Science.gov

Sample records for adaptive dynamics approach

  1. Differentially Private Histogram Publication For Dynamic Datasets: An Adaptive Sampling Approach

    PubMed Central

    Li, Haoran; Jiang, Xiaoqian; Xiong, Li; Liu, Jinfei

    2016-01-01

    Differential privacy has recently become a de facto standard for private statistical data release. Many algorithms have been proposed to generate differentially private histograms or synthetic data. However, most of them focus on “one-time” release of a static dataset and do not adequately address the increasing need of releasing series of dynamic datasets in real time. A straightforward application of existing histogram methods on each snapshot of such dynamic datasets will incur high accumulated error due to the composibility of differential privacy and correlations or overlapping users between the snapshots. In this paper, we address the problem of releasing series of dynamic datasets in real time with differential privacy, using a novel adaptive distance-based sampling approach. Our first method, DSFT, uses a fixed distance threshold and releases a differentially private histogram only when the current snapshot is sufficiently different from the previous one, i.e., with a distance greater than a predefined threshold. Our second method, DSAT, further improves DSFT and uses a dynamic threshold adaptively adjusted by a feedback control mechanism to capture the data dynamics. Extensive experiments on real and synthetic datasets demonstrate that our approach achieves better utility than baseline methods and existing state-of-the-art methods. PMID:26973795

  2. Dynamical Adaptation in Photoreceptors

    PubMed Central

    Clark, Damon A.; Benichou, Raphael; Meister, Markus; Azeredo da Silveira, Rava

    2013-01-01

    Adaptation is at the heart of sensation and nowhere is it more salient than in early visual processing. Light adaptation in photoreceptors is doubly dynamical: it depends upon the temporal structure of the input and it affects the temporal structure of the response. We introduce a non-linear dynamical adaptation model of photoreceptors. It is simple enough that it can be solved exactly and simulated with ease; analytical and numerical approaches combined provide both intuition on the behavior of dynamical adaptation and quantitative results to be compared with data. Yet the model is rich enough to capture intricate phenomenology. First, we show that it reproduces the known phenomenology of light response and short-term adaptation. Second, we present new recordings and demonstrate that the model reproduces cone response with great precision. Third, we derive a number of predictions on the response of photoreceptors to sophisticated stimuli such as periodic inputs, various forms of flickering inputs, and natural inputs. In particular, we demonstrate that photoreceptors undergo rapid adaptation of response gain and time scale, over ∼ 300 ms—i. e., over the time scale of the response itself—and we confirm this prediction with data. For natural inputs, this fast adaptation can modulate the response gain more than tenfold and is hence physiologically relevant. PMID:24244119

  3. Dynamic experiment design regularization approach to adaptive imaging with array radar/SAR sensor systems.

    PubMed

    Shkvarko, Yuriy; Tuxpan, José; Santos, Stewart

    2011-01-01

    We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the "model-free" variational analysis (VA)-based image enhancement approach and the "model-based" descriptive experiment design (DEED) regularization paradigm are unified into a new dynamic experiment design (DYED) regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA) regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations. PMID:22163859

  4. A Stochastic Approach for Automatic and Dynamic Modeling of Students' Learning Styles in Adaptive Educational Systems

    ERIC Educational Resources Information Center

    Dorça, Fabiano Azevedo; Lima, Luciano Vieira; Fernandes, Márcia Aparecida; Lopes, Carlos Roberto

    2012-01-01

    Considering learning and how to improve students' performances, an adaptive educational system must know how an individual learns best. In this context, this work presents an innovative approach for student modeling through probabilistic learning styles combination. Experiments have shown that our approach is able to automatically detect and…

  5. A New Approach to Parallel Dynamic Partitioning for Adaptive Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Heber, Gerd; Biswas, Rupak; Gao, Guang R.

    1999-01-01

    Classical mesh partitioning algorithms were designed for rather static situations, and their straightforward application in a dynamical framework may lead to unsatisfactory results, e.g., excessive data migration among processors. Furthermore, special attention should be paid to their amenability to parallelization. In this paper, a novel parallel method for the dynamic partitioning of adaptive unstructured meshes is described. It is based on a linear representation of the mesh using self-avoiding walks.

  6. An adaptive approach to the dynamic allocation of buffer storage. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Crooke, S. C.

    1970-01-01

    Several strategies for the dynamic allocation of buffer storage are simulated and compared. The basic algorithms investigated, using actual statistics observed in the Univac 1108 EXEC 8 System, include the buddy method and the first-fit method. Modifications are made to the basic methods in an effort to improve and to measure allocation performance. A simulation model of an adaptive strategy is developed which permits interchanging the two different methods, the buddy and the first-fit methods with some modifications. Using an adaptive strategy, each method may be employed in the statistical environment in which its performance is superior to the other method.

  7. Towards an Agile Approach to Adapting Dynamic Collaboration Support to Student Needs

    ERIC Educational Resources Information Center

    Adamson, David; Dyke, Gregory; Jang, Hyeju; Rosé, Carolyn Penstein

    2014-01-01

    This paper investigates the use of conversational agents to scaffold on-line collaborative learning discussions through an approach called Academically Productive Talk (APT). In contrast to past work on dynamic support for collaborative learning, where agents were used to elevate conceptual depth by leading students through directed lines of…

  8. A knowledge-based approach to identification and adaptation in dynamical systems control

    NASA Technical Reports Server (NTRS)

    Glass, B. J.; Wong, C. M.

    1988-01-01

    Artificial intelligence techniques are applied to the problems of model form and parameter identification of large-scale dynamic systems. The object-oriented knowledge representation is discussed in the context of causal modeling and qualitative reasoning. Structured sets of rules are used for implementing qualitative component simulations, for catching qualitative discrepancies and quantitative bound violations, and for making reconfiguration and control decisions that affect the physical system. These decisions are executed by backward-chaining through a knowledge base of control action tasks. This approach was implemented for two examples: a triple quadrupole mass spectrometer and a two-phase thermal testbed. Results of tests with both of these systems demonstrate that the software replicates some or most of the functionality of a human operator, thereby reducing the need for a human-in-the-loop in the lower levels of control of these complex systems.

  9. Adaptive Dynamic Bayesian Networks

    SciTech Connect

    Ng, B M

    2007-10-26

    A discrete-time Markov process can be compactly modeled as a dynamic Bayesian network (DBN)--a graphical model with nodes representing random variables and directed edges indicating causality between variables. Each node has a probability distribution, conditional on the variables represented by the parent nodes. A DBN's graphical structure encodes fixed conditional dependencies between variables. But in real-world systems, conditional dependencies between variables may be unknown a priori or may vary over time. Model errors can result if the DBN fails to capture all possible interactions between variables. Thus, we explore the representational framework of adaptive DBNs, whose structure and parameters can change from one time step to the next: a distribution's parameters and its set of conditional variables are dynamic. This work builds on recent work in nonparametric Bayesian modeling, such as hierarchical Dirichlet processes, infinite-state hidden Markov networks and structured priors for Bayes net learning. In this paper, we will explain the motivation for our interest in adaptive DBNs, show how popular nonparametric methods are combined to formulate the foundations for adaptive DBNs, and present preliminary results.

  10. The fluid dynamic approach to equidistribution methods for grid generation and adaptation

    SciTech Connect

    Delzanno, Gian Luca; Finn, John M

    2009-01-01

    The equidistribution methods based on L{sub p} Monge-Kantorovich optimization [Finn and Delzanno, submitted to SISC, 2009] and on the deformation [Moser, 1965; Dacorogna and Moser, 1990, Liao and Anderson, 1992] method are analyzed primarily in the context of grid generation. It is shown that the first class of methods can be obtained from a fluid dynamic formulation based on time-dependent equations for the mass density and the momentum density, arising from a variational principle. In this context, deformation methods arise from a fluid formulation by making a specific assumption on the time evolution of the density (but with some degree of freedom for the momentum density). In general, deformation methods do not arise from a variational principle. However, it is possible to prescribe an optimal deformation method, related to L{sub 1} Monge-Kantorovich optimization, by making a further assumption on the momentum density. Some applications of the L{sub p} fluid dynamic formulation to imaging are also explored.

  11. Dynamic scenario of metabolic pathway adaptation in tumors and therapeutic approach.

    PubMed

    Peppicelli, Silvia; Bianchini, Francesca; Calorini, Lido

    2015-01-01

    Cancer cells need to regulate their metabolic program to fuel several activities, including unlimited proliferation, resistance to cell death, invasion and metastasis. The aim of this work is to revise this complex scenario. Starting from proliferating cancer cells located in well-oxygenated regions, they may express the so-called "Warburg effect" or aerobic glycolysis, meaning that although a plenty of oxygen is available, cancer cells choose glycolysis, the sole pathway that allows a biomass formation and DNA duplication, needed for cell division. Although oxygen does not represent the primary font of energy, diffusion rate reduces oxygen tension and the emerging hypoxia promotes "anaerobic glycolysis" through the hypoxia inducible factor-1α-dependent up-regulation. The acquired hypoxic phenotype is endowed with high resistance to cell death and high migration capacities, although these cells are less proliferating. Cells using aerobic or anaerobic glycolysis survive only in case they extrude acidic metabolites acidifying the extracellular space. Acidosis drives cancer cells from glycolysis to OxPhos, and OxPhos transforms the available alternative substrates into energy used to fuel migration and distant organ colonization. Thus, metabolic adaptations sustain different energy-requiring ability of cancer cells, but render them responsive to perturbations by anti-metabolic agents, such as inhibitors of glycolysis and/or OxPhos. PMID:25897425

  12. Dynamic scenario of metabolic pathway adaptation in tumors and therapeutic approach

    PubMed Central

    Peppicelli, Silvia; Bianchini, Francesca; Calorini, Lido

    2015-01-01

    Cancer cells need to regulate their metabolic program to fuel several activities, including unlimited proliferation, resistance to cell death, invasion and metastasis. The aim of this work is to revise this complex scenario. Starting from proliferating cancer cells located in well-oxygenated regions, they may express the so-called “Warburg effect” or aerobic glycolysis, meaning that although a plenty of oxygen is available, cancer cells choose glycolysis, the sole pathway that allows a biomass formation and DNA duplication, needed for cell division. Although oxygen does not represent the primary font of energy, diffusion rate reduces oxygen tension and the emerging hypoxia promotes “anaerobic glycolysis” through the hypoxia inducible factor-1α-dependent up-regulation. The acquired hypoxic phenotype is endowed with high resistance to cell death and high migration capacities, although these cells are less proliferating. Cells using aerobic or anaerobic glycolysis survive only in case they extrude acidic metabolites acidifying the extracellular space. Acidosis drives cancer cells from glycolysis to OxPhos, and OxPhos transforms the available alternative substrates into energy used to fuel migration and distant organ colonization. Thus, metabolic adaptations sustain different energy-requiring ability of cancer cells, but render them responsive to perturbations by anti-metabolic agents, such as inhibitors of glycolysis and/or OxPhos. PMID:25897425

  13. Dynamic Adaption of Vascular Morphology

    PubMed Central

    Okkels, Fridolin; Jacobsen, Jens Christian Brings

    2012-01-01

    The structure of vascular networks adapts continuously to meet changes in demand of the surrounding tissue. Most of the known vascular adaptation mechanisms are based on local reactions to local stimuli such as pressure and flow, which in turn reflects influence from the surrounding tissue. Here we present a simple two-dimensional model in which, as an alternative approach, the tissue is modeled as a porous medium with intervening sharply defined flow channels. Based on simple, physiologically realistic assumptions, flow-channel structure adapts so as to reach a configuration in which all parts of the tissue are supplied. A set of model parameters uniquely determine the model dynamics, and we have identified the region of the best-performing model parameters (a global optimum). This region is surrounded in parameter space by less optimal model parameter values, and this separation is characterized by steep gradients in the related fitness landscape. Hence it appears that the optimal set of parameters tends to localize close to critical transition zones. Consequently, while the optimal solution is stable for modest parameter perturbations, larger perturbations may cause a profound and permanent shift in systems characteristics. We suggest that the system is driven toward a critical state as a consequence of the ongoing parameter optimization, mimicking an evolutionary pressure on the system. PMID:23060814

  14. Dynamic optimization and adaptive controller design

    NASA Astrophysics Data System (ADS)

    Inamdar, S. R.

    2010-10-01

    In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.

  15. L1 Adaptive Control Augmentation System with Application to the X-29 Lateral/Directional Dynamics: A Multi-Input Multi-Output Approach

    NASA Technical Reports Server (NTRS)

    Griffin, Brian Joseph; Burken, John J.; Xargay, Enric

    2010-01-01

    This paper presents an L(sub 1) adaptive control augmentation system design for multi-input multi-output nonlinear systems in the presence of unmatched uncertainties which may exhibit significant cross-coupling effects. A piecewise continuous adaptive law is adopted and extended for applicability to multi-input multi-output systems that explicitly compensates for dynamic cross-coupling. In addition, explicit use of high-fidelity actuator models are added to the L1 architecture to reduce uncertainties in the system. The L(sub 1) multi-input multi-output adaptive control architecture is applied to the X-29 lateral/directional dynamics and results are evaluated against a similar single-input single-output design approach.

  16. Adaptive critics for dynamic optimization.

    PubMed

    Kulkarni, Raghavendra V; Venayagamoorthy, Ganesh Kumar

    2010-06-01

    A novel action-dependent adaptive critic design (ACD) is developed for dynamic optimization. The proposed combination of a particle swarm optimization-based actor and a neural network critic is demonstrated through dynamic sleep scheduling of wireless sensor motes for wildlife monitoring. The objective of the sleep scheduler is to dynamically adapt the sleep duration to node's battery capacity and movement pattern of animals in its environment in order to obtain snapshots of the animal on its trajectory uniformly. Simulation results show that the sleep time of the node determined by the actor critic yields superior quality of sensory data acquisition and enhanced node longevity. PMID:20223635

  17. Automated adaptive inference of phenomenological dynamical models

    PubMed Central

    Daniels, Bryan C.; Nemenman, Ilya

    2015-01-01

    Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved. PMID:26293508

  18. Automated adaptive inference of phenomenological dynamical models

    NASA Astrophysics Data System (ADS)

    Daniels, Bryan C.; Nemenman, Ilya

    2015-08-01

    Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved.

  19. Adaptive dynamics of saturated polymorphisms.

    PubMed

    Kisdi, Éva; Geritz, Stefan A H

    2016-03-01

    We study the joint adaptive dynamics of n scalar-valued strategies in ecosystems where n is the maximum number of coexisting strategies permitted by the (generalized) competitive exclusion principle. The adaptive dynamics of such saturated systems exhibits special characteristics, which we first demonstrate in a simple example of a host-pathogen-predator model. The main part of the paper characterizes the adaptive dynamics of saturated polymorphisms in general. In order to investigate convergence stability, we give a new sufficient condition for absolute stability of an arbitrary (not necessarily saturated) polymorphic singularity and show that saturated evolutionarily stable polymorphisms satisfy it. For the case [Formula: see text], we also introduce a method to construct different pairwise invasibility plots of the monomorphic population without changing the selection gradients of the saturated dimorphism. PMID:26676357

  20. Adaptive approaches to biosecurity governance.

    PubMed

    Cook, David C; Liu, Shuang; Murphy, Brendan; Lonsdale, W Mark

    2010-09-01

    This article discusses institutional changes that may facilitate an adaptive approach to biosecurity risk management where governance is viewed as a multidisciplinary, interactive experiment acknowledging uncertainty. Using the principles of adaptive governance, evolved from institutional theory, we explore how the concepts of lateral information flows, incentive alignment, and policy experimentation might shape Australia's invasive species defense mechanisms. We suggest design principles for biosecurity policies emphasizing overlapping complementary response capabilities and the sharing of invasive species risks via a polycentric system of governance. PMID:20561262

  1. QoS Differential Scheduling in Cognitive-Radio-Based Smart Grid Networks: An Adaptive Dynamic Programming Approach.

    PubMed

    Yu, Rong; Zhong, Weifeng; Xie, Shengli; Zhang, Yan; Zhang, Yun

    2016-02-01

    As the next-generation power grid, smart grid will be integrated with a variety of novel communication technologies to support the explosive data traffic and the diverse requirements of quality of service (QoS). Cognitive radio (CR), which has the favorable ability to improve the spectrum utilization, provides an efficient and reliable solution for smart grid communications networks. In this paper, we study the QoS differential scheduling problem in the CR-based smart grid communications networks. The scheduler is responsible for managing the spectrum resources and arranging the data transmissions of smart grid users (SGUs). To guarantee the differential QoS, the SGUs are assigned to have different priorities according to their roles and their current situations in the smart grid. Based on the QoS-aware priority policy, the scheduler adjusts the channels allocation to minimize the transmission delay of SGUs. The entire transmission scheduling problem is formulated as a semi-Markov decision process and solved by the methodology of adaptive dynamic programming. A heuristic dynamic programming (HDP) architecture is established for the scheduling problem. By the online network training, the HDP can learn from the activities of primary users and SGUs, and adjust the scheduling decision to achieve the purpose of transmission delay minimization. Simulation results illustrate that the proposed priority policy ensures the low transmission delay of high priority SGUs. In addition, the emergency data transmission delay is also reduced to a significantly low level, guaranteeing the differential QoS in smart grid. PMID:25910254

  2. Criticality of Adaptive Control Dynamics

    NASA Astrophysics Data System (ADS)

    Patzelt, Felix; Pawelzik, Klaus

    2011-12-01

    We show, that stabilization of a dynamical system can annihilate observable information about its structure. This mechanism induces critical points as attractors in locally adaptive control. It also reveals, that previously reported criticality in simple controllers is caused by adaptation and not by other controller details. We apply these results to a real-system example: human balancing behavior. A model of predictive adaptive closed-loop control subject to some realistic constraints is introduced and shown to reproduce experimental observations in unprecedented detail. Our results suggests, that observed error distributions in between the Lévy and Gaussian regimes may reflect a nearly optimal compromise between the elimination of random local trends and rare large errors.

  3. The Limits to Adaptation; A Systems Approach

    EPA Science Inventory

    The Limits to Adaptation: A Systems Approach. The ability to adapt to climate change is delineated by capacity thresholds, after which climate damages begin to overwhelm the adaptation response. Such thresholds depend upon physical properties (natural processes and engineering...

  4. Adaptive Dynamic Event Tree in RAVEN code

    SciTech Connect

    Alfonsi, Andrea; Rabiti, Cristian; Mandelli, Diego; Cogliati, Joshua Joseph; Kinoshita, Robert Arthur

    2014-11-01

    RAVEN is a software tool that is focused on performing statistical analysis of stochastic dynamic systems. RAVEN has been designed in a high modular and pluggable way in order to enable easy integration of different programming languages (i.e., C++, Python) and coupling with other applications (system codes). Among the several capabilities currently present in RAVEN, there are five different sampling strategies: Monte Carlo, Latin Hyper Cube, Grid, Adaptive and Dynamic Event Tree (DET) sampling methodologies. The scope of this paper is to present a new sampling approach, currently under definition and implementation: an evolution of the DET me

  5. Adaptive EAGLE dynamic solution adaptation and grid quality enhancement

    NASA Technical Reports Server (NTRS)

    Luong, Phu Vinh; Thompson, J. F.; Gatlin, B.; Mastin, C. W.; Kim, H. J.

    1992-01-01

    In the effort described here, the elliptic grid generation procedure in the EAGLE grid code was separated from the main code into a subroutine, and a new subroutine which evaluates several grid quality measures at each grid point was added. The elliptic grid routine can now be called, either by a computational fluid dynamics (CFD) code to generate a new adaptive grid based on flow variables and quality measures through multiple adaptation, or by the EAGLE main code to generate a grid based on quality measure variables through static adaptation. Arrays of flow variables can be read into the EAGLE grid code for use in static adaptation as well. These major changes in the EAGLE adaptive grid system make it easier to convert any CFD code that operates on a block-structured grid (or single-block grid) into a multiple adaptive code.

  6. Adapting Courses to Distance Delivery: Three Approaches.

    ERIC Educational Resources Information Center

    Landis, Melodee

    1999-01-01

    Describes three approaches to adapting courses to distance delivery: the most common "dive-in" technique (little preparation other than adapting print on transparencies, practicing with technology controls, and test-running); the "chunking" approach (considering how the major "chunks" of teaching can be transported to new technologies); and the…

  7. Acquiring case adaptation knowledge: A hybrid approach

    SciTech Connect

    Leake, D.B.; Kinley, A.; Wilson, D.

    1996-12-31

    The ability of case-based reasoning (CBR) systems to apply cases to novel situations depends on their case adaptation knowledge. However, endowing CBR systems with adequate adaptation knowledge has proven to be a very difficult task. This paper describes a hybrid method for performing case adaptation, using a combination of rule-based and case-based reasoning. It shows how this approach provides a framework for acquiring flexible adaptation knowledge from experiences with autonomous adaptation and suggests its potential as a basis for acquisition of adaptation knowledge from interactive user guidance. It also presents initial experimental results examining the benefits of the approach and comparing the relative contributions of case learning and adaptation learning to reasoning performance.

  8. An Approach for Dynamic Grids

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Liou, Meng-Sing; Hindman, Richard G.

    1994-01-01

    An approach is presented for the generation of two-dimensional, structured, dynamic grids. The grid motion may be due to the motion of the boundaries of the computational domain or to the adaptation of the grid to the transient, physical solution. A time-dependent grid is computed through the time integration of the grid speeds which are computed from a system of grid speed equations. The grid speed equations are derived from the time-differentiation of the grid equations so as to ensure that the dynamic grid maintains the desired qualities of the static grid. The grid equations are the Euler-Lagrange equations derived from a variational statement for the grid. The dynamic grid method is demonstrated for a model problem involving boundary motion, an inviscid flow in a converging-diverging nozzle during startup, and a viscous flow over a flat plate with an impinging shock wave. It is shown that the approach is more accurate for transient flows than an approach in which the grid speeds are computed using a finite difference with respect to time of the grid. However, the approach requires significantly more computational effort.

  9. Adaptive dynamics for physiologically structured population models.

    PubMed

    Durinx, Michel; Metz, J A J Hans; Meszéna, Géza

    2008-05-01

    We develop a systematic toolbox for analyzing the adaptive dynamics of multidimensional traits in physiologically structured population models with point equilibria (sensu Dieckmann et al. in Theor. Popul. Biol. 63:309-338, 2003). Firstly, we show how the canonical equation of adaptive dynamics (Dieckmann and Law in J. Math. Biol. 34:579-612, 1996), an approximation for the rate of evolutionary change in characters under directional selection, can be extended so as to apply to general physiologically structured population models with multiple birth states. Secondly, we show that the invasion fitness function (up to and including second order terms, in the distances of the trait vectors to the singularity) for a community of N coexisting types near an evolutionarily singular point has a rational form, which is model-independent in the following sense: the form depends on the strategies of the residents and the invader, and on the second order partial derivatives of the one-resident fitness function at the singular point. This normal form holds for Lotka-Volterra models as well as for physiologically structured population models with multiple birth states, in discrete as well as continuous time and can thus be considered universal for the evolutionary dynamics in the neighbourhood of singular points. Only in the case of one-dimensional trait spaces or when N = 1 can the normal form be reduced to a Taylor polynomial. Lastly we show, in the form of a stylized recipe, how these results can be combined into a systematic approach for the analysis of the (large) class of evolutionary models that satisfy the above restrictions. PMID:17943289

  10. Flight Test Approach to Adaptive Control Research

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration s Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The validation of adaptive controls has the potential to enhance safety in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  11. A Predictive Analysis Approach to Adaptive Testing.

    ERIC Educational Resources Information Center

    Kirisci, Levent; Hsu, Tse-Chi

    The predictive analysis approach to adaptive testing originated in the idea of statistical predictive analysis suggested by J. Aitchison and I.R. Dunsmore (1975). The adaptive testing model proposed is based on parameter-free predictive distribution. Aitchison and Dunsmore define statistical prediction analysis as the use of data obtained from an…

  12. Dynamic adaptivity of "smart" piezoelectric structures

    NASA Astrophysics Data System (ADS)

    Tzou, Horn-Sen; Zhong, Jianping P.

    1990-10-01

    Active smart" space and machine structures with adaptive dynamic characteristics have long been interested in a variety of high-performance systems, e.g., flexible robots, flexible space structures, "smart" machines, etc. In this paper, an active adaptive structure made of piezoelectric materials is proposed and evaluated. The structural adaptivity is achieved by a voltage feedback (open or closed loops) utilizing the converse piezoelectric effect. A mathematical model is proposed and the electrodynamic equations of motion and the generalized boundary conditions of a generic piezoelectric shell subjected to mechanical and electrical excitations are derived using Hamilton's principle and the linear piezoelectric theory. The dynamic adaptivity of the structure is introduced using a feedback control system. The theory is demonstrated in a case study in which the structural adaptivity (natural frequency) is investigated.

  13. Variable neural adaptive robust control: a switched system approach.

    PubMed

    Lian, Jianming; Hu, Jianghai; Żak, Stanislaw H

    2015-05-01

    Variable neural adaptive robust control strategies are proposed for the output tracking control of a class of multiinput multioutput uncertain systems. The controllers incorporate a novel variable-structure radial basis function (RBF) network as the self-organizing approximator for unknown system dynamics. It can determine the network structure online dynamically by adding or removing RBFs according to the tracking performance. The structure variation is systematically considered in the stability analysis of the closed-loop system using a switched system approach with the piecewise quadratic Lyapunov function. The performance of the proposed variable neural adaptive robust controllers is illustrated with simulations. PMID:25881366

  14. Connectionist approach to adaptive reasoning

    NASA Astrophysics Data System (ADS)

    Reddy, Mohan S.; Pandya, Abhijit S.; Reddy, D. V.

    1995-06-01

    This paper illustrates the neural net approach to constructing a fuzzy logic decision system. This technique employs an artificial neural network (ANN) to recognize the relationships that exist between the various inputs and outputs. An ANN is constructed based on the variable present in the application. The network is trained and tested. After successful testing, the ANN is exposed to new data and the results are grouped into fuzzy membership sets. This data grouping forms the basis of a new ANN. The network is now trained and tested with the fuzzy membership data. New data is presented to the trained network and the results from the fuzzy implications. This approach is used to compute skid resistance values from G-analyst accelerometer readings on open grid bridge decks.

  15. Flight Approach to Adaptive Control Research

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The testbed served as a full-scale vehicle to test and validate adaptive flight control research addressing technical challenges involved with reducing risk to enable safe flight in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  16. Dynamics and Adaptive Control for Stability Recovery of Damaged Aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Krishnakumar, Kalmanje; Kaneshige, John; Nespeca, Pascal

    2006-01-01

    This paper presents a recent study of a damaged generic transport model as part of a NASA research project to investigate adaptive control methods for stability recovery of damaged aircraft operating in off-nominal flight conditions under damage and or failures. Aerodynamic modeling of damage effects is performed using an aerodynamic code to assess changes in the stability and control derivatives of a generic transport aircraft. Certain types of damage such as damage to one of the wings or horizontal stabilizers can cause the aircraft to become asymmetric, thus resulting in a coupling between the longitudinal and lateral motions. Flight dynamics for a general asymmetric aircraft is derived to account for changes in the center of gravity that can compromise the stability of the damaged aircraft. An iterative trim analysis for the translational motion is developed to refine the trim procedure by accounting for the effects of the control surface deflection. A hybrid direct-indirect neural network, adaptive flight control is proposed as an adaptive law for stabilizing the rotational motion of the damaged aircraft. The indirect adaptation is designed to estimate the plant dynamics of the damaged aircraft in conjunction with the direct adaptation that computes the control augmentation. Two approaches are presented 1) an adaptive law derived from the Lyapunov stability theory to ensure that the signals are bounded, and 2) a recursive least-square method for parameter identification. A hardware-in-the-loop simulation is conducted and demonstrates the effectiveness of the direct neural network adaptive flight control in the stability recovery of the damaged aircraft. A preliminary simulation of the hybrid adaptive flight control has been performed and initial data have shown the effectiveness of the proposed hybrid approach. Future work will include further investigations and high-fidelity simulations of the proposed hybrid adaptive Bight control approach.

  17. Content-adaptive ghost imaging of dynamic scenes.

    PubMed

    Li, Ziwei; Suo, Jinli; Hu, Xuemei; Dai, Qionghai

    2016-04-01

    Limited by long acquisition time of 2D ghost imaging, current ghost imaging systems are so far inapplicable for dynamic scenes. However, it's been demonstrated that nature images are spatiotemporally redundant and the redundancy is scene dependent. Inspired by that, we propose a content-adaptive computational ghost imaging approach to achieve high reconstruction quality under a small number of measurements, and thus achieve ghost imaging of dynamic scenes. To utilize content-adaptive inter-frame redundancy, we put the reconstruction under an iterative reweighted optimization, with non-uniform weight computed from temporal-correlated frame sequences. The proposed approach can achieve dynamic imaging at 16fps with 64×64-pixel resolution. PMID:27137022

  18. A multiscale 0-D/3-D approach to patient-specific adaptation of a cerebral autoregulation model for computational fluid dynamics studies of cardiopulmonary bypass.

    PubMed

    Neidlin, Michael; Steinseifer, Ulrich; Kaufmann, Tim A S

    2014-06-01

    Neurological complication often occurs during cardiopulmonary bypass (CPB). One of the main causes is hypoperfusion of the cerebral tissue affected by the position of the cannula tip and diminished cerebral autoregulation (CA). Recently, a lumped parameter approach could describe the baroreflex, one of the main mechanisms of cerebral autoregulation, in a computational fluid dynamics (CFD) study of CPB. However, the cerebral blood flow (CBF) was overestimated and the physiological meaning of the variables and their impact on the model was unknown. In this study, we use a 0-D control circuit representation of the Baroreflex mechanism, to assess the parameters with respect to their physiological meaning and their influence on CBF. Afterwards the parameters are transferred to 3D-CFD and the static and dynamic behavior of cerebral autoregulation is investigated. The parameters of the baroreflex mechanism can reproduce normotensive, hypertensive and impaired autoregulation behavior. Further on, the proposed model can mimic the effects of anesthetic agents and other factors controlling dynamic CA. The CFD simulations deliver similar results of static and dynamic CBF as the 0-D control circuit. This study shows the feasibility of a multiscale 0-D/3-D approach to include patient-specific cerebral autoregulation into CFD studies. PMID:24746017

  19. A modular approach to adaptive structures.

    PubMed

    Pagitz, Markus; Pagitz, Manuel; Hühne, Christian

    2014-01-01

    A remarkable property of nastic, shape changing plants is their complete fusion between actuators and structure. This is achieved by combining a large number of cells whose geometry, internal pressures and material properties are optimized for a given set of target shapes and stiffness requirements. An advantage of such a fusion is that cell walls are prestressed by cell pressures which increases, decreases the overall structural stiffness, weight. Inspired by the nastic movement of plants, Pagitz et al (2012 Bioinspir. Biomim. 7) published a novel concept for pressure actuated cellular structures. This article extends previous work by introducing a modular approach to adaptive structures. An algorithm that breaks down any continuous target shapes into a small number of standardized modules is presented. Furthermore it is shown how cytoskeletons within each cell enhance the properties of adaptive modules. An adaptive passenger seat and an aircrafts leading, trailing edge is used to demonstrate the potential of a modular approach. PMID:25289521

  20. Cross-Cultural Adaptation: Current Approaches.

    ERIC Educational Resources Information Center

    Kim, Young Yun, Ed.; Gudykunst, William B., Ed.

    1988-01-01

    Reflecting multidisciplinary and multisocietal approaches, this collection presents 14 theoretical or research-based essays dealing with cross-cultural adaptation of individuals who are born and raised in one culture and find themselves in need of modifying their customary life patterns in a foreign culture. Papers in the collection are:…

  1. Dynamical Adaptation in Terrorist Cells/Networks

    NASA Astrophysics Data System (ADS)

    Hussain, D. M. Akbar; Ahmed, Zaki

    Typical terrorist cells/networks have dynamical structure as they evolve or adapt to changes which may occur due to capturing or killing of a member of the cell/network. Analytical measures in graph theory like degree centrality, betweenness and closeness centralities are very common and have long history of their successful use in revealing the importance of various members of the network. However, modeling of covert, terrorist or criminal networks through social graph dose not really provide the hierarchical structure which exist in these networks as these networks are composed of leaders and followers etc. In this research we analyze and predict the most likely role a particular node can adapt once a member of the network is either killed or caught. The adaptation is based on computing Bayes posteriori probability of each node and the level of the said node in the network structure.

  2. Dynamic Load Balancing for Adaptive Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Saini, Subhash (Technical Monitor)

    1998-01-01

    Dynamic mesh adaptation on unstructured grids is a powerful tool for computing unsteady three-dimensional problems that require grid modifications to efficiently resolve solution features. By locally refining and coarsening the mesh to capture phenomena of interest, such procedures make standard computational methods more cost effective. Highly refined meshes are required to accurately capture shock waves, contact discontinuities, vortices, and shear layers in fluid flow problems. Adaptive meshes have also proved to be useful in several other areas of computational science and engineering like computer vision and graphics, semiconductor device modeling, and structural mechanics. Local mesh adaptation provides the opportunity to obtain solutions that are comparable to those obtained on globally-refined grids but at a much lower cost. Additional information is contained in the original extended abstract.

  3. Target tracking with dynamically adaptive correlation

    NASA Astrophysics Data System (ADS)

    Gaxiola, Leopoldo N.; Diaz-Ramirez, Victor H.; Tapia, Juan J.; García-Martínez, Pascuala

    2016-04-01

    A reliable algorithm for target tracking based on dynamically adaptive correlation filtering is presented. The algorithm is capable of tracking with high accuracy the location of a target in an input video sequence without using an offline training process. The target is selected at the beginning of the algorithm. Afterwards, a composite correlation filter optimized for distortion tolerant pattern recognition is designed to recognize the target in the next frame. The filter is dynamically adapted to each frame using information of current and past scene observations. Results obtained with the proposed algorithm in synthetic and real-life video sequences, are analyzed and compared with those obtained with recent state-of-the-art tracking algorithms in terms of objective metrics.

  4. Adaptive synchronization and anticipatory dynamical systems

    NASA Astrophysics Data System (ADS)

    Yang, Ying-Jen; Chen, Chun-Chung; Lai, Pik-Yin; Chan, C. K.

    2015-09-01

    Many biological systems can sense periodical variations in a stimulus input and produce well-timed, anticipatory responses after the input is removed. Such systems show memory effects for retaining timing information in the stimulus and cannot be understood from traditional synchronization consideration of passive oscillatory systems. To understand this anticipatory phenomena, we consider oscillators built from excitable systems with the addition of an adaptive dynamics. With such systems, well-timed post-stimulus responses similar to those from experiments can be obtained. Furthermore, a well-known model of working memory is shown to possess similar anticipatory dynamics when the adaptive mechanism is identified with synaptic facilitation. The last finding suggests that this type of oscillator can be common in neuronal systems with plasticity.

  5. Dynamical singularities in adaptive delayed-feedback control.

    PubMed

    Saito, Asaki; Konishi, Keiji

    2011-09-01

    We demonstrate the dynamical characteristics of adaptive delayed-feedback control systems, exploiting a discrete-time adaptive control method derived for carrying out detailed analysis. In particular, the systems exhibit singularities such as power-law decay of the distribution of transient times and almost zero finite-time Lyapunov exponents. We can explain these results by characterizing such systems as having (1) a Jacobian matrix with unity eigenvalue in the whole phase space, and (2) parameters approaching a stability boundary proven to be identical with that of (nonadaptive) delayed-feedback control. PMID:22060398

  6. A Novel Approach for Adaptive Signal Processing

    NASA Technical Reports Server (NTRS)

    Chen, Ya-Chin; Juang, Jer-Nan

    1998-01-01

    Adaptive linear predictors have been used extensively in practice in a wide variety of forms. In the main, their theoretical development is based upon the assumption of stationarity of the signals involved, particularly with respect to the second order statistics. On this basis, the well-known normal equations can be formulated. If high- order statistical stationarity is assumed, then the equivalent normal equations involve high-order signal moments. In either case, the cross moments (second or higher) are needed. This renders the adaptive prediction procedure non-blind. A novel procedure for blind adaptive prediction has been proposed and considerable implementation has been made in our contributions in the past year. The approach is based upon a suitable interpretation of blind equalization methods that satisfy the constant modulus property and offers significant deviations from the standard prediction methods. These blind adaptive algorithms are derived by formulating Lagrange equivalents from mechanisms of constrained optimization. In this report, other new update algorithms are derived from the fundamental concepts of advanced system identification to carry out the proposed blind adaptive prediction. The results of the work can be extended to a number of control-related problems, such as disturbance identification. The basic principles are outlined in this report and differences from other existing methods are discussed. The applications implemented are speech processing, such as coding and synthesis. Simulations are included to verify the novel modelling method.

  7. Synaptic dynamics: linear model and adaptation algorithm.

    PubMed

    Yousefi, Ali; Dibazar, Alireza A; Berger, Theodore W

    2014-08-01

    In this research, temporal processing in brain neural circuitries is addressed by a dynamic model of synaptic connections in which the synapse model accounts for both pre- and post-synaptic processes determining its temporal dynamics and strength. Neurons, which are excited by the post-synaptic potentials of hundred of the synapses, build the computational engine capable of processing dynamic neural stimuli. Temporal dynamics in neural models with dynamic synapses will be analyzed, and learning algorithms for synaptic adaptation of neural networks with hundreds of synaptic connections are proposed. The paper starts by introducing a linear approximate model for the temporal dynamics of synaptic transmission. The proposed linear model substantially simplifies the analysis and training of spiking neural networks. Furthermore, it is capable of replicating the synaptic response of the non-linear facilitation-depression model with an accuracy better than 92.5%. In the second part of the paper, a supervised spike-in-spike-out learning rule for synaptic adaptation in dynamic synapse neural networks (DSNN) is proposed. The proposed learning rule is a biologically plausible process, and it is capable of simultaneously adjusting both pre- and post-synaptic components of individual synapses. The last section of the paper starts with presenting the rigorous analysis of the learning algorithm in a system identification task with hundreds of synaptic connections which confirms the learning algorithm's accuracy, repeatability and scalability. The DSNN is utilized to predict the spiking activity of cortical neurons and pattern recognition tasks. The DSNN model is demonstrated to be a generative model capable of producing different cortical neuron spiking patterns and CA1 Pyramidal neurons recordings. A single-layer DSNN classifier on a benchmark pattern recognition task outperforms a 2-Layer Neural Network and GMM classifiers while having fewer numbers of free parameters and

  8. Variable Neural Adaptive Robust Control: A Switched System Approach

    SciTech Connect

    Lian, Jianming; Hu, Jianghai; Zak, Stanislaw H.

    2015-05-01

    Variable neural adaptive robust control strategies are proposed for the output tracking control of a class of multi-input multi-output uncertain systems. The controllers incorporate a variable-structure radial basis function (RBF) network as the self-organizing approximator for unknown system dynamics. The variable-structure RBF network solves the problem of structure determination associated with fixed-structure RBF networks. It can determine the network structure on-line dynamically by adding or removing radial basis functions according to the tracking performance. The structure variation is taken into account in the stability analysis of the closed-loop system using a switched system approach with the aid of the piecewise quadratic Lyapunov function. The performance of the proposed variable neural adaptive robust controllers is illustrated with simulations.

  9. Emerging hierarchies in dynamically adapting webs

    NASA Astrophysics Data System (ADS)

    Katifori, Eleni; Graewer, Johannes; Magnasco, Marcelo; Modes, Carl

    Transport networks play a key role across four realms of eukaryotic life: slime molds, fungi, plants, and animals. In addition to the developmental algorithms that build them, many also employ adaptive strategies to respond to stimuli, damage, and other environmental changes. We model these adapting network architectures using a generic dynamical system on weighted graphs and find in simulation that these networks ultimately develop a hierarchical organization of the final weighted architecture accompanied by the formation of a system-spanning backbone. We quantify the hierarchical organization of the networks by developing an algorithm that decomposes the architecture to multiple scales and analyzes how the organization in each scale relates to that of the scale above and below it. The methodologies developed in this work are applicable to a wide range of systems including the slime mold physarum polycephalum, human microvasculature, and force chains in granular media.

  10. Cardiac fluid dynamics anticipates heart adaptation.

    PubMed

    Pedrizzetti, Gianni; Martiniello, Alfonso R; Bianchi, Valter; D'Onofrio, Antonio; Caso, Pio; Tonti, Giovanni

    2015-01-21

    Hemodynamic forces represent an epigenetic factor during heart development and are supposed to influence the pathology of the grown heart. Cardiac blood motion is characterized by a vortical dynamics, and it is common belief that the cardiac vortex has a role in disease progressions or regression. Here we provide a preliminary demonstration about the relevance of maladaptive intra-cardiac vortex dynamics in the geometrical adaptation of the dysfunctional heart. We employed an in vivo model of patients who present a stable normal heart function in virtue of the cardiac resynchronization therapy (CRT, bi-ventricular pace-maker) and who are expected to develop left ventricle remodeling if pace-maker was switched off. Intra-ventricular fluid dynamics is analyzed by echocardiography (Echo-PIV). Under normal conditions, the flow presents a longitudinal alignment of the intraventricular hemodynamic forces. When pacing is temporarily switched off, flow forces develop a misalignment hammering onto lateral walls, despite no other electro-mechanical change is noticed. Hemodynamic forces result to be the first event that evokes a physiological activity anticipating cardiac changes and could help in the prediction of longer term heart adaptations. PMID:25529139

  11. Dynamic analysis of neural encoding by point process adaptive filtering.

    PubMed

    Eden, Uri T; Frank, Loren M; Barbieri, Riccardo; Solo, Victor; Brown, Emery N

    2004-05-01

    Neural receptive fields are dynamic in that with experience, neurons change their spiking responses to relevant stimuli. To understand how neural systems adapt their representations of biological information, analyses of receptive field plasticity from experimental measurements are crucial. Adaptive signal processing, the well-established engineering discipline for characterizing the temporal evolution of system parameters, suggests a framework for studying the plasticity of receptive fields. We use the Bayes' rule Chapman-Kolmogorov paradigm with a linear state equation and point process observation models to derive adaptive filters appropriate for estimation from neural spike trains. We derive point process filter analogues of the Kalman filter, recursive least squares, and steepest-descent algorithms and describe the properties of these new filters. We illustrate our algorithms in two simulated data examples. The first is a study of slow and rapid evolution of spatial receptive fields in hippocampal neurons. The second is an adaptive decoding study in which a signal is decoded from ensemble neural spiking activity as the receptive fields of the neurons in the ensemble evolve. Our results provide a paradigm for adaptive estimation for point process observations and suggest a practical approach for constructing filtering algorithms to track neural receptive field dynamics on a millisecond timescale. PMID:15070506

  12. Mental workload dynamics in adaptive interface design

    NASA Technical Reports Server (NTRS)

    Hancock, Peter A.; Chignell, Mark H.

    1988-01-01

    In examining the role of time in mental workload, the authors present a different perspective from which to view the problem of assessment. Mental workload is plotted in three dimensions, whose axes represent effective time for action, perceived distance from desired goal state, level of effort required to achieve the time-constrained goal. This representation allows the generation of isodynamic workload contours that incorporate the factors of operator skill and equifinality of effort. An adaptive interface for dynamic task reallocation is described that uses this form of assessment to reconcile the joint aims of stable operator loading and acceptable primary task performance by the total system.

  13. Analog forecasting with dynamics-adapted kernels

    NASA Astrophysics Data System (ADS)

    Zhao, Zhizhen; Giannakis, Dimitrios

    2016-09-01

    Analog forecasting is a nonparametric technique introduced by Lorenz in 1969 which predicts the evolution of states of a dynamical system (or observables defined on the states) by following the evolution of the sample in a historical record of observations which most closely resembles the current initial data. Here, we introduce a suite of forecasting methods which improve traditional analog forecasting by combining ideas from kernel methods developed in harmonic analysis and machine learning and state-space reconstruction for dynamical systems. A key ingredient of our approach is to replace single-analog forecasting with weighted ensembles of analogs constructed using local similarity kernels. The kernels used here employ a number of dynamics-dependent features designed to improve forecast skill, including Takens’ delay-coordinate maps (to recover information in the initial data lost through partial observations) and a directional dependence on the dynamical vector field generating the data. Mathematically, our approach is closely related to kernel methods for out-of-sample extension of functions, and we discuss alternative strategies based on the Nyström method and the multiscale Laplacian pyramids technique. We illustrate these techniques in applications to forecasting in a low-order deterministic model for atmospheric dynamics with chaotic metastability, and interannual-scale forecasting in the North Pacific sector of a comprehensive climate model. We find that forecasts based on kernel-weighted ensembles have significantly higher skill than the conventional approach following a single analog.

  14. Function-valued adaptive dynamics and the calculus of variations.

    PubMed

    Parvinen, Kalle; Dieckmann, Ulf; Heino, Mikko

    2006-01-01

    Adaptive dynamics has been widely used to study the evolution of scalar-valued, and occasionally vector-valued, strategies in ecologically realistic models. In many ecological situations, however, evolving strategies are best described as function-valued, and thus infinite-dimensional, traits. So far, such evolution has only been studied sporadically, mostly based on quantitative genetics models with limited ecological realism. In this article we show how to apply the calculus of variations to find evolutionarily singular strategies of function-valued adaptive dynamics: such a strategy has to satisfy Euler's equation with environmental feedback. We also demonstrate how second-order derivatives can be used to investigate whether or not a function-valued singular strategy is evolutionarily stable. We illustrate our approach by presenting several worked examples. PMID:16012801

  15. Dynamic Load Balancing for Adaptive Meshes using Symmetric Broadcast Networks

    NASA Technical Reports Server (NTRS)

    Das, Sajal K.; Harvey, Daniel J.; Biswas, Rupak; Saini, Subhash (Technical Monitor)

    1998-01-01

    Many scientific applications involve grids that lack a uniform underlying structure. These applications are often dynamic in the sense that the grid structure significantly changes between successive phases of execution. In parallel computing environments, mesh adaptation of grids through selective refinement/coarsening has proven to be an effective approach. However, achieving load balance while minimizing inter-processor communication and redistribution costs is a difficult problem. Traditional dynamic load balancers are mostly inadequate because they lack a global view across processors. In this paper, we compare a novel load balancer that utilizes symmetric broadcast networks (SBN) to a successful global load balancing environment (PLUM) created to handle adaptive unstructured applications. Our experimental results on the IBM SP2 demonstrate that performance of the proposed SBN load balancer is comparable to results achieved under PLUM.

  16. Direct adaptive control for nonlinear uncertain dynamical systems

    NASA Astrophysics Data System (ADS)

    Hayakawa, Tomohisa

    In light of the complex and highly uncertain nature of dynamical systems requiring controls, it is not surprising that reliable system models for many high performance engineering and life science applications are unavailable. In the face of such high levels of system uncertainty, robust controllers may unnecessarily sacrifice system performance whereas adaptive controllers are clearly appropriate since they can tolerate far greater system uncertainty levels to improve system performance. In this dissertation, we develop a Lyapunov-based direct adaptive and neural adaptive control framework that addresses parametric uncertainty, unstructured uncertainty, disturbance rejection, amplitude and rate saturation constraints, and digital implementation issues. Specifically, we consider the following research topics; direct adaptive control for nonlinear uncertain systems with exogenous disturbances; robust adaptive control for nonlinear uncertain systems; adaptive control for nonlinear uncertain systems with actuator amplitude and rate saturation constraints; adaptive reduced-order dynamic compensation for nonlinear uncertain systems; direct adaptive control for nonlinear matrix second-order dynamical systems with state-dependent uncertainty; adaptive control for nonnegative and compartmental dynamical systems with applications to general anesthesia; direct adaptive control of nonnegative and compartmental dynamical systems with time delay; adaptive control for nonlinear nonnegative and compartmental dynamical systems with applications to clinical pharmacology; neural network adaptive control for nonlinear nonnegative dynamical systems; passivity-based neural network adaptive output feedback control for nonlinear nonnegative dynamical systems; neural network adaptive dynamic output feedback control for nonlinear nonnegative systems using tapped delay memory units; Lyapunov-based adaptive control framework for discrete-time nonlinear systems with exogenous disturbances

  17. ADAPTIVE MULTILEVEL SPLITTING IN MOLECULAR DYNAMICS SIMULATIONS*

    PubMed Central

    Aristoff, David; Lelièvre, Tony; Mayne, Christopher G.; Teo, Ivan

    2014-01-01

    Adaptive Multilevel Splitting (AMS) is a replica-based rare event sampling method that has been used successfully in high-dimensional stochastic simulations to identify trajectories across a high potential barrier separating one metastable state from another, and to estimate the probability of observing such a trajectory. An attractive feature of AMS is that, in the limit of a large number of replicas, it remains valid regardless of the choice of reaction coordinate used to characterize the trajectories. Previous studies have shown AMS to be accurate in Monte Carlo simulations. In this study, we extend the application of AMS to molecular dynamics simulations and demonstrate its effectiveness using a simple test system. Our conclusion paves the way for useful applications, such as molecular dynamics calculations of the characteristic time of drug dissociation from a protein target. PMID:26005670

  18. Circuit dynamics of adaptive and maladaptive behaviour

    PubMed Central

    Deisseroth, Karl

    2014-01-01

    The recent development of technologies for investigating specific components of intact biological systems has allowed elucidation of the neural circuitry underlying adaptive and maladaptive behaviours. Investigators are now able to observe and control, with high spatio-temporal resolution, structurally defined intact pathways along which electrical activity flows during and after the performance of complex behaviours. These investigations have revealed that control of projection-specific dynamics is well suited to modulating behavioural patterns that are relevant to a broad range of psychiatric diseases. Structural dynamics principles have emerged to provide diverse, unexpected and causal insights into the operation of intact and diseased nervous systems, linking form and function in the brain. PMID:24429629

  19. Optimal spectral tracking--adapting to dynamic regime change.

    PubMed

    Brittain, John-Stuart; Halliday, David M

    2011-01-30

    Real world data do not always obey the statistical restraints imposed upon them by sophisticated analysis techniques. In spectral analysis for instance, an ergodic process--the interchangeability of temporal for spatial averaging--is assumed for a repeat-trial design. Many evolutionary scenarios, such as learning and motor consolidation, do not conform to such linear behaviour and should be approached from a more flexible perspective. To this end we previously introduced the method of optimal spectral tracking (OST) in the study of trial-varying parameters. In this extension to our work we modify the OST routines to provide an adaptive implementation capable of reacting to dynamic transitions in the underlying system state. In so doing, we generalise our approach to characterise both slow-varying and rapid fluctuations in time-series, simultaneously providing a metric of system stability. The approach is first applied to a surrogate dataset and compared to both our original non-adaptive solution and spectrogram approaches. The adaptive OST is seen to display fast convergence and desirable statistical properties. All three approaches are then applied to a neurophysiological recording obtained during a study on anaesthetic monitoring. Local field potentials acquired from the posterior hypothalamic region of a deep brain stimulation patient undergoing anaesthesia were analysed. The characterisation of features such as response delay, time-to-peak and modulation brevity are considered. PMID:21115043

  20. Opinion dynamics on an adaptive random network

    NASA Astrophysics Data System (ADS)

    Benczik, I. J.; Benczik, S. Z.; Schmittmann, B.; Zia, R. K. P.

    2009-04-01

    We revisit the classical model for voter dynamics in a two-party system with two basic modifications. In contrast to the original voter model studied in regular lattices, we implement the opinion formation process in a random network of agents in which interactions are no longer restricted by geographical distance. In addition, we incorporate the rapidly changing nature of the interpersonal relations in the model. At each time step, agents can update their relationships. This update is determined by their own opinion, and by their preference to make connections with individuals sharing the same opinion, or rather with opponents. In this way, the network is built in an adaptive manner, in the sense that its structure is correlated and evolves with the dynamics of the agents. The simplicity of the model allows us to examine several issues analytically. We establish criteria to determine whether consensus or polarization will be the outcome of the dynamics and on what time scales these states will be reached. In finite systems consensus is typical, while in infinite systems a disordered metastable state can emerge and persist for infinitely long time before consensus is reached.

  1. Hydrodynamics in adaptive resolution particle simulations: Multiparticle collision dynamics

    NASA Astrophysics Data System (ADS)

    Alekseeva, Uliana; Winkler, Roland G.; Sutmann, Godehard

    2016-06-01

    A new adaptive resolution technique for particle-based multi-level simulations of fluids is presented. In the approach, the representation of fluid and solvent particles is changed on the fly between an atomistic and a coarse-grained description. The present approach is based on a hybrid coupling of the multiparticle collision dynamics (MPC) method and molecular dynamics (MD), thereby coupling stochastic and deterministic particle-based methods. Hydrodynamics is examined by calculating velocity and current correlation functions for various mixed and coupled systems. We demonstrate that hydrodynamic properties of the mixed fluid are conserved by a suitable coupling of the two particle methods, and that the simulation results agree well with theoretical expectations.

  2. Nitric oxide regulates vascular adaptive mitochondrial dynamics.

    PubMed

    Miller, Matthew W; Knaub, Leslie A; Olivera-Fragoso, Luis F; Keller, Amy C; Balasubramaniam, Vivek; Watson, Peter A; Reusch, Jane E B

    2013-06-15

    Cardiovascular disease risk factors, such as diabetes, hypertension, dyslipidemia, obesity, and physical inactivity, are all correlated with impaired endothelial nitric oxide synthase (eNOS) function and decreased nitric oxide (NO) production. NO-mediated regulation of mitochondrial biogenesis has been established in many tissues, yet the role of eNOS in vascular mitochondrial biogenesis and dynamics is unclear. We hypothesized that genetic eNOS deletion and 3-day nitric oxide synthase (NOS) inhibition in rodents would result in impaired mitochondrial biogenesis and defunct fission/fusion and autophagy profiles within the aorta. We observed a significant, eNOS expression-dependent decrease in mitochondrial electron transport chain (ETC) protein subunits from complexes I, II, III, and V in eNOS heterozygotes and eNOS null mice compared with age-matched controls. In response to NOS inhibition with NG-nitro-L-arginine methyl ester (L-NAME) treatment in Sprague Dawley rats, significant decreases were observed in ETC protein subunits from complexes I, III, and IV as well as voltage-dependent anion channel 1. Decreased protein content of upstream regulators of mitochondrial biogenesis, cAMP response element-binding protein and peroxisome proliferator-activated receptor-γ coactivator-1α, were observed in response to 3-day L-NAME treatment. Both genetic eNOS deletion and NOS inhibition resulted in decreased manganese superoxide dismutase protein. L-NAME treatment resulted in significant changes to mitochondrial dynamic protein profiles with decreased fusion, increased fission, and minimally perturbed autophagy. In addition, L-NAME treatment blocked mitochondrial adaptation to an exercise intervention in the aorta. These results suggest that eNOS/NO play a role in basal and adaptive mitochondrial biogenesis in the vasculature and regulation of mitochondrial turnover. PMID:23585138

  3. Development of a dynamically adaptive grid method for multidimensional problems

    NASA Astrophysics Data System (ADS)

    Holcomb, J. E.; Hindman, R. G.

    1984-06-01

    An approach to solution adaptive grid generation for use with finite difference techniques, previously demonstrated on model problems in one space dimension, has been extended to multidimensional problems. The method is based on the popular elliptic steady grid generators, but is 'dynamically' adaptive in the sense that a grid is maintained at all times satisfying the steady grid law driven by a solution-dependent source term. Testing has been carried out on Burgers' equation in one and two space dimensions. Results appear encouraging both for inviscid wave propagation cases and viscous boundary layer cases, suggesting that application to practical flow problems is now possible. In the course of the work, obstacles relating to grid correction, smoothing of the solution, and elliptic equation solvers have been largely overcome. Concern remains, however, about grid skewness, boundary layer resolution and the need for implicit integration methods. Also, the method in 3-D is expected to be very demanding of computer resources.

  4. Analyzing Hedges in Verbal Communication: An Adaptation-Based Approach

    ERIC Educational Resources Information Center

    Wang, Yuling

    2010-01-01

    Based on Adaptation Theory, the article analyzes the production process of hedges. The procedure consists of the continuous making of choices in linguistic forms and communicative strategies. These choices are made just for adaptation to the contextual correlates. Besides, the adaptation process is dynamic, intentional and bidirectional.

  5. Approaching neuropsychological tasks through adaptive neurorobots

    NASA Astrophysics Data System (ADS)

    Gigliotta, Onofrio; Bartolomeo, Paolo; Miglino, Orazio

    2015-04-01

    Neuropsychological phenomena have been modelized mainly, by the mainstream approach, by attempting to reproduce their neural substrate whereas sensory-motor contingencies have attracted less attention. In this work, we introduce a simulator based on the evolutionary robotics platform Evorobot* in order to setting up in silico neuropsychological tasks. Moreover, in this study we trained artificial embodied neurorobotic agents equipped with a pan/tilt camera, provided with different neural and motor capabilities, to solve a well-known neuropsychological test: the cancellation task in which an individual is asked to cancel target stimuli surrounded by distractors. Results showed that embodied agents provided with additional motor capabilities (a zooming/attentional actuator) outperformed simple pan/tilt agents, even those equipped with more complex neural controllers and that the zooming ability is exploited to correctly categorising presented stimuli. We conclude that since the sole neural computational power cannot explain the (artificial) cognition which emerged throughout the adaptive process, such kind of modelling approach can be fruitful in neuropsychological modelling where the importance of having a body is often neglected.

  6. Dynamic adaptive learning for decision-making supporting systems

    NASA Astrophysics Data System (ADS)

    He, Haibo; Cao, Yuan; Chen, Sheng; Desai, Sachi; Hohil, Myron E.

    2008-03-01

    This paper proposes a novel adaptive learning method for data mining in support of decision-making systems. Due to the inherent characteristics of information ambiguity/uncertainty, high dimensionality and noisy in many homeland security and defense applications, such as surveillances, monitoring, net-centric battlefield, and others, it is critical to develop autonomous learning methods to efficiently learn useful information from raw data to help the decision making process. The proposed method is based on a dynamic learning principle in the feature spaces. Generally speaking, conventional approaches of learning from high dimensional data sets include various feature extraction (principal component analysis, wavelet transform, and others) and feature selection (embedded approach, wrapper approach, filter approach, and others) methods. However, very limited understandings of adaptive learning from different feature spaces have been achieved. We propose an integrative approach that takes advantages of feature selection and hypothesis ensemble techniques to achieve our goal. Based on the training data distributions, a feature score function is used to provide a measurement of the importance of different features for learning purpose. Then multiple hypotheses are iteratively developed in different feature spaces according to their learning capabilities. Unlike the pre-set iteration steps in many of the existing ensemble learning approaches, such as adaptive boosting (AdaBoost) method, the iterative learning process will automatically stop when the intelligent system can not provide a better understanding than a random guess in that particular subset of feature spaces. Finally, a voting algorithm is used to combine all the decisions from different hypotheses to provide the final prediction results. Simulation analyses of the proposed method on classification of different US military aircraft databases show the effectiveness of this method.

  7. The Limits to Adaptation: A Systems Approach

    EPA Science Inventory

    The ability to adapt to climate change is delineated by capacity thresholds, after which climate damages begin to overwhelm the adaptation response. Such thresholds depend upon physical properties (natural processes and engineering parameters), resource constraints (expressed th...

  8. An Adaptive Critic Approach to Reference Model Adaptation

    NASA Technical Reports Server (NTRS)

    Krishnakumar, K.; Limes, G.; Gundy-Burlet, K.; Bryant, D.

    2003-01-01

    Neural networks have been successfully used for implementing control architectures for different applications. In this work, we examine a neural network augmented adaptive critic as a Level 2 intelligent controller for a C- 17 aircraft. This intelligent control architecture utilizes an adaptive critic to tune the parameters of a reference model, which is then used to define the angular rate command for a Level 1 intelligent controller. The present architecture is implemented on a high-fidelity non-linear model of a C-17 aircraft. The goal of this research is to improve the performance of the C-17 under degraded conditions such as control failures and battle damage. Pilot ratings using a motion based simulation facility are included in this paper. The benefits of using an adaptive critic are documented using time response comparisons for severe damage situations.

  9. Adaptive control in the presence of unmodeled dynamics. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Rohrs, C. E.

    1982-01-01

    Stability and robustness properties of a wide class of adaptive control algorithms in the presence of unmodeled dynamics and output disturbances were investigated. The class of adaptive algorithms considered are those commonly referred to as model reference adaptive control algorithms, self-tuning controllers, and dead beat adaptive controllers, developed for both continuous-time systems and discrete-time systems. A unified analytical approach was developed to examine the class of existing adaptive algorithms. It was discovered that all existing algorithms contain an infinite gain operator in the dynamic system that defines command reference errors and parameter errors; it is argued that such an infinite gain operator appears to be generic to all adaptive algorithms, whether they exhibit explicit or implicit parameter identification. It is concluded that none of the adaptive algorithms considered can be used with confidence in a practical control system design, because instability will set in with a high probability.

  10. Anomalous human behavior detection: an adaptive approach

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Coen; Halma, Arvid; Schutte, Klamer

    2013-05-01

    Detection of anomalies (outliers or abnormal instances) is an important element in a range of applications such as fault, fraud, suspicious behavior detection and knowledge discovery. In this article we propose a new method for anomaly detection and performed tested its ability to detect anomalous behavior in videos from DARPA's Mind's Eye program, containing a variety of human activities. In this semi-unsupervised task a set of normal instances is provided for training, after which unknown abnormal behavior has to be detected in a test set. The features extracted from the video data have high dimensionality, are sparse and inhomogeneously distributed in the feature space making it a challenging task. Given these characteristics a distance-based method is preferred, but choosing a threshold to classify instances as (ab)normal is non-trivial. Our novel aproach, the Adaptive Outlier Distance (AOD) is able to detect outliers in these conditions based on local distance ratios. The underlying assumption is that the local maximum distance between labeled examples is a good indicator of the variation in that neighborhood, and therefore a local threshold will result in more robust outlier detection. We compare our method to existing state-of-art methods such as the Local Outlier Factor (LOF) and the Local Distance-based Outlier Factor (LDOF). The results of the experiments show that our novel approach improves the quality of the anomaly detection.

  11. Adaptive and neuroadaptive control for nonnegative and compartmental dynamical systems

    NASA Astrophysics Data System (ADS)

    Volyanskyy, Kostyantyn Y.

    Neural networks have been extensively used for adaptive system identification as well as adaptive and neuroadaptive control of highly uncertain systems. The goal of adaptive and neuroadaptive control is to achieve system performance without excessive reliance on system models. To improve robustness and the speed of adaptation of adaptive and neuroadaptive controllers several controller architectures have been proposed in the literature. In this dissertation, we develop a new neuroadaptive control architecture for nonlinear uncertain dynamical systems. The proposed framework involves a novel controller architecture with additional terms in the update laws that are constructed using a moving window of the integrated system uncertainty. These terms can be used to identify the ideal system weights of the neural network as well as effectively suppress system uncertainty. Linear and nonlinear parameterizations of the system uncertainty are considered and state and output feedback neuroadaptive controllers are developed. Furthermore, we extend the developed framework to discrete-time dynamical systems. To illustrate the efficacy of the proposed approach we apply our results to an aircraft model with wing rock dynamics, a spacecraft model with unknown moment of inertia, and an unmanned combat aerial vehicle undergoing actuator failures, and compare our results with standard neuroadaptive control methods. Nonnegative systems are essential in capturing the behavior of a wide range of dynamical systems involving dynamic states whose values are nonnegative. A sub-class of nonnegative dynamical systems are compartmental systems. These systems are derived from mass and energy balance considerations and are comprised of homogeneous interconnected microscopic subsystems or compartments which exchange variable quantities of material via intercompartmental flow laws. In this dissertation, we develop direct adaptive and neuroadaptive control framework for stabilization, disturbance

  12. Russian Loanword Adaptation in Persian; Optimal Approach

    ERIC Educational Resources Information Center

    Kambuziya, Aliye Kord Zafaranlu; Hashemi, Eftekhar Sadat

    2011-01-01

    In this paper we analyzed some of the phonological rules of Russian loanword adaptation in Persian, on the view of Optimal Theory (OT) (Prince & Smolensky, 1993/2004). It is the first study of phonological process on Russian loanwords adaptation in Persian. By gathering about 50 current Russian loanwords, we selected some of them to analyze. We…

  13. Neural network with dynamically adaptable neurons

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul (Inventor)

    1994-01-01

    This invention is an adaptive neuron for use in neural network processors. The adaptive neuron participates in the supervised learning phase of operation on a co-equal basis with the synapse matrix elements by adaptively changing its gain in a similar manner to the change of weights in the synapse IO elements. In this manner, training time is decreased by as much as three orders of magnitude.

  14. The Branching Bifurcation of Adaptive Dynamics

    NASA Astrophysics Data System (ADS)

    Della Rossa, Fabio; Dercole, Fabio; Landi, Pietro

    2015-06-01

    We unfold the bifurcation involving the loss of evolutionary stability of an equilibrium of the canonical equation of Adaptive Dynamics (AD). The equation deterministically describes the expected long-term evolution of inheritable traits — phenotypes or strategies — of coevolving populations, in the limit of rare and small mutations. In the vicinity of a stable equilibrium of the AD canonical equation, a mutant type can invade and coexist with the present — resident — types, whereas the fittest always win far from equilibrium. After coexistence, residents and mutants effectively diversify, according to the enlarged canonical equation, only if natural selection favors outer rather than intermediate traits — the equilibrium being evolutionarily unstable, rather than stable. Though the conditions for evolutionary branching — the joint effect of resident-mutant coexistence and evolutionary instability — have been known for long, the unfolding of the bifurcation has remained a missing tile of AD, the reason being related to the nonsmoothness of the mutant invasion fitness after branching. In this paper, we develop a methodology that allows the approximation of the invasion fitness after branching in terms of the expansion of the (smooth) fitness before branching. We then derive a canonical model for the branching bifurcation and perform its unfolding around the loss of evolutionary stability. We cast our analysis in the simplest (but classical) setting of asexual, unstructured populations living in an isolated, homogeneous, and constant abiotic environment; individual traits are one-dimensional; intra- as well as inter-specific ecological interactions are described in the vicinity of a stationary regime.

  15. Adaptive Role Playing Games: An Immersive Approach for Problem Based Learning

    ERIC Educational Resources Information Center

    Sancho, Pilar; Moreno-Ger, Pablo; Fuentes-Fernandez, Ruben; Fernandez-Manjon, Baltasar

    2009-01-01

    In this paper we present a general framework, called NUCLEO, for the application of socio-constructive educational approaches in higher education. The underlying pedagogical approach relies on an adaptation model in order to improve group dynamics, as this has been identified as one of the key features in the success of collaborative learning…

  16. Static and dynamic responses of an ultrathin adaptive secondary mirror

    NASA Astrophysics Data System (ADS)

    del Vecchio, Ciro; Brusa, Guido; Gallieni, Daniele; Lloyd-Hart, Michael; Davison, Warren B.

    1999-09-01

    We present the results of a compete set of static and dynamic runs of the FEA model of the MMT adaptive secondary. The thin mirror is the most delicate component of the MMT adaptive secondary unit, as it provides the deformable optical surface able to correct the incoming wavefront. The static performances are evaluated as a function of the various load cases arising form gravitational loads and from the forces deriving from the magnetic interactions between actuators. In addition, computations were performed to assess the dynamic response to the high bandwidth, adaptive correcting force.s In both cases, the performances of the adaptive mirror design are able to accommodate the severe specifications.

  17. Achieving Optimal Self-Adaptivity for Dynamic Tuning of Organic Semiconductors through Resonance Engineering.

    PubMed

    Tao, Ye; Xu, Lijia; Zhang, Zhen; Chen, Runfeng; Li, Huanhuan; Xu, Hui; Zheng, Chao; Huang, Wei

    2016-08-01

    Current static-state explorations of organic semiconductors for optimal material properties and device performance are hindered by limited insights into the dynamically changed molecular states and charge transport and energy transfer processes upon device operation. Here, we propose a simple yet successful strategy, resonance variation-based dynamic adaptation (RVDA), to realize optimized self-adaptive properties in donor-resonance-acceptor molecules by engineering the resonance variation for dynamic tuning of organic semiconductors. Organic light-emitting diodes hosted by these RVDA materials exhibit remarkably high performance, with external quantum efficiencies up to 21.7% and favorable device stability. Our approach, which supports simultaneous realization of dynamically adapted and selectively enhanced properties via resonance engineering, illustrates a feasible design map for the preparation of smart organic semiconductors capable of dynamic structure and property modulations, promoting the studies of organic electronics from static to dynamic. PMID:27403886

  18. Recruitment dynamics in adaptive social networks.

    PubMed

    Shkarayev, Maxim S; Schwartz, Ira B; Shaw, Leah B

    2013-01-01

    We model recruitment in adaptive social networks in the presence of birth and death processes. Recruitment is characterized by nodes changing their status to that of the recruiting class as a result of contact with recruiting nodes. Only a susceptible subset of nodes can be recruited. The recruiting individuals may adapt their connections in order to improve recruitment capabilities, thus changing the network structure adaptively. We derive a mean field theory to predict the dependence of the growth threshold of the recruiting class on the adaptation parameter. Furthermore, we investigate the effect of adaptation on the recruitment level, as well as on network topology. The theoretical predictions are compared with direct simulations of the full system. We identify two parameter regimes with qualitatively different bifurcation diagrams depending on whether nodes become susceptible frequently (multiple times in their lifetime) or rarely (much less than once per lifetime). PMID:25395989

  19. Dynamic mesh adaption for triangular and tetrahedral grids

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Strawn, Roger

    1993-01-01

    The following topics are discussed: requirements for dynamic mesh adaption; linked-list data structure; edge-based data structure; adaptive-grid data structure; three types of element subdivision; mesh refinement; mesh coarsening; additional constraints for coarsening; anisotropic error indicator for edges; unstructured-grid Euler solver; inviscid 3-D wing; and mesh quality for solution-adaptive grids. The discussion is presented in viewgraph form.

  20. Dynamic Reconstruction and Multivariable Control for Force-Actuated, Thin Facesheet Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Grocott, Simon C. O.; Miller, David W.

    1997-01-01

    The Multiple Mirror Telescope (MMT) under development at the University of Arizona takes a new approach in adaptive optics placing a large (0.65 m) force-actuated, thin facesheet deformable mirror at the secondary of an astronomical telescope, thus reducing the effects of emissivity which are important in IR astronomy. However, The large size of the mirror and low stiffness actuators used drive the natural frequencies of the mirror down into the bandwidth of the atmospheric distortion. Conventional adaptive optics takes a quasi-static approach to controlling the, deformable mirror. However, flexibility within the control bandwidth calls for a new approach to adaptive optics. Dynamic influence functions are used to characterize the influence of each actuator on the surface of the deformable mirror. A linearized model of atmospheric distortion is combined with dynamic influence functions to produce a dynamic reconstructor. This dynamic reconstructor is recognized as an optimal control problem. Solving the optimal control problem for a system with hundreds of actuators and sensors is formidable. Exploiting the circularly symmetric geometry of the mirror, and a suitable model of atmospheric distortion, the control problem is divided into a number of smaller decoupled control problems using circulant matrix theory. A hierarchic control scheme which seeks to emulate the quasi-static control approach that is generally used in adaptive optics is compared to the proposed dynamic reconstruction technique. Although dynamic reconstruction requires somewhat more computational power to implement, it achieves better performance with less power usage, and is less sensitive than the hierarchic technique.

  1. On Cognition, Structured Sequence Processing, and Adaptive Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Petersson, Karl Magnus

    2008-11-01

    Cognitive neuroscience approaches the brain as a cognitive system: a system that functionally is conceptualized in terms of information processing. We outline some aspects of this concept and consider a physical system to be an information processing device when a subclass of its physical states can be viewed as representational/cognitive and transitions between these can be conceptualized as a process operating on these states by implementing operations on the corresponding representational structures. We identify a generic and fundamental problem in cognition: sequentially organized structured processing. Structured sequence processing provides the brain, in an essential sense, with its processing logic. In an approach addressing this problem, we illustrate how to integrate levels of analysis within a framework of adaptive dynamical systems. We note that the dynamical system framework lends itself to a description of asynchronous event-driven devices, which is likely to be important in cognition because the brain appears to be an asynchronous processing system. We use the human language faculty and natural language processing as a concrete example through out.

  2. Passive and active adaptive management: Approaches and an example

    USGS Publications Warehouse

    Williams, B.K.

    2011-01-01

    Adaptive management is a framework for resource conservation that promotes iterative learning-based decision making. Yet there remains considerable confusion about what adaptive management entails, and how to actually make resource decisions adaptively. A key but somewhat ambiguous distinction in adaptive management is between active and passive forms of adaptive decision making. The objective of this paper is to illustrate some approaches to active and passive adaptive management with a simple example involving the drawdown of water impoundments on a wildlife refuge. The approaches are illustrated for the drawdown example, and contrasted in terms of objectives, costs, and potential learning rates. Some key challenges to the actual practice of AM are discussed, and tradeoffs between implementation costs and long-term benefits are highlighted. ?? 2010 Elsevier Ltd.

  3. Analysis of dynamic deformation processes with adaptive KALMAN-filtering

    NASA Astrophysics Data System (ADS)

    Eichhorn, Andreas

    2007-05-01

    In this paper the approach of a full system analysis is shown quantifying a dynamic structural ("white-box"-) model for the calculation of thermal deformations of bar-shaped machine elements. The task was motivated from mechanical engineering searching new methods for the precise prediction and computational compensation of thermal influences in the heating and cooling phases of machine tools (i.e. robot arms, etc.). The quantification of thermal deformations under variable dynamic loads requires the modelling of the non-stationary spatial temperature distribution inside the object. Based upon FOURIERS law of heat flow the high-grade non-linear temperature gradient is represented by a system of partial differential equations within the framework of a dynamic Finite Element topology. It is shown that adaptive KALMAN-filtering is suitable to quantify relevant disturbance influences and to identify thermal parameters (i.e. thermal diffusivity) with a deviation of only 0,2%. As result an identified (and verified) parametric model for the realistic prediction respectively simulation of dynamic temperature processes is presented. Classifying the thermal bend as the main deformation quantity of bar-shaped machine tools, the temperature model is extended to a temperature deformation model. In lab tests thermal load steps are applied to an aluminum column. Independent control measurements show that the identified model can be used to predict the columns bend with a mean deviation (r.m.s.) smaller than 10 mgon. These results show that the deformation model is a precise predictor and suitable for realistic simulations of thermal deformations. Experiments with modified heat sources will be necessary to verify the model in further frequency spectra of dynamic thermal loads.

  4. On adaptive robustness approach to Anti-Jam signal processing

    NASA Astrophysics Data System (ADS)

    Poberezhskiy, Y. S.; Poberezhskiy, G. Y.

    An effective approach to exploiting statistical differences between desired and jamming signals named adaptive robustness is proposed and analyzed in this paper. It combines conventional Bayesian, adaptive, and robust approaches that are complementary to each other. This combining strengthens the advantages and mitigates the drawbacks of the conventional approaches. Adaptive robustness is equally applicable to both jammers and their victim systems. The capabilities required for realization of adaptive robustness in jammers and victim systems are determined. The employment of a specific nonlinear robust algorithm for anti-jam (AJ) processing is described and analyzed. Its effectiveness in practical situations has been proven analytically and confirmed by simulation. Since adaptive robustness can be used by both sides in electronic warfare, it is more advantageous for the fastest and most intelligent side. Many results obtained and discussed in this paper are also applicable to commercial applications such as communications in unregulated or poorly regulated frequency ranges and systems with cognitive capabilities.

  5. The Feldenkrais Method: A Dynamic Approach to Changing Motor Behavior.

    ERIC Educational Resources Information Center

    Buchanan, Patricia A.; Ulrich, Beverly D.

    2001-01-01

    Describes the Feldenkrais Method of somatic education, noting parallels with a dynamic systems theory (DST) approach to motor behavior. Feldenkrais uses movement and perception to foster individualized improvement in function. DST explains that a human-environment system continually adapts to changing conditions and assembles behaviors…

  6. Concept Based Approach for Adaptive Personalized Course Learning System

    ERIC Educational Resources Information Center

    Salahli, Mehmet Ali; Özdemir, Muzaffer; Yasar, Cumali

    2013-01-01

    One of the most important factors for improving the personalization aspects of learning systems is to enable adaptive properties to them. The aim of the adaptive personalized learning system is to offer the most appropriate learning path and learning materials to learners by taking into account their profiles. In this paper, a new approach to…

  7. Responsiveness-to-Intervention: A "Systems" Approach to Instructional Adaptation

    ERIC Educational Resources Information Center

    Fuchs, Douglas; Fuchs, Lynn S.

    2016-01-01

    Classroom research on adaptive teaching indicates few teachers modify instruction for at-risk students in a manner that benefits them. Responsiveness-To-Intervention, with its tiers of increasingly intensive instruction, represents an alternative approach to adaptive instruction that may prove more workable in today's schools.

  8. Multithreaded Model for Dynamic Load Balancing Parallel Adaptive PDE Computations

    NASA Technical Reports Server (NTRS)

    Chrisochoides, Nikos

    1995-01-01

    We present a multithreaded model for the dynamic load-balancing of numerical, adaptive computations required for the solution of Partial Differential Equations (PDE's) on multiprocessors. Multithreading is used as a means of exploring concurrency in the processor level in order to tolerate synchronization costs inherent to traditional (non-threaded) parallel adaptive PDE solvers. Our preliminary analysis for parallel, adaptive PDE solvers indicates that multithreading can be used an a mechanism to mask overheads required for the dynamic balancing of processor workloads with computations required for the actual numerical solution of the PDE's. Also, multithreading can simplify the implementation of dynamic load-balancing algorithms, a task that is very difficult for traditional data parallel adaptive PDE computations. Unfortunately, multithreading does not always simplify program complexity, often makes code re-usability not an easy task, and increases software complexity.

  9. Adaptation and dynamics of cat retinal ganglion cells

    PubMed Central

    Enroth-Cugell, Christina; Shapley, R. M.

    1973-01-01

    1. The impulse/quantum (I/Q) ratio was measured as a function of background illumination for rod-dominated, pure central, linear square-wave responses of retinal ganglion cells in the cat. 2. The I/Q ratio was constant at low backgrounds (dark adapted state) and inversely proportional to the 0·9 power of the background at high backgrounds (the light adapted state). There was an abrupt transition from the dark-adapted state to the light-adapted state. 3. It was possible to define the adaptation level at a particular background as the ratio (I/Q ratio at that background)/(dark adapted I/Q ratio). 4. The time course of the square-wave response was correlated with the adaptation level. The response was sustained in the dark-adapted state, partially transient at the transition level, and progressively more transient the lower the impulse/quantum ratio of the ganglion cell became. This was true both for on-centre and off-centre cells. 5. The frequency response of the central response mechanism at different adaptation levels was measured. It was a low-pass characteristic in the dark-adapted state and became progressively more of a bandpass characteristic as the cell became more light-adapted. 6. The rapidity of onset of adaptation was measured with a time-varying adapting light. The impulse/quantum ratio is reset within 100 msec of the onset of the conditioning light, and is kept at the new value throughout the time the conditioning light is on. 7. These results can be explained by a nonlinear feedback model. In the model, it is postulated that the exponential function of the horizontal cell potential controls transmission from rods to bipolars. This model has an abrupt transition from dark- to light-adapted states, and its response dynamics are correlated with adaptation level. PMID:4747229

  10. Quantitative Adaptation Analytics for Assessing Dynamic Systems of Systems.

    SciTech Connect

    Gauthier, John H.; Miner, Nadine E.; Wilson, Michael L.; Le, Hai D.; Kao, Gio K; Melander, Darryl J.; Longsine, Dennis Earl; Vander Meer, Robert Charles,

    2015-01-01

    Our society is increasingly reliant on systems and interoperating collections of systems, known as systems of systems (SoS). These SoS are often subject to changing missions (e.g., nation- building, arms-control treaties), threats (e.g., asymmetric warfare, terrorism), natural environments (e.g., climate, weather, natural disasters) and budgets. How well can SoS adapt to these types of dynamic conditions? This report details the results of a three year Laboratory Directed Research and Development (LDRD) project aimed at developing metrics and methodologies for quantifying the adaptability of systems and SoS. Work products include: derivation of a set of adaptability metrics, a method for combining the metrics into a system of systems adaptability index (SoSAI) used to compare adaptability of SoS designs, development of a prototype dynamic SoS (proto-dSoS) simulation environment which provides the ability to investigate the validity of the adaptability metric set, and two test cases that evaluate the usefulness of a subset of the adaptability metrics and SoSAI for distinguishing good from poor adaptability in a SoS. Intellectual property results include three patents pending: A Method For Quantifying Relative System Adaptability, Method for Evaluating System Performance, and A Method for Determining Systems Re-Tasking.

  11. Dynamics of adaptive agents with asymmetric information

    NASA Astrophysics Data System (ADS)

    DeMartino, Andrea; Galla, Tobias

    2005-08-01

    We apply path integral techniques to study the dynamics of agent-based models with asymmetric information structures. In particular, we devise a batch version of a model proposed originally by Berg et al (2001 Quantitative Finance 1 203), and convert the coupled multi-agent processes into an effective-agent problem from which the dynamical order parameters in ergodic regimes can be derived self-consistently together with the corresponding phase structure. Our dynamical study complements and extends the available static theory. Results are confirmed by numerical simulations.

  12. Superresolution restoration of an image sequence: adaptive filtering approach.

    PubMed

    Elad, M; Feuer, A

    1999-01-01

    This paper presents a new method based on adaptive filtering theory for superresolution restoration of continuous image sequences. The proposed methodology suggests least squares (LS) estimators which adapt in time, based on adaptive filters, least mean squares (LMS) or recursive least squares (RLS). The adaptation enables the treatment of linear space and time-variant blurring and arbitrary motion, both of them assumed known. The proposed new approach is shown to be of relatively low computational requirements. Simulations demonstrating the superresolution restoration algorithms are presented. PMID:18262881

  13. Complexity and network dynamics in physiological adaptation: an integrated view.

    PubMed

    Baffy, György; Loscalzo, Joseph

    2014-05-28

    Living organisms constantly interact with their surroundings and sustain internal stability against perturbations. This dynamic process follows three fundamental strategies (restore, explore, and abandon) articulated in historical concepts of physiological adaptation such as homeostasis, allostasis, and the general adaptation syndrome. These strategies correspond to elementary forms of behavior (ordered, chaotic, and static) in complex adaptive systems and invite a network-based analysis of the operational characteristics, allowing us to propose an integrated framework of physiological adaptation from a complex network perspective. Applicability of this concept is illustrated by analyzing molecular and cellular mechanisms of adaptation in response to the pervasive challenge of obesity, a chronic condition resulting from sustained nutrient excess that prompts chaotic exploration for system stability associated with tradeoffs and a risk of adverse outcomes such as diabetes, cardiovascular disease, and cancer. Deconstruction of this complexity holds the promise of gaining novel insights into physiological adaptation in health and disease. PMID:24751342

  14. Dynamics of adaptive structures: Design through simulations

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Alexander, S.

    1993-01-01

    The use of a helical bi-morph actuator/sensor concept by mimicking the change of helical waveform in bacterial flagella is perhaps the first application of bacterial motions (living species) to longitudinal deployment of space structures. However, no dynamical considerations were analyzed to explain the waveform change mechanisms. The objective is to review various deployment concepts from the dynamics point of view and introduce the dynamical considerations from the outset as part of design considerations. Specifically, the impact of the incorporation of the combined static mechanisms and dynamic design considerations on the deployment performance during the reconfiguration stage is studied in terms of improved controllability, maneuvering duration, and joint singularity index. It is shown that intermediate configurations during articulations play an important role for improved joint mechanisms design and overall structural deployability.

  15. Approach for reconstructing anisoplanatic adaptive optics images.

    PubMed

    Aubailly, Mathieu; Roggemann, Michael C; Schulz, Timothy J

    2007-08-20

    Atmospheric turbulence corrupts astronomical images formed by ground-based telescopes. Adaptive optics systems allow the effects of turbulence-induced aberrations to be reduced for a narrow field of view corresponding approximately to the isoplanatic angle theta(0). For field angles larger than theta(0), the point spread function (PSF) gradually degrades as the field angle increases. We present a technique to estimate the PSF of an adaptive optics telescope as function of the field angle, and use this information in a space-varying image reconstruction technique. Simulated anisoplanatic intensity images of a star field are reconstructed by means of a block-processing method using the predicted local PSF. Two methods for image recovery are used: matrix inversion with Tikhonov regularization, and the Lucy-Richardson algorithm. Image reconstruction results obtained using the space-varying predicted PSF are compared to space invariant deconvolution results obtained using the on-axis PSF. The anisoplanatic reconstruction technique using the predicted PSF provides a significant improvement of the mean squared error between the reconstructed image and the object compared to the deconvolution performed using the on-axis PSF. PMID:17712366

  16. Complexity Thinking in PE: Game-Centred Approaches, Games as Complex Adaptive Systems, and Ecological Values

    ERIC Educational Resources Information Center

    Storey, Brian; Butler, Joy

    2013-01-01

    Background: This article draws on the literature relating to game-centred approaches (GCAs), such as Teaching Games for Understanding, and dynamical systems views of motor learning to demonstrate a convergence of ideas around games as complex adaptive learning systems. This convergence is organized under the title "complexity thinking"…

  17. Advances in adaptive control theory: Gradient- and derivative-free approaches

    NASA Astrophysics Data System (ADS)

    Yucelen, Tansel

    In this dissertation, we present new approaches to improve standard designs in adaptive control theory, and novel adaptive control architectures. We first present a novel Kalman filter based approach for approximately enforcing a linear constraint in standard adaptive control design. One application is that this leads to alternative forms for well known modification terms such as e-modification. In addition, it leads to smaller tracking errors without incurring significant oscillations in the system response and without requiring high modification gain. We derive alternative forms of e- and adaptive loop recovery (ALR-) modifications. Next, we show how to use Kalman filter optimization to derive a novel adaptation law. This results in an optimization-based time-varying adaptation gain that reduces the need for adaptation gain tuning. A second major contribution of this dissertation is the development of a novel derivative-free, delayed weight update law for adaptive control. The assumption of constant unknown ideal weights is relaxed to the existence of time-varying weights, such that fast and possibly discontinuous variation in weights are allowed. This approach is particulary advantageous for applications to systems that can undergo a sudden change in dynamics, such as might be due to reconfiguration, deployment of a payload, docking, or structural damage, and for rejection of external disturbance processes. As a third and final contribution, we develop a novel approach for extending all the methods developed in this dissertation to the case of output feedback. The approach is developed only for the case of derivative-free adaptive control, and the extension of the other approaches developed previously for the state feedback case to output feedback is left as a future research topic. The proposed approaches of this dissertation are illustrated in both simulation and flight test.

  18. Adaptive dynamic FBG interrogation utilising erbium-doped fibre

    NASA Astrophysics Data System (ADS)

    John, R. N.; Read, I.; MacPherson, W. N.

    2013-04-01

    A dynamic fibre Bragg grating interrogation scheme is investigated using two-wave mixing in erbium-doped fibre, capable of adapting to quasistatic strain and temperature drifts. An interference pattern set up in the erbium-doped fibre creates, due to the photorefractive effect, a dynamic grating capable of wavelength demodulating the FBG signal. The presence of a dynamic grating was verified and then dynamic strain signals from a fibre stretcher were measured. The adaptive nature of the technique was successfully demonstrated by heating the FBG while it underwent dynamic straining leading to detection unlike an alternative arrayed waveguide grating system which simultaneously failed detection. Two gratings were then wavelength division multiplexed with the signal grating receiving approximately 30dB greater signal showing that there was little cross talk in the system.

  19. Adapting to the Digital Age: A Narrative Approach

    ERIC Educational Resources Information Center

    Cousins, Sarah; Bissar, Dounia

    2012-01-01

    The article adopts a narrative inquiry approach to foreground informal learning and exposes a collection of stories from tutors about how they adapted comfortably to the digital age.We were concerned that despite substantial evidence that bringing about changes in pedagogic practices can be difficult, there is a gap in convincing approaches to…

  20. Robust adaptive dynamic programming with an application to power systems.

    PubMed

    Jiang, Yu; Jiang, Zhong-Ping

    2013-07-01

    This brief presents a novel framework of robust adaptive dynamic programming (robust-ADP) aimed at computing globally stabilizing and suboptimal control policies in the presence of dynamic uncertainties. A key strategy is to integrate ADP theory with techniques in modern nonlinear control with a unique objective of filling up a gap in the past literature of ADP without taking into account dynamic uncertainties. Neither the system dynamics nor the system order are required to be precisely known. As an illustrative example, the computational algorithm is applied to the controller design of a two-machine power system. PMID:24808528

  1. Silicon-Neuron Design: A Dynamical Systems Approach

    PubMed Central

    Arthur, John V.; Boahen, Kwabena

    2010-01-01

    We present an approach to design spiking silicon neurons based on dynamical systems theory. Dynamical systems theory aids in choosing the appropriate level of abstraction, prescribing a neuron model with the desired dynamics while maintaining simplicity. Further, we provide a procedure to transform the prescribed equations into subthreshold current-mode circuits. We present a circuit design example, a positive-feedback integrate-and-fire neuron, fabricated in 0.25 μm CMOS. We analyze and characterize the circuit, and demonstrate that it can be configured to exhibit desired behaviors, including spike-frequency adaptation and two forms of bursting. PMID:21617741

  2. Adaptive synchronised tracking control for multiple robotic manipulators with uncertain kinematics and dynamics

    NASA Astrophysics Data System (ADS)

    Zhao, Dongya; Li, Shaoyuan; Zhu, Quanmin

    2016-03-01

    In this study, a new adaptive synchronised tracking control approach is developed for the operation of multiple robotic manipulators in the presence of uncertain kinematics and dynamics. In terms of the system synchronisation and adaptive control, the proposed approach can stabilise position tracking of each robotic manipulator while coordinating its motion with the other robotic manipulators. On the other hand, the developed approach can cope with kinematic and dynamic uncertainties. The corresponding stability analysis is presented to lay a foundation for theoretical understanding of the underlying issues as well as an assurance for safely operating real systems. Illustrative examples are bench tested to validate the effectiveness of the proposed approach. In addition, to face the challenging issues, this study provides an exemplary showcase with effectively to integrate several cross boundary theoretical results to formulate an interdisciplinary solution.

  3. Adaptive planning for applications with dynamic objectives

    NASA Technical Reports Server (NTRS)

    Hadavi, Khosrow; Hsu, Wen-Ling; Pinedo, Michael

    1992-01-01

    We devise a qualitative control layer to be integrated into a real-time multi-agent reactive planner. The reactive planning system consists of distributed planning agents attending to various perspectives of the task environment. Each perspective corresponds to an objective. The set of objectives considered are sometimes in conflict with each other. Each agent receives information about events as they occur, and a set of actions based on heuristics can be taken by the agents. Within the qualitative control scheme, we use a set of qualitative feature vectors to describe the effects of applying actions. A qualitative transition vector is used to denote the qualitative distance between the current state and the target state. We will then apply on-line learning at the qualitative control level to achieve adaptive planning. Our goal is to design a mechanism to refine the heuristics used by the reactive planner every time an action is taken toward achieving the objectives, using feedback from the results of the actions. When the outcome is compared with expectations, our prior objectives may be modified and a new set of objectives (or a new assessment of the relative importance of the different objectives) can be introduced. Because we are able to obtain better estimates of the time-varying objectives, the reactive strategies can be improved and better prediction can be achieved.

  4. Adaptive Fuzzy Control of Strict-Feedback Nonlinear Time-Delay Systems With Unmodeled Dynamics.

    PubMed

    Yin, Shen; Shi, Peng; Yang, Hongyan

    2016-08-01

    In this paper, an approximated-based adaptive fuzzy control approach with only one adaptive parameter is presented for a class of single input single output strict-feedback nonlinear systems in order to deal with phenomena like nonlinear uncertainties, unmodeled dynamics, dynamic disturbances, and unknown time delays. Lyapunov-Krasovskii function approach is employed to compensate the unknown time delays in the design procedure. By combining the advances of the hyperbolic tangent function with adaptive fuzzy backstepping technique, the proposed controller guarantees the semi-globally uniformly ultimately boundedness of all the signals in the closed-loop system from the mean square point of view. Two simulation examples are finally provided to show the superior effectiveness of the proposed scheme. PMID:26302525

  5. Robust adaptive dynamic programming and feedback stabilization of nonlinear systems.

    PubMed

    Jiang, Yu; Jiang, Zhong-Ping

    2014-05-01

    This paper studies the robust optimal control design for a class of uncertain nonlinear systems from a perspective of robust adaptive dynamic programming (RADP). The objective is to fill up a gap in the past literature of adaptive dynamic programming (ADP) where dynamic uncertainties or unmodeled dynamics are not addressed. A key strategy is to integrate tools from modern nonlinear control theory, such as the robust redesign and the backstepping techniques as well as the nonlinear small-gain theorem, with the theory of ADP. The proposed RADP methodology can be viewed as an extension of ADP to uncertain nonlinear systems. Practical learning algorithms are developed in this paper, and have been applied to the controller design problems for a jet engine and a one-machine power system. PMID:24808035

  6. Adaptive identification and control of structural dynamics systems using recursive lattice filters

    NASA Technical Reports Server (NTRS)

    Sundararajan, N.; Montgomery, R. C.; Williams, J. P.

    1985-01-01

    A new approach for adaptive identification and control of structural dynamic systems by using least squares lattice filters thar are widely used in the signal processing area is presented. Testing procedures for interfacing the lattice filter identification methods and modal control method for stable closed loop adaptive control are presented. The methods are illustrated for a free-free beam and for a complex flexible grid, with the basic control objective being vibration suppression. The approach is validated by using both simulations and experimental facilities available at the Langley Research Center.

  7. Adaptive resummation of Markovian quantum dynamics.

    PubMed

    Lucas, Felix; Hornberger, Klaus

    2013-06-14

    We introduce a method for obtaining analytic approximations to the evolution of Markovian open quantum systems. It is based on resumming a generalized Dyson series in a way that ensures optimal convergence even in the absence of a small parameter. The power of this approach is demonstrated by two benchmark examples: the spatial detection of a free particle and the Landau-Zener problem in the presence of dephasing. The derived approximations are asymptotically exact and exhibit errors on the per mill level over the entire parameter range. PMID:25165896

  8. Sex speeds adaptation by altering the dynamics of molecular evolution.

    PubMed

    McDonald, Michael J; Rice, Daniel P; Desai, Michael M

    2016-03-10

    Sex and recombination are pervasive throughout nature despite their substantial costs. Understanding the evolutionary forces that maintain these phenomena is a central challenge in biology. One longstanding hypothesis argues that sex is beneficial because recombination speeds adaptation. Theory has proposed several distinct population genetic mechanisms that could underlie this advantage. For example, sex can promote the fixation of beneficial mutations either by alleviating interference competition (the Fisher-Muller effect) or by separating them from deleterious load (the ruby in the rubbish effect). Previous experiments confirm that sex can increase the rate of adaptation, but these studies did not observe the evolutionary dynamics that drive this effect at the genomic level. Here we present the first, to our knowledge, comparison between the sequence-level dynamics of adaptation in experimental sexual and asexual Saccharomyces cerevisiae populations, which allows us to identify the specific mechanisms by which sex speeds adaptation. We find that sex alters the molecular signatures of evolution by changing the spectrum of mutations that fix, and confirm theoretical predictions that it does so by alleviating clonal interference. We also show that substantially deleterious mutations hitchhike to fixation in adapting asexual populations. In contrast, recombination prevents such mutations from fixing. Our results demonstrate that sex both speeds adaptation and alters its molecular signature by allowing natural selection to more efficiently sort beneficial from deleterious mutations. PMID:26909573

  9. The AdaptiV Approach to Verification of Adaptive Systems

    SciTech Connect

    Rouff, Christopher; Buskens, Richard; Pullum, Laura L; Cui, Xiaohui; Hinchey, Mike

    2012-01-01

    Adaptive systems are critical for future space and other unmanned and intelligent systems. Verification of these systems is also critical for their use in systems with potential harm to human life or with large financial investments. Due to their nondeterministic nature and extremely large state space, current methods for verification of software systems are not adequate to provide a high level of assurance. The combination of stabilization science, high performance computing simulations, compositional verification and traditional verification techniques, plus operational monitors, provides a complete approach to verification and deployment of adaptive systems that has not been used before. This paper gives an overview of this approach.

  10. Gradient-based adaptation of continuous dynamic model structures

    NASA Astrophysics Data System (ADS)

    La Cava, William G.; Danai, Kourosh

    2016-01-01

    A gradient-based method of symbolic adaptation is introduced for a class of continuous dynamic models. The proposed model structure adaptation method starts with the first-principles model of the system and adapts its structure after adjusting its individual components in symbolic form. A key contribution of this work is its introduction of the model's parameter sensitivity as the measure of symbolic changes to the model. This measure, which is essential to defining the structural sensitivity of the model, not only accommodates algebraic evaluation of candidate models in lieu of more computationally expensive simulation-based evaluation, but also makes possible the implementation of gradient-based optimisation in symbolic adaptation. The proposed method is applied to models of several virtual and real-world systems that demonstrate its potential utility.

  11. A new approach to adaptive control of manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1987-01-01

    An approach in which the manipulator inverse is used as a feedforward controller is employed in the adaptive control of manipulators in order to achieve trajectory tracking by the joint angles. The desired trajectory is applied as an input to the feedforward controller, and the controller output is used as the driving torque for the manipulator. An adaptive algorithm obtained from MRAC theory is used to update the controller gains to cope with variations in the manipulator inverse due to changes of the operating point. An adaptive feedback controller and an auxiliary signal enhance closed-loop stability and achieve faster adaptation. Simulation results demonstrate the effectiveness of the proposed control scheme for different reference trajectories, and despite large variations in the payload.

  12. Approach to nonparametric cooperative multiband segmentation with adaptive threshold.

    PubMed

    Sebari, Imane; He, Dong-Chen

    2009-07-10

    We present a new nonparametric cooperative approach to multiband image segmentation. It is based on cooperation between region-growing segmentation and edge segmentation. This approach requires no input data other than the images to be processed. It uses a spectral homogeneity criterion whose threshold is determined automatically. The threshold is adaptive and varies depending on the objects to be segmented. Applying this new approach to very high resolution satellite imagery has yielded satisfactory results. The approach demonstrated its performance on images of varied complexity and was able to detect objects of great spatial and spectral heterogeneity. PMID:19593349

  13. Serial and parallel dynamic adaptation of general hybrid meshes

    NASA Astrophysics Data System (ADS)

    Kavouklis, Christos

    The Navier-Stokes equations are a standard mathematical representation of viscous fluid flow. Their numerical solution in three dimensions remains a computationally intensive and challenging task, despite recent advances in computer speed and memory. A strategy to increase accuracy of Navier-Stokes simulations, while maintaining computing resources to a minimum, is local refinement of the associated computational mesh in regions of large solution gradients and coarsening in regions where the solution does not vary appreciably. In this work we consider adaptation of general hybrid meshes for Computational Fluid Dynamics (CFD) applications. Hybrid meshes are composed of four types of elements; hexahedra, prisms, pyramids and tetrahedra, and have been proven a promising technology in accurately resolving fluid flow for complex geometries. The first part of this dissertation is concerned with the design and implementation of a serial scheme for the adaptation of general three dimensional hybrid meshes. We have defined 29 refinement types, for all four kinds of elements. The core of the present adaptation scheme is an iterative algorithm that flags mesh edges for refinement, so that the adapted mesh is conformal. Of primary importance is considered the design of a suitable dynamic data structure that facilitates refinement and coarsening operations and furthermore minimizes memory requirements. A special dynamic list is defined for mesh elements, in contrast with the usual tree structures. It contains only elements of the current adaptation step and minimal information that is utilized to reconstruct parent elements when the mesh is coarsened. In the second part of this work, a new parallel dynamic mesh adaptation and load balancing algorithm for general hybrid meshes is presented. Partitioning of a hybrid mesh reduces to partitioning of the corresponding dual graph. Communication among processors is based on the faces of the interpartition boundary. The distributed

  14. Optimal Decision Stimuli for Risky Choice Experiments: An Adaptive Approach

    PubMed Central

    Cavagnaro, Daniel R.; Gonzalez, Richard; Myung, Jay I.; Pitt, Mark A.

    2014-01-01

    Collecting data to discriminate between models of risky choice requires careful selection of decision stimuli. Models of decision making aim to predict decisions across a wide range of possible stimuli, but practical limitations force experimenters to select only a handful of them for actual testing. Some stimuli are more diagnostic between models than others, so the choice of stimuli is critical. This paper provides the theoretical background and a methodological framework for adaptive selection of optimal stimuli for discriminating among models of risky choice. The approach, called Adaptive Design Optimization (ADO), adapts the stimulus in each experimental trial based on the results of the preceding trials. We demonstrate the validity of the approach with simulation studies aiming to discriminate Expected Utility, Weighted Expected Utility, Original Prospect Theory, and Cumulative Prospect Theory models. PMID:24532856

  15. Optimal Decision Stimuli for Risky Choice Experiments: An Adaptive Approach.

    PubMed

    Cavagnaro, Daniel R; Gonzalez, Richard; Myung, Jay I; Pitt, Mark A

    2013-02-01

    Collecting data to discriminate between models of risky choice requires careful selection of decision stimuli. Models of decision making aim to predict decisions across a wide range of possible stimuli, but practical limitations force experimenters to select only a handful of them for actual testing. Some stimuli are more diagnostic between models than others, so the choice of stimuli is critical. This paper provides the theoretical background and a methodological framework for adaptive selection of optimal stimuli for discriminating among models of risky choice. The approach, called Adaptive Design Optimization (ADO), adapts the stimulus in each experimental trial based on the results of the preceding trials. We demonstrate the validity of the approach with simulation studies aiming to discriminate Expected Utility, Weighted Expected Utility, Original Prospect Theory, and Cumulative Prospect Theory models. PMID:24532856

  16. Parallel tetrahedral mesh adaptation with dynamic load balancing

    SciTech Connect

    Oliker, Leonid; Biswas, Rupak; Gabow, Harold N.

    2000-06-28

    The ability to dynamically adapt an unstructured grid is a powerful tool for efficiently solving computational problems with evolving physical features. In this paper, we report on our experience parallelizing an edge-based adaptation scheme, called 3D-TAG, using message passing. Results show excellent speedup when a realistic helicopter rotor mesh is randomly refined. However, performance deteriorates when the mesh is refined using a solution-based error indicator since mesh adaptation for practical problems occurs in a localized region, creating a severe load imbalance. To address this problem, we have developed PLUM, a global dynamic load balancing framework for adaptive numerical computations. Even though PLUM primarily balances processor workloads for the solution phase, it reduces the load imbalance problem within mesh adaptation by repartitioning the mesh after targeting edges for refinement but before the actual subdivision. This dramatically improves the performance of parallel 3D-TAG since refinement occurs in a more load balanced fashion. We also present optimal and heuristic algorithms that, when applied to the default mapping of a parallel repartitioner, significantly reduce the data redistribution overhead. Finally, portability is examined by comparing performance on three state-of-the-art parallel machines.

  17. Model-adaptive hybrid dynamic control for robotic assembly tasks

    SciTech Connect

    Austin, D.J.; McCarragher, B.J.

    1999-10-01

    A new task-level adaptive controller is presented for the hybrid dynamic control of robotic assembly tasks. Using a hybrid dynamic model of the assembly task, velocity constraints are derived from which satisfactory velocity commands are obtained. Due to modeling errors and parametric uncertainties, the velocity commands may be erroneous and may result in suboptimal performance. Task-level adaptive control schemes, based on the occurrence of discrete events, are used to change the model parameters from which the velocity commands are determined. Two adaptive schemes are presented: the first is based on intuitive reasoning about the vector spaces involved whereas the second uses a search region that is reduced with each iteration. For the first adaptation law, asymptotic convergence to the correct model parameters is proven except for one case. This weakness motivated the development of the second adaptation law, for which asymptotic convergence is proven in all cases. Automated control of a peg-in-hole assembly task is given as an example, and simulations and experiments for this task are presented. These results demonstrate the success of the method and also indicate properties for rapid convergence.

  18. Parallel Tetrahedral Mesh Adaptation with Dynamic Load Balancing

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Biswas, Rupak; Gabow, Harold N.

    1999-01-01

    The ability to dynamically adapt an unstructured grid is a powerful tool for efficiently solving computational problems with evolving physical features. In this paper, we report on our experience parallelizing an edge-based adaptation scheme, called 3D_TAG. using message passing. Results show excellent speedup when a realistic helicopter rotor mesh is randomly refined. However. performance deteriorates when the mesh is refined using a solution-based error indicator since mesh adaptation for practical problems occurs in a localized region., creating a severe load imbalance. To address this problem, we have developed PLUM, a global dynamic load balancing framework for adaptive numerical computations. Even though PLUM primarily balances processor workloads for the solution phase, it reduces the load imbalance problem within mesh adaptation by repartitioning the mesh after targeting edges for refinement but before the actual subdivision. This dramatically improves the performance of parallel 3D_TAG since refinement occurs in a more load balanced fashion. We also present optimal and heuristic algorithms that, when applied to the default mapping of a parallel repartitioner, significantly reduce the data redistribution overhead. Finally, portability is examined by comparing performance on three state-of-the-art parallel machines.

  19. Searching for adaptive traits in genetic resources - phenology based approach

    NASA Astrophysics Data System (ADS)

    Bari, Abdallah

    2015-04-01

    Searching for adaptive traits in genetic resources - phenology based approach Abdallah Bari, Kenneth Street, Eddy De Pauw, Jalal Eddin Omari, and Chandra M. Biradar International Center for Agricultural Research in the Dry Areas, Rabat Institutes, Rabat, Morocco Phenology is an important plant trait not only for assessing and forecasting food production but also for searching in genebanks for adaptive traits. Among the phenological parameters we have been considering to search for such adaptive and rare traits are the onset (sowing period) and the seasonality (growing period). Currently an application is being developed as part of the focused identification of germplasm strategy (FIGS) approach to use climatic data in order to identify crop growing seasons and characterize them in terms of onset and duration. These approximations of growing period characteristics can then be used to estimate flowering and maturity dates for dryland crops, such as wheat, barley, faba bean, lentils and chickpea, and assess, among others, phenology-related traits such as days to heading [dhe] and grain filling period [gfp]. The approach followed here is based on first calculating long term average daily temperatures by fitting a curve to the monthly data over days from beginning of the year. Prior to the identification of these phenological stages the onset is extracted first from onset integer raster GIS layers developed based on a model of the growing period that considers both moisture and temperature limitations. The paper presents some examples of real applications of the approach to search for rare and adaptive traits.

  20. Eco-evolutionary feedbacks, adaptive dynamics and evolutionary rescue theory

    PubMed Central

    Ferriere, Regis; Legendre, Stéphane

    2013-01-01

    Adaptive dynamics theory has been devised to account for feedbacks between ecological and evolutionary processes. Doing so opens new dimensions to and raises new challenges about evolutionary rescue. Adaptive dynamics theory predicts that successive trait substitutions driven by eco-evolutionary feedbacks can gradually erode population size or growth rate, thus potentially raising the extinction risk. Even a single trait substitution can suffice to degrade population viability drastically at once and cause ‘evolutionary suicide’. In a changing environment, a population may track a viable evolutionary attractor that leads to evolutionary suicide, a phenomenon called ‘evolutionary trapping’. Evolutionary trapping and suicide are commonly observed in adaptive dynamics models in which the smooth variation of traits causes catastrophic changes in ecological state. In the face of trapping and suicide, evolutionary rescue requires that the population overcome evolutionary threats generated by the adaptive process itself. Evolutionary repellors play an important role in determining how variation in environmental conditions correlates with the occurrence of evolutionary trapping and suicide, and what evolutionary pathways rescue may follow. In contrast with standard predictions of evolutionary rescue theory, low genetic variation may attenuate the threat of evolutionary suicide and small population sizes may facilitate escape from evolutionary traps. PMID:23209163

  1. Adaptive network dynamics and evolution of leadership in collective migration

    NASA Astrophysics Data System (ADS)

    Pais, Darren; Leonard, Naomi E.

    2014-01-01

    The evolution of leadership in migratory populations depends not only on costs and benefits of leadership investments but also on the opportunities for individuals to rely on cues from others through social interactions. We derive an analytically tractable adaptive dynamic network model of collective migration with fast timescale migration dynamics and slow timescale adaptive dynamics of individual leadership investment and social interaction. For large populations, our analysis of bifurcations with respect to investment cost explains the observed hysteretic effect associated with recovery of migration in fragmented environments. Further, we show a minimum connectivity threshold above which there is evolutionary branching into leader and follower populations. For small populations, we show how the topology of the underlying social interaction network influences the emergence and location of leaders in the adaptive system. Our model and analysis can be extended to study the dynamics of collective tracking or collective learning more generally. Thus, this work may inform the design of robotic networks where agents use decentralized strategies that balance direct environmental measurements with agent interactions.

  2. Techniques for grid manipulation and adaptation. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Eisemann, Peter R.; Lee, Ki D.

    1992-01-01

    Two approaches have been taken to provide systematic grid manipulation for improved grid quality. One is the control point form (CPF) of algebraic grid generation. It provides explicit control of the physical grid shape and grid spacing through the movement of the control points. It works well in the interactive computer graphics environment and hence can be a good candidate for integration with other emerging technologies. The other approach is grid adaptation using a numerical mapping between the physical space and a parametric space. Grid adaptation is achieved by modifying the mapping functions through the effects of grid control sources. The adaptation process can be repeated in a cyclic manner if satisfactory results are not achieved after a single application.

  3. A mathematical approach to HIV infection dynamics

    NASA Astrophysics Data System (ADS)

    Ida, A.; Oharu, S.; Oharu, Y.

    2007-07-01

    In order to obtain a comprehensive form of mathematical models describing nonlinear phenomena such as HIV infection process and AIDS disease progression, it is efficient to introduce a general class of time-dependent evolution equations in such a way that the associated nonlinear operator is decomposed into the sum of a differential operator and a perturbation which is nonlinear in general and also satisfies no global continuity condition. An attempt is then made to combine the implicit approach (usually adapted for convective diffusion operators) and explicit approach (more suited to treat continuous-type operators representing various physiological interactions), resulting in a semi-implicit product formula. Decomposing the operators in this way and considering their individual properties, it is seen that approximation-solvability of the original model is verified under suitable conditions. Once appropriate terms are formulated to describe treatment by antiretroviral therapy, the time-dependence of the reaction terms appears, and such product formula is useful for generating approximate numerical solutions to the governing equations. With this knowledge, a continuous model for HIV disease progression is formulated and physiological interpretations are provided. The abstract theory is then applied to show existence of unique solutions to the continuous model describing the behavior of the HIV virus in the human body and its reaction to treatment by antiretroviral therapy. The product formula suggests appropriate discrete models describing the dynamics of host pathogen interactions with HIV1 and is applied to perform numerical simulations based on the model of the HIV infection process and disease progression. Finally, the results of our numerical simulations are visualized and it is observed that our results agree with medical and physiological aspects.

  4. An information theoretic approach of designing sparse kernel adaptive filters.

    PubMed

    Liu, Weifeng; Park, Il; Principe, José C

    2009-12-01

    This paper discusses an information theoretic approach of designing sparse kernel adaptive filters. To determine useful data to be learned and remove redundant ones, a subjective information measure called surprise is introduced. Surprise captures the amount of information a datum contains which is transferable to a learning system. Based on this concept, we propose a systematic sparsification scheme, which can drastically reduce the time and space complexity without harming the performance of kernel adaptive filters. Nonlinear regression, short term chaotic time-series prediction, and long term time-series forecasting examples are presented. PMID:19923047

  5. A new approach for designing self-organizing systems and application to adaptive control

    NASA Technical Reports Server (NTRS)

    Ramamoorthy, P. A.; Zhang, Shi; Lin, Yueqing; Huang, Song

    1993-01-01

    There is tremendous interest in the design of intelligent machines capable of autonomous learning and skillful performance under complex environments. A major task in designing such systems is to make the system plastic and adaptive when presented with new and useful information and stable in response to irrelevant events. A great body of knowledge, based on neuro-physiological concepts, has evolved as a possible solution to this problem. Adaptive resonance theory (ART) is a classical example under this category. The system dynamics of an ART network is described by a set of differential equations with nonlinear functions. An approach for designing self-organizing networks characterized by nonlinear differential equations is proposed.

  6. Novel Approaches to Adaptive Angular Approximations in Computational Transport

    SciTech Connect

    Marvin L. Adams; Igor Carron; Paul Nelson

    2006-06-04

    The particle-transport equation is notoriously difficult to discretize accurately, largely because the solution can be discontinuous in every variable. At any given spatial position and energy E, for example, the transport solution  can be discontinuous at an arbitrary number of arbitrary locations in the direction domain. Even if the solution is continuous it is often devoid of smoothness. This makes the direction variable extremely difficult to discretize accurately. We have attacked this problem with adaptive discretizations in the angle variables, using two distinctly different approaches. The first approach used wavelet function expansions directly and exploited their ability to capture sharp local variations. The second used discrete ordinates with a spatially varying quadrature set that adapts to the local solution. The first approach is very different from that in today’s transport codes, while the second could conceivably be implemented in such codes. Both approaches succeed in reducing angular discretization error to any desired level. The work described and results presented in this report add significantly to the understanding of angular discretization in transport problems and demonstrate that it is possible to solve this important long-standing problem in deterministic transport. Our results show that our adaptive discrete-ordinates (ADO) approach successfully: 1) Reduces angular discretization error to user-selected “tolerance” levels in a variety of difficult test problems; 2) Achieves a given error with significantly fewer unknowns than non-adaptive discrete ordinates methods; 3) Can be implemented within standard discrete-ordinates solution techniques, and thus could generate a significant impact on the field in a relatively short time. Our results show that our adaptive wavelet approach: 1) Successfully reduces the angular discretization error to arbitrarily small levels in a variety of difficult test problems, even when using the

  7. Adaptive low-rank approximation and denoised Monte Carlo approach for high-dimensional Lindblad equations

    NASA Astrophysics Data System (ADS)

    Le Bris, C.; Rouchon, P.; Roussel, J.

    2015-12-01

    We present a twofold contribution to the numerical simulation of Lindblad equations. First, an adaptive numerical approach to approximate Lindblad equations using low-rank dynamics is described: a deterministic low-rank approximation of the density operator is computed, and its rank is adjusted dynamically, using an on-the-fly estimator of the error committed when reducing the dimension. On the other hand, when the intrinsic dimension of the Lindblad equation is too high to allow for such a deterministic approximation, we combine classical ensemble averages of quantum Monte Carlo trajectories and a denoising technique. Specifically, a variance reduction method based on the consideration of a low-rank dynamics as a control variate is developed. Numerical tests for quantum collapse and revivals show the efficiency of each approach, along with the complementarity of the two approaches.

  8. Adaptive neural information processing with dynamical electrical synapses

    PubMed Central

    Xiao, Lei; Zhang, Dan-ke; Li, Yuan-qing; Liang, Pei-ji; Wu, Si

    2013-01-01

    The present study investigates a potential computational role of dynamical electrical synapses in neural information process. Compared with chemical synapses, electrical synapses are more efficient in modulating the concerted activity of neurons. Based on the experimental data, we propose a phenomenological model for short-term facilitation of electrical synapses. The model satisfactorily reproduces the phenomenon that the neuronal correlation increases although the neuronal firing rates attenuate during the luminance adaptation. We explore how the stimulus information is encoded in parallel by firing rates and correlated activity of neurons, and find that dynamical electrical synapses mediate a transition from the firing rate code to the correlation one during the luminance adaptation. The latter encodes the stimulus information by using the concerted, but lower neuronal firing rate, and hence is economically more efficient. PMID:23596413

  9. Effects of adaptive dynamical linking in networked games.

    PubMed

    Yang, Zhihu; Li, Zhi; Wu, Te; Wang, Long

    2013-10-01

    The role of dynamical topologies in the evolution of cooperation has received considerable attention, as some studies have demonstrated that dynamical networks are much better than static networks in terms of boosting cooperation. Here we study a dynamical model of evolution of cooperation on stochastic dynamical networks in which there are no permanent partners to each agent. Whenever a new link is created, its duration is randomly assigned without any bias or preference. We allow the agent to adaptively adjust the duration of each link during the evolution in accordance with the feedback from game interactions. By Monte Carlo simulations, we find that cooperation can be remarkably promoted by this adaptive dynamical linking mechanism both for the game of pairwise interactions, such as the Prisoner's Dilemma game (PDG), and for the game of group interactions, illustrated by the public goods game (PGG). And the faster the adjusting rate, the more successful the evolution of cooperation. We also show that in this context weak selection favors cooperation much more than strong selection does. What is particularly meaningful is that the prosperity of cooperation in this study indicates that the rationality and selfishness of a single agent in adjusting social ties can lead to the progress of altruism of the whole population. PMID:24229137

  10. Effects of adaptive dynamical linking in networked games

    NASA Astrophysics Data System (ADS)

    Yang, Zhihu; Li, Zhi; Wu, Te; Wang, Long

    2013-10-01

    The role of dynamical topologies in the evolution of cooperation has received considerable attention, as some studies have demonstrated that dynamical networks are much better than static networks in terms of boosting cooperation. Here we study a dynamical model of evolution of cooperation on stochastic dynamical networks in which there are no permanent partners to each agent. Whenever a new link is created, its duration is randomly assigned without any bias or preference. We allow the agent to adaptively adjust the duration of each link during the evolution in accordance with the feedback from game interactions. By Monte Carlo simulations, we find that cooperation can be remarkably promoted by this adaptive dynamical linking mechanism both for the game of pairwise interactions, such as the Prisoner's Dilemma game (PDG), and for the game of group interactions, illustrated by the public goods game (PGG). And the faster the adjusting rate, the more successful the evolution of cooperation. We also show that in this context weak selection favors cooperation much more than strong selection does. What is particularly meaningful is that the prosperity of cooperation in this study indicates that the rationality and selfishness of a single agent in adjusting social ties can lead to the progress of altruism of the whole population.

  11. Superfluid fission dynamics with microscopic approaches

    NASA Astrophysics Data System (ADS)

    Simenel, C.; Scamps, G.; Lacroix, D.; Umar, A. S.

    2016-01-01

    Recent progresses in the description of the latter stage of nuclear fission are reported. Dynamical effects during the descent of the potential towards scission and in the formation of the fission fragments are studied with the time-dependent Hartree-Fock approach with dynamical pairing correlations at the BCS level. In particular, this approach is used to compute the final kinetic energy of the fission fragments. Comparison with experimental data on the fission of 258Fm are made.

  12. Creative-Dynamics Approach To Neural Intelligence

    NASA Technical Reports Server (NTRS)

    Zak, Michail A.

    1992-01-01

    Paper discusses approach to mathematical modeling of artificial neural networks exhibiting complicated behaviors reminiscent of creativity and intelligence of biological neural networks. Neural network treated as non-Lipschitzian dynamical system - as described in "Non-Lipschitzian Dynamics For Modeling Neural Networks" (NPO-17814). System serves as tool for modeling of temporal-pattern memories and recognition of complicated spatial patterns.

  13. Adaptive routing for dynamic on-body wireless sensor networks.

    PubMed

    Maskooki, Arash; Soh, Cheong Boon; Gunawan, Erry; Low, Kay Soon

    2015-03-01

    Energy is scarce in mobile computing devices including wearable and implantable devices in a wireless body area network. In this paper, an adaptive routing protocol is developed and analyzed which minimizes the energy cost per bit of information by using the channel information to choose the best strategy to route data. In this approach, the source node will switch between direct and relayed communication based on the quality of the link and will use the relay only if the channel quality is below a certain threshold. The mathematical model is then validated through simulations which shows that the adaptive routing strategy can improve energy efficiency significantly compared with existing methods. PMID:24686306

  14. The Colorado Climate Preparedness Project: A Systematic Approach to Assessing Efforts Supporting State-Level Adaptation

    NASA Astrophysics Data System (ADS)

    Klein, R.; Gordon, E.

    2010-12-01

    Scholars and policy analysts often contend that an effective climate adaptation strategy must entail "mainstreaming," or incorporating responses to possible climate impacts into existing planning and management decision frameworks. Such an approach, however, makes it difficult to assess the degree to which decisionmaking entities are engaging in adaptive activities that may or may not be explicitly framed around a changing climate. For example, a drought management plan may not explicitly address climate change, but the activities and strategies outlined in it may reduce vulnerabilities posed by a variable and changing climate. Consequently, to generate a strategic climate adaptation plan requires identifying the entire suite of activities that are implicitly linked to climate and may affect adaptive capacity within the system. Here we outline a novel, two-pronged approach, leveraging social science methods, to understanding adaptation throughout state government in Colorado. First, we conducted a series of interviews with key actors in state and federal government agencies, non-governmental organizations, universities, and other entities engaged in state issues. The purpose of these interviews was to elicit information about current activities that may affect the state’s adaptive capacity and to identify future climate-related needs across the state. Second, we have developed an interactive database cataloging organizations, products, projects, and people actively engaged in adaptive planning and policymaking that are relevant to the state of Colorado. The database includes a wiki interface, helping create a dynamic component that will enable frequent updating as climate-relevant information emerges. The results of this project are intended to paint a clear picture of sectors and agencies with higher and lower levels of adaptation awareness and to provide a roadmap for the next gubernatorial administration to pursue a more sophisticated climate adaptation agenda

  15. Approaches for modeling magnetic nanoparticle dynamics

    PubMed Central

    Reeves, Daniel B; Weaver, John B

    2014-01-01

    Magnetic nanoparticles are useful biological probes as well as therapeutic agents. There have been several approaches used to model nanoparticle magnetization dynamics for both Brownian as well as Néel rotation. The magnetizations are often of interest and can be compared with experimental results. Here we summarize these approaches including the Stoner-Wohlfarth approach, and stochastic approaches including thermal fluctuations. Non-equilibrium related temperature effects can be described by a distribution function approach (Fokker-Planck equation) or a stochastic differential equation (Langevin equation). Approximate models in several regimes can be derived from these general approaches to simplify implementation. PMID:25271360

  16. Camera calibration approach based on adaptive active target

    NASA Astrophysics Data System (ADS)

    Zhang, Yalin; Zhou, Fuqiang; Deng, Peng

    2011-12-01

    Aiming at calibrating camera on site, where the lighting condition is hardly controlled and the quality of target images would be declined when the angle between camera and target changes, an adaptive active target is designed and the camera calibration approach based on the target is proposed. The active adaptive target in which LEDs are embedded is flat, providing active feature point. Therefore the brightness of the feature point can be modified via adjusting the electricity, judging from the threshold of image feature criteria. In order to extract features of the image accurately, the concept of subpixel-precise thresholding is also proposed. It converts the discrete representation of the digital image to continuous function by bilinear interpolation, and the sub-pixel contours are acquired by the intersection of the continuous function and the appropriate selection of threshold. According to analysis of the relationship between the features of the image and the brightness of the target, the area ratio of convex hulls and the grey value variance are adopted as the criteria. Result of experiments revealed that the adaptive active target accommodates well to the changing of the illumination in the environment, the camera calibration approach based on adaptive active target can obtain high level of accuracy and fit perfectly for image targeting in various industrial sites.

  17. An Approach to V&V of Embedded Adaptive Systems

    NASA Technical Reports Server (NTRS)

    Liu, Yan; Yerramalla, Sampath; Fuller, Edgar; Cukic, Bojan; Gururajan, Srikaruth

    2004-01-01

    Rigorous Verification and Validation (V&V) techniques are essential for high assurance systems. Lately, the performance of some of these systems is enhanced by embedded adaptive components in order to cope with environmental changes. Although the ability of adapting is appealing, it actually poses a problem in terms of V&V. Since uncertainties induced by environmental changes have a significant impact on system behavior, the applicability of conventional V&V techniques is limited. In safety-critical applications such as flight control system, the mechanisms of change must be observed, diagnosed, accommodated and well understood prior to deployment. In this paper, we propose a non-conventional V&V approach suitable for online adaptive systems. We apply our approach to an intelligent flight control system that employs a particular type of Neural Networks (NN) as the adaptive learning paradigm. Presented methodology consists of a novelty detection technique and online stability monitoring tools. The novelty detection technique is based on Support Vector Data Description that detects novel (abnormal) data patterns. The Online Stability Monitoring tools based on Lyapunov's Stability Theory detect unstable learning behavior in neural networks. Cases studies based on a high fidelity simulator of NASA's Intelligent Flight Control System demonstrate a successful application of the presented V&V methodology. ,

  18. Non-adaptive and adaptive hybrid approaches for enhancing water quality management

    NASA Astrophysics Data System (ADS)

    Kalwij, Ineke M.; Peralta, Richard C.

    2008-09-01

    SummaryUsing optimization to help solve groundwater management problems cost-effectively is becoming increasingly important. Hybrid optimization approaches, that combine two or more optimization algorithms, will become valuable and common tools for addressing complex nonlinear hydrologic problems. Hybrid heuristic optimizers have capabilities far beyond those of a simple genetic algorithm (SGA), and are continuously improving. SGAs having only parent selection, crossover, and mutation are inefficient and rarely used for optimizing contaminant transport management. Even an advanced genetic algorithm (AGA) that includes elitism (to emphasize using the best strategies as parents) and healing (to help assure optimal strategy feasibility) is undesirably inefficient. Much more efficient than an AGA is the presented hybrid (AGCT), which adds comprehensive tabu search (TS) features to an AGA. TS mechanisms (TS probability, tabu list size, search coarseness and solution space size, and a TS threshold value) force the optimizer to search portions of the solution space that yield superior pumping strategies, and to avoid reproducing similar or inferior strategies. An AGCT characteristic is that TS control parameters are unchanging during optimization. However, TS parameter values that are ideal for optimization commencement can be undesirable when nearing assumed global optimality. The second presented hybrid, termed global converger (GC), is significantly better than the AGCT. GC includes AGCT plus feedback-driven auto-adaptive control that dynamically changes TS parameters during run-time. Before comparing AGCT and GC, we empirically derived scaled dimensionless TS control parameter guidelines by evaluating 50 sets of parameter values for a hypothetical optimization problem. For the hypothetical area, AGCT optimized both well locations and pumping rates. The parameters are useful starting values because using trial-and-error to identify an ideal combination of control

  19. Station-keeping control for a stratospheric airship platform via fuzzy adaptive backstepping approach

    NASA Astrophysics Data System (ADS)

    Yang, Yueneng; Wu, Jie; Zheng, Wei

    2013-04-01

    This paper presents a novel approach for station-keeping control of a stratospheric airship platform in the presence of parametric uncertainty and external disturbance. First, conceptual design of the stratospheric airship platform is introduced, including the target mission, configuration, energy sources, propeller and payload. Second, the dynamics model of the airship platform is presented, and the mathematical model of its horizontal motion is derived. Third, a fuzzy adaptive backstepping control approach is proposed to develop the station-keeping control system for the simplified horizontal motion. The backstepping controller is designed assuming that the airship model is accurately known, and a fuzzy adaptive algorithm is used to approximate the uncertainty of the airship model. The stability of the closed-loop control system is proven via the Lyapunov theorem. Finally, simulation results illustrate the effectiveness and robustness of the proposed control approach.

  20. An Ecological Approach to Learning Dynamics

    ERIC Educational Resources Information Center

    Normak, Peeter; Pata, Kai; Kaipainen, Mauri

    2012-01-01

    New approaches to emergent learner-directed learning design can be strengthened with a theoretical framework that considers learning as a dynamic process. We propose an approach that models a learning process using a set of spatial concepts: learning space, position of a learner, niche, perspective, step, path, direction of a step and step…

  1. The adaptive, cut-cell Cartesian approach (warts and all)

    NASA Technical Reports Server (NTRS)

    Powell, Kenneth G.

    1995-01-01

    Solution-adaptive methods based on cutting bodies out of Cartesian grids are gaining popularity now that the ways of circumventing the accuracy problems associated with small cut cells have been developed. Researchers are applying Cartesian-based schemes to a broad class of problems now, and, although there is still development work to be done, it is becoming clearer which problems are best suited to the approach (and which are not). The purpose of this paper is to give a candid assessment, based on applying Cartesian schemes to a variety of problems, of the strengths and weaknesses of the approach as it is currently implemented.

  2. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Earl, David J.; Deem, Michael W.

    2005-09-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self-antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely, gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system’s search for antibodies, a balance has evolved between binding affinity and specificity.

  3. Adaptive dynamic programming for auto-resilient video streaming

    NASA Astrophysics Data System (ADS)

    Zhao, Juan; Li, Xingmei; Wang, Wei; Wu, Guoping

    2007-11-01

    Wireless video transmission encounters higher error rate than in wired network, which introduces distortion into the error-sensitive compressed data, reducing the quality of the playback video. Therefore, to ensure the end-to-end quality, wireless video needs a transmission system including both efficient source coding scheme and transmission technology against the influence of the channel error. This paper tackles a dynamic programming algorithm for robust video streaming over error-prone channels. An auto-resilient multiple-description coding with optimized transmission strategy has been proposed. Further study is done on the computational complexity of rate-distortion optimized video streaming and a dynamic programming algorithm is considered. Experiment results show that video streaming with adaptive dynamic programming gains better playback video quality at the receiver when transmitted through error-prone mobile channel.

  4. Adaptive fuzzy decentralised fault-tolerant control for nonlinear large-scale systems with actuator failures and unmodelled dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Yinyin; Tong, Shaocheng; Li, Yongming

    2015-09-01

    This paper discusses the adaptive fuzzy decentralised fault-tolerant control (FTC) problem for a class of nonlinear large-scale systems in strict-feedback form. The systems under study contain the unknown nonlinearities, unmodelled dynamics, actuator faults and without the direct measurements of state variables. With the help of fuzzy logic systems identifying the unknown functions and a fuzzy adaptive observer is designed to estimate the unmeasured states. By using the backstepping design technique and the dynamic surface control approach and combining with the changing supply function technique, a fuzzy adaptive FTC scheme is developed. The main features of the proposed control approach are that it can guarantee the closed-loop system to be input-to-state practically stable, and also has the robustness to the unmodelled dynamics. Moreover, it can overcome the so-called problem of 'explosion of complexity' existing in the previous literature. Finally, simulation studies are provided to illustrate the effectiveness of the proposed approach.

  5. Generalization in Adaptation to Stable and Unstable Dynamics

    PubMed Central

    Kadiallah, Abdelhamid; Franklin, David W.; Burdet, Etienne

    2012-01-01

    Humans skillfully manipulate objects and tools despite the inherent instability. In order to succeed at these tasks, the sensorimotor control system must build an internal representation of both the force and mechanical impedance. As it is not practical to either learn or store motor commands for every possible future action, the sensorimotor control system generalizes a control strategy for a range of movements based on learning performed over a set of movements. Here, we introduce a computational model for this learning and generalization, which specifies how to learn feedforward muscle activity in a function of the state space. Specifically, by incorporating co-activation as a function of error into the feedback command, we are able to derive an algorithm from a gradient descent minimization of motion error and effort, subject to maintaining a stability margin. This algorithm can be used to learn to coordinate any of a variety of motor primitives such as force fields, muscle synergies, physical models or artificial neural networks. This model for human learning and generalization is able to adapt to both stable and unstable dynamics, and provides a controller for generating efficient adaptive motor behavior in robots. Simulation results exhibit predictions consistent with all experiments on learning of novel dynamics requiring adaptation of force and impedance, and enable us to re-examine some of the previous interpretations of experiments on generalization. PMID:23056191

  6. Generalization in adaptation to stable and unstable dynamics.

    PubMed

    Kadiallah, Abdelhamid; Franklin, David W; Burdet, Etienne

    2012-01-01

    Humans skillfully manipulate objects and tools despite the inherent instability. In order to succeed at these tasks, the sensorimotor control system must build an internal representation of both the force and mechanical impedance. As it is not practical to either learn or store motor commands for every possible future action, the sensorimotor control system generalizes a control strategy for a range of movements based on learning performed over a set of movements. Here, we introduce a computational model for this learning and generalization, which specifies how to learn feedforward muscle activity in a function of the state space. Specifically, by incorporating co-activation as a function of error into the feedback command, we are able to derive an algorithm from a gradient descent minimization of motion error and effort, subject to maintaining a stability margin. This algorithm can be used to learn to coordinate any of a variety of motor primitives such as force fields, muscle synergies, physical models or artificial neural networks. This model for human learning and generalization is able to adapt to both stable and unstable dynamics, and provides a controller for generating efficient adaptive motor behavior in robots. Simulation results exhibit predictions consistent with all experiments on learning of novel dynamics requiring adaptation of force and impedance, and enable us to re-examine some of the previous interpretations of experiments on generalization. PMID:23056191

  7. The Dynamics of Vulnerability and Implications for Climate Change Adaptation: Lessons from Urban Water Management

    NASA Astrophysics Data System (ADS)

    Dilling, L.; Daly, M.; Travis, W.; Wilhelmi, O.; Klein, R.; Kenney, D.; Ray, A. J.; Miller, K.

    2013-12-01

    Recent reports and scholarship have suggested that adapting to current climate variability may represent a "no regrets" strategy for adapting to climate change. Filling "adaptation deficits" and other approaches that rely on addressing current vulnerabilities are of course helpful for responding to current climate variability, but we find here that they are not sufficient for adapting to climate change. First, following a comprehensive review and unique synthesis of the natural hazards and climate adaptation literatures, we advance six reasons why adapting to climate variability is not sufficient for adapting to climate change: 1) Vulnerability is different at different levels of exposure; 2) Coping with climate variability is not equivalent to adaptation to longer term change; 3) The socioeconomic context for vulnerability is constantly changing; 4) The perception of risk associated with climate variability does not necessarily promote adaptive behavior in the face of climate change; 5) Adaptations made to short term climate variability may reduce the flexibility of the system in the long term; and 6) Adaptive actions may shift vulnerabilities to other parts of the system or to other people. Instead we suggest that decision makers faced with choices to adapt to climate change must consider the dynamics of vulnerability in a connected system-- how choices made in one part of the system might impact other valued outcomes or even create new vulnerabilities. Furthermore we suggest that rather than expressing climate change adaptation as an extension of adaptation to climate variability, the research and practice communities would do well to articulate adaptation as an imperfect policy, with tradeoffs and consequences and that decisions be prioritized to preserve flexibility be revisited often as climate change unfolds. We then present the results of a number of empirical studies of decision making for drought in urban water systems in the United States to understand

  8. Speech dereverberation for enhancement and recognition using dynamic features constrained deep neural networks and feature adaptation

    NASA Astrophysics Data System (ADS)

    Xiao, Xiong; Zhao, Shengkui; Ha Nguyen, Duc Hoang; Zhong, Xionghu; Jones, Douglas L.; Chng, Eng Siong; Li, Haizhou

    2016-01-01

    This paper investigates deep neural networks (DNN) based on nonlinear feature mapping and statistical linear feature adaptation approaches for reducing reverberation in speech signals. In the nonlinear feature mapping approach, DNN is trained from parallel clean/distorted speech corpus to map reverberant and noisy speech coefficients (such as log magnitude spectrum) to the underlying clean speech coefficients. The constraint imposed by dynamic features (i.e., the time derivatives of the speech coefficients) are used to enhance the smoothness of predicted coefficient trajectories in two ways. One is to obtain the enhanced speech coefficients with a least square estimation from the coefficients and dynamic features predicted by DNN. The other is to incorporate the constraint of dynamic features directly into the DNN training process using a sequential cost function. In the linear feature adaptation approach, a sparse linear transform, called cross transform, is used to transform multiple frames of speech coefficients to a new feature space. The transform is estimated to maximize the likelihood of the transformed coefficients given a model of clean speech coefficients. Unlike the DNN approach, no parallel corpus is used and no assumption on distortion types is made. The two approaches are evaluated on the REVERB Challenge 2014 tasks. Both speech enhancement and automatic speech recognition (ASR) results show that the DNN-based mappings significantly reduce the reverberation in speech and improve both speech quality and ASR performance. For the speech enhancement task, the proposed dynamic feature constraint help to improve cepstral distance, frequency-weighted segmental signal-to-noise ratio (SNR), and log likelihood ratio metrics while moderately degrades the speech-to-reverberation modulation energy ratio. In addition, the cross transform feature adaptation improves the ASR performance significantly for clean-condition trained acoustic models.

  9. Reducing False Negative Reads in RFID Data Streams Using an Adaptive Sliding-Window Approach

    PubMed Central

    Massawe, Libe Valentine; Kinyua, Johnson D. M.; Vermaak, Herman

    2012-01-01

    Unreliability of the data streams generated by RFID readers is among the primary factors which limit the widespread adoption of the RFID technology. RFID data cleaning is, therefore, an essential task in the RFID middleware systems in order to reduce reading errors, and to allow these data streams to be used to make a correct interpretation and analysis of the physical world they are representing. In this paper we propose an adaptive sliding-window based approach called WSTD which is capable of efficiently coping with both environmental variation and tag dynamics. Our experimental results demonstrate the efficacy of the proposed approach. PMID:22666027

  10. Dynamic data-driven sensor network adaptation for border control

    NASA Astrophysics Data System (ADS)

    Bein, Doina; Madan, Bharat B.; Phoha, Shashi; Rajtmajer, Sarah; Rish, Anna

    2013-06-01

    Given a specific scenario for the border control problem, we propose a dynamic data-driven adaptation of the associated sensor network via embedded software agents which make sensor network control, adaptation and collaboration decisions based on the contextual information value of competing data provided by different multi-modal sensors. We further propose the use of influence diagrams to guide data-driven decision making in selecting the appropriate action or course of actions which maximize a given utility function by designing a sensor embedded software agent that uses an influence diagram to make decisions about whether to engage or not engage higher level sensors for accurately detecting human presence in the region. The overarching goal of the sensor system is to increase the probability of target detection and classification and reduce the rate of false alarms. The proposed decision support software agent is validated experimentally on a laboratory testbed for multiple border control scenarios.

  11. Elucidating Microbial Adaptation Dynamics via Autonomous Exposure and Sampling

    NASA Astrophysics Data System (ADS)

    Grace, J. M.; Verseux, C.; Gentry, D.; Moffet, A.; Thayabaran, R.; Wong, N.; Rothschild, L.

    2013-12-01

    The adaptation of micro-organisms to their environments is a complex process of interaction between the pressures of the environment and of competition. Reducing this multifactorial process to environmental exposure in the laboratory is a common tool for elucidating individual mechanisms of evolution, such as mutation rates[Wielgoss et al., 2013]. Although such studies inform fundamental questions about the way adaptation and even speciation occur, they are often limited by labor-intensive manual techniques[Wassmann et al., 2010]. Current methods for controlled study of microbial adaptation limit the length of time, the depth of collected data, and the breadth of applied environmental conditions. Small idiosyncrasies in manual techniques can have large effects on outcomes; for example, there are significant variations in induced radiation resistances following similar repeated exposure protocols[Alcántara-Díaz et al., 2004; Goldman and Travisano, 2011]. We describe here a project under development to allow rapid cycling of multiple types of microbial environmental exposure. The system allows continuous autonomous monitoring and data collection of both single species and sampled communities, independently and concurrently providing multiple types of controlled environmental pressure (temperature, radiation, chemical presence or absence, and so on) to a microbial community in dynamic response to the ecosystem's current status. When combined with DNA sequencing and extraction, such a controlled environment can cast light on microbial functional development, population dynamics, inter- and intra-species competition, and microbe-environment interaction. The project's goal is to allow rapid, repeatable iteration of studies of both natural and artificial microbial adaptation. As an example, the same system can be used both to increase the pH of a wet soil aliquot over time while periodically sampling it for genetic activity analysis, or to repeatedly expose a culture of

  12. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  13. SAR imaging via iterative adaptive approach and sparse Bayesian learning

    NASA Astrophysics Data System (ADS)

    Xue, Ming; Santiago, Enrique; Sedehi, Matteo; Tan, Xing; Li, Jian

    2009-05-01

    We consider sidelobe reduction and resolution enhancement in synthetic aperture radar (SAR) imaging via an iterative adaptive approach (IAA) and a sparse Bayesian learning (SBL) method. The nonparametric weighted least squares based IAA algorithm is a robust and user parameter-free adaptive approach originally proposed for array processing. We show that it can be used to form enhanced SAR images as well. SBL has been used as a sparse signal recovery algorithm for compressed sensing. It has been shown in the literature that SBL is easy to use and can recover sparse signals more accurately than the l 1 based optimization approaches, which require delicate choice of the user parameter. We consider using a modified expectation maximization (EM) based SBL algorithm, referred to as SBL-1, which is based on a three-stage hierarchical Bayesian model. SBL-1 is not only more accurate than benchmark SBL algorithms, but also converges faster. SBL-1 is used to further enhance the resolution of the SAR images formed by IAA. Both IAA and SBL-1 are shown to be effective, requiring only a limited number of iterations, and have no need for polar-to-Cartesian interpolation of the SAR collected data. This paper characterizes the achievable performance of these two approaches by processing the complex backscatter data from both a sparse case study and a backhoe vehicle in free space with different aperture sizes.

  14. Motion adaptive signal integration-high dynamic range (MASI-HDR) video processing for dynamic platforms

    NASA Astrophysics Data System (ADS)

    Piacentino, Michael R.; Berends, David C.; Zhang, David C.; Gudis, Eduardo

    2013-05-01

    Two of the biggest challenges in designing U×V vision systems are properly representing high dynamic range scene content using low dynamic range components and reducing camera motion blur. SRI's MASI-HDR (Motion Adaptive Signal Integration-High Dynamic Range) is a novel technique for generating blur-reduced video using multiple captures for each displayed frame while increasing the effective camera dynamic range by four bits or more. MASI-HDR processing thus provides high performance video from rapidly moving platforms in real-world conditions in low latency real time, enabling even the most demanding applications on air, ground and water.

  15. A control systems engineering approach for adaptive behavioral interventions: illustration with a fibromyalgia intervention.

    PubMed

    Deshpande, Sunil; Rivera, Daniel E; Younger, Jarred W; Nandola, Naresh N

    2014-09-01

    The term adaptive intervention has been used in behavioral medicine to describe operationalized and individually tailored strategies for prevention and treatment of chronic, relapsing disorders. Control systems engineering offers an attractive means for designing and implementing adaptive behavioral interventions that feature intensive measurement and frequent decision-making over time. This is illustrated in this paper for the case of a low-dose naltrexone treatment intervention for fibromyalgia. System identification methods from engineering are used to estimate dynamical models from daily diary reports completed by participants. These dynamical models then form part of a model predictive control algorithm which systematically decides on treatment dosages based on measurements obtained under real-life conditions involving noise, disturbances, and uncertainty. The effectiveness and implications of this approach for behavioral interventions (in general) and pain treatment (in particular) are demonstrated using informative simulations. PMID:25264467

  16. Adaptive virulence evolution: the good old fitness-based approach.

    PubMed

    Alizon, Samuel; Michalakis, Yannis

    2015-05-01

    Infectious diseases could be expected to evolve towards complete avirulence to their hosts if given enough time. However, this is not the case. Often, virulence is maintained because it is linked to adaptive advantages to the parasite, a situation that is often associated with the hypothesis known as the transmission-virulence trade-off hypothesis. Here, we argue that this hypothesis has three limitations, which are related to how virulence is defined, the possibility of multiple trade-offs, and the difficulty of testing the hypothesis empirically. By adopting a fitness-based approach, where the relation between virulence and the fitness of the parasite throughout its life cycle is directly assessed, it is possible to address these limitations and to determine directly whether virulence is adaptive. PMID:25837917

  17. An adaptive online learning approach for Support Vector Regression: Online-SVR-FID

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Zio, Enrico

    2016-08-01

    Support Vector Regression (SVR) is a popular supervised data-driven approach for building empirical models from available data. Like all data-driven methods, under non-stationary environmental and operational conditions it needs to be provided with adaptive learning capabilities, which might become computationally burdensome with large datasets cumulating dynamically. In this paper, a cost-efficient online adaptive learning approach is proposed for SVR by combining Feature Vector Selection (FVS) and Incremental and Decremental Learning. The proposed approach adaptively modifies the model only when different pattern drifts are detected according to proposed criteria. Two tolerance parameters are introduced in the approach to control the computational complexity, reduce the influence of the intrinsic noise in the data and avoid the overfitting problem of SVR. Comparisons of the prediction results is made with other online learning approaches e.g. NORMA, SOGA, KRLS, Incremental Learning, on several artificial datasets and a real case study concerning time series prediction based on data recorded on a component of a nuclear power generation system. The performance indicators MSE and MARE computed on the test dataset demonstrate the efficiency of the proposed online learning method.

  18. Adaptive mesh refinement for 1-dimensional gas dynamics

    SciTech Connect

    Hedstrom, G.; Rodrigue, G.; Berger, M.; Oliger, J.

    1982-01-01

    We consider the solution of the one-dimensional equation of gas-dynamics. Accurate numerical solutions are difficult to obtain on a given spatial mesh because of the existence of physical regions where components of the exact solution are either discontinuous or have large gradient changes. Numerical methods treat these phenomena in a variety of ways. In this paper, the method of adaptive mesh refinement is used. A thorough description of this method for general hyperbolic systems is given elsewhere and only properties of the method pertinent to the system are elaborated.

  19. Collective Fluctuations in the Dynamics of Adaptation and Other Traveling Waves.

    PubMed

    Hallatschek, Oskar; Geyrhofer, Lukas

    2016-03-01

    The dynamics of adaptation are difficult to predict because it is highly stochastic even in large populations. The uncertainty emerges from random genetic drift arising in a vanguard of particularly fit individuals of the population. Several approaches have been developed to analyze the crucial role of genetic drift on the expected dynamics of adaptation, including the mean fitness of the entire population, or the fate of newly arising beneficial deleterious mutations. However, little is known about how genetic drift causes fluctuations to emerge on the population level, where it becomes palpable as variations in the adaptation speed and the fitness distribution. Yet these phenomena control the decay of genetic diversity and variability in evolution experiments and are key to a truly predictive understanding of evolutionary processes. Here, we show that correlations induced by these emergent fluctuations can be computed at any arbitrary order by a suitable choice of a dynamical constraint. The resulting linear equations exhibit fluctuation-induced terms that amplify short-distance correlations and suppress long-distance ones. These terms, which are in general not small, control the decay of genetic diversity and, for wave-tip dominated ("pulled") waves, lead to anticorrelations between the tip of the wave and the lagging bulk of the population. While it is natural to consider the process of adaptation as a branching random walk in fitness space subject to a constraint (due to finite resources), we show that other traveling wave phenomena in ecology and evolution likewise fall into this class of constrained branching random walks. Our methods, therefore, provide a systematic approach toward analyzing fluctuations in a wide range of population biological processes, such as adaptation, genetic meltdown, species invasions, or epidemics. PMID:26819246

  20. Inter-limb interference during bimanual adaptation to dynamic environments

    PubMed Central

    Casadio, Maura; Sanguineti, Vittorio; Squeri, Valentina; Masia, Lorenzo; Morasso, Pietro

    2015-01-01

    Skillful manipulation of objects often requires the spatio-temporal coordination of both hands and, at the same time, the compensation of environmental forces. In bimanual coordination, movements of the two hands may be coupled because each hand needs to compensate the forces generated by the other hand or by an object operated by both hands (dynamic coupling), or because the two hands share the same workspace (spatial coupling). We examined how spatial coupling influences bimanual coordination, by looking at the adaptation of velocity-dependent force fields during a task in which the two hands simultaneously perform center-out reaching movements with the same initial position and the same targets, equally spaced on a circle. Subjects were randomly allocated to two groups, which differed in terms of the force fields they were exposed to: in one group (CW-CW), force fields had equal clockwise orientations in both hands; in the other group (CCW-CW), they had opposite orientations. In both groups, in randomly selected trials (catch trials) of the adaptation phase, the force fields were unexpectedly removed. Adaptation was quantified in terms of the changes of directional error for both hand trajectories. Bimanual coordination was quantified in terms of inter-limb longitudinal and sideways displacements, in force field and in catch trials. Experimental results indicate that both arms could simultaneously adapt to the two force fields. However, in the CCW-CW group, adaptation was incomplete for the movements from the central position to the more distant targets with respect to the body. In addition, in this group the left hand systematically leads in the movements toward targets on the left of the starting position, whereas the right hand leads in the movements to targets on the right. We show that these effects are due to a gradual sideways shift of the hands, so that during movements the left hand tends to consistently remain at the left of the right hand. These

  1. Optimal control for unknown discrete-time nonlinear Markov jump systems using adaptive dynamic programming.

    PubMed

    Zhong, Xiangnan; He, Haibo; Zhang, Huaguang; Wang, Zhanshan

    2014-12-01

    In this paper, we develop and analyze an optimal control method for a class of discrete-time nonlinear Markov jump systems (MJSs) with unknown system dynamics. Specifically, an identifier is established for the unknown systems to approximate system states, and an optimal control approach for nonlinear MJSs is developed to solve the Hamilton-Jacobi-Bellman equation based on the adaptive dynamic programming technique. We also develop detailed stability analysis of the control approach, including the convergence of the performance index function for nonlinear MJSs and the existence of the corresponding admissible control. Neural network techniques are used to approximate the proposed performance index function and the control law. To demonstrate the effectiveness of our approach, three simulation studies, one linear case, one nonlinear case, and one single link robot arm case, are used to validate the performance of the proposed optimal control method. PMID:25420238

  2. Experimental Dynamic Characterization of a Reconfigurable Adaptive Precision Truss

    NASA Technical Reports Server (NTRS)

    Hinkle, J. D.; Peterson, L. D.

    1994-01-01

    The dynamic behavior of a reconfigurable adaptive truss structure with non-linear joints is investigated. The objective is to experimentally examine the effects of the local non-linearities on the global dynamics of the structure. Amplitude changes in the frequency response functions are measured at micron levels of motion. The amplitude and frequency variations of a number of modes indicate a non-linear Coulomb friction response. Hysteretic bifurcation behavior is also measured at an amplitude approximately equal to the specified free-play in the joint. Under the 1 g pre-load, however, the non-linearity was dominantly characteristic of Coulomb friction with little evidence of free-play stiffening.

  3. Adaptive integral dynamic surface control of a hypersonic flight vehicle

    NASA Astrophysics Data System (ADS)

    Aslam Butt, Waseem; Yan, Lin; Amezquita S., Kendrick

    2015-07-01

    In this article, non-linear adaptive dynamic surface air speed and flight path angle control designs are presented for the longitudinal dynamics of a flexible hypersonic flight vehicle. The tracking performance of the control design is enhanced by introducing a novel integral term that caters to avoiding a large initial control signal. To ensure feasibility, the design scheme incorporates magnitude and rate constraints on the actuator commands. The uncertain non-linear functions are approximated by an efficient use of the neural networks to reduce the computational load. A detailed stability analysis shows that all closed-loop signals are uniformly ultimately bounded and the ? tracking performance is guaranteed. The robustness of the design scheme is verified through numerical simulations of the flexible flight vehicle model.

  4. Development of error criteria for adaptive multi-element polynomial chaos approaches

    NASA Astrophysics Data System (ADS)

    Chouvion, B.; Sarrouy, E.

    2016-01-01

    This paper presents and compares different methodologies to create an adaptive stochastic space partitioning in polynomial chaos applications which use a multi-element approach. To implement adaptive partitioning, Wan and Karniadakis first developed a criterion based on the relative error in local variance. We propose here two different error criteria: one based on the residual error and the other on the local variance discontinuity created by partitioning. The methods are applied to classical differential equations with long-term integration difficulties, including the Kraichnan-Orszag three-mode problem, and to simple linear and nonlinear mechanical systems whose stochastic dynamic responses are investigated. The efficiency and robustness of the approaches are investigated by comparison with Monte-Carlo simulations. For the different examples considered, they show significantly better convergence characteristics than the original error criterion used.

  5. Ultra-Low Power Dynamic Knob in Adaptive Compressed Sensing Towards Biosignal Dynamics.

    PubMed

    Wang, Aosen; Lin, Feng; Jin, Zhanpeng; Xu, Wenyao

    2016-06-01

    Compressed sensing (CS) is an emerging sampling paradigm in data acquisition. Its integrated analog-to-information structure can perform simultaneous data sensing and compression with low-complexity hardware. To date, most of the existing CS implementations have a fixed architectural setup, which lacks flexibility and adaptivity for efficient dynamic data sensing. In this paper, we propose a dynamic knob (DK) design to effectively reconfigure the CS architecture by recognizing the biosignals. Specifically, the dynamic knob design is a template-based structure that comprises a supervised learning module and a look-up table module. We model the DK performance in a closed analytic form and optimize the design via a dynamic programming formulation. We present the design on a 130 nm process, with a 0.058 mm (2) fingerprint and a 187.88 nJ/event energy-consumption. Furthermore, we benchmark the design performance using a publicly available dataset. Given the energy constraint in wireless sensing, the adaptive CS architecture can consistently improve the signal reconstruction quality by more than 70%, compared with the traditional CS. The experimental results indicate that the ultra-low power dynamic knob can provide an effective adaptivity and improve the signal quality in compressed sensing towards biosignal dynamics. PMID:26800548

  6. An adaptable neuromorphic model of orientation selectivity based on floating gate dynamics

    PubMed Central

    Gupta, Priti; Markan, C. M.

    2014-01-01

    The biggest challenge that the neuromorphic community faces today is to build systems that can be considered truly cognitive. Adaptation and self-organization are the two basic principles that underlie any cognitive function that the brain performs. If we can replicate this behavior in hardware, we move a step closer to our goal of having cognitive neuromorphic systems. Adaptive feature selectivity is a mechanism by which nature optimizes resources so as to have greater acuity for more abundant features. Developing neuromorphic feature maps can help design generic machines that can emulate this adaptive behavior. Most neuromorphic models that have attempted to build self-organizing systems, follow the approach of modeling abstract theoretical frameworks in hardware. While this is good from a modeling and analysis perspective, it may not lead to the most efficient hardware. On the other hand, exploiting hardware dynamics to build adaptive systems rather than forcing the hardware to behave like mathematical equations, seems to be a more robust methodology when it comes to developing actual hardware for real world applications. In this paper we use a novel time-staggered Winner Take All circuit, that exploits the adaptation dynamics of floating gate transistors, to model an adaptive cortical cell that demonstrates Orientation Selectivity, a well-known biological phenomenon observed in the visual cortex. The cell performs competitive learning, refining its weights in response to input patterns resembling different oriented bars, becoming selective to a particular oriented pattern. Different analysis performed on the cell such as orientation tuning, application of abnormal inputs, response to spatial frequency and periodic patterns reveal close similarity between our cell and its biological counterpart. Embedded in a RC grid, these cells interact diffusively exhibiting cluster formation, making way for adaptively building orientation selective maps in silicon. PMID

  7. Adaptive Wing Camber Optimization: A Periodic Perturbation Approach

    NASA Technical Reports Server (NTRS)

    Espana, Martin; Gilyard, Glenn

    1994-01-01

    Available redundancy among aircraft control surfaces allows for effective wing camber modifications. As shown in the past, this fact can be used to improve aircraft performance. To date, however, algorithm developments for in-flight camber optimization have been limited. This paper presents a perturbational approach for cruise optimization through in-flight camber adaptation. The method uses, as a performance index, an indirect measurement of the instantaneous net thrust. As such, the actual performance improvement comes from the integrated effects of airframe and engine. The algorithm, whose design and robustness properties are discussed, is demonstrated on the NASA Dryden B-720 flight simulator.

  8. Structural dynamic health monitoring of adaptive CFRP structures

    NASA Astrophysics Data System (ADS)

    Kaiser, Stephan; Melcher, Joerg; Breitbach, Elmar J.; Sachau, Delf

    1999-07-01

    The DLR Institute of Structural Mechanics is engaged in the construction and optimization of adaptive structures for aerospace and terrestrial applications. Due to the FFS- Project, one of the recent works of the Institute is the reduction of buffet induced vibration loads at a fin. The construction of modern aircrafts is influenced b the increasing use of fiber composites. They have more specific stiffness and strength properties than metals. On the other hand the layered structure leads to new kinds of damages like delaminations. In the fin interface there are actuators and sensors integrated. Therefore the fin is connected with a controller. For the extension of this adaptive system towards an on-line tool for health monitoring this controller can be used as an identifier of the structure's modal parameters. The most promising procedure is based on MX filters. These filters constitute the filter coefficients from which a fast transformation procedure extracts the modal parameters. The changes of these parameters are related to the location and extent of the damage. So when using the already integrate controller for system identification, one can have a low-cost on-line damage detection for dynamic adaptive structures. First off-line test at CFRP plates have shown the ability to detect delaminations.

  9. Adaptive dynamic programming as a theory of sensorimotor control.

    PubMed

    Jiang, Yu; Jiang, Zhong-Ping

    2014-08-01

    Many characteristics of sensorimotor control can be explained by models based on optimization and optimal control theories. However, most of the previous models assume that the central nervous system has access to the precise knowledge of the sensorimotor system and its interacting environment. This viewpoint is difficult to be justified theoretically and has not been convincingly validated by experiments. To address this problem, this paper presents a new computational mechanism for sensorimotor control from a perspective of adaptive dynamic programming (ADP), which shares some features of reinforcement learning. The ADP-based model for sensorimotor control suggests that a command signal for the human movement is derived directly from the real-time sensory data, without the need to identify the system dynamics. An iterative learning scheme based on the proposed ADP theory is developed, along with rigorous convergence analysis. Interestingly, the computational model as advocated here is able to reproduce the motor learning behavior observed in experiments where a divergent force field or velocity-dependent force field was present. In addition, this modeling strategy provides a clear way to perform stability analysis of the overall system. Hence, we conjecture that human sensorimotor systems use an ADP-type mechanism to control movements and to achieve successful adaptation to uncertainties present in the environment. PMID:24962078

  10. Overstress and flowstress approaches to dynamic viscoplasticity

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda

    2015-09-01

    Viscoplasticity is mostly modelled by the flowstress approach, where the flowstress (Y) is a function of pressure, temperature, plastic strain and strain rate Y(P,T, ɛp, ɛ˙). For dynamic Viscoplasticity the flowstress approach is used in hydrocodes together with the radial return algorithm, to determine deviatoric stress components in each computational cell and for each time step. The flowstress approach assumes that during plastic loading, the flowstress in stress space follows the current stress point (current Y). Unloading of a computational cell is therefore always elastic. The overstress approach to dynamic viscoplasticity was used in various versions in the 1950s and early 1960s, before the advent of hydrocodes. By the overstress approach a state point may move out of the quasistatic flow surface upon loading, and hence the term overstress. When this happens, the state point tends to fall back (or relax) onto the quasistatic flow surface through plastic flow, and the rate of this relaxation is an increasing function of the amount of overstress. In the paper we first outline in detail how these two approaches to dynamic viscoplasticity work, and then show an example for which the overstress approach has an advantage over the flowstress approach. The example has to do with elastic precursor decay in planar impact, and with the phenomenon of anomalous thermal strengthening, revealed recently in planar impact tests. The overstress approach has an advantage whenever plastic flow during unloading is of importance.

  11. The Feldenkrais Method: a dynamic approach to changing motor behavior.

    PubMed

    Buchanan, P A; Ulrich, B D

    2001-12-01

    This tutorial describes the Feldenkrais Method and points to parallels with a dynamic systems theory (DST) approach to motor behavior Feldenkrais is an educational system designed to use movement and perception to foster individualized improvement in function. Moshe Feldenkrais, its originator, believed his method enhanced people's ability to discover flexible and adaptable behavior and that behaviors are self-organized. Similarly, DST explains that a human-environment system is continually adapting to changing conditions and assembling behaviors accordingly. Despite little research, Feldenkrais is being used with people of widely ranging ages and abilities in varied settings. We propose that DSTprovides an integrated foundation for research on the Feldenkrais Method, suggest research questions, and encourage researchers to test the fundamental tenets of Feldenkrais. PMID:11770781

  12. The iterative adaptive approach in medical ultrasound imaging.

    PubMed

    Jensen, Are Charles; Austeng, Andreas

    2014-10-01

    Many medical ultrasound imaging systems are based on sweeping the image plane with a set of narrow beams. Usually, the returning echo from each of these beams is used to form one or a few azimuthal image samples. We model, for each radial distance, jointly the full azimuthal scanline. The model consists of the amplitudes of a set of densely placed potential reflectors (or scatterers), cf. sparse signal representation. To fit the model, we apply the iterative adaptive approach (IAA) on data formed by a sequenced time delay and phase shift. The performance of the IAA in combination with our time-delayed and phase-shifted data are studied on both simulated data of scenes consisting of point targets and hollow cyst-like structures, and recorded ultrasound phantom data from a specially adapted commercially available scanner. The results show that the proposed IAA is more capable of resolving point targets and gives better defined and more geometrically correct cyst-like structures in speckle images compared with the conventional delay-and-sum (DAS) approach. Compared with a Capon beamformer, the IAA showed an improved rendering of cyst-like structures and a similar point-target resolvability. Unlike the Capon beamformer, the IAA has no user parameters and seems unaffected by signal cancellation. The disadvantage of the IAA is a high computational load. PMID:25265177

  13. Block-adaptive quantum mechanics: an adaptive divide-and-conquer approach to interactive quantum chemistry.

    PubMed

    Bosson, Maël; Grudinin, Sergei; Redon, Stephane

    2013-03-01

    We present a novel Block-Adaptive Quantum Mechanics (BAQM) approach to interactive quantum chemistry. Although quantum chemistry models are known to be computationally demanding, we achieve interactive rates by focusing computational resources on the most active parts of the system. BAQM is based on a divide-and-conquer technique and constrains some nucleus positions and some electronic degrees of freedom on the fly to simplify the simulation. As a result, each time step may be performed significantly faster, which in turn may accelerate attraction to the neighboring local minima. By applying our approach to the nonself-consistent Atom Superposition and Electron Delocalization Molecular Orbital theory, we demonstrate interactive rates and efficient virtual prototyping for systems containing more than a thousand of atoms on a standard desktop computer. PMID:23108532

  14. The Formative Method for Adapting Psychotherapy (FMAP): A community-based developmental approach to culturally adapting therapy

    PubMed Central

    Hwang, Wei-Chin

    2010-01-01

    How do we culturally adapt psychotherapy for ethnic minorities? Although there has been growing interest in doing so, few therapy adaptation frameworks have been developed. The majority of these frameworks take a top-down theoretical approach to adapting psychotherapy. The purpose of this paper is to introduce a community-based developmental approach to modifying psychotherapy for ethnic minorities. The Formative Method for Adapting Psychotherapy (FMAP) is a bottom-up approach that involves collaborating with consumers to generate and support ideas for therapy adaptation. It involves 5-phases that target developing, testing, and reformulating therapy modifications. These phases include: (a) generating knowledge and collaborating with stakeholders (b) integrating generated information with theory and empirical and clinical knowledge, (c) reviewing the initial culturally adapted clinical intervention with stakeholders and revising the culturally adapted intervention, (d) testing the culturally adapted intervention, and (e) finalizing the culturally adapted intervention. Application of the FMAP is illustrated using examples from a study adapting psychotherapy for Chinese Americans, but can also be readily applied to modify therapy for other ethnic groups. PMID:20625458

  15. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Deem, Michael

    2006-03-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross-reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system a balance has evolved between binding affinity and specificity in the mechanism for searching the amino acid sequence space of antibodies. Our model predicts that chronic infection may lead to autoimmune disease as well due to cross-reactivity and suggests a broad distribution for the time of onset of autoimmune disease due to chronic exposure. The slow search of antibody sequence space by point mutation leads to the broad of distribution times.

  16. Patient-adaptive lesion metabolism analysis by dynamic PET images.

    PubMed

    Gao, Fei; Liu, Huafeng; Shi, Pengcheng

    2012-01-01

    Dynamic PET imaging provides important spatial-temporal information for metabolism analysis of organs and tissues, and generates a great reference for clinical diagnosis and pharmacokinetic analysis. Due to poor statistical properties of the measurement data in low count dynamic PET acquisition and disturbances from surrounding tissues, identifying small lesions inside the human body is still a challenging issue. The uncertainties in estimating the arterial input function will also limit the accuracy and reliability of the metabolism analysis of lesions. Furthermore, the sizes of the patients and the motions during PET acquisition will yield mismatch against general purpose reconstruction system matrix, this will also affect the quantitative accuracy of metabolism analyses of lesions. In this paper, we present a dynamic PET metabolism analysis framework by defining a patient adaptive system matrix to improve the lesion metabolism analysis. Both patient size information and potential small lesions are incorporated by simulations of phantoms of different sizes and individual point source responses. The new framework improves the quantitative accuracy of lesion metabolism analysis, and makes the lesion identification more precisely. The requirement of accurate input functions is also reduced. Experiments are conducted on Monte Carlo simulated data set for quantitative analysis and validation, and on real patient scans for assessment of clinical potential. PMID:23286175

  17. Dynamic modeling and adaptive control for space stations

    NASA Technical Reports Server (NTRS)

    Ih, C. H. C.; Wang, S. J.

    1985-01-01

    Of all large space structural systems, space stations present a unique challenge and requirement to advanced control technology. Their operations require control system stability over an extremely broad range of parameter changes and high level of disturbances. During shuttle docking the system mass may suddenly increase by more than 100% and during station assembly the mass may vary even more drastically. These coupled with the inherent dynamic model uncertainties associated with large space structural systems require highly sophisticated control systems that can grow as the stations evolve and cope with the uncertainties and time-varying elements to maintain the stability and pointing of the space stations. The aspects of space station operational properties are first examined, including configurations, dynamic models, shuttle docking contact dynamics, solar panel interaction, and load reduction to yield a set of system models and conditions. A model reference adaptive control algorithm along with the inner-loop plant augmentation design for controlling the space stations under severe operational conditions of shuttle docking, excessive model parameter errors, and model truncation are then investigated. The instability problem caused by the zero-frequency rigid body modes and a proposed solution using plant augmentation are addressed. Two sets of sufficient conditions which guarantee the globablly asymptotic stability for the space station systems are obtained.

  18. On the global dynamics of adaptive systems - A study of an elementary example

    NASA Technical Reports Server (NTRS)

    Espana, Martin D.; Praly, Laurent

    1993-01-01

    The inherent nonlinear character of adaptive systems poses serious theoretical problems for the analysis of their dynamics. On the other hand, the importance of their dynamic behavior is directly related to the practical interest in predicting such undesirable phenomena as nonlinear oscillations, abrupt transients, intermittence or a high sensitivity with respect to initial conditions. A geometrical/qualitative description of the phase portrait of a discrete-time adaptive system with unmodeled disturbances is given. For this, the motions in the phase space are referred to normally hyperbolic (structurally stable) locally invariant sets. The study is complemented with a local stability analysis of the equilibrium point and periodic solutions. The critical character of adaptive systems under rather usual working conditions is discussed. Special emphasis is put on the causes leading to intermittence. A geometric interpretation of the effects of some commonly used palliatives to this problem is given. The 'dead-zone' approach is studied in more detail. The predicted dynamics are compared with simulation results.

  19. Adaptive optimal control of highly dissipative nonlinear spatially distributed processes with neuro-dynamic programming.

    PubMed

    Luo, Biao; Wu, Huai-Ning; Li, Han-Xiong

    2015-04-01

    Highly dissipative nonlinear partial differential equations (PDEs) are widely employed to describe the system dynamics of industrial spatially distributed processes (SDPs). In this paper, we consider the optimal control problem of the general highly dissipative SDPs, and propose an adaptive optimal control approach based on neuro-dynamic programming (NDP). Initially, Karhunen-Loève decomposition is employed to compute empirical eigenfunctions (EEFs) of the SDP based on the method of snapshots. These EEFs together with singular perturbation technique are then used to obtain a finite-dimensional slow subsystem of ordinary differential equations that accurately describes the dominant dynamics of the PDE system. Subsequently, the optimal control problem is reformulated on the basis of the slow subsystem, which is further converted to solve a Hamilton-Jacobi-Bellman (HJB) equation. HJB equation is a nonlinear PDE that has proven to be impossible to solve analytically. Thus, an adaptive optimal control method is developed via NDP that solves the HJB equation online using neural network (NN) for approximating the value function; and an online NN weight tuning law is proposed without requiring an initial stabilizing control policy. Moreover, by involving the NN estimation error, we prove that the original closed-loop PDE system with the adaptive optimal control policy is semiglobally uniformly ultimately bounded. Finally, the developed method is tested on a nonlinear diffusion-convection-reaction process and applied to a temperature cooling fin of high-speed aerospace vehicle, and the achieved results show its effectiveness. PMID:25794375

  20. Dynamic analysis of naive adaptive brain-machine interfaces.

    PubMed

    Kowalski, Kevin C; He, Bryan D; Srinivasan, Lakshminarayan

    2013-09-01

    The closed-loop operation of brain-machine interfaces (BMI) provides a context to discover foundational principles behind human-computer interaction, with emerging clinical applications to stroke, neuromuscular diseases, and trauma. In the canonical BMI, a user controls a prosthetic limb through neural signals that are recorded by electrodes and processed by a decoder into limb movements. In laboratory demonstrations with able-bodied test subjects, parameters of the decoder are commonly tuned using training data that include neural signals and corresponding overt arm movements. In the application of BMI to paralysis or amputation, arm movements are not feasible, and imagined movements create weaker, partially unrelated patterns of neural activity. BMI training must begin naive, without access to these prototypical methods for parameter initialization used in most laboratory BMI demonstrations. Naive adaptive BMI refer to a class of methods recently introduced to address this problem. We first identify the basic elements of existing approaches based on adaptive filtering and define a decoder, ReFIT-PPF to represent these existing approaches. We then present Joint RSE, a novel approach that logically extends prior approaches. Using recently developed human- and synthetic-subjects closed-loop BMI simulation platforms, we show that Joint RSE significantly outperforms ReFIT-PPF and nonadaptive (static) decoders. Control experiments demonstrate the critical role of jointly estimating neural parameters and user intent. In addition, we show that nonzero sensorimotor delay in the user significantly degrades ReFIT-PPF but not Joint RSE, owing to differences in the prior on intended velocity. Paradoxically, substantial differences in the nature of sensory feedback between these methods do not contribute to differences in performance between Joint RSE and ReFIT-PPF. Instead, BMI performance improvement is driven by machine learning, which outpaces rates of human learning in

  1. Dynamical maximum entropy approach to flocking

    NASA Astrophysics Data System (ADS)

    Cavagna, Andrea; Giardina, Irene; Ginelli, Francesco; Mora, Thierry; Piovani, Duccio; Tavarone, Raffaele; Walczak, Aleksandra M.

    2014-04-01

    We derive a new method to infer from data the out-of-equilibrium alignment dynamics of collectively moving animal groups, by considering the maximum entropy model distribution consistent with temporal and spatial correlations of flight direction. When bird neighborhoods evolve rapidly, this dynamical inference correctly learns the parameters of the model, while a static one relying only on the spatial correlations fails. When neighbors change slowly and the detailed balance is satisfied, we recover the static procedure. We demonstrate the validity of the method on simulated data. The approach is applicable to other systems of active matter.

  2. Fast adaptive OFDM-PON over single fiber loopback transmission using dynamic rate adaptation-based algorithm for channel performance improvement

    NASA Astrophysics Data System (ADS)

    Kartiwa, Iwa; Jung, Sang-Min; Hong, Moon-Ki; Han, Sang-Kook

    2014-03-01

    In this paper, we propose a novel fast adaptive approach that was applied to an OFDM-PON 20-km single fiber loopback transmission system to improve channel performance in term of stabilized BER below 2 × 10-3 and higher throughput beyond 10 Gb/s. The upstream transmission is performed through light source-seeded modulation using 1-GHz RSOA at the ONU. Experimental results indicated that the dynamic rate adaptation algorithm based on greedy Levin-Campello could be an effective solution to mitigate channel instability and data rate degradation caused by the Rayleigh back scattering effect and inefficient resource subcarrier allocation.

  3. Stable Direct Adaptive Control of Linear Infinite-dimensional Systems Using a Command Generator Tracker Approach

    NASA Technical Reports Server (NTRS)

    Balas, M. J.; Kaufman, H.; Wen, J.

    1985-01-01

    A command generator tracker approach to model following contol of linear distributed parameter systems (DPS) whose dynamics are described on infinite dimensional Hilbert spaces is presented. This method generates finite dimensional controllers capable of exponentially stable tracking of the reference trajectories when certain ideal trajectories are known to exist for the open loop DPS; we present conditions for the existence of these ideal trajectories. An adaptive version of this type of controller is also presented and shown to achieve (in some cases, asymptotically) stable finite dimensional control of the infinite dimensional DPS.

  4. Adaptive Sampling approach to environmental site characterization: Phase 1 demonstration

    SciTech Connect

    Floran, R.J.; Bujewski, G.E.; Johnson, R.L.

    1995-07-01

    A technology demonstration that optimizes sampling strategies and real-time data collection was carried out at the Kirtland Air Force Base (KAFB) RB-11 Radioactive Burial Site, Albuquerque, New Mexico in August 1994. The project, which was funded by the Strategic Environmental Research and Development Program (SERDP), involved the application of a geostatistical-based Adaptive Sampling methodology and software with on-site field screening of soils for radiation, organic compounds and metals. The software, known as Plume{trademark}, was developed at Argonne National Laboratory as part of the DOE/OTD-funded Mixed Waste Landfill Integrated Demonstration (MWLID). The objective of the investigation was to compare an innovative Adaptive Sampling approach that stressed real-time decision-making with a conventional RCRA-driven site characterization carried out by the Air Force. The latter investigation used a standard drilling and sampling plan as mandated by the Environmental Protection Agency (EPA). To make the comparison realistic, the same contractors and sampling equipment (Geoprobe{reg_sign} soil samplers) were used. In both investigations, soil samples were collected at several depths at numerous locations adjacent to burial trenches that contain low-level radioactive waste and animal carcasses; some trenches may also contain mixed waste. Neither study revealed the presence of contaminants appreciably above risk based action levels, indicating that minimal to no migration has occurred away from the trenches. The combination of Adaptive Sampling with field screening achieved a similar level of confidence compared to the Resource Conservation and Recovery Act (RCRA) investigation regarding the potential migration of contaminants at the site.

  5. Community dynamics of cellulose-adapted thermophilic bacterial consortia.

    PubMed

    Eichorst, Stephanie A; Varanasi, Patanjali; Stavila, Vatalie; Zemla, Marcin; Auer, Manfred; Singh, Seema; Simmons, Blake A; Singer, Steven W

    2013-09-01

    Enzymatic hydrolysis of cellulose is a key process in the global carbon cycle and the industrial conversion of biomass to biofuels. In natural environments, cellulose hydrolysis is predominately performed by microbial communities. However, detailed understanding of bacterial cellulose hydrolysis is primarily confined to a few model isolates. Developing models for cellulose hydrolysis by mixed microbial consortia will complement these isolate studies and may reveal new mechanisms for cellulose deconstruction. Microbial communities were adapted to microcrystalline cellulose under aerobic, thermophilic conditions using green waste compost as the inoculum to study cellulose hydrolysis in a microbial consortium. This adaptation selected for three dominant taxa--the Firmicutes, Bacteroidetes and Thermus. A high-resolution profile of community development during the enrichment demonstrated a community transition from Firmicutes to a novel Bacteroidetes population that clusters in the Chitinophagaceae family. A representative strain of this population, strain NYFB, was successfully isolated, and sequencing of a nearly full-length 16S rRNA gene demonstrated that it was only 86% identical compared with other validated strains in the phylum Bacteroidetes. Strain NYFB grew well on soluble polysaccharide substrates, but grew poorly on insoluble polysaccharide substrates. Similar communities were observed in companion thermophilic enrichments on insoluble wheat arabinoxylan, a hemicellulosic substrate, suggesting a common model for deconstruction of plant polysaccharides. Combining observations of community dynamics and the physiology of strain NYFB, a cooperative successional model for polysaccharide hydrolysis by the Firmicutes and Bacteroidetes in the thermophilic cellulolytic consortia is proposed. PMID:23763762

  6. PAQ: Persistent Adaptive Query Middleware for Dynamic Environments

    NASA Astrophysics Data System (ADS)

    Rajamani, Vasanth; Julien, Christine; Payton, Jamie; Roman, Gruia-Catalin

    Pervasive computing applications often entail continuous monitoring tasks, issuing persistent queries that return continuously updated views of the operational environment. We present PAQ, a middleware that supports applications' needs by approximating a persistent query as a sequence of one-time queries. PAQ introduces an integration strategy abstraction that allows composition of one-time query responses into streams representing sophisticated spatio-temporal phenomena of interest. A distinguishing feature of our middleware is the realization that the suitability of a persistent query's result is a function of the application's tolerance for accuracy weighed against the associated overhead costs. In PAQ, programmers can specify an inquiry strategy that dictates how information is gathered. Since network dynamics impact the suitability of a particular inquiry strategy, PAQ associates an introspection strategy with a persistent query, that evaluates the quality of the query's results. The result of introspection can trigger application-defined adaptation strategies that alter the nature of the query. PAQ's simple API makes developing adaptive querying systems easily realizable. We present the key abstractions, describe their implementations, and demonstrate the middleware's usefulness through application examples and evaluation.

  7. Fully Threaded Tree for Adaptive Refinement Fluid Dynamics Simulations

    NASA Technical Reports Server (NTRS)

    Khokhlov, A. M.

    1997-01-01

    A fully threaded tree (FTT) for adaptive refinement of regular meshes is described. By using a tree threaded at all levels, tree traversals for finding nearest neighbors are avoided. All operations on a tree including tree modifications are O(N), where N is a number of cells, and are performed in parallel. An efficient implementation of the tree is described that requires 2N words of memory. A filtering algorithm for removing high frequency noise during mesh refinement is described. A FTT can be used in various numerical applications. In this paper, it is applied to the integration of the Euler equations of fluid dynamics. An adaptive mesh time stepping algorithm is described in which different time steps are used at different l evels of the tree. Time stepping and mesh refinement are interleaved to avoid extensive buffer layers of fine mesh which were otherwise required ahead of moving shocks. Test examples are presented, and the FTT performance is evaluated. The three dimensional simulation of the interaction of a shock wave and a spherical bubble is carried out that shows the development of azimuthal perturbations on the bubble surface.

  8. A dynamical thermostat approach to financial asset price dynamics

    NASA Astrophysics Data System (ADS)

    Thurner, Stefan

    2001-06-01

    A dynamical price formation model for financial assets is presented. It aims to capture the essence of speculative trading where mispricings of assets are used to make profits. It is shown that together with the incorporation of the concept of risk aversion of agents the model is able to reproduce several key characteristics of financial price series. The approach is contrasted to the conventional view of price formation in financial economics.

  9. A fast approach for accurate content-adaptive mesh generation.

    PubMed

    Yang, Yongyi; Wernick, Miles N; Brankov, Jovan G

    2003-01-01

    Mesh modeling is an important problem with many applications in image processing. A key issue in mesh modeling is how to generate a mesh structure that well represents an image by adapting to its content. We propose a new approach to mesh generation, which is based on a theoretical result derived on the error bound of a mesh representation. In the proposed method, the classical Floyd-Steinberg error-diffusion algorithm is employed to place mesh nodes in the image domain so that their spatial density varies according to the local image content. Delaunay triangulation is next applied to connect the mesh nodes. The result of this approach is that fine mesh elements are placed automatically in regions of the image containing high-frequency features while coarse mesh elements are used to represent smooth areas. The proposed algorithm is noniterative, fast, and easy to implement. Numerical results demonstrate that, at very low computational cost, the proposed approach can produce mesh representations that are more accurate than those produced by several existing methods. Moreover, it is demonstrated that the proposed algorithm performs well with images of various kinds, even in the presence of noise. PMID:18237961

  10. An analytic approach to cyber adversarial dynamics

    NASA Astrophysics Data System (ADS)

    Sweeney, Patrick; Cybenko, George

    2012-06-01

    To date, cyber security investment by both the government and commercial sectors has been largely driven by the myopic best response of players to the actions of their adversaries and their perception of the adversarial environment. However, current work in applying traditional game theory to cyber operations typically assumes that games exist with prescribed moves, strategies, and payos. This paper presents an analytic approach to characterizing the more realistic cyber adversarial metagame that we believe is being played. Examples show that understanding the dynamic metagame provides opportunities to exploit an adversary's anticipated attack strategy. A dynamic version of a graph-based attack-defend game is introduced, and a simulation shows how an optimal strategy can be selected for success in the dynamic environment.

  11. The Modern Temperature-Accelerated Dynamics Approach.

    PubMed

    Zamora, Richard J; Uberuaga, Blas P; Perez, Danny; Voter, Arthur F

    2016-06-01

    Accelerated molecular dynamics (AMD) is a class of MD-based methods used to simulate atomistic systems in which the metastable state-to-state evolution is slow compared with thermal vibrations. Temperature-accelerated dynamics (TAD) is a particularly efficient AMD procedure in which the predicted evolution is hastened by elevating the temperature of the system and then recovering the correct state-to-state dynamics at the temperature of interest. TAD has been used to study various materials applications, often revealing surprising behavior beyond the reach of direct MD. This success has inspired several algorithmic performance enhancements, as well as the analysis of its mathematical framework. Recently, these enhancements have leveraged parallel programming techniques to enhance both the spatial and temporal scaling of the traditional approach. We review the ongoing evolution of the modern TAD method and introduce the latest development: speculatively parallel TAD. PMID:26979413

  12. Adaptive Neuro-fuzzy approach in friction identification

    NASA Astrophysics Data System (ADS)

    Zaiyad Muda @ Ismail, Muhammad

    2016-05-01

    Friction is known to affect the performance of motion control system, especially in terms of its accuracy. Therefore, a number of techniques or methods have been explored and implemented to alleviate the effects of friction. In this project, the Artificial Intelligent (AI) approach is used to model the friction which will be then used to compensate the friction. The Adaptive Neuro-Fuzzy Inference System (ANFIS) is chosen among several other AI methods because of its reliability and capabilities of solving complex computation. ANFIS is a hybrid AI-paradigm that combines the best features of neural network and fuzzy logic. This AI method (ANFIS) is effective for nonlinear system identification and compensation and thus, being used in this project.

  13. Adaptive dynamic surface control for a class of MIMO nonlinear systems with actuator failures

    NASA Astrophysics Data System (ADS)

    Amezquita S., Kendrick; Yan, Lin; Butt, Waseem A.

    2013-03-01

    In this article, an adaptive dynamic surface control scheme for a class of MIMO nonlinear systems with actuator failures and uncertainties is presented. In the proposed control scheme, the dynamic changes and disturbances induced by actuator failures are detected and isolated by means of radial basis function neural networks, which also compensate system uncertainties that arise from the mismatch between nominal model and real plant. In the presence of unknown actuation functions, the effectiveness of the control scheme is guaranteed by imposing a structural condition on the actuation matrix. Moreover, the singularity problem that arises from the approximation of unknown actuation functions is circumvented, and thus the use parameter projection is avoided. In this work, the nominal plant is transformed into a suitable form via diffeomorphism. Dynamic surface control design technique is used to develop the control laws. The closed-loop signals are proven to be uniformly ultimately bounded through Lyapunov approach, and the output tracking error is shown to be bounded within a residual set which can be made arbitrarily small by appropriately tuning the controller parameters. Finally, the proposed adaptive control scheme effectiveness is verified by simulation of the longitudinal dynamics of a twin otter aircraft undergoing actuator failures.

  14. Dynamic skeletal muscle stimulation and its potential in bone adaptation

    PubMed Central

    Qin, Y-X.; Lam, H.; Ferreri, S.; Rubin, C.

    2016-01-01

    To identify mechanotransductive signals for combating musculoskeletal deterioration, it is essential to determine the components and mechanisms critical to the anabolic processes of musculoskeletal tissues. It is hypothesized that the interaction between bone and muscle may depend on fluid exchange in these tissues by mechanical loading. It has been shown that intramedullary pressure (ImP) and low-level bone strain induced by muscle stimulation (MS) has the potential to mitigate bone loss induced by disuse osteopenia. Optimized MS signals, i.e., low-intensity and high frequency, may be critical in maintaining bone mass and mitigating muscle atrophy. The objectives for this review are to discuss the potential for MS to induce ImP and strains on bone, to regulate bone adaptation, and to identify optimized stimulation frequency in the loading regimen. The potential for MS to regulate blood and fluid flow will also be discussed. The results suggest that oscillatory MS regulates fluid dynamics with minimal mechanical strain in bone. The response was shown to be dependent on loading frequency, serving as a critical mediator in mitigating bone loss. A specific regimen of dynamic MS may be optimized in vivo to attenuate disuse osteopenia and serve as a biomechanical intervention in the clinical setting. PMID:20190376

  15. Simulation of dynamic processes with adaptive neural networks.

    SciTech Connect

    Tzanos, C. P.

    1998-02-03

    Many industrial processes are highly non-linear and complex. Their simulation with first-principle or conventional input-output correlation models is not satisfactory, either because the process physics is not well understood, or it is so complex that direct simulation is either not adequately accurate, or it requires excessive computation time, especially for on-line applications. Artificial intelligence techniques (neural networks, expert systems, fuzzy logic) or their combination with simple process-physics models can be effectively used for the simulation of such processes. Feedforward (static) neural networks (FNNs) can be used effectively to model steady-state processes. They have also been used to model dynamic (time-varying) processes by adding to the network input layer input nodes that represent values of input variables at previous time steps. The number of previous time steps is problem dependent and, in general, can be determined after extensive testing. This work demonstrates that for dynamic processes that do not vary fast with respect to the retraining time of the neural network, an adaptive feedforward neural network can be an effective simulator that is free of the complexities introduced by the use of input values at previous time steps.

  16. Adapting to Uncertainty: Comparing Methodological Approaches to Climate Adaptation and Mitigation Policy

    NASA Astrophysics Data System (ADS)

    Huda, J.; Kauneckis, D. L.

    2013-12-01

    Climate change adaptation represents a number of unique policy-making challenges. Foremost among these is dealing with the range of future climate impacts to a wide scope of inter-related natural systems, their interaction with social and economic systems, and uncertainty resulting from the variety of downscaled climate model scenarios and climate science projections. These cascades of uncertainty have led to a number of new approaches as well as a reexamination of traditional methods for evaluating risk and uncertainty in policy-making. Policy makers are required to make decisions and formulate policy irrespective of the level of uncertainty involved and while a debate continues regarding the level of scientific certainty required in order to make a decision, incremental change in the climate policy continues at multiple governance levels. This project conducts a comparative analysis of the range of methodological approaches that are evolving to address uncertainty in climate change policy. It defines 'methodologies' to include a variety of quantitative and qualitative approaches involving both top-down and bottom-up policy processes that attempt to enable policymakers to synthesize climate information into the policy process. The analysis examines methodological approaches to decision-making in climate policy based on criteria such as sources of policy choice information, sectors to which the methodology has been applied, sources from which climate projections were derived, quantitative and qualitative methods used to deal with uncertainty, and the benefits and limitations of each. A typology is developed to better categorize the variety of approaches and methods, examine the scope of policy activities they are best suited for, and highlight areas for future research and development.

  17. A New Approach to Interference Excision in Radio Astronomy: Real-Time Adaptive Cancellation

    NASA Astrophysics Data System (ADS)

    Barnbaum, Cecilia; Bradley, Richard F.

    1998-11-01

    Every year, an increasing amount of radio-frequency (RF) spectrum in the VHF, UHF, and microwave bands is being utilized to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Such services already cause problems for radio astronomy even in very remote observing sites, and the potential for this form of light pollution to grow is alarming. Preventive measures to eliminate interference through FCC legislation and ITU agreements can be effective; however, many times this approach is inadequate and interference excision at the receiver is necessary. Conventional techniques such as RF filters, RF shielding, and postprocessing of data have been only somewhat successful, but none has been sufficient. Adaptive interference cancellation is a real-time approach to interference excision that has not been used before in radio astronomy. We describe here, for the first time, adaptive interference cancellation in the context of radio astronomy instrumentation, and we present initial results for our prototype receiver. In the 1960s, analog adaptive interference cancelers were developed that obtain a high degree of cancellation in problems of radio communications and radar. However, analog systems lack the dynamic range, noised performance, and versatility required by radio astronomy. The concept of digital adaptive interference cancellation was introduced in the mid-1960s as a way to reduce unwanted noise in low-frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartments of automobiles. These audio-frequency applications require bandwidths of only a few tens of kilohertz. Only recently has high-speed digital filter technology made high dynamic range adaptive canceling possible in a bandwidth as large as a few megahertz, finally opening the door to application in radio astronomy. We have

  18. Adaptive dynamic surface control for MIMO nonlinear time-varying systems with prescribed tracking performance

    NASA Astrophysics Data System (ADS)

    Wang, Chenliang; Lin, Yan

    2015-04-01

    In this paper, an adaptive dynamic surface control scheme is proposed for a class of multi-input multi-output (MIMO) nonlinear time-varying systems. By fusing a bound estimation approach, a smooth function and a time-varying matrix factorisation, the obstacle caused by unknown time-varying parameters is circumvented. The proposed scheme is free of the problem of explosion of complexity and needs only one updated parameter at each design step. Moreover, all tracking errors can converge to predefined arbitrarily small residual sets with a prescribed convergence rate and maximum overshoot. Such features result in a simple adaptive controller which can be easily implemented in applications with less computational burden and satisfactory tracking performance. Simulation results are presented to illustrate the effectiveness of the proposed scheme.

  19. An adaptive model order reduction by proper snapshot selection for nonlinear dynamical problems

    NASA Astrophysics Data System (ADS)

    Nigro, P. S. B.; Anndif, M.; Teixeira, Y.; Pimenta, P. M.; Wriggers, P.

    2016-04-01

    Model Order Reduction (MOR) methods are employed in many fields of Engineering in order to reduce the processing time of complex computational simulations. A usual approach to achieve this is the application of Galerkin projection to generate representative subspaces (reduced spaces). However, when strong nonlinearities in a dynamical system are present and this technique is employed several times along the simulation, it can be very inefficient. This work proposes a new adaptive strategy, which ensures low computational cost and small error to deal with this problem. This work also presents a new method to select snapshots named Proper Snapshot Selection (PSS). The objective of the PSS is to obtain a good balance between accuracy and computational cost by improving the adaptive strategy through a better snapshot selection in real time (online analysis). With this method, it is possible a substantial reduction of the subspace, keeping the quality of the model without the use of the Proper Orthogonal Decomposition (POD).

  20. Dynamic stability of sequential stimulus representations in adapting neuronal networks

    PubMed Central

    Duarte, Renato C. F.; Morrison, Abigail

    2014-01-01

    The ability to acquire and maintain appropriate representations of time-varying, sequential stimulus events is a fundamental feature of neocortical circuits and a necessary first step toward more specialized information processing. The dynamical properties of such representations depend on the current state of the circuit, which is determined primarily by the ongoing, internally generated activity, setting the ground state from which input-specific transformations emerge. Here, we begin by demonstrating that timing-dependent synaptic plasticity mechanisms have an important role to play in the active maintenance of an ongoing dynamics characterized by asynchronous and irregular firing, closely resembling cortical activity in vivo. Incoming stimuli, acting as perturbations of the local balance of excitation and inhibition, require fast adaptive responses to prevent the development of unstable activity regimes, such as those characterized by a high degree of population-wide synchrony. We establish a link between such pathological network activity, which is circumvented by the action of plasticity, and a reduced computational capacity. Additionally, we demonstrate that the action of plasticity shapes and stabilizes the transient network states exhibited in the presence of sequentially presented stimulus events, allowing the development of adequate and discernible stimulus representations. The main feature responsible for the increased discriminability of stimulus-driven population responses in plastic networks is shown to be the decorrelating action of inhibitory plasticity and the consequent maintenance of the asynchronous irregular dynamic regime both for ongoing activity and stimulus-driven responses, whereas excitatory plasticity is shown to play only a marginal role. PMID:25374534

  1. Adaptive finite-volume WENO schemes on dynamically redistributed grids for compressible Euler equations

    NASA Astrophysics Data System (ADS)

    Pathak, Harshavardhana S.; Shukla, Ratnesh K.

    2016-08-01

    A high-order adaptive finite-volume method is presented for simulating inviscid compressible flows on time-dependent redistributed grids. The method achieves dynamic adaptation through a combination of time-dependent mesh node clustering in regions characterized by strong solution gradients and an optimal selection of the order of accuracy and the associated reconstruction stencil in a conservative finite-volume framework. This combined approach maximizes spatial resolution in discontinuous regions that require low-order approximations for oscillation-free shock capturing. Over smooth regions, high-order discretization through finite-volume WENO schemes minimizes numerical dissipation and provides excellent resolution of intricate flow features. The method including the moving mesh equations and the compressible flow solver is formulated entirely on a transformed time-independent computational domain discretized using a simple uniform Cartesian mesh. Approximations for the metric terms that enforce discrete geometric conservation law while preserving the fourth-order accuracy of the two-point Gaussian quadrature rule are developed. Spurious Cartesian grid induced shock instabilities such as carbuncles that feature in a local one-dimensional contact capturing treatment along the cell face normals are effectively eliminated through upwind flux calculation using a rotated Hartex-Lax-van Leer contact resolving (HLLC) approximate Riemann solver for the Euler equations in generalized coordinates. Numerical experiments with the fifth and ninth-order WENO reconstructions at the two-point Gaussian quadrature nodes, over a range of challenging test cases, indicate that the redistributed mesh effectively adapts to the dynamic flow gradients thereby improving the solution accuracy substantially even when the initial starting mesh is non-adaptive. The high adaptivity combined with the fifth and especially the ninth-order WENO reconstruction allows remarkably sharp capture of

  2. Adaptive variable-fidelity wavelet-based eddy-capturing approaches for compressible turbulence

    NASA Astrophysics Data System (ADS)

    Brown-Dymkoski, Eric; Vasilyev, Oleg V.

    2015-11-01

    Multiresolution wavelet methods have been developed for efficient simulation of compressible turbulence. They rely upon a filter to identify dynamically important coherent flow structures and adapt the mesh to resolve them. The filter threshold parameter, which can be specified globally or locally, allows for a continuous tradeoff between computational cost and fidelity, ranging seamlessly between DNS and adaptive LES. There are two main approaches to specifying the adaptive threshold parameter. It can be imposed as a numerical error bound, or alternatively, derived from real-time flow phenomena to ensure correct simulation of desired turbulent physics. As LES relies on often imprecise model formulations that require a high-quality mesh, this variable-fidelity approach offers a further tool for improving simulation by targeting deficiencies and locally increasing the resolution. Simultaneous physical and numerical criteria, derived from compressible flow physics and the governing equations, are used to identify turbulent regions and evaluate the fidelity. Several benchmark cases are considered to demonstrate the ability to capture variable density and thermodynamic effects in compressible turbulence. This work was supported by NSF under grant No. CBET-1236505.

  3. Localized dynamic kinetic-energy-based models for stochastic coherent adaptive large eddy simulation

    NASA Astrophysics Data System (ADS)

    De Stefano, Giuliano; Vasilyev, Oleg V.; Goldstein, Daniel E.

    2008-04-01

    Stochastic coherent adaptive large eddy simulation (SCALES) is an extension of the large eddy simulation approach in which a wavelet filter-based dynamic grid adaptation strategy is employed to solve for the most "energetic" coherent structures in a turbulent field while modeling the effect of the less energetic background flow. In order to take full advantage of the ability of the method in simulating complex flows, the use of localized subgrid-scale models is required. In this paper, new local dynamic one-equation subgrid-scale models based on both eddy-viscosity and non-eddy-viscosity assumptions are proposed for SCALES. The models involve the definition of an additional field variable that represents the kinetic energy associated with the unresolved motions. This way, the energy transfer between resolved and residual flow structures is explicitly taken into account by the modeling procedure without an equilibrium assumption, as in the classical Smagorinsky approach. The wavelet-filtered incompressible Navier-Stokes equations for the velocity field, along with the additional evolution equation for the subgrid-scale kinetic energy variable, are numerically solved by means of the dynamically adaptive wavelet collocation solver. The proposed models are tested for freely decaying homogeneous turbulence at Reλ=72. It is shown that the SCALES results, obtained with less than 0.5% of the total nonadaptive computational nodes, closely match reference data from direct numerical simulation. In contrast to classical large eddy simulation, where the energetic small scales are poorly simulated, the agreement holds not only in terms of global statistical quantities but also in terms of spectral distribution of energy and, more importantly, enstrophy all the way down to the dissipative scales.

  4. Adaptive speed/position control of induction motor based on SPR approach

    NASA Astrophysics Data System (ADS)

    Lee, Hou-Tsan

    2014-11-01

    A sensorless speed/position tracking control scheme for induction motors is proposed subject to unknown load torque via adaptive strictly positive real (SPR) approach design. A special nonlinear coordinate transform is first provided to reform the dynamical model of the induction motor. The information on rotor fluxes can thus be derived from the dynamical model to decide on the proportion of input voltage in the d-q frame under the constraint of the maximum power transfer property of induction motors. Based on the SPR approach, the speed and position control objectives can be achieved. The proposed control scheme is to provide the speed/position control of induction motors while lacking the knowledge of some mechanical system parameters, such as the motor inertia, motor damping coefficient, and the unknown payload. The adaptive control technique is thus involved in the field oriented control scheme to deal with the unknown parameters. The thorough proof is derived to guarantee the stability of the speed and position of control systems of induction motors. Besides, numerical simulation and experimental results are also provided to validate the effectiveness of the proposed control scheme.

  5. A disturbance observer-based adaptive control approach for flexure beam nano manipulators.

    PubMed

    Zhang, Yangming; Yan, Peng; Zhang, Zhen

    2016-01-01

    This paper presents a systematic modeling and control methodology for a two-dimensional flexure beam-based servo stage supporting micro/nano manipulations. Compared with conventional mechatronic systems, such systems have major control challenges including cross-axis coupling, dynamical uncertainties, as well as input saturations, which may have adverse effects on system performance unless effectively eliminated. A novel disturbance observer-based adaptive backstepping-like control approach is developed for high precision servo manipulation purposes, which effectively accommodates model uncertainties and coupling dynamics. An auxiliary system is also introduced, on top of the proposed control scheme, to compensate the input saturations. The proposed control architecture is deployed on a customized-designed nano manipulating system featured with a flexure beam structure and voice coil actuators (VCA). Real time experiments on various manipulating tasks, such as trajectory/contour tracking, demonstrate precision errors of less than 1%. PMID:26546099

  6. Neural network approach to continuous-time direct adaptive optimal control for partially unknown nonlinear systems.

    PubMed

    Vrabie, Draguna; Lewis, Frank

    2009-04-01

    In this paper we present in a continuous-time framework an online approach to direct adaptive optimal control with infinite horizon cost for nonlinear systems. The algorithm converges online to the optimal control solution without knowledge of the internal system dynamics. Closed-loop dynamic stability is guaranteed throughout. The algorithm is based on a reinforcement learning scheme, namely Policy Iterations, and makes use of neural networks, in an Actor/Critic structure, to parametrically represent the control policy and the performance of the control system. The two neural networks are trained to express the optimal controller and optimal cost function which describes the infinite horizon control performance. Convergence of the algorithm is proven under the realistic assumption that the two neural networks do not provide perfect representations for the nonlinear control and cost functions. The result is a hybrid control structure which involves a continuous-time controller and a supervisory adaptation structure which operates based on data sampled from the plant and from the continuous-time performance dynamics. Such control structure is unlike any standard form of controllers previously seen in the literature. Simulation results, obtained considering two second-order nonlinear systems, are provided. PMID:19362449

  7. Gauge-invariant approach to quark dynamics

    NASA Astrophysics Data System (ADS)

    Sazdjian, H.

    2016-02-01

    The main aspects of a gauge-invariant approach to the description of quark dynamics in the nonperturbative regime of quantum chromodynamics (QCD) are first reviewed. The role of the parallel transport operation in constructing gauge-invariant Green's functions is then presented, and the relevance of Wilson loops for the representation of the interaction is emphasized. Recent developments, based on the use of polygonal lines for the parallel transport operation, are presented. An integro-differential equation, obtained for the quark Green's function defined with a phase factor along a single, straight line segment, is solved exactly and analytically in the case of two-dimensional QCD in the large- N c limit. The solution displays the dynamical mass generation phenomenon for quarks, with an infinite number of branch-cut singularities that are stronger than simple poles.

  8. Dynamical approach to weakly dissipative granular collisions

    NASA Astrophysics Data System (ADS)

    Pinto, Italo'Ivo Lima Dias; Rosas, Alexandre; Lindenberg, Katja

    2015-07-01

    Granular systems present surprisingly complicated dynamics. In particular, nonlinear interactions and energy dissipation play important roles in these dynamics. Usually (but admittedly not always), constant coefficients of restitution are introduced phenomenologically to account for energy dissipation when grains collide. The collisions are assumed to be instantaneous and to conserve momentum. Here, we introduce the dissipation through a viscous (velocity-dependent) term in the equations of motion for two colliding grains. Using a first-order approximation, we solve the equations of motion in the low viscosity regime. This approach allows us to calculate the collision time, the final velocity of each grain, and a coefficient of restitution that depends on the relative velocity of the grains. We compare our analytic results with those obtained by numerical integration of the equations of motion and with exact ones obtained by other methods for some geometries.

  9. Stability threshold approach for complex dynamical systems

    NASA Astrophysics Data System (ADS)

    Klinshov, Vladimir V.; Nekorkin, Vladimir I.; Kurths, Jürgen

    2016-01-01

    A new measure to characterize the stability of complex dynamical systems against large perturbations is suggested, the stability threshold (ST). It quantifies the magnitude of the weakest perturbation capable of disrupting the system and switch it to an undesired dynamical regime. In the phase space, the ST corresponds to the 'thinnest site' of the attraction basin and therefore indicates the most 'dangerous' direction of perturbations. We introduce a computational algorithm for quantification of the ST and demonstrate that the suggested approach is effective and provides important insights. The generality of the obtained results defines their vast potential for application in such fields as engineering, neuroscience, power grids, Earth science and many others where the robustness of complex systems is studied.

  10. Stability threshold approach for complex dynamical systems

    NASA Astrophysics Data System (ADS)

    Klinshov, Vladimir V.; Nekorkin, Vladimir I.; Kurths, Jürgen

    2016-01-01

    A new measure to characterize the stability of complex dynamical systems against large perturbations is suggested, the stability threshold (ST). It quantifies the magnitude of the weakest perturbation capable of disrupting the system and switch it to an undesired dynamical regime. In the phase space, the ST corresponds to the ‘thinnest site’ of the attraction basin and therefore indicates the most ‘dangerous’ direction of perturbations. We introduce a computational algorithm for quantification of the ST and demonstrate that the suggested approach is effective and provides important insights. The generality of the obtained results defines their vast potential for application in such fields as engineering, neuroscience, power grids, Earth science and many others where the robustness of complex systems is studied.

  11. Recursive dynamic programming for adaptive sequence and structure alignment

    SciTech Connect

    Thiele, R.; Zimmer, R.; Lengauer, T.

    1995-12-31

    We propose a new alignment procedure that is capable of aligning protein sequences and structures in a unified manner. Recursive dynamic programming (RDP) is a hierarchical method which, on each level of the hierarchy, identifies locally optimal solutions and assembles them into partial alignments of sequences and/or structures. In contrast to classical dynamic programming, RDP can also handle alignment problems that use objective functions not obeying the principle of prefix optimality, e.g. scoring schemes derived from energy potentials of mean force. For such alignment problems, RDP aims at computing solutions that are near-optimal with respect to the involved cost function and biologically meaningful at the same time. Towards this goal, RDP maintains a dynamic balance between different factors governing alignment fitness such as evolutionary relationships and structural preferences. As in the RDP method gaps are not scored explicitly, the problematic assignment of gap cost parameters is circumvented. In order to evaluate the RDP approach we analyse whether known and accepted multiple alignments based on structural information can be reproduced with the RDP method.

  12. A Knowledge-Structure-Based Adaptive Dynamic Assessment System for Calculus Learning

    ERIC Educational Resources Information Center

    Ting, M.-Y.; Kuo, B.-C.

    2016-01-01

    The purpose of this study was to investigate the effect of a calculus system that was designed using an adaptive dynamic assessment (DA) framework on performance in the "finding an area using an integral". In this study, adaptive testing and dynamic assessment were combined to provide different test items depending on students'…

  13. Adaptable and dynamic soft colloidal photonics (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Kuehne, Alexander J. C.; Go, Dennis

    2015-10-01

    Existent photonic systems are highly integrated with the active component being completely isolated from the environment as a result of their complex format. There are almost no example for periodic photonic materials, which can interact with their environment by being sensitive to external stimuli while providing the corresponding photonic response. Due to this lack of interaction with the outside world, smart optical components, which are self-healing or adaptable, are almost impossible to achieve. I am going to present an aqueous colloidal system, consisting of core-shell particles with a solid core and a soft shell, bearing both negatively and positively charged groups. The described soft colloids exhibit like charges over a broad range of pH, where they repel each other resulting in a pefect and defect-free photonic crystal. In the absence of a net charge the colloids acquire the arrangement of an amorphous photonic glass. We showcase the applicability of our colloidal system for photonic applications by temporal programming of the photonic system and dynamic switching between ordered and amorphous particle arrangements. We can decrease the pH slowly allowing the particles to transit from negative through neutral to positive, and have them arrange accordingly from crystalline to amorphous and back to crystalline. Thus, we achieve a pre-programmable and autonomous dynamic modulation of the crystallinity of the colloidal arrays and their photonic response. References [1] Go, D., Kodger, T. E., Sprakel, J., and Kuehne, A. J.C. Soft matter. 2014, 10(40), 8060-8065.

  14. Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media

    PubMed Central

    Ma, Cheng; Xu, Xiao; Liu, Yan; Wang, Lihong V.

    2014-01-01

    The ability to steer and focus light inside scattering media has long been sought for a multitude of applications. To form optical foci inside scattering media, the only feasible strategy at present is to guide photons by using either implanted1 or virtual2–4 guide stars, which can be inconvenient and limits potential applications. Here, we report a scheme for focusing light inside scattering media by employing intrinsic dynamics as guide stars. By time-reversing the perturbed component of the scattered light adaptively, we show that it is possible to focus light to the origin of the perturbation. Using the approach, we demonstrate non-invasive dynamic light focusing onto moving targets and imaging of a time-variant object obscured by highly scattering media. Anticipated applications include imaging and photoablation of angiogenic vessels in tumours as well as other biomedical uses. PMID:25530797

  15. Adaptive life simulator: A novel approach to modeling the cardiovascular system

    SciTech Connect

    Kangas, L.J.; Keller, P.E.; Hashem, S.

    1995-06-01

    In this paper, an adaptive life simulator (ALS) is introduced. The ALS models a subset of the dynamics of the cardiovascular behavior of an individual by using a recurrent artificial neural network. These models are developed for use in applications that require simulations of cardiovascular systems, such as medical mannequins, and in medical diagnostic systems. This approach is unique in that each cardiovascular model is developed from physiological measurements of an individual. Any differences between the modeled variables and the actual variables of an individual can subsequently be used for diagnosis. This approach also exploits sensor fusion applied to biomedical sensors. Sensor fusion optimizes the utilization of the sensors. The advantage of sensor fusion has been demonstrated in applications including control and diagnostics of mechanical and chemical processes.

  16. Dynamic adaptation of the peripheral circulation to cold exposure.

    PubMed

    Cheung, Stephen S; Daanen, Hein A M

    2012-01-01

    Humans residing or working in cold environments exhibit a stronger cold-induced vasodilation (CIVD) reaction in the peripheral microvasculature than those living in warm regions of the world, leading to a general assumption that thermal responses to local cold exposure can be systematically improved by natural acclimatization or specific acclimation. However, it remains unclear whether this improved tolerance is actually due to systematic acclimatization, or alternately due to the genetic pre-disposition or self-selection for such occupations. Longitudinal studies of repeated extremity exposure to cold demonstrate only ambiguous adaptive responses. In field studies, general cold acclimation may lead to increased sympathetic activity that results in reduced finger blood flow. Laboratory studies offer more control over confounding parameters, but in most studies, no consistent changes in peripheral blood flow occur even after repeated exposure for several weeks. Most studies are performed on a limited amount of subjects only, and the variability of the CIVD response demands more subjects to obtain significant results. This review systematically surveys the trainability of CIVD, concluding that repeated local cold exposure does not alter circulatory dynamics in the peripheries, and that humans remain at risk of cold injuries even after extended stays in cold environments. PMID:21851473

  17. Adaptive optics optical coherence tomography with dynamic retinal tracking

    PubMed Central

    Kocaoglu, Omer P.; Ferguson, R. Daniel; Jonnal, Ravi S.; Liu, Zhuolin; Wang, Qiang; Hammer, Daniel X.; Miller, Donald T.

    2014-01-01

    Adaptive optics optical coherence tomography (AO-OCT) is a highly sensitive and noninvasive method for three dimensional imaging of the microscopic retina. Like all in vivo retinal imaging techniques, however, it suffers the effects of involuntary eye movements that occur even under normal fixation. In this study we investigated dynamic retinal tracking to measure and correct eye motion at KHz rates for AO-OCT imaging. A customized retina tracking module was integrated into the sample arm of the 2nd-generation Indiana AO-OCT system and images were acquired on three subjects. Analyses were developed based on temporal amplitude and spatial power spectra in conjunction with strip-wise registration to independently measure AO-OCT tracking performance. After optimization of the tracker parameters, the system was found to correct eye movements up to 100 Hz and reduce residual motion to 10 µm root mean square. Between session precision was 33 µm. Performance was limited by tracker-generated noise at high temporal frequencies. PMID:25071963

  18. Dynamics of adaptive immunity against phage in bacterial populations

    NASA Astrophysics Data System (ADS)

    Bradde, Serena; Vucelja, Marija; Tesileanu, Tiberiu; Balasubramanian, Vijay

    The CRISPR (clustered regularly interspaced short palindromic repeats) mechanism allows bacteria to adaptively defend against phages by acquiring short genomic sequences (spacers) that target specific sequences in the viral genome. We propose a population dynamical model where immunity can be both acquired and lost. The model predicts regimes where bacterial and phage populations can co-exist, others where the populations oscillate, and still others where one population is driven to extinction. Our model considers two key parameters: (1) ease of acquisition and (2) spacer effectiveness in conferring immunity. Analytical calculations and numerical simulations show that if spacers differ mainly in ease of acquisition, or if the probability of acquiring them is sufficiently high, bacteria develop a diverse population of spacers. On the other hand, if spacers differ mainly in their effectiveness, their final distribution will be highly peaked, akin to a ``winner-take-all'' scenario, leading to a specialized spacer distribution. Bacteria can interpolate between these limiting behaviors by actively tuning their overall acquisition rate.

  19. Adaptive optics optical coherence tomography with dynamic retinal tracking.

    PubMed

    Kocaoglu, Omer P; Ferguson, R Daniel; Jonnal, Ravi S; Liu, Zhuolin; Wang, Qiang; Hammer, Daniel X; Miller, Donald T

    2014-07-01

    Adaptive optics optical coherence tomography (AO-OCT) is a highly sensitive and noninvasive method for three dimensional imaging of the microscopic retina. Like all in vivo retinal imaging techniques, however, it suffers the effects of involuntary eye movements that occur even under normal fixation. In this study we investigated dynamic retinal tracking to measure and correct eye motion at KHz rates for AO-OCT imaging. A customized retina tracking module was integrated into the sample arm of the 2nd-generation Indiana AO-OCT system and images were acquired on three subjects. Analyses were developed based on temporal amplitude and spatial power spectra in conjunction with strip-wise registration to independently measure AO-OCT tracking performance. After optimization of the tracker parameters, the system was found to correct eye movements up to 100 Hz and reduce residual motion to 10 µm root mean square. Between session precision was 33 µm. Performance was limited by tracker-generated noise at high temporal frequencies. PMID:25071963

  20. Plant toxicity, adaptive herbivory, and plant community dynamics

    USGS Publications Warehouse

    Feng, Z.; Liu, R.; DeAngelis, D.L.; Bryant, J.P.; Kielland, K.; Stuart, Chapin F.; Swihart, R.K.

    2009-01-01

    We model effects of interspecific plant competition, herbivory, and a plant's toxic defenses against herbivores on vegetation dynamics. The model predicts that, when a generalist herbivore feeds in the absence of plant toxins, adaptive foraging generally increases the probability of coexistence of plant species populations, because the herbivore switches more of its effort to whichever plant species is more common and accessible. In contrast, toxin-determined selective herbivory can drive plant succession toward dominance by the more toxic species, as previously documented in boreal forests and prairies. When the toxin concentrations in different plant species are similar, but species have different toxins with nonadditive effects, herbivores tend to diversify foraging efforts to avoid high intakes of any one toxin. This diversification leads the herbivore to focus more feeding on the less common plant species. Thus, uncommon plants may experience depensatory mortality from herbivory, reducing local species diversity. The depensatory effect of herbivory may inhibit the invasion of other plant species that are more palatable or have different toxins. These predictions were tested and confirmed in the Alaskan boreal forest. ?? 2009 Springer Science+Business Media, LLC.

  1. Dynamically Reconfigurable Approach to Multidisciplinary Problems

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalie M.; Lewis, Robert Michael

    2003-01-01

    The complexity and autonomy of the constituent disciplines and the diversity of the disciplinary data formats make the task of integrating simulations into a multidisciplinary design optimization problem extremely time-consuming and difficult. We propose a dynamically reconfigurable approach to MDO problem formulation wherein an appropriate implementation of the disciplinary information results in basic computational components that can be combined into different MDO problem formulations and solution algorithms, including hybrid strategies, with relative ease. The ability to re-use the computational components is due to the special structure of the MDO problem. We believe that this structure can and should be used to formulate and solve optimization problems in the multidisciplinary context. The present work identifies the basic computational components in several MDO problem formulations and examines the dynamically reconfigurable approach in the context of a popular class of optimization methods. We show that if the disciplinary sensitivity information is implemented in a modular fashion, the transfer of sensitivity information among the formulations under study is straightforward. This enables not only experimentation with a variety of problem formations in a research environment, but also the flexible use of formulations in a production design environment.

  2. Time Discretization Approach to Dynamic Localization Conditions

    NASA Astrophysics Data System (ADS)

    Papp, E.

    An alternative wavefunction to the description of the dynamic localization of a charged particle moving on a one-dimensional lattice under the influence of a periodic time dependent electric field is written down. For this purpose the method of characteristics such as applied by Dunlap and Kenkre [Phys. Rev. B 34, 3625 (1986)] has been modified by using a different integration variable. Handling this wavefunction one is faced with the selection of admissible time values. This results in a conditionally exactly solvable problem, now by accounting specifically for the implementation of a time discretization working in conjunction with a related dynamic localization condition. In addition, one resorts to the strong field limit, which amounts to replace, to leading order, the large order zeros of the Bessel function J0(z), used before in connection with the cosinusoidal modulation, by integral multiples of π. Here z stands for the ratio between the field amplitude and the frequency. The modulation function of the electric field vanishes on the nodal points of the time grid, which stands for an effective field-free behavior. This opens the way to propose quickly tractable dynamic localization conditions for arbitrary periodic modulations. We have also found that the present time discretization approach produces the minimization of the mean square displacement characterizing the usual exact wavefunction. Other realizations and comparisons have also been presented.

  3. A parallel dynamic load balancing algorithm for 3-D adaptive unstructured grids

    NASA Technical Reports Server (NTRS)

    Vidwans, A.; Kallinderis, Y.; Venkatakrishnan, V.

    1993-01-01

    Adaptive local grid refinement and coarsening results in unequal distribution of workload among the processors of a parallel system. A novel method for balancing the load in cases of dynamically changing tetrahedral grids is developed. The approach employs local exchange of cells among processors in order to redistribute the load equally. An important part of the load balancing algorithm is the method employed by a processor to determine which cells within its subdomain are to be exchanged. Two such methods are presented and compared. The strategy for load balancing is based on the Divide-and-Conquer approach which leads to an efficient parallel algorithm. This method is implemented on a distributed-memory MIMD system.

  4. Assessing Dynamic Spectral Causality by Lagged Adaptive Directed Transfer Function and Instantaneous Effect Factor

    PubMed Central

    Xu, Haojie; Lu, Yunfeng; Zhu, Shanan

    2014-01-01

    It is of significance to assess the dynamic spectral causality among physiological signals. Several practical estimators adapted from spectral Granger causality have been exploited to track dynamic causality based on the framework of time-varying multivariate autoregressive (tvMVAR) models. The non-zero covariance of the model’s residuals has been used to describe the instantaneous effect phenomenon in some causality estimators. However, for the situations with Gaussian residuals in some autoregressive models, it is challenging to distinguish the directed instantaneous causality if the sufficient prior information about the “causal ordering” is missing. Here, we propose a new algorithm to assess the time-varying causal ordering of tvMVAR model under the assumption that the signals follow the same acyclic causal ordering for all time lags and to estimate the instantaneous effect factor (IEF) value in order to track the dynamic directed instantaneous connectivity. The time-lagged adaptive directed transfer function (ADTF) is also estimated to assess the lagged causality after removing the instantaneous effect. In the present study, we firstly investigated the performance of the causal-ordering estimation algorithm and the accuracy of IEF value. Then, we presented the results of IEF and time-lagged ADTF method by comparing with the conventional ADTF method through simulations of various propagation models. Statistical analysis results suggest that the new algorithm could accurately estimate the causal ordering and give a good estimation of the IEF values in the Gaussian residual conditions. Meanwhile, the time-lagged ADTF approach is also more accurate in estimating the time-lagged dynamic interactions in a complex nervous system after extracting the instantaneous effect. In addition to the simulation studies, we applied the proposed method to estimate the dynamic spectral causality on real visual evoked potential (VEP) data in a human subject. Its usefulness in

  5. Adaptive resolution simulation of a biomolecule and its hydration shell: Structural and dynamical properties

    SciTech Connect

    Fogarty, Aoife C. Potestio, Raffaello Kremer, Kurt

    2015-05-21

    A fully atomistic modelling of many biophysical and biochemical processes at biologically relevant length- and time scales is beyond our reach with current computational resources, and one approach to overcome this difficulty is the use of multiscale simulation techniques. In such simulations, when system properties necessitate a boundary between resolutions that falls within the solvent region, one can use an approach such as the Adaptive Resolution Scheme (AdResS), in which solvent particles change their resolution on the fly during the simulation. Here, we apply the existing AdResS methodology to biomolecular systems, simulating a fully atomistic protein with an atomistic hydration shell, solvated in a coarse-grained particle reservoir and heat bath. Using as a test case an aqueous solution of the regulatory protein ubiquitin, we first confirm the validity of the AdResS approach for such systems, via an examination of protein and solvent structural and dynamical properties. We then demonstrate how, in addition to providing a computational speedup, such a multiscale AdResS approach can yield otherwise inaccessible physical insights into biomolecular function. We use our methodology to show that protein structure and dynamics can still be correctly modelled using only a few shells of atomistic water molecules. We also discuss aspects of the AdResS methodology peculiar to biomolecular simulations.

  6. An adaptive neural swarm approach for intrusion defense in ad hoc networks

    NASA Astrophysics Data System (ADS)

    Cannady, James

    2011-06-01

    Wireless sensor networks (WSN) and mobile ad hoc networks (MANET) are being increasingly deployed in critical applications due to the flexibility and extensibility of the technology. While these networks possess numerous advantages over traditional wireless systems in dynamic environments they are still vulnerable to many of the same types of host-based and distributed attacks common to those systems. Unfortunately, the limited power and bandwidth available in WSNs and MANETs, combined with the dynamic connectivity that is a defining characteristic of the technology, makes it extremely difficult to utilize traditional intrusion detection techniques. This paper describes an approach to accurately and efficiently detect potentially damaging activity in WSNs and MANETs. It enables the network as a whole to recognize attacks, anomalies, and potential vulnerabilities in a distributive manner that reflects the autonomic processes of biological systems. Each component of the network recognizes activity in its local environment and then contributes to the overall situational awareness of the entire system. The approach utilizes agent-based swarm intelligence to adaptively identify potential data sources on each node and on adjacent nodes throughout the network. The swarm agents then self-organize into modular neural networks that utilize a reinforcement learning algorithm to identify relevant behavior patterns in the data without supervision. Once the modular neural networks have established interconnectivity both locally and with neighboring nodes the analysis of events within the network can be conducted collectively in real-time. The approach has been shown to be extremely effective in identifying distributed network attacks.

  7. Adaptive fusion of infrared and visible images in dynamic scene

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Yin, Yafeng; Man, Hong; Desai, Sachi

    2011-11-01

    Multiple modalities sensor fusion has been widely employed in various surveillance and military applications. A variety of image fusion techniques including PCA, wavelet, curvelet and HSV has been proposed in recent years to improve human visual perception for object detection. One of the main challenges for visible and infrared image fusion is to automatically determine an optimal fusion strategy for different input scenes along with an acceptable computational cost. This paper, we propose a fast and adaptive feature selection based image fusion method to obtain high a contrast image from visible and infrared sensors for targets detection. At first, fuzzy c-means clustering is applied on the infrared image to highlight possible hotspot regions, which will be considered as potential targets' locations. After that, the region surrounding the target area is segmented as the background regions. Then image fusion is locally applied on the selected target and background regions by computing different linear combination of color components from registered visible and infrared images. After obtaining different fused images, histogram distributions are computed on these local fusion images as the fusion feature set. The variance ratio which is based on Linear Discriminative Analysis (LDA) measure is employed to sort the feature set and the most discriminative one is selected for the whole image fusion. As the feature selection is performed over time, the process will dynamically determine the most suitable feature for the image fusion in different scenes. Experiment is conducted on the OSU Color-Thermal database, and TNO Human Factor dataset. The fusion results indicate that our proposed method achieved a competitive performance compared with other fusion algorithms at a relatively low computational cost.

  8. Segmentation of Tracking Sequences Using Dynamically Updated Adaptive Learning

    PubMed Central

    Michailovich, Oleg; Tannenbaum, Allen

    2009-01-01

    The problem of segmentation of tracking sequences is of central importance in a multitude of applications. In the current paper, a different approach to the problem is discussed. Specifically, the proposed segmentation algorithm is implemented in conjunction with estimation of the dynamic parameters of moving objects represented by the tracking sequence. While the information on objects’ motion allows one to transfer some valuable segmentation priors along the tracking sequence, the segmentation allows substantially reducing the complexity of motion estimation, thereby facilitating the computation. Thus, in the proposed methodology, the processes of segmentation and motion estimation work simultaneously, in a sort of “collaborative” manner. The Bayesian estimation framework is used here to perform the segmentation, while Kalman filtering is used to estimate the motion and to convey useful segmentation information along the image sequence. The proposed method is demonstrated on a number of both computed-simulated and real-life examples, and the obtained results indicate its advantages over some alternative approaches. PMID:19004712

  9. Discrete adaptive zone light elements (DAZLE): a new approach to adaptive imaging

    NASA Astrophysics Data System (ADS)

    Kellogg, Robert L.; Escuti, Michael J.

    2007-09-01

    New advances in Liquid Crystal Spatial Light Modulators (LCSLM) offer opportunities for large adaptive optics in the midwave infrared spectrum. A light focusing adaptive imaging system, using the zero-order diffraction state of a polarizer-free liquid crystal polarization grating modulator to create millions of high transmittance apertures, is envisioned in a system called DAZLE (Discrete Adaptive Zone Light Elements). DAZLE adaptively selects large sets of LCSLM apertures using the principles of coded masks, embodied in a hybrid Discrete Fresnel Zone Plate (DFZP) design. Issues of system architecture, including factors of LCSLM aperture pattern and adaptive control, image resolution and focal plane array (FPA) matching, and trade-offs between filter bandwidths, background photon noise, and chromatic aberration are discussed.

  10. Adaptive Control for Linear Uncertain Systems with Unmodeled Dynamics Revisited via Optimal Control Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2013-01-01

    This paper presents the optimal control modification for linear uncertain plants. The Lyapunov analysis shows that the modification parameter has a limiting value depending on the nature of the uncertainty. The optimal control modification exhibits a linear asymptotic property that enables it to be analyzed in a linear time invariant framework for linear uncertain plants. The linear asymptotic property shows that the closed-loop plants in the limit possess a scaled input-output mapping. Using this property, we can derive an analytical closed-loop transfer function in the limit as the adaptive gain tends to infinity. The paper revisits the Rohrs counterexample problem that illustrates the nature of non-robustness of model-reference adaptive control in the presence of unmodeled dynamics. An analytical approach is developed to compute exactly the modification parameter for the optimal control modification that stabilizes the plant in the Rohrs counterexample. The linear asymptotic property is also used to address output feedback adaptive control for non-minimum phase plants with a relative degree 1.

  11. Adaptive Neural Control for a Class of Pure-Feedback Nonlinear Systems via Dynamic Surface Technique.

    PubMed

    Liu, Zongcheng; Dong, Xinmin; Xue, Jianping; Li, Hongbo; Chen, Yong

    2016-09-01

    This brief addresses the adaptive control problem for a class of pure-feedback systems with nonaffine functions possibly being nondifferentiable. Without using the mean value theorem, the difficulty of the control design for pure-feedback systems is overcome by modeling the nonaffine functions appropriately. With the help of neural network approximators, an adaptive neural controller is developed by combining the dynamic surface control (DSC) and minimal learning parameter (MLP) techniques. The key features of our approach are that, first, the restrictive assumptions on the partial derivative of nonaffine functions are removed, second, the DSC technique is used to avoid "the explosion of complexity" in the backstepping design, and the number of adaptive parameters is reduced significantly using the MLP technique, third, smooth robust compensators are employed to circumvent the influences of approximation errors and disturbances. Furthermore, it is proved that all the signals in the closed-loop system are semiglobal uniformly ultimately bounded. Finally, the simulation results are provided to demonstrate the effectiveness of the designed method. PMID:26277010

  12. Dynamics of Adaptation and Diversification: A 10,000-Generation Experiment with Bacterial Populations

    NASA Astrophysics Data System (ADS)

    Lenski, Richard E.; Travisano, Michael

    1994-07-01

    We followed evolutionary change in 12 populations of Escherichia coli propagated for 10,000 generations in identical environments. Both morphology (cell size) and fitness (measured in competition with the ancestor) evolved rapidly for the first 2000 generations or so after the populations were introduced into the experimental environment, but both were nearly static for the last 5000 generations. Although evolving in identical environments, the replicate populations diverged significantly from one another in both morphology and mean fitness. The divergence in mean fitness was sustained and implies that the populations have approached different fitness peaks of unequal height in the adaptive landscape. Although the experimental time scale and environment were microevolutionary in scope, our experiments were designed to address questions concerning the origin as well as the fate of genetic and phenotypic novelties, the repeatability of adaptation, the diversification of lineages, and thus the causes and consequences of the uniqueness of evolutionary history. In fact, we observed several hallmarks of macroevolutionary dynamics, including periods of rapid evolution and stasis, altered functional relationships between traits, and concordance of anagenetic and cladogenetic trends. Our results support a Wrightian interpretation, in which chance events (mutation and drift) play an important role in adaptive evolution, as do the complex genetic interactions that underlie the structure of organisms.

  13. Systems approaches to study root architecture dynamics

    PubMed Central

    Cuesta, Candela; Wabnik, Krzysztof; Benková, Eva

    2013-01-01

    The plant root system is essential for providing anchorage to the soil, supplying minerals and water, and synthesizing metabolites. It is a dynamic organ modulated by external cues such as environmental signals, water and nutrients availability, salinity and others. Lateral roots (LRs) are initiated from the primary root post-embryonically, after which they progress through discrete developmental stages which can be independently controlled, providing a high level of plasticity during root system formation. Within this review, main contributions are presented, from the classical forward genetic screens to the more recent high-throughput approaches, combined with computer model predictions, dissecting how LRs and thereby root system architecture is established and developed. PMID:24421783

  14. Thermospheric dynamics - A system theory approach

    NASA Technical Reports Server (NTRS)

    Codrescu, M.; Forbes, J. M.; Roble, R. G.

    1990-01-01

    A system theory approach to thermospheric modeling is developed, based upon a linearization method which is capable of preserving nonlinear features of a dynamical system. The method is tested using a large, nonlinear, time-varying system, namely the thermospheric general circulation model (TGCM) of the National Center for Atmospheric Research. In the linearized version an equivalent system, defined for one of the desired TGCM output variables, is characterized by a set of response functions that is constructed from corresponding quasi-steady state and unit sample response functions. The linearized version of the system runs on a personal computer and produces an approximation of the desired TGCM output field height profile at a given geographic location.

  15. Dynamic modeling, property investigation, and adaptive controller design of serial robotic manipulators modeled with structural compliance

    NASA Technical Reports Server (NTRS)

    Tesar, Delbert; Tosunoglu, Sabri; Lin, Shyng-Her

    1990-01-01

    Research results on general serial robotic manipulators modeled with structural compliances are presented. Two compliant manipulator modeling approaches, distributed and lumped parameter models, are used in this study. System dynamic equations for both compliant models are derived by using the first and second order influence coefficients. Also, the properties of compliant manipulator system dynamics are investigated. One of the properties, which is defined as inaccessibility of vibratory modes, is shown to display a distinct character associated with compliant manipulators. This property indicates the impact of robot geometry on the control of structural oscillations. Example studies are provided to illustrate the physical interpretation of inaccessibility of vibratory modes. Two types of controllers are designed for compliant manipulators modeled by either lumped or distributed parameter techniques. In order to maintain the generality of the results, neither linearization is introduced. Example simulations are given to demonstrate the controller performance. The second type controller is also built for general serial robot arms and is adaptive in nature which can estimate uncertain payload parameters on-line and simultaneously maintain trajectory tracking properties. The relation between manipulator motion tracking capability and convergence of parameter estimation properties is discussed through example case studies. The effect of control input update delays on adaptive controller performance is also studied.

  16. ALEGRA -- A massively parallel h-adaptive code for solid dynamics

    SciTech Connect

    Summers, R.M.; Wong, M.K.; Boucheron, E.A.; Weatherby, J.R.

    1997-12-31

    ALEGRA is a multi-material, arbitrary-Lagrangian-Eulerian (ALE) code for solid dynamics designed to run on massively parallel (MP) computers. It combines the features of modern Eulerian shock codes, such as CTH, with modern Lagrangian structural analysis codes using an unstructured grid. ALEGRA is being developed for use on the teraflop supercomputers to conduct advanced three-dimensional (3D) simulations of shock phenomena important to a variety of systems. ALEGRA was designed with the Single Program Multiple Data (SPMD) paradigm, in which the mesh is decomposed into sub-meshes so that each processor gets a single sub-mesh with approximately the same number of elements. Using this approach the authors have been able to produce a single code that can scale from one processor to thousands of processors. A current major effort is to develop efficient, high precision simulation capabilities for ALEGRA, without the computational cost of using a global highly resolved mesh, through flexible, robust h-adaptivity of finite elements. H-adaptivity is the dynamic refinement of the mesh by subdividing elements, thus changing the characteristic element size and reducing numerical error. The authors are working on several major technical challenges that must be met to make effective use of HAMMER on MP computers.

  17. An adaptive demodulation approach for bearing fault detection based on adaptive wavelet filtering and spectral subtraction

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Tang, Baoping; Liu, Ziran; Chen, Rengxiang

    2016-02-01

    Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses

  18. Chain dynamics near surfaces: an unconventional approach

    NASA Astrophysics Data System (ADS)

    Masson, Jean-Loup; Green, Peter

    2001-03-01

    Chain dynamics near surfaces: an unconventional approach Jean-Loup Masson and Peter F. Green Graduate Program in Materials Science and Department of Chemical Engineering The University of Texas at Austin When the thickness of a polymer film is comparable to the radius of gyration, or a few radii of gyration, of the polymer chains, the properties of the film can differ appreciably from the bulk. Indeed, recent studies have documented the existence of changes of the glass transition, translational chain diffusion and the viscosity, with decreasing film thickness. For liquid films, a few tens of nanometers thick, on substrates, the disjoining pressure has a significant effect on the stability of the film. This can result on the formation of patterns reflecting fluctuations in the local film thickness. The structural, time-dependent, evolution of the film is a reflection of the effects of the disjoining pressure together with the translational dynamics of the chains. This presentation discusses the structural evolution of a thin polymer film in light of theoretical models to gain insight into the manner in which the diffusion and viscosity of the polymer changes with decreasing film thickness.

  19. Knowledge acquisition and representation using fuzzy evidential reasoning and dynamic adaptive fuzzy Petri nets.

    PubMed

    Liu, Hu-Chen; Liu, Long; Lin, Qing-Lian; Liu, Nan

    2013-06-01

    The two most important issues of expert systems are the acquisition of domain experts' professional knowledge and the representation and reasoning of the knowledge rules that have been identified. First, during expert knowledge acquisition processes, the domain expert panel often demonstrates different experience and knowledge from one another and produces different types of knowledge information such as complete and incomplete, precise and imprecise, and known and unknown because of its cross-functional and multidisciplinary nature. Second, as a promising tool for knowledge representation and reasoning, fuzzy Petri nets (FPNs) still suffer a couple of deficiencies. The parameters in current FPN models could not accurately represent the increasingly complex knowledge-based systems, and the rules in most existing knowledge inference frameworks could not be dynamically adjustable according to propositions' variation as human cognition and thinking. In this paper, we present a knowledge acquisition and representation approach using the fuzzy evidential reasoning approach and dynamic adaptive FPNs to solve the problems mentioned above. As is illustrated by the numerical example, the proposed approach can well capture experts' diversity experience, enhance the knowledge representation power, and reason the rule-based knowledge more intelligently. PMID:23757441

  20. Generalized synchronization with uncertain parameters of nonlinear dynamic system via adaptive control.

    PubMed

    Yang, Cheng-Hsiung; Wu, Cheng-Lin

    2014-01-01

    An adaptive control scheme is developed to study the generalized adaptive chaos synchronization with uncertain chaotic parameters behavior between two identical chaotic dynamic systems. This generalized adaptive chaos synchronization controller is designed based on Lyapunov stability theory and an analytic expression of the adaptive controller with its update laws of uncertain chaotic parameters is shown. The generalized adaptive synchronization with uncertain parameters between two identical new Lorenz-Stenflo systems is taken as three examples to show the effectiveness of the proposed method. The numerical simulations are shown to verify the results. PMID:25295292

  1. A single-rate context-dependent learning process underlies rapid adaptation to familiar object dynamics.

    PubMed

    Ingram, James N; Howard, Ian S; Flanagan, J Randall; Wolpert, Daniel M

    2011-09-01

    Motor learning has been extensively studied using dynamic (force-field) perturbations. These induce movement errors that result in adaptive changes to the motor commands. Several state-space models have been developed to explain how trial-by-trial errors drive the progressive adaptation observed in such studies. These models have been applied to adaptation involving novel dynamics, which typically occurs over tens to hundreds of trials, and which appears to be mediated by a dual-rate adaptation process. In contrast, when manipulating objects with familiar dynamics, subjects adapt rapidly within a few trials. Here, we apply state-space models to familiar dynamics, asking whether adaptation is mediated by a single-rate or dual-rate process. Previously, we reported a task in which subjects rotate an object with known dynamics. By presenting the object at different visual orientations, adaptation was shown to be context-specific, with limited generalization to novel orientations. Here we show that a multiple-context state-space model, with a generalization function tuned to visual object orientation, can reproduce the time-course of adaptation and de-adaptation as well as the observed context-dependent behavior. In contrast to the dual-rate process associated with novel dynamics, we show that a single-rate process mediates adaptation to familiar object dynamics. The model predicts that during exposure to the object across multiple orientations, there will be a degree of independence for adaptation and de-adaptation within each context, and that the states associated with all contexts will slowly de-adapt during exposure in one particular context. We confirm these predictions in two new experiments. Results of the current study thus highlight similarities and differences in the processes engaged during exposure to novel versus familiar dynamics. In both cases, adaptation is mediated by multiple context-specific representations. In the case of familiar object dynamics

  2. A macroscopic approach to glacier dynamics

    USGS Publications Warehouse

    Harrison, W.D.; Raymond, C.F.; Echelmeyer, K.A.; Krimmel, R.M.

    2003-01-01

    A simple approach to glacier dynamics is explored in which there is postulated to be a relationship between area and volume with three parameters: the time for area to respond to changes in volume, a thickness scale, and an area characterizing the condition of the initial state. This approach gives a good fit to the measurements of cumulative balance and area on South Cascade Glacier from 1970-97; the area time-scale is roughly 8 years, the thickness scale about 123 m, and the 1970 area roughly 4% larger than required for adjustment with volume. Combining this relationship with a version of mass continuity expressed in terms of area and volume produces a theory of glacier area and volume response to climate in which another time constant, the volume time-scale, appears. Area and volume both respond like a damped spring and mass system. The damping of the South Cascade response is approximately critical, and the volume time-scale is roughly 48 years, six times the area time-scale. The critically damped spring and mass analogy reproduces the time dependence predicted by the more complicated traditional theory of Nye.

  3. Isoscalar compression modes within fluid dynamic approach

    SciTech Connect

    Kolomietz, V. M.; Cyclotron Institute, Texas A and M University, College Station, Texas 77843-3366 ; Shlomo, S.

    2000-06-01

    We study the nuclear isoscalar monopole and dipole compression modes in nuclei within the fluid dynamic approach (FDA) with and without the effect of relaxation. For a wide region of the medium and heavy nuclei, the FDA predicts that the isoscalar giant monopole resonance (ISGMR) and the isoscalar giant dipole resonance (ISGDR) exhaust about 90% of the corresponding model-independent sum rules. In the case of neglecting the effect of relaxation, the FDA, when adjusted to reproduce the centroid energy E0 of the ISGMR, results with centroid energy E1 of the ISGDR which is in agreement with the predictions of the self-consistent Hartree-Fock random-phase approximation calculations and the scaling model but significantly larger than the experimental value. We also show that the FDA leads to the correct hydrodynamic limit for the ratio (E1/E0){sub FDA}. We find that the ratio (E1/E0){sub FDA} depends on the relaxation time and approaches the preliminary experimental value (E1/E0){sub exp}=1.5{+-}0.1 in a short relaxation time limit. (c) 2000 The American Physical Society.

  4. Polymer Fluid Dynamics: Continuum and Molecular Approaches.

    PubMed

    Bird, R B; Giacomin, A J

    2016-06-01

    To solve problems in polymer fluid dynamics, one needs the equations of continuity, motion, and energy. The last two equations contain the stress tensor and the heat-flux vector for the material. There are two ways to formulate the stress tensor: (a) One can write a continuum expression for the stress tensor in terms of kinematic tensors, or (b) one can select a molecular model that represents the polymer molecule and then develop an expression for the stress tensor from kinetic theory. The advantage of the kinetic theory approach is that one gets information about the relation between the molecular structure of the polymers and the rheological properties. We restrict the discussion primarily to the simplest stress tensor expressions or constitutive equations containing from two to four adjustable parameters, although we do indicate how these formulations may be extended to give more complicated expressions. We also explore how these simplest expressions are recovered as special cases of a more general framework, the Oldroyd 8-constant model. Studying the simplest models allows us to discover which types of empiricisms or molecular models seem to be worth investigating further. We also explore equivalences between continuum and molecular approaches. We restrict the discussion to several types of simple flows, such as shearing flows and extensional flows, which are of greatest importance in industrial operations. Furthermore, if these simple flows cannot be well described by continuum or molecular models, then it is not necessary to lavish time and energy to apply them to more complex flow problems. PMID:27276553

  5. Adaptive Methods within a Sequential Bayesian Approach for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Huff, Daniel W.

    computational burden is decreased significantly and the number of possible observation modes can be increased. Using sensor measurements from real experiments, the overall sequential Bayesian estimation approach, with the adaptive capability of varying the state dynamics and observation modes, is demonstrated for tracking crack damage.

  6. Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller

    NASA Astrophysics Data System (ADS)

    Kindermans, Pieter-Jan; Tangermann, Michael; Müller, Klaus-Robert; Schrauwen, Benjamin

    2014-06-01

    Objective. Most BCIs have to undergo a calibration session in which data is recorded to train decoders with machine learning. Only recently zero-training methods have become a subject of study. This work proposes a probabilistic framework for BCI applications which exploit event-related potentials (ERPs). For the example of a visual P300 speller we show how the framework harvests the structure suitable to solve the decoding task by (a) transfer learning, (b) unsupervised adaptation, (c) language model and (d) dynamic stopping. Approach. A simulation study compares the proposed probabilistic zero framework (using transfer learning and task structure) to a state-of-the-art supervised model on n = 22 subjects. The individual influence of the involved components (a)-(d) are investigated. Main results. Without any need for a calibration session, the probabilistic zero-training framework with inter-subject transfer learning shows excellent performance—competitive to a state-of-the-art supervised method using calibration. Its decoding quality is carried mainly by the effect of transfer learning in combination with continuous unsupervised adaptation. Significance. A high-performing zero-training BCI is within reach for one of the most popular BCI paradigms: ERP spelling. Recording calibration data for a supervised BCI would require valuable time which is lost for spelling. The time spent on calibration would allow a novel user to spell 29 symbols with our unsupervised approach. It could be of use for various clinical and non-clinical ERP-applications of BCI.

  7. TCP throughput adaptation in WiMax networks using replicator dynamics.

    PubMed

    Anastasopoulos, Markos P; Petraki, Dionysia K; Kannan, Rajgopal; Vasilakos, Athanasios V

    2010-06-01

    The high-frequency segment (10-66 GHz) of the IEEE 802.16 standard seems promising for the implementation of wireless backhaul networks carrying large volumes of Internet traffic. In contrast to wireline backbone networks, where channel errors seldom occur, the TCP protocol in IEEE 802.16 Worldwide Interoperability for Microwave Access networks is conditioned exclusively by wireless channel impairments rather than by congestion. This renders a cross-layer design approach between the transport and physical layers more appropriate during fading periods. In this paper, an adaptive coding and modulation (ACM) scheme for TCP throughput maximization is presented. In the current approach, Internet traffic is modulated and coded employing an adaptive scheme that is mathematically equivalent to the replicator dynamics model. The stability of the proposed ACM scheme is proven, and the dependence of the speed of convergence on various physical-layer parameters is investigated. It is also shown that convergence to the strategy that maximizes TCP throughput may be further accelerated by increasing the amount of information from the physical layer. PMID:20083460

  8. Spin Adapted versus Broken Symmetry Approaches in the Description of Magnetic Coupling in Heterodinuclear Complexes.

    PubMed

    Costa, Ramon; Valero, Rosendo; Reta Mañeru, Daniel; Moreira, Ibério de P R; Illas, Francesc

    2015-03-10

    The performance of a series of wave function and density functional theory based methods in predicting the magnetic coupling constant of a family of heterodinuclear magnetic complexes has been studied. For the former, the accuracy is similar to other simple cases involving homodinuclear complexes, the main limitation being a sufficient inclusion of dynamical correlation effects. Nevertheless, these series of calculations provide an appropriate benchmark for density functional theory based methods. Here, the usual broken symmetry approach provides a convenient framework to predict the magnetic coupling constants but requires deriving the appropriate mapping. At variance with simple dinuclear complexes, spin projection based techniques cannot recover the corresponding (approximate) spin adapted solution. Present results also show that current implementation of spin flip techniques leads to unphysical results. PMID:26579753

  9. Integrating adaptive behaviour in large-scale flood risk assessments: an Agent-Based Modelling approach

    NASA Astrophysics Data System (ADS)

    Haer, Toon; Aerts, Jeroen

    2015-04-01

    Between 1998 and 2009, Europe suffered over 213 major damaging floods, causing 1126 deaths, displacing around half a million people. In this period, floods caused at least 52 billion euro in insured economic losses making floods the most costly natural hazard faced in Europe. In many low-lying areas, the main strategy to cope with floods is to reduce the risk of the hazard through flood defence structures, like dikes and levees. However, it is suggested that part of the responsibility for flood protection needs to shift to households and businesses in areas at risk, and that governments and insurers can effectively stimulate the implementation of individual protective measures. However, adaptive behaviour towards flood risk reduction and the interaction between the government, insurers, and individuals has hardly been studied in large-scale flood risk assessments. In this study, an European Agent-Based Model is developed including agent representatives for the administrative stakeholders of European Member states, insurers and reinsurers markets, and individuals following complex behaviour models. The Agent-Based Modelling approach allows for an in-depth analysis of the interaction between heterogeneous autonomous agents and the resulting (non-)adaptive behaviour. Existing flood damage models are part of the European Agent-Based Model to allow for a dynamic response of both the agents and the environment to changing flood risk and protective efforts. By following an Agent-Based Modelling approach this study is a first contribution to overcome the limitations of traditional large-scale flood risk models in which the influence of individual adaptive behaviour towards flood risk reduction is often lacking.

  10. An adaptive remaining energy prediction approach for lithium-ion batteries in electric vehicles

    NASA Astrophysics Data System (ADS)

    Wang, Yujie; Zhang, Chenbin; Chen, Zonghai

    2016-02-01

    With the growing number of electric vehicle (EV) applications, the function of the battery management system (BMS) becomes more sophisticated. The accuracy of remaining energy estimation is critical for energy optimization and management in EVs. Therefore the state-of-energy (SoE) is defined to indicate the remaining available energy of the batteries. Considering that there are inevitable accumulated errors caused by current and voltage integral method, an adaptive SoE estimator is first established in this paper. In order to establish a reasonable battery equivalent model, based on the experimental data of the LiFePO4 battery, a data-driven model is established to describe the relationship between the open-circuit voltage (OCV) and the SoE. What is more, the forgetting factor recursive least-square (RLS) method is used for parameter identification to get accurate model parameters. Finally, in order to analyze the robustness and the accuracy of the proposed approach, different types of dynamic current profiles are conducted on the lithium-ion batteries and the performances are calculated and compared. The results indicate that the proposed approach has robust and accurate SoE estimation results under dynamic working conditions.

  11. Taking a Broad Approach to Public Health Program Adaptation: Adapting a Family-Based Diabetes Education Program

    ERIC Educational Resources Information Center

    Reinschmidt, Kerstin M.; Teufel-Shone, Nicolette I.; Bradford, Gail; Drummond, Rebecca L.; Torres, Emma; Redondo, Floribella; Elenes, Jo Jean; Sanders, Alicia; Gastelum, Sylvia; Moore-Monroy, Martha; Barajas, Salvador; Fernandez, Lourdes; Alvidrez, Rosy; de Zapien, Jill Guernsey; Staten, Lisa K.

    2010-01-01

    Diabetes health disparities among Hispanic populations have been countered with federally funded health promotion and disease prevention programs. Dissemination has focused on program adaptation to local cultural contexts for greater acceptability and sustainability. Taking a broader approach and drawing on our experience in Mexican American…

  12. Dynamics modeling and adaptive control of flexible manipulators

    NASA Technical Reports Server (NTRS)

    Sasiadek, J. Z.

    1991-01-01

    An application of Model Reference Adaptive Control (MRAC) to the position and force control of flexible manipulators and robots is presented. A single-link flexible manipulator is analyzed. The problem was to develop a mathematical model of a flexible robot that is accurate. The objective is to show that the adaptive control works better than 'conventional' systems and is suitable for flexible structure control.

  13. Dynamics and Adaptive Benefits of Protein Domain Emergence and Arrangements during Plant Genome Evolution

    PubMed Central

    Kersting, Anna R.; Bornberg-Bauer, Erich; Moore, Andrew D.; Grath, Sonja

    2012-01-01

    Plant genomes are generally very large, mostly paleopolyploid, and have numerous gene duplicates and complex genomic features such as repeats and transposable elements. Many of these features have been hypothesized to enable plants, which cannot easily escape environmental challenges, to rapidly adapt. Another mechanism, which has recently been well described as a major facilitator of rapid adaptation in bacteria, animals, and fungi but not yet for plants, is modular rearrangement of protein-coding genes. Due to the high precision of profile-based methods, rearrangements can be well captured at the protein level by characterizing the emergence, loss, and rearrangements of protein domains, their structural, functional, and evolutionary building blocks. Here, we study the dynamics of domain rearrangements and explore their adaptive benefit in 27 plant and 3 algal genomes. We use a phylogenomic approach by which we can explain the formation of 88% of all arrangements by single-step events, such as fusion, fission, and terminal loss of domains. We find many domains are lost along every lineage, but at least 500 domains are novel, that is, they are unique to green plants and emerged more or less recently. These novel domains duplicate and rearrange more readily within their genomes than ancient domains and are overproportionally involved in stress response and developmental innovations. Novel domains more often affect regulatory proteins and show a higher degree of structural disorder than ancient domains. Whereas a relatively large and well-conserved core set of single-domain proteins exists, long multi-domain arrangements tend to be species-specific. We find that duplicated genes are more often involved in rearrangements. Although fission events typically impact metabolic proteins, fusion events often create new signaling proteins essential for environmental sensing. Taken together, the high volatility of single domains and complex arrangements in plant genomes

  14. Dynamics and adaptive benefits of protein domain emergence and arrangements during plant genome evolution.

    PubMed

    Kersting, Anna R; Bornberg-Bauer, Erich; Moore, Andrew D; Grath, Sonja

    2012-01-01

    Plant genomes are generally very large, mostly paleopolyploid, and have numerous gene duplicates and complex genomic features such as repeats and transposable elements. Many of these features have been hypothesized to enable plants, which cannot easily escape environmental challenges, to rapidly adapt. Another mechanism, which has recently been well described as a major facilitator of rapid adaptation in bacteria, animals, and fungi but not yet for plants, is modular rearrangement of protein-coding genes. Due to the high precision of profile-based methods, rearrangements can be well captured at the protein level by characterizing the emergence, loss, and rearrangements of protein domains, their structural, functional, and evolutionary building blocks. Here, we study the dynamics of domain rearrangements and explore their adaptive benefit in 27 plant and 3 algal genomes. We use a phylogenomic approach by which we can explain the formation of 88% of all arrangements by single-step events, such as fusion, fission, and terminal loss of domains. We find many domains are lost along every lineage, but at least 500 domains are novel, that is, they are unique to green plants and emerged more or less recently. These novel domains duplicate and rearrange more readily within their genomes than ancient domains and are overproportionally involved in stress response and developmental innovations. Novel domains more often affect regulatory proteins and show a higher degree of structural disorder than ancient domains. Whereas a relatively large and well-conserved core set of single-domain proteins exists, long multi-domain arrangements tend to be species-specific. We find that duplicated genes are more often involved in rearrangements. Although fission events typically impact metabolic proteins, fusion events often create new signaling proteins essential for environmental sensing. Taken together, the high volatility of single domains and complex arrangements in plant genomes

  15. Dynamical Approach Study of Spurious Numerics in Nonlinear Computations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Mansour, Nagi (Technical Monitor)

    2002-01-01

    The last two decades have been an era when computation is ahead of analysis and when very large scale practical computations are increasingly used in poorly understood multiscale complex nonlinear physical problems and non-traditional fields. Ensuring a higher level of confidence in the predictability and reliability (PAR) of these numerical simulations could play a major role in furthering the design, understanding, affordability and safety of our next generation air and space transportation systems, and systems for planetary and atmospheric sciences, and in understanding the evolution and origin of life. The need to guarantee PAR becomes acute when computations offer the ONLY way of solving these types of data limited problems. Employing theory from nonlinear dynamical systems, some building blocks to ensure a higher level of confidence in PAR of numerical simulations have been revealed by the author and world expert collaborators in relevant fields. Five building blocks with supporting numerical examples were discussed. The next step is to utilize knowledge gained by including nonlinear dynamics, bifurcation and chaos theories as an integral part of the numerical process. The third step is to design integrated criteria for reliable and accurate algorithms that cater to the different multiscale nonlinear physics. This includes but is not limited to the construction of appropriate adaptive spatial and temporal discretizations that are suitable for the underlying governing equations. In addition, a multiresolution wavelets approach for adaptive numerical dissipation/filter controls for high speed turbulence, acoustics and combustion simulations will be sought. These steps are corner stones for guarding against spurious numerical solutions that are solutions of the discretized counterparts but are not solutions of the underlying governing equations.

  16. Hierarchy-Direction Selective Approach for Locally Adaptive Sparse Grids

    SciTech Connect

    Stoyanov, Miroslav K

    2013-09-01

    We consider the problem of multidimensional adaptive hierarchical interpolation. We use sparse grids points and functions that are induced from a one dimensional hierarchical rule via tensor products. The classical locally adaptive sparse grid algorithm uses an isotropic refinement from the coarser to the denser levels of the hierarchy. However, the multidimensional hierarchy provides a more complex structure that allows for various anisotropic and hierarchy selective refinement techniques. We consider the more advanced refinement techniques and apply them to a number of simple test functions chosen to demonstrate the various advantages and disadvantages of each method. While there is no refinement scheme that is optimal for all functions, the fully adaptive family-direction-selective technique is usually more stable and requires fewer samples.

  17. Spectral solver for multi-scale plasma physics simulations with dynamically adaptive number of moments

    DOE PAGESBeta

    Vencels, Juris; Delzanno, Gian Luca; Johnson, Alec; Peng, Ivy Bo; Laure, Erwin; Markidis, Stefano

    2015-06-01

    A spectral method for kinetic plasma simulations based on the expansion of the velocity distribution function in a variable number of Hermite polynomials is presented. The method is based on a set of non-linear equations that is solved to determine the coefficients of the Hermite expansion satisfying the Vlasov and Poisson equations. In this paper, we first show that this technique combines the fluid and kinetic approaches into one framework. Second, we present an adaptive strategy to increase and decrease the number of Hermite functions dynamically during the simulation. The technique is applied to the Landau damping and two-stream instabilitymore » test problems. Performance results show 21% and 47% saving of total simulation time in the Landau and two-stream instability test cases, respectively.« less

  18. Nonlinear structural response using adaptive dynamic relaxation on a massively-parallel-processing system

    NASA Technical Reports Server (NTRS)

    Oakley, David R.; Knight, Norman F., Jr.

    1994-01-01

    A parallel adaptive dynamic relaxation (ADR) algorithm has been developed for nonlinear structural analysis. This algorithm has minimal memory requirements, is easily parallelizable and scalable to many processors, and is generally very reliable and efficient for highly nonlinear problems. Performance evaluations on single-processor computers have shown that the ADR algorithm is reliable and highly vectorizable, and that it is competitive with direct solution methods for the highly nonlinear problems considered. The present algorithm is implemented on the 512-processor Intel Touchstone DELTA system at Caltech, and it is designed to minimize the extent and frequency of interprocessor communication. The algorithm has been used to solve for the nonlinear static response of two and three dimensional hyperelastic systems involving contact. Impressive relative speedups have been achieved and demonstrate the high scalability of the ADR algorithm. For the class of problems addressed, the ADR algorithm represents a very promising approach for parallel-vector processing.

  19. Spectral solver for multi-scale plasma physics simulations with dynamically adaptive number of moments

    SciTech Connect

    Vencels, Juris; Delzanno, Gian Luca; Johnson, Alec; Peng, Ivy Bo; Laure, Erwin; Markidis, Stefano

    2015-06-01

    A spectral method for kinetic plasma simulations based on the expansion of the velocity distribution function in a variable number of Hermite polynomials is presented. The method is based on a set of non-linear equations that is solved to determine the coefficients of the Hermite expansion satisfying the Vlasov and Poisson equations. In this paper, we first show that this technique combines the fluid and kinetic approaches into one framework. Second, we present an adaptive strategy to increase and decrease the number of Hermite functions dynamically during the simulation. The technique is applied to the Landau damping and two-stream instability test problems. Performance results show 21% and 47% saving of total simulation time in the Landau and two-stream instability test cases, respectively.

  20. A mathematical programming approach for sequential clustering of dynamic networks

    NASA Astrophysics Data System (ADS)

    Silva, Jonathan C.; Bennett, Laura; Papageorgiou, Lazaros G.; Tsoka, Sophia

    2016-02-01

    A common analysis performed on dynamic networks is community structure detection, a challenging problem that aims to track the temporal evolution of network modules. An emerging area in this field is evolutionary clustering, where the community structure of a network snapshot is identified by taking into account both its current state as well as previous time points. Based on this concept, we have developed a mixed integer non-linear programming (MINLP) model, SeqMod, that sequentially clusters each snapshot of a dynamic network. The modularity metric is used to determine the quality of community structure of the current snapshot and the historical cost is accounted for by optimising the number of node pairs co-clustered at the previous time point that remain so in the current snapshot partition. Our method is tested on social networks of interactions among high school students, college students and members of the Brazilian Congress. We show that, for an adequate parameter setting, our algorithm detects the classes that these students belong more accurately than partitioning each time step individually or by partitioning the aggregated snapshots. Our method also detects drastic discontinuities in interaction patterns across network snapshots. Finally, we present comparative results with similar community detection methods for time-dependent networks from the literature. Overall, we illustrate the applicability of mathematical programming as a flexible, adaptable and systematic approach for these community detection problems. Contribution to the Topical Issue "Temporal Network Theory and Applications", edited by Petter Holme.

  1. Adaptive fuzzy output-feedback controller design for nonlinear systems via backstepping and small-gain approach.

    PubMed

    Liu, Zhi; Wang, Fang; Zhang, Yun; Chen, Xin; Chen, C L Philip

    2014-10-01

    This paper focuses on an input-to-state practical stability (ISpS) problem of nonlinear systems which possess unmodeled dynamics in the presence of unstructured uncertainties and dynamic disturbances. The dynamic disturbances depend on the states and the measured output of the system, and its assumption conditions are relaxed compared with the common restrictions. Based on an input-driven filter, fuzzy logic systems are directly used to approximate the unknown and desired control signals instead of the unknown nonlinear functions, and an integrated backstepping technique is used to design an adaptive output-feedback controller that ensures robustness with respect to unknown parameters and uncertain nonlinearities. This paper, by applying the ISpS theory and the generalized small-gain approach, shows that the proposed adaptive fuzzy controller guarantees the closed-loop system being semi-globally uniformly ultimately bounded. A main advantage of the proposed controller is that it contains only three adaptive parameters that need to be updated online, no matter how many states there are in the systems. Finally, the effectiveness of the proposed approach is illustrated by two simulation examples. PMID:25222716

  2. Highly Dynamic and Adaptive Traffic Congestion Avoidance in Real-Time Inspired by Honey Bee Behavior

    NASA Astrophysics Data System (ADS)

    Wedde, Horst F.; Lehnhoff, Sebastian; van Bonn, Bernhard; Bay, Z.; Becker, S.; Böttcher, S.; Brunner, C.; Büscher, A.; Fürst, T.; Lazarescu, A. M.; Rotaru, E.; Senge, S.; Steinbach, B.; Yilmaz, F.; Zimmermann, T.

    Traffic congestions have become a major problem in metropolitan areas world-wide, within and between cities, to an extent where they make driving and transportation times largely unpredictable. Due to the highly dynamic character of congestion building and dissolving this phenomenon appears even to resist a formal treatment. Static approaches, and even more their global management, have proven counterproductive in practice. Given the latest progress in VANET technology and the remarkable commercially driven efforts like in the European C2C consortium, or the VSC Project in the US, allow meanwhile to tackle various aspects of traffic regulation through VANET communication. In this paper we introduce a novel, completely decentralized multi-agent routing algorithm (termed BeeJamA) which we have derived from the foraging behavior of honey bees. It is highly dynamic, adaptive, robust, and scalable, and it allows for both avoiding congestions, and minimizing traveling times to individual destinations. Vehicle guidance is provided well ahead of every intersection, depending on the individual speeds. Thus strict deadlines are imposed on, and respected by, the BeeJamA algorithm. We report on extensive simulation experiments which show the superior performance of BeeJamA over conventional approaches.

  3. Enhancing Adaptive Filtering Approaches for Land Data Assimilation Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent work has presented the initial application of adaptive filtering techniques to land surface data assimilation systems. Such techniques are motivated by our current lack of knowledge concerning the structure of large-scale error in either land surface modeling output or remotely-sensed estima...

  4. The Canadian approach to the settlement and adaptation of immigrants.

    PubMed

    1986-01-01

    Canada has been the host to over 400,000 refugees since World War II. The settlement and adaptation process is supported by the federal government and by the majority of provincial governments. Under the national and regional Employment and Immigration Commission CEIC) settlement organizations the major programs administered to effect the adaptation of newcomers are: 1) the Adjustment Assistance Program, 2) the Immigrant Settlement and Adaptation Program, 3) the Language/Skill Training Program, and 4) the Employment Services Program. Ontario, the recipient of more than 1/2 the newcomers that arrive in Canada each year, pursues active programs in the reception of newcomers through their Welcome House Program which offers a wide range of reception services to the newcomers. The employment and unemployment experiences of refugees is very much influenced by the prevailing labor market conditions, the refugees' proficiency in the country's official languages, the amount of sympathy evoked by the media reports on the plight of refugees, the availability of people of the same ethnic origin already well settled in the country, and the adaptability of the refugees themselves. The vast majority of refugee groups that came to Canada during the last 1/4 century seem to have adjusted well economically, despite having had difficulty in entering the occupations they intended to join. It is calculated that an average of $6607 per arrival is needed to cover the CEIC program costs of 1983-1984. PMID:12178937

  5. The Detroit Approach to Adapted Physical Education and Recreation.

    ERIC Educational Resources Information Center

    Elkins, Bruce; Czapski, Stephen

    The report describes Detroit's Adaptive Physical Education Consortium Project in Michigan. Among the main objectives of the project are to coordinate all physical education and recreation services to the handicapped in the Detroit area; to facilitate the mainstreaming of capable handicapped individuals into existing "regular" physical education…

  6. Adaptive E-Learning Environments: Research Dimensions and Technological Approaches

    ERIC Educational Resources Information Center

    Di Bitonto, Pierpaolo; Roselli, Teresa; Rossano, Veronica; Sinatra, Maria

    2013-01-01

    One of the most closely investigated topics in e-learning research has always been the effectiveness of adaptive learning environments. The technological evolutions that have dramatically changed the educational world in the last six decades have allowed ever more advanced and smarter solutions to be proposed. The focus of this paper is to depict…

  7. A Monte Carlo Approach for Adaptive Testing with Content Constraints

    ERIC Educational Resources Information Center

    Belov, Dmitry I.; Armstrong, Ronald D.; Weissman, Alexander

    2008-01-01

    This article presents a new algorithm for computerized adaptive testing (CAT) when content constraints are present. The algorithm is based on shadow CAT methodology to meet content constraints but applies Monte Carlo methods and provides the following advantages over shadow CAT: (a) lower maximum item exposure rates, (b) higher utilization of the…

  8. Design of Adaptive Hypermedia Learning Systems: A Cognitive Style Approach

    ERIC Educational Resources Information Center

    Mampadi, Freddy; Chen, Sherry Y.; Ghinea, Gheorghita; Chen, Ming-Puu

    2011-01-01

    In the past decade, a number of adaptive hypermedia learning systems have been developed. However, most of these systems tailor presentation content and navigational support solely according to students' prior knowledge. On the other hand, previous research suggested that cognitive styles significantly affect student learning because they refer to…

  9. Dissociating Conflict Adaptation from Feature Integration: A Multiple Regression Approach

    ERIC Educational Resources Information Center

    Notebaert, Wim; Verguts, Tom

    2007-01-01

    Congruency effects are typically smaller after incongruent than after congruent trials. One explanation is in terms of higher levels of cognitive control after detection of conflict (conflict adaptation; e.g., M. M. Botvinick, T. S. Braver, D. M. Barch, C. S. Carter, & J. D. Cohen, 2001). An alternative explanation for these results is based on…

  10. Adaptive-mesh algorithms for computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Powell, Kenneth G.; Roe, Philip L.; Quirk, James

    1993-01-01

    The basic goal of adaptive-mesh algorithms is to distribute computational resources wisely by increasing the resolution of 'important' regions of the flow and decreasing the resolution of regions that are less important. While this goal is one that is worthwhile, implementing schemes that have this degree of sophistication remains more of an art than a science. In this paper, the basic pieces of adaptive-mesh algorithms are described and some of the possible ways to implement them are discussed and compared. These basic pieces are the data structure to be used, the generation of an initial mesh, the criterion to be used to adapt the mesh to the solution, and the flow-solver algorithm on the resulting mesh. Each of these is discussed, with particular emphasis on methods suitable for the computation of compressible flows.

  11. Adaption of a corrector module to the IMP dynamics program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The corrector module of the RAEIOS program and the IMP dynamics computer program were combined to achieve a date-fitting capability with the more general spacecraft dynamics models of the IMP program. The IMP dynamics program presents models of spacecraft dynamics for satellites with long, flexible booms. The properties of the corrector are discussed and a description is presented of the performance criteria and search logic for parameter estimation. A description is also given of the modifications made to add the corrector to the IMP program. This includes subroutine descriptions, common definitions, definition of input, and a description of output.

  12. Detection of synchronization between chaotic signals: An adaptive similarity-based approach

    NASA Astrophysics Data System (ADS)

    Chen, Shyan-Shiou; Chen, Li-Fen; Wu, Yu-Te; Wu, Yu-Zu; Lee, Po-Lei; Yeh, Tzu-Chen; Hsieh, Jen-Chuen

    2007-12-01

    We present an adaptive similarity-based approach to detect generalized synchronization (GS) with n:m phase synchronization (PS), where n and m are integers and one of them is 1. This approach is based on the similarity index (SI) and Gaussian mixture model with the minimum description length criterion. The clustering method, which is shown to be superior to the closeness and connectivity of a continuous function, is employed in this study to detect the existence of GS with n:m PS. We conducted a computer simulation and a finger-lifting experiment to illustrate the effectiveness of the proposed method. In the simulation of a Rössler-Lorenz system, our method outperformed the conventional SI, and GS with 2:1 PS within the coupled system was found. In the experiment of self-paced finger-lifting movement, cortico-muscular GS with 1:2 and 1:3 PS was found between the surface electromyogram signals on the first dorsal interossei muscle and the magnetoencephalographic data in the motor area. The GS with n:m PS ( n or m=1 ) has been simultaneously resolved from both simulation and experiment. The proposed approach thereby provides a promising means for advancing research into both nonlinear dynamics and brain science.

  13. PSF halo reduction in adaptive optics using dynamic pupil masking.

    PubMed

    Osborn, James; Myers, Richard M; Love, Gordon D

    2009-09-28

    We describe a method to reduce residual speckles in an adaptive optics system which add to the halo of the point spread function (PSF). The halo is particularly problematic in astronomical applications involving the detection of faint companions. Areas of the pupil are selected where the residual wavefront aberrations are large and these are masked using a spatial light modulator. The method is also suitable for smaller telescopes without adaptive optics as a relatively simple method to increase the resolution of the telescope. We describe the principle of the technique and show simulation results. PMID:19907514

  14. Free energy calculations from adaptive molecular dynamics simulations with adiabatic reweighting

    NASA Astrophysics Data System (ADS)

    Cao, Lingling; Stoltz, Gabriel; Lelièvre, Tony; Marinica, Mihai-Cosmin; Athènes, Manuel

    2014-03-01

    We propose an adiabatic reweighting algorithm for computing the free energy along an external parameter from adaptive molecular dynamics simulations. The adaptive bias is estimated using Bayes identity and information from all the sampled configurations. We apply the algorithm to a structural transition in a cluster and to the migration of a crystalline defect along a reaction coordinate. Compared to standard adaptive molecular dynamics, we observe an acceleration of convergence. With the aid of the algorithm, it is also possible to iteratively construct the free energy along the reaction coordinate without having to differentiate the gradient of the reaction coordinate or any biasing potential.

  15. Assessing confidence in management adaptation approaches for climate-sensitive ecosystems

    NASA Astrophysics Data System (ADS)

    West, J. M.; Julius, S. H.; Weaver, C. P.

    2012-03-01

    A number of options are available for adapting ecosystem management to improve resilience in the face of climatic changes. However, uncertainty exists as to the effectiveness of these options. A report prepared for the US Climate Change Science Program reviewed adaptation options for a range of federally managed systems in the United States. The report included a qualitative uncertainty analysis of conceptual approaches to adaptation derived from the review. The approaches included reducing anthropogenic stressors, protecting key ecosystem features, maintaining representation, replicating, restoring, identifying refugia and relocating organisms. The results showed that the expert teams had the greatest scientific confidence in adaptation options that reduce anthropogenic stresses. Confidence in other approaches was lower because of gaps in understanding of ecosystem function, climate change impacts on ecosystems, and management effectiveness. This letter discusses insights gained from the confidence exercise and proposes strategies for improving future assessments of confidence for management adaptations to climate change.

  16. Transcriptome sequencing reveals both neutral and adaptive genome dynamics in a marine invader.

    PubMed

    Tepolt, C K; Palumbi, S R

    2015-08-01

    Species invasions cause significant ecological and economic damage, and genetic information is important to understanding and managing invasive species. In the ocean, many invasive species have high dispersal and gene flow, lowering the discriminatory power of traditional genetic approaches. High-throughput sequencing holds tremendous promise for increasing resolution and illuminating the relative contributions of selection and drift in marine invasion, but has not yet been used to compare the diversity and dynamics of a high-dispersal invader in its native and invaded ranges. We test a transcriptome-based approach in the European green crab (Carcinus maenas), a widespread invasive species with high gene flow and a well-known invasion history, in two native and five invasive populations. A panel of 10 809 transcriptome-derived nuclear SNPs identified significant population structure among highly bottlenecked invasive populations that were previously undifferentiated with traditional markers. Comparing the full data set and a subset of 9246 putatively neutral SNPs strongly suggested that non-neutral processes are the primary driver of population structure within the species' native range, while neutral processes appear to dominate in the invaded range. Non-neutral native range structure coincides with significant differences in intraspecific thermal tolerance, suggesting temperature as a potential selective agent. These results underline the importance of adaptation in shaping intraspecific differences even in high geneflow marine invasive species. They also demonstrate that high-throughput approaches have broad utility in determining neutral structure in recent invasions of such species. Together, neutral and non-neutral data derived from high-throughput approaches may increase the understanding of invasion dynamics in high-dispersal species. PMID:26118396

  17. Dynamic Range Adaptation to Sound Level Statistics in the Auditory Nerve

    PubMed Central

    Wen, Bo; Wang, Grace I.; Dean, Isabel; Delgutte, Bertrand

    2009-01-01

    The auditory system operates over a vast range of sound pressure levels (100–120 dB) with nearly constant discrimination ability across most of the range, well exceeding the dynamic range of most auditory neurons (20–40 dB). Dean et al. (Nat. Neurosci. 8:1684, 2005) have reported that the dynamic range of midbrain auditory neurons adapts to the distribution of sound levels in a continuous, dynamic stimulus by shifting towards the most frequently occurring level. Here we show that dynamic range adaptation, distinct from classic firing rate adaptation, also occurs in primary auditory neurons in anesthetized cats for tone and noise stimuli. Specifically, the range of sound levels over which firing rates of auditory-nerve (AN) fibers grows rapidly with level shifts nearly linearly with the most probable levels in a dynamic sound stimulus. This dynamic range adaptation was observed for fibers with all characteristic frequencies and spontaneous discharge rates. As in the midbrain, dynamic range adaptation improved the precision of level coding by the AN fiber population for the prevailing sound levels in the stimulus. However, dynamic range adaptation in the AN was weaker than in the midbrain, and not sufficient (0.25 dB/dB on average for broadband noise) to prevent a significant degradation of the precision of level coding by the AN population above 60 dB SPL. These findings suggest that adaptive processing of sound levels first occurs in the auditory periphery and is enhanced along the auditory pathway. PMID:19889991

  18. An approach to fabrication of large adaptive optics mirrors

    NASA Astrophysics Data System (ADS)

    Schwartz, Eric; Rey, Justin; Blaszak, David; Cavaco, Jeffrey

    2014-07-01

    For more than two decades, Northrop Grumman Xinetics has been the principal supplier of small deformable mirrors that enable adaptive optical (AO) systems for the ground-based astronomical telescope community. With today's drive toward extremely large aperture systems, and the desire of telescope designers to include adaptive optics in the main optical path of the telescope, Xinetics has recognized the need for large active mirrors with the requisite bandwidth and actuator stoke. Presented in this paper is the proposed use of Northrop Grumman Xinetics' large, ultra-lightweight Silicon Carbide substrates with surface parallel actuation of sufficient spatial density and bandwidth to meet the requirements of tomorrow's AO systems, while reducing complexity and cost.

  19. A Hierarchical Adaptive Approach to Optimal Experimental Design

    PubMed Central

    Kim, Woojae; Pitt, Mark A.; Lu, Zhong-Lin; Steyvers, Mark; Myung, Jay I.

    2014-01-01

    Experimentation is at the core of research in the behavioral and neural sciences, yet observations can be expensive and time-consuming to acquire (e.g., MRI scans, responses from infant participants). A major interest of researchers is designing experiments that lead to maximal accumulation of information about the phenomenon under study with the fewest possible number of observations. In addressing this challenge, statisticians have developed adaptive design optimization methods. This letter introduces a hierarchical Bayes extension of adaptive design optimization that provides a judicious way to exploit two complementary schemes of inference (with past and future data) to achieve even greater accuracy and efficiency in information gain. We demonstrate the method in a simulation experiment in the field of visual perception. PMID:25149697

  20. Design of an Adaptive Secondary Mirror: A Global Approach

    NASA Astrophysics Data System (ADS)

    Brusa, Guido; del Vecchio, Ciro

    1998-07-01

    We present the mechanical and actuator design of an adaptive secondary mirror that matches the optical requirements of the active and adaptive corrections. Conceived for the particular implementation for the 6.5-m conversion of the multiple-mirror telescope, with small variations of the input parameters this study is suitable for applications for telescopes of the same class. We found that a three-layer structure, i.e., a thin deformable shell, a thick reference plate, and a third plate that acts as actuator support and heat sink, is able to provide the required mechanical stability and actuator density. We also found that a simple electromagnetic actuator can be used. This actuator, when optimized, will dissipate a typical power of a few tenths of watts.

  1. The adaptive significance of adult neurogenesis: an integrative approach

    PubMed Central

    Konefal, Sarah; Elliot, Mick; Crespi, Bernard

    2013-01-01

    Adult neurogenesis in mammals is predominantly restricted to two brain regions, the dentate gyrus (DG) of the hippocampus and the olfactory bulb (OB), suggesting that these two brain regions uniquely share functions that mediate its adaptive significance. Benefits of adult neurogenesis across these two regions appear to converge on increased neuronal and structural plasticity that subserves coding of novel, complex, and fine-grained information, usually with contextual components that include spatial positioning. By contrast, costs of adult neurogenesis appear to center on potential for dysregulation resulting in higher risk of brain cancer or psychological dysfunctions, but such costs have yet to be quantified directly. The three main hypotheses for the proximate functions and adaptive significance of adult neurogenesis, pattern separation, memory consolidation, and olfactory spatial, are not mutually exclusive and can be reconciled into a simple general model amenable to targeted experimental and comparative tests. Comparative analysis of brain region sizes across two major social-ecological groups of primates, gregarious (mainly diurnal haplorhines, visually-oriented, and in large social groups) and solitary (mainly noctural, territorial, and highly reliant on olfaction, as in most rodents) suggest that solitary species, but not gregarious species, show positive associations of population densities and home range sizes with sizes of both the hippocampus and OB, implicating their functions in social-territorial systems mediated by olfactory cues. Integrated analyses of the adaptive significance of adult neurogenesis will benefit from experimental studies motivated and structured by ecologically and socially relevant selective contexts. PMID:23882188

  2. Adaptive control of nonlinear systems using multistage dynamic neural networks

    NASA Astrophysics Data System (ADS)

    Gupta, Madan M.; Rao, Dandina H.

    1992-11-01

    In this paper we present a new architecture of neuron, called the dynamic neural unit (DNU). The topology of the proposed neuronal model embodies delay elements, feedforward and feedback signals weighted by the synaptic weights and a time-varying nonlinear activation function, and is thus different from the conventionally and assumed architecture of neurons. The learning algorithm for the proposed neuronal structure and the corresponding implementation scheme are presented. A multi-stage dynamic neural network is developed using the DNU as the basic processing element. The performance evaluation of the dynamic neural network is presented for nonlinear dynamic systems under various situations. The capabilities of the proposed neural network model not only account for the learning and control actions emulating some of the biological control functions, but also provide a promising parallel-distributed intelligent control scheme for large-scale complex dynamic systems.

  3. A unified approach to characterize and conserve adaptive and neutral genetic diversity in subdivided populations.

    PubMed

    Wellmann, Robin; Bennewitz, Jörn; Meuwissen, Theo H E

    2014-01-01

    As extinction of local domestic breeds and of isolated subpopulations of wild species continues, and the resources available for conservation programs are limited, prioritizing subpopulations for conservation is of high importance to halt the erosion of genetic diversity observed in endangered species. Current approaches usually only take neutral genetic diversity into account. However, adaptation of subpopulations to different environments also contributes to the diversity found in the species. This paper introduces two notions of adaptive variation. The adaptive diversity in a trait is the excess of variance found in genotypic values relative to the variance that would have been expected in the absence of selection. The adaptivity coverage of a set of subpopulations quantifies how well the subpopulations could adapt to a large range of environments within a limited time span. Additionally, genome-based notions of neutral diversities were obtained that correspond to well known pedigree-based definitions. The values of subpopulations for conservation of adaptivity coverage were compared with their conservation values for adaptive diversity and neutral diversities using simulated data. Conservation values for adaptive diversity and neutral diversities were only slightly correlated, but the values for conservation of adaptivity coverage showed a reasonable correlation with both kinds if the time span was chosen appropriately. Hence, maintaining adaptivity coverage is a promising approach to prioritize subpopulations for conservation decisions. PMID:25578300

  4. A massively parallel adaptive finite element method with dynamic load balancing

    SciTech Connect

    Devine, K.D.; Flaherty, J.E.; Wheat, S.R.; Maccabe, A.B.

    1993-05-01

    We construct massively parallel, adaptive finite element methods for the solution of hyperbolic conservation laws in one and two dimensions. Spatial discretization is performed by a discontinuous Galerkin finite element method using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kutta method. Dissipative fluxes and projection limiting prevent oscillations near solution discontinuities. The resulting method is of high order and may be parallelized efficiently on MIMD computers. We demonstrate parallel efficiency through computations on a 1024-processor nCUBE/2 hypercube. We also present results using adaptive p-refinement to reduce the computational cost of the method. We describe tiling, a dynamic, element-based data migration system. Tiling dynamically maintains global load balance in the adaptive method by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. We demonstrate the effectiveness of the dynamic load balancing with adaptive p-refinement examples.

  5. Dynamics of dual prism adaptation: relating novel experimental results to a minimalistic neural model.

    PubMed

    Arévalo, Orlando; Bornschlegl, Mona A; Eberhardt, Sven; Ernst, Udo; Pawelzik, Klaus; Fahle, Manfred

    2013-01-01

    In everyday life, humans interact with a dynamic environment often requiring rapid adaptation of visual perception and motor control. In particular, new visuo-motor mappings must be learned while old skills have to be kept, such that after adaptation, subjects may be able to quickly change between two different modes of generating movements ('dual-adaptation'). A fundamental question is how the adaptation schedule determines the acquisition speed of new skills. Given a fixed number of movements in two different environments, will dual-adaptation be faster if switches ('phase changes') between the environments occur more frequently? We investigated the dynamics of dual-adaptation under different training schedules in a virtual pointing experiment. Surprisingly, we found that acquisition speed of dual visuo-motor mappings in a pointing task is largely independent of the number of phase changes. Next, we studied the neuronal mechanisms underlying this result and other key phenomena of dual-adaptation by relating model simulations to experimental data. We propose a simple and yet biologically plausible neural model consisting of a spatial mapping from an input layer to a pointing angle which is subjected to a global gain modulation. Adaptation is performed by reinforcement learning on the model parameters. Despite its simplicity, the model provides a unifying account for a broad range of experimental data: It quantitatively reproduced the learning rates in dual-adaptation experiments for both direct effect, i.e. adaptation to prisms, and aftereffect, i.e. behavior after removal of prisms, and their independence on the number of phase changes. Several other phenomena, e.g. initial pointing errors that are far smaller than the induced optical shift, were also captured. Moreover, the underlying mechanisms, a local adaptation of a spatial mapping and a global adaptation of a gain factor, explained asymmetric spatial transfer and generalization of prism adaptation, as

  6. Micro-Level Adaptation, Macro-Level Selection, and the Dynamics of Market Partitioning.

    PubMed

    García-Díaz, César; van Witteloostuijn, Arjen; Péli, Gábor

    2015-01-01

    This paper provides a micro-foundation for dual market structure formation through partitioning processes in marketplaces by developing a computational model of interacting economic agents. We propose an agent-based modeling approach, where firms are adaptive and profit-seeking agents entering into and exiting from the market according to their (lack of) profitability. Our firms are characterized by large and small sunk costs, respectively. They locate their offerings along a unimodal demand distribution over a one-dimensional product variety, with the distribution peak constituting the center and the tails standing for the peripheries. We found that large firms may first advance toward the most abundant demand spot, the market center, and release peripheral positions as predicted by extant dual market explanations. However, we also observed that large firms may then move back toward the market fringes to reduce competitive niche overlap in the center, triggering nonlinear resource occupation behavior. Novel results indicate that resource release dynamics depend on firm-level adaptive capabilities, and that a minimum scale of production for low sunk cost firms is key to the formation of the dual structure. PMID:26656107

  7. Micro-Level Adaptation, Macro-Level Selection, and the Dynamics of Market Partitioning

    PubMed Central

    García-Díaz, César; van Witteloostuijn, Arjen; Péli, Gábor

    2015-01-01

    This paper provides a micro-foundation for dual market structure formation through partitioning processes in marketplaces by developing a computational model of interacting economic agents. We propose an agent-based modeling approach, where firms are adaptive and profit-seeking agents entering into and exiting from the market according to their (lack of) profitability. Our firms are characterized by large and small sunk costs, respectively. They locate their offerings along a unimodal demand distribution over a one-dimensional product variety, with the distribution peak constituting the center and the tails standing for the peripheries. We found that large firms may first advance toward the most abundant demand spot, the market center, and release peripheral positions as predicted by extant dual market explanations. However, we also observed that large firms may then move back toward the market fringes to reduce competitive niche overlap in the center, triggering nonlinear resource occupation behavior. Novel results indicate that resource release dynamics depend on firm-level adaptive capabilities, and that a minimum scale of production for low sunk cost firms is key to the formation of the dual structure. PMID:26656107

  8. Dynamics of genetic variability in Anastrepha fraterculus (Diptera: Tephritidae) during adaptation to laboratory rearing conditions

    PubMed Central

    2014-01-01

    Background Anastrepha fraterculus is one of the most important fruit fly plagues in the American continent and only chemical control is applied in the field to diminish its population densities. A better understanding of the genetic variability during the introduction and adaptation of wild A. fraterculus populations to laboratory conditions is required for the development of stable and vigorous experimental colonies and mass-reared strains in support of successful Sterile Insect Technique (SIT) efforts. Methods The present study aims to analyze the dynamics of changes in genetic variability during the first six generations under artificial rearing conditions in two populations: a) a wild population recently introduced to laboratory culture, named TW and, b) a long-established control line, named CL. Results Results showed a declining tendency of genetic variability in TW. In CL, the relatively high values of genetic variability appear to be maintained across generations and could denote an intrinsic capacity to avoid the loss of genetic diversity in time. Discussion The impact of evolutionary forces on this species during the adaptation process as well as the best approach to choose strategies to introduce experimental and mass-reared A. fraterculus strains for SIT programs are discussed. PMID:25471362

  9. Applying Parallel Adaptive Methods with GeoFEST/PYRAMID to Simulate Earth Surface Crustal Dynamics

    NASA Technical Reports Server (NTRS)

    Norton, Charles D.; Lyzenga, Greg; Parker, Jay; Glasscoe, Margaret; Donnellan, Andrea; Li, Peggy

    2006-01-01

    This viewgraph presentation reviews the use Adaptive Mesh Refinement (AMR) in simulating the Crustal Dynamics of Earth's Surface. AMR simultaneously improves solution quality, time to solution, and computer memory requirements when compared to generating/running on a globally fine mesh. The use of AMR in simulating the dynamics of the Earth's Surface is spurred by future proposed NASA missions, such as InSAR for Earth surface deformation and other measurements. These missions will require support for large-scale adaptive numerical methods using AMR to model observations. AMR was chosen because it has been successful in computation fluid dynamics for predictive simulation of complex flows around complex structures.

  10. Efficient Use of an Adapting Database of Ab Initio Calculations To Generate Accurate Newtonian Dynamics.

    PubMed

    Shaughnessy, M C; Jones, R E

    2016-02-01

    We develop and demonstrate a method to efficiently use density functional calculations to drive classical dynamics of complex atomic and molecular systems. The method has the potential to scale to systems and time scales unreachable with current ab initio molecular dynamics schemes. It relies on an adapting dataset of independently computed Hellmann-Feynman forces for atomic configurations endowed with a distance metric. The metric on configurations enables fast database lookup and robust interpolation of the stored forces. We discuss mechanisms for the database to adapt to the needs of the evolving dynamics, while maintaining accuracy, and other extensions of the basic algorithm. PMID:26669825

  11. An object-oriented approach for parallel self adaptive mesh refinement on block structured grids

    NASA Technical Reports Server (NTRS)

    Lemke, Max; Witsch, Kristian; Quinlan, Daniel

    1993-01-01

    Self-adaptive mesh refinement dynamically matches the computational demands of a solver for partial differential equations to the activity in the application's domain. In this paper we present two C++ class libraries, P++ and AMR++, which significantly simplify the development of sophisticated adaptive mesh refinement codes on (massively) parallel distributed memory architectures. The development is based on our previous research in this area. The C++ class libraries provide abstractions to separate the issues of developing parallel adaptive mesh refinement applications into those of parallelism, abstracted by P++, and adaptive mesh refinement, abstracted by AMR++. P++ is a parallel array class library to permit efficient development of architecture independent codes for structured grid applications, and AMR++ provides support for self-adaptive mesh refinement on block-structured grids of rectangular non-overlapping blocks. Using these libraries, the application programmers' work is greatly simplified to primarily specifying the serial single grid application and obtaining the parallel and self-adaptive mesh refinement code with minimal effort. Initial results for simple singular perturbation problems solved by self-adaptive multilevel techniques (FAC, AFAC), being implemented on the basis of prototypes of the P++/AMR++ environment, are presented. Singular perturbation problems frequently arise in large applications, e.g. in the area of computational fluid dynamics. They usually have solutions with layers which require adaptive mesh refinement and fast basic solvers in order to be resolved efficiently.

  12. Adaptive leadership: a novel approach for family decision making.

    PubMed

    Adams, Judith; Bailey, Donald E; Anderson, Ruth A; Galanos, Anthony N

    2013-03-01

    Family members of intensive care unit (ICU) patients want to be involved in decision making, but they may not be best served by being placed in the position of having to solve problems for which they lack knowledge and skills. This case report presents an exemplar family meeting in the ICU led by a palliative care specialist, with discussion about the strategies used to improve the capacity of the family to make a decision consistent with the patient's goals. These strategies are presented through the lens of Adaptive Leadership. PMID:22663140

  13. PFC design via FRIT Approach for Adaptive Output Feedback Control of Discrete-time Systems

    NASA Astrophysics Data System (ADS)

    Mizumoto, Ikuro; Takagi, Taro; Fukui, Sota; Shah, Sirish L.

    This paper deals with a design problem of an adaptive output feedback control for discrete-time systems with a parallel feedforward compensator (PFC) which is designed for making the augmented controlled system ASPR. A PFC design scheme by a FRIT approach with only using an input/output experimental data set will be proposed for discrete-time systems in order to design an adaptive output feedback control system. Furthermore, the effectiveness of the proposed PFC design method will be confirmed through numerical simulations by designing adaptive control system with adaptive NN (Neural Network) for an uncertain discrete-time system.

  14. A Dynamically Adaptive Arbitrary Lagrangian-Eulerian Method for Hydrodynamics

    SciTech Connect

    Anderson, R W; Pember, R B; Elliott, N S

    2004-01-28

    A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. The novel components of the combined ALE-AMR method hinge upon the integration of traditional AMR techniques with both staggered grid Lagrangian operators as well as elliptic relaxation operators on moving, deforming mesh hierarchies. Numerical examples demonstrate the utility of the method in performing detailed three-dimensional shock-driven instability calculations.

  15. A Dynamically Adaptive Arbitrary Lagrangian-Eulerian Method for Hydrodynamics

    SciTech Connect

    Anderson, R W; Pember, R B; Elliott, N S

    2002-10-19

    A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. The novel components of the combined ALE-AMR method hinge upon the integration of traditional AMR techniques with both staggered grid Lagrangian operators as well as elliptic relaxation operators on moving, deforming mesh hierarchies. Numerical examples demonstrate the utility of the method in performing detailed three-dimensional shock-driven instability calculations.

  16. Dynamic Nature of Noncoding RNA Regulation of Adaptive Immune Response

    PubMed Central

    Curtale, Graziella; Citarella, Franca

    2013-01-01

    Immune response plays a fundamental role in protecting the organism from infections; however, dysregulation often occurs and can be detrimental for the organism, leading to a variety of immune-mediated diseases. Recently our understanding of the molecular and cellular networks regulating the immune response, and, in particular, adaptive immunity, has improved dramatically. For many years, much of the focus has been on the study of protein regulators; nevertheless, recent evidence points to a fundamental role for specific classes of noncoding RNAs (ncRNAs) in regulating development, activation and homeostasis of the immune system. Although microRNAs (miRNAs) are the most comprehensive and well-studied, a number of reports suggest the exciting possibility that long ncRNAs (lncRNAs) could mediate host response and immune function. Finally, evidence is also accumulating that suggests a role for miRNAs and other small ncRNAs in autocrine, paracrine and exocrine signaling events, thus highlighting an elaborate network of regulatory interactions mediated by different classes of ncRNAs during immune response. This review will explore the multifaceted roles of ncRNAs in the adaptive immune response. In particular, we will focus on the well-established role of miRNAs and on the emerging role of lncRNAs and circulating ncRNAs, which all make indispensable contributions to the understanding of the multilayered modulation of the adaptive immune response. PMID:23975170

  17. Plant adaptation to dynamically changing environment: the shade avoidance response.

    PubMed

    Ruberti, I; Sessa, G; Ciolfi, A; Possenti, M; Carabelli, M; Morelli, G

    2012-01-01

    The success of competitive interactions between plants determines the chance of survival of individuals and eventually of whole plant species. Shade-tolerant plants have adapted their photosynthesis to function optimally under low-light conditions. These plants are therefore capable of long-term survival under a canopy shade. In contrast, shade-avoiding plants adapt their growth to perceive maximum sunlight and therefore rapidly dominate gaps in a canopy. Daylight contains roughly equal proportions of red and far-red light, but within vegetation that ratio is lowered as a result of red absorption by photosynthetic pigments. This light quality change is perceived through the phytochrome system as an unambiguous signal of the proximity of neighbors resulting in a suite of developmental responses (termed the shade avoidance response) that, when successful, result in the overgrowth of those neighbors. Shoot elongation induced by low red/far-red light may confer high relative fitness in natural dense communities. However, since elongation is often achieved at the expense of leaf and root growth, shade avoidance may lead to reduction in crop plant productivity. Over the past decade, major progresses have been achieved in the understanding of the molecular basis of shade avoidance. However, uncovering the mechanisms underpinning plant response and adaptation to changes in the ratio of red to far-red light is key to design new strategies to precise modulate shade avoidance in time and space without impairing the overall crop ability to compete for light. PMID:21888962

  18. On the optimal reconstruction and control of adaptive optical systems with mirror dynamics.

    PubMed

    Correia, Carlos; Raynaud, Henri-François; Kulcsár, Caroline; Conan, Jean-Marc

    2010-02-01

    In adaptive optics (AO) the deformable mirror (DM) dynamics are usually neglected because, in general, the DM can be considered infinitely fast. Such assumption may no longer apply for the upcoming Extremely Large Telescopes (ELTs) with DM that are several meters in diameter with slow and/or resonant responses. For such systems an important challenge is to design an optimal regulator minimizing the variance of the residual phase. In this contribution, the general optimal minimum-variance (MV) solution to the full dynamical reconstruction and control problem of AO systems (AOSs) is established. It can be looked upon as the parent solution from which simpler (used hitherto) suboptimal solutions can be derived as special cases. These include either partial DM-dynamics-free solutions or solutions derived from the static minimum-variance reconstruction (where both atmospheric disturbance and DM dynamics are neglected altogether). Based on a continuous stochastic model of the disturbance, a state-space approach is developed that yields a fully optimal MV solution in the form of a discrete-time linear-quadratic-Gaussian (LQG) regulator design. From this LQG standpoint, the control-oriented state-space model allows one to (1) derive the optimal state-feedback linear regulator and (2) evaluate the performance of both the optimal and the sub-optimal solutions. Performance results are given for weakly damped second-order oscillatory DMs with large-amplitude resonant responses, in conditions representative of an ELT AO system. The highly energetic optical disturbance caused on the tip/tilt (TT) modes by the wind buffeting is considered. Results show that resonant responses are correctly handled with the MV regulator developed here. The use of sub-optimal regulators results in prohibitive performance losses in terms of residual variance; in addition, the closed-loop system may become unstable for resonant frequencies in the range of interest. PMID:20126246

  19. Dynamics of Dual Prism Adaptation: Relating Novel Experimental Results to a Minimalistic Neural Model

    PubMed Central

    Arévalo, Orlando; Bornschlegl, Mona A.; Eberhardt, Sven; Ernst, Udo; Pawelzik, Klaus; Fahle, Manfred

    2013-01-01

    In everyday life, humans interact with a dynamic environment often requiring rapid adaptation of visual perception and motor control. In particular, new visuo–motor mappings must be learned while old skills have to be kept, such that after adaptation, subjects may be able to quickly change between two different modes of generating movements (‘dual–adaptation’). A fundamental question is how the adaptation schedule determines the acquisition speed of new skills. Given a fixed number of movements in two different environments, will dual–adaptation be faster if switches (‘phase changes’) between the environments occur more frequently? We investigated the dynamics of dual–adaptation under different training schedules in a virtual pointing experiment. Surprisingly, we found that acquisition speed of dual visuo–motor mappings in a pointing task is largely independent of the number of phase changes. Next, we studied the neuronal mechanisms underlying this result and other key phenomena of dual–adaptation by relating model simulations to experimental data. We propose a simple and yet biologically plausible neural model consisting of a spatial mapping from an input layer to a pointing angle which is subjected to a global gain modulation. Adaptation is performed by reinforcement learning on the model parameters. Despite its simplicity, the model provides a unifying account for a broad range of experimental data: It quantitatively reproduced the learning rates in dual–adaptation experiments for both direct effect, i.e. adaptation to prisms, and aftereffect, i.e. behavior after removal of prisms, and their independence on the number of phase changes. Several other phenomena, e.g. initial pointing errors that are far smaller than the induced optical shift, were also captured. Moreover, the underlying mechanisms, a local adaptation of a spatial mapping and a global adaptation of a gain factor, explained asymmetric spatial transfer and generalization of

  20. A First Approach to Filament Dynamics

    ERIC Educational Resources Information Center

    Silva, P. E. S.; de Abreu, F. Vistulo; Simoes, R.; Dias, R. G.

    2010-01-01

    Modelling elastic filament dynamics is a topic of high interest due to the wide range of applications. However, it has reached a high level of complexity in the literature, making it unaccessible to a beginner. In this paper we explain the main steps involved in the computational modelling of the dynamics of an elastic filament. We first derive…

  1. Approaches for Resolving Dynamic IP Addressing.

    ERIC Educational Resources Information Center

    Foo, Schubert; Hui, Siu Cheung; Yip, See Wai; He, Yulan

    1997-01-01

    A problem with dynamic Internet protocol (IP) addressing arises when the Internet connection is through an Internet provider since the IP address is allocated only at connection time. This article examines a number of online and offline methods for resolving the problem. Suggests dynamic domain name system (DNS) and directory service look-up are…

  2. Making CORBA objects persistent: The object database adapter approach

    SciTech Connect

    Reverbel, F.C.R.

    1997-05-01

    In spite of its remarkable successes in promoting standards for distributed object systems, the Object Management Group (OMG) has not yet settled the issue of object persistence in the Object Request Broker (ORB) environment. The Common Object Request Broker Architecture (CORBA) specification briefly mentions an Object-Oriented Database Adapter that makes objects stored in an object-oriented database accessible through the ORB. This idea is pursued in the Appendix B of the ODMG standard, which identifies a number of issues involved in using an Object Database Management System (ODBMS) in a CORBA environment, and proposes an Object Database Adapter (ODA) to realize the integration of the ORB with the ODBMS. This paper discusses the design and implementation of an ODA that integrates an ORB and an ODBMS with C++ bindings. For the author`s purposes, an ODBMS is a system with programming interfaces. It may be a pure object-oriented DBMS (an OODBMS), or a combination of a relational DBMS and an object-relational mapper.

  3. Modeling population dynamics: A quantile approach.

    PubMed

    Chavas, Jean-Paul

    2015-04-01

    The paper investigates the modeling of population dynamics, both conceptually and empirically. It presents a reduced form representation that provides a flexible characterization of population dynamics. It leads to the specification of a threshold quantile autoregression (TQAR) model, which captures nonlinear dynamics by allowing lag effects to vary across quantiles of the distribution as well as with previous population levels. The usefulness of the model is illustrated in an application to the dynamics of lynx population. We find statistical evidence that the quantile autoregression parameters vary across quantiles (thus rejecting the AR model as well as the TAR model) as well as with past populations (thus rejecting the quantile autoregression QAR model). The results document the nature of dynamics and cycle in the lynx population over time. They show how both the period of the cycle and the speed of population adjustment vary with population level and environmental conditions. PMID:25661501

  4. Chaos control of the brushless direct current motor using adaptive dynamic surface control based on neural network with the minimum weights

    SciTech Connect

    Luo, Shaohua; Wu, Songli; Gao, Ruizhen

    2015-07-15

    This paper investigates chaos control for the brushless DC motor (BLDCM) system by adaptive dynamic surface approach based on neural network with the minimum weights. The BLDCM system contains parameter perturbation, chaotic behavior, and uncertainty. With the help of radial basis function (RBF) neural network to approximate the unknown nonlinear functions, the adaptive law is established to overcome uncertainty of the control gain. By introducing the RBF neural network and adaptive technology into the dynamic surface control design, a robust chaos control scheme is developed. It is proved that the proposed control approach can guarantee that all signals in the closed-loop system are globally uniformly bounded, and the tracking error converges to a small neighborhood of the origin. Simulation results are provided to show that the proposed approach works well in suppressing chaos and parameter perturbation.

  5. Chaos control of the brushless direct current motor using adaptive dynamic surface control based on neural network with the minimum weights.

    PubMed

    Luo, Shaohua; Wu, Songli; Gao, Ruizhen

    2015-07-01

    This paper investigates chaos control for the brushless DC motor (BLDCM) system by adaptive dynamic surface approach based on neural network with the minimum weights. The BLDCM system contains parameter perturbation, chaotic behavior, and uncertainty. With the help of radial basis function (RBF) neural network to approximate the unknown nonlinear functions, the adaptive law is established to overcome uncertainty of the control gain. By introducing the RBF neural network and adaptive technology into the dynamic surface control design, a robust chaos control scheme is developed. It is proved that the proposed control approach can guarantee that all signals in the closed-loop system are globally uniformly bounded, and the tracking error converges to a small neighborhood of the origin. Simulation results are provided to show that the proposed approach works well in suppressing chaos and parameter perturbation. PMID:26232953

  6. Chaos control of the brushless direct current motor using adaptive dynamic surface control based on neural network with the minimum weights

    NASA Astrophysics Data System (ADS)

    Luo, Shaohua; Wu, Songli; Gao, Ruizhen

    2015-07-01

    This paper investigates chaos control for the brushless DC motor (BLDCM) system by adaptive dynamic surface approach based on neural network with the minimum weights. The BLDCM system contains parameter perturbation, chaotic behavior, and uncertainty. With the help of radial basis function (RBF) neural network to approximate the unknown nonlinear functions, the adaptive law is established to overcome uncertainty of the control gain. By introducing the RBF neural network and adaptive technology into the dynamic surface control design, a robust chaos control scheme is developed. It is proved that the proposed control approach can guarantee that all signals in the closed-loop system are globally uniformly bounded, and the tracking error converges to a small neighborhood of the origin. Simulation results are provided to show that the proposed approach works well in suppressing chaos and parameter perturbation.

  7. Analytical approach to an integrate-and-fire model with spike-triggered adaptation

    NASA Astrophysics Data System (ADS)

    Schwalger, Tilo; Lindner, Benjamin

    2015-12-01

    The calculation of the steady-state probability density for multidimensional stochastic systems that do not obey detailed balance is a difficult problem. Here we present the analytical derivation of the stationary joint and various marginal probability densities for a stochastic neuron model with adaptation current. Our approach assumes weak noise but is valid for arbitrary adaptation strength and time scale. The theory predicts several effects of adaptation on the statistics of the membrane potential of a tonically firing neuron: (i) a membrane potential distribution with a convex shape, (ii) a strongly increased probability of hyperpolarized membrane potentials induced by strong and fast adaptation, and (iii) a maximized variability associated with the adaptation current at a finite adaptation time scale.

  8. An adaptively refined phase-space element method for cosmological simulations and collisionless dynamics

    NASA Astrophysics Data System (ADS)

    Hahn, Oliver; Angulo, Raul E.

    2016-01-01

    N-body simulations are essential for understanding the formation and evolution of structure in the Universe. However, the discrete nature of these simulations affects their accuracy when modelling collisionless systems. We introduce a new approach to simulate the gravitational evolution of cold collisionless fluids by solving the Vlasov-Poisson equations in terms of adaptively refineable `Lagrangian phase-space elements'. These geometrical elements are piecewise smooth maps between Lagrangian space and Eulerian phase-space and approximate the continuum structure of the distribution function. They allow for dynamical adaptive splitting to accurately follow the evolution even in regions of very strong mixing. We discuss in detail various one-, two- and three-dimensional test problems to demonstrate the performance of our method. Its advantages compared to N-body algorithms are: (i) explicit tracking of the fine-grained distribution function, (ii) natural representation of caustics, (iii) intrinsically smooth gravitational potential fields, thus (iv) eliminating the need for any type of ad hoc force softening. We show the potential of our method by simulating structure formation in a warm dark matter scenario. We discuss how spurious collisionality and large-scale discreteness noise of N-body methods are both strongly suppressed, which eliminates the artificial fragmentation of filaments. Therefore, we argue that our new approach improves on the N-body method when simulating self-gravitating cold and collisionless fluids, and is the first method that allows us to explicitly follow the fine-grained evolution in six-dimensional phase-space.

  9. An Evidence-Based Public Health Approach to Climate Change Adaptation

    PubMed Central

    Eidson, Millicent; Tlumak, Jennifer E.; Raab, Kristin K.; Luber, George

    2014-01-01

    Background: Public health is committed to evidence-based practice, yet there has been minimal discussion of how to apply an evidence-based practice framework to climate change adaptation. Objectives: Our goal was to review the literature on evidence-based public health (EBPH), to determine whether it can be applied to climate change adaptation, and to consider how emphasizing evidence-based practice may influence research and practice decisions related to public health adaptation to climate change. Methods: We conducted a substantive review of EBPH, identified a consensus EBPH framework, and modified it to support an EBPH approach to climate change adaptation. We applied the framework to an example and considered implications for stakeholders. Discussion: A modified EBPH framework can accommodate the wide range of exposures, outcomes, and modes of inquiry associated with climate change adaptation and the variety of settings in which adaptation activities will be pursued. Several factors currently limit application of the framework, including a lack of higher-level evidence of intervention efficacy and a lack of guidelines for reporting climate change health impact projections. To enhance the evidence base, there must be increased attention to designing, evaluating, and reporting adaptation interventions; standardized health impact projection reporting; and increased attention to knowledge translation. This approach has implications for funders, researchers, journal editors, practitioners, and policy makers. Conclusions: The current approach to EBPH can, with modifications, support climate change adaptation activities, but there is little evidence regarding interventions and knowledge translation, and guidelines for projecting health impacts are lacking. Realizing the goal of an evidence-based approach will require systematic, coordinated efforts among various stakeholders. Citation: Hess JJ, Eidson M, Tlumak JE, Raab KK, Luber G. 2014. An evidence-based public

  10. A context-adaptable approach to clinical guidelines.

    PubMed

    Terenziani, Paolo; Montani, Stefania; Bottrighi, Alessio; Torchio, Mauro; Molino, Gianpaolo; Correndo, Gianluca

    2004-01-01

    One of the most relevant obstacles to the use and dissemination of clinical guidelines is the gap between the generality of guidelines (as defined, e.g., by physicians' committees) and the peculiarities of the specific context of application. In particular, general guidelines do not take into account the fact that the tools needed for laboratory and instrumental investigations might be unavailable at a given hospital. Moreover, computer-based guideline managers must also be integrated with the Hospital Information System (HIS), and usually different DBMS are adopted by different hospitals. The GLARE (Guideline Acquisition, Representation and Execution) system addresses these issues by providing a facility for automatic resource-based adaptation of guidelines to the specific context of application, and by providing a modular architecture in which only limited and well-localised changes are needed to integrate the system with the HIS at hand. PMID:15360797

  11. Terminal Dynamics Approach to Discrete Event Systems

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Meyers, Ronald

    1995-01-01

    This paper presents and discusses a mathematical formalism for simulation of discrete event dynamic (DED)-a special type of 'man-made' systems to serve specific purposes of information processing. The main objective of this work is to demonstrate that the mathematical formalism for DED can be based upon a terminal model of Newtonian dynamics which allows one to relax Lipschitz conditions at some discrete points.!.

  12. On dynamical systems approaches and methods in f(R) cosmology

    NASA Astrophysics Data System (ADS)

    Alho, Artur; Carloni, Sante; Uggla, Claes

    2016-08-01

    We discuss dynamical systems approaches and methods applied to flat Robertson-Walker models in f(R)-gravity. We argue that a complete description of the solution space of a model requires a global state space analysis that motivates globally covering state space adapted variables. This is shown explicitly by an illustrative example, f(R) = R + α R2, α > 0, for which we introduce new regular dynamical systems on global compactly extended state spaces for the Jordan and Einstein frames. This example also allows us to illustrate several local and global dynamical systems techniques involving, e.g., blow ups of nilpotent fixed points, center manifold analysis, averaging, and use of monotone functions. As a result of applying dynamical systems methods to globally state space adapted dynamical systems formulations, we obtain pictures of the entire solution spaces in both the Jordan and the Einstein frames. This shows, e.g., that due to the domain of the conformal transformation between the Jordan and Einstein frames, not all the solutions in the Jordan frame are completely contained in the Einstein frame. We also make comparisons with previous dynamical systems approaches to f(R) cosmology and discuss their advantages and disadvantages.

  13. Systems and Methods for Parameter Dependent Riccati Equation Approaches to Adaptive Control

    NASA Technical Reports Server (NTRS)

    Kim, Kilsoo (Inventor); Yucelen, Tansel (Inventor); Calise, Anthony J. (Inventor)

    2015-01-01

    Systems and methods for adaptive control are disclosed. The systems and methods can control uncertain dynamic systems. The control system can comprise a controller that employs a parameter dependent Riccati equation. The controller can produce a response that causes the state of the system to remain bounded. The control system can control both minimum phase and non-minimum phase systems. The control system can augment an existing, non-adaptive control design without modifying the gains employed in that design. The control system can also avoid the use of high gains in both the observer design and the adaptive control law.

  14. Adaptive optimal spectral range for dynamically changing scene

    NASA Astrophysics Data System (ADS)

    Pinsky, Ephi; Siman-tov, Avihay; Peles, David

    2012-06-01

    A novel multispectral video system that continuously optimizes both its spectral range channels and the exposure time of each channel autonomously, under dynamic scenes, varying from short range-clear scene to long range-poor visibility, is currently being developed. Transparency and contrast of high scattering medium of channels with spectral ranges in the near infrared is superior to the visible channels, particularly to the blue range. Longer wavelength spectral ranges that induce higher contrast are therefore favored. Images of 3 spectral channels are fused and displayed for (pseudo) color visualization, as an integrated high contrast video stream. In addition to the dynamic optimization of the spectral channels, optimal real-time exposure time is adjusted simultaneously and autonomously for each channel. A criterion of maximum average signal, derived dynamically from previous frames of the video stream is used (Patent Application - International Publication Number: WO2009/093110 A2, 30.07.2009). This configuration enables dynamic compatibility with the optimal exposure time of a dynamically changing scene. It also maximizes the signal to noise ratio and compensates each channel for the specified value of daylight reflections and sensors response for each spectral range. A possible implementation is a color video camera based on 4 synchronized, highly responsive, CCD imaging detectors, attached to a 4CCD dichroic prism and combined with a common, color corrected, lens. Principal Components Analysis (PCA) technique is then applied for real time "dimensional collapse" in color space, in order to select and fuse, for clear color visualization, the 3 most significant principal channels out of at least 4 characterized by high contrast and rich details in the image data.

  15. Adaptation.

    PubMed

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  16. Rift Valley fever dynamics in Senegal: a project for pro-active adaptation and improvement of livestock raising management.

    PubMed

    Lafaye, Murielle; Sall, Baba; Ndiaye, Youssou; Vignolles, Cecile; Tourre, Yves M; Borchi, Franc Ois; Soubeyroux, Jean-Michel; Diallo, Mawlouth; Dia, Ibrahima; Ba, Yamar; Faye, Abdoulaye; Ba, Taibou; Ka, Alioune; Ndione, Jacques-André; Gauthier, Hélène; Lacaux, Jean-Pierre

    2013-11-01

    The multi-disciplinary French project "Adaptation à la Fiévre de la Vallée du Rift" (AdaptFVR) has concluded a 10-year constructive interaction between many scientists/partners involved with the Rift Valley fever (RVF) dynamics in Senegal. The three targeted objectives reached were (i) to produce--in near real-time--validated risk maps for parked livestock exposed to RVF mosquitoes/vectors bites; (ii) to assess the impacts on RVF vectors from climate variability at different time-scales including climate change; and (iii) to isolate processes improving local livestock management and animal health. Based on these results, concrete, pro-active adaptive actions were taken on site, which led to the establishment of a RVF early warning system (RVFews). Bulletins were released in a timely fashion during the project, tested and validated in close collaboration with the local populations, i.e. the primary users. Among the strategic, adaptive methods developed, conducted and evaluated in terms of cost/benefit analyses are the larvicide campaigns and the coupled bio-mathematical (hydrological and entomological) model technologies, which are being transferred to the staff of the "Centre de Suivi Ecologique" (CSE) in Dakar during 2013. Based on the results from the AdaptFVR project, other projects with similar conceptual and modelling approaches are currently being implemented, e.g. for urban and rural malaria and dengue in the French Antilles. PMID:24258902

  17. Societal transformation and adaptation necessary to manage dynamics in flood hazard and risk mitigation (TRANS-ADAPT)

    NASA Astrophysics Data System (ADS)

    Fuchs, Sven; Thaler, Thomas; Bonnefond, Mathieu; Clarke, Darren; Driessen, Peter; Hegger, Dries; Gatien-Tournat, Amandine; Gralepois, Mathilde; Fournier, Marie; Mees, Heleen; Murphy, Conor; Servain-Courant, Sylvie

    2015-04-01

    Facing the challenges of climate change, this project aims to analyse and to evaluate the multiple use of flood alleviation schemes with respect to social transformation in communities exposed to flood hazards in Europe. The overall goals are: (1) the identification of indicators and parameters necessary for strategies to increase societal resilience, (2) an analysis of the institutional settings needed for societal transformation, and (3) perspectives of changing divisions of responsibilities between public and private actors necessary to arrive at more resilient societies. This proposal assesses societal transformations from the perspective of changing divisions of responsibilities between public and private actors necessary to arrive at more resilient societies. Yet each risk mitigation measure is built on a narrative of exchanges and relations between people and therefore may condition the outputs. As such, governance is done by people interacting and defining risk mitigation measures as well as climate change adaptation are therefore simultaneously both outcomes of, and productive to, public and private responsibilities. Building off current knowledge this project will focus on different dimensions of adaptation and mitigation strategies based on social, economic and institutional incentives and settings, centring on the linkages between these different dimensions and complementing existing flood risk governance arrangements. The policy dimension of adaptation, predominantly decisions on the societal admissible level of vulnerability and risk, will be evaluated by a human-environment interaction approach using multiple methods and the assessment of social capacities of stakeholders across scales. As such, the challenges of adaptation to flood risk will be tackled by converting scientific frameworks into practical assessment and policy advice. In addressing the relationship between these dimensions of adaptation on different temporal and spatial scales, this

  18. Trans-radial upper extremity amputees are capable of adapting to a novel dynamic environment.

    PubMed

    Schabowsky, Christopher N; Dromerick, Alexander W; Holley, Rahsaan J; Monroe, Brian; Lum, Peter S

    2008-07-01

    This study investigated differences in adaptation to a novel dynamic environment between eight trans-radial upper extremity (UE) prosthetic users and eight naive, neurologically intact subjects. Participants held onto the handle of a robotic manipulandum and executed reaching movements within a horizontal plane following a pseudo-random sequence of targets. Curl field perturbations were imposed by the robot motors, and we compared the rate and quality of adaptation between the prosthetic and control subjects. Adaptation was quantitatively assessed by peak error, defined as the maximum orthogonal distance between an observed trajectory and an ideal straight trajectory. Initial exposure to the curl field resulted in large errors, and as the subjects adapted to the novel environment, the errors decreased. During the early phase of adaptation, group differences in the rate of motor adaptation were not significant. However, during late learning, both error magnitude and variability were larger in the prosthetic group. The quality of adaptation, as indicated by the magnitude of the aftereffects, was similar between groups. We conclude that in persons with trans-radial arm amputation, motor adaptation to curl fields during reaching is similar to unimpaired individuals. These findings are discussed in relation to mechanisms of motor adaptation, neural plasticity following an upper extremity amputation (UEA), and potential motor recovery therapies for prosthetic users. PMID:18443766

  19. Adaptively Managing Wildlife for Climate Change: A Fuzzy Logic Approach

    NASA Astrophysics Data System (ADS)

    Prato, Tony

    2011-07-01

    Wildlife managers have little or no control over climate change. However, they may be able to alleviate potential adverse impacts of future climate change by adaptively managing wildlife for climate change. In particular, wildlife managers can evaluate the efficacy of compensatory management actions (CMAs) in alleviating potential adverse impacts of future climate change on wildlife species using probability-based or fuzzy decision rules. Application of probability-based decision rules requires managers to specify certain probabilities, which is not possible when they are uncertain about the relationships between observed and true ecological conditions for a species. Under such uncertainty, the efficacy of CMAs can be evaluated and the best CMA selected using fuzzy decision rules. The latter are described and demonstrated using three constructed cases that assume: (1) a single ecological indicator (e.g., population size for a species) in a single time period; (2) multiple ecological indicators for a species in a single time period; and (3) multiple ecological conditions for a species in multiple time periods.

  20. Adaptation to floods in future climate: a practical approach

    NASA Astrophysics Data System (ADS)

    Doroszkiewicz, Joanna; Romanowicz, Renata; Radon, Radoslaw; Hisdal, Hege

    2016-04-01

    In this study some aspects of the application of the 1D hydraulic model are discussed with a focus on its suitability for flood adaptation under future climate conditions. The Biała Tarnowska catchment is used as a case study. A 1D hydraulic model is developed for the evaluation of inundation extent and risk maps in future climatic conditions. We analyse the following flood indices: (i) extent of inundation area; (ii) depth of water on flooded land; (iii) the flood wave duration; (iv) the volume of a flood wave over the threshold value. In this study we derive a model cross-section geometry following the results of primary research based on a 500-year flood inundation extent. We compare two methods of localisation of cross-sections from the point of view of their suitability to the derivation of the most precise inundation outlines. The aim is to specify embankment heights along the river channel that would protect the river valley in the most vulnerable locations under future climatic conditions. We present an experimental design for scenario analysis studies and uncertainty reduction options for future climate projections obtained from the EUROCORDEX project. Acknowledgements: This work was supported by the project CHIHE (Climate Change Impact on Hydrological Extremes), carried out in the Institute of Geophysics Polish Academy of Sciences, funded by Norway Grants (contract No. Pol-Nor/196243/80/2013). The hydro-meteorological observations were provided by the Institute of Meteorology and Water Management (IMGW), Poland.

  1. An integrated architecture of adaptive neural network control for dynamic systems

    SciTech Connect

    Ke, Liu; Tokar, R.; Mcvey, B.

    1994-07-01

    In this study, an integrated neural network control architecture for nonlinear dynamic systems is presented. Most of the recent emphasis in the neural network control field has no error feedback as the control input which rises the adaptation problem. The integrated architecture in this paper combines feed forward control and error feedback adaptive control using neural networks. The paper reveals the different internal functionality of these two kinds of neural network controllers for certain input styles, e.g., state feedback and error feedback. Feed forward neural network controllers with state feedback establish fixed control mappings which can not adapt when model uncertainties present. With error feedbacks, neural network controllers learn the slopes or the gains respecting to the error feedbacks, which are error driven adaptive control systems. The results demonstrate that the two kinds of control scheme can be combined to realize their individual advantages. Testing with disturbances added to the plant shows good tracking and adaptation.

  2. Adaptive methods for nonlinear structural dynamics and crashworthiness analysis

    NASA Technical Reports Server (NTRS)

    Belytschko, Ted

    1993-01-01

    The objective is to describe three research thrusts in crashworthiness analysis: adaptivity; mixed time integration, or subcycling, in which different timesteps are used for different parts of the mesh in explicit methods; and methods for contact-impact which are highly vectorizable. The techniques are being developed to improve the accuracy of calculations, ease-of-use of crashworthiness programs, and the speed of calculations. The latter is still of importance because crashworthiness calculations are often made with models of 20,000 to 50,000 elements using explicit time integration and require on the order of 20 to 100 hours on current supercomputers. The methodologies are briefly reviewed and then some example calculations employing these methods are described. The methods are also of value to other nonlinear transient computations.

  3. Inverse dynamics of adaptive structures used as space cranes

    NASA Technical Reports Server (NTRS)

    Das, S. K.; Utku, S.; Wada, B. K.

    1990-01-01

    As a precursor to the real-time control of fast moving adaptive structures used as space cranes, a formulation is given for the flexibility induced motion relative to the nominal motion (i.e., the motion that assumes no flexibility) and for obtaining the open loop time varying driving forces. An algorithm is proposed for the computation of the relative motion and driving forces. The governing equations are given in matrix form with explicit functional dependencies. A simulator is developed to implement the algorithm on a digital computer. In the formulations, the distributed mass of the crane is lumped by two schemes, vz., 'trapezoidal' lumping and 'Simpson's rule' lumping. The effects of the mass lumping schemes are shown by simulator runs.

  4. A quantitative evolutionary theory of adaptive behavior dynamics.

    PubMed

    McDowell, J J

    2013-10-01

    The idea that behavior is selected by its consequences in a process analogous to organic evolution has been discussed for over 100 years. A recently proposed theory instantiates this idea by means of a genetic algorithm that operates on a population of potential behaviors. Behaviors in the population are represented by numbers in decimal integer (phenotypic) and binary bit string (genotypic) forms. One behavior from the population is emitted at random each time tick, after which a new population of potential behaviors is constructed by recombining parent behavior bit strings. If the emitted behavior produced a benefit to the organism, then parents are chosen on the basis of their phenotypic similarity to the emitted behavior; otherwise, they are chosen at random. After parent behavior recombination, the population is subjected to a small amount of mutation by flipping random bits in the population's bit strings. The behavior generated by this process of selection, reproduction, and mutation reaches equilibrium states that conform to every empirically valid equation of matching theory, exactly and without systematic error. These equations are known to describe the behavior of many vertebrate species, including humans, in a variety of experimental, naturalistic, natural, and social environments. The evolutionary theory also generates instantaneous dynamics and patterns of preference change in constantly changing environments that are consistent with the dynamics of live-organism behavior. These findings support the assertion that the world of behavior we observe and measure is generated by evolutionary dynamics. PMID:24219847

  5. Adaptation of a Weighted Regression Approach to Evaluate Water Quality Trends in an Estuary

    EPA Science Inventory

    To improve the description of long-term changes in water quality, we adapted a weighted regression approach to analyze a long-term water quality dataset from Tampa Bay, Florida. The weighted regression approach, originally developed to resolve pollutant transport trends in rivers...

  6. Adaptation of a weighted regression approach to evaluate water quality trends in anestuary

    EPA Science Inventory

    To improve the description of long-term changes in water quality, a weighted regression approach developed to describe trends in pollutant transport in rivers was adapted to analyze a long-term water quality dataset from Tampa Bay, Florida. The weighted regression approach allows...

  7. Applying Bayesian Item Selection Approaches to Adaptive Tests Using Polytomous Items

    ERIC Educational Resources Information Center

    Penfield, Randall D.

    2006-01-01

    This study applied the maximum expected information (MEI) and the maximum posterior-weighted information (MPI) approaches of computer adaptive testing item selection to the case of a test using polytomous items following the partial credit model. The MEI and MPI approaches are described. A simulation study compared the efficiency of ability…

  8. Intelligent control of non-linear dynamical system based on the adaptive neurocontroller

    NASA Astrophysics Data System (ADS)

    Engel, E.; Kovalev, I. V.; Kobezhicov, V.

    2015-10-01

    This paper presents an adaptive neuro-controller for intelligent control of non-linear dynamical system. The formed as the fuzzy selective neural net the adaptive neuro-controller on the base of system's state, creates the effective control signal under random perturbations. The validity and advantages of the proposed adaptive neuro-controller are demonstrated by numerical simulations. The simulation results show that the proposed controller scheme achieves real-time control speed and the competitive performance, as compared to PID, fuzzy logic controllers.

  9. A residual flexibility approach to multibody dynamics

    NASA Technical Reports Server (NTRS)

    Blelloch, Paul A.; Antal, Gregory W.

    1993-01-01

    Many complex systems can be modeled as a collection of interacting bodies, where the relative motion of the bodies may be large. The dynamics of such systems are simulated using multibody dynamic formulations. Many of these treat each body as a rigid component, but recently the flexibility of the components has been incorporated. This paper presents a residual flexibility formulation of the multibody dynamics problem. The formulation is very simple and offers great computational efficiency since it treats each body as a free structure in space, interacting with other bodies only through interface forces. Each body's accelerations can be solved independently, as can each set of interface forces. We have applied the technique successfully to several special applications, and the initial implementation in a general mechanisms code has given excellent results in comparison to a direct finite element representation of flexibility.

  10. Nonlinear dynamical system approaches towards neural prosthesis

    SciTech Connect

    Torikai, Hiroyuki; Hashimoto, Sho

    2011-04-19

    An asynchronous discrete-state spiking neurons is a wired system of shift registers that can mimic nonlinear dynamics of an ODE-based neuron model. The control parameter of the neuron is the wiring pattern among the registers and thus they are suitable for on-chip learning. In this paper an asynchronous discrete-state spiking neuron is introduced and its typical nonlinear phenomena are demonstrated. Also, a learning algorithm for a set of neurons is presented and it is demonstrated that the algorithm enables the set of neurons to reconstruct nonlinear dynamics of another set of neurons with unknown parameter values. The learning function is validated by FPGA experiments.

  11. Structural self-assembly and avalanchelike dynamics in locally adaptive networks.

    PubMed

    Gräwer, Johannes; Modes, Carl D; Magnasco, Marcelo O; Katifori, Eleni

    2015-07-01

    Transport networks play a key role across four realms of eukaryotic life: slime molds, fungi, plants, and animals. In addition to the developmental algorithms that build them, many also employ adaptive strategies to respond to stimuli, damage, and other environmental changes. We model these adapting network architectures using a generic dynamical system on weighted graphs and find in simulation that these networks ultimately develop a hierarchical organization of the final weighted architecture accompanied by the formation of a system-spanning backbone. In addition, we find that the long term equilibration dynamics exhibit behavior reminiscent of glassy systems characterized by long periods of slow changes punctuated by bursts of reorganization events. PMID:26274219

  12. Structural self-assembly and avalanchelike dynamics in locally adaptive networks

    NASA Astrophysics Data System (ADS)

    Gräwer, Johannes; Modes, Carl D.; Magnasco, Marcelo O.; Katifori, Eleni

    2015-07-01

    Transport networks play a key role across four realms of eukaryotic life: slime molds, fungi, plants, and animals. In addition to the developmental algorithms that build them, many also employ adaptive strategies to respond to stimuli, damage, and other environmental changes. We model these adapting network architectures using a generic dynamical system on weighted graphs and find in simulation that these networks ultimately develop a hierarchical organization of the final weighted architecture accompanied by the formation of a system-spanning backbone. In addition, we find that the long term equilibration dynamics exhibit behavior reminiscent of glassy systems characterized by long periods of slow changes punctuated by bursts of reorganization events.

  13. Adaptive Feedback Linearization Control for Asynchronous Machine with Nonlinear for Natural Dynamic Complete Observer

    NASA Astrophysics Data System (ADS)

    Bentaallah, Abderrahim; Massoum, Ahmed; Benhamida, Farid; Meroufel, Abdelkader

    2012-03-01

    This paper studies the nonlinear adaptive control of an induction motor with natural dynamic complete nonlinear observer. The aim of this work is to develop a nonlinear control law and adaptive performance for an asynchronous motor with two main objectives: to improve the continuation of trajectories and the stability, robustness to parametric variations and disturbances rejection. This control law will independently control the speed and flux into the machine by restricting supply. A complete nonlinear observer for dynamic nature ensuring closed loop stability of the entire control and observer has been developed. Several simulations have also been carried out to demonstrate system performance.

  14. A shape dynamical approach to holographic renormalization

    NASA Astrophysics Data System (ADS)

    Gomes, Henrique; Gryb, Sean; Koslowski, Tim; Mercati, Flavio; Smolin, Lee

    2015-01-01

    We provide a bottom-up argument to derive some known results from holographic renormalization using the classical bulk-bulk equivalence of General Relativity and Shape Dynamics, a theory with spatial conformal (Weyl) invariance. The purpose of this paper is twofold: (1) to advertise the simple classical mechanism, trading off gauge symmetries, that underlies the bulk-bulk equivalence of General Relativity and Shape Dynamics to readers interested in dualities of the type of AdS/conformal field theory (CFT); and (2) to highlight that this mechanism can be used to explain certain results of holographic renormalization, providing an alternative to the AdS/CFT conjecture for these cases. To make contact with the usual semiclassical AdS/CFT correspondence, we provide, in addition, a heuristic argument that makes it plausible that the classical equivalence between General Relativity and Shape Dynamics turns into a duality between radial evolution in gravity and the renormalization group flow of a CFT. We believe that Shape Dynamics provides a new perspective on gravity by giving conformal structure a primary role within the theory. It is hoped that this work provides the first steps toward understanding what this new perspective may be able to teach us about holographic dualities.

  15. Adaptive exposure estimation for high dynamic range imaging applied to natural scenes and daylight skies.

    PubMed

    Martínez, Miguel A; Valero, Eva M; Hernández-Andrés, Javier

    2015-02-01

    Digital imaging of natural scenes and optical phenomena present on them (such as shadows, twilights, and crepuscular rays) can be a very challenging task because of the range spanned by the radiances impinging on the capture system. We propose a novel method for estimating the set of exposure times (bracketing set) needed to capture the full dynamic range of a scene with high dynamic range (HDR) content. The proposed method is adaptive to scene content and to any camera response and configuration, and it works on-line since the exposure times are estimated as the capturing process is ongoing. Besides, it requires no a priori information about scene content or radiance values. The resulting bracketing sets are minimal in the default method settings, but the user can set a tolerance for the maximum percentage of pixel population that is underexposed or saturated, which allows for a higher number of shots if a better signal-to-noise ratio (SNR) in the HDR scene is desired. This method is based on the use of the camera response function that is needed for building the HDR radiance map by stitching together several differently exposed low dynamic range images of the scene. The use of HDR imaging techniques converts our digital camera into a tool for measuring the relative radiance outgoing from each point of the scene, and for each color channel. This is important for accurate characterization of optical phenomena present in the atmosphere while not suffering any loss of information due to its HDR. We have compared our method with the most similar one developed so far [IEEE Trans. Image Process.17, 1864 (2008)]. Results of the experiments carried out for 30 natural scenes show that our proposed method equals or outperforms the previously developed best approach, with less shots and shorter exposure times, thereby asserting the advantage of being adaptive to scene content for exposure time estimation. As we can also tune the balance between capturing time and the SNR in

  16. Farms adaptation to changes in flood risk: a management approach

    NASA Astrophysics Data System (ADS)

    Pivot, Jean-Marc; Martin, Philippe

    2002-10-01

    Creating flood expansion areas e.g. for the protection of urban areas from flooding involves a localised increase in risk which may require farmers to be compensated for crop damage or other losses. With this in mind, the paper sets out the approach used to study the problem and gives results obtained from a survey of farms liable to flooding in central France. The approach is based on a study of decisions made by farmers in situations of uncertainty, using the concept of 'model of action'. The results show that damage caused to farming areas by flooding should be considered both at field level and at farm level. The damage caused to the field depends on the flood itself, the fixed characteristics of the field, and the plant species cultivated. However, the losses to the farm taken as a whole can differ considerably from those for the flooded field, due to 'knock-on' effects on farm operations which depend on the internal organization, the availability of production resources, and the farmer's objectives, both for the farm as a whole and for its individual enterprises. Three main strategies regarding possible flood events were identified. Reasons for choosing one of these include the way the farmer perceives the risk and the size of the area liable to flooding. Finally, the formalisation of farm system management in the face of uncertainty, especially due to flooding, enables compensation to be calculated for farmers whose land is affected by the creation of flood expansion areas.

  17. Dynamics and adaptive control of a dual-arm space robot with closed-loop constraints and uncertain inertial parameters

    NASA Astrophysics Data System (ADS)

    Jia, Ying-Hong; Hu, Quan; Xu, Shi-Jie

    2014-02-01

    A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the position and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters being estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach. [Figure not available: see fulltext.

  18. Sensor Web Dynamic Measurement Techniques and Adaptive Observing Strategies

    NASA Technical Reports Server (NTRS)

    Talabac, Stephen J.

    2004-01-01

    Sensor Web observing systems may have the potential to significantly improve our ability to monitor, understand, and predict the evolution of rapidly evolving, transient, or variable environmental features and events. This improvement will come about by integrating novel data collection techniques, new or improved instruments, emerging communications technologies and protocols, sensor mark-up languages, and interoperable planning and scheduling systems. In contrast to today's observing systems, "event-driven" sensor webs will synthesize real- or near-real time measurements and information from other platforms and then react by reconfiguring the platforms and instruments to invoke new measurement modes and adaptive observation strategies. Similarly, "model-driven" sensor webs will utilize environmental prediction models to initiate targeted sensor measurements or to use a new observing strategy. The sensor web concept contrasts with today's data collection techniques and observing system operations concepts where independent measurements are made by remote sensing and in situ platforms that do not share, and therefore cannot act upon, potentially useful complementary sensor measurement data and platform state information. This presentation describes NASA's view of event-driven and model-driven Sensor Webs and highlights several research and development activities at the Goddard Space Flight Center.

  19. Workload Model Based Dynamic Adaptation of Social Internet of Vehicles.

    PubMed

    Alam, Kazi Masudul; Saini, Mukesh; El Saddik, Abdulmotaleb

    2015-01-01

    Social Internet of Things (SIoT) has gained much interest among different research groups in recent times. As a key member of a smart city, the vehicular domain of SIoT (SIoV) is also undergoing steep development. In the SIoV, vehicles work as sensor-hub to capture surrounding information using the in-vehicle and Smartphone sensors and later publish them for the consumers. A cloud centric cyber-physical system better describes the SIoV model where physical sensing-actuation process affects the cloud based service sharing or computation in a feedback loop or vice versa. The cyber based social relationship abstraction enables distributed, easily navigable and scalable peer-to-peer communication among the SIoV subsystems. These cyber-physical interactions involve a huge amount of data and it is difficult to form a real instance of the system to test the feasibility of SIoV applications. In this paper, we propose an analytical model to measure the workloads of various subsystems involved in the SIoV process. We present the basic model which is further extended to incorporate complex scenarios. We provide extensive simulation results for different parameter settings of the SIoV system. The findings of the analyses are further used to design example adaptation strategies for the SIoV subsystems which would foster deployment of intelligent transport systems. PMID:26389905

  20. Workload Model Based Dynamic Adaptation of Social Internet of Vehicles

    PubMed Central

    Alam, Kazi Masudul; Saini, Mukesh; El Saddik, Abdulmotaleb

    2015-01-01

    Social Internet of Things (SIoT) has gained much interest among different research groups in recent times. As a key member of a smart city, the vehicular domain of SIoT (SIoV) is also undergoing steep development. In the SIoV, vehicles work as sensor-hub to capture surrounding information using the in-vehicle and Smartphone sensors and later publish them for the consumers. A cloud centric cyber-physical system better describes the SIoV model where physical sensing-actuation process affects the cloud based service sharing or computation in a feedback loop or vice versa. The cyber based social relationship abstraction enables distributed, easily navigable and scalable peer-to-peer communication among the SIoV subsystems. These cyber-physical interactions involve a huge amount of data and it is difficult to form a real instance of the system to test the feasibility of SIoV applications. In this paper, we propose an analytical model to measure the workloads of various subsystems involved in the SIoV process. We present the basic model which is further extended to incorporate complex scenarios. We provide extensive simulation results for different parameter settings of the SIoV system. The findings of the analyses are further used to design example adaptation strategies for the SIoV subsystems which would foster deployment of intelligent transport systems. PMID:26389905

  1. Adaptive Thouless-Anderson-Palmer approach to inverse Ising problems with quenched random fields.

    PubMed

    Huang, Haiping; Kabashima, Yoshiyuki

    2013-06-01

    The adaptive Thouless-Anderson-Palmer equation is derived for inverse Ising problems in the presence of quenched random fields. We test the proposed scheme on Sherrington-Kirkpatrick, Hopfield, and random orthogonal models and find that the adaptive Thouless-Anderson-Palmer approach allows accurate inference of quenched random fields whose distribution can be either Gaussian or bimodal. In particular, another competitive method for inferring external fields, namely, the naive mean field method with diagonal weights, is compared and discussed. PMID:23848649

  2. Vision-based stabilization of nonholonomic mobile robots by integrating sliding-mode control and adaptive approach

    NASA Astrophysics Data System (ADS)

    Cao, Zhengcai; Yin, Longjie; Fu, Yili

    2013-01-01

    Vision-based pose stabilization of nonholonomic mobile robots has received extensive attention. At present, most of the solutions of the problem do not take the robot dynamics into account in the controller design, so that these controllers are difficult to realize satisfactory control in practical application. Besides, many of the approaches suffer from the initial speed and torque jump which are not practical in the real world. Considering the kinematics and dynamics, a two-stage visual controller for solving the stabilization problem of a mobile robot is presented, applying the integration of adaptive control, sliding-mode control, and neural dynamics. In the first stage, an adaptive kinematic stabilization controller utilized to generate the command of velocity is developed based on Lyapunov theory. In the second stage, adopting the sliding-mode control approach, a dynamic controller with a variable speed function used to reduce the chattering is designed, which is utilized to generate the command of torque to make the actual velocity of the mobile robot asymptotically reach the desired velocity. Furthermore, to handle the speed and torque jump problems, the neural dynamics model is integrated into the above mentioned controllers. The stability of the proposed control system is analyzed by using Lyapunov theory. Finally, the simulation of the control law is implemented in perturbed case, and the results show that the control scheme can solve the stabilization problem effectively. The proposed control law can solve the speed and torque jump problems, overcome external disturbances, and provide a new solution for the vision-based stabilization of the mobile robot.

  3. Uncertain dynamical systems: A differential game approach

    NASA Technical Reports Server (NTRS)

    Gutman, S.

    1976-01-01

    A class of dynamical systems in a conflict situation is formulated and discussed, and the formulation is applied to the study of an important class of systems in the presence of uncertainty. The uncertainty is deterministic and the only assumption is that its value belongs to a known compact set. Asymptotic stability is fully discussed with application to variable structure and model reference control systems.

  4. Attosecond electron dynamics: A multiresolution approach

    NASA Astrophysics Data System (ADS)

    Vence, Nicholas; Harrison, Robert; Krstić, Predrag

    2012-03-01

    We establish a numerical solution to the time-dependent Schrödinger equation employing an adaptive, discontinuous spectral element basis that automatically adjusts to the requested precision. The explicit time evolution is accomplished by a band-limited, gradient-corrected, symplectic propagator and uses separated representations of operators for efficient computation in multiple dimensions. We illustrate the method calculating accurate bound and continuum transition probabilities along with the photoelectron spectra for H(1s), He+(1s), and Li2+(2s) in three dimensions and H2+ in three and four dimensions under a two-cycle attosecond laser pulse with driving frequency of 36 eV and an intensity of 1×1015W/cm2.

  5. A 3-D adaptive mesh refinement algorithm for multimaterial gas dynamics

    SciTech Connect

    Puckett, E.G. ); Saltzman, J.S. )

    1991-08-12

    Adaptive Mesh Refinement (AMR) in conjunction with high order upwind finite difference methods has been used effectively on a variety of problems. In this paper we discuss an implementation of an AMR finite difference method that solves the equations of gas dynamics with two material species in three dimensions. An equation for the evolution of volume fractions augments the gas dynamics system. The material interface is preserved and tracked from the volume fractions using a piecewise linear reconstruction technique. 14 refs., 4 figs.

  6. The role of idiotypic interactions in the adaptive immune system: a belief-propagation approach

    NASA Astrophysics Data System (ADS)

    Bartolucci, Silvia; Mozeika, Alexander; Annibale, Alessia

    2016-08-01

    In this work we use belief-propagation techniques to study the equilibrium behaviour of a minimal model for the immune system comprising interacting T and B clones. We investigate the effect of the so-called idiotypic interactions among complementary B clones on the system’s activation. Our results show that B–B interactions increase the system’s resilience to noise, making clonal activation more stable, while increasing the cross-talk between different clones. We derive analytically the noise level at which a B clone gets activated, in the absence of cross-talk, and find that this increases with the strength of idiotypic interactions and with the number of T cells sending signals to the B clones. We also derive, analytically and numerically, via population dynamics, the critical line where clonal cross-talk arises. Our approach allows us to derive the B clone size distribution, which can be experimentally measured and gives important information about the adaptive immune system response to antigens and vaccination.

  7. Assessing the Dynamic Behavior of Online Q&A Knowledge Markets: A System Dynamics Approach

    ERIC Educational Resources Information Center

    Jafari, Mostafa; Hesamamiri, Roozbeh; Sadjadi, Jafar; Bourouni, Atieh

    2012-01-01

    Purpose: The objective of this paper is to propose a holistic dynamic model for understanding the behavior of a complex and internet-based kind of knowledge market by considering both social and economic interactions. Design/methodology/approach: A system dynamics (SD) model is formulated in this study to investigate the dynamic characteristics of…

  8. Voter dynamics on an adaptive network with finite average connectivity

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Abhishek; Schmittmann, Beate

    2009-03-01

    We study a simple model for voter dynamics in a two-party system. The opinion formation process is implemented in a random network of agents in which interactions are not restricted by geographical distance. In addition, we incorporate the rapidly changing nature of the interpersonal relations in the model. At each time step, agents can update their relationships, so that there is no history dependence in the model. This update is determined by their own opinion, and by their preference to make connections with individuals sharing the same opinion and with opponents. Using simulations and analytic arguments, we determine the final steady states and the relaxation into these states for different system sizes. In contrast to earlier studies, the average connectivity (``degree'') of each agent is constant here, independent of the system size. This has significant consequences for the long-time behavior of the model.

  9. A Dynamic Classification Approach for Nursing

    PubMed Central

    Hardiker, Nicholas R.; Kim, Tae Youn; Coenen, Amy M.; Jansen, Kay R.

    2011-01-01

    Nursing has a long tradition of classification, stretching back at least 150 years. The introduction of computers into health care towards the end of the 20th Century helped to focus efforts, culminating in the development of a range of standardized classifications. Many of these classifications are still in use today and, while content is periodically updated, the underlying classification structures remain relatively static. In this paper an approach to classification that is relatively new to nursing is presented; an approach that uses formal Web Ontology Language definitions for classes, and computer-based reasoning on those classes, to determine automatically classification structures that more flexibly meet the needs of users. A new proposed classification structure for the International Classification for Nursing Practice is derived under the new approach to provide a new view on the next release of the classification and to contribute to broader quality improvement processes. PMID:22195109

  10. The evolutionary dynamics of influenza A virus adaptation to mammalian hosts

    PubMed Central

    Bhatt, S.; Lam, T. T.; Lycett, S. J.; Leigh Brown, A. J.; Bowden, T. A.; Holmes, E. C.; Guan, Y.; Wood, J. L. N.; Brown, I. H.; Kellam, P.; Pybus, O. G.; Brown, Ian; Brookes, Sharon; Germundsson, Anna; Cook, Alex; Williamson, Susanna; Essen, Stephen; Garcon, Fanny; Gunn, George; Sanchez, Manuel; Marques, Diogo; Wood, James; Tucker, Dan; McCrone, Ian; Gog, Julia; Saenz, Roberto; Staff, Meg; Murcia, Pablo; Barclay, Wendy; Donnelly, Christl; Elderfield, Ruth A.; Kellam, Paul; Baillie, Greg; Coulter, Eve; Wieland, Barbara; Mastin, Alex; McCauley, John; Brown, Andy Leigh; Lycett, Sam; Woolhouse, Mark; Pybus, Oliver; Bhatt, Samir; Hayward, Andrew; Ishola, David; Archibald, Alan; Freeman, Tom; Charleston, Bryan; LeFevre, Eric; Bailey, Mick; Inman, Charlotte; Stokes, Chris; Chang, Kin Chow; Dunham, Stephen; White, Gavin; Nguyen-Van-Tam, Jonathan; Enstone, Joanne

    2013-01-01

    Few questions on infectious disease are more important than understanding how and why avian influenza A viruses successfully emerge in mammalian populations, yet little is known about the rate and nature of the virus’ genetic adaptation in new hosts. Here, we measure, for the first time, the genomic rate of adaptive evolution of swine influenza viruses (SwIV) that originated in birds. By using a curated dataset of more than 24 000 human and swine influenza gene sequences, including 41 newly characterized genomes, we reconstructed the adaptive dynamics of three major SwIV lineages (Eurasian, EA; classical swine, CS; triple reassortant, TR). We found that, following the transfer of the EA lineage from birds to swine in the late 1970s, EA virus genes have undergone substantially faster adaptive evolution than those of the CS lineage, which had circulated among swine for decades. Further, the adaptation rates of the EA lineage antigenic haemagglutinin and neuraminidase genes were unexpectedly high and similar to those observed in human influenza A. We show that the successful establishment of avian influenza viruses in swine is associated with raised adaptive evolution across the entire genome for many years after zoonosis, reflecting the contribution of multiple mutations to the coordinated optimization of viral fitness in a new environment. This dynamics is replicated independently in the polymerase genes of the TR lineage, which established in swine following separate transmission from non-swine hosts. PMID:23382435

  11. Land-based approach to evaluate sustainable land management and adaptive capacity of ecosystems/lands

    NASA Astrophysics Data System (ADS)

    Kust, German; Andreeva, Olga

    2015-04-01

    A number of new concepts and paradigms appeared during last decades, such as sustainable land management (SLM), climate change (CC) adaptation, environmental services, ecosystem health, and others. All of these initiatives still not having the common scientific platform although some agreements in terminology were reached, schemes of links and feedback loops created, and some models developed. Nevertheless, in spite of all these scientific achievements, the land related issues are still not in the focus of CC adaptation and mitigation. The last did not grow much beyond the "greenhouse gases" (GHG) concept, which makes land degradation as the "forgotten side of climate change" The possible decision to integrate concepts of climate and desertification/land degradation could be consideration of the "GHG" approach providing global solution, and "land" approach providing local solution covering other "locally manifesting" issues of global importance (biodiversity conservation, food security, disasters and risks, etc.) to serve as a central concept among those. SLM concept is a land-based approach, which includes the concepts of both ecosystem-based approach (EbA) and community-based approach (CbA). SLM can serve as in integral CC adaptation strategy, being based on the statement "the more healthy and resilient the system is, the less vulnerable and more adaptive it will be to any external changes and forces, including climate" The biggest scientific issue is the methods to evaluate the SLM and results of the SLM investments. We suggest using the approach based on the understanding of the balance or equilibrium of the land and nature components as the major sign of the sustainable system. Prom this point of view it is easier to understand the state of the ecosystem stress, size of the "health", range of adaptive capacity, drivers of degradation and SLM nature, as well as the extended land use, and the concept of environmental land management as the improved SLM approach

  12. A population dynamics approach to biological aging

    NASA Astrophysics Data System (ADS)

    de Almeida, R. M. C.

    A dynamical model for aging in biological population is discussed where asexual reproduction is considered. The maximum life span is inherited from parent to offspring with some random mutations described by a transition matrix, and the fertile period begins at a defined age R. The intra species competition is modeled through a Verhulst-like factor. Discrete time evolution equations are iterated and the transient and asymptotic solutions are obtained. When only bad mutations are taken into account, the stationary solutions are obtained analytically. The results are applied to the Penna model.

  13. Method and system for training dynamic nonlinear adaptive filters which have embedded memory

    NASA Technical Reports Server (NTRS)

    Rabinowitz, Matthew (Inventor)

    2002-01-01

    Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6.

  14. Design implementation and control of MRAS error dynamics. [Model-Reference Adaptive System

    NASA Technical Reports Server (NTRS)

    Colburn, B. K.; Boland, J. S., III

    1974-01-01

    Use is made of linearized error characteristic equation for model-reference adaptive systems to determine a parameter adjustment rule for obtaining time-invariant error dynamics. Theoretical justification of error stability is given and an illustrative example included to demonstrate the utility of the proposed technique.

  15. Robust projective lag synchronization in drive-response dynamical networks via adaptive control

    NASA Astrophysics Data System (ADS)

    Al-mahbashi, G.; Noorani, M. S. Md; Bakar, S. A.; Al-sawalha, M. M.

    2016-02-01

    This paper investigates the problem of projective lag synchronization behavior in drive-response dynamical networks (DRDNs) with identical and non-identical nodes. An adaptive control method is designed to achieve projective lag synchronization with fully unknown parameters and unknown bounded disturbances. These parameters were estimated by adaptive laws obtained by Lyapunov stability theory. Furthermore, sufficient conditions for synchronization are derived analytically using the Lyapunov stability theory and adaptive control. In addition, the unknown bounded disturbances are also overcome by the proposed control. Finally, analytical results show that the states of the dynamical network with non-delayed coupling can be asymptotically synchronized onto a desired scaling factor under the designed controller. Simulation results show the effectiveness of the proposed method.

  16. Cross-cultural adaptation of instruments assessing breastfeeding determinants: a multi-step approach

    PubMed Central

    2014-01-01

    Background Cross-cultural adaptation is a necessary process to effectively use existing instruments in other cultural and language settings. The process of cross-culturally adapting, including translation, of existing instruments is considered a critical set to establishing a meaningful instrument for use in another setting. Using a multi-step approach is considered best practice in achieving cultural and semantic equivalence of the adapted version. We aimed to ensure the content validity of our instruments in the cultural context of KwaZulu-Natal, South Africa. Methods The Iowa Infant Feeding Attitudes Scale, Breastfeeding Self-Efficacy Scale-Short Form and additional items comprise our consolidated instrument, which was cross-culturally adapted utilizing a multi-step approach during August 2012. Cross-cultural adaptation was achieved through steps to maintain content validity and attain semantic equivalence in the target version. Specifically, Lynn’s recommendation to apply an item-level content validity index score was followed. The revised instrument was translated and back-translated. To ensure semantic equivalence, Brislin’s back-translation approach was utilized followed by the committee review to address any discrepancies that emerged from translation. Results Our consolidated instrument was adapted to be culturally relevant and translated to yield more reliable and valid results for use in our larger research study to measure infant feeding determinants effectively in our target cultural context. Conclusions Undertaking rigorous steps to effectively ensure cross-cultural adaptation increases our confidence that the conclusions we make based on our self-report instrument(s) will be stronger. In this way, our aim to achieve strong cross-cultural adaptation of our consolidated instruments was achieved while also providing a clear framework for other researchers choosing to utilize existing instruments for work in other cultural, geographic and population

  17. Dynamic adaptive finite element analysis of acoustic wave propagation due to underwater explosion for fluid-structure interaction problems

    NASA Astrophysics Data System (ADS)

    Emamzadeh, Seyed Shahab; Ahmadi, Mohammad Taghi; Mohammadi, Soheil; Biglarkhani, Masoud

    2015-07-01

    In this paper, an investigation into the propagation of far field explosion waves in water and their effects on nearby structures are carried out. For the far field structure, the motion of the fluid surrounding the structure may be assumed small, allowing linearization of the governing fluid equations. A complete analysis of the problem must involve simultaneous solution of the dynamic response of the structure and the propagation of explosion wave in the surrounding fluid. In this study, a dynamic adaptive finite element procedure is proposed. Its application to the solution of a 2D fluid-structure interaction is investigated in the time domain. The research includes: a) calculation of the far-field scatter wave due to underwater explosion including solution of the time-depended acoustic wave equation, b) fluid-structure interaction analysis using coupled Euler-Lagrangian approach, and c) adaptive finite element procedures employing error estimates, and re-meshing. The temporal mesh adaptation is achieved by local regeneration of the grid using a time-dependent error indicator based on curvature of pressure function. As a result, the overall response is better predicted by a moving mesh than an equivalent uniform mesh. In addition, the cost of computation for large problems is reduced while the accuracy is improved.

  18. Pseudo-transition Analysis Identifies the Key Regulators of Dynamic Metabolic Adaptations from Steady-State Data.

    PubMed

    Gerosa, Luca; Haverkorn van Rijsewijk, Bart R B; Christodoulou, Dimitris; Kochanowski, Karl; Schmidt, Thomas S B; Noor, Elad; Sauer, Uwe

    2015-10-28

    Hundreds of molecular-level changes within central metabolism allow a cell to adapt to the changing environment. A primary challenge in cell physiology is to identify which of these molecular-level changes are active regulatory events. Here, we introduce pseudo-transition analysis, an approach that uses multiple steady-state observations of (13)C-resolved fluxes, metabolites, and transcripts to infer which regulatory events drive metabolic adaptations following environmental transitions. Pseudo-transition analysis recapitulates known biology and identifies an unexpectedly sparse, transition-dependent regulatory landscape: typically a handful of regulatory events drive adaptation between carbon sources, with transcription mainly regulating TCA cycle flux and reactants regulating EMP pathway flux. We verify these observations using time-resolved measurements of the diauxic shift, demonstrating that some dynamic transitions can be approximated as monotonic shifts between steady-state extremes. Overall, we show that pseudo-transition analysis can explore the vast regulatory landscape of dynamic transitions using relatively few steady-state data, thereby guiding time-consuming, hypothesis-driven molecular validations. PMID:27136056

  19. Adaptive Evolution of Cooperation through Darwinian Dynamics in Public Goods Games

    PubMed Central

    Deng, Kuiying; Chu, Tianguang

    2011-01-01

    The linear or threshold Public Goods game (PGG) is extensively accepted as a paradigmatic model to approach the evolution of cooperation in social dilemmas. Here we explore the significant effect of nonlinearity of the structures of public goods on the evolution of cooperation within the well-mixed population by adopting Darwinian dynamics, which simultaneously consider the evolution of populations and strategies on a continuous adaptive landscape, and extend the concept of evolutionarily stable strategy (ESS) as a coalition of strategies that is both convergent-stable and resistant to invasion. Results show (i) that in the linear PGG contributing nothing is an ESS, which contradicts experimental data, (ii) that in the threshold PGG contributing the threshold value is a fragile ESS, which cannot resist the invasion of contributing nothing, and (iii) that there exists a robust ESS of contributing more than half in the sigmoid PGG if the return rate is relatively high. This work reveals the significant effect of the nonlinearity of the structures of public goods on the evolution of cooperation, and suggests that, compared with the linear or threshold PGG, the sigmoid PGG might be a more proper model for the evolution of cooperation within the well-mixed population. PMID:22046240

  20. Neural network-based adaptive dynamic surface control for permanent magnet synchronous motors.

    PubMed

    Yu, Jinpeng; Shi, Peng; Dong, Wenjie; Chen, Bing; Lin, Chong

    2015-03-01

    This brief considers the problem of neural networks (NNs)-based adaptive dynamic surface control (DSC) for permanent magnet synchronous motors (PMSMs) with parameter uncertainties and load torque disturbance. First, NNs are used to approximate the unknown and nonlinear functions of PMSM drive system and a novel adaptive DSC is constructed to avoid the explosion of complexity in the backstepping design. Next, under the proposed adaptive neural DSC, the number of adaptive parameters required is reduced to only one, and the designed neural controllers structure is much simpler than some existing results in literature, which can guarantee that the tracking error converges to a small neighborhood of the origin. Then, simulations are given to illustrate the effectiveness and potential of the new design technique. PMID:25720014

  1. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  2. Transformational Education for Psychotherapy and Counselling: A Relational Dynamic Approach

    ERIC Educational Resources Information Center

    Macaskie, Jane; Meekums, Bonnie; Nolan, Greg

    2013-01-01

    An evolving relational dynamic approach to psychotherapy and counselling education is described. Key themes integrated within the approach are the learning community and transformational relationships. Learning is a reciprocal change process involving students, teachers, supervisors and therapists in overlapping learning communities. Drawing on…

  3. Dynamic Assessment: An Approach Toward Reducing Test Bias.

    ERIC Educational Resources Information Center

    Carlson, Jerry S.; Wiedl, Karl Heinz

    Through dynamic testing (the notion that tailored testing can be extended to the use of a learning oriented approach to assessment), analysis were made of how motivational, personality, and cognitive style factors interact with assessment approaches to yield performance data. Testing procedures involving simple feedback, elaborated feedback, and…

  4. Using archaeogenomic and computational approaches to unravel the history of local adaptation in crops

    PubMed Central

    Allaby, Robin G.; Gutaker, Rafal; Clarke, Andrew C.; Pearson, Neil; Ware, Roselyn; Palmer, Sarah A.; Kitchen, James L.; Smith, Oliver

    2015-01-01

    Our understanding of the evolution of domestication has changed radically in the past 10 years, from a relatively simplistic rapid origin scenario to a protracted complex process in which plants adapted to the human environment. The adaptation of plants continued as the human environment changed with the expansion of agriculture from its centres of origin. Using archaeogenomics and computational models, we can observe genome evolution directly and understand how plants adapted to the human environment and the regional conditions to which agriculture expanded. We have applied various archaeogenomics approaches as exemplars to study local adaptation of barley to drought resistance at Qasr Ibrim, Egypt. We show the utility of DNA capture, ancient RNA, methylation patterns and DNA from charred remains of archaeobotanical samples from low latitudes where preservation conditions restrict ancient DNA research to within a Holocene timescale. The genomic level of analyses that is now possible, and the complexity of the evolutionary process of local adaptation means that plant studies are set to move to the genome level, and account for the interaction of genes under selection in systems-level approaches. This way we can understand how plants adapted during the expansion of agriculture across many latitudes with rapidity. PMID:25487329

  5. Using archaeogenomic and computational approaches to unravel the history of local adaptation in crops.

    PubMed

    Allaby, Robin G; Gutaker, Rafal; Clarke, Andrew C; Pearson, Neil; Ware, Roselyn; Palmer, Sarah A; Kitchen, James L; Smith, Oliver

    2015-01-19

    Our understanding of the evolution of domestication has changed radically in the past 10 years, from a relatively simplistic rapid origin scenario to a protracted complex process in which plants adapted to the human environment. The adaptation of plants continued as the human environment changed with the expansion of agriculture from its centres of origin. Using archaeogenomics and computational models, we can observe genome evolution directly and understand how plants adapted to the human environment and the regional conditions to which agriculture expanded. We have applied various archaeogenomics approaches as exemplars to study local adaptation of barley to drought resistance at Qasr Ibrim, Egypt. We show the utility of DNA capture, ancient RNA, methylation patterns and DNA from charred remains of archaeobotanical samples from low latitudes where preservation conditions restrict ancient DNA research to within a Holocene timescale. The genomic level of analyses that is now possible, and the complexity of the evolutionary process of local adaptation means that plant studies are set to move to the genome level, and account for the interaction of genes under selection in systems-level approaches. This way we can understand how plants adapted during the expansion of agriculture across many latitudes with rapidity. PMID:25487329

  6. A User-Centered Approach to Adaptive Hypertext Based on an Information Relevance Model

    NASA Technical Reports Server (NTRS)

    Mathe, Nathalie; Chen, James

    1994-01-01

    Rapid and effective to information in large electronic documentation systems can be facilitated if information relevant in an individual user's content can be automatically supplied to this user. However most of this knowledge on contextual relevance is not found within the contents of documents, it is rather established incrementally by users during information access. We propose a new model for interactively learning contextual relevance during information retrieval, and incrementally adapting retrieved information to individual user profiles. The model, called a relevance network, records the relevance of references based on user feedback for specific queries and user profiles. It also generalizes such knowledge to later derive relevant references for similar queries and profiles. The relevance network lets users filter information by context of relevance. Compared to other approaches, it does not require any prior knowledge nor training. More importantly, our approach to adaptivity is user-centered. It facilitates acceptance and understanding by users by giving them shared control over the adaptation without disturbing their primary task. Users easily control when to adapt and when to use the adapted system. Lastly, the model is independent of the particular application used to access information, and supports sharing of adaptations among users.

  7. A rigorous model study of the adaptive dynamics of Mendelian diploids.

    PubMed

    Collet, Pierre; Méléard, Sylvie; Metz, Johan A J

    2013-09-01

    Adaptive dynamics (AD) so far has been put on a rigorous footing only for clonal inheritance. We extend this to sexually reproducing diploids, although admittedly still under the restriction of an unstructured population with Lotka-Volterra-like dynamics and single locus genetics (as in Kimura's in Proc Natl Acad Sci USA 54: 731-736, 1965 infinite allele model). We prove under the usual smoothness assumptions, starting from a stochastic birth and death process model, that, when advantageous mutations are rare and mutational steps are not too large, the population behaves on the mutational time scale (the 'long' time scale of the literature on the genetical foundations of ESS theory) as a jump process moving between homozygous states (the trait substitution sequence of the adaptive dynamics literature). Essential technical ingredients are a rigorous estimate for the probability of invasion in a dynamic diploid population, a rigorous, geometric singular perturbation theory based, invasion implies substitution theorem, and the use of the Skorohod M 1 topology to arrive at a functional convergence result. In the small mutational steps limit this process in turn gives rise to a differential equation in allele or in phenotype space of a type referred to in the adaptive dynamics literature as 'canonical equation'. PMID:22821207

  8. Adaptive wavelet simulation of global ocean dynamics using a new Brinkman volume penalization

    NASA Astrophysics Data System (ADS)

    Kevlahan, N. K.-R.; Dubos, T.; Aechtner, M.

    2015-12-01

    In order to easily enforce solid-wall boundary conditions in the presence of complex coastlines, we propose a new mass and energy conserving Brinkman penalization for the rotating shallow water equations. This penalization does not lead to higher wave speeds in the solid region. The error estimates for the penalization are derived analytically and verified numerically for linearized one-dimensional equations. The penalization is implemented in a conservative dynamically adaptive wavelet method for the rotating shallow water equations on the sphere with bathymetry and coastline data from NOAA's ETOPO1 database. This code could form the dynamical core for a future global ocean model. The potential of the dynamically adaptive ocean model is illustrated by using it to simulate the 2004 Indonesian tsunami and wind-driven gyres.

  9. Modeling human target reaching with an adaptive observer implemented with dynamic neural fields.

    PubMed

    Fard, Farzaneh S; Hollensen, Paul; Heinke, Dietmar; Trappenberg, Thomas P

    2015-12-01

    Humans can point fairly accurately to memorized states when closing their eyes despite slow or even missing sensory feedback. It is also common that the arm dynamics changes during development or from injuries. We propose a biologically motivated implementation of an arm controller that includes an adaptive observer. Our implementation is based on the neural field framework, and we show how a path integration mechanism can be trained from few examples. Our results illustrate successful generalization of path integration with a dynamic neural field by which the robotic arm can move in arbitrary directions and velocities. Also, by adapting the strength of the motor effect the observer implicitly learns to compensate an image acquisition delay in the sensory system. Our dynamic implementation of an observer successfully guides the arm toward the target in the dark, and the model produces movements with a bell-shaped velocity profile, consistent with human behavior data. PMID:26559472

  10. Modeling superhelical DNA: recent analytical and dynamic approaches.

    PubMed

    Schlick, T

    1995-04-01

    During the past year, a variety of diverse and complementary approaches have been presented for modeling superhelical DNA, offering new physical and biological insights into fundamental functional processes of DNA. Analytical approaches have probed deeper into the effects of entropy and thermal fluctuations on DNA structure and on various topological constraints induced by DNA-binding proteins. In tandem, new kinetic approaches--by molecular, Langevin and Brownian dynamics, as well as extensions of elastic-rod theory--have begun to offer dynamic information associated with supercoiling. Such dynamic approaches, along with other equilibrium studies, are refining the basic elastic-rod and polymer framework and incorporating more realistic treatments of salt and sequence-specific features. These collective advances in modeling large DNA molecules, in concert with technological innovations, are pointing to an exciting interplay between theory and experiment on the horizon. PMID:7648328

  11. An enhanced adaptive management approach for remediation of legacy mercury in the South River.

    PubMed

    Foran, Christy M; Baker, Kelsie M; Grosso, Nancy R; Linkov, Igor

    2015-01-01

    Uncertainties about future conditions and the effects of chosen actions, as well as increasing resource scarcity, have been driving forces in the utilization of adaptive management strategies. However, many applications of adaptive management have been criticized for a number of shortcomings, including a limited ability to learn from actions and a lack of consideration of stakeholder objectives. To address these criticisms, we supplement existing adaptive management approaches with a decision-analytical approach that first informs the initial selection of management alternatives and then allows for periodic re-evaluation or phased implementation of management alternatives based on monitoring information and incorporation of stakeholder values. We describe the application of this enhanced adaptive management (EAM) framework to compare remedial alternatives for mercury in the South River, based on an understanding of the loading and behavior of mercury in the South River near Waynesboro, VA. The outcomes show that the ranking of remedial alternatives is influenced by uncertainty in the mercury loading model, by the relative importance placed on different criteria, and by cost estimates. The process itself demonstrates that a decision model can link project performance criteria, decision-maker preferences, environmental models, and short- and long-term monitoring information with management choices to help shape a remediation approach that provides useful information for adaptive, incremental implementation. PMID:25665032

  12. Cyto•IQ: an adaptive cytometer for extracting the noisy dynamics of molecular interactions in live cells

    NASA Astrophysics Data System (ADS)

    Ball, David A.; Moody, Stephen E.; Peccoud, Jean

    2010-02-01

    We have developed a fundamentally new type of cytometer to track the statistics of dynamic molecular interactions in hundreds of individual live cells within a single experiment. This entirely new high-throughput experimental system, which we have named Cyto•IQ, reports statistical, rather than image-based data for a large cellular population. Like a flow cytometer, Cyto•IQ rapidly measures several fluorescent probes in a large population of cells to yield a reduced statistical model that is matched to the experimental goals set by the user. However, Cyto•IQ moves beyond flow cytometry by tracking multiple probes in individual cells over time. Using adaptive learning algorithms, we process data in real time to maximize the convergence of the statistical model parameter estimators. Software controlling Cyto•IQ integrates existing open source applications to interface hardware components, process images, and adapt the data acquisition strategy based on previously acquired data. These innovations allow the study of larger populations of cells, and molecular interactions with more complex dynamics, than is possible with traditional microscope-based approaches. Cyto•IQ supports research to characterize the noisy dynamics of molecular interactions controlling biological processes.

  13. Enriching practice of dialectic behaviour therapy with the dynamic maturational model of attachment and adaptation.

    PubMed

    Wilkinson, Simon R

    2016-01-01

    The major challenge for a clinician is integration of the wisdom available in the wide range of therapeutic paradigms available. I have found the principles guiding dialectic behaviour therapy (DBT; see Miller, Rathus, & Linehan, 2007, for applying DBT to adolescents) extremely useful in my practice running a general adolescent unit; similarly, the understanding of the different information processing and learning principles associated with each of the Type A and C attachment strategies, as understood in dynamic maturational model (DMM), has guided me through the dark corners of treatment. Specifically, how does DMM inform practice of DBT? As a 'DBTer' might say, 'Where is the wisdom in both points of view?' Nevertheless, DMM is not primarily about treatment. It concerns how different ways of adapting to developmental contingencies bias perceptual propensities, and hence the information available for reflective brain function. Recognition of these twists to knowing what is going on can then be used to inform a variety of therapeutic approaches. The purpose of this article is to look for the signposts in DBT and DMM which together help navigate the comprehensive approach necessary in complicated therapy. In the process, hopefully some more general principles for addressing discomfited adolescents arise for informing future practice. Although many steer shy of using personality disorder diagnoses for adolescents, clinicians are nevertheless addressing, directly or indirectly, the personality development of all adolescents in treatment, regardless of their classical axis I diagnoses, including both those with developing emotional instability and a group of avoidant over-controlled adolescents, which in Norway is growing in prominence. PMID:25410887

  14. Shape anomaly detection under strong measurement noise: An analytical approach to adaptive thresholding

    NASA Astrophysics Data System (ADS)

    Krasichkov, Alexander S.; Grigoriev, Eugene B.; Bogachev, Mikhail I.; Nifontov, Eugene M.

    2015-10-01

    We suggest an analytical approach to the adaptive thresholding in a shape anomaly detection problem. We find an analytical expression for the distribution of the cosine similarity score between a reference shape and an observational shape hindered by strong measurement noise that depends solely on the noise level and is independent of the particular shape analyzed. The analytical treatment is also confirmed by computer simulations and shows nearly perfect agreement. Using this analytical solution, we suggest an improved shape anomaly detection approach based on adaptive thresholding. We validate the noise robustness of our approach using typical shapes of normal and pathological electrocardiogram cycles hindered by additive white noise. We show explicitly that under high noise levels our approach considerably outperforms the conventional tactic that does not take into account variations in the noise level.

  15. Personalized articulated atlas with a dynamic adaptation strategy for bone segmentation in CT or CT/MR head and neck images

    NASA Astrophysics Data System (ADS)

    Steger, Sebastian; Jung, Florian; Wesarg, Stefan

    2014-03-01

    This paper presents a novel segmentation method for the joint segmentation of individual bones in CT- or CT/MR- head and neck images. It is based on an articulated atlas for CT images that learned the shape and appearance of the individual bones along with the articulation between them from annotated training instances. First, a novel dynamic adaptation strategy for the atlas is presented in order to increase the rate of successful adaptations. Then, if a corresponding CT image is available the atlas can be enriched with personalized information about shape, appearance and size of the individual bones from that image. Using mutual information, this personalized atlas is adapted to an MR image in order to propagate segmentations. For evaluation, a head and neck bone atlas created from 15 manually annotated training images was adapted to 58 clinically acquired head andneck CT datasets. Visual inspection showed that the automatic dynamic adaptation strategy was successful for all bones in 86% of the cases. This is a 22% improvement compared to the traditional gradient descent based approach. In leave-one-out cross validation manner the average surface distance of the correctly adapted items was found to be 0.6 8mm. In 20 cases corresponding CT/MR image pairs were available and the atlas could be personalized and adapted to the MR image. This was successful in 19 cases.

  16. Neural Network Aided Adaptive Extended Kalman Filtering Approach for DGPS Positioning

    NASA Astrophysics Data System (ADS)

    Jwo, Dah-Jing; Huang, Hung-Chih

    2004-09-01

    The extended Kalman filter, when employed in the GPS receiver as the navigation state estimator, provides optimal solutions if the noise statistics for the measurement and system are completely known. In practice, the noise varies with time, which results in performance degradation. The covariance matching method is a conventional adaptive approach for estimation of noise covariance matrices. The technique attempts to make the actual filter residuals consistent with their theoretical covariance. However, this innovation-based adaptive estimation shows very noisy results if the window size is small. To resolve the problem, a multilayered neural network is trained to identify the measurement noise covariance matrix, in which the back-propagation algorithm is employed to iteratively adjust the link weights using the steepest descent technique. Numerical simulations show that based on the proposed approach the adaptation performance is substantially enhanced and the positioning accuracy is substantially improved.

  17. A Time-Critical Adaptive Approach for Visualizing Natural Scenes on Different Devices

    PubMed Central

    Dong, Tianyang; Liu, Siyuan; Xia, Jiajia; Fan, Jing; Zhang, Ling

    2015-01-01

    To automatically adapt to various hardware and software environments on different devices, this paper presents a time-critical adaptive approach for visualizing natural scenes. In this method, a simplified expression of a tree model is used for different devices. The best rendering scheme is intelligently selected to generate a particular scene by estimating the rendering time of trees based on their visual importance. Therefore, this approach can ensure the reality of natural scenes while maintaining a constant frame rate for their interactive display. To verify its effectiveness and flexibility, this method is applied in different devices, such as a desktop computer, laptop, iPad and smart phone. Applications show that the method proposed in this paper can not only adapt to devices with different computing abilities and system resources very well but can also achieve rather good visual realism and a constant frame rate for natural scenes. PMID:25723177

  18. Computational fluid dynamics in ventilation: Practical approach

    NASA Astrophysics Data System (ADS)

    Fontaine, J. R.

    The potential of computation fluid dynamics (CFD) for conceiving ventilation systems is shown through the simulation of five practical cases. The following examples are considered: capture of pollutants on a surface treating tank equipped with a unilateral suction slot in the presence of a disturbing air draft opposed to suction; dispersion of solid aerosols inside fume cupboards; performances comparison of two general ventilation systems in a silkscreen printing workshop; ventilation of a large open painting area; and oil fog removal inside a mechanical engineering workshop. Whereas the two first problems are analyzed through two dimensional numerical simulations, the three other cases require three dimensional modeling. For the surface treating tank case, numerical results are compared to laboratory experiment data. All simulations are carried out using EOL, a CFD software specially devised to deal with air quality problems in industrial ventilated premises. It contains many analysis tools to interpret the results in terms familiar to the industrial hygienist. Much experimental work has been engaged to validate the predictions of EOL for ventilation flows.

  19. Facial Expression Aftereffect Revealed by Adaption to Emotion-Invisible Dynamic Bubbled Faces

    PubMed Central

    Luo, Chengwen; Wang, Qingyun; Schyns, Philippe G.; Kingdom, Frederick A. A.; Xu, Hong

    2015-01-01

    Visual adaptation is a powerful tool to probe the short-term plasticity of the visual system. Adapting to local features such as the oriented lines can distort our judgment of subsequently presented lines, the tilt aftereffect. The tilt aftereffect is believed to be processed at the low-level of the visual cortex, such as V1. Adaptation to faces, on the other hand, can produce significant aftereffects in high-level traits such as identity, expression, and ethnicity. However, whether face adaptation necessitate awareness of face features is debatable. In the current study, we investigated whether facial expression aftereffects (FEAE) can be generated by partially visible faces. We first generated partially visible faces using the bubbles technique, in which the face was seen through randomly positioned circular apertures, and selected the bubbled faces for which the subjects were unable to identify happy or sad expressions. When the subjects adapted to static displays of these partial faces, no significant FEAE was found. However, when the subjects adapted to a dynamic video display of a series of different partial faces, a significant FEAE was observed. In both conditions, subjects could not identify facial expression in the individual adapting faces. These results suggest that our visual system is able to integrate unrecognizable partial faces over a short period of time and that the integrated percept affects our judgment on subsequently presented faces. We conclude that FEAE can be generated by partial face with little facial expression cues, implying that our cognitive system fills-in the missing parts during adaptation, or the subcortical structures are activated by the bubbled faces without conscious recognition of emotion during adaptation. PMID:26717572

  20. Dynamic Load Balancing for Adaptive Computations on Distributed-Memory Machines

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Dynamic load balancing is central to adaptive mesh-based computations on large-scale parallel computers. The principal investigator has investigated various issues on the dynamic load balancing problem under NASA JOVE and JAG rants. The major accomplishments of the project are two graph partitioning algorithms and a load balancing framework. The S-HARP dynamic graph partitioner is known to be the fastest among the known dynamic graph partitioners to date. It can partition a graph of over 100,000 vertices in 0.25 seconds on a 64- processor Cray T3E distributed-memory multiprocessor while maintaining the scalability of over 16-fold speedup. Other known and widely used dynamic graph partitioners take over a second or two while giving low scalability of a few fold speedup on 64 processors. These results have been published in journals and peer-reviewed flagship conferences.

  1. Online adaptive optimal control for continuous-time nonlinear systems with completely unknown dynamics

    NASA Astrophysics Data System (ADS)

    Lv, Yongfeng; Na, Jing; Yang, Qinmin; Wu, Xing; Guo, Yu

    2016-01-01

    An online adaptive optimal control is proposed for continuous-time nonlinear systems with completely unknown dynamics, which is achieved by developing a novel identifier-critic-based approximate dynamic programming algorithm with a dual neural network (NN) approximation structure. First, an adaptive NN identifier is designed to obviate the requirement of complete knowledge of system dynamics, and a critic NN is employed to approximate the optimal value function. Then, the optimal control law is computed based on the information from the identifier NN and the critic NN, so that the actor NN is not needed. In particular, a novel adaptive law design method with the parameter estimation error is proposed to online update the weights of both identifier NN and critic NN simultaneously, which converge to small neighbourhoods around their ideal values. The closed-loop system stability and the convergence to small vicinity around the optimal solution are all proved by means of the Lyapunov theory. The proposed adaptation algorithm is also improved to achieve finite-time convergence of the NN weights. Finally, simulation results are provided to exemplify the efficacy of the proposed methods.

  2. ADAPT (Analysis of Dynamic Accident Progression Trees) Beta Version 0.9

    2010-01-07

    The purpose of the ADAPT code is to generate Dynamic Event Trees (DET) using a user specified simulator. ADAPT can utilize any simulation tool which meets a minimal set of requirements. ADAPT is based on the concept of DET which use explicit modeling of the deterministic dynamic processes that take place during a nuclear reactor plant system evolution along with stochastic modeling. When DET are used to model different aspects of Probabilistic Risk Assessment (PRA),more » all accident progression scenarios starting from an initiating event are considered simultaneously. The DET branching occurs at user specified times and/or when an action is required by the system and/or the operator. These outcomes then decide how the dynamic system variables will evolve in time for each DET branch. Since two different outcomes at a DET branching may lead to completely different paths for system evolution, the next branching for these paths may occur not only at different times, but can be based on different branching criteria. The computational infrastructure allows for flexibility in ADAPT to link with different system simulation codes, parallel processing of the scenarios under consideration, on-line scenario management (initiation as well as termination) and user friendly graphical capabilities. The ADAPT system is designed for a distributed computing environment; the scheduler can track multiple concurrent branches simultaneously. The scheduler is modularized so that the DET branching strategy can be modified (e.g. biasing towards the worse case scenario/event). Independent database systems store data from the simulation tasks and the DET structure so that the event tree can be constructed and analyzed later. ADAPT is provided with a user-friendly client which can easily sort through and display the results of an experiment, precluding the need for the user to manually inspect individual simulator runs.« less

  3. Geophysical astrophysical spectral-element adaptive refinement (GASpAR): Object-oriented h-adaptive fluid dynamics simulation

    NASA Astrophysics Data System (ADS)

    Rosenberg, Duane; Fournier, Aimé; Fischer, Paul; Pouquet, Annick

    2006-06-01

    An object-oriented geophysical and astrophysical spectral-element adaptive refinement (GASpAR) code is introduced. Like most spectral-element codes, GASpAR combines finite-element efficiency with spectral-method accuracy. It is also designed to be flexible enough for a range of geophysics and astrophysics applications where turbulence or other complex multiscale problems arise. The formalism accommodates both conforming and non-conforming elements. Several aspects of this code derive from existing methods, but here are synthesized into a new formulation of dynamic adaptive refinement (DARe) of non-conforming h-type. As a demonstration of the code, several new 2D test cases are introduced that have time-dependent analytic solutions and exhibit localized flow features, including the 2D Burgers equation with straight, curved-radial and oblique-colliding fronts. These are proposed as standard test problems for comparable DARe codes. Quantitative errors are reported for 2D spatial and temporal convergence of DARe.

  4. Adaptation to heat health risk among vulnerable urban residents: a multi-city approach

    NASA Astrophysics Data System (ADS)

    Wilhelmi, O.; Hayden, M.; Brenkert-Smith, H.

    2010-12-01

    Recent studies on climate impacts demonstrate that climate change will have differential consequences in the U.S. at the regional and local scales. Changing climate is predicted to increase the frequency, intensity and impacts of extreme heat events prompting the need to develop preparedness and adaptation strategies that reduce societal vulnerability. Central to understanding societal vulnerability, is population’s adaptive capacity, which, in turn, influences adaptation, the actual adjustments made to cope with the impacts from current and future hazardous heat events. To-date, few studies have considered the complexity of vulnerability and its relationship to capacity to cope with or adapt to extreme heat. In this presentation we will discuss a pilot project conducted in 2009 in Phoenix, AZ, which explored urban societal vulnerability and adaptive capacity to extreme heat in several neighborhoods. Household-level surveys revealed differential adaptive capacity among the neighborhoods and social groups. In response to this pilot project, and in order to develop a methodological framework that could be used across locales, we also present an expansion of this project into Houston, TX and Toronto, Canada with the goal of furthering our understanding of adaptive capacity to extreme heat in very different urban settings. This presentation will communicate the results of the extreme heat vulnerability survey in Phoenix as well as the multidisciplinary, multi-model framework that will be used to explore urban vulnerability and adaptation strategies to heat in Houston and Toronto. We will outline challenges and opportunities in furthering our understanding of adaptive capacity and the need to approach these problems from a macro to a micro level.

  5. Three Authentic Curriculum-Integration Approaches to Bird Adaptations That Incorporate Technology and Thinking Skills

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Barrera, Manuel T., III

    2008-01-01

    Integration of subject areas with technology and thinking skills is a way to help teachers cope with today's overloaded curriculum and to help students see the connectedness of different curriculum areas. This study compares three authentic approaches to teaching a science unit on bird adaptations for habitat that integrate thinking skills and…

  6. Assessment of Social Competence, Adaptive Behaviors, and Approaches to Learning with Young Children. Working Paper Series.

    ERIC Educational Resources Information Center

    Meisels, Samuel J.; Atkins-Burnett, Sally; Nicholson, Julie

    Prepared in support of the Early Childhood Longitudinal Study (ECLS), which will examine children's early school experiences beginning with kindergarten, this working paper focuses on research regarding the measurement of young children's social competence, adaptive behavior, and approaches to learning. The paper reviews the key variables and…

  7. AN OPTIMAL ADAPTIVE LOCAL GRID REFINEMENT APPROACH TO MODELING CONTAMINANT TRANSPORT

    EPA Science Inventory

    A Lagrangian-Eulerian method with an optimal adaptive local grid refinement is used to model contaminant transport equations. pplication of this approach to two bench-mark problems indicates that it completely resolves difficulties of peak clipping, numerical diffusion, and spuri...

  8. Adaptive leadership and person-centered care: a new approach to solving problems.

    PubMed

    Corazzini, Kirsten N; Anderson, Ruth A

    2014-01-01

    Successfully transitioning to person-centered care in nursing homes requires a new approach to solving care issues. The adaptive leadership framework suggests that expert providers must support frontline caregivers in their efforts to develop high-quality, person-centered solutions. PMID:25237881

  9. A Monte Carlo Approach to the Design, Assembly, and Evaluation of Multistage Adaptive Tests

    ERIC Educational Resources Information Center

    Belov, Dmitry I.; Armstrong, Ronald D.

    2008-01-01

    This article presents an application of Monte Carlo methods for developing and assembling multistage adaptive tests (MSTs). A major advantage of the Monte Carlo assembly over other approaches (e.g., integer programming or enumerative heuristics) is that it provides a uniform sampling from all MSTs (or MST paths) available from a given item pool.…

  10. EXSPRT: An Expert Systems Approach to Computer-Based Adaptive Testing.

    ERIC Educational Resources Information Center

    Frick, Theodore W.; And Others

    Expert systems can be used to aid decision making. A computerized adaptive test (CAT) is one kind of expert system, although it is not commonly recognized as such. A new approach, termed EXSPRT, was devised that combines expert systems reasoning and sequential probability ratio test stopping rules. EXSPRT-R uses random selection of test items,…

  11. An Enhanced Approach to Combine Item Response Theory with Cognitive Diagnosis in Adaptive Testing

    ERIC Educational Resources Information Center

    Wang, Chun; Zheng, Chanjin; Chang, Hua-Hua

    2014-01-01

    Computerized adaptive testing offers the possibility of gaining information on both the overall ability and cognitive profile in a single assessment administration. Some algorithms aiming for these dual purposes have been proposed, including the shadow test approach, the dual information method (DIM), and the constraint weighted method. The…

  12. Adaptive Network Dynamics - Modeling and Control of Time-Dependent Social Contacts

    PubMed Central

    Schwartz, Ira B.; Shaw, Leah B.; Shkarayev, Maxim S.

    2013-01-01

    Real networks consisting of social contacts do not possess static connections. That is, social connections may be time dependent due to a variety of individual behavioral decisions based on current network connections. Examples of adaptive networks occur in epidemics, where information about infectious individuals may change the rewiring of healthy people, or in the recruitment of individuals to a cause or fad, where rewiring may optimize recruitment of susceptible individuals. In this paper, we will review some of the dynamical properties of adaptive networks, and show how they predict novel phenomena as well as yield insight into new controls. The applications will be control of epidemic outbreaks and terrorist recruitment modeling. PMID:25414913

  13. A Nonlinear Dynamic Inversion Predictor-Based Model Reference Adaptive Controller for a Generic Transport Model

    NASA Technical Reports Server (NTRS)

    Campbell, Stefan F.; Kaneshige, John T.

    2010-01-01

    Presented here is a Predictor-Based Model Reference Adaptive Control (PMRAC) architecture for a generic transport aircraft. At its core, this architecture features a three-axis, non-linear, dynamic-inversion controller. Command inputs for this baseline controller are provided by pilot roll-rate, pitch-rate, and sideslip commands. This paper will first thoroughly present the baseline controller followed by a description of the PMRAC adaptive augmentation to this control system. Results are presented via a full-scale, nonlinear simulation of NASA s Generic Transport Model (GTM).

  14. Agents: An approach for dynamic process modelling

    NASA Astrophysics Data System (ADS)

    Grohmann, Axel; Kopetzky, Roland; Lurk, Alexander

    1999-03-01

    With the growing amount of distributed and heterogeneous information and services, conventional information systems have come to their limits. This gave rise to the development of a Multi-Agent System (the "Logical Client") which can be used in complex information systems as well as in other advanced software systems. Computer agents are proactive, reactive and social. They form a community of independent software components that can communicate and co-operate in order to accomplish complex tasks. Thus the agent-oriented paradigm provides a new and powerful approach to programming distributed systems. The communication framework developed is based on standards like CORBA, KQML and KIF. It provides an embedded rule based system to find adequate reactions to incoming messages. The macro-architecture of the Logical Client consists of independent agents and uses artificial intelligence to cope with complex patterns of communication and actions. A set of system agents is also provided, including the Strategy Service as a core component for modelling processes at runtime, the Computer Supported Cooperative Work (CSCW) Component for supporting remote co-operation between human users and the Repository for managing and hiding the file based data flow in heterogeneous networks. This architecture seems to be capable of managing complexity in information systems. It is also being implemented in a complex simulation system that monitors and simulates the environmental radioactivity in the country Baden-Württemberg.

  15. Shack-Hartmann wavefront sensor with large dynamic range by adaptive spot search method.

    PubMed

    Shinto, Hironobu; Saita, Yusuke; Nomura, Takanori

    2016-07-10

    A Shack-Hartmann wavefront sensor (SHWFS) that consists of a microlens array and an image sensor has been used to measure the wavefront aberrations of human eyes. However, a conventional SHWFS has finite dynamic range depending on the diameter of the each microlens. The dynamic range cannot be easily expanded without a decrease of the spatial resolution. In this study, an adaptive spot search method to expand the dynamic range of an SHWFS is proposed. In the proposed method, spots are searched with the help of their approximate displacements measured with low spatial resolution and large dynamic range. By the proposed method, a wavefront can be correctly measured even if the spot is beyond the detection area. The adaptive spot search method is realized by using the special microlens array that generates both spots and discriminable patterns. The proposed method enables expanding the dynamic range of an SHWFS with a single shot and short processing time. The performance of the proposed method is compared with that of a conventional SHWFS by optical experiments. Furthermore, the dynamic range of the proposed method is quantitatively evaluated by numerical simulations. PMID:27409319

  16. Improving the adaptability of simulated evolutionary swarm robots in dynamically changing environments.

    PubMed

    Yao, Yao; Marchal, Kathleen; Van de Peer, Yves

    2014-01-01

    One of the important challenges in the field of evolutionary robotics is the development of systems that can adapt to a changing environment. However, the ability to adapt to unknown and fluctuating environments is not straightforward. Here, we explore the adaptive potential of simulated swarm robots that contain a genomic encoding of a bio-inspired gene regulatory network (GRN). An artificial genome is combined with a flexible agent-based system, representing the activated part of the regulatory network that transduces environmental cues into phenotypic behaviour. Using an artificial life simulation framework that mimics a dynamically changing environment, we show that separating the static from the conditionally active part of the network contributes to a better adaptive behaviour. Furthermore, in contrast with most hitherto developed ANN-based systems that need to re-optimize their complete controller network from scratch each time they are subjected to novel conditions, our system uses its genome to store GRNs whose performance was optimized under a particular environmental condition for a sufficiently long time. When subjected to a new environment, the previous condition-specific GRN might become inactivated, but remains present. This ability to store 'good behaviour' and to disconnect it from the novel rewiring that is essential under a new condition allows faster re-adaptation if any of the previously observed environmental conditions is reencountered. As we show here, applying these evolutionary-based principles leads to accelerated and improved adaptive evolution in a non-stable environment. PMID:24599485

  17. Improving the Adaptability of Simulated Evolutionary Swarm Robots in Dynamically Changing Environments

    PubMed Central

    Yao, Yao; Marchal, Kathleen; Van de Peer, Yves

    2014-01-01

    One of the important challenges in the field of evolutionary robotics is the development of systems that can adapt to a changing environment. However, the ability to adapt to unknown and fluctuating environments is not straightforward. Here, we explore the adaptive potential of simulated swarm robots that contain a genomic encoding of a bio-inspired gene regulatory network (GRN). An artificial genome is combined with a flexible agent-based system, representing the activated part of the regulatory network that transduces environmental cues into phenotypic behaviour. Using an artificial life simulation framework that mimics a dynamically changing environment, we show that separating the static from the conditionally active part of the network contributes to a better adaptive behaviour. Furthermore, in contrast with most hitherto developed ANN-based systems that need to re-optimize their complete controller network from scratch each time they are subjected to novel conditions, our system uses its genome to store GRNs whose performance was optimized under a particular environmental condition for a sufficiently long time. When subjected to a new environment, the previous condition-specific GRN might become inactivated, but remains present. This ability to store ‘good behaviour’ and to disconnect it from the novel rewiring that is essential under a new condition allows faster re-adaptation if any of the previously observed environmental conditions is reencountered. As we show here, applying these evolutionary-based principles leads to accelerated and improved adaptive evolution in a non-stable environment. PMID:24599485

  18. The adaptive dynamic community detection algorithm based on the non-homogeneous random walking

    NASA Astrophysics Data System (ADS)

    Xin, Yu; Xie, Zhi-Qiang; Yang, Jing

    2016-05-01

    With the changing of the habit and custom, people's social activity tends to be changeable. It is required to have a community evolution analyzing method to mine the dynamic information in social network. For that, we design the random walking possibility function and the topology gain function to calculate the global influence matrix of the nodes. By the analysis of the global influence matrix, the clustering directions of the nodes can be obtained, thus the NRW (Non-Homogeneous Random Walk) method for detecting the static overlapping communities can be established. We design the ANRW (Adaptive Non-Homogeneous Random Walk) method via adapting the nodes impacted by the dynamic events based on the NRW. The ANRW combines the local community detection with dynamic adaptive adjustment to decrease the computational cost for ANRW. Furthermore, the ANRW treats the node as the calculating unity, thus the running manner of the ANRW is suitable to the parallel computing, which could meet the requirement of large dataset mining. Finally, by the experiment analysis, the efficiency of ANRW on dynamic community detection is verified.

  19. Macroscopic description of complex adaptive networks coevolving with dynamic node states.

    PubMed

    Wiedermann, Marc; Donges, Jonathan F; Heitzig, Jobst; Lucht, Wolfgang; Kurths, Jürgen

    2015-05-01

    In many real-world complex systems, the time evolution of the network's structure and the dynamic state of its nodes are closely entangled. Here we study opinion formation and imitation on an adaptive complex network which is dependent on the individual dynamic state of each node and vice versa to model the coevolution of renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model is coupled to a set of identical logistic growth models and we mainly find that, in such systems, the rate of interactions between nodes as well as the adaptive rewiring probability are crucial parameters for controlling the sustainability of the system's equilibrium state. We derive a macroscopic description of the system in terms of ordinary differential equations which provides a general framework to model and quantify the influence of single node dynamics on the macroscopic state of the network. The thus obtained framework is applicable to many fields of study, such as epidemic spreading, opinion formation, or socioecological modeling. PMID:26066206

  20. Catalysis of protein folding by chaperones accelerates evolutionary dynamics in adapting cell populations.

    PubMed

    Cetinbaş, Murat; Shakhnovich, Eugene I

    2013-01-01

    Although molecular chaperones are essential components of protein homeostatic machinery, their mechanism of action and impact on adaptation and evolutionary dynamics remain controversial. Here we developed a physics-based ab initio multi-scale model of a living cell for population dynamics simulations to elucidate the effect of chaperones on adaptive evolution. The 6-loci genomes of model cells encode model proteins, whose folding and interactions in cellular milieu can be evaluated exactly from their genome sequences. A genotype-phenotype relationship that is based on a simple yet non-trivially postulated protein-protein interaction (PPI) network determines the cell division rate. Model proteins can exist in native and molten globule states and participate in functional and all possible promiscuous non-functional PPIs. We find that an active chaperone mechanism, whereby chaperones directly catalyze protein folding, has a significant impact on the cellular fitness and the rate of evolutionary dynamics, while passive chaperones, which just maintain misfolded proteins in soluble complexes have a negligible effect on the fitness. We find that by partially releasing the constraint on protein stability, active chaperones promote a deeper exploration of sequence space to strengthen functional PPIs, and diminish the non-functional PPIs. A key experimentally testable prediction emerging from our analysis is that down-regulation of chaperones that catalyze protein folding significantly slows down the adaptation dynamics. PMID:24244114

  1. Protein displacements under external forces: An atomistic Langevin dynamics approach

    NASA Astrophysics Data System (ADS)

    Gnandt, David; Utz, Nadine; Blumen, Alexander; Koslowski, Thorsten

    2009-02-01

    We present a fully atomistic Langevin dynamics approach as a method to simulate biopolymers under external forces. In the harmonic regime, this approach permits the computation of the long-term dynamics using only the eigenvalues and eigenvectors of the Hessian matrix of second derivatives. We apply this scheme to identify polymorphs of model proteins by their mechanical response fingerprint, and we relate the averaged dynamics of proteins to their biological functionality, with the ion channel gramicidin A, a phosphorylase, and neuropeptide Y as examples. In an environment akin to dilute solutions, even small proteins show relaxation times up to 50 ns. Atomically resolved Langevin dynamics computations have been performed for the stretched gramicidin A ion channel.

  2. Modeling human spine using dynamic spline approach for vibrational simulation

    NASA Astrophysics Data System (ADS)

    Valentini, Pier Paolo

    2012-12-01

    This paper deals with the description of an innovative numerical dynamic model of the human spine for vibrational behavior assessment. The modeling approach is based on the use of the dynamic spline formalism in order to achieve a condensed description requiring a smaller set of variables but maintaining the nonlinear characteristic and the accuracy of a fully multibody dynamic model. The methodology has been validated by comparing the modal behavior of the spine sub-assembly to other models available in literature. Moreover, the proposed dynamic sub-system has been integrated into a two dimensional multibody model of a seated vehicle occupant in order to compute the seat-to-head transmissibility. This characteristic has been compared to those obtained using other spine sub-models. Both modal behavior and acceleration transmissibility computed with the proposed approach show a very good accordance with others coming from more complex models.

  3. The role of adaptive management as an operational approach for resource management agencies

    USGS Publications Warehouse

    Johnson, B.L.

    1999-01-01

    In making resource management decisions, agencies use a variety of approaches that involve different levels of political concern, historical precedence, data analyses, and evaluation. Traditional decision-making approaches have often failed to achieve objectives for complex problems in large systems, such as the Everglades or the Colorado River. I contend that adaptive management is the best approach available to agencies for addressing this type of complex problem, although its success has been limited thus far. Traditional decision-making approaches have been fairly successful at addressing relatively straightforward problems in small, replicated systems, such as management of trout in small streams or pulp production in forests. However, this success may be jeopardized as more users place increasing demands on these systems. Adaptive management has received little attention from agencies for addressing problems in small-scale systems, but I suggest that it may be a useful approach for creating a holistic view of common problems and developing guidelines that can then be used in simpler, more traditional approaches to management. Although adaptive management may be more expensive to initiate than traditional approaches, it may be less expensive in the long run if it leads to more effective management. The overall goal of adaptive management is not to maintain an optimal condition of the resource, but to develop an optimal management capacity. This is accomplished by maintaining ecological resilience that allows the system to react to inevitable stresses, and generating flexibility in institutions and stakeholders that allows managers to react when conditions change. The result is that, rather than managing for a single, optimal state, we manage within a range of acceptable outcomes while avoiding catastrophes and irreversible negative effects. Copyright ?? 1999 by The Resilience Alliance.

  4. Integrative “Omics”-Approach Discovers Dynamic and Regulatory Features of Bacterial Stress Responses

    PubMed Central

    Mank, Nils N.; Looso, Mario; Rische, Tom; Förstner, Konrad U.; Krüger, Marcus; Klug, Gabriele

    2013-01-01

    Bacteria constantly face stress conditions and therefore mount specific responses to ensure adaptation and survival. Stress responses were believed to be predominantly regulated at the transcriptional level. In the phototrophic bacterium Rhodobacter sphaeroides the response to singlet oxygen is initiated by alternative sigma factors. Further adaptive mechanisms include post-transcriptional and post-translational events, which have to be considered to gain a deeper understanding of how sophisticated regulation networks operate. To address this issue, we integrated three layers of regulation: (1) total mRNA levels at different time-points revealed dynamics of the transcriptome, (2) mRNAs in polysome fractions reported on translational regulation (translatome), and (3) SILAC-based mass spectrometry was used to quantify protein abundances (proteome). The singlet oxygen stress response exhibited highly dynamic features regarding short-term effects and late adaptation, which could in part be assigned to the sigma factors RpoE and RpoH2 generating distinct expression kinetics of corresponding regulons. The occurrence of polar expression patterns of genes within stress-inducible operons pointed to an alternative of dynamic fine-tuning upon stress. In addition to transcriptional activation, we observed significant induction of genes at the post-transcriptional level (translatome), which identified new putative regulators and assigned genes of quorum sensing to the singlet oxygen stress response. Intriguingly, the SILAC approach explored the stress-dependent decline of photosynthetic proteins, but also identified 19 new open reading frames, which were partly validated by RNA-seq. We propose that comparative approaches as presented here will help to create multi-layered expression maps on the system level (“expressome”). Finally, intense mass spectrometry combined with RNA-seq might be the future tool of choice to re-annotate genomes in various organisms and will help to

  5. A general approach to dynamic packet routing with bounded buffers

    SciTech Connect

    Broder, A.Z.; Frieze, A.M.; Upfal, E. |

    1996-12-31

    We prove a sufficient condition for the stability of dynamic packet routing algorithms. Our approach reduces the problem of steady state analysis to the easier and better understood question of static routing. We show that certain high probability and worst case bounds on the quasistatic (finite past) performance of a routing algorithm imply bounds on the performance of the dynamic version of that algorithm. Our technique is particularly useful in analyzing routing on networks with bounded buffers where complicated dependencies make standard queuing techniques inapplicable. We present several applications of our approach. In all cases we start from a known static algorithm, and modify it to fit our framework. In particular we give the first dynamic algorithm for routing on a butterfly with bounded buffers. Both the injection rate for which the algorithm is stable, and the expected time a packet spends in the system are optimal up to constant factors. Our approach is also applicable to the recently introduced adversarial input model.

  6. Multivariate Dynamic Modeling to Investigate Human Adaptation to Space Flight: Initial Concepts

    NASA Technical Reports Server (NTRS)

    Shelhamer, Mark; Mindock, Jennifer; Zeffiro, Tom; Krakauer, David; Paloski, William H.; Lumpkins, Sarah

    2014-01-01

    The array of physiological changes that occur when humans venture into space for long periods presents a challenge to future exploration. The changes are conventionally investigated independently, but a complete understanding of adaptation requires a conceptual basis founded in integrative physiology, aided by appropriate mathematical modeling. NASA is in the early stages of developing such an approach.

  7. Multivariate Dynamical Modeling to Investigate Human Adaptation to Space Flight: Initial Concepts

    NASA Technical Reports Server (NTRS)

    Shelhamer, Mark; Mindock, Jennifer; Zeffiro, Tom; Krakauer, David; Paloski, William H.; Lumpkins, Sarah

    2014-01-01

    The array of physiological changes that occur when humans venture into space for long periods presents a challenge to future exploration. The changes are conventionally investigated independently, but a complete understanding of adaptation requires a conceptual basis founded in intergrative physiology, aided by appropriate mathematical modeling. NASA is in the early stages of developing such an approach.

  8. Combining Computational Fluid Dynamics and Agent-Based Modeling: A New Approach to Evacuation Planning

    PubMed Central

    Epstein, Joshua M.; Pankajakshan, Ramesh; Hammond, Ross A.

    2011-01-01

    We introduce a novel hybrid of two fields—Computational Fluid Dynamics (CFD) and Agent-Based Modeling (ABM)—as a powerful new technique for urban evacuation planning. CFD is a predominant technique for modeling airborne transport of contaminants, while ABM is a powerful approach for modeling social dynamics in populations of adaptive individuals. The hybrid CFD-ABM method is capable of simulating how large, spatially-distributed populations might respond to a physically realistic contaminant plume. We demonstrate the overall feasibility of CFD-ABM evacuation design, using the case of a hypothetical aerosol release in Los Angeles to explore potential effectiveness of various policy regimes. We conclude by arguing that this new approach can be powerfully applied to arbitrary population centers, offering an unprecedented preparedness and catastrophic event response tool. PMID:21687788

  9. A decoupled recursive approach for constrained flexible multibody system dynamics

    NASA Technical Reports Server (NTRS)

    Lai, Hao-Jan; Kim, Sung-Soo; Haug, Edward J.; Bae, Dae-Sung

    1989-01-01

    A variational-vector calculus approach is employed to derive a recursive formulation for dynamic analysis of flexible multibody systems. Kinematic relationships for adjacent flexible bodies are derived in a companion paper, using a state vector notation that represents translational and rotational components simultaneously. Cartesian generalized coordinates are assigned for all body and joint reference frames, to explicitly formulate deformation kinematics under small deformation kinematics and an efficient flexible dynamics recursive algorithm is developed. Dynamic analysis of a closed loop robot is performed to illustrate efficiency of the algorithm.

  10. Adapting Evidence-based Mental Health Treatments in Community Settings: Preliminary Results from a Partnership Approach

    PubMed Central

    Southam-Gerow, Michael A.; Hourigan, Shannon E.; Allin, Robert B.

    2009-01-01

    This paper describes the application of a university-community partnership model to the problem of adapting evidence-based treatment approaches in a community mental health setting. Background on partnership research is presented, with consideration of methodological and practical issues related to this kind of research. Then, a rationale for using partnerships as a basis for conducting mental health treatment research is presented. Finally, an ongoing partnership research project concerned with the adaptation of evidence-based mental health treatments for childhood internalizing problems in community settings is presented, with preliminary results of the ongoing effort discussed. PMID:18697917

  11. An Efficient Adaptive Angle-Doppler Compensation Approach for Non-Sidelooking Airborne Radar STAP.

    PubMed

    Shen, Mingwei; Yu, Jia; Wu, Di; Zhu, Daiyin

    2015-01-01

    In this study, the effects of non-sidelooking airborne radar clutter dispersion on space-time adaptive processing (STAP) is considered, and an efficient adaptive angle-Doppler compensation (EAADC) approach is proposed to improve the clutter suppression performance. In order to reduce the computational complexity, the reduced-dimension sparse reconstruction (RDSR) technique is introduced into the angle-Doppler spectrum estimation to extract the required parameters for compensating the clutter spectral center misalignment. Simulation results to demonstrate the effectiveness of the proposed algorithm are presented. PMID:26053755

  12. A massively parallel adaptive finite element method with dynamic load balancing

    SciTech Connect

    Devine, K.D.; Flaherty, J.E.; Wheat, S.R.; Maccabe, A.B.

    1993-12-31

    The authors construct massively parallel adaptive finite element methods for the solution of hyperbolic conservation laws. Spatial discretization is performed by a discontinuous Galerkin finite element method using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kutta method. Dissipative fluxes and projection limiting prevent oscillations near solution discontinuities. The resulting method is of high order and may be parallelized efficiently on MIMD computers. They demonstrate parallel efficiency through computations on a 1024-processor nCUBE/2 hypercube. They present results using adaptive p-refinement to reduce the computational cost of the method, and tiling, a dynamic, element-based data migration system that maintains global load balance of the adaptive method by overlapping neighborhoods of processors that each perform local balancing.

  13. Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics

    NASA Astrophysics Data System (ADS)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.

  14. Global solution for a kinetic chemotaxis model with internal dynamics and its fast adaptation limit

    NASA Astrophysics Data System (ADS)

    Liao, Jie

    2015-12-01

    A nonlinear kinetic chemotaxis model with internal dynamics incorporating signal transduction and adaptation is considered. This paper is concerned with: (i) the global solution for this model, and, (ii) its fast adaptation limit to Othmer-Dunbar-Alt type model. This limit gives some insight to the molecular origin of the chemotaxis behaviour. First, by using the Schauder fixed point theorem, the global existence of weak solution is proved based on detailed a priori estimates, under quite general assumptions. However, the Schauder theorem does not provide uniqueness, so additional analysis is required to be developed for uniqueness. Next, the fast adaptation limit of this model is derived by extracting a weak convergence subsequence in measure space. For this limit, the first difficulty is to show the concentration effect on the internal state. Another difficulty is the strong compactness argument on the chemical potential, which is essential for passing the nonlinear kinetic equation to the weak limit.

  15. Earthquake Rupture Dynamics using Adaptive Mesh Refinement and High-Order Accurate Numerical Methods

    NASA Astrophysics Data System (ADS)

    Kozdon, J. E.; Wilcox, L.

    2013-12-01

    Our goal is to develop scalable and adaptive (spatial and temporal) numerical methods for coupled, multiphysics problems using high-order accurate numerical methods. To do so, we are developing an opensource, parallel library known as bfam (available at http://bfam.in). The first application to be developed on top of bfam is an earthquake rupture dynamics solver using high-order discontinuous Galerkin methods and summation-by-parts finite difference methods. In earthquake rupture dynamics, wave propagation in the Earth's crust is coupled to frictional sliding on fault interfaces. This coupling is two-way, required the simultaneous simulation of both processes. The use of laboratory-measured friction parameters requires near-fault resolution that is 4-5 orders of magnitude higher than that needed to resolve the frequencies of interest in the volume. This, along with earlier simulations using a low-order, finite volume based adaptive mesh refinement framework, suggest that adaptive mesh refinement is ideally suited for this problem. The use of high-order methods is motivated by the high level of resolution required off the fault in earlier the low-order finite volume simulations; we believe this need for resolution is a result of the excessive numerical dissipation of low-order methods. In bfam spatial adaptivity is handled using the p4est library and temporal adaptivity will be accomplished through local time stepping. In this presentation we will present the guiding principles behind the library as well as verification of code against the Southern California Earthquake Center dynamic rupture code validation test problems.

  16. High protein flexibility and reduced hydration water dynamics are key pressure adaptive strategies in prokaryotes.

    PubMed

    Martinez, N; Michoud, G; Cario, A; Ollivier, J; Franzetti, B; Jebbar, M; Oger, P; Peters, J

    2016-01-01

    Water and protein dynamics on a nanometer scale were measured by quasi-elastic neutron scattering in the piezophile archaeon Thermococcus barophilus and the closely related pressure-sensitive Thermococcus kodakarensis, at 0.1 and 40 MPa. We show that cells of the pressure sensitive organism exhibit higher intrinsic stability. Both the hydration water dynamics and the fast protein and lipid dynamics are reduced under pressure. In contrast, the proteome of T. barophilus is more pressure sensitive than that of T. kodakarensis. The diffusion coefficient of hydration water is reduced, while the fast protein and lipid dynamics are slightly enhanced with increasing pressure. These findings show that the coupling between hydration water and cellular constituents might not be simply a master-slave relationship. We propose that the high flexibility of the T. barophilus proteome associated with reduced hydration water may be the keys to the molecular adaptation of the cells to high hydrostatic pressure. PMID:27595789

  17. High protein flexibility and reduced hydration water dynamics are key pressure adaptive strategies in prokaryotes

    PubMed Central

    Martinez, N.; Michoud, G.; Cario, A.; Ollivier, J.; Franzetti, B.; Jebbar, M.; Oger, P.; Peters, J.

    2016-01-01

    Water and protein dynamics on a nanometer scale were measured by quasi-elastic neutron scattering in the piezophile archaeon Thermococcus barophilus and the closely related pressure-sensitive Thermococcus kodakarensis, at 0.1 and 40 MPa. We show that cells of the pressure sensitive organism exhibit higher intrinsic stability. Both the hydration water dynamics and the fast protein and lipid dynamics are reduced under pressure. In contrast, the proteome of T. barophilus is more pressure sensitive than that of T. kodakarensis. The diffusion coefficient of hydration water is reduced, while the fast protein and lipid dynamics are slightly enhanced with increasing pressure. These findings show that the coupling between hydration water and cellular constituents might not be simply a master-slave relationship. We propose that the high flexibility of the T. barophilus proteome associated with reduced hydration water may be the keys to the molecular adaptation of the cells to high hydrostatic pressure. PMID:27595789

  18. Fiber Bragg grating dynamic strain sensor using an adaptive reflective semiconductor optical amplifier source.

    PubMed

    Wei, Heming; Tao, Chuanyi; Zhu, Yinian; Krishnaswamy, Sridhar

    2016-04-01

    In this paper, a reflective semiconductor optical amplifier (RSOA) is configured to demodulate dynamic spectral shifts of a fiber Bragg grating (FBG) dynamic strain sensor. The FBG sensor and the RSOA source form an adaptive fiber cavity laser. As the reflective spectrum of the FBG sensor changes due to dynamic strains, the wavelength of the laser output shifts accordingly, which is subsequently converted into a corresponding phase shift and demodulated by an unbalanced Michelson interferometer. Due to the short transition time of the RSOA, the RSOA-FBG cavity can respond to dynamic strains at high frequencies extending to megahertz. A demodulator using a PID controller is used to compensate for low-frequency drifts induced by temperature and large quasi-static strains. As the sensitivity of the demodulator is a function of the optical path difference and the FBG spectral width, optimal parameters to obtain high sensitivity are presented. Multiplexing to demodulate multiple FBG sensors is also discussed. PMID:27139682

  19. Inversion for Refractivity Parameters Using a Dynamic Adaptive Cuckoo Search with Crossover Operator Algorithm

    PubMed Central

    Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang

    2016-01-01

    Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938

  20. Determining the Energetics of Small β-Sheet Peptides using Adaptive Steered Molecular Dynamics.

    PubMed

    Bureau, Hailey R; Hershkovits, Eli; Quirk, Stephen; Hernandez, Rigoberto

    2016-04-12

    Mechanically driven unfolding is a useful computational tool for extracting the energetics and stretching pathway of peptides. In this work, two representative β-hairpin peptides, chignolin (PDB: 1UAO ) and trpzip1 (PDB: 1LE0 ), were investigated using an adaptive variant of the original steered molecular dynamics method called adaptive steered molecular dynamics (ASMD). The ASMD method makes it possible to perform energetic calculations on increasingly complex biological systems. Although the two peptides are similar in length and have similar secondary structures, their unfolding energetics are quite different. The hydrogen bonding profile and specific residue pair interaction energies provide insight into the differing stabilities of these peptides and reveal which of the pairs provides the most significant stabilization. PMID:26930270

  1. Symmetry-adapted non-equilibrium molecular dynamics of chiral carbon nanotubes under tensile loading

    NASA Astrophysics Data System (ADS)

    Aghaei, Amin; Dayal, Kaushik

    2011-06-01

    We report on non-equilibrium molecular dynamics calculations of chiral single-wall carbon nanotubes using the framework of Objective Structures. This enables us to adapt molecular dynamics to the symmetry of chiral nanotubes and efficiently simulate these systems with small unit cells. We outline the method and the adaptation of a conventional thermostat and barostat to this setting. We then apply the method in order to examine the behavior of nanotubes with various chiralities subject to a constant extensional strain rate. We examine the effects of temperature, strain rate, and pre-compression/pre-tension. We find a range of failure mechanisms, including the formation of Stone-Wales defects, the opening of voids, and the motion of atoms out of the cross-section.

  2. Inversion for Refractivity Parameters Using a Dynamic Adaptive Cuckoo Search with Crossover Operator Algorithm.

    PubMed

    Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang

    2016-01-01

    Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938

  3. Predicting the evolutionary dynamics of seasonal adaptation to novel climates in Arabidopsis thaliana.

    PubMed

    Fournier-Level, Alexandre; Perry, Emily O; Wang, Jonathan A; Braun, Peter T; Migneault, Andrew; Cooper, Martha D; Metcalf, C Jessica E; Schmitt, Johanna

    2016-05-17

    Predicting whether and how populations will adapt to rapid climate change is a critical goal for evolutionary biology. To examine the genetic basis of fitness and predict adaptive evolution in novel climates with seasonal variation, we grew a diverse panel of the annual plant Arabidopsis thaliana (multiparent advanced generation intercross lines) in controlled conditions simulating four climates: a present-day reference climate, an increased-temperature climate, a winter-warming only climate, and a poleward-migration climate with increased photoperiod amplitude. In each climate, four successive seasonal cohorts experienced dynamic daily temperature and photoperiod variation over a year. We measured 12 traits and developed a genomic prediction model for fitness evolution in each seasonal environment. This model was used to simulate evolutionary trajectories of the base population over 50 y in each climate, as well as 100-y scenarios of gradual climate change following adaptation to a reference climate. Patterns of plastic and evolutionary fitness response varied across seasons and climates. The increased-temperature climate promoted genetic divergence of subpopulations across seasons, whereas in the winter-warming and poleward-migration climates, seasonal genetic differentiation was reduced. In silico "resurrection experiments" showed limited evolutionary rescue compared with the plastic response of fitness to seasonal climate change. The genetic basis of adaptation and, consequently, the dynamics of evolutionary change differed qualitatively among scenarios. Populations with fewer founding genotypes and populations with genetic diversity reduced by prior selection adapted less well to novel conditions, demonstrating that adaptation to rapid climate change requires the maintenance of sufficient standing variation. PMID:27140640

  4. Computational modeling approaches to the dynamics of oncolytic viruses.

    PubMed

    Wodarz, Dominik

    2016-05-01

    Replicating oncolytic viruses represent a promising treatment approach against cancer, specifically targeting the tumor cells. Significant progress has been made through experimental and clinical studies. Besides these approaches, however, mathematical models can be useful when analyzing the dynamics of virus spread through tumors, because the interactions between a growing tumor and a replicating virus are complex and nonlinear, making them difficult to understand by experimentation alone. Mathematical models have provided significant biological insight into the field of virus dynamics, and similar approaches can be adopted to study oncolytic viruses. The review discusses this approach and highlights some of the challenges that need to be overcome in order to build mathematical and computation models that are clinically predictive. WIREs Syst Biol Med 2016, 8:242-252. doi: 10.1002/wsbm.1332 For further resources related to this article, please visit the WIREs website. PMID:27001049

  5. Static and Dynamic Responses of AN Adaptive Optics Ferrofluidic Mirror - Poster Paper

    NASA Astrophysics Data System (ADS)

    Seaman, A.; Cookson, C. J.; MacPherson, J. B.; Borra, E. F.; Ritcey, A. M.; Asselin, D.; Jerominek, H.; Thibault, S.; Campbell, M. C. W.

    2008-01-01

    Ferrofluidic mirrors can be used to improve images of structures at the rear of the eye and may be an effective, low cost solution for adaptive optics, perhaps allowing it to become widespread in clinical settings. We use a Hartmann-Shack wavefront reconstruction technique to study the static and dynamic responses of a ferrofluidic mirror. The displacement heights versus the current in the magnetic field actuators of the mirror have been measured, as well as actuator influence functions (including non-linearites). Finally, we also characterized the real-time dynamics of the mirror.

  6. The adaptive potential of maternal stress exposure in regulating population dynamics.

    PubMed

    Sheriff, Michael J

    2015-03-01

    Ecologists, evolutionary biologists and biomedical researchers are investing great effort in understanding the impact maternal stress may have on offspring phenotypes. Bian et al. advance this field by providing evidence that density-induced maternal stress programs offspring phenotypes, resulting in direct consequences on their fitness and population dynamics, but doing so in a context-dependent manner. They suggest that intrinsic state alterations induced by maternal stress may be one ecological factor generating delayed density-dependent effects. This research highlights the connection between maternal stress and population dynamics, and the importance of understanding the adaptive potential of such effects in a context-dependent manner. PMID:26247815

  7. Establishing a Dynamic Self-Adaptation Learning Algorithm of the BP Neural Network and Its Applications

    NASA Astrophysics Data System (ADS)

    Li, Xiaofeng; Xiang, Suying; Zhu, Pengfei; Wu, Min

    2015-12-01

    In order to avoid the inherent deficiencies of the traditional BP neural network, such as slow convergence speed, that easily leading to local minima, poor generalization ability and difficulty in determining the network structure, the dynamic self-adaptive learning algorithm of the BP neural network is put forward to improve the function of the BP neural network. The new algorithm combines the merit of principal component analysis, particle swarm optimization, correlation analysis and self-adaptive model, hence can effectively solve the problems of selecting structural parameters, initial connection weights and thresholds and learning rates of the BP neural network. This new algorithm not only reduces the human intervention, optimizes the topological structures of BP neural networks and improves the network generalization ability, but also accelerates the convergence speed of a network, avoids trapping into local minima, and enhances network adaptation ability and prediction ability. The dynamic self-adaptive learning algorithm of the BP neural network is used to forecast the total retail sale of consumer goods of Sichuan Province, China. Empirical results indicate that the new algorithm is superior to the traditional BP network algorithm in predicting accuracy and time consumption, which shows the feasibility and effectiveness of the new algorithm.

  8. Altered temporal dynamics of neural adaptation in the aging human auditory cortex.

    PubMed

    Herrmann, Björn; Henry, Molly J; Johnsrude, Ingrid S; Obleser, Jonas

    2016-09-01

    Neural response adaptation plays an important role in perception and cognition. Here, we used electroencephalography to investigate how aging affects the temporal dynamics of neural adaptation in human auditory cortex. Younger (18-31 years) and older (51-70 years) normal hearing adults listened to tone sequences with varying onset-to-onset intervals. Our results show long-lasting neural adaptation such that the response to a particular tone is a nonlinear function of the extended temporal history of sound events. Most important, aging is associated with multiple changes in auditory cortex; older adults exhibit larger and less variable response magnitudes, a larger dynamic response range, and a reduced sensitivity to temporal context. Computational modeling suggests that reduced adaptation recovery times underlie these changes in the aging auditory cortex and that the extended temporal stimulation has less influence on the neural response to the current sound in older compared with younger individuals. Our human electroencephalography results critically narrow the gap to animal electrophysiology work suggesting a compensatory release from cortical inhibition accompanying hearing loss and aging. PMID:27459921

  9. An adaptive mesh finite volume method for the Euler equations of gas dynamics

    NASA Astrophysics Data System (ADS)

    Mungkasi, Sudi

    2016-06-01

    The Euler equations have been used to model gas dynamics for decades. They consist of mathematical equations for the conservation of mass, momentum, and energy of the gas. For a large time value, the solution may contain discontinuities, even when the initial condition is smooth. A standard finite volume numerical method is not able to give accurate solutions to the Euler equations around discontinuities. Therefore we solve the Euler equations using an adaptive mesh finite volume method. In this paper, we present a new construction of the adaptive mesh finite volume method with an efficient computation of the refinement indicator. The adaptive method takes action automatically at around places having inaccurate solutions. Inaccurate solutions are reconstructed to reduce the error by refining the mesh locally up to a certain level. On the other hand, if the solution is already accurate, then the mesh is coarsened up to another certain level to minimize computational efforts. We implement the numerical entropy production as the mesh refinement indicator. As a test problem, we take the Sod shock tube problem. Numerical results show that the adaptive method is more promising than the standard one in solving the Euler equations of gas dynamics.

  10. Stable indirect adaptive switching control for fuzzy dynamical systems based on T-S multiple models

    NASA Astrophysics Data System (ADS)

    Sofianos, Nikolaos A.; Boutalis, Yiannis S.

    2013-08-01

    A new indirect adaptive switching fuzzy control method for fuzzy dynamical systems, based on Takagi-Sugeno (T-S) multiple models is proposed in this article. Motivated by the fact that indirect adaptive control techniques suffer from poor transient response, especially when the initialisation of the estimation model is highly inaccurate and the region of uncertainty for the plant parameters is very large, we present a fuzzy control method that utilises the advantages of multiple models strategy. The dynamical system is expressed using the T-S method in order to cope with the nonlinearities. T-S adaptive multiple models of the system to be controlled are constructed using different initial estimations for the parameters while one feedback linearisation controller corresponds to each model according to a specified reference model. The controller to be applied is determined at every time instant by the model which best approximates the plant using a switching rule with a suitable performance index. Lyapunov stability theory is used in order to obtain the adaptive law for the multiple models parameters, ensuring the asymptotic stability of the system while a modification in this law keeps the control input away from singularities. Also, by introducing the next best controller logic, we avoid possible infeasibilities in the control signal. Simulation results are presented, indicating the effectiveness and the advantages of the proposed method.

  11. Molecular dynamics modelling of mechanical properties of polymers for adaptive aerospace structures

    NASA Astrophysics Data System (ADS)

    Papanikolaou, Michail; Drikakis, Dimitris; Asproulis, Nikolaos

    2015-02-01

    The features of adaptive structures depend on the properties of the supporting materials. For example, morphing wing structures require wing skin materials, such as rubbers that can withstand the forces imposed by the internal mechanism while maintaining the required aerodynamic properties of the aircraft. In this study, Molecular Dynamics and Minimization simulations are being used to establish well-equilibrated models of Ethylene-Propylene-Diene Monomer (EPDM) elastomer systems and investigate their mechanical properties.

  12. Benchmarking novel approaches for modelling species range dynamics

    PubMed Central

    Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H.; Moore, Kara A.; Zimmermann, Niklaus E.

    2016-01-01

    Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species’ range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species’ response to climate change but also emphasise several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches

  13. Benchmarking novel approaches for modelling species range dynamics.

    PubMed

    Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H; Moore, Kara A; Zimmermann, Niklaus E

    2016-08-01

    Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species' range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species' response to climate change but also emphasize several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches

  14. Lineage dynamics and mutation-selection balance in non-adapting asexual populations

    NASA Astrophysics Data System (ADS)

    Pénisson, Sophie; Sniegowski, Paul D.; Colato, Alexandre; Gerrish, Philip J.

    2013-02-01

    In classical population genetics, mutation-selection balance refers to the equilibrium frequency of a deleterious allele established and maintained under two opposing forces: recurrent mutation, which tends to increase the frequency of the allele; and selection, which tends to decrease its frequency. In a haploid population, if μ denotes the per capita rate of production of the deleterious allele by mutation and s denotes the selective disadvantage of carrying the allele, then the classical mutation-selection balance frequency of the allele is approximated by μ/s. This calculation assumes that lineages carrying the mutant allele in question—the ‘focal allele’—do not accumulate deleterious mutations linked to the focal allele. In principle, indirect selection against the focal allele caused by such additional mutations can decrease the frequency of the focal allele below the classical mutation-selection balance. This effect of indirect selection will be strongest in an asexual population, in which the entire genome is in linkage. Here, we use an approach based on a multitype branching process to investigate this effect, analyzing lineage dynamics under mutation, direct selection, and indirect selection in a non-adapting asexual population. We find that the equilibrium balance between recurrent mutation to the focal allele and the forces of direct and indirect selection against the focal allele is closely approximated by γμ/(s + U) (s = 0 if the focal allele is neutral), where γ ≈ eθθ-(ω+θ)(ω + θ)(Γ(ω + θ) - Γ(ω + θ,θ)), \\theta =U/\\tilde {s}, and \\omega =s/\\tilde {s}; U denotes the genomic deleterious mutation rate and \\tilde {s} denotes the geometric mean selective disadvantage of deleterious mutations elsewhere on the genome. This mutation-selection balance for asexual populations can remain surprisingly invariant over wide ranges of the mutation rate.

  15. Complex ordering in spin networks: Critical role of adaptation rate for dynamically evolving interactions

    NASA Astrophysics Data System (ADS)

    Pathak, Anand; Sinha, Sitabhra

    2015-09-01

    Many complex systems can be represented as networks of dynamical elements whose states evolve in response to interactions with neighboring elements, noise and external stimuli. The collective behavior of such systems can exhibit remarkable ordering phenomena such as chimera order corresponding to coexistence of ordered and disordered regions. Often, the interactions in such systems can also evolve over time responding to changes in the dynamical states of the elements. Link adaptation inspired by Hebbian learning, the dominant paradigm for neuronal plasticity, has been earlier shown to result in structural balance by removing any initial frustration in a system that arises through conflicting interactions. Here we show that the rate of the adaptive dynamics for the interactions is crucial in deciding the emergence of different ordering behavior (including chimera) and frustration in networks of Ising spins. In particular, we observe that small changes in the link adaptation rate about a critical value result in the system exhibiting radically different energy landscapes, viz., smooth landscape corresponding to balanced systems seen for fast learning, and rugged landscapes corresponding to frustrated systems seen for slow learning.

  16. Flexibility and enzymatic cold-adaptation: a comparative molecular dynamics investigation of the elastase family.

    PubMed

    Papaleo, Elena; Riccardi, Laura; Villa, Chiara; Fantucci, Piercarlo; De Gioia, Luca

    2006-08-01

    Molecular dynamics simulations of representative mesophilic and psycrophilic elastases have been carried out at different temperatures to explore the molecular basis of cold adaptation inside a specific enzymatic family. The molecular dynamics trajectories have been compared and analyzed in terms of secondary structure, molecular flexibility, intramolecular and protein-solvent interactions, unravelling molecular features relevant to rationalize the efficient catalytic activity of psychrophilic elastases at low temperature. The comparative molecular dynamics investigation reveals that modulation of the number of protein-solvent interactions is not the evolutionary strategy followed by the psycrophilic elastase to enhance catalytic activity at low temperature. In addition, flexibility and solvent accessibility of the residues forming the catalytic triad and the specificity pocket are comparable in the cold- and warm-adapted enzymes. Instead, loop regions with different amino acid composition in the two enzymes, and clustered around the active site or the specificity pocket, are characterized by enhanced flexibility in the cold-adapted enzyme. Remarkably, the psycrophilic elastase is characterized by reduced flexibility, when compared to the mesophilic counterpart, in some scattered regions distant from the functional sites, in agreement with hypothesis suggesting that local rigidity in regions far from functional sites can be beneficial for the catalytic activity of psychrophilic enzymes. PMID:16920043

  17. Effects of adaptive protective behavior on the dynamics of sexually transmitted infections.

    PubMed

    Hayashi, Michael A L; Eisenberg, Marisa C

    2016-01-01

    Sexually transmitted infections (STIs) continue to present a complex and costly challenge to public health programs. The preferences and social dynamics of a population can have a large impact on the course of an outbreak as well as the effectiveness of interventions intended to influence individual behavior. In addition, individuals may alter their sexual behavior in response to the presence of STIs, creating a feedback loop between transmission and behavior. We investigate the consequences of modeling the interaction between STI transmission and prophylactic use with a model that links a Susceptible-Infectious-Susceptible (SIS) system to evolutionary game dynamics that determine the effective contact rate. The combined model framework allows us to address protective behavior by both infected and susceptible individuals. Feedback between behavioral adaptation and prevalence creates a wide range of dynamic behaviors in the combined model, including damped and sustained oscillations as well as bistability, depending on the behavioral parameters and disease growth rate. We found that disease extinction is possible for multiple regions where R0>1, due to behavior adaptation driving the epidemic downward, although conversely endemic prevalence for arbitrarily low R0 is also possible if contact rates are sufficiently high. We also tested how model misspecification might affect disease forecasting and estimation of the model parameters and R0. We found that alternative models that neglect the behavioral feedback or only consider behavior adaptation by susceptible individuals can potentially yield misleading parameter estimates or omit significant features of the disease trajectory. PMID:26362102

  18. Evolution dynamics of a model for gene duplication under adaptive conflict

    NASA Astrophysics Data System (ADS)

    Ancliff, Mark; Park, Jeong-Man

    2014-06-01

    We present and solve the dynamics of a model for gene duplication showing escape from adaptive conflict. We use a Crow-Kimura quasispecies model of evolution where the fitness landscape is a function of Hamming distances from two reference sequences, which are assumed to optimize two different gene functions, to describe the dynamics of a mixed population of individuals with single and double copies of a pleiotropic gene. The evolution equations are solved through a spin coherent state path integral, and we find two phases: one is an escape from an adaptive conflict phase, where each copy of a duplicated gene evolves toward subfunctionalization, and the other is a duplication loss of function phase, where one copy maintains its pleiotropic form and the other copy undergoes neutral mutation. The phase is determined by a competition between the fitness benefits of subfunctionalization and the greater mutational load associated with maintaining two gene copies. In the escape phase, we find a dynamics of an initial population of single gene sequences only which escape adaptive conflict through gene duplication and find that there are two time regimes: until a time t* single gene sequences dominate, and after t* double gene sequences outgrow single gene sequences. The time t* is identified as the time necessary for subfunctionalization to evolve and spread throughout the double gene sequences, and we show that there is an optimum mutation rate which minimizes this time scale.

  19. A Direct Adaptive Control Approach in the Presence of Model Mismatch

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh M.; Tao, Gang; Khong, Thuan

    2009-01-01

    This paper considers the problem of direct model reference adaptive control when the plant-model matching conditions are violated due to abnormal changes in the plant or incorrect knowledge of the plant's mathematical structure. The approach consists of direct adaptation of state feedback gains for state tracking, and simultaneous estimation of the plant-model mismatch. Because of the mismatch, the plant can no longer track the state of the original reference model, but may be able to track a new reference model that still provides satisfactory performance. The reference model is updated if the estimated plant-model mismatch exceeds a bound that is determined via robust stability and/or performance criteria. The resulting controller is a hybrid direct-indirect adaptive controller that offers asymptotic state tracking in the presence of plant-model mismatch as well as parameter deviations.

  20. Prediction of contact forces of underactuated finger by adaptive neuro fuzzy approach

    NASA Astrophysics Data System (ADS)

    Petković, Dalibor; Shamshirband, Shahaboddin; Abbasi, Almas; Kiani, Kourosh; Al-Shammari, Eiman Tamah

    2015-12-01

    To obtain adaptive finger passive underactuation can be used. Underactuation principle can be used to adapt shapes of the fingers for grasping objects. The fingers with underactuation do not require control algorithm. In this study a kinetostatic model of the underactuated finger mechanism was analyzed. The underactuation is achieved by adding the compliance in every finger joint. Since the contact forces of the finger depend on contact position of the finger and object, it is suitable to make a prediction model for the contact forces in function of contact positions of the finger and grasping objects. In this study prediction of the contact forces was established by a soft computing approach. Adaptive neuro-fuzzy inference system (ANFIS) was applied as the soft computing method to perform the prediction of the finger contact forces.

  1. A simple and flexible graphical approach for adaptive group-sequential clinical trials.

    PubMed

    Sugitani, Toshifumi; Bretz, Frank; Maurer, Willi

    2016-01-01

    In this article, we introduce a graphical approach to testing multiple hypotheses in group-sequential clinical trials allowing for midterm design modifications. It is intended for structured study objectives in adaptive clinical trials and extends the graphical group-sequential designs from Maurer and Bretz (Statistics in Biopharmaceutical Research 2013; 5: 311-320) to adaptive trial designs. The resulting test strategies can be visualized graphically and performed iteratively. We illustrate the methodology with two examples from our clinical trial practice. First, we consider a three-armed gold-standard trial with the option to reallocate patients to either the test drug or the active control group, while stopping the recruitment of patients to placebo, after having demonstrated superiority of the test drug over placebo at an interim analysis. Second, we consider a confirmatory two-stage adaptive design with treatment selection at interim. PMID:25372071

  2. Spike-Threshold Adaptation Predicted by Membrane Potential Dynamics In Vivo

    PubMed Central

    Fontaine, Bertrand; Peña, José Luis; Brette, Romain

    2014-01-01

    Neurons encode information in sequences of spikes, which are triggered when their membrane potential crosses a threshold. In vivo, the spiking threshold displays large variability suggesting that threshold dynamics have a profound influence on how the combined input of a neuron is encoded in the spiking. Threshold variability could be explained by adaptation to the membrane potential. However, it could also be the case that most threshold variability reflects noise and processes other than threshold adaptation. Here, we investigated threshold variation in auditory neurons responses recorded in vivo in barn owls. We found that spike threshold is quantitatively predicted by a model in which the threshold adapts, tracking the membrane potential at a short timescale. As a result, in these neurons, slow voltage fluctuations do not contribute to spiking because they are filtered by threshold adaptation. More importantly, these neurons can only respond to input spikes arriving together on a millisecond timescale. These results demonstrate that fast adaptation to the membrane potential captures spike threshold variability in vivo. PMID:24722397

  3. Demographic source-sink dynamics restrict local adaptation in Elliott's blueberry (Vaccinium elliottii).

    PubMed

    Anderson, Jill T; Geber, Monica A

    2010-02-01

    In heterogeneous landscapes, divergent selection can favor the evolution of locally adapted ecotypes, especially when interhabitat gene flow is minimal. However, if habitats differ in size or quality, source-sink dynamics can shape evolutionary trajectories. Upland and bottomland forests of the southeastern USA differ in water table depth, light availability, edaphic conditions, and plant community. We conducted a multiyear reciprocal transplant experiment to test whether Elliott's blueberry (Vaccinium elliottii) is locally adapted to these contrasting environments. Additionally, we exposed seedlings and cuttings to prolonged drought and flooding in the greenhouse to assess fitness responses to abiotic stress. Contrary to predictions of local adaptation, V. elliottii families exhibited significantly higher survivorship and growth in upland than in bottomland forests and under drought than flooded conditions, regardless of habitat of origin. Neutral population differentiation was minimal, suggesting widespread interhabitat migration. Population density, reproductive output, and genetic diversity were all significantly greater in uplands than in bottomlands. These disparities likely result in asymmetric gene flow from uplands to bottomlands. Thus, adaptation to a marginal habitat can be constrained by small populations, limited fitness, and immigration from a benign habitat. Our study highlights the importance of demography and genetic diversity in the evolution of local (mal)adaptation. PMID:19703223

  4. Lexical adaptation of link grammar to the biomedical sublanguage: a comparative evaluation of three approaches

    PubMed Central

    Pyysalo, Sampo; Salakoski, Tapio; Aubin, Sophie; Nazarenko, Adeline

    2006-01-01

    Background We study the adaptation of Link Grammar Parser to the biomedical sublanguage with a focus on domain terms not found in a general parser lexicon. Using two biomedical corpora, we implement and evaluate three approaches to addressing unknown words: automatic lexicon expansion, the use of morphological clues, and disambiguation using a part-of-speech tagger. We evaluate each approach separately for its effect on parsing performance and consider combinations of these approaches. Results In addition to a 45% increase in parsing efficiency, we find that the best approach, incorporating information from a domain part-of-speech tagger, offers a statistically significant 10% relative decrease in error. Conclusion When available, a high-quality domain part-of-speech tagger is the best solution to unknown word issues in the domain adaptation of a general parser. In the absence of such a resource, surface clues can provide remarkably good coverage and performance when tuned to the domain. The adapted parser is available under an open-source license. PMID:17134475

  5. An adaptive Kalman filter approach for cardiorespiratory signal extraction and fusion of non-contacting sensors

    PubMed Central

    2014-01-01

    Background Extracting cardiorespiratory signals from non-invasive and non-contacting sensor arrangements, i.e. magnetic induction sensors, is a challenging task. The respiratory and cardiac signals are mixed on top of a large and time-varying offset and are likely to be disturbed by measurement noise. Basic filtering techniques fail to extract relevant information for monitoring purposes. Methods We present a real-time filtering system based on an adaptive Kalman filter approach that separates signal offsets, respiratory and heart signals from three different sensor channels. It continuously estimates respiration and heart rates, which are fed back into the system model to enhance performance. Sensor and system noise covariance matrices are automatically adapted to the aimed application, thus improving the signal separation capabilities. We apply the filtering to two different subjects with different heart rates and sensor properties and compare the results to the non-adaptive version of the same Kalman filter. Also, the performance, depending on the initialization of the filters, is analyzed using three different configurations ranging from best to worst case. Results Extracted data are compared with reference heart rates derived from a standard pulse-photoplethysmographic sensor and respiration rates from a flowmeter. In the worst case for one of the subjects the adaptive filter obtains mean errors (standard deviations) of -0.2 min −1 (0.3 min −1) and -0.7 bpm (1.7 bpm) (compared to -0.2 min −1 (0.4 min −1) and 42.0 bpm (6.1 bpm) for the non-adaptive filter) for respiration and heart rate, respectively. In bad conditions the heart rate is only correctly measurable when the Kalman matrices are adapted to the target sensor signals. Also, the reduced mean error between the extracted offset and the raw sensor signal shows that adapting the Kalman filter continuously improves the ability to separate the desired signals from the raw sensor data. The average

  6. Adaptive Landscape by Environment Interactions Dictate Evolutionary Dynamics in Models of Drug Resistance.

    PubMed

    Ogbunugafor, C Brandon; Wylie, C Scott; Diakite, Ibrahim; Weinreich, Daniel M; Hartl, Daniel L

    2016-01-01

    The adaptive landscape analogy has found practical use in recent years, as many have explored how their understanding can inform therapeutic strategies that subvert the evolution of drug resistance. A major barrier to applications of these concepts is a lack of detail concerning how the environment affects adaptive landscape topography, and consequently, the outcome of drug treatment. Here we combine empirical data, evolutionary theory, and computer simulations towards dissecting adaptive landscape by environment interactions for the evolution of drug resistance in two dimensions-drug concentration and drug type. We do so by studying the resistance mediated by Plasmodium falciparum dihydrofolate reductase (DHFR) to two related inhibitors-pyrimethamine and cycloguanil-across a breadth of drug concentrations. We first examine whether the adaptive landscapes for the two drugs are consistent with common definitions of cross-resistance. We then reconstruct all accessible pathways across the landscape, observing how their structure changes with drug environment. We offer a mechanism for non-linearity in the topography of accessible pathways by calculating of the interaction between mutation effects and drug environment, which reveals rampant patterns of epistasis. We then simulate evolution in several different drug environments to observe how these individual mutation effects (and patterns of epistasis) influence paths taken at evolutionary "forks in the road" that dictate adaptive dynamics in silico. In doing so, we reveal how classic metrics like the IC50 and minimal inhibitory concentration (MIC) are dubious proxies for understanding how evolution will occur across drug environments. We also consider how the findings reveal ambiguities in the cross-resistance concept, as subtle differences in adaptive landscape topography between otherwise equivalent drugs can drive drastically different evolutionary outcomes. Summarizing, we discuss the results with regards to their

  7. Adaptive Landscape by Environment Interactions Dictate Evolutionary Dynamics in Models of Drug Resistance

    PubMed Central

    Ogbunugafor, C. Brandon; Wylie, C. Scott; Diakite, Ibrahim; Weinreich, Daniel M.; Hartl, Daniel L.

    2016-01-01

    The adaptive landscape analogy has found practical use in recent years, as many have explored how their understanding can inform therapeutic strategies that subvert the evolution of drug resistance. A major barrier to applications of these concepts is a lack of detail concerning how the environment affects adaptive landscape topography, and consequently, the outcome of drug treatment. Here we combine empirical data, evolutionary theory, and computer simulations towards dissecting adaptive landscape by environment interactions for the evolution of drug resistance in two dimensions—drug concentration and drug type. We do so by studying the resistance mediated by Plasmodium falciparum dihydrofolate reductase (DHFR) to two related inhibitors—pyrimethamine and cycloguanil—across a breadth of drug concentrations. We first examine whether the adaptive landscapes for the two drugs are consistent with common definitions of cross-resistance. We then reconstruct all accessible pathways across the landscape, observing how their structure changes with drug environment. We offer a mechanism for non-linearity in the topography of accessible pathways by calculating of the interaction between mutation effects and drug environment, which reveals rampant patterns of epistasis. We then simulate evolution in several different drug environments to observe how these individual mutation effects (and patterns of epistasis) influence paths taken at evolutionary “forks in the road” that dictate adaptive dynamics in silico. In doing so, we reveal how classic metrics like the IC50 and minimal inhibitory concentration (MIC) are dubious proxies for understanding how evolution will occur across drug environments. We also consider how the findings reveal ambiguities in the cross-resistance concept, as subtle differences in adaptive landscape topography between otherwise equivalent drugs can drive drastically different evolutionary outcomes. Summarizing, we discuss the results with

  8. A modified dynamic evolving neural-fuzzy approach to modeling customer satisfaction for affective design.

    PubMed

    Kwong, C K; Fung, K Y; Jiang, Huimin; Chan, K Y; Siu, Kin Wai Michael

    2013-01-01

    Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort. PMID:24385884

  9. A Modified Dynamic Evolving Neural-Fuzzy Approach to Modeling Customer Satisfaction for Affective Design

    PubMed Central

    Kwong, C. K.; Fung, K. Y.; Jiang, Huimin; Chan, K. Y.

    2013-01-01

    Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort. PMID:24385884

  10. The effective field theorist's approach to gravitational dynamics

    NASA Astrophysics Data System (ADS)

    Porto, Rafael A.

    2016-05-01

    We review the effective field theory (EFT) approach to gravitational dynamics. We focus on extended objects in long-wavelength backgrounds and gravitational wave emission from spinning binary systems. We conclude with an introduction to EFT methods for the study of cosmological large scale structures.

  11. Multicultural Minds: A Dynamic Constructivist Approach to Culture and Cognition.

    ERIC Educational Resources Information Center

    Hong, Ying-yi; Morris, Michael W.; Chiu, Chie-yue; Benet-Martinez, Veronica

    2000-01-01

    This approach to culture and cognition highlights dynamics through which cultural knowledge becomes operative in guiding the construction of meaning from a stimulus. Cognitive priming experiments simulated how bicultural people switch between cultural frames in response to culturally laden symbols. Results illuminate how cultural constructs are…

  12. A Short-Term Dynamic Psychotherapy Approach for College Students

    ERIC Educational Resources Information Center

    Carlson, Thomas M.

    2004-01-01

    This article explores the need for university counseling centers (UCCs) to implement brief therapies and describes one such treatment, intensive short-term dynamic psychotherapy (ISTDP), as a particularly viable therapeutic approach in this setting. Because ISTDP is not appropriate for all students seeking therapy, a careful assessment of the…

  13. Gas dynamical approach to study dust acoustic solitary waves

    SciTech Connect

    Maitra, Sarit; Roychoudhury, Rajkumar

    2005-06-15

    Dust acoustic nonlinear waves are studied using gas dynamical approach. The structure equation for dust fluid has been obtained using the conservation laws for mass flux and momentum. The role of dust sonic point for the formation of soliton has been discussed. Conditions for the existence of soliton have been derived in terms of collective Mach number, taking into account the dust charge variation.

  14. Improving Quality in Education: Dynamic Approaches to School Improvement

    ERIC Educational Resources Information Center

    Creemers, Bert P. M.; Kyriakides, Leonidas

    2011-01-01

    This book explores an approach to school improvement that merges the traditions of educational effectiveness research and school improvement efforts. It displays how the dynamic model, which is theoretical and empirically validated, can be used in both traditions. Each chapter integrates evidence from international and national studies, showing…

  15. Critical dynamic approach to stationary states in complex systems

    NASA Astrophysics Data System (ADS)

    Rozenfeld, A. F.; Laneri, K.; Albano, E. V.

    2007-04-01

    A dynamic scaling Ansatz for the approach to stationary states in complex systems is proposed and tested by means of extensive simulations applied to both the Bak-Sneppen (BS) model, which exhibits robust Self-Organised Critical (SOC) behaviour, and the Game of Life (GOL) of J. Conway, whose critical behaviour is under debate. Considering the dynamic scaling behaviour of the density of sites (ρ(t)), it is shown that i) by starting the dynamic measurements with configurations such that ρ(t=0) →0, one observes an initial increase of the density with exponents θ= 0.12(2) and θ= 0.11(2) for the BS and GOL models, respectively; ii) by using initial configurations with ρ(t=0) →1, the density decays with exponents δ= 0.47(2) and δ= 0.28(2) for the BS and GOL models, respectively. It is also shown that the temporal autocorrelation decays with exponents Ca = 0.35(2) (Ca = 0.35(5)) for the BS (GOL) model. By using these dynamically determined critical exponents and suitable scaling relationships, we also obtain the dynamic exponents z = 2.10(5) (z = 2.10(5)) for the BS (GOL) model. Based on this evidence we conclude that the dynamic approach to stationary states of the investigated models can be described by suitable power-law functions of time with well-defined exponents.

  16. A dynamic appearance descriptor approach to facial actions temporal modeling.

    PubMed

    Jiang, Bihan; Valstar, Michel; Martinez, Brais; Pantic, Maja

    2014-02-01

    Both the configuration and the dynamics of facial expressions are crucial for the interpretation of human facial behavior. Yet to date, the vast majority of reported efforts in the field either do not take the dynamics of facial expressions into account, or focus only on prototypic facial expressions of six basic emotions. Facial dynamics can be explicitly analyzed by detecting the constituent temporal segments in Facial Action Coding System (FACS) Action Units (AUs)-onset, apex, and offset. In this paper, we present a novel approach to explicit analysis of temporal dynamics of facial actions using the dynamic appearance descriptor Local Phase Quantization from Three Orthogonal Planes (LPQ-TOP). Temporal segments are detected by combining a discriminative classifier for detecting the temporal segments on a frame-by-frame basis with Markov Models that enforce temporal consistency over the whole episode. The system is evaluated in detail over the MMI facial expression database, the UNBC-McMaster pain database, the SAL database, the GEMEP-FERA dataset in database-dependent experiments, in cross-database experiments using the Cohn-Kanade, and the SEMAINE databases. The comparison with other state-of-the-art methods shows that the proposed LPQ-TOP method outperforms the other approaches for the problem of AU temporal segment detection, and that overall AU activation detection benefits from dynamic appearance information. PMID:23757539

  17. Charting Multidisciplinary Team External Dynamics Using a Systems Thinking Approach

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois; Waszak, Martin R.; Jones, Kenneth M.; Silcox, Richard J.; Silva, Walter A.; Nowaczyk, Ronald H.

    1998-01-01

    Using the formalism provided by the Systems Thinking approach, the dynamics present when operating multidisciplinary teams are examined in the context of the NASA Langley Research and Technology Group, an R&D organization organized along functional lines. The paper focuses on external dynamics and examines how an organization creates and nurtures the teams and how it disseminates and retains the lessons and expertise created by the multidisciplinary activities. Key variables are selected and the causal relationships between the variables are identified. Five "stories" are told, each of which touches on a different aspect of the dynamics. The Systems Thinking Approach provides recommendations as to interventions that will facilitate the introduction of multidisciplinary teams and that therefore will increase the likelihood of performing successful multidisciplinary developments. These interventions can be carried out either by individual researchers, line management or program management.

  18. An efficient neural network approach to dynamic robot motion planning.

    PubMed

    Yang, S X; Meng, M

    2000-03-01

    In this paper, a biologically inspired neural network approach to real-time collision-free motion planning of mobile robots or robot manipulators in a nonstationary environment is proposed. Each neuron in the topologically organized neural network has only local connections, whose neural dynamics is characterized by a shunting equation. Thus the computational complexity linearly depends on the neural network size. The real-time robot motion is planned through the dynamic activity landscape of the neural network without any prior knowledge of the dynamic environment, without explicitly searching over the free workspace or the collision paths, and without any learning procedures. Therefore it is computationally efficient. The global stability of the neural network is guaranteed by qualitative analysis and the Lyapunov stability theory. The effectiveness and efficiency of the proposed approach are demonstrated through simulation studies. PMID:10935758

  19. A Unified Nonlinear Adaptive Approach for Detection and Isolation of Engine Faults

    NASA Technical Reports Server (NTRS)

    Tang, Liang; DeCastro, Jonathan A.; Zhang, Xiaodong; Farfan-Ramos, Luis; Simon, Donald L.

    2010-01-01

    A challenging problem in aircraft engine health management (EHM) system development is to detect and isolate faults in system components (i.e., compressor, turbine), actuators, and sensors. Existing nonlinear EHM methods often deal with component faults, actuator faults, and sensor faults separately, which may potentially lead to incorrect diagnostic decisions and unnecessary maintenance. Therefore, it would be ideal to address sensor faults, actuator faults, and component faults under one unified framework. This paper presents a systematic and unified nonlinear adaptive framework for detecting and isolating sensor faults, actuator faults, and component faults for aircraft engines. The fault detection and isolation (FDI) architecture consists of a parallel bank of nonlinear adaptive estimators. Adaptive thresholds are appropriately designed such that, in the presence of a particular fault, all components of the residual generated by the adaptive estimator corresponding to the actual fault type remain below their thresholds. If the faults are sufficiently different, then at least one component of the residual generated by each remaining adaptive estimator should exceed its threshold. Therefore, based on the specific response of the residuals, sensor faults, actuator faults, and component faults can be isolated. The effectiveness of the approach was evaluated using the NASA C-MAPSS turbofan engine model, and simulation results are presented.

  20. Adaptive combinatorial design to explore large experimental spaces: approach and validation.

    PubMed

    Lejay, L V; Shasha, D E; Palenchar, P M; Kouranov, A Y; Cruikshank, A A; Chou, M F; Coruzzi, G M

    2004-12-01

    Systems biology requires mathematical tools not only to analyse large genomic datasets, but also to explore large experimental spaces in a systematic yet economical way. We demonstrate that two-factor combinatorial design (CD), shown to be useful in software testing, can be used to design a small set of experiments that would allow biologists to explore larger experimental spaces. Further, the results of an initial set of experiments can be used to seed further 'Adaptive' CD experimental designs. As a proof of principle, we demonstrate the usefulness of this Adaptive CD approach by analysing data from the effects of six binary inputs on the regulation of genes in the N-assimilation pathway of Arabidopsis. This CD approach identified the more important regulatory signals previously discovered by traditional experiments using far fewer experiments, and also identified examples of input interactions previously unknown. Tests using simulated data show that Adaptive CD suffers from fewer false positives than traditional experimental designs in determining decisive inputs, and succeeds far more often than traditional or random experimental designs in determining when genes are regulated by input interactions. We conclude that Adaptive CD offers an economical framework for discovering dominant inputs and interactions that affect different aspects of genomic outputs and organismal responses. PMID:17051692

  1. Adaptive dynamic resource allocation in annual eusocial insects: environmental variation will not necessarily promote graded control

    PubMed Central

    Mitesser, Oliver; Weissel, Norbert; Strohm, Erhard; Poethke, Hans-Joachim

    2007-01-01

    Background According to the classical model of Macevicz and Oster, annual eusocial insects should show a clear dichotomous "bang-bang" strategy of resource allocation; colony fitness is maximised when a period of pure colony growth (exclusive production of workers) is followed by a single reproductive period characterised by the exclusive production of sexuals. However, in several species graded investment strategies with a simultaneous production of workers and sexuals have been observed. Such deviations from the "bang-bang" strategy are usually interpreted as an adaptive (bet-hedging) response to environmental fluctuations such as variation in season length or food availability. To generate predictions about the optimal investment pattern of insect colonies in fluctuating environments, we slightly modified Macevicz and Oster's classical model of annual colony dynamics and used a dynamic programming approach nested into a recurrence procedure for the solution of the stochastic optimal control problem. Results 1) The optimal switching time between pure colony growth and the exclusive production of sexuals decreases with increasing environmental variance. 2) Yet, for reasonable levels of environmental fluctuations no deviation from the typical bang-bang strategy is predicted. 3) Model calculations for the halictid bee Lasioglossum malachurum reveal that bet-hedging is not likely to be the reason for the graded allocation into sexuals versus workers observed in this species. 4) When environmental variance reaches a critical level our model predicts an abrupt change from dichotomous behaviour to graded allocation strategies, but the transition between colony growth and production of sexuals is not necessarily monotonic. Both, the critical level of environmental variance as well as the characteristic pattern of resource allocation strongly depend on the type of function used to describe environmental fluctuations. Conclusion Up to now bet-hedging as an evolutionary

  2. A Dynamic Time Warping Approach to Real-Time Activity Recognition for Food Preparation

    NASA Astrophysics Data System (ADS)

    Pham, Cuong; Plötz, Thomas; Olivier, Patrick

    We present a dynamic time warping based activity recognition system for the analysis of low-level food preparation activities. Accelerometers embedded into kitchen utensils provide continuous sensor data streams while people are using them for cooking. The recognition framework analyzes frames of contiguous sensor readings in real-time with low latency. It thereby adapts to the idiosyncrasies of utensil use by automatically maintaining a template database. We demonstrate the effectiveness of the classification approach by a number of real-world practical experiments on a publically available dataset. The adaptive system shows superior performance compared to a static recognizer. Furthermore, we demonstrate the generalization capabilities of the system by gradually reducing the amount of training samples. The system achieves excellent classification results even if only a small number of training samples is available, which is especially relevant for real-world scenarios.

  3. Bayesian approach increases accuracy when selecting cowpea genotypes with high adaptability and phenotypic stability.

    PubMed

    Barroso, L M A; Teodoro, P E; Nascimento, M; Torres, F E; Dos Santos, A; Corrêa, A M; Sagrilo, E; Corrêa, C C G; Silva, F A; Ceccon, G

    2016-01-01

    This study aimed to verify that a Bayesian approach could be used for the selection of upright cowpea genotypes with high adaptability and phenotypic stability, and the study also evaluated the efficiency of using informative and minimally informative a priori distributions. Six trials were conducted in randomized blocks, and the grain yield of 17 upright cowpea genotypes was assessed. To represent the minimally informative a priori distributions, a probability distribution with high variance was used, and a meta-analysis concept was adopted to represent the informative a priori distributions. Bayes factors were used to conduct comparisons between the a priori distributions. The Bayesian approach was effective for selection of upright cowpea genotypes with high adaptability and phenotypic stability using the Eberhart and Russell method. Bayes factors indicated that the use of informative a priori distributions provided more accurate results than minimally informative a priori distributions. PMID:26985961

  4. An Adaptive Particle Filtering Approach to Tracking Modes in a Varying Shallow Ocean Environment

    SciTech Connect

    Candy, J V

    2011-03-22

    The shallow ocean environment is ever changing mostly due to temperature variations in its upper layers (< 100m) directly affecting sound propagation throughout. The need to develop processors that are capable of tracking these changes implies a stochastic as well as an 'adaptive' design. The stochastic requirement follows directly from the multitude of variations created by uncertain parameters and noise. Some work has been accomplished in this area, but the stochastic nature was constrained to Gaussian uncertainties. It has been clear for a long time that this constraint was not particularly realistic leading a Bayesian approach that enables the representation of any uncertainty distribution. Sequential Bayesian techniques enable a class of processors capable of performing in an uncertain, nonstationary (varying statistics), non-Gaussian, variable shallow ocean. In this paper adaptive processors providing enhanced signals for acoustic hydrophonemeasurements on a vertical array as well as enhanced modal function estimates are developed. Synthetic data is provided to demonstrate that this approach is viable.

  5. Performance Monitoring and Assessment of Neuro-Adaptive Controllers for Aerospace Applications Using a Bayesian Approach

    NASA Technical Reports Server (NTRS)

    Gupta, Pramod; Guenther, Kurt; Hodgkinson, John; Jacklin, Stephen; Richard, Michael; Schumann, Johann; Soares, Fola

    2005-01-01

    Modern exploration missions require modern control systems-control systems that can handle catastrophic changes in the system's behavior, compensate for slow deterioration in sustained operations, and support fast system ID. Adaptive controllers, based upon Neural Networks have these capabilities, but they can only be used safely if proper verification & validation (V&V) can be done. In this paper we present our V & V approach and simulation result within NASA's Intelligent Flight Control Systems (IFCS).

  6. A unique approach to the development of adaptive sensor systems for future spacecraft

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Tietz, J. C.; Sivertson, W. E.; Wilson, R. G.

    1979-01-01

    In the Shuttle era, it should be possible to develop adaptive remote sensor systems serving more directly specific researcher and user needs and at the same time alleviating the data management problem via intelligent sensor capabilities. The present paper provides a summary of such an approach, wherein specific capabilities have been developed for future global monitoring applications. A detailed description of FILE-I (Feature Identification and Location Experiment) is included along with a summary of future experiments currently under development.

  7. 3D dynamic rupture with anelastic wave propagation using an hp-adaptive Discontinuous Galerkin method

    NASA Astrophysics Data System (ADS)

    Tago, J.; Cruz-Atienza, V. M.; Etienne, V.; Virieux, J.; Benjemaa, M.; Sanchez-Sesma, F. J.

    2010-12-01

    Simulating any realistic seismic scenario requires incorporating physical basis into the model. Considering both the dynamics of the rupture process and the anelastic attenuation of seismic waves is essential to this purpose and, therefore, we choose to extend the hp-adaptive Discontinuous Galerkin finite-element method to integrate these physical aspects. The 3D elastodynamic equations in an unstructured tetrahedral mesh are solved with a second-order time marching approach in a high-performance computing environment. The first extension incorporates the viscoelastic rheology so that the intrinsic attenuation of the medium is considered in terms of frequency dependent quality factors (Q). On the other hand, the extension related to dynamic rupture is integrated through explicit boundary conditions over the crack surface. For this visco-elastodynamic formulation, we introduce an original discrete scheme that preserves the optimal code performance of the elastodynamic equations. A set of relaxation mechanisms describes the behavior of a generalized Maxwell body. We approximate almost constant Q in a wide frequency range by selecting both suitable relaxation frequencies and anelastic coefficients characterizing these mechanisms. In order to do so, we solve an optimization problem which is critical to minimize the amount of relaxation mechanisms. Two strategies are explored: 1) a least squares method and 2) a genetic algorithm (GA). We found that the improvement provided by the heuristic GA method is negligible. Both optimization strategies yield Q values within the 5% of the target constant Q mechanism. Anelastic functions (i.e. memory variables) are introduced to efficiently evaluate the time convolution terms involved in the constitutive equations and thus to minimize the computational cost. The incorporation of anelastic functions implies new terms with ordinary differential equations in the mathematical formulation. We solve these equations using the same order

  8. Grand-Canonical Adaptive Resolution Centroid Molecular Dynamics: Implementation and application

    NASA Astrophysics Data System (ADS)

    Agarwal, Animesh; Delle Site, Luigi

    2016-09-01

    We have implemented the Centroid Molecular Dynamics scheme (CMD) into the Grand Canonical-like version of the Adaptive Resolution Simulation Molecular Dynamics (GC-AdResS) method. We have tested the implementation on two different systems, liquid parahydrogen at extreme thermodynamic conditions and liquid water at ambient conditions; the reproduction of structural as well as dynamical results of reference systems are highly satisfactory. The capability of performing GC-AdResS CMD simulations allows for the treatment of a system characterized by some quantum features and open boundaries. This latter characteristic not only is of computational convenience, allowing for equivalent results of much larger and computationally more expensive systems, but also suggests a tool of analysis so far not explored, that is the unambiguous identification of the essential degrees of freedom required for a given property.

  9. A decision analysis approach to climate adaptation: comparing multiple pathways for multi-decadal decision making

    NASA Astrophysics Data System (ADS)

    Lin, B. B.; Little, L.

    2013-12-01

    Policy planners around the world are required to consider the implications of adapting to climatic change across spatial contexts and decadal timeframes. However, local level information for planning is often poorly defined, even though climate adaptation decision-making is made at this scale. This is especially true when considering sea level rise and coastal impacts of climate change. We present a simple approach using sea level rise simulations paired with adaptation scenarios to assess a range of adaptation options available to local councils dealing with issues of beach recession under present and future sea level rise and storm surge. Erosion and beach recession pose a large socioeconomic risk to coastal communities because of the loss of key coastal infrastructure. We examine the well-known adaptation technique of beach nourishment and assess various timings and amounts of beach nourishment at decadal time spans in relation to beach recession impacts. The objective was to identify an adaptation strategy that would allow for a low frequency of management interventions, the maintenance of beach width, and the ability to minimize variation in beach width over the 2010 to 2100 simulation period. 1000 replications of each adaptation option were produced against the 90 year simulation in order to model the ability each adaptation option to achieve the three key objectives. Three sets of adaptation scenarios were identified. Within each scenario, a number of adaptation options were tested. The three scenarios were: 1) Fixed periodic beach replenishment of specific amounts at 20 and 50 year intervals, 2) Beach replenishment to the initial beach width based on trigger levels of recession (5m, 10m, 20m), and 3) Fixed period beach replenishment of a variable amount at decadal intervals (every 10, 20, 30, 40, 50 years). For each adaptation option, we show the effectiveness of each beach replenishment scenario to maintain beach width and consider the implications of more

  10. Adaptive Critic Neural Network-Based Terminal Area Energy Management and Approach and Landing Guidance

    NASA Technical Reports Server (NTRS)

    Grantham, Katie

    2003-01-01

    Reusable Launch Vehicles (RLVs) have different mission requirements than the Space Shuttle, which is used for benchmark guidance design. Therefore, alternative Terminal Area Energy Management (TAEM) and Approach and Landing (A/L) Guidance schemes can be examined in the interest of cost reduction. A neural network based solution for a finite horizon trajectory optimization problem is presented in this paper. In this approach the optimal trajectory of the vehicle is produced by adaptive critic based neural networks, which were trained off-line to maintain a gradual glideslope.

  11. Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification.

    PubMed

    Schlüter, Lothar; Lohbeck, Kai T; Gröger, Joachim P; Riebesell, Ulf; Reusch, Thorsten B H

    2016-07-01

    Marine phytoplankton may adapt to ocean change, such as acidification or warming, because of their large population sizes and short generation times. Long-term adaptation to novel environments is a dynamic process, and phenotypic change can take place thousands of generations after exposure to novel conditions. We conducted a long-term evolution experiment (4 years = 2100 generations), starting with a single clone of the abundant and widespread coccolithophore Emiliania huxleyi exposed to three different CO2 levels simulating ocean acidification (OA). Growth rates as a proxy for Darwinian fitness increased only moderately under both levels of OA [+3.4% and +4.8%, respectively, at 1100 and 2200 μatm partial pressure of CO2 (Pco2)] relative to control treatments (ambient CO2, 400 μatm). Long-term adaptation to OA was complex, and initial phenotypic responses of ecologically important traits were later reverted. The biogeochemically important trait of calcification, in particular, that had initially been restored within the first year of evolution was later reduced to levels lower than the performance of nonadapted populations under OA. Calcification was not constitutively lost but returned to control treatment levels when high CO2-adapted isolates were transferred back to present-day control CO2 conditions. Selection under elevated CO2 exacerbated a general decrease of cell sizes under long-term laboratory evolution. Our results show that phytoplankton may evolve complex phenotypic plasticity that can affect biogeochemically important traits, such as calcification. Adaptive evolution may play out over longer time scales (>1 year) in an unforeseen way under future ocean conditions that cannot be predicted from initial adaptation responses. PMID:27419227

  12. Functional Modulation of Corticospinal Excitability with Adaptation of Wrist Movements to Novel Dynamical Environments

    PubMed Central

    Hirashima, Masaya

    2014-01-01

    Adaptation of reaching movements to a novel dynamic environment is associated with changes in neuronal activity in the primary motor cortex (M1), suggesting that M1 neurons are part of the internal model. Here, we investigated whether such changes in neuronal activity, resulting from motor adaptation, were also accompanied by changes in human corticospinal excitability, which reflects M1 activity at a macroscopic level. Participants moved a cursor on a display using the right wrist joint from the starting position toward one of eight equally spaced peripheral targets. Motor-evoked potentials (MEPs) were elicited from the wrist muscles by transcranial magnetic stimulation delivered over the left M1 before and after adaptation to a clockwise velocity-dependent force field. We found that the MEP elicited even during the preparatory period exhibited a directional tuning property, and that the preferred direction shifted clockwise after adaptation to the force field. In a subsequent experiment, participants simultaneously adapted an identical wrist movement to two opposing force fields, each of which was associated with unimanual or bimanual contexts, and the MEP during the preparatory period was flexibly modulated, depending on the context. In contrast, such modulation of the MEP was not observed when participants tried to adapt to two opposing force fields that were each associated with a target color. These results suggest that the internal model formed in the M1 is retrieved flexibly even during the preparatory period, and that the MEP could be a very useful probe for evaluating the formation and retrieval of motor memory. PMID:25209281

  13. Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification

    PubMed Central

    Schlüter, Lothar; Lohbeck, Kai T.; Gröger, Joachim P.; Riebesell, Ulf; Reusch, Thorsten B. H.

    2016-01-01

    Marine phytoplankton may adapt to ocean change, such as acidification or warming, because of their large population sizes and short generation times. Long-term adaptation to novel environments is a dynamic process, and phenotypic change can take place thousands of generations after exposure to novel conditions. We conducted a long-term evolution experiment (4 years = 2100 generations), starting with a single clone of the abundant and widespread coccolithophore Emiliania huxleyi exposed to three different CO2 levels simulating ocean acidification (OA). Growth rates as a proxy for Darwinian fitness increased only moderately under both levels of OA [+3.4% and +4.8%, respectively, at 1100 and 2200 μatm partial pressure of CO2 (Pco2)] relative to control treatments (ambient CO2, 400 μatm). Long-term adaptation to OA was complex, and initial phenotypic responses of ecologically important traits were later reverted. The biogeochemically important trait of calcification, in particular, that had initially been restored within the first year of evolution was later reduced to levels lower than the performance of nonadapted populations under OA. Calcification was not constitutively lost but returned to control treatment levels when high CO2–adapted isolates were transferred back to present-day control CO2 conditions. Selection under elevated CO2 exacerbated a general decrease of cell sizes under long-term laboratory evolution. Our results show that phytoplankton may evolve complex phenotypic plasticity that can affect biogeochemically important traits, such as calcification. Adaptive evolution may play out over longer time scales (>1 year) in an unforeseen way under future ocean conditions that cannot be predicted from initial adaptation responses. PMID:27419227

  14. A Neural Network Approach to Intention Modeling for User-Adapted Conversational Agents.

    PubMed

    Griol, David; Callejas, Zoraida

    2016-01-01

    Spoken dialogue systems have been proposed to enable a more natural and intuitive interaction with the environment and human-computer interfaces. In this contribution, we present a framework based on neural networks that allows modeling of the user's intention during the dialogue and uses this prediction to dynamically adapt the dialogue model of the system taking into consideration the user's needs and preferences. We have evaluated our proposal to develop a user-adapted spoken dialogue system that facilitates tourist information and services and provide a detailed discussion of the positive influence of our proposal in the success of the interaction, the information and services provided, and the quality perceived by the users. PMID:26819592

  15. A Neural Network Approach to Intention Modeling for User-Adapted Conversational Agents

    PubMed Central

    Griol, David

    2016-01-01

    Spoken dialogue systems have been proposed to enable a more natural and intuitive interaction with the environment and human-computer interfaces. In this contribution, we present a framework based on neural networks that allows modeling of the user's intention during the dialogue and uses this prediction to dynamically adapt the dialogue model of the system taking into consideration the user's needs and preferences. We have evaluated our proposal to develop a user-adapted spoken dialogue system that facilitates tourist information and services and provide a detailed discussion of the positive influence of our proposal in the success of the interaction, the information and services provided, and the quality perceived by the users. PMID:26819592

  16. Data-driven approach to dynamic visual attention modelling

    NASA Astrophysics Data System (ADS)

    Culibrk, Dubravko; Sladojevic, Srdjan; Riche, Nicolas; Mancas, Matei; Crnojevic, Vladimir

    2012-06-01

    Visual attention deployment mechanisms allow the Human Visual System to cope with an overwhelming amount of visual data by dedicating most of the processing power to objects of interest. The ability to automatically detect areas of the visual scene that will be attended to by humans is of interest for a large number of applications, from video coding, video quality assessment to scene understanding. Due to this fact, visual saliency (bottom-up attention) models have generated significant scientific interest in recent years. Most recent work in this area deals with dynamic models of attention that deal with moving stimuli (videos) instead of traditionally used still images. Visual saliency models are usually evaluated against ground-truth eye-tracking data collected from human subjects. However, there are precious few recently published approaches that try to learn saliency from eyetracking data and, to the best of our knowledge, no approaches that try to do so when dynamic saliency is concerned. The paper attempts to fill this gap and describes an approach to data-driven dynamic saliency model learning. A framework is proposed that enables the use of eye-tracking data to train an arbitrary machine learning algorithm, using arbitrary features derived from the scene. We evaluate the methodology using features from a state-of-the art dynamic saliency model and show how simple machine learning algorithms can be trained to distinguish between visually salient and non-salient parts of the scene.

  17. Modern control concepts in hydrology. [parameter identification in adaptive stochastic control approach

    NASA Technical Reports Server (NTRS)

    Duong, N.; Winn, C. B.; Johnson, G. R.

    1975-01-01

    Two approaches to an identification problem in hydrology are presented, based upon concepts from modern control and estimation theory. The first approach treats the identification of unknown parameters in a hydrologic system subject to noisy inputs as an adaptive linear stochastic control problem; the second approach alters the model equation to account for the random part in the inputs, and then uses a nonlinear estimation scheme to estimate the unknown parameters. Both approaches use state-space concepts. The identification schemes are sequential and adaptive and can handle either time-invariant or time-dependent parameters. They are used to identify parameters in the Prasad model of rainfall-runoff. The results obtained are encouraging and confirm the results from two previous studies; the first using numerical integration of the model equation along with a trial-and-error procedure, and the second using a quasi-linearization technique. The proposed approaches offer a systematic way of analyzing the rainfall-runoff process when the input data are imbedded in noise.

  18. Wavelet spectrum analysis approach to model validation of dynamic systems

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaomo; Mahadevan, Sankaran

    2011-02-01

    Feature-based validation techniques for dynamic system models could be unreliable for nonlinear, stochastic, and transient dynamic behavior, where the time series is usually non-stationary. This paper presents a wavelet spectral analysis approach to validate a computational model for a dynamic system. Continuous wavelet transform is performed on the time series data for both model prediction and experimental observation using a Morlet wavelet function. The wavelet cross-spectrum is calculated for the two sets of data to construct a time-frequency phase difference map. The Box-plot, an exploratory data analysis technique, is applied to interpret the phase difference for validation purposes. In addition, wavelet time-frequency coherence is calculated using the locally and globally smoothed wavelet power spectra of the two data sets. Significance tests are performed to quantitatively verify whether the wavelet time-varying coherence is significant at a specific time and frequency point, considering uncertainties in both predicted and observed time series data. The proposed wavelet spectrum analysis approach is illustrated with a dynamics validation challenge problem developed at the Sandia National Laboratories. A comparison study is conducted to demonstrate the advantages of the proposed methodologies over classical frequency-independent cross-correlation analysis and time-independent cross-coherence analysis for the validation of dynamic systems.

  19. Domain-elongation NMR spectroscopy yields new insights into RNA dynamics and adaptive recognition.

    PubMed

    Zhang, Qi; Al-Hashimi, Hashim M

    2009-11-01

    By simplifying the interpretation of nuclear magnetic resonance spin relaxation and residual dipolar couplings data, recent developments involving the elongation of RNA helices are providing new atomic insights into the dynamical properties that allow RNA structures to change functionally and adaptively. Domain elongation, in concert with spin relaxation measurements, has allowed the detailed characterization of a hierarchical network of local and collective motional modes occurring at nanosecond timescale that mirror the structural rearrangements that take place following adaptive recognition. The combination of domain elongation with residual dipolar coupling measurements has allowed the experimental three-dimensional visualization of very large amplitude rigid-body helix motions in HIV-1 transactivation response element (TAR) that trace out a highly choreographed trajectory in which the helices twist and bend in a correlated manner. The dynamic trajectory allows unbound TAR to sample many of its ligand bound conformations, indicating that adaptive recognition occurs by "conformational selection" rather than "induced fit." These studies suggest that intrinsic flexibility plays essential roles directing RNA conformational changes along specific pathways. PMID:19776156

  20. Adaptive modeling, identification, and control of dynamic structural systems. I. Theory

    USGS Publications Warehouse

    Safak, Erdal

    1989-01-01

    A concise review of the theory of adaptive modeling, identification, and control of dynamic structural systems based on discrete-time recordings is presented. Adaptive methods have four major advantages over the classical methods: (1) Removal of the noise from the signal is done over the whole frequency band; (2) time-varying characteristics of systems can be tracked; (3) systems with unknown characteristics can be controlled; and (4) a small segment of the data is needed during the computations. Included in the paper are the discrete-time representation of single-input single-output (SISO) systems, models for SISO systems with noise, the concept of stochastic approximation, recursive prediction error method (RPEM) for system identification, and the adaptive control. Guidelines for model selection and model validation and the computational aspects of the method are also discussed in the paper. The present paper is the first of two companion papers. The theory given in the paper is limited to that which is necessary to follow the examples for applications in structural dynamics presented in the second paper.

  1. An Integrated Systems Approach to Designing Climate Change Adaptation Policy in Water Resources

    NASA Astrophysics Data System (ADS)

    Ryu, D.; Malano, H. M.; Davidson, B.; George, B.

    2014-12-01

    Climate change projections are characterised by large uncertainties with rainfall variability being the key challenge in designing adaptation policies. Climate change adaptation in water resources shows all the typical characteristics of 'wicked' problems typified by cognitive uncertainty as new scientific knowledge becomes available, problem instability, knowledge imperfection and strategic uncertainty due to institutional changes that inevitably occur over time. Planning that is characterised by uncertainties and instability requires an approach that can accommodate flexibility and adaptive capacity for decision-making. An ability to take corrective measures in the event that scenarios and responses envisaged initially derive into forms at some future stage. We present an integrated-multidisciplinary and comprehensive framework designed to interface and inform science and decision making in the formulation of water resource management strategies to deal with climate change in the Musi Catchment of Andhra Pradesh, India. At the core of this framework is a dialogue between stakeholders, decision makers and scientists to define a set of plausible responses to an ensemble of climate change scenarios derived from global climate modelling. The modelling framework used to evaluate the resulting combination of climate scenarios and adaptation responses includes the surface and groundwater assessment models (SWAT & MODFLOW) and the water allocation modelling (REALM) to determine the water security of each adaptation strategy. Three climate scenarios extracted from downscaled climate models were selected for evaluation together with four agreed responses—changing cropping patterns, increasing watershed development, changing the volume of groundwater extraction and improving irrigation efficiency. Water security in this context is represented by the combination of level of water availability and its associated security of supply for three economic activities (agriculture

  2. Enhancing Collaborative Learning through Dynamic Forms of Support: The Impact of an Adaptive Domain-Specific Support Strategy

    ERIC Educational Resources Information Center

    Karakostas, A.; Demetriadis, S.

    2011-01-01

    Research on computer-supported collaborative learning (CSCL) has strongly emphasized the value of providing student support of either fixed (e.g. collaboration scripts) or dynamic form (e.g. adaptive supportive interventions). Currently, however, there is not sufficient evidence corroborating the potential of adaptive support methods to improve…

  3. Adaptive dynamic programming for finite-horizon optimal control of discrete-time nonlinear systems with ε-error bound.

    PubMed

    Wang, Fei-Yue; Jin, Ning; Liu, Derong; Wei, Qinglai

    2011-01-01

    In this paper, we study the finite-horizon optimal control problem for discrete-time nonlinear systems using the adaptive dynamic programming (ADP) approach. The idea is to use an iterative ADP algorithm to obtain the optimal control law which makes the performance index function close to the greatest lower bound of all performance indices within an ε-error bound. The optimal number of control steps can also be obtained by the proposed ADP algorithms. A convergence analysis of the proposed ADP algorithms in terms of performance index function and control policy is made. In order to facilitate the implementation of the iterative ADP algorithms, neural networks are used for approximating the performance index function, computing the optimal control policy, and modeling the nonlinear system. Finally, two simulation examples are employed to illustrate the applicability of the proposed method. PMID:20876014

  4. A problem-oriented approach to understanding adaptation: lessons learnt from Alpine Shire, Victoria Australia.

    NASA Astrophysics Data System (ADS)

    Roman, Carolina

    2010-05-01

    Climate change is gaining attention as a significant strategic issue for localities that rely on their business sectors for economic viability. For businesses in the tourism sector, considerable research effort has sought to characterise the vulnerability to the likely impacts of future climate change through scenarios or ‘end-point' approaches (Kelly & Adger, 2000). Whilst useful, there are few demonstrable case studies that complement such work with a ‘start-point' approach that seeks to explore contextual vulnerability (O'Brien et al., 2007). This broader approach is inclusive of climate change as a process operating within a biophysical system and allows recognition of the complex interactions that occur in the coupled human-environmental system. A problem-oriented and interdisciplinary approach was employed at Alpine Shire, in northeast Victoria Australia, to explore the concept of contextual vulnerability and adaptability to stressors that include, but are not limited to climatic change. Using a policy sciences approach, the objective was to identify factors that influence existing vulnerabilities and that might consequently act as barriers to effective adaptation for the Shire's business community involved in the tourism sector. Analyses of results suggest that many threats, including the effects climate change, compete for the resources, strategy and direction of local tourism management bodies. Further analysis of conditioning factors revealed that many complex and interacting factors define the vulnerability and adaptive capacity of the Shire's tourism sector to the challenges of global change, which collectively have more immediate implications for policy and planning than long-term future climate change scenarios. An approximation of the common interest, i.e. enhancing capacity in business acumen amongst tourism operators, would facilitate adaptability and sustainability through the enhancement of social capital in this business community. Kelly, P

  5. A Functional Approach To Uncover the Low-Temperature Adaptation Strategies of the Archaeon Methanosarcina barkeri

    PubMed Central

    McCay, Paul; Fuszard, Matthew; Botting, Catherine H.; Abram, Florence; O'Flaherty, Vincent

    2013-01-01

    Low-temperature anaerobic digestion (LTAD) technology is underpinned by a diverse microbial community. The methanogenic archaea represent a key functional group in these consortia, undertaking CO2 reduction as well as acetate and methylated C1 metabolism with subsequent biogas (40 to 60% CH4 and 30 to 50% CO2) formation. However, the cold adaptation strategies, which allow methanogens to function efficiently in LTAD, remain unclear. Here, a pure-culture proteomic approach was employed to study the functional characteristics of Methanosarcina barkeri (optimum growth temperature, 37°C), which has been detected in LTAD bioreactors. Two experimental approaches were undertaken. The first approach aimed to characterize a low-temperature shock response (LTSR) of M. barkeri DSMZ 800T grown at 37°C with a temperature drop to 15°C, while the second experimental approach aimed to examine the low-temperature adaptation strategies (LTAS) of the same strain when it was grown at 15°C. The latter experiment employed cell viability and growth measurements (optical density at 600 nm [OD600]), which directly compared M. barkeri cells grown at 15°C with those grown at 37°C. During the LTSR experiment, a total of 127 proteins were detected in 37°C and 15°C samples, with 20 proteins differentially expressed with respect to temperature, while in the LTAS experiment 39% of proteins identified were differentially expressed between phases of growth. Functional categories included methanogenesis, cellular information processing, and chaperones. By applying a polyphasic approach (proteomics and growth studies), insights into the low-temperature adaptation capacity of this mesophilically characterized methanogen were obtained which suggest that the metabolically diverse Methanosarcinaceae could be functionally relevant for LTAD systems. PMID:23645201

  6. Health risk in the context of climate change and adaptation - Concept and mapping as an integrated approach

    NASA Astrophysics Data System (ADS)

    Kienberger, S.; Notenbaert, A.; Zeil, P.; Bett, B.; Hagenlocher, M.; Omolo, A.

    2012-04-01

    Climate change has been stated as being one of the greatest challenges to global health in the current century. Climate change impacts on human health and the socio-economic and related poverty consequences are however still poorly understood. While epidemiological issues are strongly coupled with environmental and climatic parameters, the social and economic circumstances of populations might be of equal or even greater importance when trying to identify vulnerable populations and design appropriate and well-targeted adaptation measures. The inter-linkage between climate change, human health risk and socio-economic impacts remains an important - but largely outstanding - research field. We present an overview on how risk is traditionally being conceptualised in the human health domain and reflect critically on integrated approaches as being currently used in the climate change context. The presentation will also review existing approaches, and how they can be integrated towards adaptation tools. Following this review, an integrated risk concept is being presented, which has been currently adapted under the EC FP7 research project (HEALTHY FUTURES; http://www.healthyfutures.eu/). In this approach, health risk is not only defined through the disease itself (as hazard) but also by the inherent vulnerability of the system, population or region under study. It is in fact the interaction of environment and society that leads to the development of diseases and the subsequent risk of being negatively affected by it. In this conceptual framework vulnerability is being attributed to domains of lack of resilience as well as underlying preconditions determining susceptibilities. To fulfil a holistic picture vulnerability can be associated to social, economic, environmental, institutional, cultural and physical dimensions. The proposed framework also establishes the important nexus to adaptation and how different measures can be related to avoid disease outbreaks, reduce

  7. Importance of dynamic mesh adaptivity for simulation of viscous fingering in porous media

    NASA Astrophysics Data System (ADS)

    Mostaghimi, P.; Jackson, M.; Pain, C.; Gorman, G.

    2014-12-01

    Viscous fingering is a major concern in many natural and engineered processes such as water flooding of heavy-oil reservoirs. Common reservoir simulators employ low-order finite volume/difference methods on structured grids to resolve this phenomenon. However, their approach suffers from a significant numerical dispersion error along the fingering patterns due to insufficient mesh resolution and smears out some important features of the flow. We propose use of an unstructured control volume finite element method for simulation of viscous fingering in porous media. Our approach is equipped with anisotropic mesh adaptivity where the mesh resolution is optimized based on the evolving features of flow. The adaptive algorithm uses a metric tensor field based on solution error estimates to locally control the size and shape of elements in the metric. We resolve the viscous fingering patterns accurately and reduce the numerical dispersion error significantly. The mesh optimization, generates an unstructured coarse mesh in other regions of the computational domain which significantly decreases the computational cost. The effect of grid resolution on the resolved fingers is thoroughly investigated. We analyze the computational cost of mesh adaptivty on unstructured mesh and compare it with common finite volume methods. The results of this study suggests that mesh adaptivity is an efficient and accurate approach for resolving complex behaviors and instabilities of flow in porous media such as viscous fingering.

  8. A Combined Geometric Approach for Computational Fluid Dynamics on Dynamic Grids

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    1995-01-01

    A combined geometric approach for computational fluid dynamics is presented for the analysis of unsteady flow about mechanisms in which its components are in moderate relative motion. For a CFD analysis, the total dynamics problem involves the dynamics of the aspects of geometry modeling, grid generation, and flow modeling. The interrelationships between these three aspects allow for a more natural formulation of the problem and the sharing of information which can be advantageous to the computation of the dynamics. The approach is applied to planar geometries with the use of an efficient multi-block, structured grid generation method to compute unsteady, two-dimensional and axisymmetric flow. The applications presented include the computation of the unsteady, inviscid flow about a hinged-flap with flap deflections and a high-speed inlet with centerbody motion as part of the unstart / restart operation.

  9. Complexity and dynamism from an urban health perspective: a rationale for a system dynamics approach.

    PubMed

    Tozan, Yesim; Ompad, Danielle C

    2015-06-01

    In a variety of urban health frameworks, cities are conceptualized as complex and dynamic yet commonly used epidemiological methods have failed to address this complexity and dynamism head on due to their narrow problem definitions and linear analytical representations. Scholars from a variety of disciplines have also long conceptualized cities as systems, but few have modeled urban health issues as problems within a system. Systems thinking in general and system dynamics in particular are relatively new approaches in public health, but ones that hold immense promise as methodologies to model and analyze the complexity underlying urban processes to effectively inform policy actions in dynamic environments. This conceptual essay reviews the utility of applying the concepts, principles, and methods of systems thinking to the study of complex urban health phenomena as a complementary approach to standard epidemiological methods using specific examples and provides recommendations on how to better incorporate systems thinking methods in urban health research and practice. PMID:25952137

  10. Harm reduction as a complex adaptive system: A dynamic framework for analyzing Tanzanian policies concerning heroin use.

    PubMed

    Ratliff, Eric A; Kaduri, Pamela; Masao, Frank; Mbwambo, Jessie K K; McCurdy, Sheryl A

    2016-04-01

    Contrary to popular belief, policies on drug use are not always based on scientific evidence or composed in a rational manner. Rather, decisions concerning drug policies reflect the negotiation of actors' ambitions, values, and facts as they organize in different ways around the perceived problems associated with illicit drug use. Drug policy is thus best represented as a complex adaptive system (CAS) that is dynamic, self-organizing, and coevolving. In this analysis, we use a CAS framework to examine how harm reduction emerged around heroin trafficking and use in Tanzania over the past thirty years (1985-present). This account is an organizational ethnography based on of the observant participation of the authors as actors within this system. We review the dynamic history and self-organizing nature of harm reduction, noting how interactions among system actors and components have coevolved with patterns of heroin us, policing, and treatment activities over time. Using a CAS framework, we describe harm reduction as a complex process where ambitions, values, facts, and technologies interact in the Tanzanian sociopolitical environment. We review the dynamic history and self-organizing nature of heroin policies, noting how the interactions within and between competing prohibitionist and harm reduction policies have changed with patterns of heroin use, policing, and treatment activities over time. Actors learn from their experiences to organize with other actors, align their values and facts, and implement new policies. Using a CAS approach provides researchers and policy actors a better understanding of patterns and intricacies in drug policy. This knowledge of how the system works can help improve the policy process through adaptive action to introduce new actors, different ideas, and avenues for communication into the system. PMID:26790689

  11. Capturing dynamics on multiple time scales: a multilevel fusion approach for cluttered electromagnetic data

    NASA Astrophysics Data System (ADS)

    Brumby, Steven P.; Myers, Kary L.; Pawley, Norma H.

    2010-04-01

    Many problems in electromagnetic signal analysis exhibit dynamics on a wide range of time scales. Further, these dynamics may involve both continuous source generation processes and discrete source mode dynamics. These rich temporal characteristics can present challenges for standard modeling approaches, particularly in the presence of nonstationary noise and clutter sources. Here we demonstrate a hybrid algorithm designed to capture the dynamic behavior at all relevant time scales while remaining robust to clutter and noise at each time scale. We draw from techniques of adaptive feature extraction, statistical machine learning, and discrete process modeling to construct our hybrid algorithm. We describe our approach and present results applying our hybrid algorithm to a simulated dataset based on an example radio beacon identification problem: civilian air traffic control. This application illustrates the multi-scale complexity of the problems we wish to address. We consider a multi-mode air traffic control radar emitter operating against a cluttered background of competing radars and continuous-wave communications signals (radios, TV broadcasts). Our goals are to find a compact representation of the radio frequency measurements, identify which pulses were emitted by the target source, and determine the mode of the source.

  12. A dynamic object-oriented architecture approach to ecosystem modeling and simulation.

    SciTech Connect

    Dolph, J. E.; Majerus, K. A.; Sydelko, P. J.; Taxon, T. N.

    1999-04-09

    Modeling and simulation in support of adaptive ecosystem management can be better accomplished through a dynamic, integrated, and flexible approach that incorporates scientific and technological components into a comprehensive ecosystem-modeling framework. The Integrated Dynamic Landscape Analysis and Modeling System (IDLAMS) integrates ecological models and decision support techniques, through a geographic information system (GIS)-based framework. The Strategic Environmental Research and Development Program (SERDP) sponsored the development of IDLAMS. Initially built upon a GIS framework, IDLAMS is migrating to an object-oriented (OO) architectural framework. An object-oriented architecture is more flexible and modular. It allows disparate applications and dynamic models to be integrated in a manner that minimizes (or eliminates) the need to rework or recreate the system as new models are added to the suite. In addition, an object-oriented design makes it easier to provide run-time feedback among models, thereby making it a more dynamic tool for exploring and providing insight into the interactions among ecosystem processes. Finally, an object-oriented design encourages the reuse of existing technology because OO-IDLAMS is able to integrate disparate models, databases, or applications executed in their native languages. Reuse is also accomplished through a structured approach to building a consistent and reusable object library. This reusability can substantially reduce the time and effort needed to develop future integrated ecosystem simulations.

  13. Testing for Adaptation to Climate in Arabidopsis thaliana: A Calibrated Common Garden Approach

    PubMed Central

    Rutter, Matthew T.; Fenster, Charles B.

    2007-01-01

    Background and Aims A recent method used to test for local adaptation is a common garden experiment where analyses are calibrated to the environmental conditions of the garden. In this study the calibrated common garden approach is used to test for patterns of adaptation to climate in accessions of Arabidopsis thaliana. Methods Seedlings from 21 accessions of A. thaliana were planted outdoors in College Park, MD, USA, and development was monitored during the course of a growing season. ANOVA and multiple regression analysis were used to determine if development traits were significant predictors of plant success. Previously published data relating to accessional differences in genetic and physiological characters were also examined. Historical records of climate were used to evaluate whether properties of the site of origin of an accession affected the fitness of plants in a novel environment. Key Results By calibrating the analysis to the climatic conditions of the common garden site, performance differences were detected among the accessions consistent with a pattern of adaptation to latitude and climatic conditions. Relatively higher accession fitness was predicted by a latitude and climatic history similar to that of College Park in April and May during the main growth period of this experiment. The climatic histories of the accessions were better predictors of performance than many of the life-history and growth measures taken during the experiment. Conclusions It is concluded that the calibrated common garden experiment can detect local adaptation and guide subsequent reciprocal transplant experiments. PMID:17293351

  14. Design of Unstructured Adaptive (UA) NAS Parallel Benchmark Featuring Irregular, Dynamic Memory Accesses

    NASA Technical Reports Server (NTRS)

    Feng, Hui-Yu; VanderWijngaart, Rob; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2001-01-01

    We describe the design of a new method for the measurement of the performance of modern computer systems when solving scientific problems featuring irregular, dynamic memory accesses. The method involves the solution of a stylized heat transfer problem on an unstructured, adaptive grid. A Spectral Element Method (SEM) with an adaptive, nonconforming mesh is selected to discretize the transport equation. The relatively high order of the SEM lowers the fraction of wall clock time spent on inter-processor communication, which eases the load balancing task and allows us to concentrate on the memory accesses. The benchmark is designed to be three-dimensional. Parallelization and load balance issues of a reference implementation will be described in detail in future reports.

  15. A new procedure for dynamic adaption of three-dimensional unstructured grids

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Strawn, Roger

    1993-01-01

    A new procedure is presented for the simultaneous coarsening and refinement of three-dimensional unstructured tetrahedral meshes. This algorithm allows for localized grid adaption that is used to capture aerodynamic flow features such as vortices and shock waves in helicopter flowfield simulations. The mesh-adaption algorithm is implemented in the C programming language and uses a data structure consisting of a series of dynamically-allocated linked lists. These lists allow the mesh connectivity to be rapidly reconstructed when individual mesh points are added and/or deleted. The algorithm allows the mesh to change in an anisotropic manner in order to efficiently resolve directional flow features. The procedure has been successfully implemented on a single processor of a Cray Y-MP computer. Two sample cases are presented involving three-dimensional transonic flow. Computed results show good agreement with conventional structured-grid solutions for the Euler equations.

  16. Turing pattern dynamics and adaptive discretization for a super-diffusive Lotka-Volterra model.

    PubMed

    Bendahmane, Mostafa; Ruiz-Baier, Ricardo; Tian, Canrong

    2016-05-01

    In this paper we analyze the effects of introducing the fractional-in-space operator into a Lotka-Volterra competitive model describing population super-diffusion. First, we study how cross super-diffusion influences the formation of spatial patterns: a linear stability analysis is carried out, showing that cross super-diffusion triggers Turing instabilities, whereas classical (self) super-diffusion does not. In addition we perform a weakly nonlinear analysis yielding a system of amplitude equations, whose study shows the stability of Turing steady states. A second goal of this contribution is to propose a fully adaptive multiresolution finite volume method that employs shifted Grünwald gradient approximations, and which is tailored for a larger class of systems involving fractional diffusion operators. The scheme is aimed at efficient dynamic mesh adaptation and substantial savings in computational burden. A numerical simulation of the model was performed near the instability boundaries, confirming the behavior predicted by our analysis. PMID:26219250

  17. Cortical brightness adaptation when darkness and brightness produce different dynamical states in the visual cortex.

    PubMed

    Xing, Dajun; Yeh, Chun-I; Gordon, James; Shapley, Robert M

    2014-01-21

    Darkness and brightness are very different perceptually. To understand the neural basis for the visual difference, we studied the dynamical states of populations of neurons in macaque primary visual cortex when a spatially uniform area (8° × 8°) of the visual field alternated between black and white. Darkness evoked sustained nerve-impulse spiking in primary visual cortex neurons, but bright stimuli evoked only a transient response. A peak in the local field potential (LFP) γ band (30-80 Hz) occurred during darkness; white-induced LFP fluctuations were of lower amplitude, peaking at 25 Hz. However, the sustained response to white in the evoked LFP was larger than for black. Together with the results on spiking, the LFP results imply that, throughout the stimulus period, bright fields evoked strong net sustained inhibition. Such cortical brightness adaptation can explain many perceptual phenomena: interocular speeding up of dark adaptation, tonic interocular suppression, and interocular masking. PMID:24398523

  18. An Automated Image Selection Approach for Annual Assessment of US Forest Dynamics

    NASA Astrophysics Data System (ADS)

    Schleeweis, K.; Goward, S. N.; Huang, C.; Lindsey, M. A.; Masek, J. G.

    2011-12-01

    North American forests are thought to be a long-term sink for atmospheric carbon, with much of the sink attributed to either forest regrowth from past agricultural clearing or to woody encroachment. However, the magnitude of the North American forest sink is uncertain, because disturbance and regrowth dynamics are not well characterized or understood. The North American Forest Dynamics (NAFD) team from the University of Maryland, US Forest Service and NASA has been working to develop a sound understanding of forest disturbance patterns in North America as a contribution to the North American Carbon Program since 2003. We have found that spatial and temporal sampling of the Landsat data record result in substantial residual errors remaining in our US national estimates for disturbance rates. Conducting a comprehensive annual, wall-to-wall analysis of US disturbance history over the 1985-2010 (Landsat Thematic Mapper) time period will overcome these limitations. The first phase of production includes developing a successful automated image selection approach for selecting the 10,000-15,000 Landsat images (depending on cloud compositing needs) necessary for an annual assessment (1984-2010) of CONUS forest dynamics. A major goal of this approach is to minimize the negative impact of clouds, phenology, and mis-registration by selecting the images necessary for producing annual, clear views of the land surface using a compositing algorithm. This approach has the potential of being adapted for implementation outside the CONUS.

  19. An Adaptive Channel Access Method for Dynamic Super Dense Wireless Sensor Networks.

    PubMed

    Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Zhang, Xuekun

    2015-01-01

    Super dense and distributed wireless sensor networks have become very popular with the development of small cell technology, Internet of Things (IoT), Machine-to-Machine (M2M) communications, Vehicular-to-Vehicular (V2V) communications and public safety networks. While densely deployed wireless networks provide one of the most important and sustainable solutions to improve the accuracy of sensing and spectral efficiency, a new channel access scheme needs to be designed to solve the channel congestion problem introduced by the high dynamics of competing nodes accessing the channel simultaneously. In this paper, we firstly analyzed the channel contention problem using a novel normalized channel contention analysis model which provides information on how to tune the contention window according to the state of channel contention. We then proposed an adaptive channel contention window tuning algorithm in which the contention window tuning rate is set dynamically based on the estimated channel contention level. Simulation results show that our proposed adaptive channel access algorithm based on fast contention window tuning can achieve more than 95 % of the theoretical optimal throughput and 0 . 97 of fairness index especially in dynamic and dense networks. PMID:26633421

  20. Signaling and Adaptation Modulate the Dynamics of the Photosensoric Complex of Natronomonas pharaonis

    PubMed Central

    Mulkidjanian, Armen Y.; Shaitan, Konstantin V.; Engelhard, Martin; Klare, Johann P.; Steinhoff, Heinz-Jürgen

    2015-01-01

    Motile bacteria and archaea respond to chemical and physical stimuli seeking optimal conditions for survival. To this end transmembrane chemo- and photoreceptors organized in large arrays initiate signaling cascades and ultimately regulate the rotation of flagellar motors. To unravel the molecular mechanism of signaling in an archaeal phototaxis complex we performed coarse-grained molecular dynamics simulations of a trimer of receptor/transducer dimers, namely NpSRII/NpHtrII from Natronomonas pharaonis. Signaling is regulated by a reversible methylation mechanism called adaptation, which also influences the level of basal receptor activation. Mimicking two extreme methylation states in our simulations we found conformational changes for the transmembrane region of NpSRII/NpHtrII which resemble experimentally observed light-induced changes. Further downstream in the cytoplasmic domain of the transducer the signal propagates via distinct changes in the dynamics of HAMP1, HAMP2, the adaptation domain and the binding region for the kinase CheA, where conformational rearrangements were found to be subtle. Overall these observations suggest a signaling mechanism based on dynamic allostery resembling models previously proposed for E. coli chemoreceptors, indicating similar properties of signal transduction for archaeal photoreceptors and bacterial chemoreceptors. PMID:26496122