort beneficial from deleterious mutations. PMID:26909573
Sex speeds adaptation by altering the dynamics of molecular evolution.
McDonald, Michael J; Rice, Daniel P; Desai, Michael M
2016-03-10
Sex and recombination are pervasive throughout nature despite their substantial costs. Understanding the evolutionary forces that maintain these phenomena is a central challenge in biology. One longstanding hypothesis argues that sex is beneficial because recombination speeds adaptation. Theory has proposed several distinct population genetic mechanisms that could underlie this advantage. For example, sex can promote the fixation of beneficial mutations either by alleviating interference competition (the Fisher-Muller effect) or by separating them from deleterious load (the ruby in the rubbish effect). Previous experiments confirm that sex can increase the rate of adaptation, but these studies did not observe the evolutionary dynamics that drive this effect at the genomic level. Here we present the first, to our knowledge, comparison between the sequence-level dynamics of adaptation in experimental sexual and asexual Saccharomyces cerevisiae populations, which allows us to identify the specific mechanisms by which sex speeds adaptation. We find that sex alters the molecular signatures of evolution by changing the spectrum of mutations that fix, and confirm theoretical predictions that it does so by alleviating clonal interference. We also show that substantially deleterious mutations hitchhike to fixation in adapting asexual populations. In contrast, recombination prevents such mutations from fixing. Our results demonstrate that sex both speeds adaptation and alters its molecular signature by allowing natural selection to more efficiently sort beneficial from deleterious mutations.
Dynamic Adaptive Neural Network Arrays: A Neuromorphic Architecture
Disney, Adam; Reynolds, John
2015-01-01
Dynamic Adaptive Neural Network Array (DANNA) is a neuromorphic hardware implementation. It differs from most other neuromorphic projects in that it allows for programmability of structure, and it is trained or designed using evolutionary optimization. This paper describes the DANNA structure, how DANNA is trained using evolutionary optimization, and an application of DANNA to a very simple classification task.
Modeling of Complex Adaptive Systems in Air Operations
2006-09-01
control of C3 in an increasingly complex military environment. Control theory is a multidisciplinary science associated with dynamic systems and, while...AFRL-IF-RS-TR-2006-282 In- House Final Technical Report September 2006 MODELING OF COMPLEX ADAPTIVE SYSTEMS IN AIR OPERATIONS...NOTICE AND SIGNATURE PAGE Using Government drawings, specifications, or other data included in this document for any purpose other than Government
NASA Astrophysics Data System (ADS)
Kim, Gi Young
The problem we investigate deals with an Image Intelligence (IMINT) sensor allocation schedule for High Altitude Long Endurance UAVs in a dynamic and Anti-Access Area Denial (A2AD) environment. The objective is to maximize the Situational Awareness (SA) of decision makers. The value of SA can be improved in two different ways. First, if a sensor allocated to an Areas of Interest (AOI) detects target activity, then the SA value will be increased. Second, the SA value increases if an AOI is monitored for a certain period of time, regardless of target detections. These values are functions of the sensor allocation time, sensor type and mode. Relatively few studies in the archival literature have been devoted to an analytic, detailed explanation of the target detection process, and AOI monitoring value dynamics. These two values are the fundamental criteria used to choose the most judicious sensor allocation schedule. This research presents mathematical expressions for target detection processes, and shows the monitoring value dynamics. Furthermore, the dynamics of target detection is the result of combined processes between belligerent behavior (target activity) and friendly behavior (sensor allocation). We investigate these combined processes and derive mathematical expressions for simplified cases. These closed form mathematical models can be used for Measures of Effectiveness (MOEs), i.e., target activity detection to evaluate sensor allocation schedules. We also verify these models with discrete event simulations which can also be used to describe more complex systems. We introduce several methodologies to achieve a judicious sensor allocation schedule focusing on the AOI monitoring value. The first methodology is a discrete time integer programming model which provides an optimal solution but is impractical for real world scenarios due to its computation time. Thus, it is necessary to trade off the quality of solution with computation time. The Myopic Greedy
Adaptive, full-spectrum solar energy system
Muhs, Jeffrey D.; Earl, Dennis D.
2003-08-05
An adaptive full spectrum solar energy system having at least one hybrid solar concentrator, at least one hybrid luminaire, at least one hybrid photobioreactor, and a light distribution system operably connected to each hybrid solar concentrator, each hybrid luminaire, and each hybrid photobioreactor. A lighting control system operates each component.
Small scale adaptive optics experiment systems engineering
NASA Technical Reports Server (NTRS)
Boykin, William H.
1993-01-01
Assessment of the current technology relating to the laser power beaming system which in full scale is called the Beam Transmission Optical System (BTOS). Evaluation of system integration efforts are being conducted by the various government agencies and industry. Concepts are being developed for prototypes of adaptive optics for a BTOS.
Adaptive Dialogue Systems for Assistive Living Environments
ERIC Educational Resources Information Center
Papangelis, Alexandros
2013-01-01
Adaptive Dialogue Systems (ADS) are intelligent systems, able to interact with users via multiple modalities, such as speech, gestures, facial expressions and others. Such systems are able to make conversation with their users, usually on a specific, narrow topic. Assistive Living Environments are environments where the users are by definition not…
Multicriteria adaptation of robotic groups to dynamically changing conditions
NASA Astrophysics Data System (ADS)
Misyurin, S. Yu; Nelyubin, A. P.; Ivlev, V. I.
2017-01-01
A new approach is proposed to design complex robotic systems composed of many robots that can operate under different conditions and perform various tasks. Bio-inspired ideas of adaptation of robotic groups are discussed.
Adaptive synchronization of two chaotic systems with stochastic unknown parameters
NASA Astrophysics Data System (ADS)
Salarieh, Hassan; Alasty, Aria
2009-02-01
Using the Lyapunov stability theory an adaptive control is proposed for chaos synchronization between two different systems which have stochastically time varying unknown coefficients. The stochastic variations of the coefficients about their unknown mean values are modeled through white Gaussian noise produced by the Weiner process. It is shown that using the proposed adaptive control the mean square of synchronization error converges to an arbitrarily small bound around zero. To demonstrate the effectiveness of the proposed technique, it is applied to the Lorenz-Chen and the Chen-Rossler dynamical systems, as some case studies. Simulation results indicate that the proposed adaptive controller has a high performance in synchronization of chaotic systems in noisy environment.
Learning to adapt: Dynamics of readaptation to geometrical distortions.
Yehezkel, Oren; Sagi, Dov; Sterkin, Anna; Belkin, Michael; Polat, Uri
2010-07-21
The visual system can adapt to optical blur, whereby the adapted image is perceived as sharp. Here we show that adaptation reduces blur-induced biases in shape perception, with repeated adaptations (perceptual learning), leading to unbiased perception upon re-exposure to blur. Observers wore a cylindrical lens of +1.00 D on one eye, thus simulating monocular astigmatism. The other eye was either masked with a translucent blurred lens (monocular) or unmasked (dichoptic). Adaptation was tested in several repeated sessions with a proximity-grouping task, using horizontally or vertically arranged dot-arrays, without feedback, before, after, and throughout the adaptation period. A robust bias in global-orientation judgment was observed with the lens, in accordance with the blur axes. After the observer wore the lens for 2 h, there was no significant change in the bias, but after 4 h, the monocular condition, but not the dichoptic, resulted in reduced bias. The adaptation effect of the monocular 4-h adaptation was preserved, and even improved, when the lens was re-applied the next day, indicating learning. After-effects were observed under all experimental conditions except for the 4-h monocular condition, where learning took place. We suggest that, with long experience, adaptation is transferred to a long-term memory that can be instantly engaged when blur is re-applied, or disengaged when blur is removed, thus leaving no after-effects. The comparison between the monocular and dichoptic conditions indicates a binocular cortical site of plasticity.
Adaptive optics optical coherence tomography with dynamic retinal tracking
Kocaoglu, Omer P.; Ferguson, R. Daniel; Jonnal, Ravi S.; Liu, Zhuolin; Wang, Qiang; Hammer, Daniel X.; Miller, Donald T.
2014-01-01
Adaptive optics optical coherence tomography (AO-OCT) is a highly sensitive and noninvasive method for three dimensional imaging of the microscopic retina. Like all in vivo retinal imaging techniques, however, it suffers the effects of involuntary eye movements that occur even under normal fixation. In this study we investigated dynamic retinal tracking to measure and correct eye motion at KHz rates for AO-OCT imaging. A customized retina tracking module was integrated into the sample arm of the 2nd-generation Indiana AO-OCT system and images were acquired on three subjects. Analyses were developed based on temporal amplitude and spatial power spectra in conjunction with strip-wise registration to independently measure AO-OCT tracking performance. After optimization of the tracker parameters, the system was found to correct eye movements up to 100 Hz and reduce residual motion to 10 µm root mean square. Between session precision was 33 µm. Performance was limited by tracker-generated noise at high temporal frequencies. PMID:25071963
Adaptive optics optical coherence tomography with dynamic retinal tracking.
Kocaoglu, Omer P; Ferguson, R Daniel; Jonnal, Ravi S; Liu, Zhuolin; Wang, Qiang; Hammer, Daniel X; Miller, Donald T
2014-07-01
Adaptive optics optical coherence tomography (AO-OCT) is a highly sensitive and noninvasive method for three dimensional imaging of the microscopic retina. Like all in vivo retinal imaging techniques, however, it suffers the effects of involuntary eye movements that occur even under normal fixation. In this study we investigated dynamic retinal tracking to measure and correct eye motion at KHz rates for AO-OCT imaging. A customized retina tracking module was integrated into the sample arm of the 2nd-generation Indiana AO-OCT system and images were acquired on three subjects. Analyses were developed based on temporal amplitude and spatial power spectra in conjunction with strip-wise registration to independently measure AO-OCT tracking performance. After optimization of the tracker parameters, the system was found to correct eye movements up to 100 Hz and reduce residual motion to 10 µm root mean square. Between session precision was 33 µm. Performance was limited by tracker-generated noise at high temporal frequencies.
A system dynamics model for communications networks
NASA Astrophysics Data System (ADS)
Awcock, A. J.; King, T. E. G.
1985-09-01
An abstract model of a communications network in system dynamics terminology is developed as implementation of this model by a FORTRAN program package developed at RSRE is discussed. The result of this work is a high-level simulation package in which the performance of adaptive routing algorithms and other network controls may be assessed for a network of arbitrary topology.
Serial and parallel dynamic adaptation of general hybrid meshes
NASA Astrophysics Data System (ADS)
Kavouklis, Christos
The Navier-Stokes equations are a standard mathematical representation of viscous fluid flow. Their numerical solution in three dimensions remains a computationally intensive and challenging task, despite recent advances in computer speed and memory. A strategy to increase accuracy of Navier-Stokes simulations, while maintaining computing resources to a minimum, is local refinement of the associated computational mesh in regions of large solution gradients and coarsening in regions where the solution does not vary appreciably. In this work we consider adaptation of general hybrid meshes for Computational Fluid Dynamics (CFD) applications. Hybrid meshes are composed of four types of elements; hexahedra, prisms, pyramids and tetrahedra, and have been proven a promising technology in accurately resolving fluid flow for complex geometries. The first part of this dissertation is concerned with the design and implementation of a serial scheme for the adaptation of general three dimensional hybrid meshes. We have defined 29 refinement types, for all four kinds of elements. The core of the present adaptation scheme is an iterative algorithm that flags mesh edges for refinement, so that the adapted mesh is conformal. Of primary importance is considered the design of a suitable dynamic data structure that facilitates refinement and coarsening operations and furthermore minimizes memory requirements. A special dynamic list is defined for mesh elements, in contrast with the usual tree structures. It contains only elements of the current adaptation step and minimal information that is utilized to reconstruct parent elements when the mesh is coarsened. In the second part of this work, a new parallel dynamic mesh adaptation and load balancing algorithm for general hybrid meshes is presented. Partitioning of a hybrid mesh reduces to partitioning of the corresponding dual graph. Communication among processors is based on the faces of the interpartition boundary. The distributed
NASA Technical Reports Server (NTRS)
Chen, W. E. W.; Hepler, W. A.; Yuan, S. W. K.; Frederking, T. H. K.
1985-01-01
Advanced dynamic insulation systems were analyzed from a thermodynamic point of view. A particular performance measure is proposed in order to characterize various insulations in a unique manner. This measure is related to a base quantity, the refrigeration power ratio. The latter is the minimum refrigeration power, for a particular dynamic insulation limit, to the actual reliquefaction power associated with cryoliquid boiloff. This ratio serves as reference quantity which is approximately constant for a specific ductless insulation at a chosen normal boiling point. Each real container with support structure, vent tube, and other transverse components requires a larger refrigeration power. The ratio of the actual experimental power to the theoretical value of the support-less system is a suitable measure of the entire insulation performance as far as parasitic heat leakage is concerned. The present characterization is illustrated using simple thermodynamic system examples including experiments with liquid nitrogen. Numerical values are presented and a comparison with liquid helium is given.
Model-adaptive hybrid dynamic control for robotic assembly tasks
Austin, D.J.; McCarragher, B.J.
1999-10-01
A new task-level adaptive controller is presented for the hybrid dynamic control of robotic assembly tasks. Using a hybrid dynamic model of the assembly task, velocity constraints are derived from which satisfactory velocity commands are obtained. Due to modeling errors and parametric uncertainties, the velocity commands may be erroneous and may result in suboptimal performance. Task-level adaptive control schemes, based on the occurrence of discrete events, are used to change the model parameters from which the velocity commands are determined. Two adaptive schemes are presented: the first is based on intuitive reasoning about the vector spaces involved whereas the second uses a search region that is reduced with each iteration. For the first adaptation law, asymptotic convergence to the correct model parameters is proven except for one case. This weakness motivated the development of the second adaptation law, for which asymptotic convergence is proven in all cases. Automated control of a peg-in-hole assembly task is given as an example, and simulations and experiments for this task are presented. These results demonstrate the success of the method and also indicate properties for rapid convergence.
Parallel tetrahedral mesh adaptation with dynamic load balancing
Oliker, Leonid; Biswas, Rupak; Gabow, Harold N.
2000-06-28
The ability to dynamically adapt an unstructured grid is a powerful tool for efficiently solving computational problems with evolving physical features. In this paper, we report on our experience parallelizing an edge-based adaptation scheme, called 3D-TAG, using message passing. Results show excellent speedup when a realistic helicopter rotor mesh is randomly refined. However, performance deteriorates when the mesh is refined using a solution-based error indicator since mesh adaptation for practical problems occurs in a localized region, creating a severe load imbalance. To address this problem, we have developed PLUM, a global dynamic load balancing framework for adaptive numerical computations. Even though PLUM primarily balances processor workloads for the solution phase, it reduces the load imbalance problem within mesh adaptation by repartitioning the mesh after targeting edges for refinement but before the actual subdivision. This dramatically improves the performance of parallel 3D-TAG since refinement occurs in a more load balanced fashion. We also present optimal and heuristic algorithms that, when applied to the default mapping of a parallel repartitioner, significantly reduce the data redistribution overhead. Finally, portability is examined by comparing performance on three state-of-the-art parallel machines.
Parallel Tetrahedral Mesh Adaptation with Dynamic Load Balancing
NASA Technical Reports Server (NTRS)
Oliker, Leonid; Biswas, Rupak; Gabow, Harold N.
1999-01-01
The ability to dynamically adapt an unstructured grid is a powerful tool for efficiently solving computational problems with evolving physical features. In this paper, we report on our experience parallelizing an edge-based adaptation scheme, called 3D_TAG. using message passing. Results show excellent speedup when a realistic helicopter rotor mesh is randomly refined. However. performance deteriorates when the mesh is refined using a solution-based error indicator since mesh adaptation for practical problems occurs in a localized region., creating a severe load imbalance. To address this problem, we have developed PLUM, a global dynamic load balancing framework for adaptive numerical computations. Even though PLUM primarily balances processor workloads for the solution phase, it reduces the load imbalance problem within mesh adaptation by repartitioning the mesh after targeting edges for refinement but before the actual subdivision. This dramatically improves the performance of parallel 3D_TAG since refinement occurs in a more load balanced fashion. We also present optimal and heuristic algorithms that, when applied to the default mapping of a parallel repartitioner, significantly reduce the data redistribution overhead. Finally, portability is examined by comparing performance on three state-of-the-art parallel machines.
Dynamic model of heat inactivation kinetics for bacterial adaptation.
Corradini, Maria G; Peleg, Micha
2009-04-01
The Weibullian-log logistic (WeLL) inactivation model was modified to account for heat adaptation by introducing a logistic adaptation factor, which rendered its "rate parameter" a function of both temperature and heating rate. The resulting model is consistent with the observation that adaptation is primarily noticeable in slow heat processes in which the cells are exposed to sublethal temperatures for a sufficiently long time. Dynamic survival patterns generated with the proposed model were in general agreement with those of Escherichia coli and Listeria monocytogenes as reported in the literature. Although the modified model's rate equation has a cumbersome appearance, especially for thermal processes having a variable heating rate, it can be solved numerically with commercial mathematical software. The dynamic model has five survival/adaptation parameters whose determination will require a large experimental database. However, with assumed or estimated parameter values, the model can simulate survival patterns of adapting pathogens in cooked foods that can be used in risk assessment and the establishment of safe preparation conditions.
Eco-evolutionary feedbacks, adaptive dynamics and evolutionary rescue theory.
Ferriere, Regis; Legendre, Stéphane
2013-01-19
Adaptive dynamics theory has been devised to account for feedbacks between ecological and evolutionary processes. Doing so opens new dimensions to and raises new challenges about evolutionary rescue. Adaptive dynamics theory predicts that successive trait substitutions driven by eco-evolutionary feedbacks can gradually erode population size or growth rate, thus potentially raising the extinction risk. Even a single trait substitution can suffice to degrade population viability drastically at once and cause 'evolutionary suicide'. In a changing environment, a population may track a viable evolutionary attractor that leads to evolutionary suicide, a phenomenon called 'evolutionary trapping'. Evolutionary trapping and suicide are commonly observed in adaptive dynamics models in which the smooth variation of traits causes catastrophic changes in ecological state. In the face of trapping and suicide, evolutionary rescue requires that the population overcome evolutionary threats generated by the adaptive process itself. Evolutionary repellors play an important role in determining how variation in environmental conditions correlates with the occurrence of evolutionary trapping and suicide, and what evolutionary pathways rescue may follow. In contrast with standard predictions of evolutionary rescue theory, low genetic variation may attenuate the threat of evolutionary suicide and small population sizes may facilitate escape from evolutionary traps.
Indirect learning control for nonlinear dynamical systems
NASA Technical Reports Server (NTRS)
Ryu, Yeong Soon; Longman, Richard W.
1993-01-01
In a previous paper, learning control algorithms were developed based on adaptive control ideas for linear time variant systems. The learning control methods were shown to have certain advantages over their adaptive control counterparts, such as the ability to produce zero tracking error in time varying systems, and the ability to eliminate repetitive disturbances. In recent years, certain adaptive control algorithms have been developed for multi-body dynamic systems such as robots, with global guaranteed convergence to zero tracking error for the nonlinear system euations. In this paper we study the relationship between such adaptive control methods designed for this specific class of nonlinear systems, and the learning control problem for such systems, seeking to converge to zero tracking error in following a specific command repeatedly, starting from the same initial conditions each time. The extension of these methods from the adaptive control problem to the learning control problem is seen to be trivial. The advantages and disadvantages of using learning control based on such adaptive control concepts for nonlinear systems, and the use of other currently available learning control algorithms are discussed.
Adaptive conventional power system stabilizer based on artificial neural network
Kothari, M.L.; Segal, R.; Ghodki, B.K.
1995-12-31
This paper deals with an artificial neural network (ANN) based adaptive conventional power system stabilizer (PSS). The ANN comprises an input layer, a hidden layer and an output layer. The input vector to the ANN comprises real power (P) and reactive power (Q), while the output vector comprises optimum PSS parameters. A systematic approach for generating training set covering wide range of operating conditions, is presented. The ANN has been trained using back-propagation training algorithm. Investigations reveal that the dynamic performance of ANN based adaptive conventional PSS is quite insensitive to wide variations in loading conditions.
Nanostructural self-organization and dynamic adaptation of metal-polymer tribosystems
NASA Astrophysics Data System (ADS)
Mashkov, Yu. K.
2017-02-01
The results of investigating the effect of nanosize modifiers of a polymer matrix on the nanostructural self-organization of polymer composites and dynamic adaptation of metal-polymer tribosystems, which considerably affect the wear resistance of polymer composite materials, have been analyzed. It has been shown that the physicochemical nanostructural self-organization processes are developed in metal-polymer tribosystems with the formation of thermotropic liquid-crystal structures of the polymer matrix, followed by the transition of the system to the stationary state with a negative feedback that ensures dynamic adaptation of the tribosystem to given operating conditions.
Adaptive mechanism-based congestion control for networked systems
NASA Astrophysics Data System (ADS)
Liu, Zhi; Zhang, Yun; Chen, C. L. Philip
2013-03-01
In order to assure the communication quality in network systems with heavy traffic and limited bandwidth, a new ATRED (adaptive thresholds random early detection) congestion control algorithm is proposed for the congestion avoidance and resource management of network systems. Different to the traditional AQM (active queue management) algorithms, the control parameters of ATRED are not configured statically, but dynamically adjusted by the adaptive mechanism. By integrating with the adaptive strategy, ATRED alleviates the tuning difficulty of RED (random early detection) and shows a better control on the queue management, and achieve a more robust performance than RED under varying network conditions. Furthermore, a dynamic transmission control protocol-AQM control system using ATRED controller is introduced for the systematic analysis. It is proved that the stability of the network system can be guaranteed when the adaptive mechanism is finely designed. Simulation studies show the proposed ATRED algorithm achieves a good performance in varying network environments, which is superior to the RED and Gentle-RED algorithm, and providing more reliable service under varying network conditions.
Operational Results of an Adaptive SDI System.
ERIC Educational Resources Information Center
Sage, C. R.; Fitzwater, D. R.
The Ames Laboratory SDI system requires a minimum of human intervention. The adaptability of the system provides two major contributions to information dissemination. (1) The user benefits proportionately from the amount of effort he expends in setting up his profile and the diligence in sending back responses. (2) The document input has only to…
The adaptive control system of acetylene generator
NASA Astrophysics Data System (ADS)
Kovaliuk, D. O.; Kovaliuk, Oleg; Burlibay, Aron; Gromaszek, Konrad
2015-12-01
The method of acetylene production in acetylene generator was analyzed. It was found that impossible to provide the desired process characteristics by the PID-controller. The adaptive control system of acetylene generator was developed. The proposed system combines the classic controller and fuzzy subsystem for controller parameters tuning.
Adaptive primal-dual genetic algorithms in dynamic environments.
Wang, Hongfeng; Yang, Shengxiang; Ip, W H; Wang, Dingwei
2009-12-01
Recently, there has been an increasing interest in applying genetic algorithms (GAs) in dynamic environments. Inspired by the complementary and dominance mechanisms in nature, a primal-dual GA (PDGA) has been proposed for dynamic optimization problems (DOPs). In this paper, an important operator in PDGA, i.e., the primal-dual mapping (PDM) scheme, is further investigated to improve the robustness and adaptability of PDGA in dynamic environments. In the improved scheme, two different probability-based PDM operators, where the mapping probability of each allele in the chromosome string is calculated through the statistical information of the distribution of alleles in the corresponding gene locus over the population, are effectively combined according to an adaptive Lamarckian learning mechanism. In addition, an adaptive dominant replacement scheme, which can probabilistically accept inferior chromosomes, is also introduced into the proposed algorithm to enhance the diversity level of the population. Experimental results on a series of dynamic problems generated from several stationary benchmark problems show that the proposed algorithm is a good optimizer for DOPs.
Long-time atomistic dynamics through a new self-adaptive accelerated molecular dynamics method
NASA Astrophysics Data System (ADS)
Gao, N.; Yang, L.; Gao, F.; Kurtz, R. J.; West, D.; Zhang, S.
2017-04-01
A self-adaptive accelerated molecular dynamics method is developed to model infrequent atomic-scale events, especially those events that occur on a rugged free-energy surface. Key in the new development is the use of the total displacement of the system at a given temperature to construct a boost-potential, which is slowly increased to accelerate the dynamics. The temperature is slowly increased to accelerate the dynamics. By allowing the system to evolve from one steady-state configuration to another by overcoming the transition state, this self-evolving approach makes it possible to explore the coupled motion of species that migrate on vastly different time scales. The migrations of single vacancy (V) and small He-V clusters, and the growth of nano-sized He-V clusters in Fe for times in the order of seconds are studied by this new method. An interstitial-assisted mechanism is first explored for the migration of a helium-rich He-V cluster, while a new two-component Ostwald ripening mechanism is suggested for He-V cluster growth.
Long-time atomistic dynamics through a new self-adaptive accelerated molecular dynamics method.
Gao, N; Yang, L; Gao, F; Kurtz, R J; West, D; Zhang, S
2017-04-12
A self-adaptive accelerated molecular dynamics method is developed to model infrequent atomic-scale events, especially those events that occur on a rugged free-energy surface. Key in the new development is the use of the total displacement of the system at a given temperature to construct a boost-potential, which is slowly increased to accelerate the dynamics. The temperature is slowly increased to accelerate the dynamics. By allowing the system to evolve from one steady-state configuration to another by overcoming the transition state, this self-evolving approach makes it possible to explore the coupled motion of species that migrate on vastly different time scales. The migrations of single vacancy (V) and small He-V clusters, and the growth of nano-sized He-V clusters in Fe for times in the order of seconds are studied by this new method. An interstitial-assisted mechanism is first explored for the migration of a helium-rich He-V cluster, while a new two-component Ostwald ripening mechanism is suggested for He-V cluster growth.
Robustness of continuous-time adaptive control algorithms in the presence of unmodeled dynamics
NASA Technical Reports Server (NTRS)
Rohrs, C. E.; Valavani, L.; Athans, M.; Stein, G.
1985-01-01
This paper examines the robustness properties of existing adaptive control algorithms to unmodeled plant high-frequency dynamics and unmeasurable output disturbances. It is demonstrated that there exist two infinite-gain operators in the nonlinear dynamic system which determines the time-evolution of output and parameter errors. The pragmatic implications of the existence of such infinite-gain operators is that: (1) sinusoidal reference inputs at specific frequencies and/or (2) sinusoidal output disturbances at any frequency (including dc), can cause the loop gain to increase without bound, thereby exciting the unmodeled high-frequency dynamics, and yielding an unstable control system. Hence, it is concluded that existing adaptive control algorithms as they are presented in the literature referenced in this paper, cannot be used with confidence in practical designs where the plant contains unmodeled dynamics because instability is likely to result. Further understanding is required to ascertain how the currently implemented adaptive systems differ from the theoretical systems studied here and how further theoretical development can improve the robustness of adaptive controllers.
Adaptation in the auditory system: an overview.
Pérez-González, David; Malmierca, Manuel S
2014-01-01
The early stages of the auditory system need to preserve the timing information of sounds in order to extract the basic features of acoustic stimuli. At the same time, different processes of neuronal adaptation occur at several levels to further process the auditory information. For instance, auditory nerve fiber responses already experience adaptation of their firing rates, a type of response that can be found in many other auditory nuclei and may be useful for emphasizing the onset of the stimuli. However, it is at higher levels in the auditory hierarchy where more sophisticated types of neuronal processing take place. For example, stimulus-specific adaptation, where neurons show adaptation to frequent, repetitive stimuli, but maintain their responsiveness to stimuli with different physical characteristics, thus representing a distinct kind of processing that may play a role in change and deviance detection. In the auditory cortex, adaptation takes more elaborate forms, and contributes to the processing of complex sequences, auditory scene analysis and attention. Here we review the multiple types of adaptation that occur in the auditory system, which are part of the pool of resources that the neurons employ to process the auditory scene, and are critical to a proper understanding of the neuronal mechanisms that govern auditory perception.
NASA Astrophysics Data System (ADS)
Barraco, A.; Cuny, B.; Ishiomin, G.
Analytical techniques for dynamic modeling of mechanical systems with deformable members are developed and demonstrated. Formulations for the rigid member and the flexible member are derived; the position of an arbitrary point is defined; and the construction of the complete model from these components is explained. Numerical results for the case of a planar four-bar parallelogram rotating about a fixed axis located in the same plane are presented in graphs and discussed.
NASA Technical Reports Server (NTRS)
Wisdom, Jack
2002-01-01
In these 18 years, the research has touched every major dynamical problem in the solar system, including: the effect of chaotic zones on the distribution of asteroids, the delivery of meteorites along chaotic pathways, the chaotic motion of Pluto, the chaotic motion of the outer planets and that of the whole solar system, the delivery of short period comets from the Kuiper belt, the tidal evolution of the Uranian arid Galilean satellites, the chaotic tumbling of Hyperion and other irregular satellites, the large chaotic variations of the obliquity of Mars, the evolution of the Earth-Moon system, and the resonant core- mantle dynamics of Earth and Venus. It has introduced new analytical and numerical tools that are in widespread use. Today, nearly every long-term integration of our solar system, its subsystems, and other solar systems uses algorithms that was invented. This research has all been primarily Supported by this sequence of PGG NASA grants. During this period published major investigations of tidal evolution of the Earth-Moon system and of the passage of the Earth and Venus through non-linear core-mantle resonances were completed. It has published a major innovation in symplectic algorithms: the symplectic corrector. A paper was completed on non-perturbative hydrostatic equilibrium.
Dynamic Reconstruction and Multivariable Control for Force-Actuated, Thin Facesheet Adaptive Optics
NASA Technical Reports Server (NTRS)
Grocott, Simon C. O.; Miller, David W.
1997-01-01
The Multiple Mirror Telescope (MMT) under development at the University of Arizona takes a new approach in adaptive optics placing a large (0.65 m) force-actuated, thin facesheet deformable mirror at the secondary of an astronomical telescope, thus reducing the effects of emissivity which are important in IR astronomy. However, The large size of the mirror and low stiffness actuators used drive the natural frequencies of the mirror down into the bandwidth of the atmospheric distortion. Conventional adaptive optics takes a quasi-static approach to controlling the, deformable mirror. However, flexibility within the control bandwidth calls for a new approach to adaptive optics. Dynamic influence functions are used to characterize the influence of each actuator on the surface of the deformable mirror. A linearized model of atmospheric distortion is combined with dynamic influence functions to produce a dynamic reconstructor. This dynamic reconstructor is recognized as an optimal control problem. Solving the optimal control problem for a system with hundreds of actuators and sensors is formidable. Exploiting the circularly symmetric geometry of the mirror, and a suitable model of atmospheric distortion, the control problem is divided into a number of smaller decoupled control problems using circulant matrix theory. A hierarchic control scheme which seeks to emulate the quasi-static control approach that is generally used in adaptive optics is compared to the proposed dynamic reconstruction technique. Although dynamic reconstruction requires somewhat more computational power to implement, it achieves better performance with less power usage, and is less sensitive than the hierarchic technique.
Managing adaptively for multifunctionality in agricultural systems.
Hodbod, Jennifer; Barreteau, Olivier; Allen, Craig; Magda, Danièle
2016-12-01
The critical importance of agricultural systems for food security and as a dominant global landcover requires management that considers the full dimensions of system functions at appropriate scales, i.e. multifunctionality. We propose that adaptive management is the most suitable management approach for such goals, given its ability to reduce uncertainty over time and support multiple objectives within a system, for multiple actors. As such, adaptive management may be the most appropriate method for sustainably intensifying production whilst increasing the quantity and quality of ecosystem services. However, the current assessment of performance of agricultural systems doesn't reward ecosystem service provision. Therefore, we present an overview of the ecosystem functions agricultural systems should and could provide, coupled with a revised definition for assessing the performance of agricultural systems from a multifunctional perspective that, when all satisfied, would create adaptive agricultural systems that can increase production whilst ensuring food security and the quantity and quality of ecosystem services. The outcome of this high level of performance is the capacity to respond to multiple shocks without collapse, equity and triple bottom line sustainability. Through the assessment of case studies, we find that alternatives to industrialized agricultural systems incorporate more functional goals, but that there are mixed findings as to whether these goals translate into positive measurable outcomes. We suggest that an adaptive management perspective would support the implementation of a systematic analysis of the social, ecological and economic trade-offs occurring within such systems, particularly between ecosystem services and functions, in order to provide suitable and comparable assessments. We also identify indicators to monitor performance at multiple scales in agricultural systems which can be used within an adaptive management framework to increase
NASA Astrophysics Data System (ADS)
Dilling, L.; Daly, M.; Travis, W.; Wilhelmi, O.; Klein, R.; Kenney, D.; Ray, A. J.; Miller, K.
2013-12-01
Recent reports and scholarship have suggested that adapting to current climate variability may represent a "no regrets" strategy for adapting to climate change. Filling "adaptation deficits" and other approaches that rely on addressing current vulnerabilities are of course helpful for responding to current climate variability, but we find here that they are not sufficient for adapting to climate change. First, following a comprehensive review and unique synthesis of the natural hazards and climate adaptation literatures, we advance six reasons why adapting to climate variability is not sufficient for adapting to climate change: 1) Vulnerability is different at different levels of exposure; 2) Coping with climate variability is not equivalent to adaptation to longer term change; 3) The socioeconomic context for vulnerability is constantly changing; 4) The perception of risk associated with climate variability does not necessarily promote adaptive behavior in the face of climate change; 5) Adaptations made to short term climate variability may reduce the flexibility of the system in the long term; and 6) Adaptive actions may shift vulnerabilities to other parts of the system or to other people. Instead we suggest that decision makers faced with choices to adapt to climate change must consider the dynamics of vulnerability in a connected system-- how choices made in one part of the system might impact other valued outcomes or even create new vulnerabilities. Furthermore we suggest that rather than expressing climate change adaptation as an extension of adaptation to climate variability, the research and practice communities would do well to articulate adaptation as an imperfect policy, with tradeoffs and consequences and that decisions be prioritized to preserve flexibility be revisited often as climate change unfolds. We then present the results of a number of empirical studies of decision making for drought in urban water systems in the United States to understand
The ERIS adaptive optics system
NASA Astrophysics Data System (ADS)
Riccardi, A.; Esposito, S.; Agapito, G.; Antichi, J.; Biliotti, V.; Blain, C.; Briguglio, R.; Busoni, L.; Carbonaro, L.; Di Rico, G.; Giordano, C.; Pinna, E.; Puglisi, A.; Spanò, P.; Xompero, M.; Baruffolo, A.; Kasper, M.; Egner, S.; Suàrez Valles, M.; Soenke, C.; Downing, M.; Reyes, J.
2016-07-01
ERIS is the new AO instrument for VLT-UT4 led by a Consortium of Max-Planck Institut fuer Extraterrestrische Physik, UK-ATC, ETH-Zurich, ESO and INAF. The ERIS AO system provides NGS mode to deliver high contrast correction and LGS mode to extend high Strehl performance to large sky coverage. The AO module includes NGS and LGS wavefront sensors and, with VLT-AOF Deformable Secondary Mirror and Laser Facility, will provide AO correction to the high resolution imager NIX (1-5um) and the IFU spectrograph SPIFFIER (1-2.5um). In this paper we present the preliminary design of the ERIS AO system and the estimated correction performance.
Adaptive System Modeling for Spacecraft Simulation
NASA Technical Reports Server (NTRS)
Thomas, Justin
2011-01-01
This invention introduces a methodology and associated software tools for automatically learning spacecraft system models without any assumptions regarding system behavior. Data stream mining techniques were used to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). Evaluation on historical ISS telemetry data shows that adaptive system modeling reduces simulation error anywhere from 50 to 90 percent over existing approaches. The purpose of the methodology is to outline how someone can create accurate system models from sensor (telemetry) data. The purpose of the software is to support the methodology. The software provides analysis tools to design the adaptive models. The software also provides the algorithms to initially build system models and continuously update them from the latest streaming sensor data. The main strengths are as follows: Creates accurate spacecraft system models without in-depth system knowledge or any assumptions about system behavior. Automatically updates/calibrates system models using the latest streaming sensor data. Creates device specific models that capture the exact behavior of devices of the same type. Adapts to evolving systems. Can reduce computational complexity (faster simulations).
Dynamics modeling and adaptive control of flexible manipulators
NASA Technical Reports Server (NTRS)
Sasiadek, J. Z.
1991-01-01
An application of Model Reference Adaptive Control (MRAC) to the position and force control of flexible manipulators and robots is presented. A single-link flexible manipulator is analyzed. The problem was to develop a mathematical model of a flexible robot that is accurate. The objective is to show that the adaptive control works better than 'conventional' systems and is suitable for flexible structure control.
Adaptive fuzzy system for 3-D vision
NASA Technical Reports Server (NTRS)
Mitra, Sunanda
1993-01-01
An adaptive fuzzy system using the concept of the Adaptive Resonance Theory (ART) type neural network architecture and incorporating fuzzy c-means (FCM) system equations for reclassification of cluster centers was developed. The Adaptive Fuzzy Leader Clustering (AFLC) architecture is a hybrid neural-fuzzy system which learns on-line in a stable and efficient manner. The system uses a control structure similar to that found in the Adaptive Resonance Theory (ART-1) network to identify the cluster centers initially. The initial classification of an input takes place in a two stage process; a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from Fuzzy c-Means (FCM) system equations for the centroids and the membership values. The operational characteristics of AFLC and the critical parameters involved in its operation are discussed. The performance of the AFLC algorithm is presented through application of the algorithm to the Anderson Iris data, and laser-luminescent fingerprint image data. The AFLC algorithm successfully classifies features extracted from real data, discrete or continuous, indicating the potential strength of this new clustering algorithm in analyzing complex data sets. The hybrid neuro-fuzzy AFLC algorithm will enhance analysis of a number of difficult recognition and control problems involved with Tethered Satellite Systems and on-orbit space shuttle attitude controller.
Dynamic Load Balancing for Adaptive Meshes using Symmetric Broadcast Networks
NASA Technical Reports Server (NTRS)
Das, Sajal K.; Harvey, Daniel J.; Biswas, Rupak; Saini, Subhash (Technical Monitor)
1998-01-01
Many scientific applications involve grids that lack a uniform underlying structure. These applications are often dynamic in the sense that the grid structure significantly changes between successive phases of execution. In parallel computing environments, mesh adaptation of grids through selective refinement/coarsening has proven to be an effective approach. However, achieving load balance while minimizing inter-processor communication and redistribution costs is a difficult problem. Traditional dynamic load balancers are mostly inadequate because they lack a global view across processors. In this paper, we compare a novel load balancer that utilizes symmetric broadcast networks (SBN) to a successful global load balancing environment (PLUM) created to handle adaptive unstructured applications. Our experimental results on the IBM SP2 demonstrate that performance of the proposed SBN load balancer is comparable to results achieved under PLUM.
Robust adaptive control of HVDC systems
Reeve, J.; Sultan, M. )
1994-07-01
The transient performance of an HVDC power system is highly dependent on the parameters of the current/voltage regulators of the converter controls. In order to better accommodate changes in system structure or dc operating conditions, this paper introduces a new adaptive control strategy. The advantages of automatic tuning for continuous fine tuning are combined with predetermined gain scheduling in order to achieve robustness for large disturbances. Examples are provided for a digitally simulated back-to-back dc system.
An adaptive learning control system for aircraft
NASA Technical Reports Server (NTRS)
Mekel, R.; Nachmias, S.
1976-01-01
A learning control system is developed which blends the gain scheduling and adaptive control into a single learning system that has the advantages of both. An important feature of the developed learning control system is its capability to adjust the gain schedule in a prescribed manner to account for changing aircraft operating characteristics. Furthermore, if tests performed by the criteria of the learning system preclude any possible change in the gain schedule, then the overall system becomes an ordinary gain scheduling system. Examples are discussed.
Final Report - Regulatory Considerations for Adaptive Systems
NASA Technical Reports Server (NTRS)
Wilkinson, Chris; Lynch, Jonathan; Bharadwaj, Raj
2013-01-01
This report documents the findings of a preliminary research study into new approaches to the software design assurance of adaptive systems. We suggest a methodology to overcome the software validation and verification difficulties posed by the underlying assumption of non-adaptive software in the requirementsbased- testing verification methods in RTCA/DO-178B and C. An analysis of the relevant RTCA/DO-178B and C objectives is presented showing the reasons for the difficulties that arise in showing satisfaction of the objectives and suggested additional means by which they could be satisfied. We suggest that the software design assurance problem for adaptive systems is principally one of developing correct and complete high level requirements and system level constraints that define the necessary system functional and safety properties to assure the safe use of adaptive systems. We show how analytical techniques such as model based design, mathematical modeling and formal or formal-like methods can be used to both validate the high level functional and safety requirements, establish necessary constraints and provide the verification evidence for the satisfaction of requirements and constraints that supplements conventional testing. Finally the report identifies the follow-on research topics needed to implement this methodology.
Application of neural adaptive power system stabilizer in a multi-machine power system
Shamsollahi, P.; Malik, O.P.
1999-09-01
Application of a neural adaptive power system stabilizer (NAPSS) to a five-machine power system is described in this paper. The proposed NAPSS comprises two subnetworks. The adaptive neuro-identifier (ANI) to dynamically identify the non-linear plant, and the adaptive neuro-controller (ANC) to damp output oscillations. The back-propagation training method is used on-line to train these subnetworks. The effectiveness of the proposed NAPSS in damping both local and inter-area modes of oscillations and its self-coordination ability are demonstrated.
Dynamics and kinematics of simple neural systems
Rabinovich, M. |; Selverston, A.; Rubchinsky, L.; Huerta, R.
1996-09-01
The dynamics of simple neural systems is of interest to both biologists and physicists. One of the possible roles of such systems is the production of rhythmic patterns, and their alterations (modification of behavior, processing of sensory information, adaptation, control). In this paper, the neural systems are considered as a subject of modeling by the dynamical systems approach. In particular, we analyze how a stable, ordinary behavior of a small neural system can be described by simple finite automata models, and how more complicated dynamical systems modeling can be used. The approach is illustrated by biological and numerical examples: experiments with and numerical simulations of the stomatogastric central pattern generators network of the California spiny lobster. {copyright} {ital 1996 American Institute of Physics.}
Fast Dynamical Coupling Enhances Frequency Adaptation of Oscillators for Robotic Locomotion Control
Nachstedt, Timo; Tetzlaff, Christian; Manoonpong, Poramate
2017-01-01
Rhythmic neural signals serve as basis of many brain processes, in particular of locomotion control and generation of rhythmic movements. It has been found that specific neural circuits, named central pattern generators (CPGs), are able to autonomously produce such rhythmic activities. In order to tune, shape and coordinate the produced rhythmic activity, CPGs require sensory feedback, i.e., external signals. Nonlinear oscillators are a standard model of CPGs and are used in various robotic applications. A special class of nonlinear oscillators are adaptive frequency oscillators (AFOs). AFOs are able to adapt their frequency toward the frequency of an external periodic signal and to keep this learned frequency once the external signal vanishes. AFOs have been successfully used, for instance, for resonant tuning of robotic locomotion control. However, the choice of parameters for a standard AFO is characterized by a trade-off between the speed of the adaptation and its precision and, additionally, is strongly dependent on the range of frequencies the AFO is confronted with. As a result, AFOs are typically tuned such that they require a comparably long time for their adaptation. To overcome the problem, here, we improve the standard AFO by introducing a novel adaptation mechanism based on dynamical coupling strengths. The dynamical adaptation mechanism enhances both the speed and precision of the frequency adaptation. In contrast to standard AFOs, in this system, the interplay of dynamics on short and long time scales enables fast as well as precise adaptation of the oscillator for a wide range of frequencies. Amongst others, a very natural implementation of this mechanism is in terms of neural networks. The proposed system enables robotic applications which require fast retuning of locomotion control in order to react to environmental changes or conditions. PMID:28377710
Petascale IO Using The Adaptable IO System
Lofstead, J.; Klasky, Scott A; Abbasi, H.
2009-01-01
ADIOS, the adaptable IO system, has demonstrated excellent scalability to 29,000 cores. With the introduction of the XT5 upgrades to Jaguar, new optimizations are required to successfully reach 140,000+ cores. This paper explains the techniques employed and shows the performance levels attained.
User Modeling in Adaptive Hypermedia Educational Systems
ERIC Educational Resources Information Center
Martins, Antonio Constantino; Faria, Luiz; Vaz de Carvalho, Carlos; Carrapatoso, Eurico
2008-01-01
This document is a survey in the research area of User Modeling (UM) for the specific field of Adaptive Learning. The aims of this document are: To define what it is a User Model; To present existing and well known User Models; To analyze the existent standards related with UM; To compare existing systems. In the scientific area of User Modeling…
Adaptive Control of Nonlinear and Stochastic Systems
1991-01-14
Hernmndez-Lerma and S.I. Marcus, Nonparametric adaptive control of dis- crete time partially observable stochastic systems, Journal of Mathematical Analysis and Applications 137... Journal of Mathematical Analysis and Applications 137 (1989), 485-514. [19] A. Arapostathis and S.I. Marcus, Analysis of an identification algorithm
Adaptive control system for gas producing wells
Fedor, Pashchenko; Sergey, Gulyaev; Alexander, Pashchenko
2015-03-10
Optimal adaptive automatic control system for gas producing wells cluster is proposed intended for solving the problem of stabilization of the output gas pressure in the cluster at conditions of changing gas flow rate and changing parameters of the wells themselves, providing the maximum high resource of hardware elements of automation.
Systems and Methods for Parameter Dependent Riccati Equation Approaches to Adaptive Control
NASA Technical Reports Server (NTRS)
Kim, Kilsoo (Inventor); Yucelen, Tansel (Inventor); Calise, Anthony J. (Inventor)
2015-01-01
Systems and methods for adaptive control are disclosed. The systems and methods can control uncertain dynamic systems. The control system can comprise a controller that employs a parameter dependent Riccati equation. The controller can produce a response that causes the state of the system to remain bounded. The control system can control both minimum phase and non-minimum phase systems. The control system can augment an existing, non-adaptive control design without modifying the gains employed in that design. The control system can also avoid the use of high gains in both the observer design and the adaptive control law.
Distributed Adaptive Particle Swarm Optimizer in Dynamic Environment
Cui, Xiaohui; Potok, Thomas E
2007-01-01
In the real world, we have to frequently deal with searching and tracking an optimal solution in a dynamical and noisy environment. This demands that the algorithm not only find the optimal solution but also track the trajectory of the changing solution. Particle Swarm Optimization (PSO) is a population-based stochastic optimization technique, which can find an optimal, or near optimal, solution to a numerical and qualitative problem. In PSO algorithm, the problem solution emerges from the interactions between many simple individual agents called particles, which make PSO an inherently distributed algorithm. However, the traditional PSO algorithm lacks the ability to track the optimal solution in a dynamic and noisy environment. In this paper, we present a distributed adaptive PSO (DAPSO) algorithm that can be used for tracking a non-stationary optimal solution in a dynamically changing and noisy environment.
An Evolutionary Dynamics Model Adapted to Eusocial Insects
van Oudenhove, Louise; Cerdá, Xim; Bernstein, Carlos
2013-01-01
This study aims to better understand the evolutionary processes allowing species coexistence in eusocial insect communities. We develop a mathematical model that applies adaptive dynamics theory to the evolutionary dynamics of eusocial insects, focusing on the colony as the unit of selection. The model links long-term evolutionary processes to ecological interactions among colonies and seasonal worker production within the colony. Colony population dynamics is defined by both worker production and colony reproduction. Random mutations occur in strategies, and mutant colonies enter the community. The interactions of colonies at the ecological timescale drive the evolution of strategies at the evolutionary timescale by natural selection. This model is used to study two specific traits in ants: worker body size and the degree of collective foraging. For both traits, trade-offs in competitive ability and other fitness components allows to determine conditions in which selection becomes disruptive. Our results illustrate that asymmetric competition underpins diversity in ant communities. PMID:23469162
An evolutionary dynamics model adapted to eusocial insects.
van Oudenhove, Louise; Cerdá, Xim; Bernstein, Carlos
2013-01-01
This study aims to better understand the evolutionary processes allowing species coexistence in eusocial insect communities. We develop a mathematical model that applies adaptive dynamics theory to the evolutionary dynamics of eusocial insects, focusing on the colony as the unit of selection. The model links long-term evolutionary processes to ecological interactions among colonies and seasonal worker production within the colony. Colony population dynamics is defined by both worker production and colony reproduction. Random mutations occur in strategies, and mutant colonies enter the community. The interactions of colonies at the ecological timescale drive the evolution of strategies at the evolutionary timescale by natural selection. This model is used to study two specific traits in ants: worker body size and the degree of collective foraging. For both traits, trade-offs in competitive ability and other fitness components allows to determine conditions in which selection becomes disruptive. Our results illustrate that asymmetric competition underpins diversity in ant communities.
Adaptable Transponder for Multiple Telemetry Systems
NASA Technical Reports Server (NTRS)
Sims, William Herbert, III (Inventor); Varnavas, Kosta A. (Inventor)
2014-01-01
The present invention is a stackable telemetry circuit board for use in telemetry systems for satellites and other purposes. The present invention incorporates previously-qualified interchangeable circuit boards, or "decks," that perform functions such as power, signal receiving and transmission, and processing. Each deck is adapted to serve a range of telemetry applications. This provides flexibility in the construction of the stackable telemetry circuit board and significantly reduces the cost and time necessary to develop a telemetry system.
Adaptive P300 based control system
Jin, Jing; Allison, Brendan Z.; Sellers, Eric W.; Brunner, Clemens; Horki, Petar; Wang, Xingyu; Neuper, Christa
2015-01-01
An adaptive P300 brain-computer interface (BCI) using a 12 × 7 matrix explored new paradigms to improve bit rate and accuracy. During online use, the system adaptively selects the number of flashes to average. Five different flash patterns were tested. The 19-flash paradigm represents the typical row/column presentation (i.e., 12 columns and 7 rows). The 9- and 14-flash A & B paradigms present all items of the 12 × 7 matrix three times using either nine or 14 flashes (instead of 19), decreasing the amount of time to present stimuli. Compared to 9-flash A, 9-flash B decreased the likelihood that neighboring items would flash when the target was not flashing, thereby reducing interference from items adjacent to targets. 14-flash A also reduced adjacent item interference and 14-flash B additionally eliminated successive (double) flashes of the same item. Results showed that accuracy and bit rate of the adaptive system were higher than the non-adaptive system. In addition, 9- and 14-flash B produced significantly higher performance than their respective A conditions. The results also show the trend that the 14-flash B paradigm was better than the 19-flash pattern for naïve users. PMID:21474877
Optimal Control Modification Adaptive Law for Time-Scale Separated Systems
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2010-01-01
Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.
NASA Astrophysics Data System (ADS)
Pathak, Anand; Sinha, Sitabhra
2015-09-01
Many complex systems can be represented as networks of dynamical elements whose states evolve in response to interactions with neighboring elements, noise and external stimuli. The collective behavior of such systems can exhibit remarkable ordering phenomena such as chimera order corresponding to coexistence of ordered and disordered regions. Often, the interactions in such systems can also evolve over time responding to changes in the dynamical states of the elements. Link adaptation inspired by Hebbian learning, the dominant paradigm for neuronal plasticity, has been earlier shown to result in structural balance by removing any initial frustration in a system that arises through conflicting interactions. Here we show that the rate of the adaptive dynamics for the interactions is crucial in deciding the emergence of different ordering behavior (including chimera) and frustration in networks of Ising spins. In particular, we observe that small changes in the link adaptation rate about a critical value result in the system exhibiting radically different energy landscapes, viz., smooth landscape corresponding to balanced systems seen for fast learning, and rugged landscapes corresponding to frustrated systems seen for slow learning.
Development of adaptive control applied to chaotic systems
NASA Astrophysics Data System (ADS)
Rhode, Martin Andreas
1997-12-01
Continuous-time derivative control and adaptive map-based recursive feedback control techniques are used to control chaos in a variety of systems and in situations that are of practical interest. The theoretical part of the research includes the review of fundamental concept of control theory in the context of its applications to deterministic chaotic systems, the development of a new adaptive algorithm to identify the linear system properties necessary for control, and the extension of the recursive proportional feedback control technique, RPF, to high dimensional systems. Chaos control was applied to models of a thermal pulsed combustor, electro-chemical dissolution and the hyperchaotic Rossler system. Important implications for combustion engineering were suggested by successful control of the model of the thermal pulsed combustor. The system was automatically tracked while maintaining control into regions of parameter and state space where no stable attractors exist. In a simulation of the electrochemical dissolution system, application of derivative control to stabilize a steady state, and adaptive RPF to stabilize a period one orbit, was demonstrated. The high dimensional adaptive control algorithm was applied in a simulation using the Rossler hyperchaotic system, where a period-two orbit with two unstable directions was stabilized and tracked over a wide range of a system parameter. In the experimental part, the electrochemical system was studied in parameter space, by scanning the applied potential and the frequency of the rotating copper disk. The automated control algorithm is demonstrated to be effective when applied to stabilize a period-one orbit in the experiment. We show the necessity of small random perturbations applied to the system in order to both learn the dynamics and control the system at the same time. The simultaneous learning and control capability is shown to be an important part of the active feedback control.
Macroscopic description of complex adaptive networks coevolving with dynamic node states.
Wiedermann, Marc; Donges, Jonathan F; Heitzig, Jobst; Lucht, Wolfgang; Kurths, Jürgen
2015-05-01
In many real-world complex systems, the time evolution of the network's structure and the dynamic state of its nodes are closely entangled. Here we study opinion formation and imitation on an adaptive complex network which is dependent on the individual dynamic state of each node and vice versa to model the coevolution of renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model is coupled to a set of identical logistic growth models and we mainly find that, in such systems, the rate of interactions between nodes as well as the adaptive rewiring probability are crucial parameters for controlling the sustainability of the system's equilibrium state. We derive a macroscopic description of the system in terms of ordinary differential equations which provides a general framework to model and quantify the influence of single node dynamics on the macroscopic state of the network. The thus obtained framework is applicable to many fields of study, such as epidemic spreading, opinion formation, or socioecological modeling.
HARNESS: Heterogeneous Adaptable Reconfigurable Networked Systems. Final Progress Report
Fagg, G. E.
2004-01-20
HARNESS was proposed as a system that combined the best of emerging technologies found in current distributed computing research and commercial products into a very flexible, dynamically adaptable framework that could be used by applications to allow them to evolve and better handle their execution environment. The HARNESS system was designed using the considerable experience from previous projects such as PVM, MPI, IceT and Cumulvs. As such, the system was designed to avoid any of the common problems found with using these current systems, such as no single point of failure, ability to survive machine, node and software failures. Additional features included improved intercomponent connectivity, with full support for dynamic down loading of addition components at run-time thus reducing the stress on application developers to build in all the libraries they need in advance.
Innovations in dynamic test restraint systems
NASA Technical Reports Server (NTRS)
Fuld, Christopher J.
1990-01-01
Recent launch system development programs have led to a new generation of large scale dynamic tests. The variety of test scenarios share one common requirement: restrain and capture massive high velocity flight hardware with no structural damage. The Space Systems Lab of McDonnell Douglas developed a remarkably simple and cost effective approach to such testing using ripstitch energy absorbers adapted from the sport of technical rockclimbing. The proven system reliability of the capture system concept has led to a wide variety of applications in test system design and in aerospace hardware design.
Yao, Yao; Marchal, Kathleen; Van de Peer, Yves
2014-01-01
One of the important challenges in the field of evolutionary robotics is the development of systems that can adapt to a changing environment. However, the ability to adapt to unknown and fluctuating environments is not straightforward. Here, we explore the adaptive potential of simulated swarm robots that contain a genomic encoding of a bio-inspired gene regulatory network (GRN). An artificial genome is combined with a flexible agent-based system, representing the activated part of the regulatory network that transduces environmental cues into phenotypic behaviour. Using an artificial life simulation framework that mimics a dynamically changing environment, we show that separating the static from the conditionally active part of the network contributes to a better adaptive behaviour. Furthermore, in contrast with most hitherto developed ANN-based systems that need to re-optimize their complete controller network from scratch each time they are subjected to novel conditions, our system uses its genome to store GRNs whose performance was optimized under a particular environmental condition for a sufficiently long time. When subjected to a new environment, the previous condition-specific GRN might become inactivated, but remains present. This ability to store 'good behaviour' and to disconnect it from the novel rewiring that is essential under a new condition allows faster re-adaptation if any of the previously observed environmental conditions is reencountered. As we show here, applying these evolutionary-based principles leads to accelerated and improved adaptive evolution in a non-stable environment.
Neural network-based adaptive dynamic surface control for permanent magnet synchronous motors.
Yu, Jinpeng; Shi, Peng; Dong, Wenjie; Chen, Bing; Lin, Chong
2015-03-01
This brief considers the problem of neural networks (NNs)-based adaptive dynamic surface control (DSC) for permanent magnet synchronous motors (PMSMs) with parameter uncertainties and load torque disturbance. First, NNs are used to approximate the unknown and nonlinear functions of PMSM drive system and a novel adaptive DSC is constructed to avoid the explosion of complexity in the backstepping design. Next, under the proposed adaptive neural DSC, the number of adaptive parameters required is reduced to only one, and the designed neural controllers structure is much simpler than some existing results in literature, which can guarantee that the tracking error converges to a small neighborhood of the origin. Then, simulations are given to illustrate the effectiveness and potential of the new design technique.
Flexible Ubiquitous Learning Management System Adapted to Learning Context
NASA Astrophysics Data System (ADS)
Jeong, Ji-Seong; Kim, Mihye; Park, Chan; Yoo, Jae-Soo; Yoo, Kwan-Hee
This paper proposes a u-learning management system (ULMS) appropriate to the ubiquitous learning environment, with emphasis on the significance of context awareness and adaptation in learning. The proposed system supports the basic functions of an e-learning management system and incorporates a number of tools and additional features to provide a more customized learning service. The proposed system automatically corresponds to various forms of user terminal without modifying the existing system. The functions, formats, and course learning activities of the system are dynamically and adaptively constructed at runtime according to user terminals, course types, pedagogical goals as well as student characteristics and learning context. A prototype for university use has been implemented to demonstrate and evaluate the proposed approach. We regard the proposed ULMS as an ideal u-learning system because it can not only lead students into continuous and mobile 'anytime, anywhere' learning using any kind of terminal, but can also foster enhanced self-directed learning through the establishment of an adaptive learning environment.
Adaptive backstepping slide mode control of pneumatic position servo system
NASA Astrophysics Data System (ADS)
Ren, Haipeng; Fan, Juntao
2016-09-01
With the price decreasing of the pneumatic proportional valve and the high performance micro controller, the simple structure and high tracking performance pneumatic servo system demonstrates more application potential in many fields. However, most existing control methods with high tracking performance need to know the model information and to use pressure sensor. This limits the application of the pneumatic servo system. An adaptive backstepping slide mode control method is proposed for pneumatic position servo system. The proposed method designs adaptive slide mode controller using backstepping design technique. The controller parameter adaptive law is derived from Lyapunov analysis to guarantee the stability of the system. A theorem is testified to show that the state of closed-loop system is uniformly bounded, and the closed-loop system is stable. The advantages of the proposed method include that system dynamic model parameters are not required for the controller design, uncertain parameters bounds are not need, and the bulk and expensive pressure sensor is not needed as well. Experimental results show that the designed controller can achieve better tracking performance, as compared with some existing methods.
Data Systems Dynamic Simulator
NASA Technical Reports Server (NTRS)
Rouff, Christopher; Clark, Melana; Davenport, Bill; Message, Philip
1993-01-01
The Data System Dynamic Simulator (DSDS) is a discrete event simulation tool. It was developed for NASA for the specific purpose of evaluating candidate architectures for data systems of the Space Station era. DSDS provides three methods for meeting this requirement. First, the user has access to a library of standard pre-programmed elements. These elements represent tailorable components of NASA data systems and can be connected in any logical manner. Secondly, DSDS supports the development of additional elements. This allows the more sophisticated DSDS user the option of extending the standard element set. Thirdly, DSDS supports the use of data streams simulation. Data streams is the name given to a technique that ignores packet boundaries, but is sensitive to rate changes. Because rate changes are rare compared to packet arrivals in a typical NASA data system, data stream simulations require a fraction of the CPU run time. Additionally, the data stream technique is considerably more accurate than another commonly-used optimization technique.
Adaptive learning by extremal dynamics and negative feedback
Bak, Per; Chialvo, Dante R.
2001-03-01
We describe a mechanism for biological learning and adaptation based on two simple principles: (i) Neuronal activity propagates only through the network's strongest synaptic connections (extremal dynamics), and (ii) the strengths of active synapses are reduced if mistakes are made, otherwise no changes occur (negative feedback). The balancing of those two tendencies typically shapes a synaptic landscape with configurations which are barely stable, and therefore highly flexible. This allows for swift adaptation to new situations. Recollection of past successes is achieved by punishing synapses which have once participated in activity associated with successful outputs much less than neurons that have never been successful. Despite its simplicity, the model can readily learn to solve complicated nonlinear tasks, even in the presence of noise. In particular, the learning time for the benchmark parity problem scales algebraically with the problem size N, with an exponent k{approx}1.4.
Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks
NASA Technical Reports Server (NTRS)
Jorgensen, Charles C.
1997-01-01
A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.
Adaptive Embedded Digital System for Plasma Diagnostics
NASA Astrophysics Data System (ADS)
González, Angel; Rodríguez, Othoniel; Mangual, Osvaldo; Ponce, Eduardo; Vélez, Xavier
2014-05-01
An Adaptive Embedded Digital System to perform plasma diagnostics using electrostatic probes was developed at the Plasma Engineering Laboratory at Polytechnic University of Puerto Rico. The system will replace the existing instrumentation at the Laboratory, using reconfigurable hardware to minimize the equipment and software needed to perform diagnostics. The adaptability of the design resides on the possibility of replacing the computational algorithm on the fly, allowing to use the same hardware for different probes. The system was prototyped using Very High Speed Integrated Circuits Hardware Description Language (VHDL) into an Field Programmable Gate Array (FPGA) board. The design of the Embedded Digital System includes a Zero Phase Digital Filter, a Derivative Unit, and a Computational Unit designed using the VHDL-2008 Support Library. The prototype is able to compute the Plasma Electron Temperature and Density from a Single Langmuir probe. The system was tested using real data previously acquired from a single Langmuir probe. The plasma parameters obtained from the embedded system were compared with results computed using matlab yielding excellent matching. The new embedded system operates on 4096 samples versus 500 on the previous system, and completes its computations in 26 milliseconds compared with about 15 seconds on the previous system.
An adaptable neuromorphic model of orientation selectivity based on floating gate dynamics
Gupta, Priti; Markan, C. M.
2014-01-01
The biggest challenge that the neuromorphic community faces today is to build systems that can be considered truly cognitive. Adaptation and self-organization are the two basic principles that underlie any cognitive function that the brain performs. If we can replicate this behavior in hardware, we move a step closer to our goal of having cognitive neuromorphic systems. Adaptive feature selectivity is a mechanism by which nature optimizes resources so as to have greater acuity for more abundant features. Developing neuromorphic feature maps can help design generic machines that can emulate this adaptive behavior. Most neuromorphic models that have attempted to build self-organizing systems, follow the approach of modeling abstract theoretical frameworks in hardware. While this is good from a modeling and analysis perspective, it may not lead to the most efficient hardware. On the other hand, exploiting hardware dynamics to build adaptive systems rather than forcing the hardware to behave like mathematical equations, seems to be a more robust methodology when it comes to developing actual hardware for real world applications. In this paper we use a novel time-staggered Winner Take All circuit, that exploits the adaptation dynamics of floating gate transistors, to model an adaptive cortical cell that demonstrates Orientation Selectivity, a well-known biological phenomenon observed in the visual cortex. The cell performs competitive learning, refining its weights in response to input patterns resembling different oriented bars, becoming selective to a particular oriented pattern. Different analysis performed on the cell such as orientation tuning, application of abnormal inputs, response to spatial frequency and periodic patterns reveal close similarity between our cell and its biological counterpart. Embedded in a RC grid, these cells interact diffusively exhibiting cluster formation, making way for adaptively building orientation selective maps in silicon. PMID
Algebraic and adaptive learning in neural control systems
NASA Astrophysics Data System (ADS)
Ferrari, Silvia
A systematic approach is developed for designing adaptive and reconfigurable nonlinear control systems that are applicable to plants modeled by ordinary differential equations. The nonlinear controller comprising a network of neural networks is taught using a two-phase learning procedure realized through novel techniques for initialization, on-line training, and adaptive critic design. A critical observation is that the gradients of the functions defined by the neural networks must equal corresponding linear gain matrices at chosen operating points. On-line training is based on a dual heuristic adaptive critic architecture that improves control for large, coupled motions by accounting for actual plant dynamics and nonlinear effects. An action network computes the optimal control law; a critic network predicts the derivative of the cost-to-go with respect to the state. Both networks are algebraically initialized based on prior knowledge of satisfactory pointwise linear controllers and continue to adapt on line during full-scale simulations of the plant. On-line training takes place sequentially over discrete periods of time and involves several numerical procedures. A backpropagating algorithm called Resilient Backpropagation is modified and successfully implemented to meet these objectives, without excessive computational expense. This adaptive controller is as conservative as the linear designs and as effective as a global nonlinear controller. The method is successfully implemented for the full-envelope control of a six-degree-of-freedom aircraft simulation. The results show that the on-line adaptation brings about improved performance with respect to the initialization phase during aircraft maneuvers that involve large-angle and coupled dynamics, and parameter variations.
Adaptive control for space debris removal with uncertain kinematics, dynamics and states
NASA Astrophysics Data System (ADS)
Huang, Panfeng; Zhang, Fan; Meng, Zhongjie; Liu, Zhengxiong
2016-11-01
As the Tethered Space Robot is considered to be a promising solution for the Active Debris Removal, a lot of problems arise in the approaching, capturing and removing phases. Particularly, kinematics and dynamics parameters of the debris are unknown, and parts of the states are unmeasurable according to the specifics of tether, which is a tough problem for the target retrieval/de-orbiting. This work proposes a full adaptive control strategy for the space debris removal via a Tethered Space Robot with unknown kinematics, dynamics and part of the states. First we derive a dynamics model for the retrieval by treating the base satellite (chaser) and the unknown space debris (target) as rigid bodies in the presence of offsets, and involving the flexibility and elasticity of tether. Then, a full adaptive controller is presented including a control law, a dynamic adaption law, and a kinematic adaption law. A modified controller is also presented according to the peculiarities of this system. Finally, simulation results are presented to illustrate the performance of two proposed controllers.
PSF halo reduction in adaptive optics using dynamic pupil masking.
Osborn, James; Myers, Richard M; Love, Gordon D
2009-09-28
We describe a method to reduce residual speckles in an adaptive optics system which add to the halo of the point spread function (PSF). The halo is particularly problematic in astronomical applications involving the detection of faint companions. Areas of the pupil are selected where the residual wavefront aberrations are large and these are masked using a spatial light modulator. The method is also suitable for smaller telescopes without adaptive optics as a relatively simple method to increase the resolution of the telescope. We describe the principle of the technique and show simulation results.
Demonstration of portable solar adaptive optics system
NASA Astrophysics Data System (ADS)
Ren, Deqing; Dong, Bing
2012-10-01
Solar-adaptive optics (AO) are more challenging than night-time AO, in some aspects. A portable solar adaptive optics (PSAO) system featuring compact physical size, low cost, and good performance has been proposed and developed. PSAO can serve as a visiting instrument for any existing ground-based solar telescope to improve solar image quality by replacing just a few optical components. High-level programming language, LabVIEW, is used to develop the wavefront sensing and control software, and general purpose computers are used to drive the whole system. During October 2011, the feasibility and good performance of PSAO was demonstrated with the 61-cm solar telescope at San Fernando Observatory. The image contrast and resolution are noticeably improved after AO correction.
Cyberspace: The Ultimate Complex Adaptive System
2011-04-05
capable of a transaction with a given agent; tags also facilitate the formation of aggregates , or meta-agents. Meta-agents help distrib- ute and... Mbps or Gbps through communications links Path Roads, Rails, Flight Path, Sea- lanes Links, Connections Terrain Hills, Valleys, Urban Canyons... aggregate of many factors, both local and global. Unfit agents are more likely to instigate schema change. What is a Complex Adaptive System? This
Integrated modeling of the GMT laser tomography adaptive optics system
NASA Astrophysics Data System (ADS)
Piatrou, Piotr
2014-08-01
Laser Tomography Adaptive Optics (LTAO) is one of adaptive optics systems planned for the Giant Magellan Telescope (GMT). End-to-end simulation tools that are able to cope with the complexity and computational burden of the AO systems to be installed on the extremely large telescopes such as GMT prove to be an integral part of the GMT LTAO system development endeavors. SL95, the Fortran 95 Simulation Library, is one of the software tools successfully used for the LTAO system end-to-end simulations. The goal of SL95 project is to provide a complete set of generic, richly parameterized mathematical models for key elements of the segmented telescope wavefront control systems including both active and adaptive optics as well as the models for atmospheric turbulence, extended light sources like Laser Guide Stars (LGS), light propagation engines and closed-loop controllers. The library is implemented as a hierarchical collection of classes capable of mutual interaction, which allows one to assemble complex wavefront control system configurations with multiple interacting control channels. In this paper we demonstrate the SL95 capabilities by building an integrated end-to-end model of the GMT LTAO system with 7 control channels: LGS tomography with Adaptive Secondary and on-instrument deformable mirrors, tip-tilt and vibration control, LGS stabilization, LGS focus control, truth sensor-based dynamic noncommon path aberration rejection, pupil position control, SLODAR-like embedded turbulence profiler. The rich parameterization of the SL95 classes allows to build detailed error budgets propagating through the system multiple errors and perturbations such as turbulence-, telescope-, telescope misalignment-, segment phasing error-, non-common path-induced aberrations, sensor noises, deformable mirror-to-sensor mis-registration, vibration, temporal errors, etc. We will present a short description of the SL95 architecture, as well as the sample GMT LTAO system simulation
Ultra-Low Power Dynamic Knob in Adaptive Compressed Sensing Towards Biosignal Dynamics.
Wang, Aosen; Lin, Feng; Jin, Zhanpeng; Xu, Wenyao
2016-06-01
Compressed sensing (CS) is an emerging sampling paradigm in data acquisition. Its integrated analog-to-information structure can perform simultaneous data sensing and compression with low-complexity hardware. To date, most of the existing CS implementations have a fixed architectural setup, which lacks flexibility and adaptivity for efficient dynamic data sensing. In this paper, we propose a dynamic knob (DK) design to effectively reconfigure the CS architecture by recognizing the biosignals. Specifically, the dynamic knob design is a template-based structure that comprises a supervised learning module and a look-up table module. We model the DK performance in a closed analytic form and optimize the design via a dynamic programming formulation. We present the design on a 130 nm process, with a 0.058 mm (2) fingerprint and a 187.88 nJ/event energy-consumption. Furthermore, we benchmark the design performance using a publicly available dataset. Given the energy constraint in wireless sensing, the adaptive CS architecture can consistently improve the signal reconstruction quality by more than 70%, compared with the traditional CS. The experimental results indicate that the ultra-low power dynamic knob can provide an effective adaptivity and improve the signal quality in compressed sensing towards biosignal dynamics.
People at the centre of complex adaptive health systems reform.
Sturmberg, Joachim P; O'Halloran, Diana M; Martin, Carmel M
2010-10-18
Health systems are increasingly recognised to be complex adaptive systems (CASs), functionally characterised by their continuing and dynamic adaptation in response to core system drivers, or attractors. The core driver for our health system (and for the health reform strategies intended to achieve it) should clearly be the improvement of people's health - the personal experience of health, regardless of organic abnormalities; we contend that a patient-centred health system requires flexible localised decision making and resource use. The prevailing trend is to use disease protocols, financial management strategies and centralised control of siloed programs to manage our health system. This strategy is suggested to be fatally flawed, as: people's health and health experience as core system drivers are inevitably pre-empted by centralised and standardised strategies; the context specificity of personal experience and the capacity of local systems are overlooked; and in line with CAS patterns and characteristics, these strategies will lead to "unintended" consequences on all parts of the system. In Australia, there is still the time and opportunity for health system redesign that truly places people and their health at the core of the system.
Ecosystems and the Biosphere as Complex Adaptive Systems
NASA Technical Reports Server (NTRS)
Levin, Simon A.
1998-01-01
Ecosystems are prototypical examples of complex adaptive systems, in which patterns at higher levels emerge from localized interactions and selection processes acting at lower levels. An essential aspect of such systems is nonlinearity, leading to historical dependency and multiple possible outcomes of dynamics. Given this, it is essential to determine the degree to which system features are determined by environmental conditions, and the degree to which they are the result of self-organization. Furthermore, given the multiple levels at which dynamics become apparent and at which selection can act, central issues relate to how evolution shapes ecosystems properties, and whether ecosystems become buffered to changes (more resilient) over their ecological and evolutionary development or proceed to critical states and the edge of chaos.
Dynamic Modeling of ALS Systems
NASA Technical Reports Server (NTRS)
Jones, Harry
2002-01-01
The purpose of dynamic modeling and simulation of Advanced Life Support (ALS) systems is to help design them. Static steady state systems analysis provides basic information and is necessary to guide dynamic modeling, but static analysis is not sufficient to design and compare systems. ALS systems must respond to external input variations and internal off-nominal behavior. Buffer sizing, resupply scheduling, failure response, and control system design are aspects of dynamic system design. We develop two dynamic mass flow models and use them in simulations to evaluate systems issues, optimize designs, and make system design trades. One model is of nitrogen leakage in the space station, the other is of a waste processor failure in a regenerative life support system. Most systems analyses are concerned with optimizing the cost/benefit of a system at its nominal steady-state operating point. ALS analysis must go beyond the static steady state to include dynamic system design. All life support systems exhibit behavior that varies over time. ALS systems must respond to equipment operating cycles, repair schedules, and occasional off-nominal behavior or malfunctions. Biological components, such as bioreactors, composters, and food plant growth chambers, usually have operating cycles or other complex time behavior. Buffer sizes, material stocks, and resupply rates determine dynamic system behavior and directly affect system mass and cost. Dynamic simulation is needed to avoid the extremes of costly over-design of buffers and material reserves or system failure due to insufficient buffers and lack of stored material.
Effect of Adaptive Delivery Capacity on Networked Traffic Dynamics
NASA Astrophysics Data System (ADS)
Cao, Xian-Bin; Du, Wen-Bo; Chen, Cai-Long; Zhang, Jun
2011-05-01
We introduce an adaptive delivering capacity mechanism into the traffic dynamic model on scale-free networks under shortest path routing strategy and focus on its effect on the network capacity measured by the critical point (Rc) of phase transition from free now to congestion. Under this mechanism, the total node's delivering capacity is fixed and the allocation of delivering capacity on node i is proportional to nivarphi, where ni is the queue length of node i and varphi is the adjustable parameter. It is found that the network capacity monotonously increases with the increment of varphi, but there exists an optimal value of parameter varphi leading to the highest transportation efficiency measured by average travelling time (
Experimental Dynamic Characterization of a Reconfigurable Adaptive Precision Truss
NASA Technical Reports Server (NTRS)
Hinkle, J. D.; Peterson, L. D.
1994-01-01
The dynamic behavior of a reconfigurable adaptive truss structure with non-linear joints is investigated. The objective is to experimentally examine the effects of the local non-linearities on the global dynamics of the structure. Amplitude changes in the frequency response functions are measured at micron levels of motion. The amplitude and frequency variations of a number of modes indicate a non-linear Coulomb friction response. Hysteretic bifurcation behavior is also measured at an amplitude approximately equal to the specified free-play in the joint. Under the 1 g pre-load, however, the non-linearity was dominantly characteristic of Coulomb friction with little evidence of free-play stiffening.
Adaptive integral dynamic surface control of a hypersonic flight vehicle
NASA Astrophysics Data System (ADS)
Aslam Butt, Waseem; Yan, Lin; Amezquita S., Kendrick
2015-07-01
In this article, non-linear adaptive dynamic surface air speed and flight path angle control designs are presented for the longitudinal dynamics of a flexible hypersonic flight vehicle. The tracking performance of the control design is enhanced by introducing a novel integral term that caters to avoiding a large initial control signal. To ensure feasibility, the design scheme incorporates magnitude and rate constraints on the actuator commands. The uncertain non-linear functions are approximated by an efficient use of the neural networks to reduce the computational load. A detailed stability analysis shows that all closed-loop signals are uniformly ultimately bounded and the ? tracking performance is guaranteed. The robustness of the design scheme is verified through numerical simulations of the flexible flight vehicle model.
ERIC Educational Resources Information Center
Brown, Callum
2008-01-01
Understanding the dynamic behaviour of organisations is challenging and this study uses a model of complex adaptive systems as a generative metaphor to address this challenge. The research question addressed is: How might a conceptual model of complex adaptive systems be used to assist in understanding the dynamic nature of organisations? Using an…
NASA Technical Reports Server (NTRS)
Campbell, Stefan F.; Kaneshige, John T.
2010-01-01
Presented here is a Predictor-Based Model Reference Adaptive Control (PMRAC) architecture for a generic transport aircraft. At its core, this architecture features a three-axis, non-linear, dynamic-inversion controller. Command inputs for this baseline controller are provided by pilot roll-rate, pitch-rate, and sideslip commands. This paper will first thoroughly present the baseline controller followed by a description of the PMRAC adaptive augmentation to this control system. Results are presented via a full-scale, nonlinear simulation of NASA s Generic Transport Model (GTM).
Adaptable radiation monitoring system and method
Archer, Daniel E.; Beauchamp, Brock R.; Mauger, G. Joseph; Nelson, Karl E.; Mercer, Michael B.; Pletcher, David C.; Riot, Vincent J.; Schek, James L.; Knapp, David A.
2006-06-20
A portable radioactive-material detection system capable of detecting radioactive sources moving at high speeds. The system has at least one radiation detector capable of detecting gamma-radiation and coupled to an MCA capable of collecting spectral data in very small time bins of less than about 150 msec. A computer processor is connected to the MCA for determining from the spectral data if a triggering event has occurred. Spectral data is stored on a data storage device, and a power source supplies power to the detection system. Various configurations of the detection system may be adaptably arranged for various radiation detection scenarios. In a preferred embodiment, the computer processor operates as a server which receives spectral data from other networked detection systems, and communicates the collected data to a central data reporting system.
Selective host molecules obtained by dynamic adaptive chemistry.
Matache, Mihaela; Bogdan, Elena; Hădade, Niculina D
2014-02-17
Up till 20 years ago, in order to endow molecules with function there were two mainstream lines of thought. One was to rationally design the positioning of chemical functionalities within candidate molecules, followed by an iterative synthesis-optimization process. The second was the use of a "brutal force" approach of combinatorial chemistry coupled with advanced screening for function. Although both methods provided important results, "rational design" often resulted in time-consuming efforts of modeling and synthesis only to find that the candidate molecule was not performing the designed job. "Combinatorial chemistry" suffered from a fundamental limitation related to the focusing of the libraries employed, often using lead compounds that limit its scope. Dynamic constitutional chemistry has developed as a combination of the two approaches above. Through the rational use of reversible chemical bonds together with a large plethora of precursor libraries, one is now able to build functional structures, ranging from quite simple molecules up to large polymeric structures. Thus, by introduction of the dynamic component within the molecular recognition processes, a new perspective of deciphering the world of the molecular events has aroused together with a new field of chemistry. Since its birth dynamic constitutional chemistry has continuously gained attention, in particular due to its ability to easily create from scratch outstanding molecular structures as well as the addition of adaptive features. The fundamental concepts defining the dynamic constitutional chemistry have been continuously extended to currently place it at the intersection between the supramolecular chemistry and newly defined adaptive chemistry, a pivotal feature towards evolutive chemistry.
Gaia as a complex adaptive system.
Lenton, Timothy M; van Oijen, Marcel
2002-01-01
We define the Gaia system of life and its environment on Earth, review the status of the Gaia theory, introduce potentially relevant concepts from complexity theory, then try to apply them to Gaia. We consider whether Gaia is a complex adaptive system (CAS) in terms of its behaviour and suggest that the system is self-organizing but does not reside in a critical state. Gaia has supported abundant life for most of the last 3.8 Gyr. Large perturbations have occasionally suppressed life but the system has always recovered without losing the capacity for large-scale free energy capture and recycling of essential elements. To illustrate how complexity theory can help us understand the emergence of planetary-scale order, we present a simple cellular automata (CA) model of the imaginary planet Daisyworld. This exhibits emergent self-regulation as a consequence of feedback coupling between life and its environment. Local spatial interaction, which was absent from the original model, can destabilize the system by generating bifurcation regimes. Variation and natural selection tend to remove this instability. With mutation in the model system, it exhibits self-organizing adaptive behaviour in its response to forcing. We close by suggesting how artificial life ('Alife') techniques may enable more comprehensive feasibility tests of Gaia. PMID:12079529
Complex Adaptive Systems of Systems (CASOS) engineering environment.
Detry, Richard Joseph; Linebarger, John Michael; Finley, Patrick D.; Maffitt, S. Louise; Glass, Robert John, Jr.; Beyeler, Walter Eugene; Ames, Arlo Leroy
2012-02-01
Complex Adaptive Systems of Systems, or CASoS, are vastly complex physical-socio-technical systems which we must understand to design a secure future for the nation. The Phoenix initiative implements CASoS Engineering principles combining the bottom up Complex Systems and Complex Adaptive Systems view with the top down Systems Engineering and System-of-Systems view. CASoS Engineering theory and practice must be conducted together to develop a discipline that is grounded in reality, extends our understanding of how CASoS behave and allows us to better control the outcomes. The pull of applications (real world problems) is critical to this effort, as is the articulation of a CASoS Engineering Framework that grounds an engineering approach in the theory of complex adaptive systems of systems. Successful application of the CASoS Engineering Framework requires modeling, simulation and analysis (MS and A) capabilities and the cultivation of a CASoS Engineering Community of Practice through knowledge sharing and facilitation. The CASoS Engineering Environment, itself a complex adaptive system of systems, constitutes the two platforms that provide these capabilities.
An Adaptive Multipopulation Differential Evolution With Dynamic Population Reduction.
Ali, Mostafa Z; Awad, Noor H; Suganthan, Ponnuthurai Nagaratnam; Reynolds, Robert G
2016-10-25
Developing efficient evolutionary algorithms attracts many researchers due to the existence of optimization problems in numerous real-world applications. A new differential evolution algorithm, sTDE-dR, is proposed to improve the search quality, avoid premature convergence, and stagnation. The population is clustered in multiple tribes and utilizes an ensemble of different mutation and crossover strategies. In this algorithm, a competitive success-based scheme is introduced to determine the life cycle of each tribe and its participation ratio for the next generation. In each tribe, a different adaptive scheme is used to control the scaling factor and crossover rate. The mean success of each subgroup is used to calculate the ratio of its participation for the next generation. This guarantees that successful tribes with the best adaptive schemes are only the ones that guide the search toward the optimal solution. The population size is dynamically reduced using a dynamic reduction method. Comprehensive comparison of the proposed heuristic over a challenging set of benchmarks from the CEC2014 real parameter single objective competition against several state-of-the-art algorithms is performed. The results affirm robustness of the proposed approach compared to other state-of-the-art algorithms.
Social networks as embedded complex adaptive systems.
Benham-Hutchins, Marge; Clancy, Thomas R
2010-09-01
As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on management in social organizations such as hospitals. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This is the 15th in a series of articles applying complex systems science to the traditional management concepts of planning, organizing, directing, coordinating, and controlling. In this article, the authors discuss healthcare social networks as a hierarchy of embedded complex adaptive systems. The authors further examine the use of social network analysis tools as a means to understand complex communication patterns and reduce medical errors.
NASA Astrophysics Data System (ADS)
Zhao, Dongya; Li, Shaoyuan; Zhu, Quanmin
2016-03-01
In this study, a new adaptive synchronised tracking control approach is developed for the operation of multiple robotic manipulators in the presence of uncertain kinematics and dynamics. In terms of the system synchronisation and adaptive control, the proposed approach can stabilise position tracking of each robotic manipulator while coordinating its motion with the other robotic manipulators. On the other hand, the developed approach can cope with kinematic and dynamic uncertainties. The corresponding stability analysis is presented to lay a foundation for theoretical understanding of the underlying issues as well as an assurance for safely operating real systems. Illustrative examples are bench tested to validate the effectiveness of the proposed approach. In addition, to face the challenging issues, this study provides an exemplary showcase with effectively to integrate several cross boundary theoretical results to formulate an interdisciplinary solution.
Behavioral and neural Darwinism: selectionist function and mechanism in adaptive behavior dynamics.
McDowell, J J
2010-05-01
An evolutionary theory of behavior dynamics and a theory of neuronal group selection share a common selectionist framework. The theory of behavior dynamics instantiates abstractly the idea that behavior is selected by its consequences. It implements Darwinian principles of selection, reproduction, and mutation to generate adaptive behavior in virtual organisms. The behavior generated by the theory has been shown to be quantitatively indistinguishable from that of live organisms. The theory of neuronal group selection suggests a mechanism whereby the abstract principles of the evolutionary theory may be implemented in the nervous systems of biological organisms. According to this theory, groups of neurons subserving behavior may be selected by synaptic modifications that occur when the consequences of behavior activate value systems in the brain. Together, these theories constitute a framework for a comprehensive account of adaptive behavior that extends from brain function to the behavior of whole organisms in quantitative detail.
Dynamic Adaptive Binning: An Improved Quantification Technique for NMR Spectroscopic Data
2010-01-01
adaptive intelligent binning, which recursively identifies bin edges in existing bins (De Meyer et al. 2008). Another dynamic binning method is...43. Cancino-De-Greiff, H. F., Ramos-Garcia, R., & Lorenzo -Ginori, J. V. (2002). Signal de-noising in magnetic resonance spectroscopy using wavelet...for metabolomics data using the undecimated wavelet transform. Chemometrics and Intelligent Laboratory Systems, 85, 144–154. De Meyer , T., Sinnaeve, D
Dynamic reconstruction and multivariable control for force-actuated, thin facesheet adaptive optics
NASA Astrophysics Data System (ADS)
Grocott, Simon C. O.
1997-10-01
The Multiple Mirror Telescope (MMT) under development at the University of Arizona takes a new approach in adaptive optics placing a large (0.65 m) force-actuated, thin facesheet deformable mirror at the secondary of an astronomical telescope, thus reducing the effects of emissivity which are important in IR astronomy. However, the large size of the mirror and low stiffness actuators used drive the natural frequencies of the mirror down into the bandwidth of the atmospheric distortion. Conventional adaptive optics takes a quasi-static approach to controlling the deformable mirror. However, flexibility within the control bandwidth calls for a new approach to adaptive optics. Dynamic influence functions are used to characterize the influence of each actuator on the surface of the deformable mirror. A linearized model of atmospheric distortion is combined with dynamic influence functions to produce a dynamic reconstructor. This dynamic reconstructor is recognized as an optimal control problem. Solving the optimal control problem for a system with hundreds of actuators and sensors is formidable. Exploiting the circularly symmetric geometry of the mirror, and a suitable model of atmospheric distortion, the control problem is divided into a number of smaller decoupled control problems using circulant matrix theory. A hierarchic control scheme which seeks to emulate the quasi-static control approach that is generally used in adaptive optics is compared to the proposed dynamic reconstruction technique. Although dynamic reconstruction requires somewhat more computational power to implement, it achieves better performance with less power usage, and is less sensitive than the hierarchic technique. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253- 1690).
Adaptive control of artificial pancreas systems - a review.
Turksoy, Kamuran; Cinar, Ali
2014-01-01
Artificial pancreas (AP) systems offer an important improvement in regulating blood glucose concentration for patients with type 1 diabetes, compared to current approaches. AP consists of sensors, control algorithms and an insulin pump. Different AP control algorithms such as proportional-integral-derivative, model-predictive control, adaptive control, and fuzzy logic control have been investigated in simulation and clinical studies in the past three decades. The variability over time and complexity of the dynamics of blood glucose concentration, unsteady disturbances such as meals, time-varying delays on measurements and insulin infusion, and noisy data from sensors create a challenging system to AP. Adaptive control is a powerful control technique that can deal with such challenges. In this paper, a review of adaptive control techniques for blood glucose regulation with an AP system is presented. The investigations and advances in technology produced impressive results, but there is still a need for a reliable AP system that is both commercially viable and appealing to patients with type 1 diabetes.
Risk-return relationship in a complex adaptive system.
Song, Kunyu; An, Kenan; Yang, Guang; Huang, Jiping
2012-01-01
For survival and development, autonomous agents in complex adaptive systems involving the human society must compete against or collaborate with others for sharing limited resources or wealth, by using different methods. One method is to invest, in order to obtain payoffs with risk. It is a common belief that investments with a positive risk-return relationship (namely, high risk high return and vice versa) are dominant over those with a negative risk-return relationship (i.e., high risk low return and vice versa) in the human society; the belief has a notable impact on daily investing activities of investors. Here we investigate the risk-return relationship in a model complex adaptive system, in order to study the effect of both market efficiency and closeness that exist in the human society and play an important role in helping to establish traditional finance/economics theories. We conduct a series of computer-aided human experiments, and also perform agent-based simulations and theoretical analysis to confirm the experimental observations and reveal the underlying mechanism. We report that investments with a negative risk-return relationship have dominance over those with a positive risk-return relationship instead in such a complex adaptive systems. We formulate the dynamical process for the system's evolution, which helps to discover the different role of identical and heterogeneous preferences. This work might be valuable not only to complexity science, but also to finance and economics, to management and social science, and to physics.
Jansen-Osmann, Petra; Richter, Stefanie; Konczak, Jürgen; Kalveram, Karl-Theodor
2002-03-01
When humans perform goal-directed arm movements under the influence of an external damping force, they learn to adapt to these external dynamics. After removal of the external force field, they reveal kinematic aftereffects that are indicative of a neural controller that still compensates the no longer existing force. Such behavior suggests that the adult human nervous system uses a neural representation of inverse arm dynamics to control upper-extremity motion. Central to the notion of an inverse dynamic model (IDM) is that learning generalizes. Consequently, aftereffects should be observable even in untrained workspace regions. Adults have shown such behavior, but the ontogenetic development of this process remains unclear. This study examines the adaptive behavior of children and investigates whether learning a force field in one hemifield of the right arm workspace has an effect on force adaptation in the other hemifield. Thirty children (aged 6-10 years) and ten adults performed 30 degrees elbow flexion movements under two conditions of external damping (negative and null). We found that learning to compensate an external damping force transferred to the opposite hemifield, which indicates that a model of the limb dynamics rather than an association of visited space and experienced force was acquired. Aftereffects were more pronounced in the younger children and readaptation to a null-force condition was prolonged. This finding is consistent with the view that IDMs in children are imprecise neural representations of the actual arm dynamics. It indicates that the acquisition of IDMs is a developmental achievement and that the human motor system is inherently flexible enough to adapt to any novel force within the limits of the organism's biomechanics.
Progress with the lick adaptive optics system
Gavel, D T; Olivier, S S; Bauman, B; Max, C E; Macintosh, B
2000-03-01
Progress and results of observations with the Lick Observatory Laser Guide Star Adaptive Optics System are presented. This system is optimized for diffraction-limited imaging in the near infrared, 1-2 micron wavelength bands. We describe our development efforts in a number of component areas including, a redesign of the optical bench layout, the commissioning of a new infrared science camera, and improvements to the software and user interface. There is also an ongoing effort to characterize the system performance with both natural and laser guide stars and to fold this data into a refined system model. Such a model can be used to help plan future observations, for example, predicting the point-spread function as a function of seeing and guide star magnitude.
Progress with the Lick adaptive optics system
NASA Astrophysics Data System (ADS)
Gavel, Donald T.; Olivier, Scot S.; Bauman, Brian J.; Max, Claire E.; Macintosh, Bruce A.
2000-07-01
Progress and results of observations with the Lick Observatory Laser Guide Star Adaptive Optics System are presented. This system is optimized for diffraction-limited imaging in the near infrared, 1 - 2 micron wavelength bands. We describe our development efforts in a number of component areas including, a redesign of the optical bench layout, the commissioning of a new infrared science camera, and improvements to the software and user interface. There is also an ongoing effort to characterize the system performance with both natural and laser guide stars and to fold this data into a refined system model. Such a model can be used to help plan future observations, for example, predicting the point-spread function as a function of seeing and guide star magnitude.
The adaptive safety analysis and monitoring system
NASA Astrophysics Data System (ADS)
Tu, Haiying; Allanach, Jeffrey; Singh, Satnam; Pattipati, Krishna R.; Willett, Peter
2004-09-01
The Adaptive Safety Analysis and Monitoring (ASAM) system is a hybrid model-based software tool for assisting intelligence analysts to identify terrorist threats, to predict possible evolution of the terrorist activities, and to suggest strategies for countering terrorism. The ASAM system provides a distributed processing structure for gathering, sharing, understanding, and using information to assess and predict terrorist network states. In combination with counter-terrorist network models, it can also suggest feasible actions to inhibit potential terrorist threats. In this paper, we will introduce the architecture of the ASAM system, and discuss the hybrid modeling approach embedded in it, viz., Hidden Markov Models (HMMs) to detect and provide soft evidence on the states of terrorist network nodes based on partial and imperfect observations, and Bayesian networks (BNs) to integrate soft evidence from multiple HMMs. The functionality of the ASAM system is illustrated by way of application to the Indian Airlines Hijacking, as modeled from open sources.
Luo, Biao; Wu, Huai-Ning; Li, Han-Xiong
2015-04-01
Highly dissipative nonlinear partial differential equations (PDEs) are widely employed to describe the system dynamics of industrial spatially distributed processes (SDPs). In this paper, we consider the optimal control problem of the general highly dissipative SDPs, and propose an adaptive optimal control approach based on neuro-dynamic programming (NDP). Initially, Karhunen-Loève decomposition is employed to compute empirical eigenfunctions (EEFs) of the SDP based on the method of snapshots. These EEFs together with singular perturbation technique are then used to obtain a finite-dimensional slow subsystem of ordinary differential equations that accurately describes the dominant dynamics of the PDE system. Subsequently, the optimal control problem is reformulated on the basis of the slow subsystem, which is further converted to solve a Hamilton-Jacobi-Bellman (HJB) equation. HJB equation is a nonlinear PDE that has proven to be impossible to solve analytically. Thus, an adaptive optimal control method is developed via NDP that solves the HJB equation online using neural network (NN) for approximating the value function; and an online NN weight tuning law is proposed without requiring an initial stabilizing control policy. Moreover, by involving the NN estimation error, we prove that the original closed-loop PDE system with the adaptive optimal control policy is semiglobally uniformly ultimately bounded. Finally, the developed method is tested on a nonlinear diffusion-convection-reaction process and applied to a temperature cooling fin of high-speed aerospace vehicle, and the achieved results show its effectiveness.
Adaptable data management for systems biology investigations
Boyle, John; Rovira, Hector; Cavnor, Chris; Burdick, David; Killcoyne, Sarah; Shmulevich, Ilya
2009-01-01
Background Within research each experiment is different, the focus changes and the data is generated from a continually evolving barrage of technologies. There is a continual introduction of new techniques whose usage ranges from in-house protocols through to high-throughput instrumentation. To support these requirements data management systems are needed that can be rapidly built and readily adapted for new usage. Results The adaptable data management system discussed is designed to support the seamless mining and analysis of biological experiment data that is commonly used in systems biology (e.g. ChIP-chip, gene expression, proteomics, imaging, flow cytometry). We use different content graphs to represent different views upon the data. These views are designed for different roles: equipment specific views are used to gather instrumentation information; data processing oriented views are provided to enable the rapid development of analysis applications; and research project specific views are used to organize information for individual research experiments. This management system allows for both the rapid introduction of new types of information and the evolution of the knowledge it represents. Conclusion Data management is an important aspect of any research enterprise. It is the foundation on which most applications are built, and must be easily extended to serve new functionality for new scientific areas. We have found that adopting a three-tier architecture for data management, built around distributed standardized content repositories, allows us to rapidly develop new applications to support a diverse user community. PMID:19265554
NASA Technical Reports Server (NTRS)
Johnson, C. R., Jr.
1979-01-01
The widespread modal analysis of flexible spacecraft and recognition of the poor a priori parameterization possible of the modal descriptions of individual structures have prompted the consideration of adaptive modal control strategies for distributed parameter systems. The current major approaches to computationally efficient adaptive digital control useful in these endeavors are explained in an original, lucid manner using modal second order structure dynamics for algorithm explication. Difficulties in extending these lumped-parameter techniques to distributed-parameter system expansion control are cited.
An adaptive learning control system for large flexible structures
NASA Technical Reports Server (NTRS)
Thau, F. E.
1985-01-01
The objective of the research has been to study the design of adaptive/learning control systems for the control of large flexible structures. In the first activity an adaptive/learning control methodology for flexible space structures was investigated. The approach was based on using a modal model of the flexible structure dynamics and an output-error identification scheme to identify modal parameters. In the second activity, a least-squares identification scheme was proposed for estimating both modal parameters and modal-to-actuator and modal-to-sensor shape functions. The technique was applied to experimental data obtained from the NASA Langley beam experiment. In the third activity, a separable nonlinear least-squares approach was developed for estimating the number of excited modes, shape functions, modal parameters, and modal amplitude and velocity time functions for a flexible structure. In the final research activity, a dual-adaptive control strategy was developed for regulating the modal dynamics and identifying modal parameters of a flexible structure. A min-max approach was used for finding an input to provide modal parameter identification while not exceeding reasonable bounds on modal displacement.
Passivity of Directed and Undirected Complex Dynamical Networks With Adaptive Coupling Weights.
Wang, Jin-Liang; Wu, Huai-Ning; Huang, Tingwen; Ren, Shun-Yan; Wu, Jigang
2016-05-05
A complex dynamical network consisting of $N$ identical neural networks with reaction-diffusion terms is considered in this paper. First, several passivity definitions for the systems with different dimensions of input and output are given. By utilizing some inequality techniques, several criteria are presented, ensuring the passivity of the complex dynamical network under the designed adaptive law. Then, we discuss the relationship between the synchronization and output strict passivity of the proposed network model. Furthermore, these results are extended to the case when the topological structure of the network is undirected. Finally, two examples with numerical simulations are provided to illustrate the correctness and effectiveness of the proposed results.
An Intelligent Tutoring System Approach to Adaptive Instructional Systems
2005-09-01
gr prototypes (scripts) (Schank, 1977). Many software systems have been developed that employ these representations. Many instructional theories and...specific performance or skill-acquisition. However, there are many theories about the number and type of these general abilities. Researchers...Computer Generated Forces and Behavioral Representations. 7.1.2 Role of MAMID in an Adaptive Instructional System Motivation Currently, the student
NASA Facts: Nanosatellite Launch Adapter System (NLAS)
NASA Technical Reports Server (NTRS)
Chartres, James; Cappuccio, Gelsomina
2013-01-01
The Nanosatellite Launch Adapter System (NLAS) was developed to increase access to space while simplifying the integration process of miniature satellites, called nanosats or cubesats, onto launch vehicles. A standard cubesat measures about 4inches (10 cm) long, 4 inches wide,and 4 inches high, and is called a one-unit (1U) cubesat. A single NLAS provides the capability to deploy 24U of cubesats. The system is designed to accommodate satellites measuring 1U, 1.5U, 2U, 3U and 6U sizes for deployment into orbit. The NLAS may be configured for use on different launch vehicles. The system also enables flight demonstrations of new technologies in the space environment.
Adaptation with disturbance attenuation in nonlinear control systems
Basar, T.
1997-12-31
We present an optimization-based adaptive controller design for nonlinear systems exhibiting parametric as well as functional uncertainty. The approach involves the formulation of an appropriate cost functional that places positive weight on deviations from the achievement of desired objectives (such as tracking of a reference trajectory while the system exhibits good transient performance) and negative weight on the energy of the uncertainty. This cost functional also translates into a disturbance attenuation inequality which quantifies the effect of the presence of uncertainty on the desired objective, which in turn yields an interpretation for the optimizing control as one that optimally attenuates the disturbance, viewed as the collection of unknown parameters and unknown signals entering the system dynamics. In addition to this disturbance attenuation property, the controllers obtained also feature adaptation in the sense that they help with identification of the unknown parameters, even though this has not been set as the primary goal of the design. In spite of this adaptation/identification role, the controllers obtained are not of certainty-equivalent type, which means that the identification and the control phases of the design are not decoupled.
A dynamically reconfigurable data stream processing system
Nogiec, J.M.; Trombly-Freytag, K.; /Fermilab
2004-11-01
This paper describes a component-based framework for data stream processing that allows for configuration, tailoring, and runtime system reconfiguration. The system's architecture is based on a pipes and filters pattern, where data is passed through routes between components. A network of pipes and filters can be dynamically reconfigured in response to a preplanned sequence of processing steps, operator intervention, or a change in one or more data streams. This framework provides several mechanisms supporting dynamic reconfiguration and can be used to build static data stream processing applications such as monitoring or data acquisition systems, as well as self-adjusting systems that can adapt their processing algorithm, presentation layer, or data persistency layer in response to changes in input data streams.
Understanding global health governance as a complex adaptive system.
Hill, Peter S
2011-01-01
The transition from international to global health reflects the rapid growth in the numbers and nature of stakeholders in health, as well as the constant change embodied in the process of globalisation itself. This paper argues that global health governance shares the characteristics of complex adaptive systems, with its multiple and diverse players, and their polyvalent and constantly evolving relationships, and rich and dynamic interactions. The sheer quantum of initiatives, the multiple networks through which stakeholders (re)configure their influence, the range of contexts in which development for health is played out - all compound the complexity of this system. This paper maps out the characteristics of complex adaptive systems as they apply to global health governance, linking them to developments in the past two decades, and the multiple responses to these changes. Examining global health governance through the frame of complexity theory offers insight into the current dynamics of governance, and while providing a framework for making meaning of the whole, opens up ways of accessing this complexity through local points of engagement.
Self-* and Adaptive Mechanisms for Large Scale Distributed Systems
NASA Astrophysics Data System (ADS)
Fragopoulou, P.; Mastroianni, C.; Montero, R.; Andrjezak, A.; Kondo, D.
Large-scale distributed computing systems and infrastructure, such as Grids, P2P systems and desktop Grid platforms, are decentralized, pervasive, and composed of a large number of autonomous entities. The complexity of these systems is such that human administration is nearly impossible and centralized or hierarchical control is highly inefficient. These systems need to run on highly dynamic environments, where content, network topologies and workloads are continuously changing. Moreover, they are characterized by the high degree of volatility of their components and the need to provide efficient service management and to handle efficiently large amounts of data. This paper describes some of the areas for which adaptation emerges as a key feature, namely, the management of computational Grids, the self-management of desktop Grid platforms and the monitoring and healing of complex applications. It also elaborates on the use of bio-inspired algorithms to achieve self-management. Related future trends and challenges are described.
ERIC Educational Resources Information Center
Hopf-Weichel, Rosemarie; And Others
This report describes results of the first year of a three-year program to develop and evaluate a new Adaptive Computerized Training System (ACTS) for electronics maintenance training. (ACTS incorporates an adaptive computer program that learns the student's diagnostic and decision value structure, compares it to that of an expert, and adapts the…
The Adaptive Immune System of Haloferax volcanii.
Maier, Lisa-Katharina; Dyall-Smith, Mike; Marchfelder, Anita
2015-02-16
To fight off invading genetic elements, prokaryotes have developed an elaborate defence system that is both adaptable and heritable-the CRISPR-Cas system (CRISPR is short for: clustered regularly interspaced short palindromic repeats and Cas: CRISPR associated). Comprised of proteins and multiple small RNAs, this prokaryotic defence system is present in 90% of archaeal and 40% of bacterial species, and enables foreign intruders to be eliminated in a sequence-specific manner. There are three major types (I-III) and at least 14 subtypes of this system, with only some of the subtypes having been analysed in detail, and many aspects of the defence reaction remaining to be elucidated. Few archaeal examples have so far been analysed. Here we summarize the characteristics of the CRISPR-Cas system of Haloferax volcanii, an extremely halophilic archaeon originally isolated from the Dead Sea. It carries a single CRISPR-Cas system of type I-B, with a Cascade like complex composed of Cas proteins Cas5, Cas6b and Cas7. Cas6b is essential for CRISPR RNA (crRNA) maturation but is otherwise not required for the defence reaction. A systematic search revealed that six protospacer adjacent motif (PAM) sequences are recognised by the Haloferax defence system. For successful invader recognition, a non-contiguous seed sequence of 10 base-pairs between the crRNA and the invader is required.
Adaptive cyber-attack modeling system
NASA Astrophysics Data System (ADS)
Gonsalves, Paul G.; Dougherty, Edward T.
2006-05-01
The pervasiveness of software and networked information systems is evident across a broad spectrum of business and government sectors. Such reliance provides an ample opportunity not only for the nefarious exploits of lone wolf computer hackers, but for more systematic software attacks from organized entities. Much effort and focus has been placed on preventing and ameliorating network and OS attacks, a concomitant emphasis is required to address protection of mission critical software. Typical software protection technique and methodology evaluation and verification and validation (V&V) involves the use of a team of subject matter experts (SMEs) to mimic potential attackers or hackers. This manpower intensive, time-consuming, and potentially cost-prohibitive approach is not amenable to performing the necessary multiple non-subjective analyses required to support quantifying software protection levels. To facilitate the evaluation and V&V of software protection solutions, we have designed and developed a prototype adaptive cyber attack modeling system. Our approach integrates an off-line mechanism for rapid construction of Bayesian belief network (BN) attack models with an on-line model instantiation, adaptation and knowledge acquisition scheme. Off-line model construction is supported via a knowledge elicitation approach for identifying key domain requirements and a process for translating these requirements into a library of BN-based cyber-attack models. On-line attack modeling and knowledge acquisition is supported via BN evidence propagation and model parameter learning.
Dynamic optical aberration correction with adaptive coded apertures techniques in conformal imaging
NASA Astrophysics Data System (ADS)
Li, Yan; Hu, Bin; Zhang, Pengbin; Zhang, Binglong
2015-02-01
Conformal imaging systems are confronted with dynamic aberration in optical design processing. In classical optical designs, for combination high requirements of field of view, optical speed, environmental adaption and imaging quality, further enhancements can be achieved only by the introduction of increased complexity of aberration corrector. In recent years of computational imaging, the adaptive coded apertures techniques which has several potential advantages over more traditional optical systems is particularly suitable for military infrared imaging systems. The merits of this new concept include low mass, volume and moments of inertia, potentially lower costs, graceful failure modes, steerable fields of regard with no macroscopic moving parts. Example application for conformal imaging system design where the elements of a set of binary coded aperture masks are applied are optimization designed is presented in this paper, simulation results show that the optical performance is closely related to the mask design and the reconstruction algorithm optimization. As a dynamic aberration corrector, a binary-amplitude mask located at the aperture stop is optimized to mitigate dynamic optical aberrations when the field of regard changes and allow sufficient information to be recorded by the detector for the recovery of a sharp image using digital image restoration in conformal optical system.
Optimal control of distributed parameter systems using adaptive critic neural networks
NASA Astrophysics Data System (ADS)
Padhi, Radhakant
In this dissertation, two systematic optimal control synthesis techniques are presented for distributed parameter systems based on the adaptive critic neural networks. Following the philosophy of dynamic programming, this adaptive critic optimal control synthesis approach has many desirable features, viz. having a feedback form of the control, ability for on-line implementation, no need for approximating the nonlinear system dynamics, etc. More important, unlike the dynamic programming, it can accomplish these objectives without getting overwhelmed by the computational and storage requirements. First, an approximate dynamic programming based adaptive critic control synthesis formulation was carried out assuming an approximation of the system dynamics in a discrete form. A variety of example problems were solved using this proposed general approach. Next a different formulation is presented, which is capable of directly addressing the continuous form of system dynamics for control design. This was obtained following the methodology of Galerkin projection based weighted residual approximation using a set of orthogonal basis functions. The basis functions were designed by with the help of proper orthogonal decomposition, which leads to a very low-dimensional lumped parameter representation. The regulator problems of linear and nonlinear heat equations were revisited. Optimal controllers were synthesized first assuming a continuous controller and then a set of discrete controllers in the spatial domain. Another contribution of this study is the formulation of simplified adaptive critics for a large class of problems, which can be interpreted as a significant improvement of the existing adaptive critic technique.
Vertebrate gravity sensors as dynamic systems
NASA Technical Reports Server (NTRS)
Ross, M. D.
1985-01-01
This paper considers verterbrate gravity receptors as dynamic sensors. That is, it is hypothesized that gravity is a constant force to which an acceleration-sensing system would readily adapt. Premises are considered in light of the presence of kinocilia on hair cells of vertebrate gravity sensors; differences in loading of the sensors among species; and of possible reduction in loading by inclusion of much organic material in otoconia. Moreover, organic-inorganic interfaces may confer a piezoelectric property upon otoconia, which increase the sensitivity of the sensory system to small accelerations. Comparisons with man-made accelerometers are briefly taken up.
Adaptive automatic balancing of magnetic bearing systems
NASA Astrophysics Data System (ADS)
Kim, Jong-Sun
Rotating machinery including magnetic bearings are usually persistently excited by the rotation related disturbances such as mass unbalance; hence there exists a residual vibration in the steady state response even if the closed loop system is asymptotically stable. In order to control the periodic disturbances, a disturbance accommodating controller (DAC) is designed based on the disturbance estimator and applied to the forced balancing of magnetic bearing system. The control objective is to minimize the synchronous component of shaft displacement or control current. In order to account for the variation of the disturbance model due to the shaft of operating speed, an adaptive disturbance accommodating control scheme is developed based on a certain optimality criterion. The continuous time design discretized to implement the controller in the digital computer and the merits and demerits are studied numerically. It is shown that the proposed method is efficient in reducing rotor unbalance and automatic balancing.
Contrarian behavior in a complex adaptive system
NASA Astrophysics Data System (ADS)
Liang, Y.; An, K. N.; Yang, G.; Huang, J. P.
2013-01-01
Contrarian behavior is a kind of self-organization in complex adaptive systems (CASs). Here we report the existence of a transition point in a model resource-allocation CAS with contrarian behavior by using human experiments, computer simulations, and theoretical analysis. The resource ratio and system predictability serve as the tuning parameter and order parameter, respectively. The transition point helps to reveal the positive or negative role of contrarian behavior. This finding is in contrast to the common belief that contrarian behavior always has a positive role in resource allocation, say, stabilizing resource allocation by shrinking the redundancy or the lack of resources. It is further shown that resource allocation can be optimized at the transition point by adding an appropriate size of contrarians. This work is also expected to be of value to some other fields ranging from management and social science to ecology and evolution.
Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS)
NASA Technical Reports Server (NTRS)
Masek, Jeffrey G.
2006-01-01
The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) project is creating a record of forest disturbance and regrowth for North America from the Landsat satellite record, in support of the carbon modeling activities. LEDAPS relies on the decadal Landsat GeoCover data set supplemented by dense image time series for selected locations. Imagery is first atmospherically corrected to surface reflectance, and then change detection algorithms are used to extract disturbance area, type, and frequency. Reuse of the MODIS Land processing system (MODAPS) architecture allows rapid throughput of over 2200 MSS, TM, and ETM+ scenes. Initial ("Beta") surface reflectance products are currently available for testing, and initial continental disturbance products will be available by the middle of 2006.
Contrarian behavior in a complex adaptive system.
Liang, Y; An, K N; Yang, G; Huang, J P
2013-01-01
Contrarian behavior is a kind of self-organization in complex adaptive systems (CASs). Here we report the existence of a transition point in a model resource-allocation CAS with contrarian behavior by using human experiments, computer simulations, and theoretical analysis. The resource ratio and system predictability serve as the tuning parameter and order parameter, respectively. The transition point helps to reveal the positive or negative role of contrarian behavior. This finding is in contrast to the common belief that contrarian behavior always has a positive role in resource allocation, say, stabilizing resource allocation by shrinking the redundancy or the lack of resources. It is further shown that resource allocation can be optimized at the transition point by adding an appropriate size of contrarians. This work is also expected to be of value to some other fields ranging from management and social science to ecology and evolution.
Dynamic skeletal muscle stimulation and its potential in bone adaptation
Qin, Y-X.; Lam, H.; Ferreri, S.; Rubin, C.
2016-01-01
To identify mechanotransductive signals for combating musculoskeletal deterioration, it is essential to determine the components and mechanisms critical to the anabolic processes of musculoskeletal tissues. It is hypothesized that the interaction between bone and muscle may depend on fluid exchange in these tissues by mechanical loading. It has been shown that intramedullary pressure (ImP) and low-level bone strain induced by muscle stimulation (MS) has the potential to mitigate bone loss induced by disuse osteopenia. Optimized MS signals, i.e., low-intensity and high frequency, may be critical in maintaining bone mass and mitigating muscle atrophy. The objectives for this review are to discuss the potential for MS to induce ImP and strains on bone, to regulate bone adaptation, and to identify optimized stimulation frequency in the loading regimen. The potential for MS to regulate blood and fluid flow will also be discussed. The results suggest that oscillatory MS regulates fluid dynamics with minimal mechanical strain in bone. The response was shown to be dependent on loading frequency, serving as a critical mediator in mitigating bone loss. A specific regimen of dynamic MS may be optimized in vivo to attenuate disuse osteopenia and serve as a biomechanical intervention in the clinical setting. PMID:20190376
Robust adaptive backstepping control for piezoelectric nano-manipulating systems
NASA Astrophysics Data System (ADS)
Zhang, Yangming; Yan, Peng; Zhang, Zhen
2017-01-01
In this paper we present a systematic modeling and control approach for nano-manipulations of a two-dimensional PZT (piezoelectric transducer) actuated servo stage. The major control challenges associated with piezoelectric nano-manipulators typically include the nonlinear dynamics of hysteresis, model uncertainties, and various disturbances. The adverse effects of these complications will result in significant performance loss, unless effectively eliminated. The primary goal of the paper is on the ultra high precision control of such systems by handling various model uncertainties and disturbances simultaneously. To this end, a novel robust adaptive backstepping-like control approach is developed such that parametric uncertainties can be estimated adaptively while the nonlinear dynamics and external disturbances are treated as bounded disturbances for robust elimination. Meanwhile, the L2-gain of the closed-loop system is considered, and an H∞ optimization problem is formulated to improve the tracking accuracy. Numerical simulations and real time experiments are finally conducted, which significantly outperform conventional PID methods and achieve around 1% tracking error for circular contouring tasks.
Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems.
Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing
2016-07-26
This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches.
Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems
Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing
2016-01-01
This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches. PMID:27472336
Dynamic combinatorial self-replicating systems.
Moulin, Emilie; Giuseppone, Nicolas
2012-01-01
Thanks to their intrinsic network topologies, dynamic combinatorial libraries (DCLs) represent new tools for investigating fundamental aspects related to self-organization and adaptation processes. Very recently the first examples integrating self-replication features within DCLs have pushed even further the idea of implementing dynamic combinatorial chemistry (DCC) towards minimal systems capable of self-construction and/or evolution. Indeed, feedback loop processes - in particular in the form of autocatalytic reactions - are keystones to build dynamic supersystems which could possibly approach the roots of "Darwinian" evolvability at mesoscale. This topic of current interest also shows significant potentialities beyond its fundamental character, because truly smart and autonomous materials for the future will have to respond to changes of their environment by selecting and by exponentially amplifying their fittest constituents.
Complex Features in Lotka-Volterra Systems with Behavioral Adaptation
NASA Astrophysics Data System (ADS)
Tebaldi, Claudio; Lacitignola, Deborah
Lotka-Volterra systems have played a fundamental role for mathematical modelling in many branches of theoretical biology and proved to describe, at least qualitatively, the essential features of many phenomena, see for example Murray [Murray 2002]. Furthermore models of that kind have been considered successfully also in quite different and less mathematically formalized context: Goodwin' s model of economic growth cycles [Goodwin 1967] and urban dynamics [Dendrinos 1992] are only two of a number of examples. Such systems can certainly be defined as complex ones and in fact the aim of modelling was essentially to clarify mechanims rather than to provide actual precise simulations and predictions. With regards to complex systems, we recall that one of their main feature, no matter of the specific definition one has in mind, is adaptation, i. e. the ability to adjust.
Chaffin, Brian C; Gunderson, Lance H
2016-01-01
Adaptive governance provides the capacity for environmental managers and decision makers to confront variable degrees of uncertainty inherent to complex social-ecological systems. Current theoretical conceptualizations of adaptive governance represent a series of structures and processes best suited for either adapting or transforming existing environmental governance regimes towards forms flexible enough to confront rapid ecological change. As the number of empirical examples of adaptive governance described in the literature grows, the conceptual basis of adaptive governance remains largely under theorized. We argue that reconnecting adaptive governance with foundational concepts of ecological resilience-specifically Panarchy and the adaptive cycle of complex systems-highlights the importance of episodic disturbances and cross-scale interactions in triggering reorganizations in governance. By envisioning the processes of adaptive governance through the lens of Panarchy, scholars and practitioners alike will be better able to identify the emergence of adaptive governance, as well as take advantage of opportunities to institutionalize this type of governance in pursuit of sustainability outcomes. The synergistic analysis of adaptive governance and Panarchy can provide critical insight for analyzing the role of social dynamics during oscillating periods of stability and instability in social-ecological systems. A deeper understanding of the potential for cross-scale interactions to shape adaptive governance regimes may be useful as society faces the challenge of mitigating the impacts of global environmental change.
Flipping Adapters for Space Launch System
The structural test article adapter is flipped at Marshall testing facility Building 4705. The turnover is an important step in finishing the machining work on the adapter, which will undergo tests...
The Limits to Adaptation: A Systems Approach
The ability to adapt to climate change is delineated by capacity thresholds, after which climate damages begin to overwhelm the adaptation response. Such thresholds depend upon physical properties (natural processes and engineering parameters), resource constraints (expressed th...
Intercellular Communication in the Adaptive Immune System
NASA Astrophysics Data System (ADS)
Chakraborty, Arup
2004-03-01
Higher organisms, like humans, have an adaptive immune system that can respond to pathogens that have not been encountered before. T lymphocytes (T cells) are the orchestrators of the adaptive immune response. They interact with cells, called antigen presenting cells (APC), that display molecular signatures of pathogens. Recently, video microscopy experiments have revealed that when T cells detect antigen on APC surfaces, a spatially patterned supramolecular assembly of different types of molecules forms in the junction between cell membranes. This recognition motif is implicated in information transfer between APC and T cells, and so, is labeled the immunological synapse. The observation of synapse formation sparked two broad questions: How does the synapse form? Why does the synapse form? I will describe progress made in answering these fundamental questions in biology by synergistic use of statistical mechanical theory/computation, chemical engineering principles, and genetic and biochemical experiments. The talk will also touch upon mechanisms that may underlie the extreme sensitivity with which T cells discriminate between self and non-self.
Gresham, David; Desai, Michael M; Tucker, Cheryl M; Jenq, Harry T; Pai, Dave A; Ward, Alexandra; DeSevo, Christopher G; Botstein, David; Dunham, Maitreya J
2008-12-01
The experimental evolution of laboratory populations of microbes provides an opportunity to observe the evolutionary dynamics of adaptation in real time. Until very recently, however, such studies have been limited by our inability to systematically find mutations in evolved organisms. We overcome this limitation by using a variety of DNA microarray-based techniques to characterize genetic changes -- including point mutations, structural changes, and insertion variation -- that resulted from the experimental adaptation of 24 haploid and diploid cultures of Saccharomyces cerevisiae to growth in either glucose, sulfate, or phosphate-limited chemostats for approximately 200 generations. We identified frequent genomic amplifications and rearrangements as well as novel retrotransposition events associated with adaptation. Global nucleotide variation detection in ten clonal isolates identified 32 point mutations. On the basis of mutation frequencies, we infer that these mutations and the subsequent dynamics of adaptation are determined by the batch phase of growth prior to initiation of the continuous phase in the chemostat. We relate these genotypic changes to phenotypic outcomes, namely global patterns of gene expression, and to increases in fitness by 5-50%. We found that the spectrum of available mutations in glucose- or phosphate-limited environments combined with the batch phase population dynamics early in our experiments allowed several distinct genotypic and phenotypic evolutionary pathways in response to these nutrient limitations. By contrast, sulfate-limited populations were much more constrained in both genotypic and phenotypic outcomes. Thus, the reproducibility of evolution varies with specific selective pressures, reflecting the constraints inherent in the system-level organization of metabolic processes in the cell. We were able to relate some of the observed adaptive mutations (e.g., transporter gene amplifications) to known features of the relevant
Demonstrating the impact of flood adaptation using an online dynamic flood mapper
NASA Astrophysics Data System (ADS)
Orton, P. M.; MacManus, K.; Doxsey-Whitfield, E.; Yetman, G.; Fisher, K.; Sanderson, E. W.; Giampieri, M.; Blumberg, A. F.
2015-12-01
Municipalities across the nation are weighing the value of coastal natural and nature-based features (NNBF) for flood risk reduction and the many ecosystem services they provide, yet there is limited quantitative information available to help make these decisions. Here, we describe a new "dynamic" flood mapping web-tool that demonstrates the modeled effects of NNBF on flood hazard zones for the highly populated areas surrounding Jamaica Bay, New York City. The tool also provides information on damages from flooding as well as cost-benefit analyses for NNBF adaptations for the bay. The project researchers are involved with development of a Jamaica Bay Coastal Master Plan, and the mapper will play an important role for increasing the public understanding of adaptation options. More broadly, dynamic flood mappers have many more possibilities than "static" mappers that simply add sea level rise onto pre-defined flood levels and bathtub them over flood plains. Dynamic modeling can enable inclusion of the response of coastal systems, imposed human adaptation, as well as flooding by surge, tide and precipitation.
Mattei, Tobias A
2014-12-01
In self-adapting dynamical systems, a significant improvement in the signaling flow among agents constitutes one of the most powerful triggering events for the emergence of new complex behaviors. Ackermann and colleagues' comprehensive phylogenetic analysis of the brain structures involved in acoustic communication provides further evidence of the essential role which speech, as a breakthrough signaling resource, has played in the evolutionary development of human cognition viewed from the standpoint of complex adaptive system analysis.
Simulation of DKIST solar adaptive optics system
NASA Astrophysics Data System (ADS)
Marino, Jose; Carlisle, Elizabeth; Schmidt, Dirk
2016-07-01
Solar adaptive optics (AO) simulations are a valuable tool to guide the design and optimization process of current and future solar AO and multi-conjugate AO (MCAO) systems. Solar AO and MCAO systems rely on extended object cross-correlating Shack-Hartmann wavefront sensors to measure the wavefront. Accurate solar AO simulations require computationally intensive operations, which have until recently presented a prohibitive computational cost. We present an update on the status of a solar AO and MCAO simulation tool being developed at the National Solar Observatory. The simulation tool is a multi-threaded application written in the C++ language that takes advantage of current large multi-core CPU computer systems and fast ethernet connections to provide accurate full simulation of solar AO and MCAO systems. It interfaces with KAOS, a state of the art solar AO control software developed by the Kiepenheuer-Institut fuer Sonnenphysik, that provides reliable AO control. We report on the latest results produced by the solar AO simulation tool.
Multiclient Identification System Using Adaptive Probabilistic Model
NASA Astrophysics Data System (ADS)
Lin, Chin-Teng; Siana, Linda; Shou, Yu-Wen; Yang, Chien-Ting
2010-12-01
This paper aims at integrating detection and identification of human faces in a more practical and real-time face recognition system. The proposed face detection system is based on the cascade Adaboost method to improve the precision and robustness toward unstable surrounding lightings. Our Adaboost method innovates to adjust the environmental lighting conditions by histogram lighting normalization and to accurately locate the face regions by a region-based-clustering process as well. We also address on the problem of multi-scale faces in this paper by using 12 different scales of searching windows and 5 different orientations for each client in pursuit of the multi-view independent face identification. There are majorly two methodological parts in our face identification system, including PCA (principal component analysis) facial feature extraction and adaptive probabilistic model (APM). The structure of our implemented APM with a weighted combination of simple probabilistic functions constructs the likelihood functions by the probabilistic constraint in the similarity measures. In addition, our proposed method can online add a new client and update the information of registered clients due to the constructed APM. The experimental results eventually show the superior performance of our proposed system for both offline and real-time online testing.
Herd behavior in a complex adaptive system
Zhao, Li; Yang, Guang; Wang, Wei; Chen, Yu; Huang, J. P.; Ohashi, Hirotada; Stanley, H. Eugene
2011-01-01
In order to survive, self-serving agents in various kinds of complex adaptive systems (CASs) must compete against others for sharing limited resources with biased or unbiased distribution by conducting strategic behaviors. This competition can globally result in the balance of resource allocation. As a result, most of the agents and species can survive well. However, it is a common belief that the formation of a herd in a CAS will cause excess volatility, which can ruin the balance of resource allocation in the CAS. Here this belief is challenged with the results obtained from a modeled resource-allocation system. Based on this system, we designed and conducted a series of computer-aided human experiments including herd behavior. We also performed agent-based simulations and theoretical analyses, in order to confirm the experimental observations and reveal the underlying mechanism. We report that, as long as the ratio of the two resources for allocation is biased enough, the formation of a typically sized herd can help the system to reach the balanced state. This resource ratio also serves as the critical point for a class of phase transition identified herein, which can be used to discover the role change of herd behavior, from a ruinous one to a helpful one. This work is also of value to some fields, ranging from management and social science, to ecology and evolution, and to physics. PMID:21876133
Herd behavior in a complex adaptive system.
Zhao, Li; Yang, Guang; Wang, Wei; Chen, Yu; Huang, J P; Ohashi, Hirotada; Stanley, H Eugene
2011-09-13
In order to survive, self-serving agents in various kinds of complex adaptive systems (CASs) must compete against others for sharing limited resources with biased or unbiased distribution by conducting strategic behaviors. This competition can globally result in the balance of resource allocation. As a result, most of the agents and species can survive well. However, it is a common belief that the formation of a herd in a CAS will cause excess volatility, which can ruin the balance of resource allocation in the CAS. Here this belief is challenged with the results obtained from a modeled resource-allocation system. Based on this system, we designed and conducted a series of computer-aided human experiments including herd behavior. We also performed agent-based simulations and theoretical analyses, in order to confirm the experimental observations and reveal the underlying mechanism. We report that, as long as the ratio of the two resources for allocation is biased enough, the formation of a typically sized herd can help the system to reach the balanced state. This resource ratio also serves as the critical point for a class of phase transition identified herein, which can be used to discover the role change of herd behavior, from a ruinous one to a helpful one. This work is also of value to some fields, ranging from management and social science, to ecology and evolution, and to physics.
Adaptive model training system and method
Bickford, Randall L; Palnitkar, Rahul M; Lee, Vo
2014-04-15
An adaptive model training system and method for filtering asset operating data values acquired from a monitored asset for selectively choosing asset operating data values that meet at least one predefined criterion of good data quality while rejecting asset operating data values that fail to meet at least the one predefined criterion of good data quality; and recalibrating a previously trained or calibrated model having a learned scope of normal operation of the asset by utilizing the asset operating data values that meet at least the one predefined criterion of good data quality for adjusting the learned scope of normal operation of the asset for defining a recalibrated model having the adjusted learned scope of normal operation of the asset.
Adaptive model training system and method
Bickford, Randall L; Palnitkar, Rahul M
2014-11-18
An adaptive model training system and method for filtering asset operating data values acquired from a monitored asset for selectively choosing asset operating data values that meet at least one predefined criterion of good data quality while rejecting asset operating data values that fail to meet at least the one predefined criterion of good data quality; and recalibrating a previously trained or calibrated model having a learned scope of normal operation of the asset by utilizing the asset operating data values that meet at least the one predefined criterion of good data quality for adjusting the learned scope of normal operation of the asset for defining a recalibrated model having the adjusted learned scope of normal operation of the asset.
Intelligent Optical Systems Using Adaptive Optics
NASA Technical Reports Server (NTRS)
Clark, Natalie
2012-01-01
Until recently, the phrase adaptive optics generally conjured images of large deformable mirrors being integrated into telescopes to compensate for atmospheric turbulence. However, the development of smaller, cheaper devices has sparked interest for other aerospace and commercial applications. Variable focal length lenses, liquid crystal spatial light modulators, tunable filters, phase compensators, polarization compensation, and deformable mirrors are becoming increasingly useful for other imaging applications including guidance navigation and control (GNC), coronagraphs, foveated imaging, situational awareness, autonomous rendezvous and docking, non-mechanical zoom, phase diversity, and enhanced multi-spectral imaging. The active components presented here allow flexibility in the optical design, increasing performance. In addition, the intelligent optical systems presented offer advantages in size and weight and radiation tolerance.
Simulating Astronomical Adaptive Optics Systems Using Yao
NASA Astrophysics Data System (ADS)
Rigaut, François; Van Dam, Marcos
2013-12-01
Adaptive Optics systems are at the heart of the coming Extremely Large Telescopes generation. Given the importance, complexity and required advances of these systems, being able to simulate them faithfully is key to their success, and thus to the success of the ELTs. The type of systems envisioned to be built for the ELTs cover most of the AO breeds, from NGS AO to multiple guide star Ground Layer, Laser Tomography and Multi-Conjugate AO systems, with typically a few thousand actuators. This represents a large step up from the current generation of AO systems, and accordingly a challenge for existing AO simulation packages. This is especially true as, in the past years, computer power has not been following Moore's law in its most common understanding; CPU clocks are hovering at about 3GHz. Although the use of super computers is a possible solution to run these simulations, being able to use smaller machines has obvious advantages: cost, access, environmental issues. By using optimised code in an already proven AO simulation platform, we were able to run complex ELT AO simulations on very modest machines, including laptops. The platform is YAO. In this paper, we describe YAO, its architecture, its capabilities, the ELT-specific challenges and optimisations, and finally its performance. As an example, execution speed ranges from 5 iterations per second for a 6 LGS 60x60 subapertures Shack-Hartmann Wavefront sensor Laser Tomography AO system (including full physical image formation and detector characteristics) up to over 30 iterations/s for a single NGS AO system.
Effect of adaptive optical system on the capability of lidar detection in atmosphere
NASA Astrophysics Data System (ADS)
Tan, Xue-chun; Wu, Zhi-chao; Liang, Zhu
2009-05-01
Since atmosphere turbulence has an effect on laser propagation, it causes wavefront error usually , changes intensity and coherence of laser, disturbs detection of lidar. The adaptive optical system has broad application in the field of laser transmission because it can adjust characters of optical system ,detect and correct the wavefront error at the same time. Adaptive optics technology uses deformable mirrors to perform dynamic phase modulation and endow optical system the ability to decrease the influence of dynamic wavefront errors. In this paper ,a correction method of the micro-miniature adaptive optical system based on Micro Electromechanical System (MEMS) technology is proposed by analyzing the working theory of the adaptive optical system. An experimental system including deformable mirror based on Micro Electromechanical System (MEMS) technology is designed to correct a factitious wavefront error.The influence function and voltage-deflection curve are researched, and the voltage control matrix is educed. By using the voltage control , the static wavefront aberration is corrected. Several important capabilities of deformable mirrors is tested. With the voltage control matrix, the corrected capability of the adaptive optical system is achieved successfully .The experimental results show that the adaptive optical system can preferably correct the wavefront error, that has small volume and steady capability, and greatly improve the capability of lidar detection.
Dynamics robustness of cascading systems.
Young, Jonathan T; Hatakeyama, Tetsuhiro S; Kaneko, Kunihiko
2017-03-01
A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade's kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1) Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2) Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it will provide a
Dynamics robustness of cascading systems
Kaneko, Kunihiko
2017-01-01
A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade’s kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1) Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2) Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it will provide a
Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems
Xia, Feng; Ma, Longhua; Peng, Chen; Sun, Youxian; Dong, Jinxiang
2008-01-01
There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN. PMID:27879934
Adaptive-passive vibration control systems for industrial applications
NASA Astrophysics Data System (ADS)
Mayer, D.; Pfeiffer, T.; Vrbata, J.; Melz, T.
2015-04-01
Tuned vibration absorbers have become common for passive vibration reduction in many industrial applications. Lightly damped absorbers (also called neutralizers) can be used to suppress narrowband disturbances by tuning them to the excitation frequency. If the resonance is adapted in-operation, the performance of those devices can be significantly enhanced, or inertial mass can be decreased. However, the integration of actuators, sensors and control electronics into the system raises new design challenges. In this work, the development of adaptive-passive systems for vibration reduction at an industrial scale is presented. As an example, vibration reduction of a ship engine was studied in a full scale test. Simulations were used to study the feasibility and evaluate the system concept at an early stage. Several ways to adjust the resonance of the neutralizer were evaluated, including piezoelectric actuation and common mechatronic drives. Prototypes were implemented and tested. Since vibration absorbers suffer from high dynamic loads, reliability tests were used to assess the long-term behavior under operational conditions and to improve the components. It was proved that the adaptive systems are capable to withstand the mechanical loads in an industrial application. Also a control strategy had to be implemented in order to track the excitation frequency. The most mature concepts were integrated into the full scale test. An imbalance exciter was used to simulate the engine vibrations at a realistic level experimentally. The neutralizers were tested at varying excitation frequencies to evaluate the tracking capabilities of the control system. It was proved that a significant vibration reduction is possible.
ADAPTIVE CLEARANCE CONTROL SYSTEMS FOR TURBINE ENGINES
NASA Technical Reports Server (NTRS)
Blackwell, Keith M.
2004-01-01
The Controls and Dynamics Technology Branch at NASA Glenn Research Center primarily deals in developing controls, dynamic models, and health management technologies for air and space propulsion systems. During the summer of 2004 I was granted the privilege of working alongside professionals who were developing an active clearance control system for commercial jet engines. Clearance, the gap between the turbine blade tip and the encompassing shroud, increases as a result of wear mechanisms and rubbing of the turbine blades on shroud. Increases in clearance cause larger specific fuel consumption (SFC) and loss of efficient air flow. This occurs because, as clearances increase, the engine must run hotter and bum more fuel to achieve the same thrust. In order to maintain efficiency, reduce fuel bum, and reduce exhaust gas temperature (EGT), the clearance must be accurately controlled to gap sizes no greater than a few hundredths of an inch. To address this problem, NASA Glenn researchers have developed a basic control system with actuators and sensors on each section of the shroud. Instead of having a large uniform metal casing, there would be sections of the shroud with individual sensors attached internally that would move slightly to reform and maintain clearance. The proposed method would ultimately save the airline industry millions of dollars.
Adaptive fuzzy-neural-network control for maglev transportation system.
Wai, Rong-Jong; Lee, Jeng-Dao
2008-01-01
A magnetic-levitation (maglev) transportation system including levitation and propulsion control is a subject of considerable scientific interest because of highly nonlinear and unstable behaviors. In this paper, the dynamic model of a maglev transportation system including levitated electromagnets and a propulsive linear induction motor (LIM) based on the concepts of mechanical geometry and motion dynamics is developed first. Then, a model-based sliding-mode control (SMC) strategy is introduced. In order to alleviate chattering phenomena caused by the inappropriate selection of uncertainty bound, a simple bound estimation algorithm is embedded in the SMC strategy to form an adaptive sliding-mode control (ASMC) scheme. However, this estimation algorithm is always a positive value so that tracking errors introduced by any uncertainty will cause the estimated bound increase even to infinity with time. Therefore, it further designs an adaptive fuzzy-neural-network control (AFNNC) scheme by imitating the SMC strategy for the maglev transportation system. In the model-free AFNNC, online learning algorithms are designed to cope with the problem of chattering phenomena caused by the sign action in SMC design, and to ensure the stability of the controlled system without the requirement of auxiliary compensated controllers despite the existence of uncertainties. The outputs of the AFNNC scheme can be directly supplied to the electromagnets and LIM without complicated control transformations for relaxing strict constrains in conventional model-based control methodologies. The effectiveness of the proposed control schemes for the maglev transportation system is verified by numerical simulations, and the superiority of the AFNNC scheme is indicated in comparison with the SMC and ASMC strategies.
Space Launch System Implementation of Adaptive Augmenting Control
NASA Technical Reports Server (NTRS)
VanZwieten, Tannen S.; Wall, John H.; Orr, Jeb S.
2014-01-01
Given the complex structural dynamics, challenging ascent performance requirements, and rigorous flight certification constraints owing to its manned capability, the NASA Space Launch System (SLS) launch vehicle requires a proven thrust vector control algorithm design with highly optimized parameters to robustly demonstrate stable and high performance flight. On its development path to preliminary design review (PDR), the stability of the SLS flight control system has been challenged by significant vehicle flexibility, aerodynamics, and sloshing propellant dynamics. While the design has been able to meet all robust stability criteria, it has done so with little excess margin. Through significant development work, an adaptive augmenting control (AAC) algorithm previously presented by Orr and VanZwieten, has been shown to extend the envelope of failures and flight anomalies for which the SLS control system can accommodate while maintaining a direct link to flight control stability criteria (e.g. gain & phase margin). In this paper, the work performed to mature the AAC algorithm as a baseline component of the SLS flight control system is presented. The progress to date has brought the algorithm design to the PDR level of maturity. The algorithm has been extended to augment the SLS digital 3-axis autopilot, including existing load-relief elements, and necessary steps for integration with the production flight software prototype have been implemented. Several updates to the adaptive algorithm to increase its performance, decrease its sensitivity to expected external commands, and safeguard against limitations in the digital implementation are discussed with illustrating results. Monte Carlo simulations and selected stressing case results are shown to demonstrate the algorithm's ability to increase the robustness of the integrated SLS flight control system.
Dynamic granularity of imaging systems
Geissel, Matthias; Smith, Ian C.; Shores, Jonathon E.; Porter, John L.
2015-11-04
Imaging systems that include a specific source, imaging concept, geometry, and detector have unique properties such as signal-to-noise ratio, dynamic range, spatial resolution, distortions, and contrast. Some of these properties are inherently connected, particularly dynamic range and spatial resolution. It must be emphasized that spatial resolution is not a single number but must be seen in the context of dynamic range and consequently is better described by a function or distribution. We introduce the “dynamic granularity” G_{dyn} as a standardized, objective relation between a detector’s spatial resolution (granularity) and dynamic range for complex imaging systems in a given environment rather than the widely found characterization of detectors such as cameras or films by themselves. We found that this relation can partly be explained through consideration of the signal’s photon statistics, background noise, and detector sensitivity, but a comprehensive description including some unpredictable data such as dust, damages, or an unknown spectral distribution will ultimately have to be based on measurements. Measured dynamic granularities can be objectively used to assess the limits of an imaging system’s performance including all contributing noise sources and to qualify the influence of alternative components within an imaging system. Our article explains the construction criteria to formulate a dynamic granularity and compares measured dynamic granularities for different detectors used in the X-ray backlighting scheme employed at Sandia’s Z-Backlighter facility.
Dynamic granularity of imaging systems
Geissel, Matthias; Smith, Ian C.; Shores, Jonathon E.; ...
2015-11-04
Imaging systems that include a specific source, imaging concept, geometry, and detector have unique properties such as signal-to-noise ratio, dynamic range, spatial resolution, distortions, and contrast. Some of these properties are inherently connected, particularly dynamic range and spatial resolution. It must be emphasized that spatial resolution is not a single number but must be seen in the context of dynamic range and consequently is better described by a function or distribution. We introduce the “dynamic granularity” Gdyn as a standardized, objective relation between a detector’s spatial resolution (granularity) and dynamic range for complex imaging systems in a given environment rathermore » than the widely found characterization of detectors such as cameras or films by themselves. We found that this relation can partly be explained through consideration of the signal’s photon statistics, background noise, and detector sensitivity, but a comprehensive description including some unpredictable data such as dust, damages, or an unknown spectral distribution will ultimately have to be based on measurements. Measured dynamic granularities can be objectively used to assess the limits of an imaging system’s performance including all contributing noise sources and to qualify the influence of alternative components within an imaging system. Our article explains the construction criteria to formulate a dynamic granularity and compares measured dynamic granularities for different detectors used in the X-ray backlighting scheme employed at Sandia’s Z-Backlighter facility.« less
Adaptive Systems in Education: A Review and Conceptual Unification
ERIC Educational Resources Information Center
Wilson, Chunyu; Scott, Bernard
2017-01-01
Purpose: The purpose of this paper is to review the use of adaptive systems in education. It is intended to be a useful introduction for the non-specialist reader. Design/methodology/approach: A distinction is made between intelligent tutoring systems (ITSs) and adaptive hypermedia systems (AHSs). The two kinds of system are defined, compared and…
ERIC Educational Resources Information Center
Wu, Huey-Min; Kuo, Bor-Chen; Wang, Su-Chen
2017-01-01
In this study, a computerized dynamic assessment test with both immediately individualized feedback and adaptively property was applied to Mathematics learning in primary school. For evaluating the effectiveness of the computerized dynamic adaptive test, the performances of three types of remedial instructions were compared by a pre-test/post-test…
Abrams, Peter A; Ruokolainen, Lasse
2011-05-21
This article uses simple models to explore the impact of adaptive movement by consumers on the population dynamics of a consumer-resource metacommunity consisting of two identical patches. Consumer-resource interactions within a patch are described by the Rosenzweig-MacArthur predator-prey model, and these dynamics are assumed to be cyclic in the absence of movement. The per capita movement rate from one patch to the other is an increasing function of the difference between the per capita birth minus death rate in the destination patch and that in the currently occupied patch. Several variations on this model are considered. Results show that adaptive movement frequently creates anti-phase cycles in the two patches; these suppress the predator-prey cycle and lead to low temporal variation of the total population sizes of both species. Paradoxically, even when movement is very sensitive to the fitness difference between patches, perfect synchrony of patches is often much less likely than in comparable systems with random movement. Under these circumstances adaptive movement of consumers often generates differences in the average properties of the two patches. In addition, mean global densities and responses to global perturbations often differ greatly from similar systems with no movement or random movement.
Direct adaptive control of partially known nonlinear systems.
McLain, R B; Henson, M A; Pottmann, M
1999-01-01
A direct adaptive control strategy for a class of single-input/single-output nonlinear systems is presented. The major advantage of the proposed method is that a detailed dynamic nonlinear model is not required for controller design. The only information required about the plant is measurements of the state variables, the relative degree, and the sign of a Lie derivative which appears in the associated input-output linearizing control law. Unknown controller functions are approximated using locally supported radial basis functions that are introduced only in regions of the state space where the closed-loop system actually evolves. Lyapunov stability analysis is used to derive parameter update laws which ensure (under certain assumptions) the state vector remains bounded and the plant output asymptotically tracks the output of a linear reference model. The technique is successfully applied to a nonlinear biochemical reactor model.
Dynamic data filtering system and method
Bickford, Randall L; Palnitkar, Rahul M
2014-04-29
A computer-implemented dynamic data filtering system and method for selectively choosing operating data of a monitored asset that modifies or expands a learned scope of an empirical model of normal operation of the monitored asset while simultaneously rejecting operating data of the monitored asset that is indicative of excessive degradation or impending failure of the monitored asset, and utilizing the selectively chosen data for adaptively recalibrating the empirical model to more accurately monitor asset aging changes or operating condition changes of the monitored asset.
Systoles in discrete dynamical systems
NASA Astrophysics Data System (ADS)
Fernandes, Sara; Grácio, Clara; Ramos, Carlos Correia
2013-01-01
The fruitful relationship between Geometry and Graph Theory has been explored by several authors benefiting also the Theory of discrete dynamical systems seen as Markov chains in graphs. In this work we will further explore the relation between these areas, giving a geometrical interpretation of notions from dynamical systems. In particular, we relate the topological entropy with the systole, here defined in the context of discrete dynamical systems. We show that for continuous interval maps the systole is trivial; however, for the class of interval maps with one discontinuity point the systole acquires relevance from the point of view of the dynamical behavior. Moreover, we define the geodesic length spectrum associated to a Markov interval map and we compute the referred spectrum in several examples.
NASA Astrophysics Data System (ADS)
Murray, Carl D.; Dermott, Stanley F.
2000-02-01
Preface; 1. Structure of the solar system; 2. The two-body problem; 3. The restricted three-body problem; 4. Tides, rotation and shape; 5. Spin-orbit coupling; 6. The disturbing function; 7. Secular perturbations; 8. Resonant perturbations; 9. Chaos and long-term evolution; 10. Planetary rings; Appendix A. Solar system data; Appendix B. Expansion of the disturbing function; Index.
Adaptive optimal spectral range for dynamically changing scene
NASA Astrophysics Data System (ADS)
Pinsky, Ephi; Siman-tov, Avihay; Peles, David
2012-06-01
A novel multispectral video system that continuously optimizes both its spectral range channels and the exposure time of each channel autonomously, under dynamic scenes, varying from short range-clear scene to long range-poor visibility, is currently being developed. Transparency and contrast of high scattering medium of channels with spectral ranges in the near infrared is superior to the visible channels, particularly to the blue range. Longer wavelength spectral ranges that induce higher contrast are therefore favored. Images of 3 spectral channels are fused and displayed for (pseudo) color visualization, as an integrated high contrast video stream. In addition to the dynamic optimization of the spectral channels, optimal real-time exposure time is adjusted simultaneously and autonomously for each channel. A criterion of maximum average signal, derived dynamically from previous frames of the video stream is used (Patent Application - International Publication Number: WO2009/093110 A2, 30.07.2009). This configuration enables dynamic compatibility with the optimal exposure time of a dynamically changing scene. It also maximizes the signal to noise ratio and compensates each channel for the specified value of daylight reflections and sensors response for each spectral range. A possible implementation is a color video camera based on 4 synchronized, highly responsive, CCD imaging detectors, attached to a 4CCD dichroic prism and combined with a common, color corrected, lens. Principal Components Analysis (PCA) technique is then applied for real time "dimensional collapse" in color space, in order to select and fuse, for clear color visualization, the 3 most significant principal channels out of at least 4 characterized by high contrast and rich details in the image data.
Function-valued adaptive dynamics and optimal control theory.
Parvinen, Kalle; Heino, Mikko; Dieckmann, Ulf
2013-09-01
In this article we further develop the theory of adaptive dynamics of function-valued traits. Previous work has concentrated on models for which invasion fitness can be written as an integral in which the integrand for each argument value is a function of the strategy value at that argument value only. For this type of models of direct effect, singular strategies can be found using the calculus of variations, with singular strategies needing to satisfy Euler's equation with environmental feedback. In a broader, more mechanistically oriented class of models, the function-valued strategy affects a process described by differential equations, and fitness can be expressed as an integral in which the integrand for each argument value depends both on the strategy and on process variables at that argument value. In general, the calculus of variations cannot help analyzing this much broader class of models. Here we explain how to find singular strategies in this class of process-mediated models using optimal control theory. In particular, we show that singular strategies need to satisfy Pontryagin's maximum principle with environmental feedback. We demonstrate the utility of this approach by studying the evolution of strategies determining seasonal flowering schedules.
Plant toxicity, adaptive herbivory, and plant community dynamics
Feng, Z.; Liu, R.; DeAngelis, D.L.; Bryant, J.P.; Kielland, K.; Stuart, Chapin F.; Swihart, R.K.
2009-01-01
We model effects of interspecific plant competition, herbivory, and a plant's toxic defenses against herbivores on vegetation dynamics. The model predicts that, when a generalist herbivore feeds in the absence of plant toxins, adaptive foraging generally increases the probability of coexistence of plant species populations, because the herbivore switches more of its effort to whichever plant species is more common and accessible. In contrast, toxin-determined selective herbivory can drive plant succession toward dominance by the more toxic species, as previously documented in boreal forests and prairies. When the toxin concentrations in different plant species are similar, but species have different toxins with nonadditive effects, herbivores tend to diversify foraging efforts to avoid high intakes of any one toxin. This diversification leads the herbivore to focus more feeding on the less common plant species. Thus, uncommon plants may experience depensatory mortality from herbivory, reducing local species diversity. The depensatory effect of herbivory may inhibit the invasion of other plant species that are more palatable or have different toxins. These predictions were tested and confirmed in the Alaskan boreal forest. ?? 2009 Springer Science+Business Media, LLC.
Dynamics of adaptive immunity against phage in bacterial populations
NASA Astrophysics Data System (ADS)
Bradde, Serena; Vucelja, Marija; Tesileanu, Tiberiu; Balasubramanian, Vijay
The CRISPR (clustered regularly interspaced short palindromic repeats) mechanism allows bacteria to adaptively defend against phages by acquiring short genomic sequences (spacers) that target specific sequences in the viral genome. We propose a population dynamical model where immunity can be both acquired and lost. The model predicts regimes where bacterial and phage populations can co-exist, others where the populations oscillate, and still others where one population is driven to extinction. Our model considers two key parameters: (1) ease of acquisition and (2) spacer effectiveness in conferring immunity. Analytical calculations and numerical simulations show that if spacers differ mainly in ease of acquisition, or if the probability of acquiring them is sufficiently high, bacteria develop a diverse population of spacers. On the other hand, if spacers differ mainly in their effectiveness, their final distribution will be highly peaked, akin to a ``winner-take-all'' scenario, leading to a specialized spacer distribution. Bacteria can interpolate between these limiting behaviors by actively tuning their overall acquisition rate.
Mathematical model for adaptive control system of ASEA robot at Kennedy Space Center
NASA Technical Reports Server (NTRS)
Zia, Omar
1989-01-01
The dynamic properties and the mathematical model for the adaptive control of the robotic system presently under investigation at Robotic Application and Development Laboratory at Kennedy Space Center are discussed. NASA is currently investigating the use of robotic manipulators for mating and demating of fuel lines to the Space Shuttle Vehicle prior to launch. The Robotic system used as a testbed for this purpose is an ASEA IRB-90 industrial robot with adaptive control capabilities. The system was tested and it's performance with respect to stability was improved by using an analogue force controller. The objective of this research project is to determine the mathematical model of the system operating under force feedback control with varying dynamic internal perturbation in order to provide continuous stable operation under variable load conditions. A series of lumped parameter models are developed. The models include some effects of robot structural dynamics, sensor compliance, and workpiece dynamics.
NASA Technical Reports Server (NTRS)
Wisdom, Jack
1987-01-01
The rotational dynamics of irregularly shaped satellites and the origin of Kirkwood Gaps are discussed. The chaotic tumbling of Hyperion and the anomalously low eccentricity of Deimos are examined. The Digital Orrery is used to explore the phase space of the ellipic restricted three body problem near the principal commensurabilities (2/1, 5/2, 3/1, and 3/2). The results for the 3/1 commensurability are in close agreement with those found earlier with the algebraic mapping method. Large chaotic zones are associated with the 3/1, 2/1 and 5/2 resonances, where there are gaps in the distribution of asteroids. The region near the 3/2 resonance, where the Hilda group of asteroids is located, is largely devoid of chaotic behavior. Thus, there is a qualitative agreement between the character of the motion and the distribution of asteroids.
Workload Model Based Dynamic Adaptation of Social Internet of Vehicles.
Alam, Kazi Masudul; Saini, Mukesh; El Saddik, Abdulmotaleb
2015-09-15
Social Internet of Things (SIoT) has gained much interest among different research groups in recent times. As a key member of a smart city, the vehicular domain of SIoT (SIoV) is also undergoing steep development. In the SIoV, vehicles work as sensor-hub to capture surrounding information using the in-vehicle and Smartphone sensors and later publish them for the consumers. A cloud centric cyber-physical system better describes the SIoV model where physical sensing-actuation process affects the cloud based service sharing or computation in a feedback loop or vice versa. The cyber based social relationship abstraction enables distributed, easily navigable and scalable peer-to-peer communication among the SIoV subsystems. These cyber-physical interactions involve a huge amount of data and it is difficult to form a real instance of the system to test the feasibility of SIoV applications. In this paper, we propose an analytical model to measure the workloads of various subsystems involved in the SIoV process. We present the basic model which is further extended to incorporate complex scenarios. We provide extensive simulation results for different parameter settings of the SIoV system. The findings of the analyses are further used to design example adaptation strategies for the SIoV subsystems which would foster deployment of intelligent transport systems.
Workload Model Based Dynamic Adaptation of Social Internet of Vehicles
Alam, Kazi Masudul; Saini, Mukesh; El Saddik, Abdulmotaleb
2015-01-01
Social Internet of Things (SIoT) has gained much interest among different research groups in recent times. As a key member of a smart city, the vehicular domain of SIoT (SIoV) is also undergoing steep development. In the SIoV, vehicles work as sensor-hub to capture surrounding information using the in-vehicle and Smartphone sensors and later publish them for the consumers. A cloud centric cyber-physical system better describes the SIoV model where physical sensing-actuation process affects the cloud based service sharing or computation in a feedback loop or vice versa. The cyber based social relationship abstraction enables distributed, easily navigable and scalable peer-to-peer communication among the SIoV subsystems. These cyber-physical interactions involve a huge amount of data and it is difficult to form a real instance of the system to test the feasibility of SIoV applications. In this paper, we propose an analytical model to measure the workloads of various subsystems involved in the SIoV process. We present the basic model which is further extended to incorporate complex scenarios. We provide extensive simulation results for different parameter settings of the SIoV system. The findings of the analyses are further used to design example adaptation strategies for the SIoV subsystems which would foster deployment of intelligent transport systems. PMID:26389905
Sensor Web Dynamic Measurement Techniques and Adaptive Observing Strategies
NASA Technical Reports Server (NTRS)
Talabac, Stephen J.
2004-01-01
Sensor Web observing systems may have the potential to significantly improve our ability to monitor, understand, and predict the evolution of rapidly evolving, transient, or variable environmental features and events. This improvement will come about by integrating novel data collection techniques, new or improved instruments, emerging communications technologies and protocols, sensor mark-up languages, and interoperable planning and scheduling systems. In contrast to today's observing systems, "event-driven" sensor webs will synthesize real- or near-real time measurements and information from other platforms and then react by reconfiguring the platforms and instruments to invoke new measurement modes and adaptive observation strategies. Similarly, "model-driven" sensor webs will utilize environmental prediction models to initiate targeted sensor measurements or to use a new observing strategy. The sensor web concept contrasts with today's data collection techniques and observing system operations concepts where independent measurements are made by remote sensing and in situ platforms that do not share, and therefore cannot act upon, potentially useful complementary sensor measurement data and platform state information. This presentation describes NASA's view of event-driven and model-driven Sensor Webs and highlights several research and development activities at the Goddard Space Flight Center.
ERIC Educational Resources Information Center
Storey, Brian; Butler, Joy
2013-01-01
Background: This article draws on the literature relating to game-centred approaches (GCAs), such as Teaching Games for Understanding, and dynamical systems views of motor learning to demonstrate a convergence of ideas around games as complex adaptive learning systems. This convergence is organized under the title "complexity thinking"…
Experience with automatic, dynamic load balancing and adaptive finite element computation
Wheat, S.R.; Devine, K.D.; Maccabe, A.B.
1993-10-01
Distributed memory, Massively Parallel (MP), MIMD technology has enabled the development of applications requiring computational resources previously unobtainable. Structural mechanics and fluid dynamics applications, for example, are often solved by finite element methods (FEMs) requiring, millions of degrees of freedom to accurately simulate physical phenomenon. Adaptive methods, which automatically refine or coarsen meshes and vary the order of accuracy of the numerical solution, offer greater robustness and computational efficiency than traditional FEMs by reducing the amount of computation required away from physical structures such as shock waves and boundary layers. On MP computers, FEMs frequently result in distributed processor load imbalances. To overcome load imbalance, many MP FEMs use static load balancing as a preprocessor to the finite element calculation. Adaptive methods complicate the load imbalance problem since the work per element is not uniform across the solution domain and changes as the computation proceeds. Therefore, dynamic load balancing is required to maintain global load balance. We describe a dynamic, fine-grained, element-based data migration system that maintains global load balance and is effective in the presence of changing work loads. Global load balance is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method utilizes an automatic element management system library to which a programmer integrates the application`s computational description. The library`s flexibility supports a large class of finite element and finite difference based applications.
NASA Astrophysics Data System (ADS)
Han, Xinli; Dong, Bing; Li, Yan; Wang, Rui; Hu, Bin
2016-10-01
For missiles and airplanes with high Mach number, traditional spherical or flat window can cause a lot of air drag. Conformal window that follow the general contour of surrounding surface can substantially decrease air drag and extend operational range. However, the local shape of conformal window changes across the Field Of Regard (FOR), leading to time-varying FOR-dependent wavefront aberration and degraded image. So the correction of dynamic aberration is necessary. In this paper, model-based Wavefront Sensorless Adaptive Optics (WSAO) algorithm is investigated both by simulation and experiment for central-obscured pupil. The algorithm is proved to be effective and the correction accuracy of using DM modes is higher than Lukosz modes. For dynamic aberration in our system, the SR can be better than 0.8 when the change of looking angle is less than 2° after t seconds which is the time delay of the control system.
Study on adaptive PID algorithm of hydraulic turbine governing system based on fuzzy neural network
NASA Astrophysics Data System (ADS)
Tang, Liangbao; Bao, Jumin
2006-11-01
The conventional hydraulic turbine governing system can't automatically modulate PID parameters according to the dynamic process of the system, the generator speed is unstable and the mains frequency fluctuation results in. To solve the above problem, the fuzzy neural network (FNN) and the adaptive control are combined to design an adaptive PID algorithm based on the fuzzy neural network which can effectively control the hydraulic turbine governing system. Finally, the improved mathematic model is simulated. The simulation results are compared with the conventional hydraulic turbine's. Thus the validity and superiority of the fuzzy neural network PID algorithm have been proved. The simulation results show that the algorithm not only retains the functions of fuzzy control, but also provides the ability to approach to the non-linear system. Also the dynamic process of the system can be reflected more precisely and the on-line adaptive control is implemented. The algorithm is superior to other methods in response and control effect.
Self-Supervised Dynamical Systems
NASA Technical Reports Server (NTRS)
Zak, Michail
2003-01-01
Some progress has been made in a continuing effort to develop mathematical models of the behaviors of multi-agent systems known in biology, economics, and sociology (e.g., systems ranging from single or a few biomolecules to many interacting higher organisms). Living systems can be characterized by nonlinear evolution of probability distributions over different possible choices of the next steps in their motions. One of the main challenges in mathematical modeling of living systems is to distinguish between random walks of purely physical origin (for instance, Brownian motions) and those of biological origin. Following a line of reasoning from prior research, it has been assumed, in the present development, that a biological random walk can be represented by a nonlinear mathematical model that represents coupled mental and motor dynamics incorporating the psychological concept of reflection or self-image. The nonlinear dynamics impart the lifelike ability to behave in ways and to exhibit patterns that depart from thermodynamic equilibrium. Reflection or self-image has traditionally been recognized as a basic element of intelligence. The nonlinear mathematical models of the present development are denoted self-supervised dynamical systems. They include (1) equations of classical dynamics, including random components caused by uncertainties in initial conditions and by Langevin forces, coupled with (2) the corresponding Liouville or Fokker-Planck equations that describe the evolutions of probability densities that represent the uncertainties. The coupling is effected by fictitious information-based forces, denoted supervising forces, composed of probability densities and functionals thereof. The equations of classical mechanics represent motor dynamics that is, dynamics in the traditional sense, signifying Newton s equations of motion. The evolution of the probability densities represents mental dynamics or self-image. Then the interaction between the physical and
Indoor human thermal adaptation: dynamic processes and weighting factors.
Luo, M; Cao, B; Ouyang, Q; Zhu, Y
2017-03-01
In this study, we explore the correlations between indoor climate change and human thermal adaptation, especially with regard to the timescale and weighting factors of physiological adaptation. A comparative experiment was conducted in China where wintertime indoor climate in the southern region (devoid of space heating) is much colder than in the northern region (with pervasive district heating). Four subject groups with different indoor thermal experiences participated in this climate chamber experiment. The results indicate that previous indoor thermal exposure is an important contributor to occupants' physiological adaptation. More specifically, subjects acclimated to neutral-warm indoors tended to have stronger physiological responses and felt more uncomfortable in moderate cold exposures than those adapted to the cold. As for the driving force of thermal adaptation, physiological acclimation is an important aspect among all the supposed adaptive layers. However, the physiological adaptation speed lags behind changes in the overall subjective perception.
Implementation of an Adaptive Learning System Using a Bayesian Network
ERIC Educational Resources Information Center
Yasuda, Keiji; Kawashima, Hiroyuki; Hata, Yoko; Kimura, Hiroaki
2015-01-01
An adaptive learning system is proposed that incorporates a Bayesian network to efficiently gauge learners' understanding at the course-unit level. Also, learners receive content that is adapted to their measured level of understanding. The system works on an iPad via the Edmodo platform. A field experiment using the system in an elementary school…
Climate change adaptation for the US National Wildlife Refuge System
Griffith, Brad; Scott, J. Michael; Adamcik, Robert S.; Ashe, Daniel; Czech, Brian; Fischman, Robert; Gonzalez, Patrick; Lawler, Joshua J.; McGuire, A. David; Pidgorna, Anna
2009-01-01
Since its establishment in 1903, the National Wildlife Refuge System (NWRS) has grown to 635 units and 37 Wetland Management Districts in the United States and its territories. These units provide the seasonal habitats necessary for migratory waterfowl and other species to complete their annual life cycles. Habitat conversion and fragmentation, invasive species, pollution, and competition for water have stressed refuges for decades, but the interaction of climate change with these stressors presents the most recent, pervasive, and complex conservation challenge to the NWRS. Geographic isolation and small unit size compound the challenges of climate change, but a combined emphasis on species that refuges were established to conserve and on maintaining biological integrity, diversity, and environmental health provides the NWRS with substantial latitude to respond. Individual symptoms of climate change can be addressed at the refuge level, but the strategic response requires system-wide planning. A dynamic vision of the NWRS in a changing climate, an explicit national strategic plan to implement that vision, and an assessment of representation, redundancy, size, and total number of units in relation to conservation targets are the first steps toward adaptation. This adaptation must begin immediately and be built on more closely integrated research and management. Rigorous projections of possible futures are required to facilitate adaptation to change. Furthermore, the effective conservation footprint of the NWRS must be increased through land acquisition, creative partnerships, and educational programs in order for the NWRS to meet its legal mandate to maintain the biological integrity, diversity, and environmental health of the system and the species and ecosystems that it supports.
Climate change adaptation for the US National Wildlife Refuge System.
Griffith, Brad; Scott, J Michael; Adamcik, Robert; Ashe, Daniel; Czech, Brian; Fischman, Robert; Gonzalez, Patrick; Lawler, Joshua; McGuire, A David; Pidgorna, Anna
2009-12-01
Since its establishment in 1903, the National Wildlife Refuge System (NWRS) has grown to 635 units and 37 Wetland Management Districts in the United States and its territories. These units provide the seasonal habitats necessary for migratory waterfowl and other species to complete their annual life cycles. Habitat conversion and fragmentation, invasive species, pollution, and competition for water have stressed refuges for decades, but the interaction of climate change with these stressors presents the most recent, pervasive, and complex conservation challenge to the NWRS. Geographic isolation and small unit size compound the challenges of climate change, but a combined emphasis on species that refuges were established to conserve and on maintaining biological integrity, diversity, and environmental health provides the NWRS with substantial latitude to respond. Individual symptoms of climate change can be addressed at the refuge level, but the strategic response requires system-wide planning. A dynamic vision of the NWRS in a changing climate, an explicit national strategic plan to implement that vision, and an assessment of representation, redundancy, size, and total number of units in relation to conservation targets are the first steps toward adaptation. This adaptation must begin immediately and be built on more closely integrated research and management. Rigorous projections of possible futures are required to facilitate adaptation to change. Furthermore, the effective conservation footprint of the NWRS must be increased through land acquisition, creative partnerships, and educational programs in order for the NWRS to meet its legal mandate to maintain the biological integrity, diversity, and environmental health of the system and the species and ecosystems that it supports.
Chaotic transport in dynamical systems
NASA Astrophysics Data System (ADS)
Wiggins, Stephen
The subject of chaotic transport in dynamical systems is examined from the viewpoint of problems of phase space transport. The examples considered include uniform elliptical vortices in external linear time-dependent velocity fields; capture and passage through resonance in celestial mechanics; bubble dynamics in straining flows; and photodissociation of molecules. The discussion covers transport in two-dimensional maps; convective mixing and transport problems in fluid mechanics; transport in quasi-periodically forced systems; Markov models; and transport in k-degree-of-freedom Hamiltonian systems.
Dynamically reconfigurable photovoltaic system
Okandan, Murat; Nielson, Gregory N.
2016-12-27
A PV system composed of sub-arrays, each having a group of PV cells that are electrically connected to each other. A power management circuit for each sub-array has a communications interface and serves to connect or disconnect the sub-array to a programmable power grid. The power grid has bus rows and bus columns. A bus management circuit is positioned at a respective junction of a bus column and a bus row and is programmable through its communication interface to connect or disconnect a power path in the grid. As a result, selected sub-arrays are connected by selected power paths to be in parallel so as to produce a low system voltage, and, alternately in series so as to produce a high system voltage that is greater than the low voltage by at least a factor of ten.
Dynamically reconfigurable photovoltaic system
Okandan, Murat; Nielson, Gregory N.
2016-05-31
A PV system composed of sub-arrays, each having a group of PV cells that are electrically connected to each other. A power management circuit for each sub-array has a communications interface and serves to connect or disconnect the sub-array to a programmable power grid. The power grid has bus rows and bus columns. A bus management circuit is positioned at a respective junction of a bus column and a bus row and is programmable through its communication interface to connect or disconnect a power path in the grid. As a result, selected sub-arrays are connected by selected power paths to be in parallel so as to produce a low system voltage, and, alternately in series so as to produce a high system voltage that is greater than the low voltage by at least a factor of ten.
Constraint elimination in dynamical systems
NASA Technical Reports Server (NTRS)
Singh, R. P.; Likins, P. W.
1989-01-01
Large space structures (LSSs) and other dynamical systems of current interest are often extremely complex assemblies of rigid and flexible bodies subjected to kinematical constraints. A formulation is presented for the governing equations of constrained multibody systems via the application of singular value decomposition (SVD). The resulting equations of motion are shown to be of minimum dimension.
Isoplanatism in a multiconjugate adaptive optics system.
Tokovinin, A; Le Louarn, M; Sarazin, M
2000-10-01
Turbulence correction in a large field of view by use of an adaptive optics imaging system with several deformable mirrors (DM's) conjugated to various heights is considered. The residual phase variance is computed for an optimized linear algorithm in which a correction of each turbulent layer is achieved by applying a combination of suitably smoothed and scaled input phase screens to all DM's. Finite turbulence outer scale and finite spatial resolution of the DM's are taken into account. A general expression for the isoplanatic angle thetaM of a system with M mirrors is derived in the limiting case of infinitely large apertures and Kolmogorov turbulence. Like Fried's isoplanatic angle theta0,thetaM is a function only of the turbulence vertical profile, is scalable with wavelength, and is independent of the telescope diameter. Use of angle thetaM permits the gain in the field of view due to the increased number of DM's to be quantified and their optimal conjugate heights to be found. Calculations with real turbulence profiles show that with three DM's a gain of 7-10x is possible, giving the typical and best isoplanatic field-of-view radii of 16 and 30 arcseconds, respectively, at lambda = 0.5 microm. It is shown that in the actual systems the isoplanatic field will be somewhat larger than thetaM owing to the combined effects of finite aperture diameter, finite outer scale, and optimized wave-front spatial filtering. However, this additional gain is not dramatic; it is less than 1.5x for large-aperture telescopes.
Lewis, F L; Vamvoudakis, Kyriakos G
2011-02-01
Approximate dynamic programming (ADP) is a class of reinforcement learning methods that have shown their importance in a variety of applications, including feedback control of dynamical systems. ADP generally requires full information about the system internal states, which is usually not available in practical situations. In this paper, we show how to implement ADP methods using only measured input/output data from the system. Linear dynamical systems with deterministic behavior are considered herein, which are systems of great interest in the control system community. In control system theory, these types of methods are referred to as output feedback (OPFB). The stochastic equivalent of the systems dealt with in this paper is a class of partially observable Markov decision processes. We develop both policy iteration and value iteration algorithms that converge to an optimal controller that requires only OPFB. It is shown that, similar to Q -learning, the new methods have the important advantage that knowledge of the system dynamics is not needed for the implementation of these learning algorithms or for the OPFB control. Only the order of the system, as well as an upper bound on its "observability index," must be known. The learned OPFB controller is in the form of a polynomial autoregressive moving-average controller that has equivalent performance with the optimal state variable feedback gain.
Control uncertain continuous-time chaotic dynamical system.
Qi, Dong-Lian; Zhao, Guang-Zhou
2003-01-01
The new chaos control method presented in this paper is useful for taking advantage of chaos. Based on sliding mode control theory, this paper provides a switching manifold controlling strategy of chaotic system, and also gives a kind of adaptive parameters estimated method to estimate the unknown systems' parameters by which chaotic dynamical system can be synchronized. Taking the Lorenz system as example, and with the help of this controlling strategy, we can synchronize chaotic systems with unknown parameters and different initial conditions.
Managing Complex Dynamical Systems
ERIC Educational Resources Information Center
Cox, John C.; Webster, Robert L.; Curry, Jeanie A.; Hammond, Kevin L.
2011-01-01
Management commonly engages in a variety of research designed to provide insight into the motivation and relationships of individuals, departments, organizations, etc. This paper demonstrates how the application of concepts associated with the analysis of complex systems applied to such data sets can yield enhanced insights for managerial action.
NASA Technical Reports Server (NTRS)
Feng, Hui-Yu; VanderWijngaart, Rob; Biswas, Rupak; Biegel, Bryan (Technical Monitor)
2001-01-01
We describe the design of a new method for the measurement of the performance of modern computer systems when solving scientific problems featuring irregular, dynamic memory accesses. The method involves the solution of a stylized heat transfer problem on an unstructured, adaptive grid. A Spectral Element Method (SEM) with an adaptive, nonconforming mesh is selected to discretize the transport equation. The relatively high order of the SEM lowers the fraction of wall clock time spent on inter-processor communication, which eases the load balancing task and allows us to concentrate on the memory accesses. The benchmark is designed to be three-dimensional. Parallelization and load balance issues of a reference implementation will be described in detail in future reports.
Air-Breathing Hypersonic Vehicle Tracking Control Based on Adaptive Dynamic Programming.
Mu, Chaoxu; Ni, Zhen; Sun, Changyin; He, Haibo
2017-03-01
In this paper, we propose a data-driven supplementary control approach with adaptive learning capability for air-breathing hypersonic vehicle tracking control based on action-dependent heuristic dynamic programming (ADHDP). The control action is generated by the combination of sliding mode control (SMC) and the ADHDP controller to track the desired velocity and the desired altitude. In particular, the ADHDP controller observes the differences between the actual velocity/altitude and the desired velocity/altitude, and then provides a supplementary control action accordingly. The ADHDP controller does not rely on the accurate mathematical model function and is data driven. Meanwhile, it is capable to adjust its parameters online over time under various working conditions, which is very suitable for hypersonic vehicle system with parameter uncertainties and disturbances. We verify the adaptive supplementary control approach versus the traditional SMC in the cruising flight, and provide three simulation studies to illustrate the improved performance with the proposed approach.
NASA Astrophysics Data System (ADS)
Sudheer, K. Sebastian; Sabir, M.
2011-02-01
In this Letter we consider modified function projective synchronization of unidirectionally coupled multiple time-delayed Rossler chaotic systems using adaptive controls. Recently, delay differential equations have attracted much attention in the field of nonlinear dynamics. The high complexity of the multiple time-delayed systems can provide a new architecture for enhancing message security in chaos based encryption systems. Adaptive control can be used for synchronization when the parameters of the system are unknown. Based on Lyapunov stability theory, the adaptive control law and the parameter update law are derived to make the state of two chaotic systems are function projective synchronized. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive controllers.
Network and adaptive system of systems modeling and analysis.
Lawton, Craig R.; Campbell, James E. Dr.; Anderson, Dennis James; Eddy, John P.
2007-05-01
This report documents the results of an LDRD program entitled ''Network and Adaptive System of Systems Modeling and Analysis'' that was conducted during FY 2005 and FY 2006. The purpose of this study was to determine and implement ways to incorporate network communications modeling into existing System of Systems (SoS) modeling capabilities. Current SoS modeling, particularly for the Future Combat Systems (FCS) program, is conducted under the assumption that communication between the various systems is always possible and occurs instantaneously. A more realistic representation of these communications allows for better, more accurate simulation results. The current approach to meeting this objective has been to use existing capabilities to model network hardware reliability and adding capabilities to use that information to model the impact on the sustainment supply chain and operational availability.
Valuation of design adaptability in aerospace systems
NASA Astrophysics Data System (ADS)
Fernandez Martin, Ismael
As more information is brought into early stages of the design, more pressure is put on engineers to produce a reliable, high quality, and financially sustainable product. Unfortunately, requirements established at the beginning of a new project by customers, and the environment that surrounds them, continue to change in some unpredictable ways. The risk of designing a system that may become obsolete during early stages of production is currently tackled by the use of robust design simulation, a method that allows to simultaneously explore a plethora of design alternatives and requirements with the intention of accounting for uncertain factors in the future. Whereas this design technique has proven to be quite an improvement in design methods, under certain conditions, it fails to account for the change of uncertainty over time and the intrinsic value embedded in the system when certain design features are activated. This thesis introduces the concepts of adaptability and real options to manage risk foreseen in the face of uncertainty at early design stages. The method described herein allows decision-makers to foresee the financial impact of their decisions at the design level, as well as the final exposure to risk. In this thesis, cash flow models, traditionally used to obtain the forecast of a project's value over the years, were replaced with surrogate models that are capable of showing fluctuations on value every few days. This allowed a better implementation of real options valuation, optimization, and strategy selection. Through the option analysis model, an optimization exercise allows the user to obtain the best implementation strategy in the face of uncertainty as well as the overall value of the design feature. Here implementation strategy refers to the decision to include a new design feature in the system, after the design has been finalized, but before the end of its production life. The ability to do this in a cost efficient manner after the system
Investigation of the Multiple Method Adaptive Control (MMAC) method for flight control systems
NASA Technical Reports Server (NTRS)
Athans, M.; Baram, Y.; Castanon, D.; Dunn, K. P.; Green, C. S.; Lee, W. H.; Sandell, N. R., Jr.; Willsky, A. S.
1979-01-01
The stochastic adaptive control of the NASA F-8C digital-fly-by-wire aircraft using the multiple model adaptive control (MMAC) method is presented. The selection of the performance criteria for the lateral and the longitudinal dynamics, the design of the Kalman filters for different operating conditions, the identification algorithm associated with the MMAC method, the control system design, and simulation results obtained using the real time simulator of the F-8 aircraft at the NASA Langley Research Center are discussed.
NASA Astrophysics Data System (ADS)
Accardi, Luigi; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro
2016-07-01
Recently a novel quantum information formalism — quantum adaptive dynamics — was developed and applied to modelling of information processing by bio-systems including cognitive phenomena: from molecular biology (glucose-lactose metabolism for E.coli bacteria, epigenetic evolution) to cognition, psychology. From the foundational point of view quantum adaptive dynamics describes mutual adapting of the information states of two interacting systems (physical or biological) as well as adapting of co-observations performed by the systems. In this paper we apply this formalism to model unconscious inference: the process of transition from sensation to perception. The paper combines theory and experiment. Statistical data collected in an experimental study on recognition of a particular ambiguous figure, the Schröder stairs, support the viability of the quantum(-like) model of unconscious inference including modelling of biases generated by rotation-contexts. From the probabilistic point of view, we study (for concrete experimental data) the problem of contextuality of probability, its dependence on experimental contexts. Mathematically contextuality leads to non-Komogorovness: probability distributions generated by various rotation contexts cannot be treated in the Kolmogorovian framework. At the same time they can be embedded in a “big Kolmogorov space” as conditional probabilities. However, such a Kolmogorov space has too complex structure and the operational quantum formalism in the form of quantum adaptive dynamics simplifies the modelling essentially.
Cascaded Effects of Spatial Adaptation in the Early Visual System
Dhruv, Neel T.; Carandini, Matteo
2014-01-01
Summary Virtually all stages of the visual system exhibit adaptation: neurons adjust their responses based on the recent stimulus history. While some of these adjustments occur at specific stages, others may be inherited from earlier stages. How do adaptation effects cascade along the visual system? We measured spatially selective adaptation at two successive stages in the mouse visual system: visual thalamus (LGN) and primary visual cortex (V1). This form of adaptation affected both stages but in drastically different ways: in LGN it only changed response gain, while in V1 it also shifted spatial tuning away from the adaptor. These effects, however, are reconciled by a simple model whereby V1 neurons summate LGN inputs with a fixed, unadaptable weighting profile. These results indicate that adaptation effects cascade through the visual system, that this cascading can shape selectivity, and that the rules of integration from one stage to the next are not themselves adaptable. PMID:24507190
Cascaded effects of spatial adaptation in the early visual system.
Dhruv, Neel T; Carandini, Matteo
2014-02-05
Virtually all stages of the visual system exhibit adaptation: neurons adjust their responses based on the recent stimulus history. While some of these adjustments occur at specific stages, others may be inherited from earlier stages. How do adaptation effects cascade along the visual system? We measured spatially selective adaptation at two successive stages in the mouse visual system: visual thalamus (LGN) and primary visual cortex (V1). This form of adaptation affected both stages but in drastically different ways: in LGN it only changed response gain, while in V1 it also shifted spatial tuning away from the adaptor. These effects, however, are reconciled by a simple model whereby V1 neurons summate LGN inputs with a fixed, unadaptable weighting profile. These results indicate that adaptation effects cascade through the visual system, that this cascading can shape selectivity, and that the rules of integration from one stage to the next are not themselves adaptable.
NASA Astrophysics Data System (ADS)
Zhong, X.; Ichchou, M.; Gillot, F.; Saidi, A.
2010-04-01
The inherent uncertainties of vehicle suspension systems challenge not only the capability of ride comfort and handling performance, but also the reliability requirement. In this research, a dynamic-reliable multiple model adaptive (MMA) controller is developed to overcome the difficulty of suspension uncertainties while considering performance and reliability at the same time. The MMA system consists of a finite number of optimal sub-controllers and employs a continuous-time based Markov chain to guide the jumping among the sub-controllers. The failure mode considered is the bottoming and topping of suspension components. A limitation on the failure probability is imposed to penalize the performance of the sub-controllers and a gradient-based genetic algorithm yields their optimal feedback gains. Finally, the dynamic reliability of the MMA controller is approximated by using the integration of state covariances and a judging condition is induced to assert that the MMA system is dynamic-reliable. In numerical simulation, a long scheme with piecewise time-invariant parameters is employed to examine the performance and reliability under the uncertainties of sprung mass, road condition and driving velocity. It is shown that the dynamic-reliable MMA controller is able to trade a small amount of model performance for extra reliability.
Adaptive fusion of infrared and visible images in dynamic scene
NASA Astrophysics Data System (ADS)
Yang, Guang; Yin, Yafeng; Man, Hong; Desai, Sachi
2011-11-01
Multiple modalities sensor fusion has been widely employed in various surveillance and military applications. A variety of image fusion techniques including PCA, wavelet, curvelet and HSV has been proposed in recent years to improve human visual perception for object detection. One of the main challenges for visible and infrared image fusion is to automatically determine an optimal fusion strategy for different input scenes along with an acceptable computational cost. This paper, we propose a fast and adaptive feature selection based image fusion method to obtain high a contrast image from visible and infrared sensors for targets detection. At first, fuzzy c-means clustering is applied on the infrared image to highlight possible hotspot regions, which will be considered as potential targets' locations. After that, the region surrounding the target area is segmented as the background regions. Then image fusion is locally applied on the selected target and background regions by computing different linear combination of color components from registered visible and infrared images. After obtaining different fused images, histogram distributions are computed on these local fusion images as the fusion feature set. The variance ratio which is based on Linear Discriminative Analysis (LDA) measure is employed to sort the feature set and the most discriminative one is selected for the whole image fusion. As the feature selection is performed over time, the process will dynamically determine the most suitable feature for the image fusion in different scenes. Experiment is conducted on the OSU Color-Thermal database, and TNO Human Factor dataset. The fusion results indicate that our proposed method achieved a competitive performance compared with other fusion algorithms at a relatively low computational cost.
Central nervous system adaptation to exercise training
NASA Astrophysics Data System (ADS)
Kaminski, Lois Anne
Exercise training causes physiological changes in skeletal muscle that results in enhanced performance in humans and animals. Despite numerous studies on exercise effects on skeletal muscle, relatively little is known about adaptive changes in the central nervous system. This study investigated whether spinal pathways that mediate locomotor activity undergo functional adaptation after 28 days of exercise training. Ventral horn spinal cord expression of calcitonin gene-related peptide (CGRP), a trophic factor at the neuromuscular junction, choline acetyltransferase (Chat), the synthetic enzyme for acetylcholine, vesicular acetylcholine transporter (Vacht), a transporter of ACh into synaptic vesicles and calcineurin (CaN), a protein phosphatase that phosphorylates ion channels and exocytosis machinery were measured to determine if changes in expression occurred in response to physical activity. Expression of these proteins was determined by western blot and immunohistochemistry (IHC). Comparisons between sedentary controls and animals that underwent either endurance training or resistance training were made. Control rats received no exercise other than normal cage activity. Endurance-trained rats were exercised 6 days/wk at 31m/min on a treadmill (8% incline) for 100 minutes. Resistance-trained rats supported their weight plus an additional load (70--80% body weight) on a 60° incline (3 x 3 min, 5 days/wk). CGRP expression was measured by radioimmunoassay (RIA). CGRP expression in the spinal dorsal and ventral horn of exercise-trained animals was not significantly different than controls. Chat expression measured by Western blot and IHC was not significantly different between runners and controls but expression in resistance-trained animals assayed by IHC was significantly less than controls and runners. Vacht and CaN immunoreactivity in motor neurons of endurance-trained rats was significantly elevated relative to control and resistance-trained animals. Ventral
Aircraft as adaptive nonlinear system which must be in the adaptational maximum zone for safety
Ignative, M.; Simatos, N.; Sivasundaram, S.
1994-12-31
Safety is a main problem in aircraft. We are considering this problem from the point of view related to existence of the adaptational maximum in complex developing systems. Safety space of aircraft parameters are determined. This space is transformed to different regimes of flight, when one engine malfunctions etc., are considered. Also it is shown that maximum safety is in adaptational maximum zone.
CRISPR adaptation in Escherichia coli subtypeI-E system.
Kiro, Ruth; Goren, Moran G; Yosef, Ido; Qimron, Udi
2013-12-01
The CRISPRs (clustered regularly interspaced short palindromic repeats) and their associated Cas (CRISPR-associated) proteins are a prokaryotic adaptive defence system against foreign nucleic acids. The CRISPR array comprises short repeats flanking short segments, called 'spacers', which are derived from foreign nucleic acids. The process of spacer insertion into the CRISPR array is termed 'adaptation'. Adaptation allows the system to rapidly evolve against emerging threats. In the present article, we review the most recent studies on the adaptation process, and focus primarily on the subtype I-E CRISPR-Cas system of Escherichia coli.
NASA Astrophysics Data System (ADS)
Bargatze, L. F.
2015-12-01
Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted
NASA Technical Reports Server (NTRS)
Bosworth, John T.
2008-01-01
Adaptive flight control systems have the potential to be resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. The goal for the adaptive system is to provide an increase in survivability in the event that these extreme changes occur. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane. The adaptive element was incorporated into a dynamic inversion controller with explicit reference model-following. As a test the system was subjected to an abrupt change in plant stability simulating a destabilizing failure. Flight evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to stabilize the vehicle and reestablish good onboard reference model-following. Flight evaluation with the simulated destabilizing failure and adaptation engaged showed improvement in the vehicle stability margins. The convergent properties of this initial system warrant additional improvement since continued maneuvering caused continued adaptation change. Compared to the non-adaptive system the adaptive system provided better closed-loop behavior with improved matching of the onboard reference model. A detailed discussion of the flight results is presented.
Adaptive uniform grayscale coded aperture design for high dynamic range compressive spectral imaging
NASA Astrophysics Data System (ADS)
Diaz, Nelson; Rueda, Hoover; Arguello, Henry
2016-05-01
Imaging spectroscopy is an important area with many applications in surveillance, agriculture and medicine. The disadvantage of conventional spectroscopy techniques is that they collect the whole datacube. In contrast, compressive spectral imaging systems capture snapshot compressive projections, which are the input of reconstruction algorithms to yield the underlying datacube. Common compressive spectral imagers use coded apertures to perform the coded projections. The coded apertures are the key elements in these imagers since they define the sensing matrix of the system. The proper design of the coded aperture entries leads to a good quality in the reconstruction. In addition, the compressive measurements are prone to saturation due to the limited dynamic range of the sensor, hence the design of coded apertures must consider saturation. The saturation errors in compressive measurements are unbounded and compressive sensing recovery algorithms only provide solutions for bounded noise or bounded with high probability. In this paper it is proposed the design of uniform adaptive grayscale coded apertures (UAGCA) to improve the dynamic range of the estimated spectral images by reducing the saturation levels. The saturation is attenuated between snapshots using an adaptive filter which updates the entries of the grayscale coded aperture based on the previous snapshots. The coded apertures are optimized in terms of transmittance and number of grayscale levels. The advantage of the proposed method is the efficient use of the dynamic range of the image sensor. Extensive simulations show improvements in the image reconstruction of the proposed method compared with grayscale coded apertures (UGCA) and adaptive block-unblock coded apertures (ABCA) in up to 10 dB.
Distributed adaptive tracking control for synchronization of unknown networked Lagrangian systems.
Chen, Gang; Lewis, Frank L
2011-06-01
This paper investigates the cooperative tracking control problem for a group of Lagrangian vehicle systems with directed communication graph topology. All the vehicles can have different dynamics. A design method for a distributed adaptive protocol is given which guarantees that all the networked systems synchronize to the motion of a target system. The dynamics of the networked systems, as well as the target system, are all assumed unknown. A neural network (NN) is used at each node to approximate the distributed dynamics. The resulting protocol consists of a simple decentralized proportional-plus-derivative term and a nonlinear term with distributed adaptive tuning laws at each node. The case with nonconstant NN approximation error is considered. There, a robust term is added to suppress the external disturbances and the approximation errors of the NNs. Simulation examples are included to demonstrate the effectiveness of the proposed algorithms.
Luo, Shaohua
2014-09-01
This paper is concerned with the problem of adaptive fuzzy dynamic surface control (DSC) for the permanent magnet synchronous motor (PMSM) system with chaotic behavior, disturbance and unknown control gain and parameters. Nussbaum gain is adopted to cope with the situation that the control gain is unknown. And the unknown items can be estimated by fuzzy logic system. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output eventually converges to a small neighborhood of the desired reference signal. Finally, the numerical simulations indicate that the proposed scheme can suppress the chaos of PMSM and show the effectiveness and robustness of the proposed method.
Luo, Shaohua
2014-09-01
This paper is concerned with the problem of adaptive fuzzy dynamic surface control (DSC) for the permanent magnet synchronous motor (PMSM) system with chaotic behavior, disturbance and unknown control gain and parameters. Nussbaum gain is adopted to cope with the situation that the control gain is unknown. And the unknown items can be estimated by fuzzy logic system. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output eventually converges to a small neighborhood of the desired reference signal. Finally, the numerical simulations indicate that the proposed scheme can suppress the chaos of PMSM and show the effectiveness and robustness of the proposed method.
Nonequilibrium Enhances Adaptation Efficiency of Stochastic Biochemical Systems
Jia, Chen; Qian, Minping
2016-01-01
Adaptation is a crucial biological function possessed by many sensory systems. Early work has shown that some influential equilibrium models can achieve accurate adaptation. However, recent studies indicate that there are close relationships between adaptation and nonequilibrium. In this paper, we provide an explanation of these two seemingly contradictory results based on Markov models with relatively simple networks. We show that as the nonequilibrium driving becomes stronger, the system under consideration will undergo a phase transition along a fixed direction: from non-adaptation to simple adaptation then to oscillatory adaptation, while the transition in the opposite direction is forbidden. This indicates that although adaptation may be observed in equilibrium systems, it tends to occur in systems far away from equilibrium. In addition, we find that nonequilibrium will improve the performance of adaptation by enhancing the adaptation efficiency. All these results provide a deeper insight into the connection between adaptation and nonequilibrium. Finally, we use a more complicated network model of bacterial chemotaxis to validate the main results of this paper. PMID:27195482
Time-and-Spatially Adapting Simulations for Efficient Dynamic Stall Predictions
2015-09-01
SIMULATIONS FOR EFFICIENTDYNAMIC STALL PREDICTIONS The ability to accurately and efficiently predict the occurrence and severity of dynamic stall...The ability to accurately and efficiently predict the occurrence and severity of dynamic stall remains a major roadblock in the design and analysis...SPATIALLY ADAPTING SIMULATIONS FOR EFFICIENT DYNAMIC STALL PREDICTIONS Marilyn J. Smith Professor Georgia Tech Rohit Jain Aerospace Engineer US Army
Space Launch System Implementation of Adaptive Augmenting Control
NASA Technical Reports Server (NTRS)
Wall, John H.; Orr, Jeb S.; VanZwieten, Tannen S.
2014-01-01
Given the complex structural dynamics, challenging ascent performance requirements, and rigorous flight certification constraints owing to its manned capability, the NASA Space Launch System (SLS) launch vehicle requires a proven thrust vector control algorithm design with highly optimized parameters to provide stable and high-performance flight. On its development path to Preliminary Design Review (PDR), the SLS flight control system has been challenged by significant vehicle flexibility, aerodynamics, and sloshing propellant. While the design has been able to meet all robust stability criteria, it has done so with little excess margin. Through significant development work, an Adaptive Augmenting Control (AAC) algorithm has been shown to extend the envelope of failures and flight anomalies the SLS control system can accommodate while maintaining a direct link to flight control stability criteria such as classical gain and phase margin. In this paper, the work performed to mature the AAC algorithm as a baseline component of the SLS flight control system is presented. The progress to date has brought the algorithm design to the PDR level of maturity. The algorithm has been extended to augment the full SLS digital 3-axis autopilot, including existing load-relief elements, and the necessary steps for integration with the production flight software prototype have been implemented. Several updates which have been made to the adaptive algorithm to increase its performance, decrease its sensitivity to expected external commands, and safeguard against limitations in the digital implementation are discussed with illustrating results. Monte Carlo simulations and selected stressing case results are also shown to demonstrate the algorithm's ability to increase the robustness of the integrated SLS flight control system.
Stabilization of an axially moving accelerated/decelerated system via an adaptive boundary control.
Liu, Yu; Zhao, Zhijia; He, Wei
2016-09-01
In this study, an adaptive boundary control is developed for vibration suppression of an axially moving accelerated/decelerated belt system. The dynamic model of the belt system is represented by partial-ordinary differential equations with consideration of the high acceleration/deceleration and unknown distributed disturbance. By utilizing adaptive technique and Lyapunov-based back stepping method, an adaptive boundary control is proposed for vibration suppression of the belt system, a disturbance observer is introduced to attenuate the effects of unknown boundary disturbance, the adaptive law is developed to handle parametric uncertainties and the S-curve acceleration/deceleration method is adopted to plan the belt׳s speed. With the proposed control scheme, the well-posedness and stability of the closed-loop system are mathematically demonstrated. Simulations are displayed to illustrate the effectiveness of the proposed control.
NASA Astrophysics Data System (ADS)
Li, Yongming; Tong, Shaocheng
2016-10-01
In this paper, a fuzzy adaptive switched control approach is proposed for a class of uncertain nonholonomic chained systems with input nonsmooth constraint. In the control design, an auxiliary dynamic system is designed to address the input nonsmooth constraint, and an adaptive switched control strategy is constructed to overcome the uncontrollability problem associated with x0(t0) = 0. By using fuzzy logic systems to tackle unknown nonlinear functions, a fuzzy adaptive control approach is explored based on the adaptive backstepping technique. By constructing the combination approximation technique and using Young's inequality scaling technique, the number of the online learning parameters is reduced to n and the 'explosion of complexity' problem is avoid. It is proved that the proposed method can guarantee that all variables of the closed-loop system converge to a small neighbourhood of zero. Two simulation examples are provided to illustrate the effectiveness of the proposed control approach.
Concept Based Approach for Adaptive Personalized Course Learning System
ERIC Educational Resources Information Center
Salahli, Mehmet Ali; Özdemir, Muzaffer; Yasar, Cumali
2013-01-01
One of the most important factors for improving the personalization aspects of learning systems is to enable adaptive properties to them. The aim of the adaptive personalized learning system is to offer the most appropriate learning path and learning materials to learners by taking into account their profiles. In this paper, a new approach to…
Adaptive tracking control for a class of uncertain chaotic systems
NASA Astrophysics Data System (ADS)
Chen, Feng-Xiang; Wang, Wei; Zhang, Wei-Dong
2007-09-01
The paper is concerned with adaptive tracking problem for a class of chaotic system with time-varying uncertainty, but bounded by norm polynomial. Based on adaptive technique, it proposes a novel controller to asymptotically track the arbitrary desired bounded trajectory. Simulation on the Rossler chaotic system is performed and the result verifies the effectiveness of the proposed method.
Development of Adaptive Kanji Learning System for Mobile Phone
ERIC Educational Resources Information Center
Li, Mengmeng; Ogata, Hiroaki; Hou, Bin; Hashimoto, Satoshi; Liu, Yuqin; Uosaki, Noriko; Yano, Yoneo
2010-01-01
This paper describes an adaptive learning system based on mobile phone email to support the study of Japanese Kanji. In this study, the main emphasis is on using the adaptive learning to resolve one common problem of the mobile-based email or SMS language learning systems. To achieve this goal, the authors main efforts focus on three aspects:…
Management Strategies for Complex Adaptive Systems: Sensemaking, Learning, and Improvisation
ERIC Educational Resources Information Center
McDaniel, Reuben R., Jr.
2007-01-01
Misspecification of the nature of organizations may be a major reason for difficulty in achieving performance improvement. Organizations are often viewed as machine-like, but complexity science suggests that organizations should be viewed as complex adaptive systems. I identify the characteristics of complex adaptive systems and give examples of…
Students' Adaptation in the Social and Cultural Dynamics
ERIC Educational Resources Information Center
Sadyrin, Vladimir Vitalievich; Potapova, Marina Vladimirovna; Gnatyshina, Elena Alexandrovna; Uvarina, Nataliya Viktorovna; Danilova, Viktoriya Valerievna
2016-01-01
Modern scientific literature views issues on adaptation based on various aspects: biological, medical, pedagogical, sociological, cybernetic, interdisciplinary, etc. The given article is devoted to the analysis of the problem of adaptation as social and psychological phenomenon including peculiarities of its functioning in the conditions of social…
Human Adaptive Behavior in Common Pool Resource Systems
Brandt, Gunnar; Merico, Agostino; Vollan, Björn; Schlüter, Achim
2012-01-01
Overexploitation of common-pool resources, resulting from uncooperative harvest behavior, is a major problem in many social-ecological systems. Feedbacks between user behavior and resource productivity induce non-linear dynamics in the harvest and the resource stock that complicate the understanding and the prediction of the co-evolutionary system. With an adaptive model constrained by data from a behavioral economic experiment, we show that users’ expectations of future pay-offs vary as a result of the previous harvest experience, the time-horizon, and the ability to communicate. In our model, harvest behavior is a trait that adjusts to continuously changing potential returns according to a trade-off between the users’ current harvest and the discounted future productivity of the resource. Given a maximum discount factor, which quantifies the users’ perception of future pay-offs, the temporal dynamics of harvest behavior and ecological resource can be predicted. Our results reveal a non-linear relation between the previous harvest and current discount rates, which is most sensitive around a reference harvest level. While higher than expected returns resulting from cooperative harvesting in the past increase the importance of future resource productivity and foster sustainability, harvests below the reference level lead to a downward spiral of increasing overexploitation and disappointing returns. PMID:23285180
Robust adaptive control of spacecraft proximity maneuvers under dynamic coupling and uncertainty
NASA Astrophysics Data System (ADS)
Sun, Liang; Huo, Wei
2015-11-01
This paper provides a solution for the position tracking and attitude synchronization problem of the close proximity phase in spacecraft rendezvous and docking. The chaser spacecraft must be driven to a certain fixed position along the docking port direction of the target spacecraft, while the attitude of the two spacecraft must be synchronized for subsequent docking operations. The kinematics and dynamics for relative position and relative attitude are modeled considering dynamic coupling, parametric uncertainties and external disturbances. The relative motion model has a new form with a novel definition of the unknown parameters. An original robust adaptive control method is developed for the concerned problem, and a proof of the asymptotic stability is given for the six degrees of freedom closed-loop system. A numerical example is displayed in simulation to verify the theoretical results.
Xu, Haojie; Lu, Yunfeng; Zhu, Shanan; He, Bin
2014-07-01
It is of significance to assess the dynamic spectral causality among physiological signals. Several practical estimators adapted from spectral Granger causality have been exploited to track dynamic causality based on the framework of time-varying multivariate autoregressive (tvMVAR) models. The nonzero covariance of the model's residuals has been used to describe the instantaneous effect phenomenon in some causality estimators. However, for the situations with Gaussian residuals in some autoregressive models, it is challenging to distinguish the directed instantaneous causality if the sufficient prior information about the "causal ordering" is missing. Here, we propose a new algorithm to assess the time-varying causal ordering of tvMVAR model under the assumption that the signals follow the same acyclic causal ordering for all time lags and to estimate the instantaneous effect factor (IEF) value in order to track the dynamic directed instantaneous connectivity. The time-lagged adaptive directed transfer function (ADTF) is also estimated to assess the lagged causality after removing the instantaneous effect. In this study, we first investigated the performance of the causal-ordering estimation algorithm and the accuracy of IEF value. Then, we presented the results of IEF and time-lagged ADTF method by comparing with the conventional ADTF method through simulations of various propagation models. Statistical analysis results suggest that the new algorithm could accurately estimate the causal ordering and give a good estimation of the IEF values in the Gaussian residual conditions. Meanwhile, the time-lagged ADTF approach is also more accurate in estimating the time-lagged dynamic interactions in a complex nervous system after extracting the instantaneous effect. In addition to the simulation studies, we applied the proposed method to estimate the dynamic spectral causality on real visual evoked potential (VEP) data in a human subject. Its usefulness in time
Xu, Haojie; Lu, Yunfeng; Zhu, Shanan
2014-01-01
It is of significance to assess the dynamic spectral causality among physiological signals. Several practical estimators adapted from spectral Granger causality have been exploited to track dynamic causality based on the framework of time-varying multivariate autoregressive (tvMVAR) models. The non-zero covariance of the model’s residuals has been used to describe the instantaneous effect phenomenon in some causality estimators. However, for the situations with Gaussian residuals in some autoregressive models, it is challenging to distinguish the directed instantaneous causality if the sufficient prior information about the “causal ordering” is missing. Here, we propose a new algorithm to assess the time-varying causal ordering of tvMVAR model under the assumption that the signals follow the same acyclic causal ordering for all time lags and to estimate the instantaneous effect factor (IEF) value in order to track the dynamic directed instantaneous connectivity. The time-lagged adaptive directed transfer function (ADTF) is also estimated to assess the lagged causality after removing the instantaneous effect. In the present study, we firstly investigated the performance of the causal-ordering estimation algorithm and the accuracy of IEF value. Then, we presented the results of IEF and time-lagged ADTF method by comparing with the conventional ADTF method through simulations of various propagation models. Statistical analysis results suggest that the new algorithm could accurately estimate the causal ordering and give a good estimation of the IEF values in the Gaussian residual conditions. Meanwhile, the time-lagged ADTF approach is also more accurate in estimating the time-lagged dynamic interactions in a complex nervous system after extracting the instantaneous effect. In addition to the simulation studies, we applied the proposed method to estimate the dynamic spectral causality on real visual evoked potential (VEP) data in a human subject. Its usefulness in
Sinusoidal error perturbation reveals multiple coordinate systems for sensorymotor adaptation
Hudson, Todd E.; Landy, Michael S.
2016-01-01
A coordinate system is composed of an encoding, defining the dimensions of the space, and an origin. We examine the coordinate encoding used to update motor plans during sensory-motor adaptation to center-out reaches. Adaptation is induced using a novel paradigm in which feedback of reach endpoints is perturbed following a sinewave pattern over trials; the perturbed dimensions of the feedback were the axes of a Cartesian coordinate system in one session and a polar coordinate system in another session. For center-out reaches to randomly chosen target locations, reach errors observed at one target will require different corrections at other targets within Cartesian- and polar-coded systems. The sinewave adaptation technique allowed us to simultaneously adapt both dimensions of each coordinate system (x-y, or reach gain and angle), and identify the contributions of each perturbed dimension by adapting each at a distinct temporal frequency. The efficiency of this technique further allowed us to employ perturbations that were a fraction the size normally used, which avoids confounding automatic adaptive processes with deliberate adjustments made in response to obvious experimental manipulations. Subjects independently corrected errors in each coordinate in both sessions, suggesting that the nervous system encodes both a Cartesian- and polar-coordinate-based internal representation for motor adaptation. The gains and phase lags of the adaptive responses are not readily explained by current theories of sensory-motor adaptation. Motor adaptation is fundamental to the neural control of movement, affording an automatic process to maintain a consistent relationship between motor plans and movement outcomes. That is, adaptation is described as updating an internal mapping between desired motor outcome and motor output (Sanger, 2004; Shadmehr, Smith, & Krakauer, 2010), not a deliberate corrective action. Here, using a method that relies on extremely small perturbations that
Evolution of taxis responses in virtual bacteria: non-adaptive dynamics.
Goldstein, Richard A; Soyer, Orkun S
2008-05-23
Bacteria are able to sense and respond to a variety of external stimuli, with responses that vary from stimuli to stimuli and from species to species. The best-understood is chemotaxis in the model organism Escherichia coli, where the dynamics and the structure of the underlying pathway are well characterised. It is not clear, however, how well this detailed knowledge applies to mechanisms mediating responses to other stimuli or to pathways in other species. Furthermore, there is increasing experimental evidence that bacteria integrate responses from different stimuli to generate a coherent taxis response. We currently lack a full understanding of the different pathway structures and dynamics and how this integration is achieved. In order to explore different pathway structures and dynamics that can underlie taxis responses in bacteria, we perform a computational simulation of the evolution of taxis. This approach starts with a population of virtual bacteria that move in a virtual environment based on the dynamics of the simple biochemical pathways they harbour. As mutations lead to changes in pathway structure and dynamics, bacteria better able to localise with favourable conditions gain a selective advantage. We find that a certain dynamics evolves consistently under different model assumptions and environments. These dynamics, which we call non-adaptive dynamics, directly couple tumbling probability of the cell to increasing stimuli. Dynamics that are adaptive under a wide range of conditions, as seen in the chemotaxis pathway of E. coli, do not evolve in these evolutionary simulations. However, we find that stimulus scarcity and fluctuations during evolution results in complex pathway dynamics that result both in adaptive and non-adaptive dynamics depending on basal stimuli levels. Further analyses of evolved pathway structures show that effective taxis dynamics can be mediated with as few as two components. The non-adaptive dynamics mediating taxis responses
O'Connor, Mike; Paci, Emanuele; McIntosh-Smith, Simon; Glowacki, David R
2016-12-22
The past decade has seen the development of a new class of rare event methods in which molecular configuration space is divided into a set of boundaries/interfaces, and then short trajectories are run between boundaries. For all these methods, an important concern is how to generate boundaries. In this paper, we outline an algorithm for adaptively generating boundaries along a free energy surface in multi-dimensional collective variable (CV) space, building on the boxed molecular dynamics (BXD) rare event algorithm. BXD is a simple technique for accelerating the simulation of rare events and free energy sampling which has proven useful for calculating kinetics and free energy profiles in reactive and non-reactive molecular dynamics (MD) simulations across a range of systems, in both NVT and NVE ensembles. Two key developments outlined in this paper make it possible to automate BXD, and to adaptively map free energy and kinetics in complex systems. First, we have generalized BXD to multidimensional CV space. Using strategies from rigid-body dynamics, we have derived a simple and general velocity-reflection procedure that conserves energy for arbitrary collective variable definitions in multiple dimensions, and show that it is straightforward to apply BXD to sampling in multidimensional CV space so long as the Cartesian gradients ∇CV are available. Second, we have modified BXD to undertake on-the-fly statistical analysis during a trajectory, harnessing the information content latent in the dynamics to automatically determine boundary locations. Such automation not only makes BXD considerably easier to use; it also guarantees optimal boundaries, speeding up convergence. We have tested the multidimensional adaptive BXD procedure by calculating the potential of mean force for a chemical reaction recently investigated using both experimental and computational approaches - i.e., F + CD3CN → DF + D2CN in both the gas phase and a strongly coupled explicit CD3CN solvent
Dynamics of Variable Mass Systems
NASA Technical Reports Server (NTRS)
Eke, Fidelis O.
1998-01-01
This report presents the results of an investigation of the effects of mass loss on the attitude behavior of spinning bodies in flight. The principal goal is to determine whether there are circumstances under which the motion of variable mass systems can become unstable in the sense that their transverse angular velocities become unbounded. Obviously, results from a study of this kind would find immediate application in the aerospace field. The first part of this study features a complete and mathematically rigorous derivation of a set of equations that govern both the translational and rotational motions of general variable mass systems. The remainder of the study is then devoted to the application of the equations obtained to a systematic investigation of the effect of various mass loss scenarios on the dynamics of increasingly complex models of variable mass systems. It is found that mass loss can have a major impact on the dynamics of mechanical systems, including a possible change in the systems stability picture. Factors such as nozzle geometry, combustion chamber geometry, propellant's initial shape, size and relative mass, and propellant location can all have important influences on the system's dynamic behavior. The relative importance of these parameters on-system motion are quantified in a way that is useful for design purposes.
Joiner, Wilsaan M; Ajayi, Obafunso; Sing, Gary C; Smith, Maurice A
2011-01-01
The ability to generalize learned motor actions to new contexts is a key feature of the motor system. For example, the ability to ride a bicycle or swing a racket is often first developed at lower speeds and later applied to faster velocities. A number of previous studies have examined the generalization of motor adaptation across movement directions and found that the learned adaptation decays in a pattern consistent with the existence of motor primitives that display narrow Gaussian tuning. However, few studies have examined the generalization of motor adaptation across movement speeds. Following adaptation to linear velocity-dependent dynamics during point-to-point reaching arm movements at one speed, we tested the ability of subjects to transfer this adaptation to short-duration higher-speed movements aimed at the same target. We found near-perfect linear extrapolation of the trained adaptation with respect to both the magnitude and the time course of the velocity profiles associated with the high-speed movements: a 69% increase in movement speed corresponded to a 74% extrapolation of the trained adaptation. The close match between the increase in movement speed and the corresponding increase in adaptation beyond what was trained indicates linear hypergeneralization. Computational modeling shows that this pattern of linear hypergeneralization across movement speeds is not compatible with previous models of adaptation in which motor primitives display isotropic Gaussian tuning of motor output around their preferred velocities. Instead, we show that this generalization pattern indicates that the primitives involved in the adaptation to viscous dynamics display anisotropic tuning in velocity space and encode the gain between motor output and motion state rather than motor output itself.
Atcher, Joan; Moure, Alejandra; Bujons, Jordi; Alfonso, Ignacio
2015-04-27
Dynamic combinatorial libraries are powerful systems for studying adaptive behaviors and relationships, as models of more complex molecular networks. With this aim, we set up a chemically diverse dynamic library of pseudopeptidic macrocycles containing amino-acid side chains with differently charged residues (negative, positive, and neutral). The responsive ability of this complex library upon the increase of the ionic strength has been thoroughly studied. The families of the macrocyclic members concentrating charges of the same sign showed a large increase in its proportion as the ionic strength increases, whereas those with residues of opposite charges showed the reverse behavior. This observation suggested an electrostatic shielding effect of the salt within the library of macrocycles. The top-down deconvolution of the library allowed us to obtain the fundamental thermodynamic information connecting the library members (exchange equilibrium constants), as well as to parameterize the adaptation to the external stimulus. We also visualized the physicochemical driving forces for the process by structural analysis using NMR spectroscopy and molecular modeling. This knowledge permitted the full understanding of the whole dynamic library and also the de novo design of dynamic chemical systems with tailored co-adaptive relationships, containing competing or cooperating species. This study highlights the utility of dynamic combinatorial libraries in the emerging field of systems chemistry.
Calibrated Methodology for Assessing Adaptation Costs for Urban Drainage Systems
Changes in precipitation patterns associated with climate change may pose significant challenges for storm water management systems across much of the U.S. In particular, adapting these systems to more intense rainfall events will require significant investment. The assessment ...
Elastica as a dynamical system
NASA Astrophysics Data System (ADS)
Bates, Larry; Chhabra, Robin; Śniatycki, Jędrzej
2016-12-01
The elastica is a curve in R3 that is stationary under variations of the integral of the square of the curvature. Elastica is viewed as a dynamical system that arises from the second order calculus of variations, and its quantization is discussed.
Mass properties measurement system dynamics
NASA Technical Reports Server (NTRS)
Doty, Keith L.
1993-01-01
The MPMS mechanism possess two revolute degrees-of-freedom and allows the user to measure the mass, center of gravity, and the inertia tensor of an unknown mass. The dynamics of the Mass Properties Measurement System (MPMS) from the Lagrangian approach to illustrate the dependency of the motion on the unknown parameters.
NASA Technical Reports Server (NTRS)
Tesar, Delbert; Tosunoglu, Sabri; Lin, Shyng-Her
1990-01-01
Research results on general serial robotic manipulators modeled with structural compliances are presented. Two compliant manipulator modeling approaches, distributed and lumped parameter models, are used in this study. System dynamic equations for both compliant models are derived by using the first and second order influence coefficients. Also, the properties of compliant manipulator system dynamics are investigated. One of the properties, which is defined as inaccessibility of vibratory modes, is shown to display a distinct character associated with compliant manipulators. This property indicates the impact of robot geometry on the control of structural oscillations. Example studies are provided to illustrate the physical interpretation of inaccessibility of vibratory modes. Two types of controllers are designed for compliant manipulators modeled by either lumped or distributed parameter techniques. In order to maintain the generality of the results, neither linearization is introduced. Example simulations are given to demonstrate the controller performance. The second type controller is also built for general serial robot arms and is adaptive in nature which can estimate uncertain payload parameters on-line and simultaneously maintain trajectory tracking properties. The relation between manipulator motion tracking capability and convergence of parameter estimation properties is discussed through example case studies. The effect of control input update delays on adaptive controller performance is also studied.
NASA Technical Reports Server (NTRS)
Tao, Gang; Joshi, Suresh M.
2008-01-01
In this paper, the problem of controlling systems with failures and faults is introduced, and an overview of recent work on direct adaptive control for compensation of uncertain actuator failures is presented. Actuator failures may be characterized by some unknown system inputs being stuck at some unknown (fixed or varying) values at unknown time instants, that cannot be influenced by the control signals. The key task of adaptive compensation is to design the control signals in such a manner that the remaining actuators can automatically and seamlessly take over for the failed ones, and achieve desired stability and asymptotic tracking. A certain degree of redundancy is necessary to accomplish failure compensation. The objective of adaptive control design is to effectively use the available actuation redundancy to handle failures without the knowledge of the failure patterns, parameters, and time of occurrence. This is a challenging problem because failures introduce large uncertainties in the dynamic structure of the system, in addition to parametric uncertainties and unknown disturbances. The paper addresses some theoretical issues in adaptive actuator failure compensation: actuator failure modeling, redundant actuation requirements, plant-model matching, error system dynamics, adaptation laws, and stability, tracking, and performance analysis. Adaptive control designs can be shown to effectively handle uncertain actuator failures without explicit failure detection. Some open technical challenges and research problems in this important research area are discussed.
NASA Astrophysics Data System (ADS)
Smayda, T. J.
2010-04-01
The complex three-dimensional physical structure, spatial scale and the variations in the upwelling-relaxation cycles characterizing eastern boundary upwelling systems are summarized. It is suggested that upwelling systems and their bloom dynamics should be accorded the status of biomes. A unique upwelling dinoflagellate flora is not found. The harmful, red tide and other dinoflagellates selected to bloom are cosmopolitan in distribution and commonly bloom in coastal habitats. The morphological features of 27 dinoflagellate species that bloom in upwelling systems are compared to identify commonalities in form and function adaptations relevant to their upwelling occurrences. The upwelling dinoflagellate species are morphologically, physiologically, ecologically and toxicologically diverse; a unique set of morphological traits specifically evolved for growth in upwelling systems is not evident. The absence of a unique dinoflagellate upwelling flora is unexpected given the challenges to survival and growth in upwelling systems posed by the energetic physical conditions and spatial and temporal complexity of upwelling dynamics. Cellular defense mechanisms - “armouring” and small cell formation - against external and internal cellular damage resulting from turbulence-induced stress-strain, and the occurrence of morphological streamlining to facilitate swimming-based strategies adaptive to growth in upwelling systems are evaluated. The occurrence of autotomy, ecdysis, thecal resorption and regeneration, seasonal cyclomorphosis and polymorphism (form variation) among dinoflagellates is evaluated. The impressive commonality and rapidity of ecomorph formation suggest autoregulated polymorphism is potentially an important mode of adaptation available to upwelling dinoflagellates, and specifically directed towards adjustment of their flotation (swim:sink ratio) capacity. However, seasonal cyclomorphosis and regional and local displays of adaptive polymorphism are traits
Dynamical systems probabilistic risk assessment
Denman, Matthew R.; Ames, Arlo Leroy
2014-03-01
Probabilistic Risk Assessment (PRA) is the primary tool used to risk-inform nuclear power regulatory and licensing activities. Risk-informed regulations are intended to reduce inherent conservatism in regulatory metrics (e.g., allowable operating conditions and technical specifications) which are built into the regulatory framework by quantifying both the total risk profile as well as the change in the risk profile caused by an event or action (e.g., in-service inspection procedures or power uprates). Dynamical Systems (DS) analysis has been used to understand unintended time-dependent feedbacks in both industrial and organizational settings. In dynamical systems analysis, feedback loops can be characterized and studied as a function of time to describe the changes to the reliability of plant Structures, Systems and Components (SSCs). While DS has been used in many subject areas, some even within the PRA community, it has not been applied toward creating long-time horizon, dynamic PRAs (with time scales ranging between days and decades depending upon the analysis). Understanding slowly developing dynamic effects, such as wear-out, on SSC reliabilities may be instrumental in ensuring a safely and reliably operating nuclear fleet. Improving the estimation of a plant's continuously changing risk profile will allow for more meaningful risk insights, greater stakeholder confidence in risk insights, and increased operational flexibility.
Recursive architecture for large-scale adaptive system
NASA Astrophysics Data System (ADS)
Hanahara, Kazuyuki; Sugiyama, Yoshihiko
1994-09-01
'Large scale' is one of major trends in the research and development of recent engineering, especially in the field of aerospace structural system. This term expresses the large scale of an artifact in general, however, it also implies the large number of the components which make up the artifact in usual. Considering a large scale system which is especially used in remote space or deep-sea, such a system should be adaptive as well as robust by itself, because its control as well as maintenance by human operators are not easy due to the remoteness. An approach to realizing this large scale, adaptive and robust system is to build the system as an assemblage of components which are respectively adaptive by themselves. In this case, the robustness of the system can be achieved by using a large number of such components and suitable adaptation as well as maintenance strategies. Such a system gathers many research's interest and their studies such as decentralized motion control, configurating algorithm and characteristics of structural elements are reported. In this article, a recursive architecture concept is developed and discussed towards the realization of large scale system which consists of a number of uniform adaptive components. We propose an adaptation strategy based on the architecture and its implementation by means of hierarchically connected processing units. The robustness and the restoration from degeneration of the processing unit are also discussed. Two- and three-dimensional adaptive truss structures are conceptually designed based on the recursive architecture.
Vehicle systems: coupled and interactive dynamics analysis
NASA Astrophysics Data System (ADS)
Vantsevich, Vladimir V.
2014-11-01
This article formulates a new direction in vehicle dynamics, described as coupled and interactive vehicle system dynamics. Formalised procedures and analysis of case studies are presented. An analytical consideration, which explains the physics of coupled system dynamics and its consequences for dynamics of a vehicle, is given for several sets of systems including: (i) driveline and suspension of a 6×6 truck, (ii) a brake mechanism and a limited slip differential of a drive axle and (iii) a 4×4 vehicle steering system and driveline system. The article introduces a formal procedure to turn coupled system dynamics into interactive dynamics of systems. A new research direction in interactive dynamics of an active steering and a hybrid-electric power transmitting unit is presented and analysed to control power distribution between the drive axles of a 4×4 vehicle. A control strategy integrates energy efficiency and lateral dynamics by decoupling dynamics of the two systems thus forming their interactive dynamics.
Silicon-Neuron Design: A Dynamical Systems Approach
Arthur, John V.; Boahen, Kwabena
2010-01-01
We present an approach to design spiking silicon neurons based on dynamical systems theory. Dynamical systems theory aids in choosing the appropriate level of abstraction, prescribing a neuron model with the desired dynamics while maintaining simplicity. Further, we provide a procedure to transform the prescribed equations into subthreshold current-mode circuits. We present a circuit design example, a positive-feedback integrate-and-fire neuron, fabricated in 0.25 μm CMOS. We analyze and characterize the circuit, and demonstrate that it can be configured to exhibit desired behaviors, including spike-frequency adaptation and two forms of bursting. PMID:21617741
Fast and Adaptive Lossless Onboard Hyperspectral Data Compression System
NASA Technical Reports Server (NTRS)
Aranki, Nazeeh I.; Keymeulen, Didier; Kimesh, Matthew A.
2012-01-01
Modern hyperspectral imaging systems are able to acquire far more data than can be downlinked from a spacecraft. Onboard data compression helps to alleviate this problem, but requires a system capable of power efficiency and high throughput. Software solutions have limited throughput performance and are power-hungry. Dedicated hardware solutions can provide both high throughput and power efficiency, while taking the load off of the main processor. Thus a hardware compression system was developed. The implementation uses a field-programmable gate array (FPGA). The implementation is based on the fast lossless (FL) compression algorithm reported in Fast Lossless Compression of Multispectral-Image Data (NPO-42517), NASA Tech Briefs, Vol. 30, No. 8 (August 2006), page 26, which achieves excellent compression performance and has low complexity. This algorithm performs predictive compression using an adaptive filtering method, and uses adaptive Golomb coding. The implementation also packetizes the coded data. The FL algorithm is well suited for implementation in hardware. In the FPGA implementation, one sample is compressed every clock cycle, which makes for a fast and practical realtime solution for space applications. Benefits of this implementation are: 1) The underlying algorithm achieves a combination of low complexity and compression effectiveness that exceeds that of techniques currently in use. 2) The algorithm requires no training data or other specific information about the nature of the spectral bands for a fixed instrument dynamic range. 3) Hardware acceleration provides a throughput improvement of 10 to 100 times vs. the software implementation. A prototype of the compressor is available in software, but it runs at a speed that does not meet spacecraft requirements. The hardware implementation targets the Xilinx Virtex IV FPGAs, and makes the use of this compressor practical for Earth satellites as well as beyond-Earth missions with hyperspectral instruments.
Configurable multiplier modules for an adaptive computing system
NASA Astrophysics Data System (ADS)
Pfänder, O. A.; Pfleiderer, H.-J.; Lachowicz, S. W.
2006-09-01
The importance of reconfigurable hardware is increasing steadily. For example, the primary approach of using adaptive systems based on programmable gate arrays and configurable routing resources has gone mainstream and high-performance programmable logic devices are rivaling traditional application-specific hardwired integrated circuits. Also, the idea of moving from the 2-D domain into a 3-D design which stacks several active layers above each other is gaining momentum in research and industry, to cope with the demand for smaller devices with a higher scale of integration. However, optimized arithmetic blocks in course-grain reconfigurable arrays as well as field-programmable architectures still play an important role. In countless digital systems and signal processing applications, the multiplication is one of the critical challenges, where in many cases a trade-off between area usage and data throughput has to be made. But the a priori choice of word-length and number representation can also be replaced by a dynamic choice at run-time, in order to improve flexibility, area efficiency and the level of parallelism in computation. In this contribution, we look at an adaptive computing system called 3-D-SoftChip to point out what parameters are crucial to implement flexible multiplier blocks into optimized elements for accelerated processing. The 3-D-SoftChip architecture uses a novel approach to 3-dimensional integration based on flip-chip bonding with indium bumps. The modular construction, the introduction of interfaces to realize the exchange of intermediate data, and the reconfigurable sign handling approach will be explained, as well as a beneficial way to handle and distribute the numerous required control signals.
A solution-adaptive mesh algorithm for dynamic/static refinement of two and three dimensional grids
NASA Technical Reports Server (NTRS)
Benson, Rusty A.; Mcrae, D. S.
1991-01-01
An adaptive grid algorithm has been developed in two and three dimensions that can be used dynamically with a solver or as part of a grid refinement process. The algorithm employs a transformation from the Cartesian coordinate system to a general coordinate space, which is defined as a parallelepiped in three dimensions. A weighting function, independent for each coordinate direction, is developed that will provide the desired refinement criteria in regions of high solution gradient. The adaptation is performed in the general coordinate space and the new grid locations are returned to the Cartesian space via a simple, one-step inverse mapping. The algorithm for relocation of the mesh points in the parametric space is based on the center of mass for distributed weights. Dynamic solution-adaptive results are presented for laminar flows in two and three dimensions.
Adaptive Learning Systems: Beyond Teaching Machines
ERIC Educational Resources Information Center
Kara, Nuri; Sevim, Nese
2013-01-01
Since 1950s, teaching machines have changed a lot. Today, we have different ideas about how people learn, what instructor should do to help students during their learning process. We have adaptive learning technologies that can create much more student oriented learning environments. The purpose of this article is to present these changes and its…
Hormesis and adaptive cellular control systems
Hormetic dose response occurs for many endpoints associated with exposures of biological organisms to environmental stressors. Cell-based U- or inverted U-shaped responses may derive from common processes involved in activation of adaptive responses required to protect cells from...
A Guide to Computer Adaptive Testing Systems
ERIC Educational Resources Information Center
Davey, Tim
2011-01-01
Some brand names are used generically to describe an entire class of products that perform the same function. "Kleenex," "Xerox," "Thermos," and "Band-Aid" are good examples. The term "computerized adaptive testing" (CAT) is similar in that it is often applied uniformly across a diverse family of testing methods. Although the various members of…
Adaptive control for a class of second-order nonlinear systems with unknown input nonlinearities.
Zhang, T; Guay, M
2003-01-01
An adaptive controller is developed for a class of second-order nonlinear dynamic systems with input nonlinearities using artificial neural networks (ANN). The unknown input nonlinearities are continuous and monotone and satisfy a sector constraint. In contrast to conventional Lyapunov-based design techniques, an alternative Lyapunov function, which depends on both system states and control input variable, is used for the development of a control law and a learning algorithm. The proposed adaptive controller guarantees the stability of the closed-loop system and convergence of the output tracking error to an adjustable neighbour of the origin.
A new approach for designing self-organizing systems and application to adaptive control
NASA Technical Reports Server (NTRS)
Ramamoorthy, P. A.; Zhang, Shi; Lin, Yueqing; Huang, Song
1993-01-01
There is tremendous interest in the design of intelligent machines capable of autonomous learning and skillful performance under complex environments. A major task in designing such systems is to make the system plastic and adaptive when presented with new and useful information and stable in response to irrelevant events. A great body of knowledge, based on neuro-physiological concepts, has evolved as a possible solution to this problem. Adaptive resonance theory (ART) is a classical example under this category. The system dynamics of an ART network is described by a set of differential equations with nonlinear functions. An approach for designing self-organizing networks characterized by nonlinear differential equations is proposed.
The Dynamics of Cumulative Step Size Adaptation on the Ellipsoid Model.
Beyer, Hans-Georg; Hellwig, Michael
2016-01-01
The behavior of the [Formula: see text]-Evolution Strategy (ES) with cumulative step size adaptation (CSA) on the ellipsoid model is investigated using dynamic systems analysis. At first a nonlinear system of difference equations is derived that describes the mean value evolution of the ES. This system is successively simplified to finally allow for deriving closed-form solutions of the steady state behavior in the asymptotic limit case of large search space dimensions. It is shown that the system exhibits linear convergence order. The steady state mutation strength is calculated, and it is shown that compared to standard settings in [Formula: see text] self-adaptive ESs, the CSA control rule allows for an approximately [Formula: see text]-fold larger mutation strength. This explains the superior performance of the CSA in non-noisy environments. The results are used to derive a formula for the expected running time. Conclusions regarding the choice of the cumulation parameter c and the damping constant D are drawn.
Subjective evaluation of H.265/HEVC based dynamic adaptive video streaming over HTTP (HEVC-DASH)
NASA Astrophysics Data System (ADS)
Irondi, Iheanyi; Wang, Qi; Grecos, Christos
2015-02-01
The Dynamic Adaptive Streaming over HTTP (DASH) standard is becoming increasingly popular for real-time adaptive HTTP streaming of internet video in response to unstable network conditions. Integration of DASH streaming techniques with the new H.265/HEVC video coding standard is a promising area of research. The performance of HEVC-DASH systems has been previously evaluated by a few researchers using objective metrics, however subjective evaluation would provide a better measure of the user's Quality of Experience (QoE) and overall performance of the system. This paper presents a subjective evaluation of an HEVC-DASH system implemented in a hardware testbed. Previous studies in this area have focused on using the current H.264/AVC (Advanced Video Coding) or H.264/SVC (Scalable Video Coding) codecs and moreover, there has been no established standard test procedure for the subjective evaluation of DASH adaptive streaming. In this paper, we define a test plan for HEVC-DASH with a carefully justified data set employing longer video sequences that would be sufficient to demonstrate the bitrate switching operations in response to various network condition patterns. We evaluate the end user's real-time QoE online by investigating the perceived impact of delay, different packet loss rates, fluctuating bandwidth, and the perceived quality of using different DASH video stream segment sizes on a video streaming session using different video sequences. The Mean Opinion Score (MOS) results give an insight into the performance of the system and expectation of the users. The results from this study show the impact of different network impairments and different video segments on users' QoE and further analysis and study may help in optimizing system performance.
The Development and Evaluation of a Computerized Adaptive Testing System.
ERIC Educational Resources Information Center
de-la-Torre, Roberto; Vispoel, Walter P.
The development and preliminary evaluation of the Computerized Adaptive Testing System (CATSYS), a new testing package for IBM-compatible microcomputers, are described. CATSYS can be used to administer and score operational adaptive tests or to conduct on-line computer simulation studies. The package incorporates several innovative features,…
[Adaptation potential of cardio-respiratory system in dust diseases].
Serebryakov, P V; Nenenko, O I; Fedina, I N; Rakhimzyanov, A R
2016-01-01
The article covers results of cardio-respiratory system evaluation in workers exposed to dust, on basis of adaptation potential evaluation via calculation of functional changes index and 6 minutes' walk test with continuous assessment of blood oxygenation and heart rate. Adaptation disorders are supported by results of external respiration assessment and echo-cardiography.
Hidden attractors in dynamical systems
NASA Astrophysics Data System (ADS)
Dudkowski, Dawid; Jafari, Sajad; Kapitaniak, Tomasz; Kuznetsov, Nikolay V.; Leonov, Gennady A.; Prasad, Awadhesh
2016-06-01
Complex dynamical systems, ranging from the climate, ecosystems to financial markets and engineering applications typically have many coexisting attractors. This property of the system is called multistability. The final state, i.e., the attractor on which the multistable system evolves strongly depends on the initial conditions. Additionally, such systems are very sensitive towards noise and system parameters so a sudden shift to a contrasting regime may occur. To understand the dynamics of these systems one has to identify all possible attractors and their basins of attraction. Recently, it has been shown that multistability is connected with the occurrence of unpredictable attractors which have been called hidden attractors. The basins of attraction of the hidden attractors do not touch unstable fixed points (if exists) and are located far away from such points. Numerical localization of the hidden attractors is not straightforward since there are no transient processes leading to them from the neighborhoods of unstable fixed points and one has to use the special analytical-numerical procedures. From the viewpoint of applications, the identification of hidden attractors is the major issue. The knowledge about the emergence and properties of hidden attractors can increase the likelihood that the system will remain on the most desirable attractor and reduce the risk of the sudden jump to undesired behavior. We review the most representative examples of hidden attractors, discuss their theoretical properties and experimental observations. We also describe numerical methods which allow identification of the hidden attractors.
Adaptive management of social-ecological systems: the path forward
Allen, Craig R.
2015-01-01
Adaptive management remains at the forefront of environmental management nearly 40 years after its original conception, largely because we have yet to develop other methodologies that offer the same promise. Despite the criticisms of adaptive management and the numerous failed attempts to implement it, adaptive management has yet to be replaced with a better alternative. The concept persists because it is simple, allows action despite uncertainty, and fosters learning. Moving forward, adaptive management of social-ecological systems provides policymakers, managers and scientists a powerful tool for managing for resilience in the face of uncertainty.
Sensorless adaptive optics system based on image second moment measurements
NASA Astrophysics Data System (ADS)
Agbana, Temitope E.; Yang, Huizhen; Soloviev, Oleg; Vdovin, Gleb; Verhaegen, Michel
2016-04-01
This paper presents experimental results of a static aberration control algorithm based on the linear relation be- tween mean square of the aberration gradient and the second moment of point spread function for the generation of control signal input for a deformable mirror (DM). Results presented in the work of Yang et al.1 suggested a good feasibility of the method for correction of static aberration for point and extended sources. However, a practical realisation of the algorithm has not been demonstrated. The goal of this article is to check the method experimentally in the real conditions of the present noise, finite dynamic range of the imaging camera, and system misalignments. The experiments have shown strong dependence of the linearity of the relationship on image noise and overall image intensity, which depends on the aberration level. Also, the restoration capability and the rate of convergence of the AO system for aberrations generated by the deformable mirror are experi- mentally investigated. The presented approach as well as the experimental results finds practical application in compensation of static aberration in adaptive microscopic imaging system.
ALEGRA -- A massively parallel h-adaptive code for solid dynamics
Summers, R.M.; Wong, M.K.; Boucheron, E.A.; Weatherby, J.R.
1997-12-31
ALEGRA is a multi-material, arbitrary-Lagrangian-Eulerian (ALE) code for solid dynamics designed to run on massively parallel (MP) computers. It combines the features of modern Eulerian shock codes, such as CTH, with modern Lagrangian structural analysis codes using an unstructured grid. ALEGRA is being developed for use on the teraflop supercomputers to conduct advanced three-dimensional (3D) simulations of shock phenomena important to a variety of systems. ALEGRA was designed with the Single Program Multiple Data (SPMD) paradigm, in which the mesh is decomposed into sub-meshes so that each processor gets a single sub-mesh with approximately the same number of elements. Using this approach the authors have been able to produce a single code that can scale from one processor to thousands of processors. A current major effort is to develop efficient, high precision simulation capabilities for ALEGRA, without the computational cost of using a global highly resolved mesh, through flexible, robust h-adaptivity of finite elements. H-adaptivity is the dynamic refinement of the mesh by subdividing elements, thus changing the characteristic element size and reducing numerical error. The authors are working on several major technical challenges that must be met to make effective use of HAMMER on MP computers.
Adaption of a corrector module to the IMP dynamics program
NASA Technical Reports Server (NTRS)
1972-01-01
The corrector module of the RAEIOS program and the IMP dynamics computer program were combined to achieve a date-fitting capability with the more general spacecraft dynamics models of the IMP program. The IMP dynamics program presents models of spacecraft dynamics for satellites with long, flexible booms. The properties of the corrector are discussed and a description is presented of the performance criteria and search logic for parameter estimation. A description is also given of the modifications made to add the corrector to the IMP program. This includes subroutine descriptions, common definitions, definition of input, and a description of output.
Cyberspace: The Ultimate Complex Adaptive System
2010-04-09
a transaction with a given agent; tags also facilitate the formation of aggregates , or meta-agents. Meta-agents help distrib- ute and decentralize...Cyber Environments Attribute Physical Environment Cyber Environment Location Latitude, Longitude IP-Address Speed Air and ground in mph Mbps or Gbps...or more capable in terms of its requisite variety (in can adapt to a wider range of conditions). The fitness of the agent is a complex aggregate
Adaptive Control of Nonlinear Flexible Systems
1993-01-18
disturbances. The following example illustrates the need for a robust state-feedback law and the sensi- tivity of the exact - linearization based control law... exact linearization , one can bring an input-output approach to a particular case of certainty- equivalence based adaptive control design. We now...are available for this model, exact linearization can be performed. Let C(s) be the compensator that is being used so far in the previous three
Maity, Arnab; Hocht, Leonhard; Heise, Christian; Holzapfel, Florian
2016-11-28
A new efficient adaptive optimal control approach is presented in this paper based on the indirect model reference adaptive control (MRAC) architecture for improvement of adaptation and tracking performance of the uncertain system. The system accounts here for both matched and unmatched unknown uncertainties that can act as plant as well as input effectiveness failures or damages. For adaptation of the unknown parameters of these uncertainties, the frequency selective learning approach is used. Its idea is to compute a filtered expression of the system uncertainty using multiple filters based on online instantaneous information, which is used for augmentation of the update law. It is capable of adjusting a sudden change in system dynamics without depending on high adaptation gains and can satisfy exponential parameter error convergence under certain conditions in the presence of structured matched and unmatched uncertainties as well. Additionally, the controller of the MRAC system is designed using a new optimal control method. This method is a new linear quadratic regulator-based optimal control formulation for both output regulation and command tracking problems. It provides a closed-form control solution. The proposed overall approach is applied in a control of lateral dynamics of an unmanned aircraft problem to show its effectiveness.
Techniques for grid manipulation and adaptation. [computational fluid dynamics
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Eisemann, Peter R.; Lee, Ki D.
1992-01-01
Two approaches have been taken to provide systematic grid manipulation for improved grid quality. One is the control point form (CPF) of algebraic grid generation. It provides explicit control of the physical grid shape and grid spacing through the movement of the control points. It works well in the interactive computer graphics environment and hence can be a good candidate for integration with other emerging technologies. The other approach is grid adaptation using a numerical mapping between the physical space and a parametric space. Grid adaptation is achieved by modifying the mapping functions through the effects of grid control sources. The adaptation process can be repeated in a cyclic manner if satisfactory results are not achieved after a single application.
Chronic infection and the origin of adaptive immune system.
Usharauli, David
2010-08-01
It has been speculated that the rise of the adaptive immune system in jawed vertebrates some 400 million years ago gave them a superior protection to detect and defend against pathogens that became more elusive and/or virulent to the host that had only innate immune system. First, this line of thought implies that adaptive immune system was a new, more sophisticated layer of host defense that operated independently of the innate immune system. Second, the natural consequence of this scenario would be that pathogens would have exercised so strong an evolutionary pressure that eventually no host could have afforded not to have an adaptive immune system. Neither of these arguments is supported by the facts. First, new experimental evidence has firmly established that operation of adaptive immune system is critically dependent on the ability of the innate immune system to detect invader-pathogens and second, the absolute majority of animal kingdom survives just fine with only an innate immune system. Thus, these data raise the dilemma: If innate immune system was sufficient to detect and protect against pathogens, why then did adaptive immune system develop in the first place? In contrast to the innate immune system, the adaptive immune system has one important advantage, precision. By precision I mean the ability of the defense system to detect and remove the target, for example, infected cells, without causing unwanted bystander damage of surrounding tissue. While the target precision per se is not important for short-term immune response, it becomes a critical factor when the immune response is long-lasting, as during chronic infection. In this paper I would like to propose new, "toxic index" hypothesis where I argue that the need to reduce the collateral damage to the tissue during chronic infection(s) was the evolutionary pressure that led to the development of the adaptive immune system.
Dynamical Systems and Motion Vision.
1988-04-01
TASK Artificial Inteligence Laboratory AREA I WORK UNIT NUMBERS 545 Technology Square . Cambridge, MA 02139 C\\ II. CONTROLLING OFFICE NAME ANO0 ADDRESS...INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY A.I.Memo No. 1037 April, 1988 Dynamical Systems and Motion Vision Joachim Heel Abstract: In this... Artificial Intelligence L3 Laboratory of the Massachusetts Institute of Technology. Support for the Laboratory’s [1 Artificial Intelligence Research is
RASCAL: A Rudimentary Adaptive System for Computer-Aided Learning.
ERIC Educational Resources Information Center
Stewart, John Christopher
Both the background of computer-assisted instruction (CAI) systems in general and the requirements of a computer-aided learning system which would be a reasonable assistant to a teacher are discussed. RASCAL (Rudimentary Adaptive System for Computer-Aided Learning) is a first attempt at defining a CAI system which would individualize the learning…
Mega-evolutionary dynamics of the adaptive radiation of birds.
Cooney, Christopher R; Bright, Jen A; Capp, Elliot J R; Chira, Angela M; Hughes, Emma C; Moody, Christopher J A; Nouri, Lara O; Varley, Zoë K; Thomas, Gavin H
2017-02-16
The origin and expansion of biological diversity is regulated by both developmental trajectories and limits on available ecological niches. As lineages diversify, an early and often rapid phase of species and trait proliferation gives way to evolutionary slow-downs as new species pack into ever more densely occupied regions of ecological niche space. Small clades such as Darwin's finches demonstrate that natural selection is the driving force of adaptive radiations, but how microevolutionary processes scale up to shape the expansion of phenotypic diversity over much longer evolutionary timescales is unclear. Here we address this problem on a global scale by analysing a crowdsourced dataset of three-dimensional scanned bill morphology from more than 2,000 species. We find that bill diversity expanded early in extant avian evolutionary history, before transitioning to a phase dominated by packing of morphological space. However, this early phenotypic diversification is decoupled from temporal variation in evolutionary rate: rates of bill evolution vary among lineages but are comparatively stable through time. We find that rare, but major, discontinuities in phenotype emerge from rapid increases in rate along single branches, sometimes leading to depauperate clades with unusual bill morphologies. Despite these jumps between groups, the major axes of within-group bill-shape evolution are remarkably consistent across birds. We reveal that macroevolutionary processes underlying global-scale adaptive radiations support Darwinian and Simpsonian ideas of microevolution within adaptive zones and accelerated evolution between distinct adaptive peaks.
New developments in adaptive methods for computational fluid dynamics
NASA Technical Reports Server (NTRS)
Oden, J. T.; Bass, Jon M.
1990-01-01
New developments in a posteriori error estimates, smart algorithms, and h- and h-p adaptive finite element methods are discussed in the context of two- and three-dimensional compressible and incompressible flow simulations. Applications to rotor-stator interaction, rotorcraft aerodynamics, shock and viscous boundary layer interaction and fluid-structure interaction problems are discussed.
Dynamically controlled crystal growth system
NASA Technical Reports Server (NTRS)
Bray, Terry L. (Inventor); Kim, Larry J. (Inventor); Harrington, Michael (Inventor); DeLucas, Lawrence J. (Inventor)
2002-01-01
Crystal growth can be initiated and controlled by dynamically controlled vapor diffusion or temperature change. In one aspect, the present invention uses a precisely controlled vapor diffusion approach to monitor and control protein crystal growth. The system utilizes a humidity sensor and various interfaces under computer control to effect virtually any evaporation rate from a number of different growth solutions simultaneously by means of an evaporative gas flow. A static laser light scattering sensor can be used to detect aggregation events and trigger a change in the evaporation rate for a growth solution. A control/follower configuration can be used to actively monitor one chamber and accurately control replicate chambers relative to the control chamber. In a second aspect, the invention exploits the varying solubility of proteins versus temperature to control the growth of protein crystals. This system contains miniature thermoelectric devices under microcomputer control that change temperature as needed to grow crystals of a given protein. Complex temperature ramps are possible using this approach. A static laser light scattering probe also can be used in this system as a non-invasive probe for detection of aggregation events. The automated dynamic control system provides systematic and predictable responses with regard to crystal size. These systems can be used for microgravity crystallization projects, for example in a space shuttle, and for crystallization work under terrestial conditions. The present invention is particularly useful for macromolecular crystallization, e.g. for proteins, polypeptides, nucleic acids, viruses and virus particles.
Dynamic security assessment processing system
NASA Astrophysics Data System (ADS)
Tang, Lei
The architecture of dynamic security assessment processing system (DSAPS) is proposed to address online dynamic security assessment (DSA) with focus of the dissertation on low-probability, high-consequence events. DSAPS upgrades current online DSA functions and adds new functions to fit into the modern power grid. Trajectory sensitivity analysis is introduced and its applications in power system are reviewed. An index is presented to assess transient voltage dips quantitatively using trajectory sensitivities. Then the framework of anticipatory computing system (ACS) for cascading defense is presented as an important function of DSAPS. ACS addresses various security problems and the uncertainties in cascading outages. Corrective control design is automated to mitigate the system stress in cascading progressions. The corrective controls introduced in the dissertation include corrective security constrained optimal power flow, a two-stage load control for severe under-frequency conditions, and transient stability constrained optimal power flow for cascading outages. With state-of-the-art computing facilities to perform high-speed extended-term time-domain simulation and optimization for large-scale systems, DSAPS/ACS efficiently addresses online DSA for low-probability, high-consequence events, which are not addressed by today's industrial practice. Human interference is reduced in the computationally burdensome analysis.
Network dynamics and systems biology
NASA Astrophysics Data System (ADS)
Norrell, Johannes A.
The physics of complex systems has grown considerably as a field in recent decades, largely due to improved computational technology and increased availability of systems level data. One area in which physics is of growing relevance is molecular biology. A new field, systems biology, investigates features of biological systems as a whole, a strategy of particular importance for understanding emergent properties that result from a complex network of interactions. Due to the complicated nature of the systems under study, the physics of complex systems has a significant role to play in elucidating the collective behavior. In this dissertation, we explore three problems in the physics of complex systems, motivated in part by systems biology. The first of these concerns the applicability of Boolean models as an approximation of continuous systems. Studies of gene regulatory networks have employed both continuous and Boolean models to analyze the system dynamics, and the two have been found produce similar results in the cases analyzed. We ask whether or not Boolean models can generically reproduce the qualitative attractor dynamics of networks of continuously valued elements. Using a combination of analytical techniques and numerical simulations, we find that continuous networks exhibit two effects---an asymmetry between on and off states, and a decaying memory of events in each element's inputs---that are absent from synchronously updated Boolean models. We show that in simple loops these effects produce exactly the attractors that one would predict with an analysis of the stability of Boolean attractors, but in slightly more complicated topologies, they can destabilize solutions that are stable in the Boolean approximation, and can stabilize new attractors. Second, we investigate ensembles of large, random networks. Of particular interest is the transition between ordered and disordered dynamics, which is well characterized in Boolean systems. Networks at the
A dynamical systems view of network centrality
Grindrod, Peter; Higham, Desmond J.
2014-01-01
To gain insights about dynamic networks, the dominant paradigm is to study discrete snapshots, or timeslices, as the interactions evolve. Here, we develop and test a new mathematical framework where network evolution is handled over continuous time, giving an elegant dynamical systems representation for the important concept of node centrality. The resulting system allows us to track the relative influence of each individual. This new setting is natural in many digital applications, offering both conceptual and computational advantages. The novel differential equations approach is convenient for modelling and analysis of network evolution and gives rise to an interesting application of the matrix logarithm function. From a computational perspective, it avoids the awkward up-front compromises between accuracy, efficiency and redundancy required in the prevalent discrete-time setting. Instead, we can rely on state-of-the-art ODE software, where discretization takes place adaptively in response to the prevailing system dynamics. The new centrality system generalizes the widely used Katz measure, and allows us to identify and track, at any resolution, the most influential nodes in terms of broadcasting and receiving information through time-dependent links. In addition to the classical static network notion of attenuation across edges, the new ODE also allows for attenuation over time, as information becomes stale. This allows ‘running measures’ to be computed, so that networks can be monitored in real time over arbitrarily long intervals. With regard to computational efficiency, we explain why it is cheaper to track good receivers of information than good broadcasters. An important consequence is that the overall broadcast activity in the network can also be monitored efficiently. We use two synthetic examples to validate the relevance of the new measures. We then illustrate the ideas on a large-scale voice call network, where key features are discovered that are
Statistical Mechanics of Dynamical Systems
NASA Astrophysics Data System (ADS)
Mori, H.; Hata, H.; Horita, T.; Kobayashi, T.
A statistical-mechanical formalism of chaos based on the geometry of invariant sets in phase space is discussed to show that chaotic dynamical systems can be treated by a formalism analogous to that of thermodynamic systems if one takes a relevant coarse-grained quantity, but their statistical laws are quite different from those of thermodynamic systems. This is a generalization of statistical mechanics for dealing with dissipative and hamiltonian (i.e., conservative) dynamical systems of a few degrees of freedom. Thus the sum of the local expansion rate of nearby orbits along relevant orbit over a long but finite time has been introduced in order to describe and characterize (1) a drastic change of the structure of a chaotic attractor at a bifurcation and anomalous phenomena associated, (2) a critical scaling of chaos in the neighborhood of a critical point for the bifurcation to a nonexotic state, and a self-similar temporal structure of a critical orbit on the critical 2^∞ attractor an the critical golden tori without mixing, (3) the critical KAM torus, diffusion and repeated sticking of a chaotic orbit to a critical torus in hamiltonian systems. Here a q-phase transition, analogous to the ferromagnetic phase transition, plays an important role. They are illustrated numerically and theoretically by treating the driven damped pendulum, the driven Duffing equation, the Henon map, and the dissipative and conservative standard maps. This description of chaos breaks the time-reversal symmetry of hamiltonian dynamical laws analogously to statistical mechanics of irreversible processes. The broken time-reversal symmetry is brought about by orbital instability of chaos.
Survivability of Deterministic Dynamical Systems
Hellmann, Frank; Schultz, Paul; Grabow, Carsten; Heitzig, Jobst; Kurths, Jürgen
2016-01-01
The notion of a part of phase space containing desired (or allowed) states of a dynamical system is important in a wide range of complex systems research. It has been called the safe operating space, the viability kernel or the sunny region. In this paper we define the notion of survivability: Given a random initial condition, what is the likelihood that the transient behaviour of a deterministic system does not leave a region of desirable states. We demonstrate the utility of this novel stability measure by considering models from climate science, neuronal networks and power grids. We also show that a semi-analytic lower bound for the survivability of linear systems allows a numerically very efficient survivability analysis in realistic models of power grids. Our numerical and semi-analytic work underlines that the type of stability measured by survivability is not captured by common asymptotic stability measures. PMID:27405955
Disgust as an adaptive system for disease avoidance behaviour
Curtis, Valerie; de Barra, Mícheál; Aunger, Robert
2011-01-01
Disgust is an evolved psychological system for protecting organisms from infection through disease avoidant behaviour. This ‘behavioural immune system’, present in a diverse array of species, exhibits universal features that orchestrate hygienic behaviour in response to cues of risk of contact with pathogens. However, disgust is also a dynamic adaptive system. Individuals show variation in pathogen avoidance associated with psychological traits like having a neurotic personality, as well as a consequence of being in certain physiological states such as pregnancy or infancy. Three specialized learning mechanisms modify the disgust response: the Garcia effect, evaluative conditioning and the law of contagion. Hygiene behaviour is influenced at the group level through social learning heuristics such as ‘copy the frequent’. Finally, group hygiene is extended symbolically to cultural rules about purity and pollution, which create social separations and are enforced as manners. Cooperative hygiene endeavours such as sanitation also reduce pathogen prevalence. Our model allows us to integrate perspectives from psychology, ecology and cultural evolution with those of epidemiology and anthropology. Understanding the nature of disease avoidance psychology at all levels of human organization can inform the design of programmes to improve public health. PMID:21199843
Dynamic immune intrusion detection system for IPv6
NASA Astrophysics Data System (ADS)
Yao, Li; Li, Zhi-tang; Hao, Tu
2005-03-01
We have set up a project aimed at developing a dynamical immune intrusion detection system for IPv6 and protecting the next generation Internet from intrusion. We focus on investigating immunelogical principles in designing a dynamic multi-agent system for intrusion detection in IPv6 environment, instead of attempting to describe all that is intrusion in the network try and describe what is normal use and define "non-self" as intrusion. The proposed intrusion detection system is designed as flexible, extendible, and adaptable in order to meet the needs and preferences of network administrators for IPv6 environment.
Global adaptive control for uncertain nonaffine nonlinear hysteretic systems.
Liu, Yong-Hua; Huang, Liangpei; Xiao, Dongming; Guo, Yong
2015-09-01
In this paper, the global output tracking is investigated for a class of uncertain nonlinear hysteretic systems with nonaffine structures. By combining the solution properties of the hysteresis model with the novel backstepping approach, a robust adaptive control algorithm is developed without constructing a hysteresis inverse. The proposed control scheme is further modified to tackle the bounded disturbances by adaptively estimating their bounds. It is rigorously proven that the designed adaptive controllers can guarantee global stability of the closed-loop system. Two numerical examples are provided to show the effectiveness of the proposed control schemes.
Applying Parallel Adaptive Methods with GeoFEST/PYRAMID to Simulate Earth Surface Crustal Dynamics
NASA Technical Reports Server (NTRS)
Norton, Charles D.; Lyzenga, Greg; Parker, Jay; Glasscoe, Margaret; Donnellan, Andrea; Li, Peggy
2006-01-01
This viewgraph presentation reviews the use Adaptive Mesh Refinement (AMR) in simulating the Crustal Dynamics of Earth's Surface. AMR simultaneously improves solution quality, time to solution, and computer memory requirements when compared to generating/running on a globally fine mesh. The use of AMR in simulating the dynamics of the Earth's Surface is spurred by future proposed NASA missions, such as InSAR for Earth surface deformation and other measurements. These missions will require support for large-scale adaptive numerical methods using AMR to model observations. AMR was chosen because it has been successful in computation fluid dynamics for predictive simulation of complex flows around complex structures.
Structural Dynamics of Electronic Systems
NASA Astrophysics Data System (ADS)
Suhir, E.
2013-03-01
The published work on analytical ("mathematical") and computer-aided, primarily finite-element-analysis (FEA) based, predictive modeling of the dynamic response of electronic systems to shocks and vibrations is reviewed. While understanding the physics of and the ability to predict the response of an electronic structure to dynamic loading has been always of significant importance in military, avionic, aeronautic, automotive and maritime electronics, during the last decade this problem has become especially important also in commercial, and, particularly, in portable electronics in connection with accelerated testing of various surface mount technology (SMT) systems on the board level. The emphasis of the review is on the nonlinear shock-excited vibrations of flexible printed circuit boards (PCBs) experiencing shock loading applied to their support contours during drop tests. At the end of the review we provide, as a suitable and useful illustration, the exact solution to a highly nonlinear problem of the dynamic response of a "flexible-and-heavy" PCB to an impact load applied to its support contour during drop testing.
Adaptive Systems Engineering: A Medical Paradigm for Practicing Systems Engineering
R. Douglas Hamelin; Ron D. Klingler; Christopher Dieckmann
2011-06-01
From its inception in the defense and aerospace industries, SE has applied holistic, interdisciplinary tools and work-process to improve the design and management of 'large, complex engineering projects.' The traditional scope of engineering in general embraces the design, development, production, and operation of physical systems, and SE, as originally conceived, falls within that scope. While this 'traditional' view has expanded over the years to embrace wider, more holistic applications, much of the literature and training currently available is still directed almost entirely at addressing the large, complex, NASA and defense-sized systems wherein the 'ideal' practice of SE provides the cradle-to-grave foundation for system development and deployment. Under such scenarios, systems engineers are viewed as an integral part of the system and project life-cycle from conception to decommissioning. In far less 'ideal' applications, SE principles are equally applicable to a growing number of complex systems and projects that need to be 'rescued' from overwhelming challenges that threaten imminent failure. The medical profession provides a unique analogy for this latter concept and offers a useful paradigm for tailoring our 'practice' of SE to address the unexpected dynamics of applying SE in the real world. In short, we can be much more effective as systems engineers as we change some of the paradigms under which we teach and 'practice' SE.
Ying, Wenjun; Henriquez, Craig S
2015-01-01
A both space and time adaptive algorithm is presented for simulating electrical wave propagation in the Purkinje system of the heart. The equations governing the distribution of electric potential over the system are solved in time with the method of lines. At each timestep, by an operator splitting technique, the space-dependent but linear diffusion part and the nonlinear but space-independent reactions part in the partial differential equations are integrated separately with implicit schemes, which have better stability and allow larger timesteps than explicit ones. The linear diffusion equation on each edge of the system is spatially discretized with the continuous piecewise linear finite element method. The adaptive algorithm can automatically recognize when and where the electrical wave starts to leave or enter the computational domain due to external current/voltage stimulation, self-excitation, or local change of membrane properties. Numerical examples demonstrating efficiency and accuracy of the adaptive algorithm are presented.
Ying, Wenjun; Henriquez, Craig S.
2015-01-01
A both space and time adaptive algorithm is presented for simulating electrical wave propagation in the Purkinje system of the heart. The equations governing the distribution of electric potential over the system are solved in time with the method of lines. At each timestep, by an operator splitting technique, the space-dependent but linear diffusion part and the nonlinear but space-independent reactions part in the partial differential equations are integrated separately with implicit schemes, which have better stability and allow larger timesteps than explicit ones. The linear diffusion equation on each edge of the system is spatially discretized with the continuous piecewise linear finite element method. The adaptive algorithm can automatically recognize when and where the electrical wave starts to leave or enter the computational domain due to external current/voltage stimulation, self-excitation, or local change of membrane properties. Numerical examples demonstrating efficiency and accuracy of the adaptive algorithm are presented. PMID:26581455
Noise in Nonlinear Dynamical Systems
NASA Astrophysics Data System (ADS)
Moss, Frank; McClintock, P. V. E.
2009-08-01
List of contributors; Preface; Introduction to volume three; 1. The effects of coloured quadratic noise on a turbulent transition in liquid He II J. T. Tough; 2. Electrohydrodynamic instability of nematic liquid crystals: growth process and influence of noise S. Kai; 3. Suppression of electrohydrodynamic instabilities by external noise Helmut R. Brand; 4. Coloured noise in dye laser fluctuations R. Roy, A. W. Yu and S. Zhu; 5. Noisy dynamics in optically bistable systems E. Arimondo, D. Hennequin and P. Glorieux; 6. Use of an electronic model as a guideline in experiments on transient optical bistability W. Lange; 7. Computer experiments in nonlinear stochastic physics Riccardo Mannella; 8. Analogue simulations of stochastic processes by means of minimum component electronic devices Leone Fronzoni; 9. Analogue techniques for the study of problems in stochastic nonlinear dynamics P. V. E. McClintock and Frank Moss; Index.
Optimizing Input/Output Using Adaptive File System Policies
NASA Technical Reports Server (NTRS)
Madhyastha, Tara M.; Elford, Christopher L.; Reed, Daniel A.
1996-01-01
Parallel input/output characterization studies and experiments with flexible resource management algorithms indicate that adaptivity is crucial to file system performance. In this paper we propose an automatic technique for selecting and refining file system policies based on application access patterns and execution environment. An automatic classification framework allows the file system to select appropriate caching and pre-fetching policies, while performance sensors provide feedback used to tune policy parameters for specific system environments. To illustrate the potential performance improvements possible using adaptive file system policies, we present results from experiments involving classification-based and performance-based steering.
The puzzle of partial migration: Adaptive dynamics and evolutionary game theory perspectives.
De Leenheer, Patrick; Mohapatra, Anushaya; Ohms, Haley A; Lytle, David A; Cushing, J M
2017-01-07
We consider the phenomenon of partial migration which is exhibited by populations in which some individuals migrate between habitats during their lifetime, but others do not. First, using an adaptive dynamics approach, we show that partial migration can be explained on the basis of negative density dependence in the per capita fertilities alone, provided that this density dependence is attenuated for increasing abundances of the subtypes that make up the population. We present an exact formula for the optimal proportion of migrants which is expressed in terms of the vital rates of migrant and non-migrant subtypes only. We show that this allocation strategy is both an evolutionary stable strategy (ESS) as well as a convergence stable strategy (CSS). To establish the former, we generalize the classical notion of an ESS because it is based on invasion exponents obtained from linearization arguments, which fail to capture the stabilizing effects of the nonlinear density dependence. These results clarify precisely when the notion of a "weak ESS", as proposed in Lundberg (2013) for a related model, is a genuine ESS. Secondly, we use an evolutionary game theory approach, and confirm, once again, that partial migration can be attributed to negative density dependence alone. In this context, the result holds even when density dependence is not attenuated. In this case, the optimal allocation strategy towards migrants is the same as the ESS stemming from the analysis based on the adaptive dynamics. The key feature of the population models considered here is that they are monotone dynamical systems, which enables a rather comprehensive mathematical analysis.
Adaptive accelerated ReaxFF reactive dynamics with validation from simulating hydrogen combustion.
Cheng, Tao; Jaramillo-Botero, Andrés; Goddard, William A; Sun, Huai
2014-07-02
We develop here the methodology for dramatically accelerating the ReaxFF reactive force field based reactive molecular dynamics (RMD) simulations through use of the bond boost concept (BB), which we validate here for describing hydrogen combustion. The bond order, undercoordination, and overcoordination concepts of ReaxFF ensure that the BB correctly adapts to the instantaneous configurations in the reactive system to automatically identify the reactions appropriate to receive the bond boost. We refer to this as adaptive Accelerated ReaxFF Reactive Dynamics or aARRDyn. To validate the aARRDyn methodology, we determined the detailed sequence of reactions for hydrogen combustion with and without the BB. We validate that the kinetics and reaction mechanisms (that is the detailed sequences of reactive intermediates and their subsequent transformation to others) for H2 oxidation obtained from aARRDyn agrees well with the brute force reactive molecular dynamics (BF-RMD) at 2498 K. Using aARRDyn, we then extend our simulations to the whole range of combustion temperatures from ignition (798 K) to flame temperature (2998K), and demonstrate that, over this full temperature range, the reaction rates predicted by aARRDyn agree well with the BF-RMD values, extrapolated to lower temperatures. For the aARRDyn simulation at 798 K we find that the time period for half the H2 to form H2O product is ∼538 s, whereas the computational cost was just 1289 ps, a speed increase of ∼0.42 trillion (10(12)) over BF-RMD. In carrying out these RMD simulations we found that the ReaxFF-COH2008 version of the ReaxFF force field was not accurate for such intermediates as H3O. Consequently we reoptimized the fit to a quantum mechanics (QM) level, leading to the ReaxFF-OH2014 force field that was used in the simulations.
An Adaptive Damping Network Designed for Strapdown Fiber Optic Gyrocompass System for Ships
Sun, Jin; Xu, Xiaosu; Liu, Yiting; Zhang, Tao; Li, Yao; Tong, Jinwu
2017-01-01
The strapdown fiber optic gyrocompass (strapdown FOGC) system for ships primarily works on external horizontal damping and undamping statuses. When there are large sea condition changes, the system will switch frequently between the external horizontal damping status and the undamping status. This means that the system is always in an adjustment status and influences the dynamic accuracy of the system. Aiming at the limitations of the conventional damping method, a new design idea is proposed, where the adaptive control method is used to design the horizontal damping network of the strapdown FOGC system. According to the size of acceleration, the parameters of the damping network are changed to make the system error caused by the ship’s maneuvering to a minimum. Furthermore, the jump in damping coefficient was transformed into gradual change to make a smooth system status switch. The adaptive damping network was applied for strapdown FOGC under the static and dynamic condition, and its performance was compared with the conventional damping, and undamping means. Experimental results showed that the adaptive damping network was effective in improving the dynamic performance of the strapdown FOGC. PMID:28257100
Droegemeier, Kelvin K
2009-03-13
Mesoscale weather, such as convective systems, intense local rainfall resulting in flash floods and lake effect snows, frequently is characterized by unpredictable rapid onset and evolution, heterogeneity and spatial and temporal intermittency. Ironically, most of the technologies used to observe the atmosphere, predict its evolution and compute, transmit or store information about it, operate in a static pre-scheduled framework that is fundamentally inconsistent with, and does not accommodate, the dynamic behaviour of mesoscale weather. As a result, today's weather technology is highly constrained and far from optimal when applied to any particular situation. This paper describes a new cyberinfrastructure framework, in which remote and in situ atmospheric sensors, data acquisition and storage systems, assimilation and prediction codes, data mining and visualization engines, and the information technology frameworks within which they operate, can change configuration automatically, in response to evolving weather. Such dynamic adaptation is designed to allow system components to achieve greater overall effectiveness, relative to their static counterparts, for any given situation. The associated service-oriented architecture, known as Linked Environments for Atmospheric Discovery (LEAD), makes advanced meteorological and cyber tools as easy to use as ordering a book on the web. LEAD has been applied in a variety of settings, including experimental forecasting by the US National Weather Service, and allows users to focus much more attention on the problem at hand and less on the nuances of data formats, communication protocols and job execution environments.
Fogarty, Aoife C. Potestio, Raffaello Kremer, Kurt
2015-05-21
A fully atomistic modelling of many biophysical and biochemical processes at biologically relevant length- and time scales is beyond our reach with current computational resources, and one approach to overcome this difficulty is the use of multiscale simulation techniques. In such simulations, when system properties necessitate a boundary between resolutions that falls within the solvent region, one can use an approach such as the Adaptive Resolution Scheme (AdResS), in which solvent particles change their resolution on the fly during the simulation. Here, we apply the existing AdResS methodology to biomolecular systems, simulating a fully atomistic protein with an atomistic hydration shell, solvated in a coarse-grained particle reservoir and heat bath. Using as a test case an aqueous solution of the regulatory protein ubiquitin, we first confirm the validity of the AdResS approach for such systems, via an examination of protein and solvent structural and dynamical properties. We then demonstrate how, in addition to providing a computational speedup, such a multiscale AdResS approach can yield otherwise inaccessible physical insights into biomolecular function. We use our methodology to show that protein structure and dynamics can still be correctly modelled using only a few shells of atomistic water molecules. We also discuss aspects of the AdResS methodology peculiar to biomolecular simulations.
Multi-particle dynamical systems and polynomials
NASA Astrophysics Data System (ADS)
Demina, Maria V.; Kudryashov, Nikolai A.
2016-05-01
Polynomial dynamical systems describing interacting particles in the plane are studied. A method replacing integration of a polynomial multi-particle dynamical system by finding polynomial solutions of partial differential equations is introduced. The method enables one to integrate a wide class of polynomial multi-particle dynamical systems. The general solutions of certain dynamical systems related to linear second-order partial differential equations are found. As a by-product of our results, new families of orthogonal polynomials are derived.